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1. fejezet 1

1. Bevezetés

Ertekezésem témajat kiilonb6z6 elméleti modellek funkcionélis renormalasi-
csoport-modszerrel torténd vizsgalata képezi. Ennek az elméleti modszer-
nek az alkalmazasi kore a fizika tobb teriiletét feldleli, magaba foglalva a
részecskefizikdhoz és a szilartestfizikahoz tartozé modelleket is. A funkcio-
nélis renormélas &altal elért eredmények koziil bizonyara a térelméleti mo-
dellek fazisszerkezetének kutatasaban elért sikerek a legismertebbek, melyek
forradalmasitotték a folytonos fazisdtalakulasok tanulmanyozaséat. Részben
ezeknek az eredményeknek, részben az eljaras elvi jelent&ségének koszonhe-
téen jelenleg is fontos kutatési teriilet a renormélas tobb évtizede ismert
eljardsanak tovabbi fejlesztése és alkalmazasanak kiterjesztése.

A funkcionalis renormélas jelentGségének értékeléséhez szemléletének
tobb elényos tulajdonsigit érdemes megemliteni. Ilyen tulajdonsignak te-
kinthet§ a nemperturbativ megkozelités, a kiilonb6z6 hullamhosszu gerjesz-
tésekhez tartozo szabadsagi fokok elkiilonitése és a vizsgalt modell kevésbé
lényeges jellemzGit elhanyagolé hatékony kozelitések alkalmazésa. Ezek a
jellegzetes elényOk a modszert a térelméleti modellek vizsgalatanak igéretes
eszkozévé avatjik, amelynek alkalmazésa nem csupan a fazisatalakulasok
lefrasara korlatozodik.

Az els6ként emlitett nemperturbativ targyalas jelentésen kiterjeszti a
modszer alkalmazasi korét. A perturbacioszamitas alkalmazasa altalaban
jelentGsen korlatozza a vizsgélt kolcsonhatas erdsségét jellemzs paraméter-
nek, azaz a csatolasnak a megvalasztasat. A funkcionalis renormalas ese-
tén nincs ilyen elvi korlat, mivel ez a moédszer a perturbativ renormaléssal
ellentétben nem tamaszkodik a csatolas értéke szerinti sorfejtés gyors kon-
vergenciajara.

A funkcionalis renormélas egyik legfontosabb sajatossaga, hogy a ha-
gyoményos targyalastol eltérGen lehetGséget kindl a szabadsagi fokok cso-
portjainak elkiiloniilten torténd kezelésére. A térelméleti szemlélet soran
az euklideszi téridé formalizmusét és a Fourier-transzformaciot alkalmazva
fliggetlen szabadségi fokoknak a vizsgalt rendszer kiillonb6z6 hullaimhosszu
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gerjesztései tekinthetGek, igy természetes lehetdség kinalkozik a szabadsagi
fokok méretskala szerinti rendezésére. Mindazaltal a kiilénb6z6 hullam-
hosszti gerjesztéseket altalaban nem kiilonitjiik el élesen. A hullaimhossz
szerinti rendezés a Fourier-modusok (a h = ¢ = 1 egységrendszerben ener-
gia dimenzi6ju) hullamszama szerinti forditott irany rendezésnek felel meg,
igy altalaban energiaskala szerinti csoportositasrél beszéliink.

A fizikai rendszerek tanulméanyozésa soréan a szabadsagi fokok csopor-
tositasdnak elénye tobbrétid. Egyrészt a szabadséagi fokok fentiek szerinti
elkiilonitése nyilvanvaloan fizikai jelentést hordoz, ezért informéciot veszi-
tenénk, ha a kiilénb6z8 energiaval jellemezhetd folyamatoknak csupan az
Osszhatéasat vennénk figyelembe. Masrészt azaltal, hogy szamitasaink adott
lépésében csupan adott energiaju gerjesztéseket vesziink figyelembe, lehe-
t&ség nyilik az elmélet korlatainak tiszteletben tartésara és ezen korlatok
feltarasara.

A targyalas soran a szabadsagi fokok ilyen szétvalasztasa annak remé-
nyével is kecsegtet, hogy a természet strukturalt felépitését kihasznalva
kozelitéseinket hatékonyabbé tehetjiik. Ez alatt azt értem, hogy mivel
a természetben a kilonb6zs térbeli illetve idébeli kiterjedéssel rendelkezé
folyamatok gyakran elkiiloniilnek egyméstol, a vizsgalt rendszernél nagy-
sagrendekkel kisebb vagy nagyobb objektumok hatasat sokszor érdemes az
adott rendszer modelljének kisebb modositésain keresztiil figyelembe ven-
nilink. Példaul az atommag lefrasara sikeresen alkalmazhatdak azon effektiv
modellek, melyekben eltekintiink a nukleonok belsejében zajlo részecskefi-
zikai folyamatok és a magot koriilvevs elektronfelhd részletes targyalasatol.

Mindezek mellett a médszer szemléletének alapvets sajatossaga, hogy a
a tanulmanyozott elméletet a szamitasok soran egyszeriibb effektiv model-
lekre leképezve a vizsgalt rendszer leglényegesebb jellemzdinek megragada-
sara torekszik. Szamitasi képességeink korlatjainak koszonhetGen a fizika-
ban altalanos az a torekvés, hogy az adott modellbdl levonhato kdvetkezte-
téseket a természet pontos leirasabdl ad6do egyenletek nyers erével torténd
megoldéasa helyett az elhanyagolhat6 részleteket mell6zve hatarozzuk meg.
Mas szavakkal megfogalmazva megprobéalunk az elmélet szamunkra érdek-
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telen jellemzGinek kiszamitasat elkeriilé hidat épiteni a bonyolult, valésédghti
modell és az alkalmazasok soran felmeriil§ egyszerd kérdések kozott. Ennek
koszonhetGen a renormaélas alkalmazasa indokolt lehet olyan kérdések esetén
is, amelyek més eszkozokkel is targyalhatoak.

A renormalasi csoport gazdag irodalmanak ellenére még szamos nyitott
kérdés talalhaté mind a modszer fejlesztésének, mind a lehetséges alkalma-
zésok kiaknazéasanak teriiletén. Az elsé csoportba tartozik a renormélasi
séma optimalizalasanak kérdése, melynek megkozelitésére tobb kiilonbo6zé
at ismert. Bar a kiilonboz6 sémak elvileg egyenértékiinek tekinthetGek,
a gyakorlatban a kutatasok soran a rendelkezésre &ll6 erdforrasok korla-
tossaganak koszonhetSen az optimalizalds hidnya vagy elégtelensége egyik
akadalya lehet a modszerben rejlé lehetdségek maximaélis kihasznélasanak.
Kutatasunk soréan tobbek kozott azt a célt tiiztiik ki, hogy az optimalizalast
egy viszonylag egyszert modell, a kvantalt anharmonikus oszcillator esetén
tanulméanyozzuk, amely modellre vonatkozéan nagy pontossdgu irodalmi
adatok allnak rendelkezésre.

A renormalas szamos igéretes alkalmazasi teriilete koziil értekezésem-
ben harom modellt ismertetek. Els6ként a nyilt kvantummechanikai rend-
szerek vizsgalataban kiemelt szerepet betdlté kvantalt Caldeira—Leggett-
modell folytonos spektrumti koérnyezetet leird valtozatait targyalom. Az
értekezésemben tanulmanyozott esetekben a relevans alrendszer koérnyeze-
tére vonatkozd informacidinkat a modell héfiird§jének spektralfiiggvényében
foglaljuk Gssze. A spektralfiiggvény realisztikus megvélasztasa a spektrum
nagyenergias levagasanak bevezetését igényli, amely szilikségessé teszi an-
nak tisztazéasat, hogy a kiilonboz6 tipusi és értéki levagasok alkalmazasa
hogyan befolyasolja a modellben megfigyelhets fazisatalakulast. Ekkor a
kritikus exponensek pontos meghatarozasan tilmenden a spektralfiiggvény-
ben megjelend csatolas esetleges nem perturbativ jellege is a funkcionéalis
renormalés alkalmazasara 0sztonoz.

Tovabbi alkalmazast jelent a jelentSs érdekl6désre szamot tartd sine-
Gordon-modell nagyenergias kiterjesztésének tanulményozasa. A sine-Gor-
don-modell t&bb kiilonleges tulajdonsaga altal (topologikus fazisatalakulas,
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periodikus potencial, integralhatosag) egyszertisége ellenére kiemelkedik a
kvantumtérelméleti modellek sorabol és Gj elméleti modszerek kiprobélasara
nyujt lehetGséget. A modell nagyenergias kiterjesztése olyan hatéssal jel-
lemezhetd, melynek kifejezésében a térvaltozé magasabb rendi derivaltjai
is megjelennek. Ezért célul tiiztiik ki olyan renormaélasicsoport-egyenletek
levezetését, melyek ilyen nagyenergias kiterjesztések vizsgalatara nydjtanak
lehet8séget. Az ilyen irdnyt vizsgélatok az aszimptotikus biztonsag kérdésé-
nek teljesebb targyalasat és a fazisszerkezet mélyebb megismerését kinaljak.

Harmadik modellként az egy fermionizzel rendelkezd kétdimenzios kvan-
tum-szindinamikat tekintem. Bar az alacsonydimenzids térgyalas nyilvan-
valban mindségi eltérést jelent a valdsaghti, négydimenzios elmélethez ké-
pest ezen egyszertsitett modell tanulmanyozasa mégis egy lépést jelenthet
a rendkiviil bonyolult erds kolcsonhatas megértése felé vezetd tton. Vizs-
galataink sorédn a fermionikus elmélet bozonizacioja altal nyert skalaris mo-
dellbdl indultunk ki, amely sine-Gordon tipusii 6nkolcsonhatést tartalmaz.
Ez jelent6s motivaciot jelent arra, hogy a modellt alavessiik a periodikus
modellek tanulményozasaban rendkiviil hatékonynak bizonyul6é renormélasi
csoport vizsgalatnak. Az egyik legfontosabb kérdés a lehetséges fazisok meg-
hatarozasa, amely a specialis tomegmatrixi réteges sine-Gordon-modellre
vezetd alacsonyenergids kozelités keretén beliil megvalaszolhato.

