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The generalized conditional symmetry (GCS) method is applied to a specific
case of the Klein–Gordon–Fock (KGF) equation with central symmetry. We first inves-
tigate the conditions which yield the KGF equation that admits special class of second-
order GCSs. The determining system for the unknown functions is solved in several
special cases. New symmetry operators and related exact solutions, different in form
and structure from the ones obtained using other methods, are pointed out. Several
surface plots of solutions are displayed.
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1. INTRODUCTION

The concepts of symmetry, invariants and conservation laws are fundamental in
the study of dynamical systems, providing a clear connection between the equations
of motion and their solutions. There are many reasons for computing symmetries
and conservation laws corresponding to dynamical systems described by differential
equations, mainly related to finding their exact solutions. An important method to
obtain the exact solutions of nonlinear partial differential equations (PDEs) is the
Lie symmetry method [1, 2]. It has been applied as an established route for the
reduction of (PDEs) [3, 4]. The Lie method allowed to obtain interesting class of
symmetries for well-known models [5, 6], but it has been also extended, and other
non-Lie methods has been formulated [7, 8]. One of these is the generalized con-
ditional symmetry (GCS) method [9, 10]. This approach could be considered as a
natural generalization of the non-classical method, in so far the Lie Bäcklund sym-
metry is a generalization of the classical method. This approach has been applied
successfully for obtaining various kinds of exact solutions of nonlinear PDEs, and
especially functional separable solutions.

The equation we are going to study is the Klein–Gordon–Fock (KGF) equation
with central symmetry:

v2t−v2r−
2

r
vr +

b

r2
v = 0. (1)
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78 Radu Constantinescu 2

In the previous equation b is a real parameter.
By changing the dependent variable, v(r, t) = u(r, t)/r, the following reduced

form of Eq. (1) is obtained:

u2t−u2r +
b

r2
u= 0. (2)

Eq. (2) belongs to the class of wave equations with time-independent potential [11]:

u2t−u2r +V (r)u= 0, (3)

where u(t,r) ∈C2(R2,R1) and the potential V (r) ∈C2(R1,R1). Equations of type
(3) are widely used in quantum physics and may be related to other linear and non-
linear PDEs in mathematical physics. Thus, all potentials V (r) allowing the sep-
aration of variables in (3) have been found in [12], where also all non-equivalent
orthogonal and non-orthogonal coordinate systems providing separability of the co-
ordinates were constructed. The structure of the KGF equation symmetry algebra on
pseudo-Riemannian manifolds in the presence of an external electromagnetic field
is investigated in [13]. Starting from the coadjoint orbit method and from the har-
monic analysis of Lie groups, a method is proposed for integrating the equation on
manifolds with simply transitive group actions .

Our main interest will be shown to the case b 6= 0, but the results are also
transposed for the case b= 0, when Eq. (2) becomes d’Alembert equation. The case
b 6= 0 may describe, for example a time evolution of transient electromagnetic fields
in homogeneous media and biconical transmission lines [14, 15]. From the physical
point of view, the values of the parameter b = n(n+ 1), n = 1, 2, 3, · · · correspond
to electromagnetic fields in the free space. In the case of a conical metal line, the
parameter b may be equal to some arbitrary positive value. In the mentioned special
case, b= n(n+1), the general solution is derived in [16] and admits the expression:

u(r, t) = rn
(

1

r

∂

∂r

)n(Ψ(r− t) + Φ(r+ t)

r

)
, (4)

where Ψ(·) and Φ(·) are arbitrary sufficiently smooth functions.
The purpose of this paper is to extend the results obtained in [17], where the

classical symmetries of Eq. (2) were found. We are able to do this by means of
the generalized conditional symmetry (GCS) method. The approach will be similar
with those applied to Grad-Shafranov model from Plasma Physics [18]. In fact, we
are presenting some results concerning the structure of second-order GCSs for Eq.
(2). Some physical models [19, 20] can be considered in this approach. In Section
2 we expose some basic facts on GCS approach, while in Section 3, we formulate
conditions enabling Eq. (2) to admit GCSs. These conditions lead to a determining
system which is solved in several specific cases. Some new interesting solutions
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3 Generalized conditional symmetries, related solutions of KGF equation with central symmetry 79

of Eq. (2), both for b 6= 0 and for b = 0, not yet reported, are figured out. Some
concluding remarks end the paper.

