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Synopsis

Introduction

Quantum field theory is one of the basic foundations of modern theoretical physics which

naturally unifies the principles of quantum mechanics and Poincare invariance. The ob-

ject of significant physical interest in any quantum field theory is the “S-matrix” and its

elements are known as scattering amplitudes. The conventional approach to obtain the

amplitudes is to write down a Lagrangian for the theory underlying the scattering pro-

cess, derive all the Feynman rules therein and then implement the Lehmann-Symanzik-

Zimmermann (LSZ) theorem on external states. But this field theoretic description for

massless particles with spin very quickly leads to huge o↵-shell redundancies from gauge

symmetries and various field redefinitions, appearing in intermediate processes but that

are absent in observables. This complexity in the computation of amplitudes grows

rapidly with increasing number of particles involved. A famous example of this is the

6 page computation of the 2 ! 4 gluon amplitude in [1]. Surprisingly, this huge result

can be expressed into a single line and can be modified suitably to obtain the nparticle

maximally helicity violating (MHV) gluon amplitude [2]. This enticing simplicity of scat-

tering amplitudes fosters the development of a multitude of techniques, broadly alluded

to as “On-shell methods”.

The modern S-matrix program, powered by the on-shell methods, deals directly with the

particles involved in scattering, without any allusion to quantum fields and their accom-
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panying redundancies. In this approach, the scattering amplitudes are considered to be a

function of external kinematic data and subjected to constraints imposed by physical prin-

ciples like unitarity, locality, causality and various spacetime and internal symmetries like

the additional Yang-Mills structures that appear in the case of self interacting massless

spin 1 particles.

In last few decades, the S-matrix program of quantum field theory has witnessed a number

of remarkable developments: a) the study of analytic structure of S-matrix has revealed

strikingly new insights in our understanding of quantum field theory [3–6], b) on-shell

techniques like Britto-Cachazo-Feng-Witten (BCFW) [7, 8] recursion relations and gen-

eralised unitarity [9] have enormously reduced the complexity of seemingly impossible

computations which guided the next to leading order (NLO) revolution in Quantum Chro-

modynamics (QCD) and have even been used to calculate classical observables such as

potential that models the merger of binary black-holes up to high order in post Newtonian

and post Minkowskian expansion [10]. This thesis is devoted to the derivation of a new

on-shell recursion scheme for computing scattering amplitudes in gauge theories in four

spacetime dimensions, involving massive particles. The recursion relations are then used

to calculate particular classes of amplitudes involving massive vector bosons in Higgsed

Yang-Mills theories.

Background

This section includes a short review of necessary tools and techniques relevant to our the-

sis: the spinor helicity formalism for massive and massless particles in (3+1) dimensions,

classification of three particle amplitudes with specific configuration of external momenta

and their high energy limit.
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Spinor helicity formalism

Scattering amplitudes are Lorentz invariant objects and transform covariantly under little

group which is the ISO(2) group for massless particles and SU(2) group for massive

particles in four dimensions. Therefore, the massless and massive external states are

labelled by the helicity (h) and SU(2) indices respectively. It is useful to label massive

spin S state as a symmetric SU(2) tensor of rank 2S since the standard representation

of SU(2) requires a preferred spin axis which breaks the rotational invariance of the S-

matrix. Then the little group transformation of scattering amplitude involving massive as

well as massless particles takes the following form [11]

Ah j

I1I2...I2S

⇣

pi, pj, · · ·
⌘

! t2h jWi,I1
J1Wi,I2

J2 · · ·Wi,I2S
J2SAh

J1 J2...J2S

⇣

pi, pj, · · ·
⌘

. (1)

Here one massless jth particle with helicity hj and one massive particle ith particle

are transformed under there respective little groups. The factor t2h j is the ISO(2)⇠U(1)

scaling and Wi’s are SU(2) matrices in the fundamental representation. Since the scatter-

ing amplitudes are little group covariant, it is convenient to express them in terms of the

so-called “spinor-helicity variables” that hardwires these little group transformation laws.

Particle with zero mass

To introduce these variables, we consider the SL(2,C) representation of momentum 4-

vector given by the 2 ⇥ 2 hermitian matrix pµ
µ
↵↵̇ = p↵↵̇. In this representation, the norm

of the 4-vector pµ is given by the determinant of the matrix p↵↵̇- which is zero in the case

of massless particles. Therefore p↵↵̇ is a rank-1 matrix for massless particles and can be

expressed as

p↵↵̇ = ↵↵̇ , (2)
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where ↵ and ↵̇ are two-component Weyl spinors, known as massless spinor-helicity

variables. Since we can always rescale the spinor-helicity variables

↵ ! t↵ , ↵̇ ! t1↵̇ , (3)

it is impossible to assign unique spinor-helicity variables to express p↵↵̇. But this scaling

is exactly the little group scaling for massless particle. Thus we identify ↵ and ↵̇ as

objects having little group weight ±1 respectively. Using spinor-helicity variables, we

define Lorentz invariant but little group covariant angle and square brackets as

hi ji := ↵i  j↵ , [i j] := i↵̇
↵̇
j , 2p · q = hpqi[qp] . (4)

These brackets are the basic building blocks of scattering amplitudes in spinor-helicity

formalism. Massless spinor-helicity variables satisfy the Weyl equation

pi|ii = pi|i] = 0 . (5)

Particle with non-zero mass

The rank of the hermitian matrix p↵↵̇ is 2 for massive particles since the determinant is non

vanishing. Therefore, p↵↵̇ is expressed as a linear combination of two rank-1 objects [11]

p↵↵̇ =
2X

I,J=1

✏IJ
I
↵

J
↵̇ , (6)

where (I, J) are SU(2) little group indices for massive particle. The variables I
↵,

J
↵̇ are

called massive spinor-helicity variables . Similar to the massless case, there is no unique

way to fix these spinors, satisfying the above relation due to the following transformation

I
↵ ! WI

J
J
↵ J

↵̇ ! (W1)J
K

K
↵̇ . (7)
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But for real momenta, it can be shown that W’s are indeed SU(2) matrices with det(I
↵) =

det (J
↵̇) = m, identifying (7) as correct little group transformation for massive spinor

helicity variables.

Unlike the massless spinor-helicity variables ↵, ↵̇, the dotted and undotted massive

spinor-helicity variables are related to each other via Dirac equation

p↵↵̇↵I = mI↵̇ ; p↵↵̇↵̇I = mI↵ . (8)

Therefore the scattering amplitude involving massive particles can be expressed in terms

of only either ↵I or I↵̇ as opposed to amplitude with only massless particles. This feature

of the amplitude proves extremely useful to classify all possible three-particle amplitudes

[11] involving both massive and massless particles.

Three particle amplitudes

The basic goal of on-shell recursion relation (like BCFW) is to construct higher point am-

plitudes from three particle amplitudes. We briefly review all the required three-particle

amplitudes which will be used as basic building blocks to construct four- and higher-point

amplitudes in this section.

Massless amplitude

The three particle kinematics of massless particles strongly constrains the structure of

the amplitude: it can be a function of either ↵ or ↵̇. Apart from an overall coupling,

the rest of the structure of an amplitude involving particles with helicities (h1, h2, h3) gets

constrained by the little group scaling

Ah1h2h3
3 [1, 2, 3] = g[12]h1+h2h3[23]h2+h3h1[31]h3+h1h2 ; h1 + h2 + h3 > 0

5



= g
0 h12ih3h1h2h23ih1h2h3h31ih1h2h3 ; h1 + h2 + h3 < 0 . (9)

The conditions on sum of helicities ensure that the amplitude has a smooth vanishing limit

in Minkowski signature as individual brackets vanish in this signature for real momenta.

Massive amplitude

There are two classes of three-point amplitudes involving both massive and massless parti-

cles: two massless-one massive and two massive-one massless. The latter further involves

two sub classes: i)with di↵erent mass and ii) with same mass particles. In this thesis, we

mostly consider the “minimally coupled”2 three-particle amplitudes involving a massless

particle of helicity |h| and a pair of massive particles of mass m and spin S [11]:

A+h
3,min(1, 2, 3h) = gxh

12
h12i2S

m2S1 ; Ah
3,min(1, 2, 3h) = gxh

12
[12]2S

m2S1 , (10)

where the x12 factor arises due to the degeneracy of masses and is defined as follows

x12 =
h⇣ |p1|3]
mh⇣3i or x1

12 =
h3|p1|⇣]
m[3⇣]

(11)

with ⇣ being a reference spinor. We have omitted the SU(2) little group indices of massive

spinor helicity variables for convenience. Instead, we will be using products of bold face

spinor helicity variables which is defined as symmetric product of normal spinor helicity

brackets. For example,

h12i2 = h1I12J1ih1I22J2i + h1I22J1ih1I12J2i , (12)

h32i2 = h32J1ih32J2i . (13)

2In this thesis, we follow the definition of [11] for “minimal coupling”. Here, the“minimal coupled”
amplitude involving massive particles are defined to be the three-particle amplitudes whose leading con-
tribution to the high energy limit is dominated by opposite helicity massless particles. This is not the
conventional terminology for “minimal coupling” exists in the literature. In this approach, the interactions
are introduced by covariantizing the kinetic term. I thank the referee of this thesis for pointing out this issue.
See section 2.4 for more details.
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Generalized Recursion

The BCFW recursion relations are a huge step in the direction of formulating a strikingly

simple on-shell method to compute massless scattering amplitudes. In this section, we

will generalize these well known recursion relations by combining complexification of

massless as well as massive external states. Let us consider the massive pi and massless

momenta pj are analytically continued to complex plane while staying on-shell

pµi ! bpµi = pµi  zrµ ; pµj ! bpµj = pµj + zrµ. (14)

Here z is the deformation parameter and rµ is lightlike shift vector orthogonal to both

of the momenta. The scattering amplitudeAn(z = 0) with undeformed momenta can be

obtained from the deformed one using Cauchy’s theorem

An = bAn(0) =
1

2⇡i

I

0

bAn(z)
z

dz =
X

zI

Res
0BBBB@

bAn(z)
z

1CCCCA
z=zI

+ Rn. (15)

The contour 0 encloses the pole at origin and Rn is the boundary term at infinity. All

other simple pole locations of the amplitude are denoted by zI .

The tree-level amplitude, bAn(z) has extremly simple analytic structure- it can have only

simple poles in the form of propagator 1
bP2m2 . When the propagator goes onshell the

residue of bAn(z) factorizes into two lower point on-shell subamplitudes. Hence we can

write

bAn(z) =
X

I

bAl+1
1

bP2
I  m2

bAr+1 +
X

J

b̃Al+1(zJ)
1
bP2

J

b̃Ar+1(zJ) , (16)

where I, J corresponds to all possible internal states. In the complex plane, we re-write

7



the deformed propagator as follows

bP2
I |zI = m2 ) (PI + zI p j)2 = m2

! 1
bP2

I  m2
=

zI

z  zI

1
PI

2
 m2

. (17)

Assuming that the boundary term R vanishes, the physical amplitude can be constructed

recursively by using [12, 13].

An =
X

I

bAl+1(zI)
1

P2
I  m2

bAr+1(zI) +
X

J

b̃Al+1(zJ)
1
P2

J

b̃Ar+1(zJ) . (18)

It is important to emphasize that the recursion technique works only for the amplitudes

that can be constructed using a set of three particle amplitudes. This excludes theories

with contact terms like 4 theory.

Little group covariant massive-massless shift

These on-shell recursions have been proved to be most efficient when the scattering ampli-

tudes are expressed in spinor helicity basis. Therefore, the momentum shifts (14) should

be realized in terms of spinor helicity variables. Moreover, it is paramount that the com-

plex shift of spinor helicity variables obey little group covariance as the amplitude is

covariant under little group. By choosing the shift vector to be r↵↵̇ =
pi↵

m


j j↵̇ in (14), we

propose [14] the combined complex deformation of spinor helicity variables as follows

b j↵ =  j↵ +
z
m

pi↵


j ; b̃ j↵̇ =  j↵̇, (19)

bI
i↵ =

I
i↵ ; b̃

I

i↵̇ =
I
i↵̇

z
m
 j↵̇[iI j] . (20)

We characterize these complex shifts as [i jhi-shift where we have bold faced the massive

spinor helicity variable (|i] ⌘ I
i ) instead of keeping the SU(2) index and h is the helicity of

the jth particle. It is crucial to note that these complex shifts are manifestly little group

covariant and therefore can be implemented directly into the spinor helicity representation

8



Figure 1: Individual Feynman diagrams contributing to bA(z) diverge at large z for gauge
and Einstein gravity. The vertices grows as z, z2 for gauge theory and Einstein gravity and
overcompensate for the 1

z dependence of the propagators

of scattering amplitudes.

Large z behaviour of scattering amplitudes

On-shell recursion techniques are one of the most preferred tools in modern approaches to

compute scattering amplitudes since it requires only on-shell three particle amplitude as

input data. However, the contour arguments in earlier section reveals that the amplitude

(as a function of complex momenta) must decay in the limit z ! 1 for the on-shell

recursion to work. This behaviour of deformed amplitude narrows down the space the

allowed class of theories in which on-shell techniques can be implemented.

Remarkably, at least for some helicity combination of external particles, the amplitude

does vanish at large z. For Yang-Mills theories, Britto-Cachazo-Feng-Witten (BCFW)

showed that the deformed amplitude scales as follows at large-z [7, 8]

A[+i,A[++i,A[i / 1
z

A[+i / z3 .

Here the superscripts indicate the kind of spinor helicity variables to be analytically con-

tinued along with helicity assignment. Their analysis showed that [+i, [++i, [i are

valid shifts to construct gluon amplitudes.

In our work [14], we classify all possible massive-massless shifts required for the gen-

eralized recursion method to execute in massive scalar QCD and Higgsed Yang-Mills

9



Figure 2: Colour ordered diagram for four particle amplitude with [23+i shift

theories.

Scalar QCD

We start with Yang-Mills theory coupled with massive scalars. We consider an n-particles

amplitude bAn(z) including analytically continued one scalar and one gluon momenta. The

scalar QCD Lagrangian is

L = 1
4

Tr
⇣

Fµ⌫Fµ⌫
⌘

+LGF

⇣

@µAµ
⌘


1
2
|Dµ|2

1
2

m2||2 
8

(||2)2 . (21)

Let us consider the most simple amplitude that can be constructed from generalized

recursion: the 2 ! 2 scattering amplitude of a pair of massive scalars and gluons. Also,

we need to consider only colour ordered amplitude since the full colour dressed amplitude

can be constructed by using well-known colour decomposition rules [15–18]. There exists

only a single diagram due to the adjacent [23+i shift with massless exchange.

This amplitude can be constructed by gluing the three point scalar-gluon and pure gluon

vertices. The relevant terms in the Lagrangian contributing to these vertices are

L3 = ig
"
@µAµ⇤  Aµ@

µ⇤
1
2

Tr(@µA⌫)[Aµ, A⌫]
#
. (22)

In [14], we have shown that the vertex factors are independent of z when a single scalar

and gluon line are analytically continued to complex plane. However, the (complex)
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propagator scales as O(1/z), leading to an overall scaling of the amplitude as O(1/z).

All higher point amplitudes with adjacent scalar-gluon shift will be suppressed by more 1
z

factors due to more number of propagators. So we conclude that the scalar-gluon shift is

a valid shift for generalized recursion3.

Higgssed Yang-Mills theory

Since the classifcation of the generalized on-shell recursion is technical and lengthy, in

this section, we briefly summarize the main concepts.

Our analysis is inspired by an analogous proof of the BCFW shifts for gluon amplitudes

by Arkani-Hamed and Kaplan [19]. However conceptually there is a key di↵erence that

we highlight below. The proof regarding the validity of the BCFW shift for massless par-

ticles considered a set up where a highly boosted gluon was scattered o↵ a background

of low energy massless fields. For real momenta, this corresponds to the familiar Eikonal

scattering. The background was referred to as a soft background. In the Eikonal approx-

imation, the helicity of the highly boosted particle was conserved. This conservation law

was shown to be a consequence the so-called spin-Lorentz symmetry which was then used

to constrain the amplitude at large z.

In our case [14], the soft background is replaced by a static background which is a col-

lection of massive and soft massless particles. Our set up is hence closer to the scattering

of a boosted gluon o↵ a heavy scattering center surrounded by a cloud of soft gluons. It

was shown that, the resulting outgoing states are a highly boosted massive spin-1 boson

and a highly boosted gluon. At infinite boost, the dominant contribution to the amplitude

is again coming from helicity preserving terms in the Lagrangian. Thus, as in the case of

massless theories, this contribution is constrained by the spin-Lorentz symmetry. We then

use the Ward identity for massless gluons to constrain the sub-leading behaviour of the

3It is worthwhile to note that this conclusion continues to hold for massless scalars.
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amplitude and show that for a particular class of shifts, which we refer to as valid shifts,

the amplitude vanishes as 1
z for large z.

Unlike massless amplitudes, scattering amplitudes with massive particles contains an ad-

ditional longitudinal mode at large z. However, this mode of amplitude is related to the

amplitude involving massless scalars and gluons via the Ward identity for the sponta-

neously broken gauge theory [20]. We have determined that the scalar-gluon amplitudes

decay as O
⇣

1
z

⌘

in the limit z! 1 in previous section (see footnote 1).

To summarize, on one hand we have classified in [14] that the little group covariant shifts

[m+i and [mi are legitimate for generalized recursion to construct higher point am-

plitudes. On the other hand, we established that [+mi and [mi are invalid shifts for

the generalized recursion to work since the amplitude does not decay at large z. In the

following table, we collect the large z behaviour of generalized recursion due to various

types of shifts.

Massive-massless shift Large z behaviour
[m+i 1/z
[mi z2

[+mi z2

[mi 1/z

Vector boson amplitude with arbitrary number of gluons

The purpose of this section is to explore the potential of being able to derive new classes

of nparticle amplitudes by using generalized recursion relations within the Yang-Mills

theory in Higgssed phase. We take the first step in this direction by considering scattering

amplitudes involving two massive vector bosons and an arbitrary number of gluons in

[21]. In particular, we study the following colour ordered massless configurations: a)

identical helicity gluons and b) one flipped helicity gluon that is colour adjacent to massive

bosons. These two classes of amplitudes reduce to maximally helicity violating (MHV)

12



Figure 3: Massive analogues of MHV (left) and NMHV (right) amplitude.

and the next-to-maximally helicity violating (NMHV) gluon amplitudes respectively in

the high energy limit. We are considering the “massive” analogue of MHV and NMHV

amplitudes since they are the stepping stones for constructing more complicated gauge

theory amplitudes.

Scattering of massive vector bosons with identical gluons

We obtain the vector boson amplitude with all positive helicity gluons in two di↵erent

ways: firstly we relate this amplitude to one involving a pair of massive scalars and (n2)

positive helicity gluons via:

An[1, 2+, . . . , (n  1)+, n] =
h1ni2

m2 An[10, 2+, . . . , (n  1)+, n0] . (23)

This proposal is a covariant expression of a result that has appeared previously in the

literature [22]. Secondly, we shall prove this relation inductively by making use of the

generalized recursion. The n-point massive-scalar gluon amplitude is already known [23]:

An[10, 2+, · · · , (n  1)+, n0] = gn2 m2[2|Qn2
k=3((s1...km2)/pk /p1,k1)|n1]

(s12m2)(s123m2)···(s12...(n2)m2)h23ih34i···h(n2)(n1)i , (24)

where the Mandelstam variables and p1,l are defined as follows

s1...l := (p1 + · · · + pl)2 , p1,l := p1 + · · · + pl . (25)
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We denote the spinor brackets appearing inside the product in the numerator as follows

[a|/pi/pj|b] = a↵̇p↵̇↵i p j↵


b . (26)

Substituting the scalar amplitude in (4.1), we find the following simple expression for the

n-point amplitude with a pair massive vector bosons and (n  2) positive helicity gluons

(for n > 3):

An[1, 2+, · · · , (n  1)+, n] = gn2 h1ni2[2|Qn2
k=3((s1...km2)/pk /p1,k1)|n1]

(s12m2)(s123m2)···(s12...(n2)m2)h23ih34i···h(n2)(n1)i . (27)

Since this expression is already in agreement with the four and five particle amplitudes

derived in [14], we derive the (n + 1)- particle amplitude using the generalized recursion

with [12+i shift. With this particular shift, all possible channels that contribute to theAn+1

amplitude are shown in Figure 4.

Figure 4: Generalized recursion with [12+i shift

The first three diagrams do not contribute to the amplitude due to following reasons: a) the

first diagram vanishes due to the vanishing of the right subamplitude involving a single

massive vector boson, b) the second diagram vanishes since the pure gluon amplitude

with either all positive helicity gluons or a single negative helicity gluon is zero and c)

the third diagram vanishes because a massive vector boson cannot decay into two positive

helicity gluons. Thus we only have to consider a single diagram. This demonstrates the
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simplicity in calculation in using the new recursion relations.

Scattering of massive vector bosons with flipped helicity gluon

In this section we discuss, the massive analog of the NMHV amplitude in which the

external particle configuration consists of a pair of massive vector bosons, one minus

helicity gluon adjacent to one of the massive bosons and arbitrary number of plus helicity

gluons. At the onset of our discussion, it is important to note that this particular amplitude

can be easily computed by using a single covariant recursion formula.

If one had used the usual BCFW shift to compute this amplitude, one would end up

with subamplitudes involving the same configuration as the one we set out to compute

(i.e. involving two massive vector bosons and helicity flipped gluons). See the second

diagram in Figure 5. In the absence of an ansatz one would need to use the recursion

relation iteratively to compute those subamplitudes that appear in a given recursion. This

would make the computation technically involved

Figure 5: BCFW recursion with [23+i shift

Instead, we derive the n-point amplitude by complexifying massive momentum p1 and

massless momentum p2 and taking the [21i shift in spinor helicity basis:

|b2] = |2] +
z
m

p1|2i , |b1Ii = |1Ii  z
m
h21Ii|2i . (28)

Due to this particular shift, all possible di↵erent scattering channels that contribute to
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Figure 6: Generalized recursion with [12+i shift

the amplitude in the generalized recursion are shown in Figure 4.3. All the lower point

amplitudes, either vector boson amplitude with all positive helicity gluons or pure gluon

amplitudes has already been computed. Therefore this example set forth one of the many

utilities of generalized recursion relation.

The computation of the n-particle amplitude is technical and involved, but nonetheless we

find a compact expression for this in [21]

An[1, 2, 3+, . . . ,n] = gn2
"

(h2|p1 |n]h21i+h2|pn |1]h2ni+2mh12ih2ni)2

s1nh23ih34i···h(n2)(n1)i(h2|p1·pn |n1i+m2h2(n1)i)

+

n2X

r=3

h2|p3,r ·
Qn2

k=r+1{(s1···km2)/pk /p1,k1}|n1]
⇣

h2|/p1/p3,r |2ih1ni+p2
2,rh12ih2ni

⌘2hr(r+1)i
s23...r(s12...rm2)...(s12...(n2)m2)h23ih34i...h(n2)(n1)ih2|/p1/p2,r1 |rih2|/p1/p2,r |r+1i

#
.

(29)

This is a completely new gauge theory amplitude result and as a simple check, a few

lower-point amplitudes are obtained by independent methods and shown to match the

expected result [21]. Additionally, we have considered the high energy limit of this am-

plitude and can reproduce the NMHV amplitude [24] for the specific ordering of external

particles considered here.
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Plan of the thesis

The subject of our investigations in this thesis is to study a new class of on-shell recursion

relations for gauge theory amplitudes involving massive as well as massless particles in

(3 + 1) dimensions. It will consist of the following chapters:

1. Chapter 1 provides a general introduction to the modern on-shell approach to scat-

tering amplitudes.

2. Chapter 2 reviews all the background materials needed for this thesis. This includes

spinor helicity formalism for both massive and massless particles in (3 + 1) dimen-

sions and classification of the three particle amplitudes.