Ezeket a kiilonbozd kérdésfelvetéseket figyelembe véve doktori érteke-
zésem hét tovabbi fejezetre tagolodik. Az elméleti hatteret ismertets feje-
zet utan kiilon fejezetben targyalom a kvantalt anharmonikus oszcillator-
nak, a Caldeira—Leggett-modell folytonos spektrumu valtozatainak, a sine-
Gordon-modell nagyenergias kiterjesztésének és a kétdimenzids kvantum-
szindinamikanak RG-moédszerrel torténd vizsgalatat, majd a magyar és an-
gol nyelvii 6sszefoglalo fejezetekkel zarom az értekezést.
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2. A funkcionilis renormalasicsoport-modszer

2.1. Bevezetés

A funkcionalis renormalasicsoport-modszer (angolul renormalization group
method, a tovabbiakban RG-moédszer) alabbi altalanos attekintése kézben
nem torekedhettem a teljességre, a célom csupan az, hogy az irodalom-
ban megtalalhaté eredmények részleges ismertetésével bevezetést nyujtsak
az értekezésemben tanulményozott kérdésekhez. Az RG-modszer gazdag
szakirodalmabol az altalanos attekintés vonatkozasaban a [1-7] munkakra
hivatkozom. A matematikai formalizmus bemutatésa soran csupéan a tézi-
seim szempontjabol relevians skalaris elméleteket tekintem, nem térve ki a
funkcionalis renormalas fermionikus elméletekre [8], mértékelméletekre [9] és
kvantumgravitaciora [10] torténd alkalmazasara. A teljesség kedvéért meg-
emlitem, hogy az RG-moédszer altal az értekezésemben érintett teriiletek
mellett véges homérsékletii kvantumtérelmeéleti modellek [11] és nemegyen-
stlyi statisztikus fizikai rendszerek [12] is vizsgalhatoak, tovabba a renor-
maéalasnak a zart id6tengelyes formalizmussal [13-15] torténd 6sszekapcsolasa
is fontos kutatési teriilet.

A funkcionalis RG-modszerre a szakirodalomban t6bb kiilonb6zé elne-
vezés is hasznélatos, tgymint nemperturbativ, egzakt ill. differencialis RG.
Ezeknek a jelz6knek a célja a mddszernek a csatolasok szerinti sorfejtésen
alapuld perturbativ renormaléstol torténd megkiilonboztetése. A tovabbi-
akban renormalés alatt mindig a funkcionalis RG alkalmazéasat értem.

A fejezet tovabbi részében elGszor attekintem a funkcionélis renormélas
alapgondolatat, majd a statisztikus fizikat a kvantumtérelmélettel 6sszekap-
csold funkcionalis formalizmust. Ezt kévetGen targyalom az RG-egyenletek
levezetését mind a Wegner-Houghton-séma szemléletében, mind a Wette-
rich-féle effektivhatas-szemlélet esetén. Végiil kitérek a modszernek a fa-
zisatalakulasok tanulményozésiaban betoltott szerepére és az alkalmazott
megkozelités jelentGségére a kvantumtérelméleti modellalkotas vonatkoza-
saban.
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2.2. A funkciondlis renormalas alapgondolata

A funkcionalis RG-moddszer bevezetése és céljanak megjeldlése tobbfélekép-
pen is megtehetd [2], igy az alabb ismertetett megkozelités nem kizarolagos.
Mivel a modszer alkalmazasi kore szilardtestfizikai és részecskefizikai mo-
delleket is feldlel, a renormélas bevezetése megtorténhet mind a statisztikus
fizika, mind a kvantumtérelmélet fogalmain keresztiil. Az euklideszi kvan-
tumtérelméleti modellek és a folytonos térvaltozéoval jellemzett statisztikus
fizikai modellek kozotti nagyon szoros analodgia [16, 17| kovetkeztében az
RG-egyenletek levezetése soran altalaban mindegy, hogy melyik esetre gon-
dolunk, noha a képletek fizikai interpretacidja a két esetben kiillonb6zs.

Az RG alapgondolata nagyon hasonlé a statisztikus fizikiban alkalma-
zott modellalkotashoz. Altaldban a statisztikus fizika targykorébe tartozo
sok szabadsagi fokkal rendelkezd rendszerek vizsgélata soran olyan model-
leket alkotunk, amelyek nem képesek szamot adni minden egyes szabadsagi
fokrol, viszont meghatarozzak az adott fizikai rendszert jellemzd legfonto-
sabb mennyiségek értékeit [18]. A rendkiviil sok szabadsagi fokkal rendel-
kez6 rendszerek esetén elkeriilhetetlenné valik egyes részletek elhanyagolasa
a leirds soran. Ezért a statisztikus fizika egyik alapvetd kérdése, hogy egy
adott fizikai rendszer esetén hogyan alkossunk olyan egyszertibb modellt,
amely viszonylag pontosan reprodukalja az eredeti bonyolult rendszer leg-
fontosabb tulajdonséigait. Ebbdl a nézépontbdl a funkcionalis renormalast
olyan miiveletnek tekinthetjiik, amelynek célja a fizikai valésagot leird bo-
nyolult modellek egyszertibb modellekre torténé leképezése az eredeti rend-
szernek a vizsgalat szempontjabol lényeges tulajdonsagait megorzé kozeli-
téseket alkalmazva.

A renormélas sz6 arra utal, hogy az 0j modell bevezetése az eredeti mo-
dell paramétereinek megvaltoztatasa, ,,djranormalasa” altal torténik. Az a
kovetelmény, hogy a renormaléssal kapott modell csupan a paramétereinek
értékeiben kiilonbo6zzon az eredeti modellt§l val6jaban nem jelent szigori
megszoritdst. Ha a renormélassal kapott modell particios fiiggvényének ex-
ponensében (ill. térelméleti modell esetén a generalod funkcionéal exponensé-
ben) 14j tagok jelennek meg, akkor gy tekinthetjiik, hogy ezek a tagok az
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eredeti modell esetén is szerepeltek zérus egyiitthatéval. A renormélas al-
tal kapott modellt azért tekinthetjiik egyszertibbnek, mert abban mér nem
szerepeltetjliik a kordbbi modell egyes szabadségi fokait. Az elhanyagolt
szabadségi fokok hatasat csupéan kozelitések alkalmazaséval, a renormalt
modell megvaltoztatott paraméterei altal vessziik figyelembe.

Altalaban a kozelitések kivetkeztében a szabadségi fokok eltavolitasat
tobb lépésben kell elvégezni [1], azaz egy adott lépésben kapott renormalt
modellt jabb renormalési transzformécionak aldvetve modellek lancolatat
sziikséges végigkdvetni. Gyakran differencidlegyenletekkel leirhaté folytonos
transzforméciokat alkalmazunk. Ekkor az egyenleteket numerikusan meg-
oldva az elmélet paraméterterében kirajzol6dé gérbén haladunk végig, me-
lyet RG-trajektoridanak neveziink. Mindazaltal a szamitasok altalaban nem
korlatozédnak egyetlen trajektoridra, mert gyakran sziikséges megvizsgélni
a kezdeti modell paramétereinek tobb lehetséges értékét.

A renormélas nemcsak egyszertibb modellekre vezet, hanem gyakran el-
vileg teljes értéki modszerként alkalmazhaté az adott modell vizsgalatara.
Ez annak a kovetkezménye, hogy a szabadséagi fokok kiovetkezetes eltavo-
litasa a modellek particios fliggvényében (ill. general6d funkcionéljaban) a
mikroallapotokra torténd osszegzés (ill. a térkonfiguraciokra) torténd integ-
ralas elvégzésének felel meg, amely altal a fizikai rendszert jellemz6 mennyi-
ségek értéke meghatarozhato. Emellett bizonyos kérdések (ilyen altalaban
a fazisatalakulasok kimutatasa) nem igénylik a trajektoridkat meghatarozo
differencialegyenletek, azaz az RG-egyenletek megoldaséat, hanem megvéla-
szolhatoak a renormaélési transzformacionak a dimenzidtlanitott egyenletek
fixpontjai koriil linearizalt alakjanak vizsgélataval. Ezaltal a médszer fontos
szerepet kap bonyolult modellek kvalitativ viselkedésének feltérképezésében.

A funkcionalis renormélas nagyon szemléletessé valik azon gyakori meg-
valositas soran, amikor a fizikai rendszert Fourier-térben tekintjiik és a re-
normélas egyes lépéseiben mindig a legkisebb hullamhossza Fourier-modu-
sokat tavolitjuk el. Ekkor eljarasunk olyan képzeletbeli mikroszkép mii-
kodéséhez hasonlithato [20], amelynek felbontasat fokozatosan csokkentjiik
azért, hogy lathatova valjon a fizikai rendszer makroszkopikus viselkedése.
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A szakirodalomban széleskortien hasznélt renormalési csoport elnevezés-
sel kapcsolatban érdemes megemliteni, hogy a torténetileg kialakult elneve-
zés bizonyos szempontbol félrevezets, ugyanis az alkalmazésok soran vég-
rehajtott renormélasi transzforméciok altalaban nem alkotnak csoportot,
mert nem invertalhat6 leképezést valésitanak meg. Ez azért nyilvanvalo,
mert altalaban végtelen sok szabadsagi foku rendszereket vizsgalva kozeli-
téseket alkalmazva egy adott renormaélasi 1épésben végtelen sok szabadsagi
fokot mell6ziink, melyek hatasat véges sok paraméter megvaltoztatasaval
vessziik figyelembe.

2.3. A kvantumtérelmélet és a statisztikus fizika kapcsolata

Az RG-egyenletek levezetése el6tt roviden ismertetem a statisztikus fizikét
a kvantumtérelmélettel sszekapcsold funkcionélis formalizmust.

Ebben a formalizmusban a kvantumtérelmélet vizsgalata soran kulcssze-
repet jatszik a generald funkcionél fogalma, melyet a Minkowski-térid6ben
tekintett egy komponens® skalaris térelmélet esetén h = ¢ = 1 egységrend-
szert alkalmazva a

210 = /D(beif7 dt [ d3a(L+T0) (1)

funkcionalis integrallal definialhatunk [17]. A képletben D¢ jeloli a palyain-
tegralt definidld, a ¢-vel jeldlt térkonfiguraciokon értelmezett dimenzidtlan
integralasi mértéket, £ jeloli az elmélet Lagrange-stirtiségét, J jeloli a tér-
valtozohoz csatolt kiils6 forrast. A téridé koordinatédk szerinti integraléas
hatarait természetesen a vizsgalt rendszert magaba foglal6 téridébeli tarto-
méany hatarai szolgaltatjak. A ~ index arra utal, hogy az idévaltozo szerinti
integralas soran az integralasi konturt éramutatd jérasa szerinti irdnyban
infinitezimalisan elforgatjuk a komplex szamsikon.

Erdemes megemliteni, hogy a fenti formalis definici6 véges egyiitthatok-
kal jellemzett Lagrange-stirtiség esetén altalaban divergélé fizikai mennyisé-
gekhez vezet, ezért a térelméleti modellek szigorti matematikai definidlasa-
hoz az adott elmélet esetén alkalmazott regularizacios eljarasokat is figye-
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lembe kellene venni. Ez a kérdés azonban alapvetfen nem érinti a kvantum-
térelmélet és a statisztikus fizika kapcsolatat.

