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Abstract. The online reconstruction of muon tracks in High Energy Physics experiments is a
highly demanding task, typically performed on reconfigurable digital circuits, such as FPGAs.
Complex analytical algorithms are executed in a quasi-real-time environment to identify, select,
and reconstruct local tracks in often noise-rich environments. A novel approach to the generation
of local triggers based on a hybrid combination of Artificial Neural Networks and analytical
methods is proposed, targeting the muon reconstruction for drift tube detectors. The proposed
algorithm exploits Neural Networks to solve otherwise computationally expensive analytical
tasks for the unique identification of coherent signals and the removal of geometrical ambiguities.
The proposed approach is deployed on state-of-the-art FPGA and its performances are evaluated
on simulation and on data collected from cosmic rays.

1. Introduction
Muon detectors are pivotal in a large number of particle physics experiments and apparatus.
For example, the imaging of inaccessible or hidden volumes based on muon tomography has its
foundations on the efficient detection and tracking of muons. In high energy physics collider
experiments muon final states are often considered as golden channels for the study of rare
processes, with muon trigger logics playing a decisive role in the efficient selection of such events.
Indeed, depending on the application, local muon trigger algorithms are among the first stages
of online event selection, often having to cope with demanding conditions such as high level of
background noise, high detector occupancy and short available time for the trigger decision.

Machine Learning (ML) methods are often deployed in the final stages of data processing
and have been demonstrated capable of outperforming traditional methods in many different
tasks across particle physics. Recently, the development of flexible tools such as HLS4ML[5]
has allowed to deploy neural networks on COTS FPGA, opening the possibility of executing
complex tasks such as classification and reconstruction in hardware, close to the detector, taking
advantage of the short evaluation time which can be of the order of O(100) ns.

Taking advantage of the capability of artificial neural networks (ANN) to solve complex
problems and their short evaluation time, a novel trigger algorithm for the fast muon
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identification and track parameter estimation has been developed. The method implements
a combination of neural networks, aiming at removing noise and reducing the complexity of the
problem, inherently dependent on the combinatorial induced by the number of signals released
in the detectors, and analytical methods that are applied on the filtered signals. The latter are
strongly dependent on the specific detector for which the algorithm is implemented. A complete
demonstrator of the algorithm has been implemented on a Xilinx Kintex Ultrascale FPGA and
tested using cosmic muons with a dedicated setup described in the next Section.

2. Experimental setup

The algorithm developed in this work aims at processing the digitized signals produced by a
muon telescope composed by a set of Drift Tube (DT) detectors. The DTs used in this work
were built at the Legnaro National INFN Laboratories (LNL) and inspired by those used in
the CMS experiment [1], with which they share the same underlying design and configuration.
These detectors (referred here as mini-DTs) are designed to provide small-footprint, roughly
70 x 70 cm?, muon tracking detectors, and be deployed in a number of different configurations,
as for instance in the case of the test-beam of the LEMMA collaboration [2]. Each mini-DT
chamber consists of 4 layers of 16 cells, totaling 64 cells per chamber. The signals produced by
each cell (referred to as hit) are amplified, discriminated and shaped according to the LVDS
standard. Two Xilinx VC707 evaluation boards are used to implement the time-to-digital
conversion (TDC) of the hits, each VC707 receiving data from 128 DT channels. The data
stream of each VC707 boards is serialized with the GBTx-FPGA protocol [3] and transmitted
via optical links to a Xilinx KCU1500 evaluation board mounted on the PCI express Gen-3 bus
of a data server for final transfer and storage of the data. Its firmware (FW) processes the
stream of the entire set of TDC hits of the muon telescope and hosts the FW implementation
of the trigger algorithm, which is described in the next Section.

