

EIGENFUNCTION EXPANSIONS FOR DIFFERENTIAL OPERATORS
WITH OPERATOR-VALUED COEFFICIENTS AND THEIR APPLICATIONS
TO THE SCHRÖDINGER OPERATORS WITH LONG-RANGE POTENTIALS

Yoshimi Saitō

Department of Mathematics
 Osaka City University
 Sugimoto-cho, Sumiyoshi-ku, Osaka, Japan

§1. Introduction. This report is concerned with the differential operator

$$L = - \frac{d^2}{dr^2} + B(r) + C(r) \quad (r \in (0, \infty) = I).$$

Here $B(r)$, $r \in I$, is a non-negative, self-adjoint operator in a Hilbert space X with its domain $\mathcal{D}(B(r)) = D$ which does not depend on $r \in I$. And for each $r \in I$ $C(r)$ is a bounded, self-adjoint operator on X . It should be noted that there are some partial differential operators which are converted into the operators of the form L . Let us consider, for example, the Schrödinger operator $-\Delta + Q(y)$ in \mathbb{R}^n . Set $X = L_2(S^{n-1})$, S^{n-1} being the $(n-1)$ -sphere, and define a unitary operator U from $L_2(\mathbb{R}^n, dy)$ onto $\mathcal{H} = L_2(I, X, dr)$ by

$$U: L_2(\mathbb{R}^n, dy) \ni f(y) \mapsto r^{(n-1)/2} f(r\omega) \in L_2(I, X, dr) = \mathcal{H}$$

$$(r = |y|, \omega = y/r \in S^{n-1}).$$

Here and in the sequel for a real number ρ we denote by $L_2(I, X, (1+r)^\rho dr)$ the Hilbert space of all X -valued functions $u(r)$ on I such that

$$\int_I |u(r)|^2 (1+r)^\rho dr < \infty,$$

where $|\cdot|$ means the norm of X . The inner product $(\cdot, \cdot)_\rho$ and norm $\|\cdot\|_\rho$ of $L_2(I, X, (1+r)^\rho dr)$ are defined by

$$(u, w)_\rho = \int_I (u(r), w(r)) (1+r)^\rho dr$$

and

$$\|u\|_\rho = [(u, u)_\rho]^{1/2},$$

respectively, where (\cdot, \cdot) means the inner product of X . Then we have

$$\left\{ \begin{array}{l} U(-\Delta + Q(y))U^* = -\frac{d^2}{dr^2} + B(r) + C(r) \quad (r \in I), \\ B(r) = r^{-2}(-\Lambda_n + (n-1)(n-3)/4), \quad C(r) = Q(r\omega)x, \end{array} \right.$$

Λ_n being the Laplace-Beltrami operator on S^{n-1} and U^* denoting the adjoint of U , and hence the Schrödinger operator $-\Delta + Q(y)$ is unitarily equivalent to the operator of the form L .

Let us impose some asymptotic conditions on the coefficients $B(r)$ and $C(r)$. $C(r)$ can be decomposed as $C(r) = C_0(r) + C_1(r)$ with bounded, self-adjoint operators $C_0(r)$, $C_1(r)$ ($r \in I$) on X . Here $C_0(r)$ and $C_1(r)$ are assumed to satisfy the following two conditions (C_0) (C_1):

$$\begin{aligned} (C_0) \quad & \left\{ \begin{array}{l} \|C_0(r)\| \leq c_0(1+r)^{-\varepsilon} \quad (r \in I), \\ \left\| \frac{d}{dr}C_0(r) \right\| \leq c_0(1+r)^{-1-\varepsilon} \quad (r \in I), \end{array} \right. \\ (C_1) \quad & \|C_1(r)\| \leq c_0(1+r)^{-1-\varepsilon} \quad (r \in I), \end{aligned}$$

where the norm $\| \cdot \|$ means the operator norm and c_0 and ε are positive constants. As for $B(r)$ let us assume

$$(B) \quad -\frac{d}{dr}(B(r)x, x) \geq \frac{\beta}{r}(B(r)x, x) \quad (r \geq R_0, x \in D)$$

with constants $R_0 > 0$ and $\beta > 1$. In addition to these conditions we have to assume some conditions such as some local smoothness conditions on $B(r)$ and $C(r)$ etc. Under these assumptions we can develop an eigenfunction expansion theory (or, to be more exact, an eigenoperator expansion theory) for L . This is an extension of Jäger [2] and Saitō [3], [4], where the case that the long-range term $C_0(r)$ is identically zero has been treated.