Ertekezésem tovabbi részében euklideszi téridében tekintett kvantumtér-
elméleti modelleket vizsgalok. Az euklideszi téridére torténd attérés annak
felel meg, hogy az id6valtozo szerinti integralas konturjat a komplex sikon
az imaginarius tengelyre forgatjuk el az 6ramutatd jarasa szerint végzett
forgatas altal. Ha az értelmezési tartoméanyt az egyszertibb targyalas célja-
bol a teljes téridére kiterjesztjiik, az euklideszi térid6ben tekintett elméletet
a

ZE[J] — /quei L;w dtfd31(£+J¢) (2)

general6 funkcionél altal definialhatjuk.
A 7 = it valtoz6 bevezetésével az fl;:oo dt — ffooo(—i)dT helyettesitéses
integralast alkalmazva

ZglJ] = / Dol S5 () [ S LEH)+I(E LTS ). 3)

fgy az [d'ag = [%_dr [dPx és Lp(Z,7) = —L(Z,1(7)) jeldléseket beve-
zetve a

alakot [17] nyerjiik, ahol Sg = [ Lrpd%zg az euklideszi hatds. Az irodalom-
ban [17] szokdsos médon a Minkowski-térbeli Lagrange-siirtiséget

£= 309~ 5(Vo) ~ V(9) o)

alakunak tekintjiik. A 7 valtozd definici6jaboél kovetkezéen 9y = i0,, azaz
(0:9)? = —(0,¢)?, igy az euklideszi Lagrange-siirtiség az

(O0)* + V() (6)

N |

Lo = L= 3(0:0)" + 5(Vo)* + V(9) =
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forméban irhaté. A tovabbiakban az egyszertiség kedvéért ha az ellenkezd-
jét nem emlitem mindig feltételezem a potencidl Zo-szimmetriajat, azaz a
V(p) = V(—09) feltétel teljesiilését.

Célszert definialni az 6sszefliggd Feynman-grafok generalé funkcionaljat,

W1J] = In Zg[J] (7)

funkcionéalt, és ennek Legendre-transzforméltjat, az effektiv hatédsnak vagy
atlagos effektiv hatasnak nevezett

Ily] = / Jod'er — W (s)

funkcionalt [21]. A Legendre-transzformaciobol kovetkezden a (8) egyenlet-

ben szerepld J fliggvényt a ¢ fliggvény hatarozza meg a ¢ = Wg}‘” egyenlet

altal. Az effektiv hatas hatékonyan foglalja Gssze a modell legfontosabb

jellemzGit. Az effektiv hatas trivialistol eltérd minimuma az elméletben
felléps spontédn szimmetriasértésre mutat, méasodik derivaltjanak zérushe-
lyei meghatarozzak a részecske tomegét, tovabba a I'[p] funkcional altal
generalt egyrészecske-irreducibilis Feynman-grafok a Lehmann-Symanzik-
Zimmermann redukcios formulanak [17] készonhetSen meghatarozzak a szo-
réasi kisérletek eredményét leird S-métrix elemeit.

Az euklideszi kvantumtérelmélet generald funkcionaljanak a (4) egyen-
letben felirt alakja anal6giat mutat a paramégneses-ferromégneses fazisat-
alakulas tanulméanyozasara bevezetett modellek particios fiiggvényével. A
méagnese rendszereket leir6 modellek koziil taldn a legismertebb az Ising-
modell [19]. A modell szerint a rendszer mikroallapota a diszkrét racs-
pontokban definiélt spinnek nevezett véltozo értekeivel irhaté le, melynek
értéke kétféle lehet, 1 ill. -1. Ez annak felel meg, hogy egy adott réacspont
spinje kétféle iranyban &llhat, a kiils6 mégneses tér iranyaval megegyezSen
ill. azzal ellentétesen.

A szomszédos racspontok kolcsonhatnak egyméssal oly modon, hogy a
kolesonhatas a spinek iranyat azonossa igyekszik allitani. Ennek megfelelGen
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egy adott s spinkonfiguracio altal megvalositott mikroallapot energidja az

ES = Z JSZ‘SJ‘ — ZSZ‘B (9)
<i,j> i

kifejezéssel jellemezhetd, ahol s; a i. récspont spinje, J < 0 a szomszédos

spinek kozotti kolesonhatés erdsségét meghatarozé paraméter, a B paramé-

ter a kiils6 magneses tér erésségét jellemzi. >  a szomszédos racspontokra
<1,7>
torténd Osszegzést jeloli, amely soran adott pontpart csak egyszer vesziink
figyelembe.
Kanonikus eloszlast feltételezve T h6mérsékletd rendszer esetén a mo-

dellt jellemz& makroszkopikus mennyiségek varhato értéke a
7 =" b (10)
S

%, k a Boltzmann-4allando

particios fliggvény altal szamithaté ki, ahol 8 =
és az Osszegzés az Osszes lehetséges! spinkonfiguraciora kiterjed. A modell
vizsgalata sordn azért, hogy a szamitott mennyiségek értéke ne fiiggjon a
racspontok N szamétol, gyakran célszerdi az intenziv mennyiségek vonat-
kozésdban az N — oo Gn. termodinamikai hatireset képzése, melyet a
racspontok szamanak és a rendszer térfogatanak hanyadosat rogzitve valo-
situnk meg.

A modell altalanosithato azon esetre, amikor a térvaltozénak nevezett,
¢-vel jelolt | spinvaltozo” folytonos fiiggvénye a térkoordinatanak és tetszo-
leges értéket felvehet. Az altalanositas sordn megengedjiik, hogy a kiils6
méagneses tér a koordindta tetszdleges fiiggvénye legyen és megengedjiik,
hogy az adott térkonfiguracié energidja fiiggjon a térvaltozo derivaltjatol.
Az altalanositas soran bevezetjitk tovabba az o paramétert. Igy d térdi-
menzidban a

Z = /ngefdd”‘ (11)

L Az 6sszegzésbol ki kell zarni azokat a térkonfiguraciokat, amelyek bar energetikailag
kedvezsek, viszont a rendszer vizsgalatdnak ideje alatt nem valosulhatnak meg. Ilyen
eset léphet fel péld4aul spontan szimmetriasértés vagy tobb fazis létezése esetén [19].
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particios fiiggvénnyel definialt modellt kaphatjuk?, ahol
H(T) = Ho(T) — BB(T)p(T), (12)

Ho = 50(V6) + V(). (13)

A folytonos esetre torténg altalanositas soran a funkcionalis integrél a
térkonfiguraciokra torténd Osszegzés altalanositasat valositja meg. A végte-
len térfogatnak megfelels hatareset képzését (a diszkrét esethez hasonléan)
természetesen a particios fliggvény helyett a varhato értékekre kapott kife-
jezésekben kell elvégezni. A V(¢) fiiggvény

V(g) = %/fqﬁ? + %)@4 (14)

modon torténd megvalasztasa esetén az tgynevezett Landau—Ginzburg-mo-
dellt [19] kapjuk.

Az Ly < Hy, J < B megfeleltetés esetén a particios figgvény (11)
képlete és a generald funkcionél (4) képlete formailag megegyezik, igy a d
dimenzids euklideszi téridében tekintett kvantumtérelmélet d dimenzios tér-
ben tekintett statisztikus fizikai rendszernek feleltetheté meg. Tébb kom-
ponenst térvaltozot tartalmazoé térelméleti modellnek természetesen tobb
komponensti spinvaltozot tartalmazoé statisztikus fizikai modell felel meg.
Teljessé téve az analogiat a W[J] funkcional a Helmholtz-féle szabadener-
giaval, a I'[¢] funkcional a Gibbs-féle szabadenergiaval (azaz a szabadental-
piaval) allithato parhuzamba.

A fenti formalizmus segitségével a kvantummechanikai modellek is ha-
sonl6 moédon vizsgalhatoak, ekkor a Lagrange-stiriiség szerepét a klasszikus
elmélet Lagrange-fliggvénye, a térmennyiség szerepét a pélyat meghatarozo
koordinata-ids figgvény veszi at [20, 22|. Ekkor tébb térdimenzioban te-
kintett kvantummechanikai rendszernek tébb komponenst térmennyiséget
tartalmazo6 egydimenzids statisztikus fizikai rendszer feleltethetd meg.

2Az itt alkalmazott jelélés soran a [ tényezst H-ba olvasztjuk, ezért itt H nem az
energiastriiséget jeloli.
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2.4. A Wegner—Houghton-féle renormalasi séma

A térelméleti modellek esetén a funkcionalis renormélas megvalositasanak
legalabb két fontosabb megkozelitését kiilonboztethetjitk meg [1]: a Wilson—
Polchinski-féle szemléletet [23-25| és az tun. effektivhatés-formalizmust,
amely a Wetterich-egyenletre vezet [5, 26]. A matematikai formalizmus
targyalds soran nem ismertetem részletesen a levezetéseket, csupan a leg-
fontosabb Osszefliggések kiemelésére torekszek, mivel a célom csupan az,
hogy bevezetést nytjtsak a kés6bb targyalt kutatasi kérdésekhez.

A Wilson—Polchinski-féle szemléletet vonatkozasdban csupan a munkam
szempontjabol relevans Wegner—Houghton-féle renormalési séma (a tovabbi-
akban WH-séma) ismertetésére szoritkozom. Ebben a renormalasi sémaban
[23] a modell szabadsagi fokainak fokozatos eltavolitasat a nagyenergiaji
Fourier-modusoktol az alacsony energiaju modusok felé haladva végezziik
el. Az euklideszi téridében tekintett ¢(Zg) térvaltozot a

o) = / @e%%(ﬁmddm (15)

modon fejezhetjiik ki a tér Fourier-modusai segitségével, az altalanossag
céljabol nem rogzitve a téridé d-vel jelolt dimenziojat. A tovabbiakban
az egyszerliség kedvéért altaldban elhagyom az euklideszi téridére utalé E
indexeket és alkalmazom a témérebb z = Z, p = p, [ f(z) = [ f(z)d%z,
Lfe)=[ ﬁf(p)ddp jeloléseket.

A WHe-egyenlet aldbbi levezetése soran az euklideszi generald funkcio-
nélnak a

Zq = /D&e—s[@'i‘fx J¢ (16)

alakjabol indulunk ki, amelyben a palyaintegralt a ¢ Fourier-moédusok te-
rében végezzik el.

A d index arra utal, hogy a (16) képletbe klasszikus elméletek hatésat
behelyettesitve altalaban egyes fizikai mennyiségek értékére divergéald ered-
mények adodnak, igy az elmélet modositésa valik sziikségessé. Ennek vég-
rehajtasara, azaz a regularizilt elmélet bevezetésére tobb lehetGség van. A
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WH-séma esetén a nagyenergias, azaz ultraibolya (tovabbiakban UV) mo-
dusok altal okozott divergencidk elkeriilését az integralasi tartomany moé-
dositasaval végezziik el. Ekkor a palyaintegralt csupan azokra a Fourier-
moédusokra rjuk el6, amelyekre ¢ € Fp, ahol Fp azon ¢(p) fiiggvények
terét jeloli, amelyek csupéan a |p] < A intervallumban kiilonb6znek nullatol.
Az Onkényesen bevezetett A paraméterre altalaban UV-levagésként hivat-
kozunk.
A generald funkcional igy moédositott képletét a tovabbiakban a

Z = /DAgEe—SAfo ¢ (17)

moédon jelolom.