3. In chapter 3, we introduce the generalized recursion relation and provide practical

examples for computing a few types of amplitudes in gauge theory.

4. Chapter 3.3 is devoted to the classification of all possible little group covariant

massive-massless shifts for massive scalar QCD and Higgssed Yang-Mills theory.

5. We conclude in chapter 4 with one of the many advantages of the new recursion

relation by deriving new gauge theory amplitudes along with a short outlook and

future directions in chapter 5.
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Chapter 1

Introduction

The S-matrix program of quantum field theory has witnessed a number of remarkable

developments over past few decades. On the one hand, the study of the analytic structure

of S-matrix reveals significantly new insights with the potential to revolutionise the entire

edifice of quantum field theory [3–6]. On the other hand, on-shell techniques like Britto-

Cachazo-Feng-Witten (BCFW) [7,8] recursion relations and generalised unitarity [9] have

made seemingly impossible computations possible within a few pages. The latter devel-

opments are directly responsible for the NLO revolution in QCD. More recently, these

on-shell methods have even been used in computing classical observables such as the po-

tential in the binary black-hole problems up to high order in the Post Newtonian and the

Post Minkowskian expansion [10].

The subject of our exploration in this thesis is a new class of on-shell recursion techniques,

which we use to compute tree level scattering amplitudes in gauge theories in four space-

time dimensions, involving massless as well as massive particles. The utility of recursion

technique is the construction of higher-point amplitudes by gluing pairs of lower point

amplitudes in a specific manner. Within a large class of recursion relations that already

exists for computing amplitudes, a subset of them are called “On-shell” recursions, in

which the three particle vertices serve as the only input to these recursion relations. Since
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the three-point amplitude vanishes for real momenta in Lorentzian signature, the on-shell

recursion schemes are based on a analytic continuation of amplitudes into the complex

domain by complexifying the external momenta. Simple contour arguments show that

the desired amplitude is a residue of a meromorphic function with a simple pole at in-

finity. For the class of quantum field theories in which the amplitude decays at infinite

momentum, the on-shell recursion relations completely determine the tree level scattering

matrix from the three point amplitudes. By far the most widely used and efficient on-shell

recursion is the BCFW recursion scheme in which precisely two of the external massless

momenta are complexified while both the conservation of momentum and on mass shell

conditions are maintained. For a succinct discussion of these ideas see [25].

In general, scattering amplitudes are functions of the kinematic space of (generalised)

Mandelstam invariants built out of the external momenta. Since the amplitude is subject

to several non-linear constraints like the Gram determinant conditions, this space is rather

complicated. Therefore, the choice of appropriate variables to span the kinematic space

becomes crucial in efficient computations of the scattering amplitudes. In four dimen-

sions, it turns out that the most optimal variables, in which the constraints can be made

trivial are the so-called spinor helicity variables. These variables are manifestly on-shell

and therefore can directly describe the “on-shell physics”, without any reference to the

quantum fields and their huge gauge redundancies and field redefinitions. In fact, the

motivation to pursue an alternative approach to the S-matrix program owes a lot to the

aspiration of getting rid of o↵-shell redundancies. Implementing the BCFW recursion

relations in deriving massless scattering amplitudes in spinor helicity formalism renders

the computation of tree level amplitudes in gauge theories and gravity strikingly simple as

opposed to the usual approach to obtain scattering amplitudes by summing over Feynman

diagrams.

The traditional field-theoretic method for describing the massless particles involves intro-

duction of gauge redundancies- leaving enough room for improvement. On-shell methods
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make no reference to the quantum fields and their accompanying redundancies. At first

glance, the advantages of using spinor helicity variables seem to be absent for massive par-

ticles since they do not involve the o↵-shell redundancies that exist for massless particles.

This is indeed true but, as was shown in [11], apart from a rather straightforward resolu-

tion of the technical issues 1, the spinor helicity formalism for massive particles allows

us to understand the low energy behaviour of massless amplitudes via Higgs mechanism

from an on-shell perspective. Although the spinor helicity formalism for massive parti-

cles has been known for decades, these variables were not the most suitable candidates

for computation of the S-matrix as they were not little group covariant [26–30]. However,

the spinor helicity formalism developed by Arkani-Hamed et al. [11] introduced on-shell

variables that transform covariantly under the little group SU(2). In terms of these vari-

ables, the scattering amplitudes remain Lorentz invariant but transform covariantly under

the little group also in the massive case. This formalism also allows one to take appro-

priate massless limits of an amplitude involving massive particles in a systematic manner.

We use this formalism throughout this paper in computing massive scattering amplitudes.

However, even in the absence of a suitable on-shell formulation like spinor-helicity vari-

ables for massive particles, tree amplitudes involving a set of massive and at least two

massless particles have been analysed using the BCFW recursion [12, 29, 31]. For exam-

ple, in [12] several lower point tree level amplitudes with massive scalars and gluons were

computed using the conventional BCFW relations. In [29] this method was extended to

computations of scattering amplitude involving massive vector bosons, fermions and glu-

ons. In a notable work [32], the authors derived recursion relations for all possible Born

amplitudes in QCD and gave a closed form expression for amplitude involving two mas-

sive quarks scattering with an arbitrary number of gluons. Recently in a beautiful paper,

Ochirov [31] generalised this computation by using the newly developed massive spinor

helicity formalism of [11] and in particular proposed formulae 2 for two specific n par-

1Since the little group for massive particles is SU(2) instead of ISO(2) for massless particles, the massive
spinor helicity variables carry an extra SU(2) index as opposed to their massless counterpart.

2which was proved by using the principle of induction and the BCFW recursion by the same author.
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ticle amplitudes consistent with results previously derived [23,32]. Finally, in [13,27,33]

scattering amplitudes involving massive particles have been first computed using multi-

line complex shifts. However in these works, the external momenta of massive particles

are decomposed in terms of certain massless vectors in terms of which the computa-

tions are brought closer to that of amplitude involving only massless particles. Recently,

in [34,35] recursion relation for massive supersymmetric amplitudes have been developed

using a massive super-BCFW shift.

Since the work of [11] has unified the kinematic space of both massive and massless ex-

ternal momenta into the little group covariant spinor helicity formalism, several questions

arise naturally as a consequence of this discovery. For instance, (i) is it possible to derive

“BCFW type" recursion relations by complexifying massive instead of massless external

states.? (ii) Can these new recursion relations be used to derive new scattering amplitudes

that are difficult to construct using the BCFW recursion?

In this thesis, we answer these questions by proposing a generalization of the BCFW

recursion to the case where one massive and one massless external momentum get com-

plexified [14]. There has been earlier work in this direction in [36] in which a particular

massive-massless shift was proposed and it was used to compute four particle amplitude

involving two massive vector bosons and two photons. We extend this by giving a clas-

sification of all possible massive-massless shifts and show that not all possible shifts lead

to a valid recursion relation. The little group covariant realization of complex momentum

shift in terms the spinor helicity formalism allows us to work with the formalism of [11]

seamlessly. We then derive several lower point amplitudes in massive scalar QCD and

Higgsed Yang-Mills theory using the new recursion relations and find perfect agreement

with the results in [13, 29]. In the process, we obtain the five point amplitude involving a

pair of massive vector bosons and arbitrary helicity gluons. This serves as the first new

scattering amplitude result involving gluons.

As mentioned previously, we provide a proof for the validity of the massive-massless
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shift to recursively construct amplitudes in massive scalar QCD and Higgsed Yang-Mills

theory. A comprehensive study of the validity of BCFW shifts for di↵erent theories has

previously appeared in the seminal work by Arkani-Hamed et. al. [19]. Our proof for

massive-massless shift follows similar line of work but is more involved due to presence of

an additional longitudinal mode corresponding to the massive particle. For completeness,

we also extend the proof of [19] to the case of massive scattering amplitudes and prove

the validity of the massless-massless shift for these theories.

We then explore the usefulness of the covariant recursion relations by computing two dis-

tinct classes of amplitudes involving two massive vector bosons and an arbitrary number

of gluons with specific helicity [21]. The two classes are such that in the high energy

limit, these amplitudes reduce to “maximally helicity violating” (MHV) and the “next-to-

maximally helicity violating” (NMHV) gluon amplitudes respectively. We use the new

recursion relations to derive the scattering amplitudes for both these classes. We provide

an inductive proof for the first class of amplitudes and we show that for the second class of

amplitudes, the massive-massless shift can be used to recursively construct the amplitude.

This shows the practical utility of the new recursion relations derived in [14] .

This thesis is organised as follows. We begin with a short introduction on the spinor he-

licity formalism in four spacetime dimensions in chapter 2 along with a description of

the three particle amplitudes that serve as the basic building blocks of the on-shell re-

cursion technique. In the next chapter 3, we introduce the covariant recursion relations

and use it to derive several four and five particle amplitudes in massive scalar QCD and

Higgssed Yang-Mills theory. Then we move onto the central theme of this thesis in sec-

tion 3.3: classification of all the valid massive-massless shifts in these theories. We also

give an alternative derivation of the new five particle amplitude involving two massive

vector bosons and gluons with arbitrary helicity using BCFW shift (see section 3.5.1).

We discuss the massive analogues of the “maximally helicity violating” (MHV) and the

“next-to-maximally helicity violating” (NMHV) gluon amplitudes in chapter 4. We con-
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clude in chapter 5 with a short summary of the thesis and outline some immediate open

questions.
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Chapter 2

Background

In this chapter, we discuss the spinor helicity formalism in four spacetime dimensions.

Spinor helicity formalism is an especially powerful notational tool to represent scattering

amplitudes in (3 + 1) dimensional gauge and gravity theories by providing suitable vari-

ables, describing the external kinematics, that hardwire the correct little group transfor-

mations and are concurrently associated with appropriate representation of the on-shell

momentum. We begin by reviewing the concept of the little group and the associated

transformation of scattering amplitudes. This will pave our way to introduce the spinor

helicity variables for on-shell momenta of massive and massless particles in four dimen-

sions.

2.1 Little group

The main purpose of spinor helicity formalism is to trivialise a part of the intricate physics

of scattering that traces back to the basic but fundamental question “what is a particle?”

and the accompanying ideas of Wigner’s “Little group” , which govern the kinematics

involved in the scattering of particles.

To elucidate this point, let us review the standard text book theory on Wigner’s classi-
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fication of one-particle states [37, 38] in accordance with their transformation under the

Poincare group. We follow the discussion in Weinberg [39]. In order to define one-

particle states, it should be noted that the momentum generators (Pµ) of the inhomoge-

neous Lorentz group (or Poincare group) commute with each other. Therefore, it is natural

to express the one-particle states in terms of the eigenvectors of the momentum operator:

Pµ| p,i = pµ| p,i , (2.1)

where  denotes all other possible degrees of freedom (that commute with Pµ) such as

helicity for massless particles. Since, these one-particle states transform with a phase

factor (eip·x) due to translation group element, we now consider their transformation prop-

erties under homogeneous Lorentz transformations. If we denote the quantum operator

responsible for these transformation as U(⇤) then by definition,

U1(⇤)PµU(⇤) =
⇣

⇤1
⌘

⌫

µP⌫ = ⇤µ⌫P⌫ . (2.2)

We can then find the action of the Lorentz group on an one-particle momentum state as

PµU(⇤)| p,i = ⇤µ⌫p⌫U(⇤)| p,i . (2.3)

Therefore the one-particle state, after acted on by U(⇤) remains an eigenstate of momen-

tum operator, as expected, but with eigenvalue (⇤p)µ. This suggests that we can represent

the state U(⇤)| p,i as a linear combination of | ⇤p,i states

U(⇤)| p,i =
X


0

C,0 (⇤, p)| ⇤p,0 i . (2.4)

Here the matrices C,0 (⇤, p) furnish a representation of the quantum Lorentz transfor-

mations. Without any loss of generality, one can always choose linear combination of

| p,i for some  in such a way that the matrices C,0 (⇤, p) are block diagonal. In this
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case, these matrices furnish irreducible unitary representation of the Poincare group that

can naturally be identified with a specific type of “particles”. This is the precise sense in

which we define particles in quantum field theory. In order to find the structure of such

an irreducible representation C,0 (⇤, p), we now introduce the notion of the Little group.

Note that we can write any momentum 4-vector as

pµ = Lµ⌫(p) k⌫ , (2.5)

where k⌫ is a standard reference momentum which we take to be kµ ⌘ (E; 0, 0, E) for

massless particles and kµ ⌘ (m; 0, 0, 0) for massive particles. Now the one-particle states

with arbitrary momentum pµ are related to the one-particle states with standard momen-

tum kµ as

| p,i = N(p)U(L(p))| k,i , (2.6)

where U(L(p)) is the unitary quantum operator associated to Lorentz transformation Lµ⌫(p)

and the normalization N(p) is fixed by demanding orthogonality of one-particle states.

With this definition, the action of U(⇤) on | p,i (from equation (2.6)) is

U(⇤)| p,i = N(p)U(L(⇤p))U
⇥

L1(⇤p)⇤L(p)
⇤| k,i (2.7)

Here we have used

U(⇤1)U(⇤2) = U(⇤1⇤2) . (2.8)

Let us consider the action of the combined Lorentz transformations in the quantum oper-

ator that directly acts on the state and find that it gives back kµ



L1(⇤p)
µ
⌫(⇤p)⌫ = k⌫ . (2.9)

Thus we have found a subset of Lorentz transformations that leaves the standard momen-
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tum 4-vector kµ invariant. This subset is called -“Little group” and denoted as W

W := L1(⇤p)⇤L(p) , ) Wµ
⌫k⌫ = kµ . (2.10)

In general, this group is not trivial. For example, it is the ISO(2) group for massless parti-

cles and SU(2) group for massive particles. Therefore, the problem of finding the matrices

C,0 (⇤, p) has been reduced to finding the little group representation D,0
⇥

W(⇤, p)
⇤

U(⇤)| p,i =
N(p)

N(⇤p)

X


0

D,0
⇥

W(⇤, p)
⇤| p,0 i , (2.11)

Representations of a larger group (for instance the Poincare group) derived from the rep-

resentations of its subgroup are known as induced representations. Finally, by using the

orthogonality condition of one-particle states

h k0 ,0 | k,i = 2k03(~k  ~k
0
),0 , (2.12)

we determine the normalization that turns out to be unity. Including the additional U(1)

factor due to translation, we find the desired transformation property for one-particle state

as

U(⇤)| p,i = ei(⇤p·a)
X


0

D,0
⇥

W(⇤, p)
⇤| p,0 i . (2.13)

As a consequence, we conclude that the one-particle states are labelled by the momentum

of the particles and transform under some representation of the little group. Since the S-

matrix is defined to be the inner product of asymptotically free “in” and “out” states con-

stituted with product of one-particle momentum states, the scattering amplitude, which is

related to the S-matrix as S = 1 + iA, is naturally labelled by momentum and little group

indices of external on-shell particles. The Poincare invariance of the amplitude then tells
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us that

A1,··· ,n (p1, p2, · · · , pn) = (4) (p1 + p2 + · · · + pn)A1,··· ,n (p1, p2, · · · , pn) , (2.14)

A⇤1,··· ,n
(p1, p2, · · · , pn) =

nY

i=1

Di,
0
i

⇥

W(⇤, p)
⇤A01,··· ,0n (⇤p1,⇤p2, · · · ,⇤pn) . (2.15)

For completeness, it is worthwhile to mention that the so called scattering amplitudes

that we compute using the Feynman diagrams in usual quantum field theory are typically

Lorentz covariant tensors and do not have the desired transformation properties (2.15).

Therefore, polarization tensors (for particles with spin) are introduced in order to convert

the “Feynman amplitude” into “Natural amplitude” which is manifestly Little group co-

variant. The polarization tensors are bi-fundamentals under both Lorentz group and the

Little group and transforms in the following way

eµ,( ~⇤p) = ⇤µ⌫D0 (W)D0 (W)e⌫,00 (~p) , (2.16)

where D0 is in the spin-1
2 representation of the Little group. The natural amplitude is

then related to the Feynman amplitude as

A1...2S (~p) =

0BBBBB@
2SY

i=1

eµi
i

0
i
(~p)

1CCCCCAAµ1,...,µ2S . (2.17)

The amplitude, carrying only little group indices, is called Natural amplitude (in LHS)

and manifestly transforms as (2.15). Here we have shown the Little group indices for a

single particle with spin S . In general, we have to introduce polarization tensors for all

spinning particles that are involved in the scattering.
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2.2 Massless particles

The Pauli Lubanski vector, which is defined in terms of inhomogeneous Lorentz symme-

try generators (Jµ⌫; P) as

Wµ :=
1
2
✏µ⌫⇢J⌫⇢P , (2.18)

is related to the momentum 4-vector for massless particles via the following relation

Wµ =bhPµ , (2.19)

where the operatorbh is called the helicity of massless particle. Since p0 = |~p| for massless

particle, the helicity can be expressed in terms of the spin (of massless particle) projection

onto the direction of momentum 3-vector

bh =
~S · ~p
|~p| . (2.20)

This can be considered as the defining relation for helicity. Moreover, for particles travel-

ling at the speed of light, there exists no Lorentz boost which can change the direction of

its momentum and this is whybh is a Lorentz invariant object. Therefore, all the massless

1-particle momentum states in the scattering matrix can be labelled by the helicity of the

particle.

Traditionally, scattering amplitudes are expressed in terms of the Lorentz invariant prod-

ucts of external momentum 4-vector (pµ), known as: the Mandelstam variables, defined

as si j := (pi + pj)2. However, all the fundamental massless particles in the Standard

model have non zero helicity, which in turn can be utilized to label the momentum states

and therefore the scattering amplitude. Thus, it is useful to find kinematic variables that

transform under a smaller representation of the Lorentz group. The lowest possible rep-
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resentations of Lorentz group are the spinor representations denoted by
⇣

0, 1
2

⌘

and
⇣

1
2 , 0
⌘

.

They are the spin-1
2 representations of two di↵erent SU(2) groups needed to describe the

Lorentz group SO(3,1) 1. In terms of the spinor representation, a momentum 4-vector pµ

can be expressed as a 2⇥2 hermitian matrix p↵↵̇ = pµ
µ
↵↵̇, where 0

↵↵̇ is the identity matrix

and ~↵↵̇ are the Pauli matrices. Here (↵, ↵̇) are labelling the two di↵erent SU(2) spinor

indices describing the Lorentz group. In this representation, the matrix p↵↵̇ is related to

the 4-vector pµ as

p↵↵̇ =

0BBBBBBBBB@
p0 + p3 p1

 ip2

p1 + ip2 p0
 p3

1CCCCCCCCCA . (2.21)

The determinant of the matrix p↵↵̇ gives the square of the norm of the 4-vector: pµpµ = p2.

For massless particle, the determinant of the matrix p↵↵̇ is vanishing. Therefore, the

momentum vector of a massless particle in spinor representation can be written in terms

of a pair of 2-component Weyl spinors ( j↵,  j↵̇) as

pj,↵↵̇ :=  j↵ j↵̇ ⌘ | ji[ j| . (2.22)

Here ( j↵,  j↵̇) are the “spinor helicity variables” and j is the particle index. Since one

can always rescale the spinor-helicity variables as

↵ ! t↵ , ↵̇ ! t1↵̇ , (2.23)

it is impossible to assign unique spinor-helicity variables to a given on-shell momentum

pµ, which remains invariant under this scaling. Now we show that this scaling is actually

associated with the little group transformations for massless particles. First, we note that,

1The topology of inhomogeneous Lorentz group is SL(2,C)/ Z2 nR
4.

33



in SU(2) basis, an arbitrary momentum is related to the standard momentum as

p↵↵̇ = S ↵R↵̇k , (2.24)

where recall that the standard momentum for massless particle is kµ = (E, 0, 0, E). If we

express k↵↵̇ in the spinor helicity formalism as

k↵↵̇ = (k)
↵

(k)
↵̇ , (2.25)

then the spinor helicity variables for k↵↵̇ and p↵↵̇ are related as

↵ = S ↵
(k)

, ↵̇ = R↵̇

(k)

, (2.26)

where S ↵ and R↵̇ are the standard left and right handed generators of the Lorentz group

written in SU(2) basis. Since the little group does not change k↵↵̇, the spinor helicity

variables can transform under the little group as

(k)
↵ ! t(k)

↵ ,
(k)
↵̇ ! t1

(k)
↵̇ , (2.27)

where t is an arbitrary complex number. Now using (2.26), we can find the transforma-

tions of the spinor helicity variables ↵, ↵̇ and it turns out to be exactly (2.23). Therefore,

we can identify (2.23) as the little group scaling for massless particles.

Requiring the 4-momentum to be real in Minkowski signature, the spinor helicity vari-

ables are related to each other as

(↵)? = ±↵̇ , (2.28)

where the choice of the sign is associated to the sign convention of the energy of the

particle. We always consider the energy to be positive and therefore consider only the +
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sign in the above reality condition. For real Lorentzian momentum, the complex number

t becomes an U(1) phase factor 2.

Since the spinor indices can be raised and lowered with the anti symmetric Levi-Civita

tensor as

↵ = ✏↵
 , ↵̇ = ✏↵̇

 , (2.29)

it can be easily seen that the spinor helicity variables are on-shell variables in the following

sense

p↵↵̇↵ = 0 = p↵↵̇↵̇ , (2.30)

making them a suitable candidate for expressing the scattering amplitudes. In spinor-

helicity formalism, we now introduce the Lorentz invariant and little group covariant an-

gle and square brackets which will repeatedly appear in the rest of the thesis as

hi ji := ↵i  j↵ , [i j] := i↵̇
↵̇
j . (2.31)

The Mandelstam variables, in spinor helicity formalism, can be expressed in terms of

these brackets as

si j = (pi + pj)2 = 2pi · pj = hi ji[i j] . (2.32)

The 2-component spinor helicity variables satisfy Schouten identities. In terms of the

angle or square brackets, these identities takes the following form

h12ih3i + h23ih1i + h31ih2i = 0 , (2.33)

2For massless particles, the standard momentum remains invariant under rotations- confined in the x y
plane and 2-d translations. But finite dimensional representations require all the one-particle massless
momentum states to have zero eigenvalues under these translations. Therefore, only the U(1) subgroup of
the ISO(2) group can be considered to be the little group for massless particles in four dimensions.
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[12][3] + [23][1] + [31][2] = 0 , (2.34)

with  being an arbitrary spinor. The momentum conservation, due to the translational

invariance of amplitude is expressed in terms of spinor helicity variables as follows

nX

i=1

pi = 0,
nX

i=1

i↵i↵̇ = 0,
nX

i=1

|ii[i| = 0 . (2.35)

In terms of the massless spinor helicity variables, the polarization vectors can be expressed

as

e+µ (i) =
h⇣ |µ|i]p

2h⇣ii
, eµ (i) =

hi|µ|⇣]p
2[i⇣]

, (2.36)

where ⇣ is an arbitrary reference spinor. Finally, let us give an explicit realization of these

spinor helicity variables in terms of on-shell momentum

↵ =
1p

p0 + p3

0BBBBBBBBB@
p0 + p3

p1 + ip2

1CCCCCCCCCA , ↵̇ =
1p

p0 + p3

0BBBBBBBBB@
p0 + p3

p1
 ip2

1CCCCCCCCCA . (2.37)

2.2.1 Three particle amplitudes

In this section, we collect all the required massless three particle amplitudes which will

be used to build four and higher point amplitudes recursively. Due to the three particle

massless kinematics

pµ1 + pµ2 ! pµ3 ) p1 · p2 = p1 · p3 = p3 · p2 = 0 , (2.38)

either all the angle or square brackets are vanishing

h12i[12] = h13i[13] = h23i[23] = 0 .
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Therefore, the three-particle amplitude involving massless particles with helicity h1,2,3 can

be expressed either in terms of angle or square brackets and the little group scaling then

fixes the structure of amplitude upto an overall multiplicative constant

Ah1h2h3
3 [1, 2, 3] = g[12]h1+h2h3[23]h2+h3h1[31]h3+h1h2 ; with h1 + h2 + h3 > 0

= g
0 h12ih3h1h2h23ih1h2h3h31ih1h2h3 ; with h1 + h2 + h3 < 0 . (2.39)

Here the constraints on the sum of helicities ensure that the amplitude has a smooth van-

ishing limit for real momenta in Minkowski signature. We end the discussion on massless

spinor helicity formalism here and proceed to introduce spinor helicity formalism for

massive particles.