2. FROM CLASSICAL TO NON-CLASSICAL LIE SYMMETRIES

The Lie (classical) symmetry method (CSM). [1] for solving partial differential
equations as it was initially formulated asks for the invariance of the equations to the
action of an infinitesimal symmetry operator. Let us refer to an general m-th-order
(1 + 1)-dimensional evolution equation of the form:

ut = E(t,x,u,ux, ...umx),with ukx =
∂ku

∂xk
,1≤ k ≤m. (5)

The classical Lie operator will have the form:

X =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

φα(x,u)
∂

∂uα
. (6)

The n-th extension of (6) is given by:

X(n) =X+

q∑
α=1

∑
J

φJα(x,u(n))
∂

∂uαJ
, (7)

where

uαJ =
∂Juα

∂xj1∂xj2 ..∂xjm
; j1 + j2 + ...+ jm = J. (8)

Other approaches which generalize CMS were formulated. The Generalized
Conditional Symmetry (GCS) or conditional Lie-Bäcklund symmetry method is an
example on how higher-order symmetries could help in finding new symmetries of
PDEs which could generate additional new invariant solutions. The GCS method
supposes Eq. (5) to be invariant under a non-Lie point group of infinitesimal trans-
formations:

ū= u+εη(t,x,u,ux, ...uNx) +O(ε2),

ūt = ut+εDtη(t,x,u,ux, ...uNx) +O(ε2),

ūx = ux+εDxη(t,x,u,ux, ...uNx) +O(ε2),

...

with:

Dx =
∂

∂x
+

∞∑
k=0

u(k+1)x
∂

∂ukx
, Dj+1

x =Dx(Dj
x), D0

x = 1.
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The above group is generated by a vector field V , with the characteristic η, of
the form:

V =
∞∑
k=0

Dk
xη

∂

∂ukx
. (9)

For understanding the connection between the Lie-Backlund symmetry and this
conditional one, the following are very useful:

Definition 1: The vector (9) is said to be a Lie–Bäcklund symmetry of (5) if
and only if

Y (ut−E) |L = 0,

where L is the set of all differential consequences of the equation, that is to say:

ut−E = 0, Dj
xD

i
x(ut−E) = 0, i, j = 0,1,2, · · · .

Definition 2: The vector (9) is said to be a GCS of (5) if and only if

Y (ut−E) |L∩M = 0, (10)

where M denotes the set of all differential consequences for the equation η = 0 in
respect to x, that is to say:

Dj
xη = 0, j = 0,1,2, · · · . (11)

Remark: If η do not depend on t explicitly, the condition for existing GCS can
be expressed in the following terms:

η′E |L∩M = lim
ε→0

d

dε
η(u+εE) |L∩M = 0, (12)

where ”prime” denotes the Fréchet derivative of η along the E direction. Guiding
center equation in drift approximation that used in plasma fusion is an example for
this kind of method [21, 22].

3. KLEIN–GORDON–FOCK EQUATION

Let us start to effectively consider the Klein-Gordon-Fock equation with central
symmetry in its version (1). In fact, in the remaining part of this paper we will
concentrate our attention to the reduced equations (2) or (3) mentioned before.

3.1. ALREADY KNOWN RESULTS ON KGF

Let us shortly recall the main already known results on KGF. All potentials
V (r) and all the non-equivalent orthogonal / non-orthogonal coordinate systems pro-
viding separability of the variables in (3) have been found in [12]. For b= 0 Eq. (2)
becomes the d’Alembert equation. The case b 6= 0 was studied for describing the
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5 Generalized conditional symmetries, related solutions of KGF equation with central symmetry 81

time evolution of transient electromagnetic fields in homogeneous media [14, 15].
For b = n(n+ 1), n = 1, 2, 3, · · · . Eq. (2) describes the electromagnetic field in the
free space and it admits the general solution [16] given in (4).

The classical Lie symmetries of Eq. (2) were found in [17]. The Lie algebra
of the infinitesimal symmetries for Eq. (2) contains the following basis of symmetry
operators:

X1 =
∂

∂t
, X2 = t

∂

∂t
+ r

∂

∂r
, X3 = (t2 + r2)

∂

∂t
+ 2tr

∂

∂r
,

X4 = u
∂

∂u
, X5 = γ(r, t)

∂

∂u
, (13)

where γ(r, t) is whatever solution of Eq.(2). The structure of the symmetry algebra
on pseudo-Riemannian manifolds in the presence of an external electromagnetic field
was investigated in [13].