A statisztikus fizikai modellek esetén a A paraméter fizikai jelentése
annak feleltethet6 meg, hogy mivel a racs atomjainak tavolsdga nem le-
het tetszélegesen kicsiny, ezéaltal a Fourier-médusok energidja nem lehet
tetsz6legesen nagy. A kvantumtérelméleti modellek esetén a A paraméter
olyan energiaértéknek feleltethet6 meg, amelynél mér nem alkalmazhato
az alacsonyenergias viselkedést leir6 modell. Ilyen esetre szolgaltat példéat
a Planck-tomegnek megfelel§ energiaérték [17], mivel ilyen energidju fo-
lyamatok leirdsa soran a graviticioés kolcsonhatast figyelmen kiviil hagyo
modellek varhatéan érvényiiket vesztik. Fontos hangstlyozni, hogy mind a
kvantumtérelméleti, mind a statisztikus fizikai modellek esetén altalaban az
elmélet alacsonyenergias viselkedését vizsgaljuk, amelyet nem befolyasol A
értékének onkényesnek ting megvalasztasa.

A WH-egyenlet levezetése soran az egyszertiség kedvéért feltételezziik,
hogy a kiils6 forras nagy frekvenciaju Fourier-modusainak értéke zérus, igy
a forras jelenléte nem befolyasolja a nagy energiaji moédusokra torténd in-
tegralas elvégzését. A funkcionélis renormaélas szemléletét alkalmazva a ha-
tas funkcionaljat a tovabbiakban a k-val jelolt energiaskala fliggvényének
tekintjiik oly médon, hogy a
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egyenlet teljesiiljon, ahol [ Dy a palyaintegralnak a ¢ € Fj, moédusokra tor-
téné korlatozasat jeloli, ahol Fy, azon ¢(p) fiiggvények terét jeldli, amelyek
csupan a |[p] < k intervallumban kiilonboznek nullatol. A szokasos jelolés
soran a k index az egyes mennyiségeknek az energiaskalatol torténd fliggését
hangsilyozza. Az energiaskilatol fliges hatas bevezetésével olyan modellt
definidlunk, amely nem tartalmazza a k-nél nagyobb energidju Fourier-
modusokat, ezaltal az RG programjat megvaldsitva csokkentjiik a modell
szabadségi fokait.

A WH-egyenlet aldbbiakban ismertetett levezetése megtalalhato példaul
a [2] munkaban. Ennek soran a

g _ / Dy de—SkldlI+], 76 _ / Dy apdo—Se-arldl+, Jo (19)

egyenlettel definidlva az Sj,_aj funkcionalt, majd a ¢ = ¢'+¢", &' € Fi_ak,
¢" € Fi \ Fr_ar modon szétvalasztva a kiilonbozs energiaja modusokat a

/D(b /D(ﬁ” —Sk[¢'+¢" 1+ [, Jo _ /D&IGSI@AICM)/H’II 9. (20)

azaz
o= Sk_anld / D' oSkl +3"] (21)

egyenletet irhatjuk fel. Az Si-ra funkcionalra vonatkozé differencidlegyen-
let, azaz a Ak — 0 hatéreset levezetéséhez az Sy[¢/ + ¢”'] funkcionalt ugy
kozelitjiik, hogy annak ¢ szerinti, ¢ azonosan zérus helyen tekintett sor-
fejtését a kvadratikus tagig bezarolag vessziik figyelembe. Ezt a

B B B 59 " o1 B
S+ 3 ~ s+ [ dp% Lo
1 52519 ¢/ + gb”] n o
- [d
2/ p1/ * 58/ (p1)6/ (p2) ¢>"=0¢ () (r2)




16 2. fejezet

S [9]
5¢”5¢"

kozelitést alkalmazva a (21) egyenlet > 0 esetén gaussi funkcionalis

integralra vezet, amelyet elvégezve az

S0~ Si-anid) = [ dpr [ dn 1 05[¢ (6&/52&[@ >1 55419)

*2 5¢" (p1) (p1)d¢" (p2)/ 66" (p2)
1 6255 [0)
5 TI' 1 (b//(s(b// (23)

egyenletet vezethetjiik le, ahol a traceképzés alatt a funkcionalis derivalt
valtozoit azonossa téve az impulzus térben a k — Ak < [p] < k gémbhé-
jon végzett integralast értjiik®. A levezetett egyenletre Wegner-Houghton-
egyenletként hivatkoznak az irodalomban [2].

Ahhoz, hogy a sorfejtéssel kapott egyenlet egzaktté valjon természetesen
sziikséges a Ak — 0 hatareset képzése, ekkor a hatasfunkcionalra vonatkozo
differencialegyenletet kapunk, melynek kezdeti feltételét a hatasnak a k = A
helyen felvett értéke hatérozza meg. Mivel az alkalmazasok sorén altaldban

%&‘;ﬂ = 0, azaz a nyeregpont trividlis, ezért a tovabbiakban az
(13":0

altalanosabb esetben felléps nehézségeket [2]| elkeriilve a sorfejtés linearis
részébdl szarmazo tagot elhagyom.

Az tgynevezett lokalispotencial-kozelités (az angolul local potential app-
roximation, a tovabbiakban LPA) altal lehet&ség nyilik arra, hogy a hatés-
funkcionélra vonatkozo differencidlegyenlet helyett a V' potencial fiiggvé-
nyére vonatkozé differencialegyenlettel dolgozzunk.

LPA esetén feltételezziik, hogy az energiaskalatol fliggs hatas az

Sulo@) = [

xT

1

§Z(5E¢(9C))2 + Vi(é(2)) (24)
alakban irhato fel és a Z egyiitthato nem fiigg k értékétsl. Altalaban a Vi,
potencial ¢ szerinti sorfejtésének konstans tagjanak értéke nem befolyasolja
a modell vizsgalt tulajdonsagait, ezért értéke szabadon megvélaszthato.

3Az irodalmat kévetve nem jelslom kiilon a logaritmus és a trace képzése soran az
egyenlet dimenziotlanitasaért felel6s tényezsket.
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Ekkor a Z = 1 esetet tekintve a (23) egyenletbdl a konstans ¢ térkonfi-
guréciora vonatkozdéan a Ak — 0 hatareset képzését kdvetSen a

0 Qgk? k2 4+ V)
k—Vi(¢) = _2(;7.()11 In < +k2k (gb))

% (25)

egyenlet [20] vezethets le. Az irodalomban szokasos jelolést alkalmazva
a vesszG a térvaltozod szerinti derivalast jeloli és 4 a d dimenzioés gémbi
koordinata-rendszerben elvégzett impulzusintegralnak a térszogre torténd
integralasbol szarmazo jarulékat jeloli, amely az

d
2?2
r4)

modon fejezhets ki az Euler-féle I-fiiggvény segitségével. A (25) egyen-

‘= (26)

letben a logaritmus argumentumanak nevez§jét az egyszertiségre torekedve
valasztottuk meg. A térvaltozotol fiiggetlen nevezs valdjaban tobbfélekép-
pen megvélaszthatd a potencidl konstans tagjanak megvalasztasat kovetve.

Az ismertetett WH-séménak torténelmi jelent&sége és technikai egysze-
riisége ellenére jelentés hatranya, hogy ebben a renormalési sémaban az
LPA tullépése nehézségekbe titkozik [2].

2.5. Az effektivhatas-szemlélet

Az RG-egyenletek levezetésének masik lehetséges megkozelitése, az effektiv-
hatas-szemlélet [5, 26] lehetGséget nyujt az LPA tullépésére. Ebben a meg-
kozelitésben a Wetterich-egyenletnek nevezett funkcionélis differencidlegyen-
letet vezethetjiik le, amelynek segitségével az elméletet definidlé hatasfunk-
cionalb6l mint kezdeti feltételbsl kiindulva meghatarozhatjuk az effektiv
hatast. Az egyenlet alabb ismertetett levezetése megtaldlhato az [1] mun-
kéban.

A tovabbiakban a jellés egyszertsitése céljabol elhagyom a Fourier-
transzforméltak ~-vel torténd jelolését és az impulzustérre torténd attérést
csupén a fiiggvény argumentuma altal jelolom f(p) = [ e % f(z) illetve
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f(p,q) = fx fy e PTeiay f (1. y) moédon. Bevezetem tovabba az f - g =
[, f@)gla) = [ f(=p)g(p) & f - M -g= [ [ flz) Mzy) g(y) =
I, S, F(=p)M(p,0)g(—q) jelsléseket.

A Wetterich-féle megkozelitésben fontos szerepet jatszik az tn. regulétor
funkcional, melyet az

1

Ri[o(p)] = 5

5 | o) Rw(-p) (21)

P

modon az Ry (p) regulator fiiggvény altal definidlunk. A WH-séméhoz ha-
sonldan a k valtozora szokéasos a skila elnevezés hasznalata. A szamitésok
sordn a k-tol és p-t6l figgd regulator fliggvényt bizonyos altalanos felté-
telek kielégitése mellett szabadon vélaszthatjuk meg és eszerint kiillonbo6zé
renormalési sémakrol beszélhetiink.

A regulator fliggvénytol a kovetkezs tulajdonsagok teljesitését koveteljiik
meg;:

1. R (p) p-nek péros fiiggvénye.

2. k # 0 esetén },E%Rk(p) > 0.

3. liiH%)Rk (p) = 0 a p impulzus barmely értéke esetén.

4. p kis értékei esetén Ry (p) ~ A% vagy Ra(p) — oo.
Koordinatatérben a regulatort az

1
Rulés) = =5 [ [ d@)Rute ~ o) (28)
zJy
egyenlettel definidlhatjuk. Bizonyos esetekben kényelmes az

Ry(p1.p2) = (2m)%6%(p1 + p2) Ri(p1) (29)
Ri(z,y) = Rg(z —y) (30)

modon bevezetett tobb valtozot tartalmazo regulator fliiggvények alkalma-
Z4asa.
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Az effektiv hatasra vonatkozé funkcionalis egyenlet levezetése soran a
k-tol fiiggd regulatoron keresztiil a modellek egyparaméteres seregét defini-
aljuk, a

Z = / Depe—Sal6)—Rild]+7-¢ (31)

generédld funkciondal altal. A A index arra utal, hogy a modellt definialé Sy
funkcional értékét a nagy energiaju ¢(p) ¢ Fp modusok esetén zérusnak va-
lasztjuk az esetleges UV-divergencidk elkeriilése érdekében. Ezt figyelembe
véve a palyaintegralt és a regulator funkcional értelmezési tartomanyat a
Fourier-modusok teljes terére kiterjesztjiik. Az eredeti regulatort nem tar-
talmaz6é modellnek a k — 0 hatareset felel meg.

Mindegyik modell esetén definialjuk a Wy[J] = In Z[J] funkcionélt és
ennek Legendre-transzformaltjat a I} [¢] funkcionalt, tovabba a

Tilp] = Tkl — Rilg] (32)

funkcionélt. Megemlitem, hogy a szakirodalomban elterjedt jelolés kissé
félrevezetd, ugyanis a I'y[¢] funkcional csak a k — 0 hataresetben azonos
az effektiv hatéassal.