2.3 Massive particles

There are several attempts to develop a spinor helicity formalism for massive particles

over the past few decades [26–30]. These approaches begin by expressing the SU(2)

representation of massive momentum 4-vector as

p↵↵̇ = ↵↵̇
m2

h⌘i[⌘̃]
⌘↵⌘̃↵̇ , (2.40)

for some reference spinors ⌘↵, ⌘̃↵̇. The spin of the particle is projected along the lightlike

direction of ⌘↵⌘̃↵̇, which was then used to label the external states. This way of introducing

the massive spinor helicity variables does not manifest the Lorentz symmetry due to the

choice of a lightlike direction and obscures the little group covariance of on-shell scatter-

ing amplitude from the very beginning. Therefore, this approach severely limits the scope

of the program for systematically classifying and constructing on-shell amplitudes. How-

ever, recently Arkani-Hamed et al. [11] have introduced a little group covariant spinor

helicity formalism for massive particles that does not involve any preferred direction for

37



spin to label the massive external states. This formalism also allows one to take a suitable

massless limit of the massive amplitude in a systematic manner. We use this formalism

throughout this thesis in computing massive scattering amplitude. We now review this

formalism below.

For a massive particle, the spinor representation of momentum 4-vector can be simply

taken to be a linear combination of rank 1 objects [11]

p↵↵̇ =
2X

I,J=1

✏IJ
I
↵

J
↵̇ , (2.41)

where (I, J) stands for SU(2) little group indices which can be lowered and raised by

the Levi-Civita tensor ✏IJ. The variables I
↵,

J
↵̇ are called the massive spinor-helicity

variables. Note that for a particular value of I, J, the bilinear  is identical to the massless

representation, but due to an additional sum, the determinant of the 2 ⇥ 2 matrix is non

vanishing. Similar to the massless case, there is no unique way to fix these spinors, as the

momentum p↵↵̇ is left invariant by the following transformations

I
↵ ! WI

J
J
↵ J

↵̇ ! (W1)J
K

K
↵̇ . (2.42)

Unlike the massless case, these W matrices can generally be GL(2,C) matrix which is not

the little group for massive particles. But if we impose the reality condition on momentum

vector and demand that det
⇣

I
↵

⌘

= m and det
⇣

J
↵̇

⌘

= m, it can be shown that W is indeed

a SU(2) matrix. To illustrate this, let us defineM := det
⇣

I
↵

⌘

and eM := det
⇣

J
↵̇

⌘

which are

identical to each other as m. Now we consider a GL(2,C) transformation for the spinors,

that induces the following transformation

M
0
= det(W)M , M̃

0
= det(W1)M̃ . (2.43)

Since the mass of a particle is a physical quantity, we therefore conclude that det(W)2 =

1. We consider the case when det(W) = +1 since the other choice does not form a
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group and find that W is an SL(2,C) element. The reality condition p† = p then further

restricts W to be in the SU(2) subgroup of SL(2,C). Since, the massive spinor helicity

variables transform correctly under little group, we conclude that the on-shell amplitudes

are Lorentz invariant functions of I , I . Let us now point out one of important di↵erence

between the massless and massive spinor helicity variables. Since both of them are on-

shell variables, the massless variables satisfy the Weyl equation and therefore  can not

be traded in terms of  or vice-verse. This is not the situation in the case of massive

particles as they satisfy the Dirac equation which takes the following form in terms of

spinor variables

p↵↵̇↵I = mI↵̇ ; p↵↵̇↵̇I = mI↵ . (2.44)

This clearly suggests that we can trade the spinor helicity variables in terms of each other

and therefore we can express an amplitude solely in terms of any one of the spinor helicity

variables.

To label the external massive states, it is useful to use the symmetric spin-1
2 representation

of SU(2) because in the conventional spin representation for SU(2), we need to pick a

preferred direction to define the S z operator- therefore breaking the rotational invariance

of the scattering amplitude. So in general, the scattering amplitude involving massive

particles with spin {S i} and massless particles with helicity
n
hj

o
is represented by

A{h j}
{I1I2...I2S i}

⇣

{pi} ,
n
pj

o⌘
, (2.45)

where {Ii} are the little group indices for the ith massive particle with spin S i and
n
hj

o
la-

bels the jth massless particle with helicity hj. Then the scattering amplitude transforms
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as

A{h j}
{I1I2...I2S i}

⇣

{pi} ,
n
pj

o⌘
!

0BBBBBB@
Y

j

t2h j
Y

i

Wi,I1
J1Wi,I2

J2 · · ·Wi,I2S i

J2S i

1CCCCCCAA
{h j}
{J1 J2...J2S i}

⇣

{pi} ,
n
pj

o⌘
,

(2.46)

where t2h j is the U(1) scaling and Wi’s are SU(2) matrices in the fundamental represen-

tation. To conclude this section, we give the expression of the polarization tensor of a

massive spin-1 particle

ea
IJ =

1

2
p

2m

h
I
✏↵̇(a)J↵̇ + (I $ J)

i
. (2.47)

Next, we review the construction of the three particle amplitudes with atleast one massive

particle. These will serve as building blocks to set up the on-shell recursion.

2.3.1 Three particle amplitudes

Let us now review the classification of three particle amplitudes involving massive and

massless particles following [11]. As mentioned earlier, all the massive external states

(with spin S ) are labelled by the symmetric 2S representation of SU(2). Since the spinor

helicity variables of massive particles are related to each other by the Dirac equation

(2.44), any generic amplitude can be expressed in terms of only I
↵ variables. For in-

stance, the three particle amplitude involving a pair of massive particles of spin S 1,2 and

a massless particle of helicity h can be expressed as

Ah
(3){I1,...,I2S 1};{J1,...,J2S 2} =

↵1
I1
· · · ↵2S 1

I2S 1

1
J1
· · · 2S 2

J2S 2
Ah

(3){↵1,...,↵2S 1};{1,...,2S 2} , (2.48)

where the object on the RHS Ah
(3){↵1,...,↵2S 1};{1,...,2S 2}

is a Lorentz ( in SL(2,C) represen-

tation) tensor and called “stripped amplitude”. The advantage of introducing the above

relation is that the classification problem of three particle amplitudes reduces to finding
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the general structure of these stripped amplitudes. Notice that, as we are using spin 1
2

representation to label the massive spin states, algebraically, the stripped amplitude is

a polynomial of two linearly independent spinors (u↵ ; v) in order to span the SL(2,C)

space. So we now need to find these independent spinors which depend on how many

massive legs are attached to the three particle amplitude and we will analyse each case

separately below. It is also useful to note that the degree of this polynomial would be

2(S 1 + S 2).

One massive, two massless legs

We start with the three particle amplitude involving a pair of massless legs of helicity h1,2

and one massive leg with spin S . Since the stripped amplitude A↵1,..,↵2S is a polynomial of

Figure 2.1: Three particle amplitude with two massless legs with helicity h1,2 and one
massive leg with spin S .

degree 2S , we need S number of each of the linearly independent spinors (u↵ , v↵). Since

we have two massless legs, we can use the massless spinor helicity variables, as they are

independent of each other, as the candidates for (u↵ , v↵). Additionally, to account for

the little group scaling of the massless legs, we need to introduce either angle or square

bracket involving only massless spinor helicity variables. Tensorially, we can express the
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amplitude as

Ah1h2
{↵1,..↵2S } = 

⇣

a
1 b

2

⌘

{↵1..↵2S }
[12]c . (2.49)

where the notation (ua , vb){↵1,...,↵2S } represents product of the spinors u↵i and v↵ j symmetric

in the spinor indices such that i 2 [1, a] and j 2 [1, b]. Here  is a coupling constant and

a, b, c are some exponents that can be fixed by little group scaling, giving the following

relations

a  c = 2h1 , b  c = 2h2 , a + b = 2S , (2.50)

where the last relation is due to the fact that the degree of the polynomial is 2S . Taking

into the account the fact that the three-point amplitude has mass dimension one, we obtain

the structure of this three-point amplitude to be

Ah1h2
[3]{↵1,..↵2S } =

g
m2S+h1+h21

⇣


Sh1+h2
1

Sh2+h1
2

⌘

{↵1..↵2S }
[12]S+h1+h2 , (2.51)

where g is a dimensionless coupling. To elucidate our notation, we give the expression

of three particle amplitude with massive particle with spin S = 1 and identical photons

below

Ah1=1, h2=1
[3]{↵1,↵2} =

g
m3



1,↵12,↵2 + 1,↵22,↵1



[12]3 . (2.52)

Notice that, we could have used h12i but it is related to [12] as h12i = m2

[21] . The unique

structure of the three particle amplitude for this specific configuration of external particle

implies no-go theorems for certain types of interactions. For instance, if we consider

h1 = h2 = ±h then the square bracket [12]s±2h will attain an additional (1)s±2h factor

under the exchange of massless legs. If we consider the massless legs as bosons, then

the amplitude must be invariant under this exchange and we conclude that the spin of the
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Figure 2.2: Three point amplitude with massive legs of spin S 1,2 and massless leg of
helicity h.

massive particle must be S = 2(n ± h) for some integer n. Therefore, a massive particle

with odd spin can not decay into two massless identical bosons. In this case, the amplitude

in equation (2.52) vanishes identically.

In the case of opposite helicity massless particles, if we restrict ourselves to S h1+h2 > 0

and S + h1  h2 > 0 (otherwise we end up with spurious poles), the 3-particle amplitude

vanishes for S < 2|h|. Therefore, a massive particle with spin-1 can not decay into a pair

of photons and a massive spin-3 particle can not decay into a pair of gravitons.

Three particle amplitude with a pair of massive particles and one massless particle

Next, we consider the three point amplitude with a pair of massive particles of spin S 1,2

and a massless particle of helicity h. The structure of this amplitude will heavily depend

on whether the masses are equal or not, since the equal mass configuration appears pre-

cisely in the case of the minimal configuration that corresponds to the unique massless

amplitude in the high energy limit3.

3We discuss the concepts of minimal coupling in section 2.4 and the procedure of taking the high energy
limit of an amplitude involving massive particles in Appendix A.
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Let us first consider the configuration of external massive particles with di↵erent masses.

In this case, we can choose the linearly independent spinors to be

u↵ = 3↵ , v↵ =
p2↵↵̇

m
↵̇3 . (2.53)

But unlike the previous case with one massive leg, here the structure of the amplitude is

not unique since we only have two constraints: a) the little group scaling for the massless

leg and b) the degree of the polynomial being 2(S 1 + S 2). Therefore, there is an inherent

ambiguity of choosing the tensor structure in order to distribute all the SL(2,C) indices

symmetrically and it can determined that there exists a total number of N = S 1 + S 2

|S 1  S 2| + 1 number 4 of structures possible. The three particle amplitude thus takes the

following form

Ah
{↵1,...,↵2S 1}{1,...,2S 2} =

NX

gi=1

gi

h
u(S 1+S 2+h)v(S 1+S 2h)

i
{↵1,..,↵2S 1}{1,..,2S 2}

, (2.54)

where gi are the coupling constants associated to di↵erent tensor structures of (u, v). To

illustrate the choice of di↵erent possible tensor structures, let us consider the example

with S 1 = 1 and S 2 = 2 and h = 1. In this case, there are three di↵erent tensor structures

possible

(vv)↵1↵2(vvuu)1,...,4 , (uu)↵1↵2(vvvv)1,...,4 , (uv)↵1↵2(uvvv)1,...,4 . (2.55)

For identical spin (S 1 = S 2), there are as many as Ñ = S 1 + S 2 number of structures

possible

S 1 = S 2 =
1
2

: (u)↵1(v)1 . (2.56)

S 1 = S 2 = 1 : (uu)↵1↵2(vv)12 , (uv)↵1↵2(uv)12 , (2.57)

4This follows from the spin angular momentum addition rules in quantum mechanics.
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S 1 = S 2 =
3
2

: (uuu)↵1↵2↵3(vvv)123 , (uuv)↵1↵2↵3(uvv)123 , (uvv)↵1↵2↵3(uuv)123 .

(2.58)

Three particle amplitude with a pair of identical mass

Note that, if the masses of the two particles are degenerate, our choice for the two linearly

independent spinors in equation (2.53) does not work, since

p2 + p3 = p1 =) 2p2 · p3 = mu↵v↵ = 0 . (2.59)

Instead they are now parallel to each other and picks up a single direction in SL(2,C)

space

xu↵ = v↵ ) x =
h⇠|p2|3]
mh⇠3i

, (2.60)

where the xfactor is the proportionality constant between u↵ and v↵ and has mass dimen-

sion 0 and little group weight -2. Sometimes, it is helpful to use the inverse expression

x1 =
h3|p2|⇠]
m[3⇠]

. (2.61)

The xfactor plays a special role in three particle amplitude with the same mass particles.

It was shown in [11] that this factor encodes an apparent non-locality, associated with

amplitudes arising from minimal coupling configuration.

Since there is at least one massless leg available, we use the massless spinor variable

3↵ to associate the SL(2,C) indices. But with these, we can only distribute half of the

2(S 1 + S 2) number of SL(2,C) indices. Therefore we have to use the Levi-Civita tensors

✏↵ to carry the rest of the indices. The algebraic structure for the three particle amplitude
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therefore takes the form:

Ah
{↵1,..,↵2S 1}{1,..,2S 2} =

S 1+S 2X

i=|S 1S 2 |
gixh+i

⇣

2i
3 ✏

S 1+S 2i
⌘

{↵1,..,↵2S 1}{1,..,2S 2}
. (2.62)

We conclude this section with the following remark: we could have used ✏↵ in the case of

unequal mass, but this procedure is equivalent to the one followed here, as one can trade

either u↵ or v↵ with the Levi-Civita tensor using

(u↵v  uv↵) = huvi✏↵ . (2.63)

But this relation does not exist in the equal mass case as xu↵ = v↵. Therefore ✏↵ can

be treated as an independent tensor in the equal mass case and can be used to span the

SL(2,C) space.

In this thesis, we will need the three particle amplitudes involving a pair of massive par-

ticles with same mass given in equation (2.62). This expression can be thought of as an

expansion in ↵ and the term with i = 0, in which all the SL(2,C) indices are carried by

the anti-symmetric Levi-Civita tensor and represents to a special type of interaction that is

known as the minimal coupling in usual quantum field theory. Throughout this thesis, we

have considered particles interacting with each other only via minimal coupling. In the

following section, we discuss this concept of minimal coupling in the context of on-shell

scattering amplitudes.

2.4 Minimal coupling

The notion of “minimal coupling” for massless particles simply means that the leading

low energy interaction for the exchange particles such as photons, gluons and gravitons

with dimensionless couplings: e, g or the gravitational coupling 1/Mpl (where Mpl de-

notes the Planck’s mass) should include only massless particles with opposite helicity
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configurations. This can be elucidated by considering the three particle amplitude in the

following equation

Ah1h2h3
3 [1, 2, 3] = g[12]h1+h2h3[23]h2+h3h1[31]h3+h1h2 ; with h1 + h2 + h3 > 0

= g
0 h12ih3h1h2h23ih1h2h3h31ih1h2h3 ; with h1 + h2 + h3 < 0 , (2.64)

in which the mass dimension of the coupling constant ([g]m) is given by

[g]m = [g
0
]m = 1  |h1 + h2 + h3| , (2.65)

which is zero for photons and gluons, and -1 for graviton 5, when the massless particles

have opposite helicity. This notion of minimal coupling is familiar in textbook quantum

field theory in which the minimal interactions appear with dimensionless couplings. For

example,

scalar QED : e(@µ⇤  ⇤@µ)Aµ , (2.66)

QED : e ̄µ Aµ , (2.67)

QCD : g f ABCAµ

BA⌫C@µAA⌫ , (2.68)

linearised gravity : hh⇤h . (2.69)

In the previous section, the most general algebraic structure for a three particle amplitude

involving a pair of particles with degenerate mass and a massless particle has been derived

in equation (2.62) as a series expansion in the massless spinor helicity variable . For

identical spin (S 1 = S 2 = S ) of massive particles, this series contains a total of (2S + 1)

number of terms. Now in the high energy limit, one of these terms reproduces the unique

massless amplitude given in equation (2.39). As we explain below, this special term

corresponds to i = 0 in the expansion where the Levi-Civita tensor carries all the SL(2,C)

5For linearised gravity, the kinetic term is Lkin ⇠ h⇤h, where hµ⌫ has mass dimension 1. Therefore, the
leading interaction term is hh⇤h with  ⇠ 1/MPL.
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indices. All the other terms in the expansion (2.39) correspond to the couplings to higher-

dimensional operators. Since in this thesis, we have considered only minimally coupled

amplitudes, we will not discuss the higher dimensional terms and contain ourselves with

the following three particle stripped amplitudes associated minimal coupling:

Amin,h
[3]{↵1,..↵2S }{1,..2S } = mgxh

0BBBBB@
2SY

i=1

✏↵ii + symm.

1CCCCCA , (2.70)

where we have added all the symmetric combinations of the product of ✏’s in the SL(2,C)

indices. The on-shell amplitude can be found by contracting the massive spinor helicity

variables with this stripped amplitude following (2.48)

A+h
3 (1, 2, 3h) = gxh

12
h12i2S

m2S1 , Ah
3 (1, 2, 3h) = gxh

12
[12]2S

m2S1 , (2.71)

where x12 arises due to the presence of massive particles with identical masses as dis-

cussed earlier and defined as

x12 =
h⇣ |p1|3]
mh⇣3i or x1

12 =
h3|p1|⇣]
m[3⇣]

. (2.72)

Here ⇣↵ is a an arbitrary spinor which can be chosen appropriately. Here we have intro-

duced bold faced notation for spinor brackets associated to massive particles. These bold

faced spinor products are defined as a symmetric combination of usual spinor products

carrying SU(2) indices. For example,

h12i2 := h1I12J1ih1I22J2i + h1I22J1ih1I12J2i , (2.73)

h32i2 := h32J1ih32J2i . (2.74)

In appendix A, we outline the procedure for taking the high energy limit of scattering

amplitudes in the massive spinor helicity formalism following [11] and show that the

above three particle amplitudes for S = 1 indeed reduce to the unique massless three
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particle amplitude in this high energy limit.

Note that for S > 1, the three-particle amplitudes in (2.71) do not correspond to any min-

imal interaction term in a Lagrangian theory. It was shown in [40] that the term xh12i2S

contains (2S  1) powers of momenta and therefore the amplitudes must correspond to

higher derivative interactions for S > 1. This concept of “minimal coupling” introduced

in [11] is di↵erent from earlier work on higher-spin theories [41, 42]. Conventionally,

minimal coupling represents lowest derivative interaction compatible with symmetries of

the theory.

Before we conclude, let us make a few comments on the equivalence between the ampli-

tude computed using Feynman rules and the method we described in this section in the

spinor helicity formalism. To make contact with the amplitude computed using Feynman

diagrams, we consider an example of a three particle amplitude involving two massive

scalars with mass m and a positive helicity photon. According to the momentum space

Feynman rule, the amplitude is

Amin,s=1,h=+1
[3] = e+3 · p2 =

h⇠|p2|3]
h⇠3i = mx , (2.75)

where in the last step, we have used the definition of massless polarization vector in the

spinor helicity formalism in equation (2.36).

2.4.1 Three massive legs

For three particle amplitudes with all massive particles, we do not have any independent

spinors available. Hence, the SL(2,C) space must be spanned by higher rank tensors

O↵ in the spinor representation. The primary candidates for the higher rank tensors O↵

can be ✏↵ or p1↵
p2. Therefore any of the two candidate can accommodate half of the

2(S 1 + S 2 + S 3) SL(2,C) indices. Now as the product can be traded for a pair of ✏↵, for
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Figure 2.3: Three particle amplitude with all massive legs.

instance

O↵O  OO↵ = ✏↵✏ , (2.76)

for O↵ ⇠ ✏↵ (due to “Schouten’s identity”) and p1↵
p2, 6 we can use a pair of ✏’s to

distribute the SL(2,C) indices. Therefore, tensorially, the amplitude can be expressed as

A{↵1,..,↵2s1}{1,..,2s2}{1,..,2s3} =
1X

i=0

X

i

gi

⇣

Os1+s2+s3i✏ i
⌘

{↵1,..,↵2s1}{1,..,2s2}{1,..,2s3}
, (2.79)

where i = 0, 1 denotes the number of ✏’s and i labels all the di↵erent ways the SL(2,C)

indices can be distributed on O’s.

6This can be simple seen by considering

⌅ := O↵O  OO↵ (2.77)
= (⌘  ⌘)(↵⌘  ⌘↵) ⇠ ✏↵✏ . (2.78)
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Chapter 3

Covariant recursion

Recursion techniques are one of the most notable and e↵ective developments in the mod-

ern approach to derive the scattering amplitudes in gauge and gravity theory. The core

idea of on-shell recursion scheme is to construct the nparticle scattering amplitude in

terms of known lower point amplitudes. These techniques are more efficient than the tra-

ditional Feynman diagramatic methods to obtain amplitudes since the latter are obviously

not recursive and require a substantial amount of knowledge of the underlying theory

(such as: vertex rules, symmetry factors, etc.) at each order in the perturbation theory.

Beyond the three particle amplitudes, the principles of locality and unitarity are the cen-

tral constraints for four and higher point tree level scattering amplitudes, which simply

dictate that the amplitude must factorize into a product of lower point tree amplitudes

when any of the internal massless or massive particle goes on-shell. For instance, the

four particle amplitude can be constructed by gluing the three-point amplitudes with the

internal propagator

massless : A(4) ! A(3)
1
P2A(3) , (3.1)

massive : A(4) ! A(3)
1

P2  m2A(3) . (3.2)
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But the on-shell three particle massless amplitude vanishes in Minkowski spacetime for

real momenta. Therefore the recursion method based on unitary factorization requires the

o↵-shell three particle massless amplitude.

However, sometimes it is extremely useful to analytically continue the on-shell external

momenta to the complex domain. In this case, recursion relations exploit the pole struc-

ture in the complex momentum space to recursively build higher point amplitudes from

lower point amplitudes. The first step in this direction of developing a remarkably sim-

ple on-shell recursion relation to compute massless scattering amplitudes was taken by

Britto-Cachazo-Feng-Witten (BCFW) [7, 8] for tree-level gluon amplitudes. Later, re-

cursion relations were derived for general relativity [43, 44] and eventually found to be

a quite general property of tree level scattering amplitudes in quantum field theories in

arbitrary dimensions [19, 45].

3.1 The covariant recursion

In this section, we generalize the well-known BCFW recursion relations for scattering

amplitudes involving massive particles by combining complex deformation of massive as

well as massless external states. We consider nparticle tree amplitudes with particle con-

figurations such that there is atleast one massless particle. In order to derive the on-shell

recursion relation, a pair of external massive and massless momenta are complexified with

a massless momenta (rµ), while maintaining momentum conservation and same on-shell

condition for shifted and unshifted momenta. We consider the massive pi and massless

momenta pj are analytically continued to complex plane in the following way

pµi ! bpµi = pµi  zrµ ; pµj ! bpµj = pµj + zrµ. (3.3)
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Here z is called deformation parameter. The on-shell property can be maintained by

imposing the following constraints

pi · r = pj · r = 0. (3.4)

The npoint amplitude An(z = 0) with real undeformed momenta can be obtained from

the deformed one by using the Cauchy’s theorem

An = bAn(0) =
1

2⇡i

I

0

bAn(z)
z

dz =
X

zI

Res
0BBBB@

bAn(z)
z

1CCCCA
z=zI

+ Rn(z! 1) . (3.5)

The contour 0 encloses the pole at origin. Rn is the boundary term which is the contri-

bution of the contour integral at infinity. All other simple pole locations of the amplitude

are denoted by zI .