§2. The limiting absorption principle. Now let us state the limiting absorption principle for L which is our main tool.

Theorem 1 (limiting absorption principle). Let $k \in \mathbb{C}_+ = \{k \in \mathbb{C} / \operatorname{Im} k \geq 0, \operatorname{Re} k \neq 0\}$ and let $f(r)$ be an X -valued function on I with $f \in L_2(I, X, (1+r)^{2\delta} dr)$, where δ is a constant such that $1/2 < \delta < (2+\varepsilon)/4$. Then there exists a unique solution $v = v(k, f)$ of the equation

$$(*) \quad \left\{ \begin{array}{l} (L - k^2)v = f, \\ v \in L_2(I, X, (1+r)^{-2\delta} dr), \\ v' - ikv \in L_2(I, X, (1+r)^{2\delta-2} dr) \text{ ("radiation condition")}, \\ v(0) = 0. \end{array} \right.$$

The mapping $(k, f) \mapsto v(k, f)$ is continuous as the mapping from $\mathbb{C}_+ \times L_2(I, X, (1+r)^{2\delta} dr)$ into $L_2(I, X, (1+r)^{-2\delta} dr)$.

We shall make some remarks on this theorem. Let Φ be all (X -valued) test functions on I , that is, the element ϕ of Φ is an X -valued, sufficiently smooth function on I with compact support in I . Since L/Φ , the restriction of L onto Φ , is a symmetric and lower semi-bounded operator in $\mathcal{H} = L_2(I, X, dr)$, the Friedrichs extension T of L/Φ is well-defined. T can be considered as a self-adjoint realization of L in \mathcal{H} . Let $z = k^2 \pm ia$, where $a > 0$ and k is a real number with $k \neq 0$. Then we have

$$v(\sqrt{k^2 \pm ia}, f) = R(z)f, \quad R(z) = (T - z)^{-1}.$$

The limiting absorption principle guarantees that $R(z)f$ can be continuously extended to the solution $v(\pm k, f)$ of the equation $(*)$ as a tends to 0, i.e., we have

$$R(z)f \longrightarrow v(\pm k, f) \quad (a \downarrow 0) \quad \text{in } L_2(I, X, (1+r)^{-2\delta} dr).$$

Let us make one more remark. Let \mathcal{B} be a Hilbert space obtained by completion of Φ by the norm

$$\|u\|_{\mathcal{B}} = \left[\int_I \{ |u'(r)|^2 + |B^{1/2}(r)u(r)|^2 + |u(r)|^2 \} dr \right]^{1/2},$$

the norm $\|\cdot\|$ being the norm of X , and let ℓ belong to the conjugate space \mathcal{B}^* of \mathcal{B} , i.e., ℓ is a continuous linear functional on \mathcal{B} ,

$$\ell : \mathcal{B} \ni u \mapsto \langle \ell, u \rangle \in \mathbb{C}.$$

Then we can replace the inhomogeneous term $f(r)$ in the equation $(*)$ by $\ell \in \mathcal{B}^*$. In this case the first relation of $(*)$ should be rewritten in a weak form

$$(v, (L - k^2)\phi)_0 = \langle \ell, \phi \rangle \quad (\phi \in \Phi),$$

where $(\cdot, \cdot)_0$ means the inner product of $\mathcal{H} = L_2(I, X, dr)$. It can be shown that this new equation has a unique solution $v = v(k, \ell)$, too,

if

$$\|\ell\|_\delta = \sup\{|\langle \ell, (1+r)^\delta \phi \rangle| / \|\phi\|_{\mathcal{B}} : 1\} < \infty.$$

Thus we have obtained an extension of Theorem 1.

Here and in the sequel let us assume that $\varepsilon > 1/2$ in the conditions (C_0) and (C_1) . Then, using Theorem 1, we can show

Theorem 2 (the asymptotic behavior of $v(k, f)$). Let k be a real number with $k \neq 0$, $f(r) \in L_2(I, X, (1+r)^2 dr)$ and let $v = v(k, f)$ be a unique solution of the equation $(*)$. Then the strong limit

$$\underset{n \rightarrow \infty}{\text{s-lim}} e^{-i\mu(r_n, k)} v(r_n)$$

exists in X , where

$$\mu(r, k) = kr - (2k)^{-1} \int_0^r C_0(t) dt,$$

and $\{r_n\}$ is a sequence such that $r_n \uparrow \infty$ and $v'(r_n) - ikv(r_n) \rightarrow 0$ in X as $n \rightarrow \infty$. The limit is independent of the choice of the sequence $\{r_n\}$.