Az irodalomban [1] részletesebben ismertetett levezetést soran a (31)
egyenletbdl kiindulva 0 Zy-ra a

)
O ZilJ] = (——/ O Ry ( )5J 57 )eWk[J] (33)

egyenletet, Oy Wy-ra a

Wy, Wy W
_ 1 4
KWl J / OBl )<6J16Jy 5., 6Jy> (34)
egyenletet, O I'-ra
82w,
oyl =3 [ ok~ )75t (3)
z0Jy
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egyenletet irjak fel. A kovetkezd 1épés a Opl'p-ra vonatkozo egyenlet jobb
oldalanak kifejezése I'y, segitségével. Ezéltal a

Okl“k / akRk 1‘ - )(F( ) + Rk) 1(1‘ y) (36)

(2)

egyenlet vezethetd le, ahol I';”” a T’y funkcional ¢ szerinti masodrendd funk-
cionalis derivaltjat jeloli és az invertalast operatorra vonatkozoan kell értel-
mezni az fy flx, ) f Yy, 2) = 6(z—2) médon. Ennek felhasznalasa céljabol
az egyenletet olyan tartomanyban értelmezziik, melyben az operator inverze
létezik.

Az egyenlet a Fourier-térben bevezetett mennyiségek segitségével a

HhTklp] =

N | —

/5kRk(P) (P;(f) + Rk)il(l% —p) (37)

alakban irhat6 fel, amely egyenletben a I'® a Fourier-térbeli I'? (p,q) =
fm/ e 1Pr+ay)P(2) (1 4 fiiggvényt jeloli. A I'j funkcionalra levezetett (37)
funkcionalis differencialegyenlet [26] Wetterich-egyenlet néven ismert az iro-
dalomban.

Erdemes hangstlyozni, hogy bar az egyenletben megjelenik a regulator
fliggvény, a funkcionélis egyenletnek a kiilonbozé regulatort alkalmazo re-
normélasi sémak esetén kapott megoldasa a k — 0 hataresetben azonos
[27].

Az egyenlet alkalmazasahoz a I'y kezdeti feltétel meghatarozésa sziiksé-
ges. Ez a probléma gy oldhatoé meg, hogy kell6en nagy A érték esetén I'p
Sp-val megegyezdnek tekinthets [1]. Ez azért teljesiil, mert a

oTilyl — / Do SN[, G (6@ —e@) =1 [, (0~ (@) Re(o=9)(60) =0 (w)
(38)

egyenletben a £ — A hataresetben a regulator fliggvénytsl megkovetelt 4.
tulajdonsag kovetkeztében az integralhoz csupan a @-hez kozeli ¢ térkon-
figuraciok adhatnak jelentSs jarulékot [1]. Ekkor viszont a pélyaintegral a
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normalési tényez6tdl eltekintve az integrandus ¢ = ¢ helyen felvett értéké-
vel kozelithets, amelybdl T'a[p] &~ Sa[¢] kovetkezik.

Az alkalmazott modon az effektiv hatés kiszamitasa a (37) funkcionalis
differencial egyenlet megoldasara vezethets vissza elkeriilve a pélyaintegralt
tartalmazo képlet alkalmazasat. Az egyenletben szerepls I'y fizikai jelenté-
sét tekintve az effektiv hatasnak a k-nal nagyobb frekvenciaji modusoktol
széarmazo jarulékaval hozhato kapcsolatba [1], bar a Wetterich-féle szemlélet
esetén a WH-sémaval ellentétben a kiilonbozé energiaju modusok jaruléka
nem kiiléniil el élesen. Erdemes tovabba megemliteni, hogy a szemlélet-
beli kiilonbségek ellenére a WH-sémaban kapott egyes eredmények bizonyos
esetekben reprodukalhatoak a Wetterich-egyenlettel specialis regulatort al-
kalmazva |5, 28|, ezért a Wetterich-egyenlet altalanosabbnak tekinthetd.

A térelméleti modellek kvantitativ vizsgalata altalaban csupan kozeli-
tések alkalmazasaval végezhets el. Ezaltal lehetévé valik, hogy az effektiv
hatasra kapott eredményt a funkcionélra vonatkozo (37) egyenlet helyett
fliggvényekre vonatkozo differencidlegyenletek megoldéasa altal hatarozzuk
meg. A kozelitések egyik ara, hogy az eredmények bizonyos mértékben fiig-
geni fognak a reguldtor megvalasztésatol.

LPA esetén a I'y funkcionél alakjara a

Tulole)] = [ 52(0up(@))? + Vilolo) (39)

feltételezést rojuk ki, ahol a Z hullamfliggvény-renormalés a k skilatol és a
térvaltozotol fiiggetlen. A Z = 1 esetben a homogén, azaz térben allando ¢
térkonfiguracié esetén a potencialra vonatkozo

1 5191319(]))
Vi = = 40
Wk 2/pp2—|—Rk(p)+Vk” (40)

egyenlet vezethetd le [1], ahol a vessz6 a ¢ szerinti derivaltat jeloli. Az
effektiv hatas az egyenlet megoldasanak k — 0 hataresete altal hatdrozhato
meg.

Az LPA-n tulmutatéd kozelitésre a hullamfliggvény-renormalas skalafiig-
gésének és térvaltozofiiggésének figyelembevétele nyujt lehetGséget. A I'y
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funkcional alakjéira a

1
el = [ (o) + 520000 (41)
x
feltételt kirova a Wetterich-egyenletbdl a Vi, potencialra a

1 kO Ry,
kO Vi, = = 42
Rk 2/kap2+Rk+Vk” (42)

a Zj hullamfiiggvény-renormélasra a
z!

kOyZy, = %/pk@kRk(p) [ - (22, + Ry + V)2
27002 + AZL(Zip? + V")
(P*Z + R, + V)3
) (Zip? + V") (Z + 02 Ry + 50707 i)
(02Zi + By + VI)*

9 S22 (Zip® + Vi) (Zi + 0,2 Ry)

(P*Zy + Ry, + V)4

W20 + Vi) (Zk + 0,2 Ry,)?
(P*Zi + R, + V')°

egyenlet [3] vezethetd le, ahol a vessz6 a térvaltozo szerinti derivalast je-

(43)

16li. Az LPA legegyszertibb tullépésére, a Z; hullamfiiggvény-renormalést
térvaltozotol fiiggetlennek tekinté kozelitésre LPA’ néven hivatkoznak az
irodalomban [1].

Az ismertetett kozelit§ eljarasra, amely a I' funkcionalra kirott feltevés-
ben Ogp magasabb rendii hatvanyait figyelembe véve fejleszthets gradiens
ill. derivalt sorfejtés néven hivatkoznak az irodalomban [1, 2, 29].

2.6. A fazisatalakulasok vizsgalata

Bizonyos kérdések az ismertetett differencidlegyenletek k& — 0 hataresetben
tekintett megoldasdnak meghatéirozasa nélkiil, pusztan az RG-egyenletek vi-
selkedésének tanulméanyozasa altal megvalaszolhatoak. A fazisatalakulasok
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tanulmanyozéasa olyan alkalmazési teriilet, amely a fazishatarok és a kriti-
kus exponensek kiszamitasan keresztiil lehetGséget nyujt arra, hogy ilyen
moédon kvantitativ informaciokat nyerjiink a vizsgalt modellrél.

Az egyensulyban 1év6 termodinamikai rendszerek lényeges tulajdonsagai
altaldban a szabadenergia ill. a szabadentalpia fliggvényébdl kiolvashatoak,
ezért elméleti szempontbol a statisztikus fizikai modellek egyes fazisainak
megkiilonboztetése gyakran a vizsgalt termodinamikai potencial* viselke-
dése szerint torténik. Eszerint az egyes fazisok a termodinamikai potenciél
analitikus tartoméanyainak feleltethetGek meg [30] és a fazisok kozotti mind-
ségi kiilonbséget a tartoményok hataran tapasztalt nem analitikus viselke-
dés jelzi®. Aszerint, hogy a termodinamikai potencial elsérendd derivaltja
folytonos-e a fazisatalakulasi pontban® megkiilonboztethetiink elsérendd és
folytonos fazisatalakulasokat, amely csoportositas tulajdonképpen megfelel
a latens h6 megjelenése szerinti osztalyozasnak [19, 20|. A tovabbiakban az
egyszertiség céljabol a folytonos fazisatalakulasok targyaléséra szoritkozom.

A fentebb emlitett ferromégneses-paramégneses atalakulast leir6 mo-
dellek mellett nagyon sok fizikai rendszerben talalkozhatunk folytonos fazis-
atalakulassal, amelyre példat szolgéltat a kritikus pontban bekovetkezd
folyékony-légnemti halmazallapot-valtozas, a megfelel§ Gsszetételd kétkom-
ponenst folyadékok htitése soran a polaris és az apolaris Gsszetevs elkii-
l6niilése, a folyékony hélium hiitése soran a szuperfolyékony kondenzatum
megjelenése tovabba egyes szupravezetd anyagok esetén kiils6 mégneses tér
hidnyédban a szupravezetd allapot kialakulasa [19].

Tovabbi példat szolgéltat a folytonos fazisatalakulasokra a kétdimen-

P

zi6s XY-spin-modell [19] megfelels kozelitésében és a késébbiekben targya-

4Az egyszertibb szohasznalat kedvéért nem jelzem kiilon, hogy a végtelen térfogati
hataresetben a térfogattal aranyos termodinamikai potencial helyett annak egységnyi
térfogatra es6 értékét, azaz a potencialstirtiséget kell tekinteni.

®Bizonyos esetekben (pl. folyékony-légnemi fazis) a fizikai rendszer az egyik fazisbol
a masikba fazisatalakulas nélkiil is atvihetd, ezért a fazisok ilyen megkiilénboztetése nem
minden szempontbdl egyértelmd [30].

A tovabbiakban feltételezem, hogy a termodinamikai hatareset képzése altal a fazis-
atalakulas a kontrollparaméter infinitezimélis tartoményara korlatozhato, azaz elhanya-
golom az Gn. véges méret effektust 1d. [30] 2.3.3 alfejezete.
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landé sine-Gordon-modellben megjelend [32-34] Kosterlitz—Thouless (vagy
Berezinskii—Kosterlitz—Thouless [31]) fazisatalakulasnak nevezett topologi-
kus fazisatalakulas.

Ekkor az XY-spin-modell esetén az alacsony hémérsékletii fazisnak vor-
tex-antivortex’ parokat tartalmazé spinkonfiguracio felel meg, mig a ma-
gas homeérsékletii fazisban ezen péarok felbomlanak [35]. Ekkor az ala-
csonyhémérsékletd fazist nem jellemzi hosszutava térbeli rendezettség csu-
pan rovidtava, an. topologikus rendezettség figyelhets meg [36]. A fazisat-
alakulas egyik kiilonlegessége, hogy végtelen rendt, azaz a fazisatalakulési
pontban a szabadenergia folytonosan differencidlhaté [35].