Tree-level scattering amplitudes have well-behaved analytic structure, they can only have

simple pole in kinematic space, in the form of propagator 1
bP2m2 . Simple Feynman diagram

analysis indicates that when the internal propagator goes on-shell, the scattering amplitude

factorizes into a pair of lower point on-shell subamplitudes. Therefore we express the

amplitude with complex momenta as

bAn(z) =
X

I

bAl+1
1

bP2
I  m2

bAr+1 +
X

I

bAl+1
1
bP2

I

bAr+1 , (3.6)

where the sum includes di↵erent scattering channels as well as all possible polarization

(helicity) states of the exchange particle and n = l+ r. It is important to note that the con-

stituent subamplitudes are function of complex momenta. We express the shifted prop-

agator in terms of the physical propagator with real momenta and obtain the following

simple pole in the complex zplane

bP2
I |zI = m2 ) (PI + zI p j)2 = m2

! 1
bP2

I  m2
=

zI

z  zI

1
PI

2
 m2

. (3.7)
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Figure 3.1: On-shell recursion scheme

The boundary term Rn at z ! 1 can not be computed from a single recursion relation

[7,8]. Therefore we assume that the boundary term vanishes for a valid massive-massless

shift, that involves complexification of both massive and massless momenta, such as the

one in (3.3). A stronger but practical condition to achieve this would be to restrict the

allowed class of amplitude as

bAn(z)! 0 ; as z! 1. (3.8)

With this assumption, we derive the covariant recursion scheme to compute the amplitude

as 1

An =
X

I

bAl+1(zI)
1

P2
I  m2

bAr+1(zI) +
X

I

bAl+1(zI)
1
P2

I

bAr+1(zI) , (3.9)

where the constituent subamplitudes have to be evaluated at z = zI - exactly where the

shifted propagator goes on-shell. Therefore, the covariant recursion requires only on-shell

three particle amplitudes unlike the unitary method.

It is important to note that the only those diagrams in which the two deformed momenta

are on opposite sides of on-shell propagator contribute to the residue at z = 0. This

simple consequence of complex deformation of external momenta enormously simplify

computations as compared to the other methods such as, Feynman diagramatics, unitary

1In the case of massless amplitudes, only the second term contributes to the recursion known as the
BCFW recursion scheme.
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factorization, etc. Another point to remember while using the recursion scheme is that this

procedure works only for amplitudes that can be constructed using only the three-particle

amplitudes. This excludes theories like g3 + 4, in which the four particle amplitude

has a contact term without any simple pole 2.

3.1.1 The covariant massive-massless shift

On-shell recursion scheme is implemented most efficiently when the scattering amplitudes

are expressed in the spinor helicity basis. Hence, the momentum shifts (14) should be

appropriately realized in terms of the on-shell spinor helicity variables. As the amplitude

is covariant under little group, it is paramount that the complex shift of spinor helicity

variables obey little group covariance. Keeping this fact in mind and choosing the shift

vector to be r↵↵̇ =
pi↵

m


j j↵̇ in (14), we propose [14] the following complex deformation

of massless and massive spinor helicity variables

b j↵ =  j↵ +
z
m

pi↵


j ; b̃ j↵̇ =  j↵̇,

bI
i↵ =

I
i↵ ; b̃

I

i↵̇ =
I
i↵̇

z
m
 j↵̇[iI j] .

(3.10)

These complex shifts are characterize as [i jhi-shift where we have bold faced the massive

spinor helicity variable
⇣

|i] ⌘ I
i↵̇

⌘

instead of keeping the SU(2) index and h is the helicity

of the jth particle. The main feature of these complex shifts is that they are manifestly

little group covariant and therefore can be implemented directly into the spinor helic-

ity representation of scattering amplitudes. We refer these kind of shifts as “covariant

massive-massless shift”3.

2There exist several extensions of the BCFW recursion relations to compute amplitudes for theories that
do not rely on three-particle amplitudes. The most prominent example of these is the 4 theory. Starting
with the four-particle amplitude A4 = , it is possible to compute higher point amplitudes. In this case,
the non-vanishing boundary term at 1 is recursively constructed. Some of the other examples include-
the non linear sigma model [46], or 3D Chern-Simons-matter theories [47], and multi-scalar amplitudes in
supersymmetry Yang-Mills theory [48] .

3We have initially referred to this shift as the generalized shift and the recursion technique as generalized
recursion in this thesis. However, to avoid clash with existing nomenclature in the literature we use the
nomenclature “covariant massive massless shift"for the shift and “covariant recursion” for the recursion
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In order to illustrate how to implement the covariant recursion, we now compute several

known four and five particle amplitudes using the proposed covariant massive-massless

shift. In particular, we consider the amplitudes in massive scalar QCD and spontaneously

broken non-abelian gauge theory whose spectrum consists of gluons and massive vector

bosons. The recursion relation can be used to calculate the n-point amplitude via the

recursion relation

An =
X

I

bAl+1(zI)
1

P2  m2
bAr+1(zI) +

X

J

b̃Al+1(zJ)
1
P2

b̃Ar+1(zJ) . (3.11)

We will be considering scattering amplitudes with a specific colour ordering for external

particles, since the full colour dressed amplitude can be derived from the colour ordered

amplitudes using well known colour decomposition rules [15–18, 49, 50].

3.2 Examples

We use the covariant recursion relation to compute several four and five point amplitudes

in two models: a) scalar QCD with massive scalars scattering o↵ gluons and b) sponta-

neously broken non-abelian gauge theory whose spectrum consists of gluons and massive

vector bosons. The examples presented here clearly suggest that the proposed covariant

massive-massless shift in equations (3.10) is a valid shift for computing amplitudes in

these theories. We present an elaborate proof for this assertion in the next chapter.

3.2.1 Compton amplitude in scalar QCD

We start by considering the 2 ! 2 scattering involving a pair of massive scalars with

momentum (p1, p4) and positive helicity gluons with momentum (p2, p3). The momentum

technique, as in reference [21], in the rest of the thesis.

56



Figure 3.2: Compton amplitude in scalar QCD

shift is carried out on the momenta p1 and p2 as

bpµ1 = pµ1  zrµ ; bpµ2 = pµ2 + zrµ . (3.12)

In order to realize this momentum shift in spinor helicity formalism, we consider [12i

shift introduced in (3.10). Since the scalar-gluon quartic contact term can be expressed

in terms of the 3-vertices (similar to the case for only gluon), the four particle amplitude

is constructible from three particle amplitudes by implementing the covariant recursion

(3.11) (see Figure 3.2)

A4[10, 2+, 3+, 40] = mg2bx14
1

s23

[23]3

[2bI][3bI]
= m2g2 [23]3

hbI|p4|3][bI2]s23

, (3.13)

where g is a dimensionless coupling and the non-local x-factor given by

bx14 = m
[bI3]

hbI|p4|3]
, (3.14)

and we the Mandelstam variables are defined smn = (pm + pn)2, as usual. We consider

that the massive scalars are minimally coupled to the gluons, in which case the exchange

particle can be either a massive scalar or a gluon. Since a single massive scalar can not

decay into a pair of gluons, only a single scattering diagram is possible.
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Terms involving spinor helicity variable of the exchange particle (bI) can be simplified as

hbI|p4|3][bI2] = [2|p1 · p4|3] + m2[23] , (3.15)

using the fact that [2b1I] = [21I]. Furthermore, the four particle kinematics allows us to

simplify the following term as

[2|p1 · p4|3] = (s12  m2)[23] + m2[23] = [23]s12 (3.16)

Collecting all these simplifications, we obtain the four particle amplitude

A4[10, 2+, 3+, 40] = m2g2 [23]
h23i(s12  m2)

. (3.17)

This matches with the result given in [12]. This particular amplitude was derived in this

reference using the standard BCFW method by complexifying a pair of massless external

momenta. Nonetheless, we use this amplitude in order to check that the covariant massive-

massless shift can also be used to evaluate this amplitude. A more general proof of the

validity of these classes of shifts for the massive scalar QCD theory is given in the latter

section.

The amplitude with opposite helicity gluons (2+, 3), using covariant massive-massless

shift (3.10) can be computed by following almost similar methods laid in the previous

example and therefore we only quote the result below

A4[10, 2+, 3, 40] = g2 h3|p1|2]2

s23(s12  m2)
. (3.18)

This answer matches with the Compton amplitude derived in [11], using recursion re-

lations based on unitarity principle. This method requires evaluation of an additional

diagram in which p1, p2 momenta are attached to the same vertex.
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Figure 3.3: Five particle amplitude in scalar QCD

3.2.2 Scalar QCD : five particle amplitude

In order to put our proposal for the covariant recursion on a solid ground, we now con-

sider color ordered five particle scattering amplitude comprising a pair of massive scalars

and gluons with arbitrary helicity. We use the [23+i massive-massless shift for this com-

putation. The amplitude can be constructed from three and four point amplitudes via the

following recursion relation

A5[10, 20, 3h1 , 4h2 , 5h3] =
X

I

bA3(zI)
1

P2  m2
bA4(zI) +

X

J

b̃A3(zJ)
1
P2

b̃A4(zJ) . (3.19)

Due to the choice of the massive-massless shift, there can only be two possible diagrams

with gluon as exchange particle. The massive scalar exchange in this case is ruled out for

the same reason that we mentioned in previous section. We now specialize to the case in

which the gluons have the helicity configuration as specified in Figure 3.3.

First diagram :

The contribution to five particle amplitude due to the first diagram can be obtained by

using the recursion relation in equation (3.19)

A(I)
5

h
10, 20, 3+, 4, 5+

i
= bA3



10,b20
,bI+
 1

s12

bA4

hbI,b3+, 4, 5+
i
. (3.20)

Note that, only the above helicity configuration of the massless internal state is contribut-

ing since for the opposite helicity configuration, the gluon amplitude vanishes. The

three-particle amplitude for minimally coupled particles follows from equation (2.71)
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with bx12 = m [5bI]
hbI|p1 |5]

, while the massless four-particle pure gluon amplitude is given by

the well-known Parke-Taylor formula [2]:

bA3



10,b20
,bI+


= gm2 [5bI]

hbI|p1|5]
, bA4

hbI,b3+, 4, 5+
i
=

[35]4

[bI3][34][45][5bI]
. (3.21)

Substituting these lower point amplitude in the recursion relations (3.20), we obtain the

contribution of first diagram

A(I)
5

h
10, 20, 3+, 4, 5+

i
= m2g3 [35]4

s12[34][45]
⇣

[3|/p2 · /p1|5] + m2[35]
⌘ . (3.22)

Interestingly, the terms within parenthesis in the denominator do not correspond to any

physical pole. At a first glance, one can think that these terms lead to a spurious pole. But

this assertion is not true since the terms within parenthesis can not vanish. To show this,

let us expand the following spinor bracket

[3|/p2 · /p1|5] = 3↵̇p↵̇2p


1


5 . (3.23)

Now this equals to m2[35] only when we can set

p↵̇2p


1 = m2↵̇ , (3.24)

i.e, the combination of terms within parenthesis in the denominator vanishes only when

the massive momenta p1 and p2 become collinear, which is of course impossible for

massive particles.

Second diagram :

This diagram includes a four particle amplitude with pair of massive scalars interacting

with opposite helicity gluons and a three gluon amplitude, both of which are already
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known. Therefore, the contribution for this diagram is

A(II)
5

h
10, 20, 3+, 4, 5+

i
= bA4

h
10, 20,bI, 5+

i 1
s34

bA3

hbI+,b3+, 4
i
. (3.25)

Using the four-particle amplitude in (3.18) and removing the bI dependent terms, the sec-

ond diagram evaluates to

A(II)
5

h
10, 20, 3+, 4, 5+

i
= g3 h54ih4|p1|5]2

h5b3ih34ibs12(s15  m2)
. (3.26)

The simple pole z = z̃I is found by simply setting the shifted propagator on-shell

(bp3 + p4)2 = 0) z̃I =
mh34i
h4|p2|3]

. (3.27)

The deformed spinor products are evaluated at z = z̃I in terms of undeformed spinor

helicity variables

bs12 = s12
h34i
h4|p2|3]

[3|p1 · p2|3] ; h5b3i = h54ih3|p2|3]
h4|p2|3]

. (3.28)

Assembling all these expressions, we obtain the contribution of the second diagram in

Figure 3.3 to the five-point amplitude as

A(II)
5

h
10, 20, 3+, 4, 5+

i
= g3 h4|p1|5]2h4|p2|3]2

h3|p2|3]h34i(s15  m2)
⇣

h4|p2|3]s12 + h4|/p3/p1/p2|3]
⌘ . (3.29)

Following similar argument we made in the case of first diagram, it can be shown that the

term within parenthesis in the denominator does not vanish. Summing the contributions

due to the all the diagrams, we obtain the colour-ordered five-particle amplitude as

Atotal
5

h
10, 20, 3+, 4, 5+

i
= g3m2 [35]4

s12[34][45]
⇣

[3|/p2/p1|5] + m2[35]
⌘

+ g3 h4|p1|5]2h4|p2|3]2

(s23  m2)h34i(s15  m2)
⇣

h4|p2|3]s12 + h4|/p3/p1/p2|3]
⌘ . (3.30)

61



Scattering amplitude with identical external particle configuration that we have consid-

ered here, has been derived in [12] using di↵erent methods. In order to make contact with

their result we note the following identities

[5|(/p3 + /p4)/p2|3] = m2[35]  [3|/p2/p1|5] , (3.31)

h45i
⇣

[3|/p2/p1|5] + m2[35]
⌘

= (h4|/p3/p1/p2|3] + s12h4|p2|3]) . (3.32)

Using these two identities the five-particle amplitude can be recast as (upto an overall

sign)

Atotal
5

h
10, 20, 3+, 4, 5+

i
= g3m2 [35]4

s12[34][45][5|(/p3 + /p4)/p2|3]

 g3 h4|p1|5]2h4|p2|3]2

(s23  m2)h34ih45i(s15  m2)[5|(/p3 + /p4)/p2|3]
. (3.33)

This expression exactly matches with the result given in [12].

One can follow similar steps to derive the amplitude with all positive helicity gluons by

using covariant recursion. We give the expression below for completeness

A5[10, 20, 3+, 4+, 5+] = m2g3 [5|(/p3 + /p4)/p2|3]
h34ih45i(s23  m2)(s15  m2)

, (3.34)

which agrees with the result in [12]. Reproducing the four and five particle amplitudes us-

ing our proposed covariant massive-massless shifts strongly suggests that the amplitudes

in massive scalar QCD can be obtained by using the covariant recursion relations. Indeed,

this is the case and we will prove this in later section.

3.2.3 Compton amplitude in Higgsed Yang-Mills theory

Next, we focus on the scattering of massive vector bosons with gluons of arbitrary helic-

ity. The basic ingredients that we need in this section are the three particle amplitudes
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Figure 3.4: Amplitude with a pair of massive vector bosons and a pair of opposite helicity
gluons.

comprising either only gluons or a pair of massive vectors bosons (of mass m) minimally

coupled with a single gluon (with helicity h), given by the following expressions

A+1
3 (11, 21, 3+) = gx12

h12i2
m

, A1
3 (11, 21, 3) = gx1

12
[12]2

m
. (3.35)

We begin by considering the four particle vector boson amplitude involving opposite he-

licity gluons. Here, particles with momenta (p1, p4) are massive spin-1 particles and the

particles with momenta (p2, p3) are gluons. We use the [12+i massive-massless shift, for

which we only need to compute a single scattering diagram. For convenience, let us write

down the relevant complex shift in spinor helicity basis

b2↵ = 2↵ +
z
m

p1↵


2 ,
b̃2↵̇ = 2↵̇,

bI
1↵ =

I
1↵ ; b̃

I

1↵̇ =
I
1↵̇

z
m
2↵̇[1I2] . (3.36)

By virtue of the recursion relation (3.11), the four-particle amplitude can be obtained by

gluing the on-shell (complex) three particle amplitudes along with physical propagator

for this channel

A4
⇥

1, 2+, 3, 4
⇤

= bA3

hb1,bI, 4
i 1

s23

bA3

hbI+,b2+, 3
i
. (3.37)
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The simple pole zI for this diagram is given by

zI =
mh23i
h3|p1|2]

. (3.38)

After removing the bI-dependent terms we rewrite the Compton amplitude as

A4
⇥

1, 2+, 3, 4
⇤

=
g2

m2

h3|p4|2]2[b14]2

s23(bs24  m2)
. (3.39)

To finish the computation we need to evaluate the “shifted" spinor products at the simple

pole z = zI . Let us consider the term (bs24  m2) = hb24Ji[4J2]. The shifted spinor product

at this simple pole is

hb24Ji = h24Ji + h32ih4J |p1|2]
h3|p1|2]

=
[1I2]
h3|p1|2]

⇣

h24Jih31Ii + h32ih4J1Ii
⌘

,

which can be further simplified by using the Schouten identity

h24Jih31Ii + h23ih1I4Ji + h1I2ih34Ji = 0 , (3.40)

and we obtain

hb24Ji = (s12  m2)h34Ji
h3|p1|2]

) (bs24  m2) = (s12  m2) . (3.41)

Similarly the other shifted spinor product can be determined and we found

[b1I4J] =
m

h3|p1|2]

⇣

h31Ii[24J] + [21I]h34Ji
⌘

. (3.42)

In terms of bold faced notation

[b14]2 =
m2

h3|p1|2]2
(h31i[24] + [21]h34i)2 . (3.43)
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Substituting the expressions of shifted spinor products in equation (3.39), we reproduce

the Compton amplitude as

A4
⇥

1, 2+, 3, 4
⇤

= g2 (h31i[24] + [21]h34i)2

s23(s12  m2)
. (3.44)

This result precisely matches with the expression for four particle amplitude, obtained

by recursion relations based on unitarity in [11]. Similarly we derive the amplitude for

di↵erent helicity gluons and found that

A4
⇥

1, 2+, 3+, 4
⇤

= g2 [23]2h14i2
s32(s12  m2)

, (3.45)

which is in agreement with the result in [12].

3.2.4 Five-particle amplitude in Higgsed Yang-Mills theory

So far we have computed results that have been previously computed in the literature

but using the new recursion relations and this indicates that the new class of recursion

relations is also valid for Yang-Mills theory in Higgsed phase. To put our assertion on

a stronger ground, we now consider the colour-ordered five particle amplitude involving

a pair of massive spin-1 particles and gluons with specific helicity configurations, using

the [23h3i massive-massless shift. This computation leads to the first new result using

the new recursion relations. Although the final expression (even for such a lower point

amplitude) is rather complicated, we will verify that our result matches with the known

massless result, in the high energy limit.

The recursion relation, needed for this computation is

A5[11, 21, 3h1 , 4h2 , 5h3] =
X

I

bA3(zI)
1

P2  m2
bA4(zI) +

X

J

b̃A3(zJ)
1
P2

b̃A4(zJ) , (3.46)

giving us two possible scattering diagrams in Figure 3.5, similar to the case of massive
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Figure 3.5: Five-particle amplitude in Higgsed Yang-Mills

scalar QCD. The diagrams with a massive propagator will again vanish due to the fact

that a massive spin-1 particle can not decay into a pair of helicity-1 massless particles.

Contribution from the first diagram using the recursion relation in equation (3.46) can be

obtained as

A(I)
5

⇥

1, 2, 3+, 4, 5+
⇤

= bA3

h
1,b2,bI+

i 1
s12

bA4

hbI,b3+, 4, 5+
i
. (3.47)

The three and four particle subamplitudes have to be evaluated at z = zI , which is given

by

zI =
m3 + mp1 · p2

h1I |p2|3][31I]
, (3.48)

for this diagram. The lower point amplitudes are the standard three particle amplitude

of [11] and the Parke-Taylor four point amplitude

bA3

h
1,b2,bI+

i
=

g
m

bx12h12i2 = g
[bI3]

hbI|p1|3]
h12i2 ,

bA4

hbI,b3+, 4, 5+
i
=

[35]4

[bI3][34][45][5bI]
. (3.49)

Removing the intermediate spinor helicity variable bI and evaluating the shifted spinor

products at z = zI , we obtain the contribution to five particle amplitude due to first diagram
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as

A(I)
5

⇥

1, 2, 3+, 4, 5+
⇤

= g3 h12i2[53]4

([3|/p2/p1|5] + m2[35])[45][34]s12
. (3.50)

In the case of the second diagram of Figure 3.5, the recursion relation with covariant

massive-massless shift is given by

A(II)
5

⇥

1, 2, 3+, 4, 5+
⇤

= bA4

h
1, 2,bI, 5+

i 1
s34

bA3

hbI+,b3+, 4
i
. (3.51)

The simple pole in complex zplane is located at

z̃I =
mh34i
h4|p2|3]

. (3.52)

This computation, although conceptually straightforward, is algebraically involved. There-

fore, we will not give all the details and present the contribution due to the second diagram

as

A(II)
5

⇥

1, 2, 3+, 4, 5+
⇤

= g3
⇥h4|p2|3][51]h42i + h14i {h4|p2|3][52] + h4|p3|5][32]}⇤2

h43ih45i(s32  m2)(s15  m2)


[3|/p2/p1|5] + m2[35]
 .

(3.53)

The full colour-ordered five-particle scattering amplitude is obtained by summing over

the contributions from two diagrams in equations (3.50) and (3.53)

A5
⇥

1, 2, 3+, 4, 5+
⇤

= g3 h12i2[53]4

([3|/p2/p1 |5]+m2[35])[45][34]s12

 g3 [h4|p2 |3][51]h42i+h14i{h4|p2 |3][52]+h4|p3 |5][32]}]2

h43ih45i(s32m2)(s15m2)


[3|/p2/p1 |5]+m2[35]
 . (3.54)
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3.2.5 High energy limit

A rudimentary but non trivial check of our result for five particle vector boson amplitude is

that, we should be able to reproduce the well-known Parke-Taylor amplitudes for gluons,

by taking the high energy limit of the scattering amplitudes we derived in previous section.

The amplitude in (3.54) includes all possible helicity configurations of the massive spin-

1 particle. This can be seen by expanding any spinor product involving massive spinor

helicity variable using (A.6) and (A.7). For instance, consider the expansion of angle

bracket h31i2 in terms of massless spinor helicity variables (1, ⌘1)

h31i2 = h31i2⇠I1⇠I2 + h3⌘1i2⇠+I1⇠+I2 + h31ih3⌘1i
⇣

⇠I1⇠+I2 + ⇠+I1⇠I2
⌘

. (3.55)

In this case, the (,+, 0) components of the vector boson are separately given as

h31i2 : () helicity (3.56)

h3⌘1i2 : (+) helicity (3.57)

h31ih3⌘1i : longitudinal . (3.58)

Since ⌘1 scales with mass m and 1 is the massless spinor helicity variable corresponding

to p1, the angle bracket h31i2 can have only () helicity component in high energy (or

massless) limit. Following similar argument, it is easy to see that the square bracket [31]2

has only (+) helicity component in high energy limit.

Let us now get back to the five point vector boson amplitude in equation (3.54) and take

the high energy limit. Consider the helicity configuration (1, 2) for massive particles.

Using the procedure we just laid out, we immediately conclude that only the first diagram

will contribute

A(HE)
5

⇥

1, 2, 3+, 4, 5+
⇤

= g3 [35]4

[12][23][34][45][51]
. (3.59)
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It is clear from the structure of the amplitude in equation (3.54) that the (1+, 2+) helicity

configuration has vanishing massless limit- as should be the case. So we consider (1+, 2)

configuration, in which case only the second diagram is non vanishing

A(HE)
5

⇥

1+, 2, 3+, 4, 5+
⇤

= g3 h24i4
h12ih23ih34ih45ih51i . (3.60)

Similarly the amplitude in equation (3.54) reproduces correctly the massless amplitude

with (1, 2+) helicity configuration. We thus find expected behaviour of the finite energy

amplitude in massless limit.

