IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On stable exponential cosmological solutions with non-static volume factor in the Einstein-

Gauss-Bonnet model

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Conf. Ser. 798 012089
(http://iopscience.iop.org/1742-6596/798/1/012089)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.5.251
This content was downloaded on 18/03/2017 at 21:21

Please note that terms and conditions apply.

You may also be interested in:

Energy and stability in Einstein-Gauss-Bonnet models
S Deser and Z Yang

Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the
boundary counterterm method
Yves Brihaye and Eugen Radu

The high-frequency gravitational waves in exact inflationary models with Gauss-Bonnet term
I V Fomin and A N Morozov

Non-Static Plane Symmetric Zeldovich Fluid Model In Scalelnvariant Theory
B. Mishra

Spherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity
S G Ghosh, S Jhingan and D W Deshkar

Holographic superconductors with higher curvature corrections
Ruth Gregory, Sugumi Kanno and Jiro Soda

Higher derivative corrections to locally black brane metrics
Suvankar Dutta

Codimension-2 black hole solutions on a thin 3-brane and their extension into the bulk
Minas Tsoukalas

Axionic instantons in Einstein-Gauss-Bonnet theory
S Mignemi



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/798/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0264-9381/6/5/001
http://iopscience.iop.org/article/10.1088/1126-6708/2008/09/006
http://iopscience.iop.org/article/10.1088/1126-6708/2008/09/006
http://iopscience.iop.org/article/10.1088/1742-6596/798/1/012088
http://iopscience.iop.org/article/10.1088/0256-307X/21/12/011
http://iopscience.iop.org/article/10.1088/1742-6596/484/1/012013
http://iopscience.iop.org/article/10.1088/1126-6708/2009/10/010
http://iopscience.iop.org/article/10.1088/1126-6708/2008/05/082
http://iopscience.iop.org/article/10.1088/1742-6596/189/1/012043
http://iopscience.iop.org/article/10.1088/0264-9381/10/9/008

International Conference on Particle Physics and Astrophysics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012089 doi:10.1088/1742-6596/798/1/012089

On stable exponential cosmological solutions with
non-static volume factor in the
Einstein-Gauss-Bonnet model

V D Ivashchuk!?, K K Ernazarov?

! Center for Gravitation and Fundamental Metrology, VNIIMS, Ozyornaya St., 46, Moscow
119361, Russia

2 Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia,
Miklukho-Maklaya St., 6, Moscow 117198, Russia

E-mail: ivashchuk@mail.ru

Abstract. A (n+ 1)-dimensional gravitational model with cosmological constant and Gauss-
Bonnet term is studied. The ansatz with diagonal cosmological metrics is adopted and solutions
with exponential dependence of scale factors: a; ~ exp (vit), i =1,...,n, are considered. The
stability analysis of the solutions with non-static volume factor is presented. We show that the
solutions with v' = v = v® = H > 0 and small enough variation of the effective gravitational
constant G are stable if certain restriction on (vl) is obeyed. New examples of stable exponential
solutions with zero variation of G in dimensions D = 1+ m + 2 with m > 2 are presented.

1. Introduction
This paper deals with gravitational model governed by the action

5= [ d”z\/lgl{en(Rlg) - 28) + aztalgl) (1

where ¢ = gyndzM ® dz" is the metric defined on the manifold M, dimM = D, |g| =

| det(gmn)l,
Lo = RMNPQRMNPQ — 4RMNRMN + R? (2)

is the quadratic “Gauss-Bonnet term” and A is cosmological term. Here a; and ae are non-zero
constants. The appearance of the Gauss-Bonnet term was motivated by string theory [1].

At present, the so-called Einstein-Gauss-Bonnet (EGB) gravitational model which is governed
by the action (1) and its modifications are intensively used in cosmology, e.g. for explanation of
accelerating expansion of the Universe.

Here we consider the cosmological solutions with diagonal metrics governed by n scale factors
depending upon one variable, where n > 3; D = n+ 1. We study the solutions with exponential
dependence of scale factors with respect to the synchronous time variable ¢

7
a;i(t) ~ exp (v't), (3)
1=1,...,n.
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For possible physical applications solutions describing an exponential isotropic expansion of
3-dimensional flat factor-space, i.e. with

vl =0t =03 =H >0, (4)

and small enough variation of the effective gravitational constant GG are of interest.
At present, the variation of G is allowed at the level of 10~!? per year and less. The most
stringent limitation on G-dot was obtained in reference [2]

G/G = (0.16 £ 0.6) - 10712 year™? (5)

allowed at 95% confidence (2-0).

For our model G = Ge‘]ff(t) ~ (T14a;(t))~! is four-dimensional effective gravitational
constant which appears in multidimensional analogue of the so-called Brans-Dicke-Jordan (or
simply Jordan) frame [3].

Here we study the stability of exponential cosmological solutions (3) with non-static volume
factor in the EGB model [4], e.g. those describing the isotropic accelerated expansion of 3d
flat space obeying (4) with small enough variation of G. We restrict ourselves by a class of
perturbations which depend on ¢ and do not disturb the diagonal form of the metric.

2. The model
Here we consider the manifold

M= (t_,ty) x My X ... X My, (6)

with the metric .
g=—dtod+> Oy @ dy, (7)

i=1

where M, ..., M, are one-dimensional manifolds (either R or S') and n > 3. The functions 5(¢),
i=1,...,n, are smooth on (t_,t;). For physical applications we put M; = My = M3 = R.