Gyakran vizsgélunk olyan modelleket amelyben spontan szimmetriasér-
tés 1éphet fel mivel a fizikai rendszer alapallapota nem feltétlentil invarians a
modellt definialé6 Hamilton-fliiggvény ill. Hamilton-operator szimmetridjaval
szemben. Erre az egyik legegyszertibb példa a ferroméagneses anyagok azon
allapota, melyben a mégnesezettség egy térbeli irdnyt kitiintetve spontan
modon megsérti a rendszer forgasszimmetriajat. Ezen szempontbol megkii-
lonboztethetjiik a rendszer szimmetrikus és szimmetriasértett fazisat. A
kvantitativ leiras érdekében célszeri bevezetni a rendparamétert, amelynek
értéke a szimmetrikus (rendezetlen) fazisban nulla, mig a szimmetriasértett
(rendezett) fazisban nullatol kiilonbozs [35].

A folytonos fazisatalakulasok statisztikus fizikai leirasa sordn altalaban
kulcsszerepet jatszanak a fizikai mennyiségek fluktudcioi, melyek a korre-
lacios fliggvények segitségével jellemezhetéek. Az 7 és 75 pontokban az
X-szel jelolt mennyiségnek a varhatoértékétsl valo eltérésének korrelacioja
a

G(Fl,fé) =< X(Fl)X(FQ) > — < X(Fl) >< X(FQ) > (44)

modon definialt korrelacios fiiggvény altal irhato le, ahol < > az adott
statisztikus fizikai sokaségon értelmezett varhatoérték képzését jeloli.

7A vortexek a spinvaltozé zart gérbe mentén torténd elfordulasa altal megvalésuld spe-
cialis spinkonfiguraciok, melyek részletesebb ismertetése megtalalhato példaul [19] 13.3
alfejezetében. A vortex és az antivortex kozotti kiilonbség a spinek elfordulasanak ira-
nyaban van.
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A tovébbiakban izotrop Hamilton-fiiggvénnyel ill. Hamilton-operatorral
rendelkezd transzlacoinvarians rendszert tételezek fel, ekkor a fenti fiiggvény
csupén a kivéalasztott pontok r tavolsagatol fligg. Ekkor a rendparaméterhez
tartozod korrelacios fliggvény a fazisatalakulasi ponthoz kozeledve nagy r
tavolsdgok esetén a

G(r) ~e ¢ (45)

aszimptotikus alakot 6lti, ahol a korrelaciok fennallasanak tavolsagat jellem-
z6 & mennyiség a korrelacios hossz. A fazisatalakulasi pontban az aszimp-
totikus alak a

1

G(r) ~ o

(46)
kifejezéssel adhaté meg, ahol n a korrelacios fiiggvény jellemzésére beveze-
tett kritikus exponens és d a rendszer dimenzi6jat jeloli. Az n exponensre
szokasos az anomaélis dimenzi6 elnevezés hasznalata is.

A fazisatalakulasi ponthoz kozeli rendszerek szokésos modszerekkel tor-
ténd targyalasanak nehézségét az okozza [35], hogy a hatvanyfiiggvény sze-
rinti viselkedés kovetkeztében a fazisdtalakuldsi pontban a korrelacids hossz
divergél, ezért minden hulldimhosszt fluktuacié jelentéssé valik.

A folytonos fazisadtalakulasok altalaban tn. kritikus viselkedést mutat-
nak, melynek soran egyes fizikai mennyiségek a fazisitalakulasi ponthoz
kozelitve hatvanyfiiggvénnyel jellemezhet6 moédon divergalnak. E hatvany-
fliggvények kitevsi, az tn. kritikus exponensek kozott skalatorvényeknek
nevezett Osszefliggések allnak fenn. Az id6tol fiiggetlen folyamatok jellem-
zése soran tobb kritikus exponens hasznalatos, melyek kozil a skalatorvé-
nyek kovetkeztében altalaban kettd tekinthets egymastol fiiggetlennek [35].
A vizsgalt jelenségek egyik legérdekesebb jellemz&je az univerzalitas, amely
a skalatorvényeknek a modellspecifikus jellemzsktsl vald fiiggetlenségében
is megnyilvanul. Ezenkiviil a kritikus exponensek értéke a modell néhany
tulajdonsaga altal meghatarozott, igy ennek alapjan a fizikai rendszerek
univerzalitasi osztalyokba sorolhatdak.
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Exponens Az exponenst definial6 kritikus viselkedés
a fazisatalakulasi pont kornyezetében

—
2 2111 _ —T.
o |en=tpomEen oo () 7y

M= <E]<[sz _ 1 9InZ(B,B) -~ (Tc . T)Ig

BN 0B
xr =2 ~ T —T|
M(T =T,) ~ B3
TILI{.IOG(T’T =T.) ~ rd,++n
£~ ‘T_Tc‘iy

R IR ™

1. tablazat : Hat gyakran alkalmazott kritikus exponens definicidja az
Ising-modell esetén. A tablazat [19] 1.1 tablazata nyoméan készilt. Az
egyszeriiség kedvéért nem jeloltem kiilon, hogy a § exponens esetének kivé-
telével a kritikus viselkedés mindig zérus kiils6 magneses tér esetére vonat-
kozik. Z a particits fiiggvény, T, a fazisidtalakulési ponthoz tartozo kritikus
hémérséklet, k a Boltzmann-allando, G = ,%T, N a racspontok szama, B a
kiils6 magneses tér erésségét meghatarozd paraméter, cg az allando kiilsé
méagneses tér esetén tekintett egy racspontra esd fajlagos hSkapacitas, M a
magnesezettség, yr az allandé hémérséklet esetén tekintett szuszceptibili-
tas, G az Osszefliggd kétpont-korrelacios fiiggvény, d a modell dimenzidja és
¢ a korrelacios hossz.

Az Ising-modell esetén a rendparaméternek az M-mel jel6lt a magnese-
zettség felel meg, amelyet a spinvaltozok atlagénak varhatoértékeként defi-
nidlhatunk. Az 1. tablazat az Ising-modell vonatkozasaban a hékapacitéas,
a magnesezettség, a szuszceptibilitas, a korrelacios fliggvény és a korrelacios
2. tablazat hat nevezetes skalatorvényt foglal Gssze.

A fejezet tovabbi részében a fazisszerkezet tanulmanyozasat az egyszert-
ség kedvéért LPA-ra szoritkozva ismertetem. Az RG-egyenletekkel vég-
zett vizsgalatok soran gyakran megtehetd, hogy a Vi potencidlra vonat-
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Elnevezés Skalatorvény
Widom 1=pB0-1)
Griffiths a+p(0+1)=2
Rushbrooke a+20+vy=2
Josephson 2—a=vd
Fisher 2—-nrv=y
Buckingham-Gunton | 2 —n=d(6 —1)(§ + 1)~ =dy(268 +7) !

2. tablazat : Nevezetes skalatorvények. A téblazat [35] 7.5 alfejezete
szerint késziilt. Fontos hangsulyozni, hogy amint a megjelolt forrasban
kifejtésre keriil, a dimenzidk d-vel jelolt szamatol fiiggs skalatorvények nem
teljesiilnek d tetszGleges értékére.

koz6 (40) egyenletben a potencialt térvaltozo szerinti Taylor-sorfejtett alak-
javal kozelitjiik, ezéltal a parcialis differencidlegyenlet helyett a sorfejtési
egylitthatokra vonatkozo kozonséges differencialegyenlet-rendszerrel dolgoz-
hatunk. A sorfejtés egyiitthatoit csatolasoknak nevezziik, melyeket a k skala
fiiggvényeinek kell tekinteni. A tovabbiakban a figyelembe vett csatolasok
Osszességére a g jelolést alkalmazom. Ekkor a kapott differencidlegyenlet-
rendszer a

—

kOyG = B(g. k) (47)

alakban irhat6, ahol a jobb oldal jelolése arra utal, hogy az egyes csatolasok
skalafiiggését meghatarozo egyenleteket a szakirodalomban (-fiiggvényeknek
nevezik.

Az RG-egyenletek viselkedésének tanulményozasa kényelmesebben vé-
gezhetd el fizikai dimenzidval nem rendelkez§ mennyiségek bevezetése al-
tal. Az impulzus dimenzioja k valtozé helyett bevezetjilk a dimenzidtlan
rivalast az irodalomban szokasos moédon ponttal jelolom. Az irodalom |[3]
jeloléseit kovetve bevezethetjiik tovabba a fizikai mennyiségek ~ -vel je-
161t dimenziotlan megfelelsit, melyeket az eredeti dimenziéval rendelkezd
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mennyiségek és az impulzus dimenzi6éja k valt6zo megfelel§ hatvanyanak
szorzataként definidlunk. Ekkor a k%-nek megfelels fizikai dimenzi6val ren-
delkez§ g; csatolasra vonatkozo

kOvgi = gi = Bi(g, k) (48)

egyenlet a dimenziétlan §; = g;k~% csatolasra vonatkozo
Gi = —digi + 5;(3,1) = 5:() (49)

egyenlettel helyettesithetd.

A dimenziétlan mennyiségek bevezetése annak felel meg, hogy a renor-
maélasi transzforméacio elvégzése soran a modellt jellemz§ fizikai mennyisége-
ket ujraskalédzzuk k 4j értékének megfelelen. Ennek hasznossiga azaltal
szemléltethets, hogy pl. az Ising-modell esetén a rendszer viselkedése szem-
pontjabél nem a korrelaciés hossz szémszert értéke, hanem annak a racsal-
landohoz viszonyitott értéke a lényeges [1].

A

= 5(5) (50)

differencialegyenlet-rendszer megoldasa éltal a modell paraméterterében ki-

Q-

rajzolt, trajektoridnak nevezett gorbe irdnyanak altalaban a k skéla csokke-
nésének iranyat tekintjiik. Mivel a fizikai rendszer leirdsahoz a kisérletileg
valtoztathato paraméterek (pl. a hémérséklet) mellett altalaban kisérletileg
nem valtoztathato paraméterek (pl. a kolcsonhatés erdssége) figyelembe-
vétele is sziikséges, ezért a paramétertér pontjai altalaban fizikailag nem
megvalosithatd allapotoknak felelnek meg. Ennek kovetkeztében a renor-
malasi transzforméciot leird trajektoridk még a statisztikus fizikai modellek
esetén sem feleltethet6k meg fizikai folyamatoknak.

Bar a modellek fazisszerkezete a kiillonb6z6 kezdeti feltételekhez tartozo
trajektoriak altal feltérképezhets, a fazistér hatékony vizsgalata az egyen-
letek fixpontjainak megkeresése altal lehetséges. Fixpontoknak nevezziik
a paramétertér azon 5* pontjait, amelyekre a dimenziétlan B—fﬁggvények
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zérus értéket vesznek fel, azaz az adott pontban alkalmazott renormélasi
transzforméci6é a dimenziétlan csatolasok értékeit véltozatlanul hagyja. A
trivialis 5* = 0 fixpontot gaussi fixpontnak nevezziik, amely szabad, témeg
nélkili térelméleti modellnek felel meg.

Természetesen lehetséges, hogy a =0 egyenlet aszimptotikusan telje-
siil amikor valamely csatolas értéke divergal. A tovabbiakban erre nem térek
ki, feltételezve, hogy ez az eset a modell atparametrizalasa altal visszave-
zethetd a csatolasok véges értékénél megjelend fixpont esetére.