3. Algorithm overview

The aim of the trigger primitive generator (TPG) logic is to define the local position and crossing
angle for muons traversing the detectors, which can be well approximated with a straight line
path across the volume of a chamber. For each DT cell the drift time, i.e. the time difference
between the production of primary ionization and the signal deposition on the anode wire, can be
translated to a spatial distance by correcting for the electron cloud drift velocity. An inherent
left-right ambiguity does however still persist, as no information on the side of the electron
cloud production with respect to the wire is a priori available. Moreover, in all most common
applications of the DT chambers the absolute time at which the primary ionization occurs is
not an information available from external references such as independent detectors, and has to
be identified in situ.

The absolute time of passage of a particle can be obtained applying the well-established
mean-timer technique [6], which exploits geometrical relations associated to the staggering of
cells in adjacent layers. The resulting equations are related to both the geometrical pattern of
active channels, and the left-right side to which a hit is assigned inside each cell, preventing
to associate a unique equation to each combination of cells. For this reason, typical TPG
algorithms implement iterative approaches testing all possible combinations of cell groups and
hits laterality. However, in noisy environments the number of possible combinations can increase
significantly, thus creating a large number of alternatives that needs to be tested, which in turn
might severely impact the performances of the trigger algorithm.

Several ML methods, and specifically various implementations of ANNs, are commonly
exploited to perform denoising tasks and pattern recognition. Among the features common
to many ANN-based models, the fast evaluation time is one of their most appealing features for
a TPG task. While analytical approaches to the noise rejection can take several iterations over
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a set of finite points, the evaluation time of an ANN is almost instantaneous. In this algorithm
ANNSs are used to perform noise rejection and pattern recognition on clusters of compatible TDC
hits, followed by analytical relations for evaluating the time pedestal and the track parameters.
The goal of the ANNS is to solve the combinatorial prior to applying the mean-timer equations.
A diagram of the algorithm is shown in Figure 1.
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Figure 1: Schematic representation of the algorithm for each macro-cell. In the initial grouping
hits are collected from the stream and positioned in the macro-cell. This is then fed to filtering
and disambiguation blocks where noise is rejected and the left-right ambiguity is solved. This
information is finally used to compute the muon crossing time and the track parameters.

The first module, called initial grouping, collects hits from the stream and organizes them
in time-coherent sets for each macro-cell. A macro-cell is a set of 4 x 4 adjacent cells. The
grouped hits are then fed to the two ANN blocks. The first module contains an ANN devoted to
the filtering of spurious hits: only the three or four hits compatible to the passage of a genuine
muons are retained, while all others are rejected. Hits passing this filtering stage are fed to a
second ANN performing the disambiguation step, i.e. predicting the side of the muon passage
inside the cell with respect to the wire. Once the correct set of three or four hits, along with
their lateralities, is known then the mean-timer equation related to this specific configuration
can be applied to compute the muon crossing time tg. All filtered hits are then mapped in the
coordinate space of the detector and the track parameters are finally obtained by performing a
linear regression.

The algorithm has been implemented on the KCU1500 evaluation board of the LNL testbed.
The ML models have been trained usign Qkeras [4] and the correspondent HLS code generated
using HLS4ML [5] package. The optimization of the ANNs through pruning and weight
quantization allows for a total usage of 11k LUTSs for each macro-cell, accounting for less than
2% of the available resources of the XCKU115 FPGA used in this study. No DSP is used for
either ANN block. The total latency of the two ANNs blocks is measured in 5 clock cycles at
40 MHz, and the execution of the entire algorithm can be fully pipelined.