3.2. GCS FOR KGF. DETERMINING SYSTEM

Let us pass now to the computation of GCS for KGF (2). For this specific case,
the operator (9) which generates the GCS group takes the form:

V = η
∂

∂u
+ (Drη)

∂

∂ur
+ (Dtη)

∂

∂ut

+(D2rη)
∂

∂u2r
+ (D2tη)

∂

∂u2t
+ · · · . (14)

The condition (10) written for Eq. (2) is:

Y (u2t−u2r +
b

r2
u) |L∩M = 0. (15)

The previous condition is equivalent to the following relation:
b

r2
η−D2rη+D2tη |L∩M = 0. (16)

If we also impose the restriction (11), it will follow that Eq. (2) admits GCSs (14) if
and only if:

D2tη = 0. (17)
As (2) is second order in the radial variable, we choose the characteristic as:

η[r,u] = u2r−H(u)u2r−P (r,u)ur−R(r,u). (18)

We shall find the determining system for the unknown functions H(u), P (r,u),
R(r,u) which appear in the previous relation. Taking into account the surface condi-
tion η = 0, we may substitute the derivative u2r by the expression:

u2r =H(u)u2r +P (r,u)ur +R(r,u). (19)
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Consequently, the derivative u2t from the KGF equation (2) acquires the equivalent
form:

u2t =− b

r2
u+H(u)u2r +P (r,u)ur +R(r,u). (20)

Starting from the second order GCSs (18), the main condition (17) becomes:

u(2r)(2t)−H ′′u2tu2r−H ′u2ru2t−4H ′uruturt−
2Hu2rt−2Hurur(2t)−P2uu

2
tur−Puuru2t−2Puuturt−

Pur(2t)−R2uu
2
t −Ruu2t = 0. (21)

Here the ”prime” index denotes the derivative in respect to u, while the subscripts
denote the partial derivative in respect to the indicated variables.We calculate from
(20) the derivatives ur(2t) and u(2r)(2t). Then, we substitute them into (21) and we
make use of (19) and (20) in order to eliminate u2r and u2t. Therefore, the achieved
condition is verified if and only if the coefficient functions of various monomials in
derivatives of u are equal to zero. These constraints lead toH = 0 and toPu(r,u) = 0,
R2u(r,u) = 0, that is to say P (r,u)≡P (r),R(r,u) =Q(r)u+M(r). The unknown
functions P (r), Q(r) and M(r) do also satisfy the following system of ODEs:

4b

r3
+ 2Q′+ 2PP ′+P ” = 0,

−6b

r4
+ 2P ′Q+Q”− 2b

r3
P = 0,

2P ′M +M”− b

r2
M = 0, (22)

with b an arbitrary constant. Here ”prime” index denotes the first order derivative in
respect to r. As we announced in Introduction, we shall investigate in the next two
sections the proper KGF equation corresponding to b 6= 0 and d’Alembert Equation
associated to b= 0.

3.3. NEW SOLUTIONS FOR THE KGF EQUATION

Solving the invariant surface conditions, the previous expressions lead to va-
rious solutions of Eq. (2), some of them expressed in terms of special functions.
We are not interested here in such solutions, but in finding special cases when the
solutions appear in analytic form. More precisely, we shall analyze the solutions that
the system (22) may admit when the unknown functions P (r) and Q(r) are given by
the expressions:

P (r) =
k

r
, Q(r) =

m

r2
, (23)

RJP 61(Nos. 1-2), 77–88 (2016) (c) 2016 - v.1.3a*2016.2.17



7 Generalized conditional symmetries, related solutions of KGF equation with central symmetry 83

with k and m arbitrary constants. For these choices, the remaining function M(r)
must verify the ordinary differential equation:

−2k

r2
M +M”− b

r2
M = 0. (24)

So, we can discuss the KGF solutions in terms of three real parameters: b from Eq.
(2) and k, m from (23). For b 6= 0, three specific cases are investigated:

Case I: (k−3)(k−1) = 4b; m 6= b.
Case II: m= b 6= 0;k = arbitrary.
Case III: m= 0;k = arbitrary.
We shall see that they lead to new interesting solutions of the master Eq. (2)

which to our best knowledge, have not been reported in literature.