In a similar spirit, we consider the amplitude with all the gluons having plus helicity.

Implementing the same massive-massless shift [23+i we obtain the following expression

A5[1, 2, 3+, 4+, 5+] = m2g3 h12i2(h4|p2|3]s12 + h34i[3|/p1/p2|3])
h54i2h34i(s15  m2)(s23  m2)

. (3.61)

The objective of this section was two fold: first, we introduce a new class of on-shell

recursion relations (called “Covariant recursion”) in which a combination of massive and

massless complex momentum shift was used and then translated into the spinor helicity

basis while maintaining the little group covariance of these spinor helicity variables.

Second, we used the covariant recursion to reproduce several four and five particle scat-

tering amplitudes in massive scalar QCD and Higgsed Yang-Mills theory involving a pair

of massive particles. The non trivial checks in turn support our claim about the validity of

the new recursion for these two theories.

3.3 Large z behaviour of scattering amplitudes

On-shell recursion techniques that involve complexification of external momenta are one

of the most powerful tools in the modern approach to scattering amplitudes since they
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Figure 3.6: Individually all the Feynman diagrams grow as z ! 1 for gauge theory and
Einstein gravity where the vertices grow as z and z2 respectively and overcompensate for
the 1

z scaling behaviour of the propagators.

require only on-shell three particle amplitude as input data. However, recall that the

contour derivation of recursion relations involves a residue at large z

An(z = 0) =
1

2⇡i

I

0

bAn(z)
z

dz =
X

I

bAl(zI)
1

P2
I  m2

bAr(zI)  Rn(z! 1) , (3.62)

which can be set to zero by demanding that the deformed amplitude (involving complex

momenta) vanish at large z. This is a critical ingredient for the on-shell recursion tech-

nique to work and enormously narrows down the space of allowed class of theories in

which on-shell techniques can be used to compute scattering amplitudes 4. Naively, the

condition

lim
z!1

bAn(z) = 0 , (3.63)

is far from obvious in the case of gauge and gravity theories as illustrated in Figure 3.6.

Surprisingly, at least for some helicity combination of deformed momenta of external

particle, the amplitude does vanish at large z. For gauge theories BCFW showed that [7,8]

A[+i,A[++i,A[i / 1
z

A[+i / z3 , (3.64)

4In some cases, one can extend the scope of recursion techniques to include theories in which the residue
Rn does not decay at large z. An example of this is the 4 theory, where it is possible to recursively obtain
six and higher point amplitudes since the boundary term Rn can be computed using recursion [51]. The four
particle amplitude can not be obtained in the same way as it involves a single contact diagram but it is easy
to see thatA4 = i.
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where the helicities of deformed massless particles and the kind of spinor helicity vari-

ables that need to get complexified are indicated in the superscript. Their analysis suggests

that [+i, [++i, [i are valid shifts that can be used to construct the gluon amplitudes.

In this chapter, we present a detailed proof of the validity of covariant recursion relations

by studying the behaviour of deformed amplitudes at large deformation parameter z in two

classes of theories i) the Higgsed Yang-Mills theory and ii) massive scalar QCD. Since

the proof is technical, we begin with a brief summary of the main concepts involved in

the proof.

3.4 Higgsed Yang-Mills theory

The proof we present here, is inspired by the analogous proof in [19] for the case of mass-

less amplitudes. However, conceptually there is a key di↵erence that we point out next.

The proof regarding the validity of the BCFW shifts for massless particles considered a

set up where a highly boosted gluon was scattered o↵ a background consisting low en-

ergy gluons. This corresponds to the familiar Eikonal scattering for real momenta. The

background was referred to as a soft gluon background. In the Eikonal approximation, the

conservation of helicity of the highly boosted particle was shown to be a consequence of

the so-called “spin-Lorentz” symmetry, which was then used to constrain the behaviour

of the amplitude at large z.

In our case, the soft background is replaced by a static background, including a collec-

tion of massive vector bosons and soft massless particles. Our set up is therefore closer

to the scattering of a highly energetic gluon o↵ a heavy scattering center surrounded by

a cloud of soft gluons. As we show, the resulting outgoing states are a highly boosted

massive spin-1 boson and a highly boosted gluon. At infinite boost (or large z), the dom-

inant contribution to the amplitude is achieved when the helicity of the boosted gluon is

unchanged. Thus, as in the case of massless theories, this dominant contribution is again
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controlled by the spin-Lorentz symmetry. We then use the Ward identity for massless glu-

ons to constrain the sub-leading behaviour of the amplitude and show that for a particular

class of covariant massive-massless shifts, the amplitude decays as 1
z for large z. We refer

these classes of covariant massive-massless shifts as “valid shifts” for Yang-Mills theory

in Higgsed phase.

3.4.1 Classification of covariant massive-massless shift

Since we care only about the functional dependence of the amplitude in z, all the soft

physics can be included into a background, and only a single hard line (with boosted mo-

mentum) can be studied by considering the quadratic fluctuations about this background.

Therefore, In order to check the validity of the covariant massive-massless shift of class

[m+i used in the covariant recursion (3.11), we consider two point amplitude bAh
IJ involv-

ing a highly boosted gluon with helicity h and a massive vector boson particle with little

group indices (I, J). This process can be interpreted as a highly boosted gluon scattered

through a static background, producing a boosted massive vector boson in the out state or

vice-versa. In this case, the validity of covariant recursion requires

bAh
IJ = 0 , for z! 1 . (3.65)

Three particle amplitudes, which is the basic building block in recursion method, can be

constructed from this two point amplitude by attaching an unshifted (also soft) external

momentum. Since this will also vanish at large z, any npoint amplitude also vanishes

once the condition (3.65) is satisfied.

As mentioned in chapter 2 regarding the review of background materials, the two point

natural amplitude bAh
IJ is obtained from the amplitude bAµ⌫, derived from the Lagrangian

of the underlying theory ( [11]), by contracting the latter with the polarization tensors of
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gluon and massive vector boson

bAh
IJ =

bAµ⌫beh
µ( j)be⌫IJ(i) , (3.66)

where we have putbon the polarization tensors as they are now functions of complex

momenta. At large z the two point natural amplitude in equation (3.66) splits into three

components, depending on three modes of polarization of massive vector boson. We shall

call these modes as transverse(±) and longitudinal modes.

Structure of bAµ⌫

We find the tensor structure of field theoretic amplitude bAµ⌫ by considering a theory

with scalar fields coupled to Yang-Mills as well as an abelian gauge field. This theory

produces the three-point interaction in (2.71) between photon and massive vector bosons

after Higgsing [52]. The Lagrangian of this theory is given by

L = 1
2

Tr
⇣

Fµ⌫Fµ⌫
⌘


1
4

⇣

Bµ⌫Bµ⌫
⌘

+
1
2

⇣

Dµ
⌘†

Dµ , (3.67)

where the field strengths Fµ⌫ and Bµ⌫ are associated with SU(2) gauge field Aa
µ and abelian

gauge field Bµ respectively. Next, we expand each of the gauge fields into background +

fluctuation fields and then do spontaneous symmetry breaking, since the background field

methods usually involves manifestly gauge invariant Lagrangian. Later, we will see that

this procedure indeed gives the correct interaction term that is suitable for a constructible

covariant recursion. By expanding the gauge fields as mentioned earlier

Ac
µ = Ac

0µ + ac
µ ; Bµ = B0µ + bµ , (3.68)

we can rewrite the field strength for the non-abelian gauge field as

Fc
µ⌫ = Fc

µ⌫(A0) + DA[µac
⌫]  ig✏cdeadµae⌫ . (3.69)
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Here we have introduced the background field A0-covariant derivative as

DAµac
⌫ = @µa

c
⌫  ig✏cdeA0dµae⌫ . (3.70)

Similarly the field strength for the abelian gauge field splits into background and fluctua-

tion field strengths

Bµ⌫ = Bµ⌫(B0) + Bµ⌫(b) . (3.71)

The gauge covariant derivative appearing in the scalar kinetic term can be expanded as

Dµ =

 
@µ  ig(Am

0µ + am
µ )⌧m

ig
0

2
(B0µ + bµ)

!
. (3.72)

We are interested in terms which are quadratic in aµ as it turns out that only those terms

generate field bilinear comprised of massive and massless fields after spontaneous sym-

metry breaking. These kind of terms are included in the kinetic term of the SU(2) gauge

field


1
4

⇣

Fc
µ⌫

⌘2
! 1

2

⇣

DAµac
⌫D

µ

Aa⌫c
⌘

+
i
2

g✏cdeadµae⌫Fµ⌫
c (A0) , (3.73)

using the gauge fixing condition DAµaµ = 0. Note that, we do not consider the kinetic term

for the abelian gauge field (bµ), because they do not lead to terms involving the massive

gauge fields after Higgsing.

In order to get massive particles in the spectrum, we use the Higgs mechanism as this is

the only way to generate mass for non abelian gauge fields. Since gauge invariance of

the Lagrangian remains intact after Higgsing, although not manifest, we can use the Ward

identities, which turns out to be crucial in determining the large z behaviour of the two

point amplitude.

As a result of Higgsing, we find a pair of massive fields (w+µ ,w


µ ) and a massless field (uµ),
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related to the massless fluctuation fields ac
µ and bµ as

a1
µ =

1
p

2
(w+µ + wµ ) , a2

µ =
i
p

2
(w+µ  wµ ) , a3

µ =

p
g2 + g02

g0

0BBBBB@uµ
gp

g2 + g02
bµ

1CCCCCA .

(3.74)

We can treat these equations as defining relations for the Higgssed fields.

Recall that, we are looking at a process in which a highly boosted gluon is scattered o↵

a static background of massive spin-1 particles, surrounded by soft gluons. Therefore,

to obtain the field theoretic amplitude bAµ⌫, first we look for terms with (wµu⌫) in the

Lagrangian which accounts for the interaction of the massive vector boson with photon.

From the kinetic term in equation (3.73) and using the definitions of massive and massless

Higgsed fields in equation (3.74), we write down the relevant terms below

Lw;u =
i

2
p

2g̃
(Fµ⌫

2 (A0)  Fµ⌫

1 (A0))wµu⌫ , (3.75)

where the subscripts on background field strengths Fµ⌫

1,2(A0) refer to colour degrees of

freedom and the new coupling g̃ is defined as

g̃ =
g
0

g
p

g2 + g02
. (3.76)

Now we have two massive fields w±µ after spontaneous symmetry breaking, corresponding

to two di↵erent massive particles. For our current purposes, we need any one of them

and of course, the final conclusion does not depend on this choice. Also note that, the

Higgssed fields so far we have discussed are abelian gauge fields. But as far as the three

point interaction involving gluon and massive vector bosons (with internal structure) is

concerned, we can simply assign internal indices to the Higgsed fields. In this case, we
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can write down the interaction Lagrangian by trace out the internal degrees of freedom

Lw;u =
i

2
p

2g̃
Tr

h
(Fµ⌫

2 (A0)  Fµ⌫

1 (A0))wµu⌫
i
. (3.77)

So far we have considered only relevant terms in the Lagrangian that are needed for prov-

ing the validity of the massive-massless shift. However, we can also easily include the

terms that are required to prove the validity of massless-massless shift in Higgsed Yang-

Mills theory, by keeping track of the terms quadratic in the massless Higgsed field uµ.

There are potentially three sources for these terms: i) the kinetic term for the SU(2) gauge

field: DAµa3⌫D
µ

Aa⌫3, ii) the kinetic term for the bµ field 5: Bµ⌫(b)Bµ⌫(b) and iii) the kinetic

term for the scalar field. Taking into account all these terms, the gauge fixed Lagrangian

relevant for both kinds of shifts is given by

L = i

2
p

2g̃
Tr

h
(Fµ⌫

2 (A0)  Fµ⌫

1 (A0))wµu⌫
i

+ Tr
"


g2 + g
02

2g2 DAµu⌫D
µ

Au⌫
g2 + g

02

4g2 @µu⌫@µu⌫ +
g
02

4g2 (g2 + g
02)2

0uµuµ
#
, (3.78)

where we fix the gauge degrees of freedom for uµ by setting @µuµ = 0 and 0 is the vacuum

expectation value of the scalar field .

In a similar spirit, one could also consider terms that are quadratic in the massive Higgsed

fields (w±µ ) in order to check the validity of both massive shifts. Since such shifts are

outside the scope of this work, we have omitted such terms in (3.78).

Due to the introduction of background fields, the spacetime Lorentz symmetry of this La-

grangian is broken. However, following the discussion in [19] we note that the terms in

the second parenthesis are such that the vector indices of the fluctuation fields are con-

tracted with each other and therefore, exhibit an enhanced symmetry, the so called “spin

Lorentz” symmetry- that acts on the spin indices of the fluctuation fields u⌫. Remember

5Note that after symmetry breaking, we should treat this term as non-abelian field strength of field uµ.
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that, only in the infinite momentum limit (or at large z), this symmetry emerges due to

which the helicity of a highly boosted gluon with real momenta scattered through soft

background, remains unchanged [19]. But in our, the gluon momenta is complex and

therefore its helicity is no longer conserved, similar to the case the BCFW shifts [19].

We use this symmetry to constrain the zbehaviour of the two point amplitude bAµ⌫ at large

z. In order to make this symmetry explicit, we simply re-label the the usual spacetime

indices (µ, ⌫, . . .) of the fluctuation fields to spin-Lorentz indices(a, b, . . .) and rewrite the

Lagrangian as

L = i

2
p

2g̃
Tr

h
(Fcd

2 (A0)  Fcd
1 (A0))wc ud

i

+ Tr
"


g2 + g
02

2g2 DAµucDµ

Auc


g2 + g
02

4g2 @µuc@
µuc +

g
02

4g2 (g2 + g
02)2

0ucuc

#
. (3.79)

The contribution to the amplitude due to the spin-Lorentz symmetric terms in the second

parenthesis of the Lagrangian is dominant at large z and proportional to ⌘cd. The repeated

use of these vertices will contribute to higher powers in z. The two terms in the first

parenthesis that have the background fields, explicitly break spin-Lorentz symmetry and

so the contribution due to a single insertion of these vertices is proportional either to the

field strengths Fcd
1,2(A0) or a linear combination of these, so that the contribution is anti

symmetric in spin-Lorentz indices. Further insertions of these vertices gives additional

powers in 1
z multiplying general matrices. Thus by utilizing the spin Lorentz symmetry

that dominates the large z behaviour, we infer the following tensor structure for the two

point amplitude as

bAcd
Full = ⌘

cd(a + bz + . . .) + Mcd +
1
z

⇣

B̃cd + Bcd
⌘

+ O
 

1
z2

!
, (3.80)

where Mcd is an anti-symmetric matrix and Bcd and B̃cd are general matrices.

Now we discuss the validity of the massive-massless and both massless shifts separately.

The structure of two point amplitude with highly boosted massive and massless particles
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can be extracted from the above amplitude as

bAcd
massive-massless = Mcd +

1
z

Bcd + . . . , (3.81)

and the two point amplitude with boosted massless particles in the external state is given

by

bAcd
massless-massless = ⌘

cd(a + bz + . . .) +
1
z

B̃cd + . . . . (3.82)

We postpone the discussion of both massless shift to section 3.5. In the following sub-

sections, we focus on the validity of massive-massless shift and work with the two point

amplitude in (3.81). To check the validity of the shift of type [m+i, we consider gluon

with positive helicity. Expressing the deformed polarization vector for the positive gluon

as 6

beµ+( j) =

p
2mrµ

h j|pi| j]
= rµ , (3.83)

we rewrite the natural amplitude in equation (3.66) as

bA+IJ =

8>>>>>><>>>>>>:

bA+± =  bAabrabeb±(i) for transverse modes,

bA+0 =  bAabrabeb0(i) for longitudinal modes.
(3.84)

Since, the large z limit of the two point amplitude combined with the action of the Ward

identity acts di↵erently on longitudinal and transverse modes. On one hand, for the lon-

gitudinal mode, we use a result of [20] in order to relate the this mode with massless

scalar-gluon amplitude via the Ward identity for spontaneously broken gauge theory in

the large z limit. On the other hand, the transverse modes can be treated as an amplitude

involving only gluons in the large z limit.

6For more details, see appendix B.2
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Validity for transverse modes

We consider the transverse modes of the amplitude at large z. As discussed earlier, the

deformed particles are highly boosted and can be thought of as being massless at large

z. In this case, the on-shell deformed amplitude bAab satisfies the Ward identity for Yang-

Mills theory

bpja bAabbe±b (i) = 0 . (3.85)

Here we denote bAab
Massive-massless as bAab to avoid clutter. By using the Ward identity and the

shift equation for pj (3.3) we can write

raAabbe±b (i) =
1
z

p jaAabbe±b (i) . (3.86)

Substituting (3.81) into the expression for transverse mode in equation (3.84) using the

above identity that follows from the Ward identity, we find the transverse modes of the

on-shell amplitude has the following zexpansion in the limit z! 1

bA+±








z!1
=


z

"
Mab +

1
z

Bab + . . .

#
pjabe±b (i) . (3.87)

Next, we analyse the large z behaviour of the deformed polarization vectors be±b (i). By

choosing the reference spinor ⇣↵ = ↵j , we can express the positive helicity polarization

vector as

be+b (i) = ⌃i jb
z
m

pjb⌦i j , (3.88)

where

⌃i jb =
h j|b|i]p

2h jii
and ⌦i j =

[i j]p
2h jii

. (3.89)
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See appendix B.1 for more details. Similarly the negative helicity component of massive

polarization tensor can be expressed in the following way where we choose the reference

spinor ⇣↵̇ to be  j↵̇

beb (i)|z!1 =
⌃⇤i jbp
2[i j]

= ⌥i jb . (3.90)

Substituting (3.88) and (3.90) into (3.87), we find that on-shell amplitudes have the fol-

lowing large z behaviour

bA+

= 0 , bA++ =

k
m
⌦i j Mab p ja p jb = 0 , (3.91)

where we have used Mab = Mba.

We thus established that both of the transverse components of natural amplitude bA+± van-

ish in the large z limit, thereby proving the validity of the massive-massless shift for

transverse modes.

Validity for longitudinal mode

We now analyse the large z behaviour of bA+0 involving the longitudinal mode of the po-

larization tensor of massive vector boson. This mode of the two point natural amplitude

bA+0 is related to the amplitude involving massless scalars and gluons via the Ward identity

for the spontaneously broken gauge theory [20]. Therefore, to find the large z behaviour

of bA+0 it is sufficient to analyse the large z behaviour of the amplitude involving massless

scalars and gluons.

Let us consider the four-particle colour ordered amplitude involving a pair of massless

scalars and gluons
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Since, we considered adjacent momentum shift in vector boson amplitude, we have to

shift the adjacent scalar-gluon legs in this case. The relevant three-point interactions are

given in the following Lagrangian

L3 = ig
"
(@µ)Aµ⇤  Aµ@

µ⇤
1
2

Tr (@µA⌫)[Aµ, A⌫]
#
. (3.92)

Expanding both scalar and vector fields in terms of background and fluctuation fields as

 = 0 + ⇠ ; A⌫ = A⌫0 + a⌫ ; ⇤ = ⇤0 + ⇠
⇤ , (3.93)

we show that all the O(z) terms in the above Lagrangian can be made O(1) by using the

gauge condition @µaµ = 0. The O(z) terms in the Lagrangian (3.92) are

L3  ig


(@µ⇠) aµ⇤0  aµ0@
µ⇠⇤  Tr (@µa⌫)[aµ, A0⌫]



. (3.94)

The first two terms can be made O(1) by integrating by parts and then using gauge fixing

conditions @µaµ = 0

@µ⇠aµ⇤0 ⇠ ⇠a
µ@µ

⇤

0 , aµ0@
µ⇠⇤ ⇠ aµ⇠⇤@µ0 . (3.95)

Similarly the third term can be made O(1)7. So after gauge fixing, there are no O(z) ver-

tices when a single scalar and gluon line are complexified. However, the deformed prop-
7Note that, when two scalar legs are shifted, the internal propagator is always a scalar and hence the

O(z) vertices contain terms like (@µ⇠Aµ⇠⇤  Aµ⇠@
µ⇠⇤). These terms cannot made O(1) using gauge fixing

condition. Therefore, the shifts involving only scalar external particles in Yang-Mills theory do not lead to
BCFW type recursion relations.
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agator scales as O(1/z). Therefore, the amplitude decays as O(1/z) for z! 1. All higher

point amplitudes with adjacent scalar-gluon shift will be suppressed by additional 1
z fac-

tors due to more number of propagators. Hence, we conclude that massless scalar-gluon

shift is a valid shift for the recursion to work. Note that, although we have considered

only colour ordered amplitudes, this is not necessary for this proof. Incorporating this

conclusion with the result of [20], we infer that the longitudinal component of natural

amplitude bA+0 vanishes at large z.

In summary, we have shown that the proposed [m+i shift is a valid shift as all three

components of the natural amplitude (3.84) vanishes at large z. Following the similar line

of argument,one can repeat the whole computation to show that the [mi shift is also a

valid massive-massless shift.

In appendix C, we compare our conclusion regarding the validity of massive-massless

shift with results available in reference [13].

3.4.2 Masive scalar QCD

In order to prove the validity of the massive-massless shift in massive scalar QCD, we

consider the following Lagrangian that describes the theory of gluon interacting with

massive scalar particles of [52] as

Lscalar QCD =
1
4

Tr
⇣

Fµ⌫Fµ⌫
⌘

+LGF

⇣

@µAµ
⌘


1
2
|Dµ|2

1
2

m2||2 . (3.96)

Focussing on the four particle scattering amplitude with a pair of massive scalar particles

and gluons, we find this amplitude can be constructed by using the three-point scalar

gluon vertex and three gluon vertex. The relevant terms in the action which account for

these three point interactions are

L3 = ig
"
(@µ)Aµ⇤  Aµ@

µ⇤
1
2

Tr (@µA⌫)[Aµ, A⌫]
#
. (3.97)
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The interaction terms are identical to those we have encountered in section 3.4.1 for which

we have already proven the validity of the shift. Therefore, we conclude that the massive-

massless shift is valid for massive scalar QCD theory.

3.5 BCFW shift in Higgsed Yang-Mills theory

The validity of BCFW shifts was proven for various massless theories in arbitrary dimen-

sion in [19] and was utilized in deriving scattering amplitudes involving massive parti-

cles [12, 31, 52]. In this section, we prove the validity of the massless-massless (BCFW

type) shift in Higgsed Yang-Mills theory. We follow similar line of arguments as we did

in previous sections. Recall that, the interaction term accountable for both massless shift

is given by the second line in equation (3.79):

L  Tr
"


g2 + g
02

2g2 DAµucDµ

Auc


g2 + g
02

4g2 @µuc@
µuc +

g
02

4g2 (g2 + g
02)2

0ucuc

#
. (3.98)

The structure of the two point amplitude with massless particles as external states is given

in equation (3.82)

bAab = ⌘ab(a + bz + . . .) +
1
z

B̃ab + . . . , (3.99)

where we have denoted bAab
massless-massless as bAab) to avoid clutter. The massless-massless

shift [i ji is defined in terms of massless spinor helicity variables in the following way

|bi] = |i]  z| j] ; |bji = | ji + z|ii . (3.100)

The deformed massless polarization vectors, in terms of external momenta can be ex-

pressed as

be+a (i) =
q⇤a  zp jap

2h jii
, be+b ( j) =

qbp
2hi ji

, bea (i) =
q⇤ap
2[i j]

, beb ( j) =
q⇤b  zpibp

2[ ji]
, (3.101)

83



where q↵↵̇ = i↵ j↵̇, is the lightlike momenta with which the external massless momenta

get complexified. Using the Ward identity, we get

bpja bAabbe±b (i) = 0) qa bAabbe±b (i) =
1
z

p ja bAabbe±b (i) . (3.102)

Therefore, the natural amplitude bA++, at large z vanishes

bA++








z!1
=

1
2hi ji2 p2

j = 0 . (3.103)

We arrive similar conclusion for [i and [+i massless shifts. But for [+i shift, the

two-particle amplitude grows as O(z3) at large z

bA+

|z!1 =be+a (i) bAabbeb (i)

=
1

2pi · pj
(q⇤a  zp ja)

 
⌘ab(a + bz + ..) +

1
z

B̃ab + ..