§3. Eigenfunction expansion. Let us assume that $\varepsilon > 1/2$ in (C_0) and (C_1) . Set $\bar{I} = [0, \infty)$ and let \mathcal{C}_+ be as in Theorem 1. First we shall define the Green kernel $G(r, s, k)$ ($r, s \in \bar{I}$, $k \in \mathcal{C}_+$) for the operator L . $G(r, s, k)$ is a bounded linear operator on X such that $v = G(\cdot, s, k)x$ is the solution of the equation $(*)$ with $f(r)$ replaced by $\ell[s, x] \in \mathcal{B}^*$ for all $x \in X$, where $\ell[s, x]$ is a continuous linear functional over \mathcal{B} defined by

$$\langle \ell[s, x], \phi \rangle = (x, \phi(s)) \quad (\phi \in \mathcal{B}),$$

(\cdot, \cdot) being the inner product of X . The existence of $G(r, s, k)$ follows from the second remark after Theorem 1. The Green kernel $G(r, s, k)$ can be easily seen to be the resolvent kernel of the self-adjoint realization T of L , which was defined in §2, i.e., we have

$$R(z)f(r) = \int_I G(r, s, \sqrt{z})f(s) ds \quad (z \in \mathbb{C} - \mathbb{R}, R(z) = (T - z)^{-1}).$$

Therefore, denoting by $E(\cdot)$ the spectral measure associated with T , we obtain

$$E((a, b))f(r) = \int_a^b d\lambda \int_I \{G(r, s, \sqrt{\lambda}) - G(r, s, -\sqrt{\lambda})\} f(s) ds$$

$$(0 < a < b < \infty).$$

On the other hand by the use of Theorem 2 it can be shown that there exists the strong limit

$$\eta(r, k) = \underset{s \rightarrow \infty}{s\text{-lim}} e^{-i\mu(s, k)} G(r, s, k) \quad (k \in \mathbb{R} - \{0\}).$$

Here $\mu(s, k)$ is as in Theorem 2. For each pair $(r, k) \in \bar{I} \times (\mathbb{R} - \{0\})$ $\eta(r, k)$ is a bounded linear operator on X and we have

$$\eta^*(0, k) = 0, \quad (L - k^2)\eta^*(\cdot, k)x = 0 \quad (x \in X),$$

where $\eta^*(r, k)$ is the adjoint of $\eta(r, k)$. $\eta(r, k)$ is called the eigen-operator for L . It follows from the Green formula that

$$(\{G(r, s, k) - G(r, s, -k)\}x, y) = 2ik(\eta(s, k)x, \eta(r, k)y)$$

$$(x, y \in X, k \in \mathbb{R} - \{0\}, r, s \in \bar{I}).$$

These relations are combined to give

Theorem 3 (expansion theorem). The generalized Fourier transforms \mathcal{F}_{\pm} from $\mathcal{B} = L_2(I, X, dr)$ into $\widehat{\mathcal{B}} = L_2((0, \infty), X, dk)$ are well-defined by

$$(\mathcal{F}_{\pm} f)(k) = \underset{N \rightarrow \infty}{\text{l.i.m.}} \int_0^N \eta_{\pm}(r, k) f(r) dr \quad \text{in } \widehat{\mathcal{B}},$$

where

$$\eta_{\pm}(r, k) = \pm \sqrt{\frac{2}{\pi}} ik \eta(r, \pm k) \quad (k > 0).$$

For any Borel set $B \subset (0, \infty)$ we have

$$\mathcal{F}_{\pm}^* \chi_{\sqrt{B}} \mathcal{F}_{\pm} = E(B),$$

\mathcal{F}_{\pm}^* being the adjoints of \mathcal{F}_{\pm} , respectively, and $\chi_{\sqrt{B}}$ being the characteristic function of $\sqrt{B} = \{k > 0 / k^2 \in B\}$.