A legegyszeriibb eseteket tekintve megkiilonboztethetiink vonzoé, taszitod
és hiperbolikus fixpontot. A fixpont kdrnyezetébdl inditott trajektoria vonzo
fixpont esetén a fixpontba tart, taszité fixpont esetén attédl tavolodik, mig
hiperbolikus pontok esetén a fixpont kérnyezetébdl inditott trajektoria vi-
selkedése a kezdGpont megvalasztasa szerint valtozik.

A fixpont viselkedésének meghatarozasat megkonnyiti, hogy az adott
fixpont kornyezetében altalaban lehetGség nyilik arra, hogy a (50) egyenle-
teket sorfejtésiik linearis tagjaval kozelitésiik. Ezaltal a 5* fixpont esetén

a
2 =4 aB ~ ~
Gi = Bi(6:) + 5=z 5.3 — G-4) (51)
j 09
egyenleteket nyerjiik. Bevezetve az
0f;
Mi; = 95, 53 (52)

érzékenységi matrixot és az y; = §; — g« valtozokat az egyenletrendszer az
y=My (53)

alakba irhatd. Sok esetben az érzékenységi méatrix diagonalizalhato, igy az
egyenletrendszer még egyszertibb alakban irhat6. Legyen S olyan matrix,
amely esetén az M’ = S™'MS modon definialt matrix diagonalis. Ekkor a
7 = S~ vektor bevezetésével az egyenletrendszert

Z=M'% (54)
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alakban felirva z" komponenseire a
22‘ = 8;%; (55)

egyenletek adodnak, ahol s; a diagonalis M’ matrix megfelels sajatértékeét
jeloli. Az egyenletek to-ban ismert kezdeti feltételhez tartozd megoldasa

Zl(t) = Zi(to)esit. (56)

Természetesen ezek az egyenletek csupén akkor adnak jo kozelitést, ha a
trajektoria tg-beli értéke is a fixpont kozelében van.

Ezaltal lathato, hogy ha az M’ matrix minden sajat értéke negativ,
akkor a fixpont infravorés (IR) taszit6®; ha minden sajat értéke pozitiv,
akkor a fixpont IR-vonzd; ha mind pozitiv, mind negativ sajatértékekkel
rendelkezik, akkor a fixpont hiperbolikus pont més néven nyeregpont.

Egy adott fixpont tekintetében megkiilonboztetiink [35] relevans, margi-
nélis és irrelevins csatolasokat aszerint, hogy az érzékenységi métrix adott
csatoldashoz tartozo sajatértéke negativ, nulla vagy pozitiv. Az elnevezések
arra utalnak, hogy egy adott trajektoridn k csokkenésének iranyaban ha-
ladva a fixpont kozelében a relevans csatolasok esetén a csatolas eltérése a
fixponti értéktsl novekszik, az irrelevans csatoldsok esetén cstkken.

Emellett az irodalomban [3] szokasos relevans skalazasrol beszélni ha
a csatolas abszolut értéke k fiiggvényében monoton csokkend és irrelevans
skélazasrol beszélni, ha a csatolas abszolit értéke k fliggvényében monoton
novekvs. Az elnevezések ezen hasznalata érthetévé valik, ha figyelembe
vessziik, hogy éltaldban viszszafele haladunk a skaldn és a célunk a k — 0
hatéareset vizsgalata.

Az RG-modszernek a fazisatalakulasok vizsgélatdban betoltott szerepét
[20, 19, 30, 35, 37| csupan altalanossagban mutatom be, ezaltal a legegy-
szerlibb viselkedést feltételezve nem térek ki a bonyolultabb specialis esetek
elemzésére.

8Az infravoros jelzé arra utal, hogy a trajektoridk iranyanak a k skala iranyanak
csOkkenését, azaz t csokkenésének iranyat tekintjiik. Ellenkezd iranyt vizsgalva a vonzo
és taszito fixpontok szerepe természetesen felcserélédik.
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A tovabbiakban az egyszertiség céljabol érdemes feltételezni, hogy a mo-
dell egyetlen paraméterének finomhangolasa altal a fazisatalakulasi pontban
16v6 rendszert irhatunk le. A (9) és (10) képletekkel definialt Ising-modell
példaja azt mutatja, hogy a magnesezettséget tekintve rendparaméternek
a fazisdtalakulas megjelenéséhez a kritikus hémérséklet beéllitdsa mellett a
B = 0 feltétel biztositasa, azaz a kiils6 méagnesestér kikapcsolasa is sziiksé-
ges. Ezért a tovabbiakban [1]| szohasznéalatat kovetve a kiils6 magneses tér
erGsségét nem szamitom a modell paramétereihez, azaz gy tekintem, hogy
a (11) képlettel megadott modellek paraméterterét a Ho-ban megjelend pa-
raméterek feszitik ki.

Abbol, hogy a fazisatalakulas 1étrejottéhez egy paraméter rogzitése elég-
séges az kovetkezik, hogy a modell paraméterterében a fazisatalakulasi pont-
ban 1év6 rendszereknek megfelel6 tartomany, amelyet kritikus feliiletnek
neveziink egykodimenzios [1]. A tovabbiakban azon egyszert, mindazaltal
gyakori esetet tekintem, amikor az egyszeresen Gsszefiiggs kritikus feliilet a
két fazisnak megfelelGen két részre vagja a paraméterteret.

A trajektoridk kvalitativ viselkedése legkdnnyebben a WH-séma esetén
vezethetS le, mert ekkor a renormaélasi transzformécié a generald funkcio-
nal értékét és igy a & korrelacios hossz értékét is valtozatlanul hagyja. A
korrelécios hossznak a folytonos fazisatalakulas sordn mutatott kritikus vi-
selkedését kihasznalva a kritikus feliiletet olyan tartomanyként is értelmez-
hetjiik, melyen a korrelaciés hossz divergél. Felhasznalva, hogy a k skalat
csokkentve a € dimenziés korrelacios hossz valtozatlan marad, ebbél kovet-
kezGen a skalat csokkentve a dimenziétlan §~ = &k korrelacios hossz csokken,
nyilvanvalové valik, hogy a kritikus feliilet pontjaibél inditott trajektoriak
nem hagyhatjak el a feliiletet, mig a feliileten kiviili pontbdl indulva tévo-
lodunk a kritikus feliilett6l.

Az egyszertibb modellek esetén a kritikus feliiletrs] indul6 trajektoriak a
kritikus feliileten 1év§ fixpontba folynak bele. Ezen fixpont, melyet Wilson—
Fischer-fixpontnak is neveznek hiperbolikus fixpont, mivel a kritikus felii-
leten kiviili trajektoridkat taszitja. Altalaban az egykodimenzios kritikus
feltilet kovetkeztében a kritikus fixpont érzékenységi matrixa megfelelGen
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parametrizalva csupan egyetlen negativ sajatértékkel, azaz egyetlen rele-
vans irdnnyal rendelkezik [35].

A kritikus feliileten kiviilrél indul6 trajektoridk a legegyszertibb esetben
az adott fazisnak megfelels vonzo fixpontba torkollnak, ezéltal mutatva a
kiilonboz6 fazisoknak megfelels rendszerek eltérd alacsonyenergias viselke-
dését. A legegyszeritibb esetben ezen vonzé fixpontok a zérus hémérsékletii
rendszernek megfelel§ alacsonyhdmérsékleti fixpont (melynek a rendezett,
szimmetriasértett fazis felel meg) és a végtelen hémérsékletd rendszernek
megfelel6 magashémérsékleti fixpont (melynek a rendezetlen, szimmetrikus
fazis felel meg) [35].

A RG-moddszer a transzformécioé hiperbolikus fixpontjainak megtalélasa
altal teszi lehet6vé a fazisatalakulas és a rendszer lehetséges 1j fazisainak ki-
mutatasat. Tovabb haladva a lefrasban a modszer szamot ad a kritikus visel-
kedés jellemzGirsl. A hatvanyfiiggvényekben megnyilvanulo skalainvarians
viselkedést a divergald korrelacids hossz kovetkezményének tekinthetjiik, a
skalatorvények fennallasa, azaz a két fiiggetlen mennyiség altali jellemzés
lehetGsége pedig a kritikus feliiletet az adott fazis oldalarél megkozelits tra-
jektoridk hasonlo viselkedése éltal magyarazhato.

Ennek a képnek [1, 4] a keretében a hasonlo viselkedés a kovetkezkép-
pen értelmezhets. A kritikus feliillet megkozelitéséhez két fiiggetlen feltétel
biztositasa sziikséges; zérushoz kozeli kiils6 mégnesestér valasztisa és egy
tovabbi paraméter finomhangolasa. A feliilethez kozeli pontbdl indulva a
trajektoria kezdetben a feliileten haladé trajektoridkhoz hasonldan viselke-
dik, azaz a feliilettel szinte parhuzamosan haladva a kritikus fixpont felé
tart, majd annak koézelében (mivel a kiindul6 pont nem volt rajta a kri-
tikus feliileten) eltavolodik attol. Igy az egymastol téavoli kezdeti pontok-
bol indulé trajektoridk egyméshoz kozel keriilnek, azaz a sok paraméteriik
tekintetében kiilonbo6z6 fizikai rendszerek hasonldéan viselkednek. A kiilon-
b6z6 modelleket ugyanazon paramétertér kiilonb6zé pontjainak tekintve a
skalatorvények mellett a kritikus exponensek értékében megnyilvanuld uni-
verzalitasra is magyarézatot kapunk.
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A fazisatalakulésra vonatkozo kvantitativ informéciokat tekintve a kont-
rollparaméter kritikus értékét (pl. a fazisatalakulashoz tartozod kritikus
hémérsékletet) mint a modell tobbi paraméterének fiiggvényét folytonos
fazisatalakulas esetén a kritikus feliilet egyenlete hatarozza meg [35], mig a
kritikus exponensek értékét az egyenletek fixpont koriili viselkedésével hoz-
hatjuk kapcsolatba.

A legegyszertibb esetben a v és n exponenseket kénnyen meghatarozhat-
juk, majd a tobbi exponens értékét a skalatorvényeket felhasznéalva kaphat-
juk meg. A v exponens értékét a kritikus fixponthoz tartozd érzékenységi
matrix s-sel jelolt relevans sajatértékének ismeretében a

(57)

modon hatarozhatjuk meg [3]. Az n anomalis dimenzi6 értéke LPA-ban zé-
rusnak adodik [1]. n értékének pontosabb meghatarozéasa a hullamfiiggvény-
renormalas figyelembevétele altal torténhet, amely a kritikus fixpont kor-
nyezetében k™" szerinti skalafiiggést mutat [5].

2.7. A kvantumtérelméleti modellek osztalyozasa a renor-
malas szempontjabol

A funkcionalis renormélas szemlélete nemcsak jelentGs eredményeket ért el
a kvantumtérelméleti modellek vizsgalatdban, hanem 1j megvildgitasba is
helyezte azokat.