!
(q⇤b  zpib)! z3 .

(3.104)

The results in this section proves that massless-massless shifts of type [+i, [++i, [i

are valid, while the [+i shift is invalid in Higgsed Yang-Mills theory.

3.5.1 Example : five-particle amplitude

As a rudimentary but useful check of our recursion relations involving either massive-

massless or both massless shifts, we reproduce the five-particle amplitude in Higgsed

Yang-Mills theory using both massless shift of the type [+i.
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We complexify the massless momenta (p+3 , p4 ) of opposite gluons and deform the spinor

helicity variables as

|b4] = |4]  z|3] , |b4i = |4i , (3.105)

|b3i = |3i + z|4i , |b3] = |3] . (3.106)

Due to the adjacent shift, there are again only two possible scattering diagrams. The

recursion in equation (3.11) leads to the following contributions from the each diagram

A5[1, 2, 3+, 4, 5+] = A4[1, 2,b3+,bI+] 1
s45
A3[bI,b4, 5+]

+A4[bI,b4, 5+, 1]
1

s23  m2A3[2,b3+,bI] . (3.107)

The simple poles associated to the two diagrams are located at

zI =
p4 · p5

r · p5
=

[45]
[35]

and z̃I =
h3|p2|3]
h4|p2|3]

. (3.108)

Following the steps, which are now already familiar to us, we obtain the colour-ordered

five point amplitude as

A5[1, 2, 3+, 4, 5+] = g3 h12i2[53]4

([3|p2 · p1|5] + m2[35])[45][34]s12

 g3
⇥h4|p2|3][51]h42i + h14i {h4|p2|3][52] + h4|p3|5][32]}⇤2

h43ih45i(s32  m2)(s15  m2)


[3|p2 · p1|5] + m2[35]
 .

(3.109)
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This expression matches with the amplitude in equation (3.54), computed using the massive-

massless shift.
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Chapter 4

Vector boson amplitudes with arbitrary

number of gluons

In [14, 36], a new set of recursion relations were derived in the massive spinor-helicity

formalism for on-shell amplitudes by analytically continuing a pair of massive and mass-

less external momenta to the complex plane. The complex shift generating the recursion

involved deforming one massive and one massless momenta and was called covariant

massive-massless shift (or sometimes called just massive-massless shift! ) and we refer

to this new recursion as covariant recursion relations. In section 3, we used these re-

cursions to study tree-level scattering amplitudes in massive scalar QCD and amplitudes

involving a pair of massive vector bosons in the Higgsed phase of Yang-Mills theory.

One thus has two possible recursion relations for amplitudes involving external massive

particles, namely: all massless shift or a massless-massive shift.

In this chapter, we ask the following question: how powerful and efficient is the newly

introduced massive-massless shift over the massless two-line shift, which may not be

available in a scattering process involving fewer than two massless particles1. That is, is

1One could ask if these recursion relations can be generalised to study elastic scattering of massive
particles. However, if we do not want to introduce auxiliary null vectors, defining such recursion relations
would require introducing a massive-massive shift which to the best of our knowledge has not been studied
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it possible to compute certain classes of amplitudes in a more optimal way using the co-

variant recursion relation? These questions are closely related to the earliest applications

of the BCFW recursion techniques, which were: (1) the proof of Parke-Taylor formula

for n point MHV amplitude and (2) the ease with which tree-level NMHV amplitudes

could be computed. Our goal was to seek similar application of the recursion relations

derived in reference [14] using the so-called covariant massive-massless shift. With this

goal in mind, we seek to find a class of amplitudes which were close analogues of MHV

and NMHV amplitudes in the pure gluon case.

We probe these questions by studying two classes of amplitudes including an arbitrary

number of gluons with specific helicity and a pair of massive vector bosons. The two

classes are such that in the high energy limit, these amplitudes reduces to the maximally

helicity violating (MHV) and the next-to-maximally helicity violating (NMHV) gluon

amplitudes. We use the generalised recursion relations to derive the amplitudes for both

of these classes. We provide an inductive proof for the first class of amplitudes and we

show that for the second class of amplitudes, the covariant massive-massless shift proves

to be very efficient in computing the amplitude.

The chapter is organised as follows. In section 4.1, we compute the tree level colour

ordered amplitude in which a pair of (adjacent) massive vector bosons are scattering with

an arbitrary number of gluons of identical helicity. To obtain this amplitude, we first

use a simple relation between the amplitude involving two massive vector bosons and

(n  2) identical helicity gluons, and the amplitude involving two massive scalars and

(n  2) identical helicity gluons. This relation is a covariant version of a relation that has

appeared in [22] for a particular choice of spin projection of the massive particles, which

they obtain by using supersymmetric Ward identities. We then obtain this amplitude from

the known scalar amplitude by using the covariant relation. We then verify the massive

vector boson amplitude by using the method of induction and the covariant recursion

relation. We also check consistency of this amplitude by taking the high energy limit

in the literature so far.
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which matches with the pure gluon MHV scattering amplitude, as expected.

In section 4.2, we consider tree level colour ordered amplitude with two massive vector

bosons, (n  3) positive helicity gluons and a single gluon that is colour adjacent to any

one of the massive vector boson, having negative helicity. We are interested in this ampli-

tude because this amplitude serves as the closest massive analogue of NMHV amplitude.

We obtain this amplitude using the covariant recursion relation as proposed in [14]. In

this case, the covariant recursion relation involves only subamplitudes that have been pre-

viously computed. This is one particular example where one can really see the utility of

the covariant recursion relation. Finally, we check the consistency of this result by taking

the high energy limit, producing the n-point NMHV scattering amplitude. We find that

our n-point NMHV amplitude takes an extremely simple and compact form that can be

shown to match the known n-point gluon NMHV amplitude as given in [24].

4.1 Scattering of massive vector bosons with positive he-

licity gluons

To explore possible advantages of the covariant recursion in terms of simplicity and ac-

cessibility of computing di↵erent classes of amplitudes with massive particles, we take

the first step in this direction by considering an n-point amplitude involving a pair of mas-

sive vector bosons and (n  2) positive helicity gluons. We are particularly looking at

this amplitude because this reproduces the MHV amplitude in the high energy limit, as

we will see later in this section. We discuss how to obtain this amplitude in two di↵erent

ways: firstly, we relate this amplitude to one with a pair of massive scalars and (n  2)

positive helicity gluons by using the covariant expression of a result that has appeared

previously in [22]. Secondly, we shall verify this amplitude in detail by making use of the

covariant recursion and the principle of induction.
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The little group covariant relation between the n-particle amplitude involving a pair of

massive bosons and positive helicity gluons and the n-particle amplitude involving pair of

massive scalars and positive helicity gluons is

An[1, 2+, . . . , (n  1)+, n] =
h1ni2

m2 An[10, 2+, . . . , (n  1)+, n0] . (4.1)

This is a covariantization of a relation that has appeared previously in [22] for a particular

choice of the spin projection of massive vector bosons.2 The n-point amplitude with a

pair massive scalars and (n  2) positive helicity gluons is known from [23]

An[10, 2+, · · · , (n  1)+, n0] = gn2 m2[2|Qn2
k=3((s1...km2)/pk /p1,k1)|n1]

(s12m2)(s123m2)···(s12...(n2)m2)h23ih34i···h(n2)(n1)i , (4.2)

where the Mandelstam variables and p1,l are defined as follows

s1...l := (p1 + · · · + pl)2 , p1,l := p1 + · · · + pl , (4.3)

and we denote the spinor brackets appearing inside the product in the numerator as follows

[a|pi p j|b] = a↵̇/p↵̇↵i /pj↵


b . (4.4)

Note that we treat the momentum product /pi · /pj as SU(2) matrix valued product p↵̇↵i p j↵

when being contracted with spinor helicity variables. We follow this notation throughout

this paper. The product appearing in the numerator of the formula (4.2) is defined as

[2|
n2Y

k=3

Bk|n  1] := [2|B3 · B4 · . . . · Bn2|n  1] (4.5)

2In order to translate the relation (4.1) into the results obtained in [22], we use the following decompo-
sition of little group covariant massive spinor-helicity variables of [11] ↵I =

↵⇠+I  ⌘
↵⇠I , here ↵, ⌘↵ are

massless spinor-helicity variables and satisfy h⌘i = m and ⇠±I are SU(2) basis vectors. Setting the particle
1 with sz = +1 and particle n with sz = 1 in the amplitude, we find that h1ni(+,) ! h⌘1ni. Therefore,
we can recast the relation (4.1) with the massive particles are being in this specific spin state as follows
An[1+, 2+, . . . ,n] =

⇣ h⌘1ni
h1⌘1i

⌘2An[10, 2+, . . . ,n0] . This is the relation that appeared in [22].
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Substituting the scalar amplitude in (4.1), we therefore find the following expression for

the n particle amplitude with a pair massive vector bosons and (n  2) positive helicity

gluons (for n > 3)

An[1, 2+, · · · , (n  1)+, n] = gn2 h1ni2[2|Qn2
k=3((s1...km2)/pk /p1,k1)|n1]

(s12m2)(s123m2)···(s12...(n2)m2)h23ih34i···h(n2)(n1)i . (4.6)

4.1.1 Inductive proof using covariant recursion

In this section, we present an inductive proof of the expression in equation (4.6) using the

covariant recursion that was reviewed in chapter 3. To set up the induction, we ensure that

the lower point amplitudes with n = 4, 5, that have been calculated previously in [14], are

consistent with the general expression. We perform this check in Appendix E.1.

Given the match of the lower point amplitudes we now assume that the expression (4.6)

holds for n-particle amplitude and then use this to construct (n + 1)-particle amplitude.

We use the [12+i shift that corresponds to the complex deformations of the following

spinor-helicity variables

|b1I] = |1I]
z
m

[1I2]|2] , |b2i = |2i + z
m

p1|2] . (4.7)

With this particular shift, all possible scattering channels that contribute toAn+1 amplitude

are shown in Figure 4.1. The first three diagrams do not contribute due to the following

reasons: a)contribution from the first diagram vanishes since the right subamplitude in-

volving a single massive vector boson is zero, b) the second diagram also vanishes due

to the vanishing of the pure gluon subamplitude with either all positive helicity gluons

or a single negative helicity gluon, c) the third diagram vanishes because a massive vec-

tor boson cannot decay into two positive helicity gluons. Thus we have to compute the

contribution from the fourth diagram only, demonstrating one of the advantages of the

covariant recursion.
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Figure 4.1: Pictorial representation of covariant recursion with [12+i shift.

The simple pole z = zI for this diagram is found by setting the shifted propagator bs23

on-shell

(bp2 + p3)2 = 0) zI =
mh23i
h3|p1|2]

. (4.8)

The (n+ 1)-particle amplitudeAn+1 [1, 2+, · · · , n+, n+1] is therefore constructed from the

n-point and 3-point subamplitudes

An+1 = An[b1,bI+, 4+, · · · , n+, (n+1)]
1

s23
A3[bI,b2+, 3+] . (4.9)

Here we abbreviateAn+1 [1, 2+, · · · , n+, n+1] asAn+1. The opposite helicity configuration

of the internal states do not contribute to the amplitude due to the vanishing of all-positive-

helicity three-particle gluon amplitude. Using the expression for n-point amplitude in

equation (4.6), we get the left subamplitude but with complex spinor helicity variables

An[b10
,bI+, 4+, · · · , n+, (n+1)0] = gn2 h1(n+1)i2bI|Qn1

k=4((bS 1I...km2)/pk
/bP1,k1)|n]

(bS 1Im2)(bS 1I4m2)···(bS 1I...(n1)m2)hbI4ih45i···h(n1)ni . (4.10)

Here bS (bP) are the Mandelstam (momentum) variable with shifted momenta

bS 1I...r = (bp1 + bpI + p4 + · · · + pr)2 , bP1,r = (bp1 + bpI + · · · + pr) . (4.11)
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The internal momentum bpI in this channel is bp2 + p3, which we use to express shifted

variables in terms of the real momenta

bS 1...r = (bp1 + bp2 + p3 + · · · + pr)2 = s1...r , bP1,r = (bp1 + bp2 + p3 + · · · + pr) = p1,r .

Using these simplifications and gluing the three-particle gluon amplitude along with the

propagator 1
s23

onto the left subamplitude, we obtain

An+1 =
gn1h1(n+1)i2[bI|Qn1

k=4((s1...km2)/pk /p1,k1)|n]

(s123m2)(s1..4m2)···(s1...(n1)m2)hbI4ih45i···h(n1)ni ⇥
[23]2

h23i[bI2][bI3]
. (4.12)

It remains to simplify the terms with the shifted massless spinor-helicity variable bI, for

which, we consider

[bI|Qn1
k=4((s1...km2)/pk /p1,k1)|n]

hbI4i[bI2][bI3]
=

[2|p1 |bIi[bI|
Qn1

k=4((s1...km2)/pk /p1,k1)|n]

h4|p3 |2][21I ]h1IbIi[bI3]

=
[2|/p1(/p2+/p3)

Qn1
k=4((s1...km2)/pk /p1,k1)|n]

[23]2h34i(s12m2) . (4.13)

We have replaced bp2 ! p2 in the intermediate step while multiplying with hbI|p1|2]. This

is allowed because

h1Ib2i = h1I2i  zI[1I2]) h1Ib2i[1I2] = h1I2i[1I2] , (4.14)

where we have used [1I2][1I2] = m[22] = 0. Using the following identity

[2|/p1(/p2 + /p3) = [2|
n
(s123  m2)  /p3(/p1 + /p2)

o
, (4.15)

we finally obtain the (n + 1)-point amplitude in the form

An+1[1, 2+, . . . , n+, n+1] =
gn1h1(n+1)i2[2|Qn1

k=3

⇣

(s1...k  m2)  /pk/p1,k1

⌘

|n]

(s12  m2)(s123  m2) · · · (s12...(n1)  m2)h23ih34i · · · h(n  1)ni .

(4.16)

This completes our inductive proof of n-particle amplitude with all plus helicity gluons
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and a pair of massive vector bosons. Scattering amplitude with a pair of massive vec-

tor bosons and all minus helicity gluons can be read o↵ from the expression in (4.6) by

replacing all the angle brackets with the square brackets and vice-versa

An[1, 2, . . . , (n  1), n] = gn2 [1n]2h2|Qn2
k=3((s1...km2)/pk /p1,k1)|(n1)i

(s12m2)(s123m2)···(s12...(n2)m2)[23][34]···[(n2)(n1)] . (4.17)

Now we check the high energy limit of the massive vector boson amplitude (4.6). Due

to the presence of angle bracket h1ni2, the only non vanishing contribution can come

from the component of the massive amplitude with both massive particles having negative

helicity configuration in the high energy limit [11].

4.1.2 Matching the MHV amplitude in the high energy limit

We consider the high energy limit of the massive vector boson amplitude with all positive

helicity gluons in this section. We show that the finite energy amplitude in equation

(4.6) reproduces correct MHV amplitude in high energy limit when both of the massive

particles have negative helicity configuration. The massless amplitude is given by

An[1, 2+, . . . , (n  1)+, n] = gn2
h1ni2[2|Qn2

k=3

⇣

s1...k  /pk/p1,k1

⌘

|(n  1)]

s12s123 · · · s12...(n2)h23ih34i · · · h(n  2)(n  1)i
(4.18)

= gn2 h1ni3
h12ih23i · · · h(n  1)ni

[2|Qn2
k=3

⇣

s1...k  /pk/p1,k1

⌘

|(n  1)]h(n  1)ni
[21]s123 · · · s12...(n2)h1ni . (4.19)

Consider the non-trivial part of this amplitude

Mn :=
[2|Qn2

k=3

⇣

s1...k  /pk/p1,k1

⌘

/pn1|ni
[21]s123 · · · s12...(n2)h1ni . (4.20)
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We simplify the product in numerator by using momentum conservation and identity (E.5)

repeatedly. We start with the k = n  2 term and use momentum conservation to write3

⇣

s1...n2  /pn2/p1,n3

⌘

/pn1|ni = s1...n2 pn1|ni + /pn2/pn/pn1|ni . (4.21)

Let us pause here to explain the notation that we are using here for generic momenta and

spinor-helicity variables

(si j  /pl/pm)|ri ⌘ si jr↵  pl↵↵̇p↵̇m r . (4.22)

Here the Greek indices are the SL(2,C) Lorentz indices. Going back to (4.21), we use

(E.5) to express the second term as follows

/pn2/pn/pn1|ni = (2pn1 · pn) pn2|ni . (4.23)

Here we have used the fact that pn|ni = 0. Incorporating this with (4.21), we obtain

⇣

s1...n2  /pn2/p1,n3

⌘

/pn1|ni = s1...n2(pn2 + pn1)|ni . (4.24)

Now we include the next term in the product in (4.20) and use the above result to write

n2Y

k=n3

⇣

s1...k  /pk/p1,k1

⌘

· pn1|ni = s1...n2s1...n3(pn2 + pn1)|ni

/pn3/p1,n4(/pn2 + /pn1)|ni . (4.25)

We can again simplify the second term using momentum conservation and (E.5) to get

/pn3/p1,n4(/pn2 + /pn1)|ni = (s1...n3s1...n2) pn3|ni . (4.26)

3For a single SU(2) matrix valued momentum variable contracted to spinor-helicity variable, we omit
the slash notation as in standard literature: /pi| ji ⌘ pi| ji.
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Therefore, we find the following

n2Y

k=n3

⇣

s1...k  /pk/p1,k1

⌘

/pn1|ni = s1...n2s1...n3(pn3 + pn2 + pn1)|ni . (4.27)

This trend continues to follow and we obtain the following identity

n2Y

k=3

⇣

s1...k  /pk/p1,k1

⌘

/pn1|ni =
n2Y

k=3

s1...k(p3 + · · · + pn2 + pn1)|ni . (4.28)

Using this identity, we have established thatMn = 1. Thus the only non-vanishing high

energy limit of the massive vector boson amplitude (4.16) reproduces the MHV amplitude

An[1, 2+, . . . , (n  1)+, n] = gn2 h1ni3
h12ih23i · · · h(n  1)ni . (4.29)

This provides a primary consistency check for the massive n-point amplitude in (4.6).

Having shown that the covariant recursion relations can be used to inductively prove the

formula (4.6) of the massive analogue of MHV amplitude, it is worthwhile to mention

that one could do the same by using the BCFW recursion relations as well. Therfore,

one could ask: what new benefit that the covariant recursion relations bring to the table?

To answer this question, we once again turn to the original motivation for the BCFW

recursion, that is, the remarkable simplicity in deriving the tree-level NMHV amplitude

using BCFW recursion.

4.2 Scattering of massive vector bosons with single flipped

helicity gluons

Now we move on to the discussion of the massive analogue of NMHV amplitude. We

consider a tree level colour ordered amplitude involving a pair of massive vector bosons,

one minus helicity gluon adjacent to one of the massive bosons and arbitrary number of

96



gluons with positive helicity. We will see later in this section that this particular amplitude

leads to the NMHV amplitude in the high energy limit.

As mentioned in the Introduction of this chapter, this amplitude can not be computed using

single BCFW recursion. For example, if we consider the [23+i BCFW shift to compute

this amplitude, we would end up with the scattering channels involving subamplitudes

that are identical to the configuration (the second diagram in figure F.1) which we intend

to compute. Similar argument shows that this particular amplitude can not be obtained

using a single recursion that involves two-line massive-massive shift.

Figure 4.2: Pictorial representation of BCFW recursion with [23+i shift.

Therefore, we use the massive-massless shift [21i of the type [mi, which corresponds

to the following complex shift in terms of spinor helicity variables

|b2] = |2] +
z
m

p1|2i , |b1Ii = |1Ii  z
m
h21Ii|2i . (4.30)

Due to [21i shift, all possible scattering diagrams that contribute to the nparticle am-

plitude in the covariant recursion are shown in Figure 4.3. As one can clearly see, all the

constituent lower point amplitudes in these diagrams have already been computed: either

they involve only pure gluon amplitudes or they involve two massiee vector bosons and

all positive helicity gluons.

Since we are considering only minimal coupling while computing the amplitudes, the

exchange particles can either be massive vector boson or gluon. But the exchange particle

can not be a massive vector boson because a massive vector boson can not decay into two

massless particles. Due to [21i shift, particles with momentum bp1 and bp2 are always
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Figure 4.3: Pictorial representation of covariant recursion with [21i shift for
An[1, 2, 3+, . . . ,n].

attached to di↵erent subamplitudes in the diagramatic expansion of the colour-ordered

amplitude. Note that, the subamplitudes involving external momentum bp2 always have

only positive helicity gluons in the external states. But such pure gluon amplitudes with

at most one opposite helicity vanishes, except for the three-particle amplitude. Therefore,

the internal state attached to this subamplitude must be a negative helicity gluon. Again,

due to the choice of the massive-massless shift [21i, the first diagram in Figure 4.3 is

non-vanishing only for the helicity configuration as indicated in the diagram.

The n-particle amplitude, obtained by summing over the all the diagrams can thus be

written as follows

An[1, 2, 3+, . . . , (n  1)+, n] =
n1X

r=3

AL[b1,bI+, (r + 1)+, . . . ,n]
1

s23...r
AR[bI,b2, 3+, . . . , r+] ,

(4.31)

where s2...r =
Pr

i=2 pi
2. Again, we remind the reader that the subamplitudes here are all

on-shell; that is, they are functions of shifted momenta and spinor-helicity variables. The

right subamplitude is a pure-gluon amplitude and is given by the Parke-Taylor formula

AR[bI,b2, 3+, . . . , r+] = gr2 hbI2i3

h23ih34i . . . hrbIi
. (4.32)
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The left subamplitude involving two massive vector bosons and all positive helicity gluons

is known from previous section and is given by (see equation (4.6)):

AL[b1,bI+, (r + 1)+, . . . ,n] = gnr hb1ni2[bI|Qn2
k=r+1

n
(bS 1I···km2)/pk

b/P1,k1
o
|n1]

(bS 1Im2)...(bS 1I(r+1)...(n2)m2)hbI(r+1)i...h(n2)(n1)i . (4.33)

This takes care of all but one diagram that appears in the covariant recursion. The last

scattering channel in the diagramatic expansion in Figure 4.3 (which corresponds to r =

n  1), has to be treated separately and we shall come to the evaluation of this diagram

towards the end of this section.