Further, we can show

Theorem 4. The generalized transforms \mathcal{F}_{\pm} are orthogonal, or equivalently, \mathcal{F}_{\pm} transform \mathcal{B} onto $\widehat{\mathcal{B}}$.

§4. The Schrödinger operator in R^n . As has been remarked in §1, the Schrödinger operator $-\Delta + Q(y)$ in R^n is converted into the form L by the unitary operator $U = r^{(n-1)/2}$. Let us assume that the potential $Q(y)$ the following condition (Q):

(Q) $Q(y)$ is a real-valued function on R^n ($n \neq 2$). $Q(y)$ can be decomposed as $Q(y) = Q_0(y) + Q_1(y)$ with real-valued functions $Q_0(y)$ and $Q_1(y)$ on R^n such that

$$\left\{ \begin{array}{l} Q_0(y) = O(|y|^{-(1/2)-\alpha}), \\ \frac{\partial Q_0}{\partial y_j} = O(|y|^{-(3/2)-\alpha}), \\ \frac{\partial^2 Q_0}{\partial y_j \partial y_m} = O(|y|^{-2-\alpha}), \\ Q_1(y) = O(|y|^{-(3/2)-\alpha}) \end{array} \right.$$

$$(|y| \rightarrow \infty, j, m = 1, 2, \dots, n)$$

with $\alpha > 0$.

Then all the results obtained in §2~§3 can be applied to the operator $-\Delta + Q(y)$. As is well-known the restriction of $-\Delta + Q(y)$ onto C_0^∞ is essentially self-adjoint in $L_2(R^n, dy)$ with a unique self-adjoint extension H . The spectral measure associated with H will be denoted by $\tilde{E}(\cdot)$.

Theorem 5. There exist the eigenoperators $\tilde{\eta}_\pm(|y|, |\xi|)$, $y, \xi \in R^n$, which are bounded linear operators on $L_2(S^{n-1})$, and the generalized Fourier transforms $\tilde{\mathcal{F}}_\pm$ from $L_2(R^n, dy)$ onto $L_2(R^n, d\xi)$ are well-defined by

$$(\tilde{\mathcal{F}}_\pm F)(\xi) = \lim_{N \rightarrow \infty} \int_{r < N} (\tilde{\eta}_\pm(r, |\xi|) F(r \cdot))(w') r^{n-1} dr$$

$$(F \in L_2(R^n, dy), w' = \xi/|\xi|)$$

in $L_2(R^n, d\xi)$. For any Borel set $B \subset (0, \infty)$ we have

$$\tilde{E}(B) = \tilde{\mathcal{F}}_\pm^* \chi_{\sqrt{B}} \tilde{\mathcal{F}}_\pm.$$

Let us consider the case of $Q(y) = 0$, i.e., the case of the Laplacian. In this case our generalized Fourier transforms become

equal to the ordinary Fourier transforms in $L_2(\mathbb{R}^n)$. Therefore the ordinary Fourier transforms are a special case of our generalized Fourier transforms.

§5. Concluding remarks. Ikebe [1] has shown that the Schrödinger operator $-\Delta + Q(y)$ can be treated directly by the use of essentially the same ideas as ours. In his treatment the condition $n \neq 2$ is unnecessary.

As for the short-range term $C_1(r)$ the condition that $\epsilon > 1/2$ can be replaced by a weaker condition that $\epsilon > 0$. But, since Theorem 2 does not seem to be valid in this case, we need some new devices such as the ones used in Saitō [4]. Moreover $C_1(r)$ may admit some local singularities in the interval I .

For the proof of the theorems given in this report see Saitō [5].

References

- [1] T. Ikebe: Spectral representations for the Schrödinger operators with long-range potentials, I, II, Preprint, 1974.
- [2] W. Jäger: Ein gewöhnlicher Differentialoperator zweiter Ordnung für Funktionen mit Werten in einem Hilbertraum, Math. Z. 113 (1970), 68-98.
- [3] Y. Saitō: The principle of limiting absorption for second-order differential equations with operator-valued coefficients, Publ. RIMS 7 (1972), 581-619.
- [4] Y. Saitō: Spectral and scattering theory for second-order differential operators with operator-valued coefficients, Osaka J. Math. 9 (1972), 463-498.
- [5] Y. Saitō: Spectral theory for second-order differential operators with operator-valued coefficients and their applications to the Schrödinger operators with long-range potentials I, II, Preprint, 1974.