The equations of motion for the action (1) and the metric (7) may be rewritten as follows
5, 6, 7]

E = Gijh'h + 2A — aGyjh'h hPh! = 0, (8)
dL; LA 2 o

Y, = —* W) L; — =(Gyh'h? — 4A) = 0. 9
T (jzzl ) 3Gy ) (9)

where h' = ', a = ay/ag, Gij = 8ij — 1, Giju = GijGinGaG GG,

. 1 o
Lo = Gizh'h? — 2A — gaGijklh’h]hkhl, (10)

and 4
L; = Li(h) = 2G;h7 — gaGijklhjhkhl, (11)

1=1,...,n.
Let us consider the following solutions to egs. (8) and (9)
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with constant v?, which correspond to the solutions 8¢ = v't + 3§, where B} are constants,
i =1,...,n. We obtain for the metric
g=—dt®dt+) Bie*'dy' ® dy', (13)
i=1

where B; > 0 are arbitrary constants.
For the fixed point v = (v*) we have the set of polynomial equations

E = Gijvivj +2A — aGijklvivjvkvl =0, (14)
noo. 2 .8
Y = (j; v?)Li(v) — gijvkvj +34=0, (15)

where L; is defined in (11),i=1,...,n.

3. Stability of fixed point solutions ‘ ‘
Here we study the stability of static solutions h'(t) = v' to egs. (8) and (9) in linear
approximation in pertubations. We put

Ri(t) = v + Sh'(t), (16)
i =1,...,n. By substitution (16) into eqs. (8) and (9) we obtain in linear approximation the
following relations for perturbations dh*
C;(v)dhi =0, (17)
Lij(v)0h? = Byj(v)dh, (18)
where
Ci(v) = 2v; — 4aGyjpsvi v 0v*, (19)
Lij (’U) = 2Gij - 4ozG,~jk5vkvs, (20)
“ 4
Bij(v) = =(3_v")Lij(v) = Li(v) + Ju;. (21)
k=1
Here v; = Gijvj, Li(v) = 2v; — %aGijksvjvkvs and 7,5, k,s =1,...,n.
We put the following restriction on the matrix L = (L;;(v))
(R)  det(Lij(v)) # 0, (22)

i.e. the matrix L should be invertible.
Here we consider exponential solutions (13) with non-static volume factor, which is
proportional to exp(} i, v't), i.e. we put

K(v) = zn:vi £ 0. (23)
=1

It was proved in reference [8] that the set of linear equations on perturbations (17), (18) has the
following solution

Sht = Alexp(—K (v)t), (24)
n
> Ci(w)A' =0, (25)
i=1
i=1,...,n. Due to (24) the following proposition is valid (see also an equivalent criteria in [9]).

Proposition [8]. The fized point solution (hi(t)) = (v*) (i = 1,...,n; n > 3) to egs.
(8), (9) obeying restrictions (22), (23) is stable under perturbations (16) (as t — +oo) if
K(v) =% _1v* > 0 and it is unstable (ast — +00) if K(v) = Yf_, v* <0,
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4. Solutions with small enough variation of G
The 4d effective gravitational constant in Jordan frame is proportional to inverse volume scale
factor of the internal space, i.e. G ~ [[/[a;(t)] 7!, where a;(t) = exp(B(t)).
For the solutions (13) we obtain the relation G(t) = G(0)exp (—Kinet) with Kipi(v) =
S°" v, which implies
g = Kp(0). (26)

Now, let us consider a subclass of cosmological solutions (13) which obey restriction (22) and
describe an exponential isotropic expansion of 3-dimensional flat factor-space with v! = v? =
v3 = H > 0 and variation of G obeying the bounds

|G/G| = |Kint(v)| < 3H. (27)

Then we get K(v) = 3" v" = 3H + Kjp(v) > 0. According to Proposition any solution
from this subclass is stable if the restriction (22) is obeyed.

Certain examples of stable exponential solutions with small enough variation of G were
considered in references [8, 10, 11, 12].

Here we present new examples of exponential solutions with zero variation of G for n = m+2,
m > 2 and a < 0. The solutions are given by relation (13) with (v*) = (H, ..., H, h,h) (with m
copies of H),

H = (2(m —1)]a|)~"? >0, (28)
1
h:—i(m—za)Hgo, (29)
and 1
A= gyoé\—l(m—1)—1(27712—5m+9) > 0, (30)
for m > 3.

These solutions are stable, since they obey restrictions (22). Indeed, according to reference
[8] the restriction (22) is satisfied if m > 1,

Sy = (m—2)(m —3)H? +4(m — 2)Hh + 2h% # —(2a) 7} (31)

and
Spn = m(m — 1)H* # —(2a)~ % (32)

Both inequalities are valid due to (28), (29) and m > 2.
The special cases of these solutions were obtained earlier in references: [8] (m = 3) and [12]
(m =4,5).

5. Conclusions

Here we have considered the (n + 1)-dimensional Einstein-Gauss-Bonnet (EGB) model with
the A-term. By using the ansatz with diagonal cosmological metrics, we have overviewed the
stability analysis of the solutions with exponential dependence of scale factors a; ~ exp (v't),
i=1,...,n, (tis a synchronous time variable) for n > 3 and >_7_; v¥ # 0.

Here a set of equations for perturbations §h’ was considered (in linear approximation) and
general solution to these equations under restrictions (22) and (23) obeyed was presented.

We have shown that exponential solutions with v! = v? = v® = H > 0 and small enough
variation of the effective gravitational constant obeying (27) are stable if the restriction (22) is
fulfilled. We have also presented new examples of stable exponential solutions with two different
Hubble-like parameters: H > 0 (m-times) and h < 0 (2-times), and zero variation of G in
dimensions D = 1 +m + 2 with m > 2.
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