For now, we simplify the expression in (4.33) and express it purely in terms of the unde-

formed spinor helicity variables of external momenta. Using bpI = bp2+
Pr

i=3 pi, the shifted

Mandelstam variables (bS ) and momenta (bP) can be expressed (for k 2 {r + 1, . . . (n  2)})

as

bS 1...k = (bp1 + bpI + · · · + pk)2 = (p1 + p2 + · · · + pk)2 = s1...k ,

bP1,k1 = (bp1 + bpI + · · · + pk1) = (p1 + p2 + · · · + pk1) = p1,k1. (4.34)

Substituting these into the left subamplitude (4.33) and then gluing this with the pure

gluon amplitude (4.32) and the physical propagator 1
s2...r

, we get the contribution to the

n-particle amplitude from the r-th term in the covariant recursion (4.31)

A(r) := gn2 hb1ni2hbI2i3[bI|Qn2
k=r+1{(s1···km2)/pk /p1,k1}|n1]

s23...r(s12...rm2)...(s12..r(r+1)...(n2)m2)h23ih34i...hrbIihbI(r+1)i...h(n2)(n1)i . (4.35)

where r 2 {3, 4, . . . (n  2)}. It should be noted that the product of angle brackets in the

denominator, involving the massless spinor-helicity variables do not include hr(r + 1)i

bracket since the r- and (r + 1)-th massless external momenta do not attach to same sub-

amplitude in the recursion. Next, we express all the spinor products in A(r) involving the

intermediate spinor-helicity variable |bIi in terms of the spinor-helicity variables associated
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to external momenta. In order to do that, we collect all such terms

r,I =
hbI2i3[bI|Qn2

k=r+1

n
(s1···k  m2)  /pk/p1,k1

o
|n  1]

hbI(r + 1)ihrbIi
. (4.36)

We use the following identities

h2bIi[bI|B|n  1] = h2|/p3,rB|n  1] , B =
n2Y

k=r+1

n
(s1···k  m2)  /pk/p1,k1

o
,

hbI2i
hbIri
=
h2|/p1/p3,r|2i
h2|/p1/p2,r1|ri

,
hbI2i

hbI(r + 1)i
=
h2|/p1/p3,r|2i
h2|/p1/p2,r|r + 1i ,

to write

r,I =
h2|/p1/p3,r|2i2h2|/p3,r

Qn2
k=r+1

n
(s1···k  m2)  /pk/p1,k1

o
|n  1]

h2|/p1/p2,r1|rih2|/p1/p2,r|r + 1i . (4.37)

It only remains to evaluate the shifted spinor product hb1ni at the simple pole (z(r)), asso-

ciated with rth scattering channel (except s1n) in Figure 4.3. As usual, this is found by

setting the deformed propagator bs2···r on-shell

(p2 + z(r)q + p3 + . . . + pr)2 = 0) z(r) =
mp2

2,r

h2|/p1/p3,r|2i
. (4.38)

We then use the definition of the shifted massive spinor-helicity variable in (4.30) with

z = z(r) to express the spinor product hb1InJi as

hb1InJi = h1InJi +
p2

2,r

h2|/p1/p3,r|2i
h1I2ih2nJi . (4.39)

Substituting the expressions (4.37) and (4.39) in (4.35), one can rewrite A(r) in terms of

the on-shell external variables

A(r) = gn2 h2|/p3,r
Qn2

k=r+1{(s1···km2)/pk /p1,k1}|n1]
⇣

h2|/p1/p3,r |2ih1ni+p2
2,rh12ih2ni

⌘2hr(r+1)i
s23...r(s12...rm2)...(s12...(n2)m2)h23ih34i...h(n2)(n1)ih2|/p1/p2,r1 |rih2|/p1/p2,r |r+1i . (4.40)
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Now we analyze the last diagram in Figure 4.3, which corresponds to the r = n  1

term in the covariant recursion. We have to treat this term separately because the left

subamplitude which involve a pair of massive vector bosons and a single positive helicity

gluon, cannot be read o↵ from the general formula in equation (4.6) (we explicitly state the

condition n > 3 in that derivation). Instead, we simply glue the three-particle amplitude

with the pure gluon amplitude (4.32) for r = n  1 and the undeformed propagator 1
s1n

A(n1) = gn2  hb1ni2hbI2i2s3,(n1)

s1nh23ih34i · · · h(n  2)(n  1)ihbI|pn|b2]h(n  1)bIi
. (4.41)

Again, we have to simplify the terms with spinor helicity variable |bIi (associated with

exchange particle) and evaluate all shifted spinor products at z = z(n1), which is obtained

by setting the deformed propagator bs1n on-shell

z(n1) =
m(p1 + pn)2

h2|/p1/pn)|2i . (4.42)

Firstly, by noting the following identities

h2|/p1
b/pI /pn|b2] = m2h2|(p1 + pn)|b2] , (4.43)

h2|/p1(b/p1 + /pn)|n  1i = h2|/p1/pn|n  1i + m2h2(n  1)i , (4.44)

we get rid of the internal momentum dependence in A(n1) as follows

 hbI2i2

hbI|pn|b2]h(n  1)bIi
=

h2|/p1/pn|2i2

h2|/p1
b/pI /pn|b2]h2|/p1(b/p1 + /pn)|n  1i

=
h2|/p1/pn|2i2

m2
⇣

h2|p1|b2] + h2|pn|b2]
⌘ ⇣

h2|/p1/pn|n  1i + m2h2(n  1)i
⌘ . (4.45)

Secondly, we calculate the shifted spinor products appearing in this expression and in
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(4.41) using (4.42) and the definition of shifted spinor-helicity variables

hb1InJi = m
h2|/p1/pn|2i

⇣

h2|p1|nJ]h21Ii + h2|pn|1I]h2nJi + 2mh1I2ih2nJi
⌘

(4.46)

h2|p1|b2] = h2|p1|2] , h2|pn|b2] = h2|pn|2] + s1n . (4.47)

Finally we use the following identity

(h2|p1|2] + h2|pn|2] + s1n) = s3,(n1) , (4.48)

to derive the contribution of the last diagram A(n1) as a function of only on-shell external

variables

A(n1) = g(n2) (h2|p1|n]h21i + h2|pn|1]h2ni + 2mh12ih2ni)2

s1nh23ih34i · · · h(n  2)(n  1)i
⇣

h2|/p1/pn|n  1i + m2h2(n  1)i
⌘ . (4.49)

We combine the results in equations (4.40) and (4.49) to obtain a compact expression for

the n-particle amplitude

An[1, 2, 3+, . . . ,n] = gn2
"

(h2|p1 |n]h21i+h2|pn |1]h2ni+2mh12ih2ni)2

s1nh23ih34i···h(n2)(n1)i(h2|/p1/pn |n1i+m2h2(n1)i)

+

n2X

r=3

h2|/p3,r
Qn2

k=r+1{(s1···km2)/pk /p1,k1}|n1]
⇣

h2|/p1/p3,r |2ih1ni+p2
2,rh12ih2ni

⌘2hr(r+1)i
s23...r(s12...rm2)...(s12...(n2)m2)h23ih34i...h(n2)(n1)ih2|/p1/p2,r1 |rih2|/p1/p2,r |r+1i

#
.

(4.50)

This is the central result of [21] and it demonstrates that the covariant recursion relations

introduced in [14] have the potential to open up new avenues to compute new classes of

amplitudes that are otherwise not accessible via conventional recursion relations such as

BCFW recursion relations. This computation also serves as a testament to the optimal

usage 4 of the covariant massive-massless shift (4.30). Other possible two-line shifts (i.e.,

4In principle, one could have computed this n-point amplitude using BCFW recursion relations itera-
tively, building from the known three-point on-shell amplitudes. However, it would be an inefficient method
to obtain the amplitude since it requires knowledge of all the amplitudes Am for all m < n, at each step of
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massless-massless or massive-massive) do not allow us to compute this amplitude as there

will be scattering channels in which the negative helicity gluon is attached to the same

subamplitude involving massive particles, leading to an identical particle configuration

that we are trying to compute.

As a simple but non trivial check of our result, a few lower-point amplitudes are obtained

by independent methods in appendix E.2 and shown to match the expected results. Addi-

tionally, in Appendix F we have checked the correctness of our result in (4.50) by taking

BCFW shift on external gluon states and the method of induction.

4.2.1 Matching the NMHV amplitude in high energy limit

We now consider the high energy limit of the scattering amplitude in (4.50). This should

reproduce unique massless amplitudes for di↵erent helicity configurations of massive vec-

tor bosons since we have considered only minimally coupled three particle amplitudes

(2.71) as basic building blocks to construct the finite energy amplitude [11].

The procedure of taking the high energy limit of scattering amplitudes involving massive

particle is discussed in [11] and further discussed in [14]. We do not repeat the procedure

again but as a general rule of thumb, we show which component of massive spinor helicity

variables survives in this limit below

|ni
p0>>|~p|
! |ni , |n]

p0>>|~p|
! |n+] ± indicates helicity . (4.51)

The high energy limits of the finite energy amplitude (4.50) with opposite helicity con-

figurations for the pair of massive particles are non-vanishing due to the presence of both

angle and square brackets involving massive spinor-helicity variables and reproduces cor-

the iteration and in this case, the purpose of the on-shell recursion method would be lost ! Instead we have
shown that, for this specific configuration of external particles, the covariant massive-massless shift [21i
leads to an single on-shell recursion.
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rect MHV amplitudes, as expected

AMHV
n [1, 2, 3+, . . . , n+] = gn2 h12i3

h23ih34i · · · hn1i , (4.52)

AMHV
n [1+, 2, 3+, . . . , n] = gn2 h2ni4

h12ih23ih34i · · · hn1i . (4.53)

The high energy limit of (4.50) with positive helicity configuration for both massive par-

ticles vanishes since the Parke-Taylor amplitude with single flipped helicity gluon is zero.

But the negative helicity configuration for both massive particles in the high energy limit

gives us the NMHV amplitude. In order to check this fact, we first obtain the following

expression from (4.50)

An[1, 2, 3+, · · · , (n  1)+, n]

= gn2
n2X

r=3

h2|/p3,r
Qn2

k=r+1{s1···k/pk /p1,k1}/pn1 |ni
⇣

h2|/p1/p3,r |2ih1ni+p2
2,rh12ih2ni

⌘2hr(r+1)i
s23...r s12...r ...s12...(n2)h23ih34i...h(n1)nih2|/p1/p2,r1 |rih2|/p1/p2,r |r+1i . (4.54)

Then we simplify the product factor appearing in the numerator using the following iden-

tity

n2Y

k=r+1

n
s1···k  /pk/p1,k1

o
/pn1|ni =

0BBBBB@
n2Y

k=r+1

s12...k

1CCCCCA (pr+1 + · + pn1) |ni . (4.55)

This identity can be derived from the one we have proved in section 4.1.2. Furthermore,

we use momentum conservation to get

h2|/p3,r./p1|ni + p2
2,rhn2i = h2|/p3,r.(/pr+1 + . . . + /pn1)|ni . (4.56)

Substituting this in (4.54), we obtain the NMHV amplitude as

An[1, 2, 3+, · · · , (n  1)+, n]

= gn2
n2X

r=3

hr(r + 1)ih2|/p3,r

⇣

/pr+1 + · · · + /pn1

⌘

|ni3

s23...r s12...rh23ih34i . . . h(n  1)ni[1|p2,r1|ri[1|p2,r|r + 1i . (4.57)
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We have obtained in (4.57) a compact expression for the n-point NMHV amplitude that

at first glance appears to be di↵erent from the standard expression in [24]. Note that,

the first term of the expression in equation (4.50) (that corresponds to the last diagram

in Figure 4.3) does not contribute to the high energy limit since this involves massive

spinor-helicity variables that do not survive in this limit. It can be argued that this is

a consequence of the massive-massless shift [21i which we have used to derive this

amplitude. In a purely massless setup, one could use the BCFW shift [12i, in which

case the last diagram in Figure 4.3 would certainly contribute. Therefore, in this case,

the covariant massive-massless shift leads to a novel representation of the n-point NMHV

amplitude. In what follows, we will first take the soft limit of this amplitude to show that

it obeys the Weinberg’s soft theorem at leading order and subsequently we prove that the

NMHV amplitude (4.57) matches with the expression in [24] for this specific ordering of

external particles.

Soft expansion of NMHV amplitude

We take the limit pn ! 0 in the NMHV amplitude (4.57). In order to take the limit

pn ! 0, we first scale the spinor-helicity variables as follows

n↵ !
p
✏n↵ , n↵̇ !

p
✏n↵̇ , (4.58)

and then take ✏ ! 0 limit. With this scaling, we find that the r = n  2 channel of the

NMHV amplitude in (4.57) has the leading order contribution as O
⇣

1
✏

⌘

and the amplitude

factorizes as follows

lim
pn!0
An =

[(n  1)1]
[(n  1)n][n1]

⇥
h12i3

h23ih34i . . . h(n  1)1i (4.59)

=
[(n  1)1]

[(n  1)n][n1]
⇥AMHV

n1 . (4.60)
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This follows from the Weinberg soft theorem which we will see below.

Using Weinberg soft theorem, we find that in the soft limit of the n-th gluon momentum,

the n-particle NMHV amplitude factorizes into a soft factor times a (n 1)-particle MHV

amplitude

lim
pn!0
An
⇥

1, 2, 3+, .., (n  1)+, n
⇤

= S (0)(n, (n  1)+, 1)An1
⇥

1, 2, 3+, .., (n  1)+
⇤

,

(4.61)

where the soft factor at leading order is given by [53–55]

S (0)(n, (n  1)+, 1) =
 
"n · pn1

pn · pn1

"n · p1

pn · p1

!
. (4.62)

Expressing the massless polarization vector in the spinor-helicity formalism as

"µn :=
hn|µ|q]

[nq]
, (4.63)

and chosing the reference spinor |q] = |1], we get the soft factor as follows

S (0)(n, (n  1)+, 1) =
[(n  1)1]

[(n  1)n][n1]
. (4.64)

Therefore, we have

An
⇥

1, 2, 3+, · · · , (n  1)+, n
⇤

=
[(n  1)1]

[(n  1)n][n1]
An1

⇥

1, 2, 3+, · · · , (n  1)+
⇤

.

(4.65)

This is matches with the expression that we obtain by taking the soft limit of the NMHV

amplitude in equation (4.57).
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Matching the NMHV amplitude

Now that the preliminary check regarding the soft limit has been verified, we now show

that the result in (4.57) matches exactly with the NMHV amplitude computed by Dixon

et al. in [24] for the specific ordering of negative helicity gluons that we have considered

here. The result of [24] is of course more general in the sense that the positions of the two

negative helicity gluons are completely arbitrary.

In order to compare with our result (4.57), we begin with the expression given in [24] and

fix the positions of the two negative helicity particles as 1, 2. The position of the third

negative helicity particle is fixed to be n in both of the expressions. Keeping this in mind,

the n-particle amplitudeAn[1, 2, 3+, . . . , (n1)+, n] (abbreviated asANMHV
n [1, 2, n])

from [24] is given by

ANMHV
n [1, 2, n] =

1
h12ih23i . . . hn1i

n1X

t=4

R[n; 2; t](hn1ihn t 2 | 1i)4 . (4.66)

The objects R[n; s; t] are defined to be

R[n; s; t] :=
1
x2

st

hs(s  1)i
hn t s | sihn t s | s  1i

ht(t  1)i
hn s t | tihn s t | t  1i (4.67)

with R[n; s; t] := 0 for t = s + 1 or s = t + 1. The spinor products are defined as

hn t s | si := hn |xnt xts |si (4.68)

where

x↵↵̇st := (ps + ps+1 + . . . + pt1)↵↵̇ (4.69)
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for s < t, xss = 0 and xst = xts for s > t. So we have

R[n; 2; t] :=
1
x2

2t

h21i
hn t 2 | 2ihn t 2 | 1i

ht(t  1)i
hn 2 t | tihn 2 t | t  1i (4.70)

with x2
2t = (p2 + p3 + . . .+ pt1)2 = s2(t1). Therefore, the n-point NMHV gluon amplitude

can be written as

ANMHV
n [1, 2, n] =

hn1i3
h23i . . . hn1i

n1X

t=4

1
s2(t1)

ht(t  1)ihn t 2 | 2i3
hn t 2 | 1ihn 2 t | tihn 2 t | t  1i . (4.71)

Now by writing t = r + 1, we can get

ANMHV
n [1, 2, n] =

n2X

r=3

hn1i3
s23...rh23i . . . h(r  1)rih(r + 1)(r + 2)i . . . h(n  1)ni

⇥
hn (r + 1) 2 | 2i3

hn (r + 1) 2 | 1ihn 2 (r + 1) | (r + 1)ihn 2 (r + 1) | ri . (4.72)

Let us now consider one of the following spinor products and simplify as follows

hn (r + 1) 2 | 1i = hn |xn(r+1) x(r+1)2 |1i

= hn |x(r+1)n x2(r+1) |1i

= hn |(/pr+1 + /pr+2 + . . . + /pn1) (/p2 + /p3 + . . . + /pr) |1i

= hn |(/pr+1 + /pr+2 + . . . + /pn1 + /pn) (/p1 + /p2 + . . . + /pr) |1i

= hn |(p1 + p2 + . . . + pr)2 |1i

= s12...rhn1i (4.73)

hn 2 (r + 1) | ri = hn1i[1|p2,(r1)|ri , (4.74)

hn 2 (r + 1) | (r + 1)i = hn1i[1|p2,r|(r + 1)i , (4.75)

hn (r + 1) 2 | 2i = h2|/p3,r(/pr+1 + . . . + /pn1)|ni = h2|/p3,r/p1|ni + p2
2,rhn2i. (4.76)
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Assembling all these, we can rewrite the NMHV amplitude as follows

ANMHV
n [1, 2, n] =

n2X

r=3

h2|/p3,r(/pr+1+···+/pn1)|ni3
s23...r s12...rh23ih34i...h(r1) rih(r+1)(r+2)i...h(n1)ni[1|p2,r1 |ri[1|p2,r |r+1i . (4.77)

This expression matches with the NMHV amplitude in equation (4.57). Therefore, we

conclude that the massive vector boson amplitude we derived has the correct high energy

limit.

4.2.2 Spurious poles

Although the covariant recursion relations allows us to determine the n-particle ampli-

tude in a compact form, in the case of n  6 the expression in (4.50) contains spurious

poles which are not associated to any physical propagator going on-shell. These poles

are arising when terms of the form h2|/p1/p2,r1|ri and h2|/p1/p2,r|r + 1i in the denominator

of the expression in (4.50), becomes zero. Any on-shell recursion scheme that involves

complexification of external momenta, are generically infected with such spurious poles

as the manifest locality is sacrificed at the altar of staying on-shell. In the case of BCFW

recursion relations for massless theories such as non-Abelian gauge theory, the spurious

poles have been analysed extensively. These poles are not physical and the residue at

these poles shown to vanish [56] in the case of six point gluon amplitude.

We expect that the same should be true in the massive case as the theories under con-

siderations are local. However, as is well known, proving that spurious poles are indeed

spurious is no easy task even for scattering amplitudes of massless particles and the proofs

usually involve rewriting the amplitudes in terms of some other basis such as momentum

twistors [56]. We do not pursue this important question in the present work but give an ev-

idence that the poles which arise in (4.50) do not correspond to any on-shell propagators

and therefore are indeed spurious.

We consider the six-point amplitude and evaluate it using [65+i shift, which leads to the
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following expression for the six-point amplitude

A6[1, 2, 3+, 4+, 5+, 6] = g4
"

(h6|p2 |3]h21i+h2|p1 |3]h61i)2[34]h4|p6 |5]
[23]h54i(s12m2)(s123m2)(s56m2)(h2|/p1/p6 |4i+m2h24i)

+
(h4|p6 |5]{h21ih2|p1 |6]+h2|p6 |1]h26i+2mh21ih62i}+h21i[65]h4|/p5/p1 |2i+h4|p5 |1]h2|p6 |5]h26i)2

h23ih34ih45i(h4|/p5/p1/p6 |5]+s16h4|p6 |5])(s56m2)(h2|/p1(/p5+/p6)|4i+m2h24i)

+
(h2|p1+p6 |2][5|/p1/p6 |5]s16[5|/p2/p6 |5])h16i2h2|p1+p6 |5]2

s156 s16h23ih34i([5|/p6/p1 |2]+m2[52])(h4|/p5/p1/p6 |5]+s16h4|p6 |5])

#
. (4.78)

Here the spurious pole is given by the following condition

h4|/p5/p1/p6|5] + s16h4|p6|5] = 0 . (4.79)

With the massive-massless shift [21i, the 6-point amplitude can be written using (4.50)

as

A6[1, 2, 3+, 4+, 5+, 6] = g4
"
⇣

h2|/p1/p3 |2ih16i+p2
2,3h12ih26i

⌘2h2|/p3((s56m2)/p4/p1,3)|5]

s23(s123m2)(s56m2)h23ih45ih2|/p1/p2 |3ih2|/p1/p2,3 |4i

+

⇣

h2|/p1/p3,4 |2ih16i+p2
2,4h12ih26i

⌘2h2|p3,4 |5]

s234(s56m2)h23ih34ih2|/p1/p2,3 |4ih2|/p1/p2,4 |5i

+
(h21ih2|p1 |6]+h2|p6 |1]h26i+2mh21ih62i)2

s16h23ih34ih45i(h2|/p1/p6 |5i+m2h25i)

#
. (4.80)

The spurious pole in the above amplitude is given by the following condition

h2|/p1(/p2 + /p3)|4i = 0 . (4.81)

It is easy to check that both expressions for the six-point amplitude contain the same set

of physical poles. However we see that they have di↵erent spurious poles structures. In

particular, when the spurious pole condition is satisfied for one expression, the other one

is finite. Since, both are representations of the same scattering amplitude, we conclude

that at least in this simple example, the residues of the spurious poles must be zero [57].
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Chapter 5

Conclusions

In this thesis, we have derived a specific generalization of the well known BCFW recur-

sion relations which include a combined complex momentum shift of a pair of particles,

one massless and one massive, by making use of the recently proposed little group co-

variant spinor helicity formalism for massive particles in [11]. We gave a complete clas-

sification of this class of two-line shifts for massive scalar QCD and Yang-Mills theory in

the Higgsed phase [14]. Later, we have used the new set of recursion relations to compute

scattering amplitudes which hitherto were not known in the literature [21].

We proved the validity of the recursion relations for massive scalar QCD and Higgsed

Yang-Mills theories by suitably adapting the background field methods of Arkani-Hamed

and Kaplan [19] to include massive particles. As an explicit check of the new recursion

relations, we computed several four and five particle amplitudes in these theories and

found perfect agreement with the results already known in the literature by other methods.

In this process, we derived the five particle vector boson amplitudes for di↵erent helicity

configurations of gluons as a new result of this formalism, which we substantiated with

several consistency checks [14]. Using the background field method, we showed that

the massive-massless shifts [m+i, [mi are indeed valid shifts, whereas the [mi, [+mi

shifts fail to recursively construct amplitudes in massive scalar QCD and the Higgsed
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Yang-Mills theories.

In chapter 4, we explored the consequences of the covariant recursion relations introduce

in [14] by considering the massive analogues of NMHV and MHV amplitudes in Yang-

Mills theory. In the high energy limit, we showed that these two classes indeed reduce

to the MHV and NMHV amplitudes respectively. The massive analogue of the NMHV

amplitude comprised of two massive vector bosons, one negative helicity gluon (that is

colour adjacent to the massive bosons) and an arbitrary number of gluons with positive

helicity. We showed that for this class of amplitudes, the massive-massless shift leads

to a remarkably simple computation and we could generate rather compact little group

covariant expression for the final amplitude. If one had used the usual BCFW shift to

compute this amplitude, one would end up with subamplitudes involving the same con-

figuration as the one we set out to compute (i.e. involving two massive vector bosons and

helicity flipped gluons). As a result one would need some additional input in order to

proceed further. The massive-massless shift appears to be more convenient in this case as

the recursion gave rise to simpler subamplitudes that were already known. Interestingly

we have shown that given this final form for the amplitude derived using the covariant re-

cursion, one can check that our result indeed satisfies the BCFW recursion relation. This

is shown in detail in Appendix F.

Although a complete theory independent analysis comparing the two recursion schemes

using massless-massless and massive-massless shifts, whenever the both may be appli-

cable is yet to be done, we showed that for a particular class of amplitudes, the covari-

ant massive-massless shift leads to a computational advantage while preserving the little

group covariance guaranteed by the massive spinor-helicity formalism.