4. Performance Evaluation

The performance of the algorithm are first evaluated on a private muon simulation, also used
for the training of the ANNs, which include generated muons passing through the detector
volume, as well as injected noise and simulated detector inefficiencies. All hits associated with a
generated muons are processed by a software framework emulating the FW implementation of the
algorithm. The SW framework also implements the processing of the real data collected by the
muon telescope read-out, thus enabling a direct comparison of the SW and FW implementation
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of the algorithm. An excellent agreement is observed between the two: the estimated emulator
efficiency, i.e. the fraction of triggers produced by the FW for which a SW equivalent is produced,
is 99.9% A time resolution of 3.2 + 0.1 ns is estimated, as reported in Figure 2a. In Figure 2b
the angle resolution of the trigger emulated trigger primitives is displayed, which is estimated
as 6.8 + 0.1 mrad. Both values are compatible with the expected performance of this kind of
detectors. An overall trigger efficiency of € = 99.0+0.1% is estimated from the simulated sample.
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Figure 2: Time pedestal (a) and trigger primitive angle (b) resolutions evaluated on the simulated
sample.

The performance of the FW implementation of the algorithm is evaluated on real data with
cosmic muons. Four mini-DT chambers are stacked in the muon telescope configuration. Three
mini-DT chambers, installed at roughly 80cm apart, are used for this scope. The combined
information from the two most external ones is used to reconstruct the global muon track, and
the result is compared with the FW output of the middle “probe” chamber. A local track is also
reconstructed by only using the hits collected from the probe chamber. The coincidence of an
additional pair of scintillator palettes included in the setup provides an external estimate of the
muon crossing time tg. The offline reconstruction of the muon tracks is performed selecting only
those hits whose TDC timestamp is compatible with the external scintillator coincidence within
the time window of the maximum allowed drift time (=~ 390ns). A constant time calibration,
specific to each chamber, accounts for the delay of the coincidence logic, the cable length, the
signal digitization time, and the muon time of flight.

The measured time difference with respect to the external time reference is 3.9 + 0.2ns,
as reported in Figure 3a. The bulk of the distribution is comparable with the results of the
simulation, whereas a slight asymmetry in the left tail, accounting for roughly 10% of the total
events, is present. This may be related to a combination of ill-defined events and instrumental
effects.

The resolution on the trigger primitive angular parameter, reported in Figure 3b, is measured
to be 15.56 + 0.1 mrad with respect to the global track, and 6.43 4 0.1 mrad with respect to the
local track. The resolution with respect to the local track is comparable to one obtained in the
simulation reported in Figure 2b. This is expected as both the offline reconstruction and the
online FW perform a linear regression on the same hits. On the other hand, for the global track
two chambers distant from each other roughly 1.6 m are used, independent from the hits used by
the FW to produce a trigger. The trigger efficiency on cosmics is measured to be € = 98.8+0.7%.
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Figure 3: (a) Time resolution between the trigger ¢ty and the external scintillator time. (b)
Resolution of the trigger track angle with respect to the global and local tracks.

5. Concluding Remarks and Future Outlook

A novel approach to the generation of local trigger primitives for drift tubes muon detectors has
been presented, based on an hybrid model integrating artificial neural networks and analytical
methods. The key feature of the proposed algorithm is the efficient use of resources to perform
the identification and disambiguation of the signals thanks to two ANN layers. A demonstrator
of the algorithm is deployed on a COTS FPGA for a single 4 x 4 macro-cell configuration. The
performances of the algorithm are evaluated both on a private simulated sample and on data
collected from cosmic rays with an experimental telescope testbed, and found to be competitive
with the figures expected from the offline reconstruction. An extension of the proposed algorithm
is foreseen to generate trigger primitives from an entire mini-DT detector geometry. A horizontal
extension to cover a larger number of channels over the same chamber is under study. By
replicating a series of macro-cell entities in an array, it is possible to span any 4-layer chamber
configuration. An overlapping set of 4 channels across two consecutive macro-cells is expected
to maximize the trigger primitive efficiency and acceptance.

As the processing of all trigger blocks can be pipelined, it is expected to be able to funnel
hits from multiple macro-cells into a smaller number of ANN blocks, multiplexing all FPGA
stages down to a single track parameter estimation block for an entire macro-cell array, thus
optimizing the resource utilization without impacting the latency of the algorithm.
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