3.3.1. Case I:

If we choose (k− 3)(k− 1) = 4b with k 6= {1,3} the system (22) does admit
the solution:

P (r) =
k

r
, Q(r) =−(k−1)(k+ 3)

4r2
, M(r) = c1r

− 1+k
2 + c2r

k+3
2 , (25)

with c1, c2 arbitrary parameters, and m=− (k−1)(k+3)
4 . The GCS operator takes the

form:

VI =

[
u2r−

k

r
ur +

(k−1)(k+ 3)

4r2
u− c1r−

1+k
2 − c2r

k+3
2

]
∂

∂u
. (26)

By solving the invariance surface condition η = 0, we come to the solution of the
KGF equation as:

u(t,r) = f(t)r(k−1)/2 +g(t)r(k+3)/2 + r(k+7)/2 +
8c1

k(k−2)
r−(k−3)/2−

2[k(k+ 5)(k+ 7)−2c1(k−3)(k−1)]

k(k+ 1)(k+ 3)
r(k+3)/2+

(k−2)(k+ 5)(k+ 7)−4c1(k−3)(k−1)

(k−3)(k−1)(k−2)
r(k−1)/2. (27)

Remark: This solution imposes new restrictions for k, more exactly k 6= {−3, −1,
0, 2}. Consequently, we ought to avoid for b the set of values {−1

4 , 0, 3
4 , 2, 6. By

introducing the solution (27) into the main Eq. (2), we get that functions f(t) and
g(t) must satisfy to the following differential system:
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84 Radu Constantinescu 8

k3−2(6k2 + 4k+ 3)g” + 6k2 + 11k+ 6 = 0,

4k(k+ 1)(k+ 3)g−2(k+ 1)(k+ 3)f”−k3 + 2(c1−6)k2−
(8c1 + 35)k+ 6c1 = 0. (28)

The previous relations involve the second order derivative in respect to t.
The system (28) generates the solutions:

f(t) =
1

24(k+ 3)(k+ 1)

{
k(k+ 1)(k+ 2)(k+ 3)t4 + 8c5k(k+ 1)(k+ 3)t3+

[6(4c6−1)k3 + 12(c1 + 8c6−6)k2 + 6(12c6−8c1−35)k+ 36c1]t
2
}

+ c3t+ c4,

g(t) =

(
1 +

k

2

)
t2

2
+ c5t+ c6,

(29)
with cj , j = 3,6 new arbitrary constants.

We generated for the KGF equation the 6−parameters family of solutions (27),
where f(t) and g(t) take the general forms (29).

3.3.2. Case II:

If we choose the constraint b=m 6= 0, then the system (22) admits the solution:

P (r) = 0, Q(r) =
b

r2
+ q3, M(r) = q1r

(
1+
√
1+4b
2

)
+ q2r

(
1−
√
1+4b
2

)
, (30)

with b>−1
4 and q1, q2, q3 arbitrary constants. So, in this case we have k = 0.

It is interesting to consider the special case b= n(n+ 1), with n rational. The
GCSs are generated now by the operator:

VII =

[
u2r−

(
n(n+ 1)

r2
+ q3

)
ur− q1r(n+1)− q2r(−n)

]
∂

∂u
. (31)

For q3 6= 0, a solution expressed under the form of special functions may be
derived. If we choose q3 = 0, by solving the invariance surface condition η = 0, we
get for the KGF equation, the family of solutions:

u(r, t) = f(t)r(−n) +g(t)r(n+1)−
2r2
[
−(n− 1

2)q1r
(n+1) + (n+ 3

2)q2r
(−n)]

8n2 + 8n−6
. (32)

Here we must impose n 6=−
{
3
2 ,

1
2

}
or equivalently b 6= 3

4 .
The system (32) could admit polynomial solutions only if:

f(t) =
q2
2
t2 + q4t+ q5,g(t) =

q1
2
t2 + q6t+ q7. (33)
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9 Generalized conditional symmetries, related solutions of KGF equation with central symmetry 85

Fig. 1 – The surface plot corresponding to the solution (34) for n=2, q1 =60, q2 =5, q4 = q6 =− 1
10 ,

q5 = q7 = 5.

where qi, i = 1,7, i 6= 3 are parameters. Consequently, a 7−parameters family of
solutions is derived:

u(r, t) =
[q2

2
t2 + q4t+ q5

]
r(−n) +

[q1
2
t2 + q6t+ q7

]
r(n+1)−

2r2
[
−
(
n− 1

2

)
q1r

(n+1) +
(
n+ 3

2

)
q2r

(−n)]
8n2 + 8n−6

. (34)