Apart from the rudimentary but non trivial check of the high energy limits of these am-

plitudes, we have used several other independent methods to validate our result. In the

case of vector boson amplitude with all plus helicity gluons, we directly matched with

the result expected from the covariant relation (4.1), given the scalar amplitude in (4.2).
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But in the flipped helicity case, since this is a new result, we checked the consistency by

carrying out the soft momentum expansion of the NMHV amplitude that leads to correct

universal leading soft factor (see section 4.2.1). Interestingly, our representation of the

NMHV amplitude obtained in the high energy limit is not identical to the one obtained

previously in [24]. We showed that the two expressions are equal and it will be interest-

ing to study the representation for NMHV amplitude that we obtained in more detail in

its own right.

There are several directions that follow from the works presented in this thesis. We high-

light some of them below.

• We have restricted ourselves to the calculation of tree level amplitudes using the

new recursion relation and an obvious question would be to extend these results to

loop amplitudes.

• In the same spirit of massive-massless shift it would be worthwhile to find a shift

involving two massive momenta. This is relevant for the computation of all massive

amplitudes. Preliminary analysis seems to indicate that the little group covariance

of the deformation of massive spinor helicity variables is difficult to maintain, which

makes the computation of amplitudes using massive spinor helicity formalism less

tractable.

• Regarding the computation of nparticle amplitudes, we considered a particular

configuration of external particles in which the position of the negative helicity

gluon is adjacent to the massive vector bosons. But in fact it is possible to make

the position of the negative helicity gluon completely arbitrary and use the covari-

ant recursion or the BCFW shift in combination with the amplitudes calculated in

this work to derive these scattering amplitudes. One could also add more nega-

tive helicity gluons and systematically proceed to calculate the resulting scattering

amplitudes. However in order to compute amplitudes with more than two massive
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particles using the covariant recursion, one would possibly require knowledge of a

wider class of amplitudes.

It would be interesting to explore all these quantities in more detail and we defer this to

future works.
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Appendix A

The high energy limit

In this appendix, we discuss the relation between the massive and massless spinor he-

licity variables and the procedure to take the high-energy limit of scattering amplitudes

involving massive particles. The basic objective of this procedure is to show how massive

amplitudes for particles with spin decompose into the di↵erent helicity components in

this limit.

We begin by expanding the massive spinor helicity variables I
↵ and I↵̇ into explicit

SL(2,C) basis. In order to do this, we consider momentum 4-vector in the spherical

polar coordinates

pµ ⌘
⇣

p0, |~p| sin ✓ cos , |~p| sin ✓ sin , |~p| cos ✓
⌘

, (A.1)

which takes the following matrix form in SU(2) representation

p↵↵̇ =

0BBBBBBBBB@
p0 + |~p| cos ✓ |~p| sin ✓(cos   i sin )

|~p| sin ✓(cos  + i sin ) p0
 |~p| cos ✓

1CCCCCCCCCA . (A.2)
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For massless particles, we set p0 = |~p| and the matrix form is given by

p↵↵̇ = 2p0

0BBBBBBBBB@
cos2
⇣

✓

2

⌘

cos
⇣

✓

2

⌘

sin
⇣

✓

2

⌘

ei

cos
⇣

✓

2

⌘

sin
⇣

✓

2

⌘

ei sin2
⇣

✓

2

⌘

1CCCCCCCCCA = 2p0

0BBBBBBBBB@
c

s

1CCCCCCCCCA ⇥
✓

c s?
◆

, (A.3)

where we denote c ⌘ cos(✓/2) , s ⌘ sin(✓/2)ei. Therefore, we obtain the following

representation for massless spinor helicity variables

↵ =
p

2p0

0BBBBBBBBB@
c

s

1CCCCCCCCCA , ↵̇ =
p

2p0

0BBBBBBBBB@
c

s?

1CCCCCCCCCA . (A.4)

One can repeat the same procedure to find the momentum representation for massive

spinor helicity formalism as

I
↵ =

26666666664
ac bs⇤

as bc

37777777775 , I↵̇ =

26666666664
ac bs

as⇤ bc

37777777775 , (A.5)

where a =
p

p0 + |~p| , b =
p

p0  |~p| and det(I
↵) = det(I↵̇) = m. This matrices allows us

to expand the massive spinor helicity variables in SU(2) space in terms massless spinor

helicity variables

↵I =
↵⇠+I  ⌘

↵⇠I , (A.6)

↵̇J =
↵̇⇠J + ⌘̃

↵̇⇠+J , (A.7)

where the SU(2) basis vectors are chosen to be ⇠I = (1 0) and ⇠+I = (0 1). The

massless spinor helicity variables are given by

↵ = a

0BBBBBBBBB@
c

s

1CCCCCCCCCA , ⌘↵ = b

0BBBBBBBBB@
s⇤

c

1CCCCCCCCCA , (A.8)

↵̇ = a

0BBBBBBBBB@
c

s⇤

1CCCCCCCCCA , ⌘̃↵̇ = b

0BBBBBBBBB@
s

c

1CCCCCCCCCA . (A.9)
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As usual, the SU(2) indices can be raised and lowered by the anti symmetric tensor ✏IJ

and the basis vectors follow ✏IJ⇠
+I⇠J = 1. From explicit calculation we find that the

massless spinors obey the following relations

[⌘̃] = m = h⌘i . (A.10)

In the high energy limit p0 >> |~p|, the massless spinors can be expressed as

↵ !
p

2p0

0BBBBBBBBB@
cos(✓/2)

sin(✓/2)ei

1CCCCCCCCCA , ⌘↵ !
mp
2p0

0BBBBBBBBB@
 sin(✓/2)ei

cos(✓/2)

1CCCCCCCCCA . (A.11)

This shows that ⌘↵ is proportional to the mass m and vanishes in this limit. A similar

result holds for ⌘̃↵̇. Therefore, in the high energy limit both (⌘↵, ⌘̃↵̇) vanish.

As a general rule of thumb, the massive spinors behaves in the massless limit as follows

|ni
p0>>|~p|
! |ni , |n]

p0>>|~p|
! |n+] . ± indicates helicity . (A.12)

Here, a particular helicity is picked up since the non vanishing component ↵ comes with

opposite SU(2) basis vectors, which we use the identify the helicity component in this

limit.

Let us now illustrate the connection between the minimally coupled three particle massive

amplitude (2.71) (for S = 1) in the high energy limit and the massless amplitude (2.39).

Recall that, the massive amplitude in consideration are given by

A+h
3 (1, 2, 3h) = gxh

12
h12i2

m
, Ah

3 (1, 2, 3h) = gxh
12

[12]2

m
. (A.13)

Due to the structure of the amplitudes, only the identical helicity (h1 = h2) configurations

of massive particles are allowed in high energy limit. Moreover, since we are looking at

minimal coupling, we must consider the massless particle (with momentum p3) to have
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opposite helicity as opposed to the other two particles. Now we consider the case of

photon or gluons, in which case we set h1 = h2 = 1 and h3 = +1

Ahigh energy limit
3 (11, 21, 3+1) = g

m[3⇠]
h32i[2⇠]

h12i2
m
= g

h12i3
h31ih23i , (A.14)

where we have used the representation in equation (2.61) for the x12 factor. Note that, we

have recovered the correct massless amplitude and the coupling is dimensionless in this

case, as promised. One can repeat this exercise to check the correspondence regarding

minimal coupling for opposite helicity configurations and in the case involving gravi-

tons. Thus the massive three-particle amplitudes coincides with the conventional notion

of minimal coupling for S  1 [11].
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Appendix B

Reduction of Massive Polarization

In this appendix, we recover a pair of transverse and a longitudinal mode of the polar-

ization tensor of massive vector boson corresponding to sz = ±1; 0 spin components at

large-z. This plays an important role in our classification of covariant massive-massless

shifts. In the spinor-helicity formalism, the polarization tensor for a massive spin-1 parti-

cle is given by [58, 59]:

eµIJ(i) =
1

2
p

2m

h
hiI |µ|iJ] + (I $ J)

i
. (B.1)

Using the expansions in equation (A.6) and (A.7), the momentum matrix pi↵↵̇ = pi,µ
µ
↵↵̇

for massive particle can be written as

pi↵↵̇ = i↵i↵̇ + ⌘i↵⌘̃i↵̇ . (B.2)

Furthermore, the Dirac equation in spinor helicity formalism takes the following form

p↵↵̇↵I = mI↵̇ , p↵↵̇↵̇I = mI↵ . (B.3)

Using the Dirac equation, it is easy to show that the polarization tensor for massive particle
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is orthogonal to momentum 4-vector, as expected

piµe
µ

IJ(i) = 0 . (B.4)

We adopt identical momentum representation as given in [11] for the spinor helicity vari-

ables (↵, ↵̇), (⌘↵, ⌘̃↵̇) variables such that, they satisfy hi⌘ii = [i⌘̃i] = m. We then

use these relations to replace the mass m present in the denominator of the spinor helicity

representation of eµIJ(i) in (B.1). With the expansions in equations (A.6) and (A.7), the po-

larization tensor for massive spin 1 particle can be expressed in terms of massless spinors

as

eµIJ(i) =
266664
hi|µ|⌘̃i]p

2[i⌘̃i]
⇠+I ⇠

+
J
h⌘i|µ|i]p

2h⌘iii
⇠I ⇠



J

377775
1

2
p

2m

⇣

hi|µ|i] + h⌘i|µ|⌘̃i]
⌘

⇠+(I⇠


J) . (B.5)

Now we can read o↵ the transverse and longitudinal polarization vectors from the coef-

ficients of the ⇠I-bilinears. The polarization vectors associated to the transverse modes

are

eµ+(i) =
h⌘i|µ|i]p

2h⌘iii
, eµ


(i) =

hi|µ|⌘̃i]p
2[i⌘̃i]

, (B.6)

whereas the polarization vector associated to the longitudinal mode is given by

eµ0(i) =
1

2
p

2m

⇣

hi|µ|i] + h⌘i|µ|⌘̃i]
⌘

. (B.7)

In the following subsection, we discuss the large z behaviour of transverse modes the

massive polarization tensor.
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B.1 Deformed massive polarization vector at large z

The polarization tensor for a massive particle, in terms of massive spinor helicity vari-

ables, is given in (B.1). An important component in our analysis of the two-line shifts is

the behaviour of the polarization tensor at large-z. In this limit, the transverse and longitu-

dinal modes get decoupled from each other. From (B.6) the massless polarization vectors

are function of massless spinors (i, ⌘i) and (i, ⌘̃i). In the large-z limit we treat (⌘↵i , ⌘̃
↵̇
i )

as the usual reference spinors (⇣↵, ⇠↵̇) that appear in the massless case (and which are

chosen to be some of the external momenta in a given scattering amplitude calculation).

So the expressions for the deformed polarization vectors, which we denote asbe+µ (i) can be

written as follows:

be+µ (i) =
h⇣ |µ|b̃i]p

2h⇣ii
, beµ (i) =

hi|µ|⇠]
p

2[b̃i⇠]
. (B.8)

The shift for the massless spinor helicity variable i↵̇ in (A.7) can be obtained from the

shift of massive spinor helicity variable b̃
I

i↵̇ as

b̃i↵̇ = i↵̇
z
m
 j↵̇[i j]. (B.9)

By choosing reference spinors ⇣↵ ⌘ ↵j and ⇠↵̇ ⌘  j↵̇, we can express

be+b (i) = ⌃i jb
z
m

pjb⌦i j , beb (i) =
⌃⇤i jbp
2[i j]

. (B.10)

where we define

⌃i jb =
h j|b|i]p

2h jii
and ⌦i j =

[i j]p
2h jii

. (B.11)

These relations have been used in (3.88) and (3.90).
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B.2 Deformed massless polarization vector

In order to derive the limiting behaviour of bAh
IJ at large z, we expressed the shifted mass-

less polarizationbeµ+( j) in terms of the shift momentum rµ. In this appendix we show how

to derive (3.83). We start with the massless polarization vector

beµ+( j) =
h⇠|µ|b̃ j]p

2h⇠b ji
=
h⇠|µ| j]p

2h⇠b ji
. (B.12)

Here ⇠↵ is a reference spinor, which we choose to be

⇠↵ =
p↵i
m
 j . (B.13)

Then the massless polarization vector can be written as

beµ+( j) =
1

p
2h j|pi| j]

p↵i  j
↵̇
j

µ
↵↵̇ . (B.14)

Recall the expression for the shift momentum rµ in terms of spinor helicity variables

rµ =
1

2m
µ↵̇↵pi↵ j↵̇



j =
1

2m
p↵i  j

↵̇
j

µ
↵↵̇ . (B.15)

Thus we can write massless polarization vector as follows

beµ+( j) =

p
2mrµ

h j|pi| j]
⌘  rµ . (B.16)

We have used this result in (3.83).

122



Appendix C

Comparison with previous results

In [13], the authors derived conditions to check the validity of multi line shifts in the

context of BCFW type recursion relations. The authors studied large z behaviour of n-

point scattering amplitudes ( bA(z) ⇠ z) with multi-line shifts and obtained a bound on

that would lead to valid shifts. For the two-line shifts discussed in this paper, the relevant

constraint is given by:

  1  [g̃]  s + s (C.1)

where [g̃] is the mass dimension of coupling, s and s are the spin projection (sz) of the

particles which are shifted by the spinor-helicity variables  and  respectively. For the

massive-massless shift we have considered, the -variable of the positive helicity gluon

is shifted and the -variable of the massive spin-1 particle is shifted. Thus s = 1 and

s = 1 (min. of sz for massive spin-1).

For example consider the four-point amplitude in section 3.2.3,

bA4

hb1,b2+, 3, 4
i
=

g2

m2

h3|p4|2]2[b14]2

bs23(bs24  m2)
. (C.2)

In this case, we find the condition for valid shifts as   1 where we have used [g̃] = 2.
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On the other hand, from (C.2) we get the larg z behaviour of the amplitude asA4(z) ⇠ z0.

So this satisfies the above validity condition of the shifts. Similarly one can check that for

all the amplitudes computed in this paper, the constraints found in [13] are satisfied.
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Appendix D

Examples of Invalid Shifts

In this appendix, we show that the massive-massless shifts of the type [mi and [+mi

do not lead to a recursion relation as the deformed amplitude grows at large z. Let us

consider the [mi shift. The massless polarization beb ( j) takes the form given below in

spinor helicity formalism

beb ( j) =
hbj|b|⌘]p

2[ j⌘]
=
h j|b|⌘] + z

m [iI j]hiI |b|⌘]p
2[ j⌘]

. (D.1)

In the last step we have used the shift equation (3.10). By choosing the reference spinor

to be

⌘̃↵̇ =
pi↵↵̇

m
↵j , (D.2)

the negative helicity polarization vector in (D.1) is rewritten as

beb ( j) =
2mr⇤b +

z
m

h
(pi · pj)pib  2pjb

i

p
2h j|pi| j]

. (D.3)
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The transverse polarizations of the massive particle remain identical as in (B.10). There-

fore, the natural amplitudes for the transverse modes have the following large-z behaviour

bA

=

1
p

2h j|pi| j]

"
Mab +

1
z

Bab + ...

#
di jb

✓

2mr⇤b +
z
m

h
(pi · pj)pib  2pjb

i◆
,

⇠ O(z) , (D.4)

and bA+ ⇠ O(z2) , (D.5)

thereby proving that the [mi shift is an invalid one. Following similar steps, it can be

shown that the [+mi shift is also invalid.
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Appendix E

Lower-point amplitudes

In this appendix, we show that the four- and five-point amplitudes involving massive

vector bosons computed previously in [14] using covariant recursion, are consistent with

the general formula (4.6) and (4.50) derived in this work.

E.1 Lower-point amplitudes with identical gluons

As mentioned at the beginning of section 4.1.1, the relevant amplitudes needed to set up

the method of induction are given as follows [11, 14]

A4
⇥

1, 2+, 3+, 4
⇤

= g2 [23]h14i2
h23i(s12  m2)

. (E.1)

A5
⇥

1, 2+, 3+, 4+, 5
⇤

= g3 h15i2[2|/p1(/p2 + /p3)|4]
h23ih34i(s12  m2)(s45  m2)

. (E.2)

Although, the four-particle amplitude matches straightforwardly with the expression that

we obtain from the general formula (4.6) with n = 4, but the five-particle amplitude (E.2)

does not identically match with the expression that we get from (4.6). In order to match
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these two expressions, we now prove the following identity:

[2|/p1(/p2 + /p3)|4] = [2|
n
(s123  m2)  /p3(/p1 + /p2)

o
|4] . (E.3)

We rewrite the R.H.S in the following way

[2|
n
(s123  m2)  /p3(/p1 + /p2)

o
|4] = 2p3 · p1,2[24]  [2|/p3/p1,2|4] + 2p1 · p2[24] . (E.4)

Using the following identity satisfied by the Pauli matrices (and identity matrix)

⇣

µ⌫ + ⌫µ
⌘

↵̇

 = 2⌘µ⌫↵̇  , where ↵̇↵µ = ✏
↵̇✏↵µ ; (E.5)

we get

2p3 · p1,2[24] = [2|/p3/p1,2|4] + [2|/p1,2/p3|4] , 2p1 · p2[24] = [2|/p1/p2|4] . (E.6)

In the last equality, we use p2|2] = 0. Substituting these results in (E.4), we easily obtain

the identity (E.3). This completes the check of the formula (4.6) for n-particle amplitude

involving a pair of massive vector bosons and positive helicity gluons for lower-point

amplitudes.

E.2 Lower-point amplitudes with helicity flip

In this section, we verify the formula for the n-particle amplitude (4.50) involving a pair of

massive vector bosons, one minus helicity gluon which is colour adjacent to the massive

particles and (n3) positive helicity gluons for n = 4 and 5. First we write down the four-

and five-point amplitudes directly by using (4.50) and then compare with the amplitudes

computed using other techniques like unitarity and recursion involving massless-massless

shift.
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Four-point amplitude

Let us start with the four-particle amplitude for which only the first term in (4.50) con-

tributes

A4
⇥

1, 2, 3+, 4
⇤

= g2 (h2|p1|4]h21i + h2|p4|1]h24i + 2mh12ih24i)2

s14h23i
⇣

h2|/p1/p4|3i + m2h23i
⌘ . (E.7)

We simplify the following terms using momentum conservation

h2|p1|4] = h2|p3|4]  mh24i , h2|p4|1] = h2|p3|1]  mh21i , (E.8)

h2|/p1/p4|3i + m2h23i = (s12  m2)h23i , (E.9)

and express the four-particle amplitude in the following form

A4
⇥

1, 2, 3+, 4
⇤

= g2 ([34]h21i + [31]h24i)2

s23


s12  m2 . (E.10)

This result matches exactly with amplitudes computed in [11, 14]. Next we move to five-

particle amplitude which we compute using massless-massless shift.

Five-point amplitude

We use the [23+i massless-massless shift to calculate the colour-ordered five-particle

amplitude. The scattering channels to evaluate this amplitude using the particular shift are

given in Figure E.1. We consider the following shift for massless spinor-helicity variables

[b2| = [2|  z[3| , |b3i = |3i + z|2i . (E.11)

The contribution to five-particle amplitude from the first diagram is obtained by gluing the

four-particle amplitude alongwith the three-particle amplitude (2.71) for negative helicity
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Figure E.1: Scattering channels to computeA5 [1, 2, 3+, 4+, 5] with [23+i shift

gluon and unshifted propagator 1
s12m2

AI
5
⇥

1, 2, 3+, 4+, 5
⇤

=
g3

m2

h2|p1|3]
[23]

[34]h5|bI|1]2

[23]hb34i(s12  m2)(s45  m2)
. (E.12)

We get the pole z(12) for first diagram by setting the shifted propagator 1
bs12m2 on-shell

z(12) =
h2|p1|2]
h2|p1|3]

. (E.13)

Using momentum conservation and definition of shifted massless spinor-helicity variables

of (E.11), we get get rid of the dependence on internal momentum and evaluate remaining

shifted spinor products at this pole. We obtain the contribution of first diagram

AI
5
⇥

1, 2, 3+, 4+, 5
⇤

= g3 (h5|p2|3]h21i + h2|p1|3]h51i)2 [34]

[23](s12  m2)(s45  m2)
⇣

h2|/p1/p5|4i + m2h24i
⌘

= g3

⇣

h2|/p1/p3|2ih15i + p2
23h12ih25i

⌘2
h2|p3|4]

s23(s123  m2)h23ih2|/p1/p2|3ih2|/p1/p2,3|4i
. (E.14)

According to the formula (4.50), there exists two scattering channels contributing to the

five-particle amplitude. For n = 5, the sum in the second term of (4.50) becomes a single

term which matches exactly with above expression.

The contribution from the second diagram in Figure E.1 is obtained by gluing the two

subamplitudes along with unshifted propagator 1
s34

. After evaluating the shifted spinor

products at z(34) =
h34i
h24i , we get the contribution from this diagram as follows
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AII
5
⇥

1, 2, 3+, 4+, 5
⇤

= g3 (h21ih2|p1|5] + h2|p5|1]h25i + 2mh21ih52i)2

h23ih34is15

⇣

h2|/p1/p5|4i + m2h24i
⌘ . (E.15)

This expression matches with the first term in (4.50) with n = 5.
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Appendix F

Flip helicity amplitude from BCFW

recursion

In this appendix, we present an inductive proof of the formula in (4.50) using the BCFW

recursion. To set up the induction, we first of all ensure that the four and five point

amplitudes that have been derived previously in Appendix E.2 using BCFW recursion are

consistent with the general expression.

Given the match of the lower-point amplitudes, we now assume that the expression (4.6)

is true for (n  1)-particle amplitude and use this to derive n-particle amplitude. We use

[23+i BCFW shift that corresponds to shifting the massless spinor-helicity variables as

|b2] = |2] + z|3] , |b3i = |3i  z|2i . (F.1)

Figure F.1: Pictorial representation of BCFW recursion with [23+i shift.
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Due to this shift, all possible scattering channels that have a non-zero contribution to

n-point amplitude are shown in Figure F.1. The BCFW recursion for the first diagram is

AI
n = AL[1,b2,bI]

1
s12  m2AR[bI,b3+, . . . , (n  1)+, n] . (F.2)

Substituting the 3-point amplitude as given in (2.71) and the result for the right subam-

plitude from (4.6) and then evaluating shifted spinor products at the simple pole for this

diagram

z(12) =
h2|p1|2]
h2|p1|3]

, (F.3)

we obtain

AI
n =

h2|/p3
Qn2

k=4{(s1···km2)/pk /p1,k1}|n1]
⇣

h2|/p1/p3 |2ih1ni+p2
2,3h12ih2ni

⌘2h34i
s23(s123m2)...(s12...(n2)m2)h23ih34i...h(n2)(n1)ih2|/p1/p2 |3ih2|/p1/p2,3 |4i

. (F.4)

The BCFW recursion for the second diagram is the following

AII
n = AL[1,b2,bI+, 5+, . . . , (n  1)+, n]

1
s34
AR[bI,b3+, 4+] (F.5)

We substitute the left subamplitude from the expression in (4.6) by assuming that it holds

for (n1)-point amplitude. The right subamplitude is a pure gluon amplitude and is given

by the Parke-Taylor formula. Using these expressions and simplifying further we get

AII
n = gn2

"
(h2|p1 |n]h21i+h2|pn |1]h2ni+2mh12ih2ni)2

s1nh23ih34i···h(n2)(n1)i(h2|/p1/pn |n1i+m2h2(n1)i)

+

n2X

r=4

h2|/p3,r
Qn2

k=r+1{(s1···km2)/pk /p1,k1}|n1]
⇣

h2|p1.p3,r |2ih1ni+p2
2,rh12ih2ni

⌘2hr(r+1)i
s23...r(s12...rm2)...(s12...(n2)m2)h23ih34i...h(n2)(n1)ih2|/p1/p2,r1 |rih2|/p1/p2,r |r+1i

#
. (F.6)

Combining the contributions from two diagrams (F.4) and (F.6), we obtain the n-particle

amplitudeAn[1, 2, 3+, . . . ,n] which exactly matches with (4.50). This completes
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alternative check of (4.50) using BCFW recursion relations.
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