3.3.3. Case III

Let consider now m= 0, that it to say Q(r) = 0. The determining system (22)
leads to a fixed value b = 6, while for the remaining functions, P (r) and M(r), the
simple expressions:

P (r) =−3

r
, M(r) = sr+p,

with s, p arbitrary constants. The GCS operator becomes:

VIII =

[
u2r +

3

r
ur−sr−p

]
∂

∂u
. (35)

The condition η = 0 does generate for Eq. (2) the solution:

u(r, t) =
s

15
r3 +

p

8
r2− σ(t)

2r2
+ρ(t). (36)

We get another new solution of Eq. (2) which depends on 6 parameters and admit
the form:

u(r, t) =
s

15
r3 +

p

8
r2−

−p
4 t

4 + 2k3t
3 + 6k4t

2 +k1t+k2

2r2
− p

4
t2 +k3t+k4. (37)
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86 Radu Constantinescu 10

Fig. 2 – The surface plots corresponding to the solution (37) for two sets of parameters’ values: a)
s = k3 = 0, p = 40, k1 = − 1

5 , k2 = −50, k4 = 150; b) p = k4 = 0, s = 200, k1 = 35, k2 = 20,
k3 =− 1

4 .

In Figure 2 we choose to display its surface representations for two sets of parameter
values: a) s= k3 = 0, p= 40, k1 =−1

5 , k2 =−50, k4 = 150; b) p= k4 = 0, s= 200,
k1 = 35, k2 = 20, k3 =−1

4 .

3.4. D’ALEMBERT EQUATION

As we already mentioned, the case b= 0 corresponds to the d’Alambert equa-
tion. The determining system (22), gives the solution:

P (r) = γ, Q(r) = µ, M(r) = αr+β, (38)

which involves the parameters γ, µ, α, β. The generalized conditional symmetry is
determined by the operator:

VII = [u2r−γur−µu−αr−β]
∂

∂u
. (39)

Following the same procedure as in the previous three cases, we may associate to
(39) the following invariant solution:

u(r, t) = h(t)exp

(
γ+

√
γ2 + 4µ

2
r

)
+λ(t)exp

(
γ−

√
γ2 + 4µ

2
r

)
+

(−β−αr)µ+αγ

µ2
, (40)

where h(t) and λ(t) take the forms:
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11 Generalized conditional symmetries, related solutions of KGF equation with central symmetry 87

h(t) = a1 exp

√2γ

√
γ2 + 2µ+γ

√
γ2 + 4µ

2
t

+

a2 exp

−√2γ

√
γ2 + 2µ+γ

√
γ2 + 4µ

2
t

 ,
λ(t) = a3 exp

√2γ

√
γ2 + 2µ−γ

√
γ2 + 4µ

2
t

+

a4 exp

−√2γ

√
γ2 + 2µ−γ

√
γ2 + 4µ

2
t

 ,
with aj , j = 1,4 arbitrary constants.

4. CONCLUDING REMARKS

The issue of constructing invariant solutions of wave equations with time-
independent potential (3) is still open. Based on this fact, we investigated in this
paper the Klein–Gordon–Fock equation (2) and we obtained new solutions using the
generalized conditional symmetry method. We restrict ourselves to the existence of
a special class of second order GCSs with the characteristic (18) which involves 3 ar-
bitrary functions. The main outcome of this investigation consists in finding new so-
lutions of Eq. (2). More precisely, we provide three distinct generalized conditional
symmetry operators (26), (31), (35). By solving the invariance surface condition for
each of them, three new families of solutions for Eq. (2), not yet reported, have been
highlighted. They depend on different number of parameters. Namely, the solutions
of type (27) and (37) involve 6 parameters, while those described by (34) suppose
7 parameters. Their common feature is that they are relatively separable in respect
to the radial space coordinate r and to time t. All of them can be decomposed in
monomials with separable forms. For some sets of parameters, graphical representa-
tions of solutions (34) and (37) are presented. In the case b = 0, which corresponds
to d’Alembert equation, the generalized conditional symmetry operator (39) and the
associated solution (40) are also derived. At large distances, they have interesting
behavior which deserves to be studied.
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