A kvantumtérelméleti modellek esetén nehézséget okoz, hogy altaldban
a véges értéki paramétereket tartalmazo klasszikus hatasbol kiindulva vég-
zett szamitasok soran a felirt integralok divergalnak. A tortémetileg ko-
rabbi perturbativ megkozelités esetén a térelméleti modellekben megjelend
kolcsonhatasokat a perturbativ sorfejtés tagjaiban megjelens divergenciak
viselkedése szerint tn. szuperrenormélhaté, renormalhaté és nemrenormal-
hato osztalyokba sorolhatjuk [17].

Az ezen osztalyozas szerint szuperrenormalhaténak és renorméalhaténak
nevezett elméletek esetén a fizikai mennyiségekre kapott divergaloé eredmé-
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nyek véges sok mennyiség altal kifejezhetGek, ezaltal lehetGség nyilik arra,
hogy a szamitasok eredményeit mérheté mennyiségek értékeivel kifejezve a
kisérletek eredményeire joslatokat tegylink. Ezzel szemben a nemrenormal-
hatd csoportba sorolt elméletek esetén ez az ut nem jarhatd, mert ekkor
a perturbécié szamitas magasabb rendjeiben megjelené divergenciak keze-
lése a korabban figyelembe vett mennyiségek mellett tovabbi mennyiségek
ismeretét kovetelné meg. Ennek koévetkeztében kialakult egy olyan szemlé-
let, amely szerint vizsgalatainkat a renormalhaté elméletekre kell korlatozni.
Azonban a funkcionalis renormalas nézépontjabol tekintve a problémét ez
nem sziikségszert [20].

Matematikai szempontbol a divergalé eredmények gyakran elkeriilhe-
t6ek akkor, ha a palyaintegralban a nagy energidju Fourier-moédusok ja-
rulékat nem vessziik figyelembe. Mivel nincs okunk feltételezni, hogy az
egyes modellek a fizikai valésag teljes kortd leirdsat leirasat adjak, ezért arra
gondolhatunk, hogy a szdmitésok sorédn kapott divergald integralok a mo-
dell érvényességi tartomanyanak tullépésére figyelmeztetnek. Igy a modell
nagy-energiaju folyamatok leirdsara vonatkozo korlatait a A-val jelolt UV-
levagas bevezetésével figyelembe véve az elmélet véges eredményeket szol-
géltathat. Ekkor az elmélet joslatai formalisan fiiggeni fognak A értékétdl.
Ezért tovabbi problémat jelent annak tisztézasa, hogy egy alacsonyenergias
folyamatban mérhet§ mennyiség értéke hogyan fiigghet a nala altaldban sok
nagysagrenddel nagyobb A értékétsl.

Ez a kérdés az RG-modszer altal a hatas kiilonb6z6 kdlesonhatasokat le-
ir6 tagjait szorzd csatolasok skalafiiggését tanulmanyozva megvélaszolhato.
A V(¢) = ¢" potenciallal definialt d dimenzidoban tekintett skalaris elmélet
példajan [20, 19] lathato, hogy altalaban a nemrenormalhato kolesonhatéas-
hoz (pl. négy dimenzidban a ¢° tipust kolesénhatshoz) tartozd csatolas
irrelevans modon skéalazik, azaz értéke a k skala csokkentésével csokken mig
a renorméalhaté kolecsonhatas csatolasa marginalisan, a szuperenormalhato
kolesonhatas csatoldsa relevans modon skalazik. Ennek kévetkeztében a
nemrenormalhat6 kolcsonhatasok figyelembevétele csupén rendkivil gyen-
gén befolyasolja az elmélet alacsonyenergias mérésekre vonatkozo joslatait,
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igy a A levagas a mérhet§ mennyiségek értékénél nagysagrendekkel nagyobb-
nak valaszthat6. Ezéltal a nemrenormélhaténak nevezett elméletek vizsga-
lata is lehet&vé valik.

Az elektromagneses, gyenge és erds kolecsonhatasokra vonatkozé ismere-
teinket Osszefoglald Standard modell perturbativan renormalhat6é a csato-
lasok szerinti sorfejtések kezdeti tagjainak tekintetében, amennyiben a sor-
fejtések alappontjat a jelenlegi nagyenergias kisérleteknek megfelelGen va-
lasztjuk. Ennek ellenére korai lenne a a nemrenormalhatoé elméletek jelents-
ségérdl itéletet mondani, hiszen nem ismerjiik teljesen a természet alapveté
kolesonhatasait. Nagyon keveset tudunk a Standard modell kiterjesztéseirsl
és a tomegvonzés a kvantumelmélettel konzisztens leirasarél, tovabba ezen
kolcsonhatasnak a Planck-tomegnek megfelel§ energiatartomanyon muta-
tott viselkedésérdl.

Emellett az is el6fordulhat, hogy egy perturbativan renormélhaté kol-
csonhatés alacsonyabb energidan nemrenormélhatéd effektiv elméletként ir-
hato le. Ilyen nemrenormélhaté effektiv elméletre talan a legismertebb
példat a gyenge kolcsonhatés alacsonyenergias viselkedésének targyalasara
alkalmazhat6 Fermi-féle modell [38] szolgaltatja.

A fejezetet lezarasaként értékelve a bemutatott mdodszert megallapithat-
juk, hogy az RG amellett, hogy 1j eszkozzel gazdagitotta az elméleti fizika
fegyvertarat és atiité eredményeket hozott a fazisatalalakulasok soran fel-
lép§ kritikus jelenségek megértésében hozzajarult az alapvets kolcsonhata-
sokrol kialakult szemléletiink fejlédéséhez.
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3. A renormadlasi séma optimalizilasa a kvantalt
anharmonikus oszcillator esetén

3.1. Bevezetés

Az effektivhatés-szemlélet soran a regulator megvalasztasara tobb lehetdség
adodik, igy felmeriil a renormalési séma optimalizalasanak kérdése. Ennek
az Osszetett kérdésnek tobbféle megkozelitése ismert. Az egydimenzios kvan-
talt anharmonikus oszcillator viszonylag egyszert modellje esetén nagypon-
tossagi irodalmi adatok allnak rendelkezésre, igy idealis lehetdség adodik a
sémaoptimalizalas bonyolult kérdésének tanulméanyozéisara.

Azért, hogy minél kevesebb paraméterrel rendelkezé modellt tekinthes-
stink targyalasunkat olyan egydimenziés modellre korlatozzuk, amelyben
a potencial operatora a koordindta operator negyedfoku polinomja. Ezen
egyszertisités mellett tovabbi érvet szolgéltat, hogy ezen tipusa kolcsonha-
tas (amelyet gyakran ¢* tipusi kolcsonhatasnak neveznek) kiemelt szerepet
t6lt be a fizikaban. Ugyanis négydimenzios téridében a ¢* tipusi kolesonha-
tas perturbativ médon renormalhat6, mig a magasabb rendi polinomokkal
megadott kolesonhatasok perturbativ titon nem renorméalhatoak [17]. To-
vabba a Standard modell szerint a Higgs-mez6 ¢* tipusi 6nkolesonhatéssal
rendelkezik, mig magasabb rendd ¢%, ¢8... stb. tipusi alapveté kolcsonha-
tasok jelenlegi ismereteink szerint nem valésulnak meg a természetben.

Latszolagos egyszertisége ellenére a kvantalt anharmonikus oszcillator-
nak az RG-modszerrel torténd teljes kord targyaldsa nem tekinthetd trivialis
feladatnak [39, 40|, ha az eredeti modell nem konvex potenciallal rendelke-
zik, akkor a konvexszé valo effektiv potencial kiszamitasa technikai nehéz-
ségeket okozhat. Ugyanakkor a modell kétség nélkiil megfelels lehetséget
nyajt a kiilonb6z6 renormélasi sémak oOsszehasonlitasara, mivel megfeleld
kezdeti potencial esetén az els§ gerjesztett allapot energidjanak meghataro-
zasdban az RG megkozelitése mar sikeresnek bizonyult [41].

Az eredmények ismertetése soran elsGként a vizsgalt modell és az RG-
modszer alkalmazéasanak jellemz&it tekintem at, majd ezt kdvetSen fejtem
ki az optimalizalas kérdését.
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3.2. A kvantalt anharmonikus oszcillator renormalasa

Az altalunk vizsgélt egydimenzios modell klasszikus fizikai megfelelGje az

Sy = / dt{%cf - V<q>}, (53)

hatéssal és a

m2
Va = TAQQ +gaq", (54)
potenciallal® jellemezhetd, ahol az M index a Minkowski-téridére utal és ¢
a modell egyetlen szabadségi fokat jellemz6 mennyiség. A kvantumtérelmé-
letben szokasos A = ¢ = 1 mértékegységrendszert hasznalva a hatés dimen-
zi6tlan és a ¢ mennyiség dimenzidja a tavolsag dimenzidjanak négyzetgyoke.
Ez lehet&vé teszi, hogy a kinetikus tag egyiitthatéjat a fenti médon dimenzi-
otlannak valasszuk. A potencial egylitthatoéinak A indexe arra utal, hogy a
kvantéalt modell RG-modszerrel torténd vizsgalata soran a klasszikus modell
paramétereit kell a csatolasok UV-levagasnédl megadott értékeinek megfelel-
tetni. A potencial kvadratikus tagjat tomegtagnak is nevezik, mivel kvan-
tumtérelméletek esetén a megfelel§ kvadratikus tag egyiitthatdja hatarozza
meg a részecskék tomegét.
A kvantélt modell definidlasa sordn az RG szemléletére tekintettel az
euklideszi téridd formalizmusat és a Feynman-féle palyaintegralos kvantéalast
alkalmazzuk. Ezaltal a kvantalt anharmonikus oszcillatornak az

1
5o = [ {30024V (55)
hatassal és

Zg[J] = / Dge et/ Jadr (56)

9A térelméleti targyalasmod nyelvezetére tekintettel a klasszikus mechanika szohasz-
nalatatol eltéréen a V fiiggvényre potencialként hivatkozom.
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general6 funkcionallal definialt, egydimenziés téridében!® tekintett kvan-
tumtérelméleti modell feleltethet§ meg.

Mivel a potencial V(q) figgvényét parosnak valasztottuk mind a klasszi-
kus, mind a kvantalt modell a bels6 téren érvényesiil§ tiikrozési szimmet-
ridval rendelkezik, melyre gyakran Zs-szimmetriaként hivatkoznak. Ezen
egyszerid szimmetria azért kiillonosen érdekes, mert ennek spontan sériilését
tekintve a kvantéalt modell és klasszikus megfelelGje eltérs viselkedést mutat.

Ha a potencial két minimummal rendelkezik (konkav), akkor a klasszi-
kus oszcillator legalacsonyabb energidjui allapota spontdn megsérti a Zo-
szimmetriat, ami nem fordulhat el6 az egyetlen minimummal rendelkezd
potencial esetén. Ezéltal a potencial kvadratikus tagjanak elGjelétdl fiiggGen
a klasszikus modell szimmetrikus és szimmetriasértett fazisait kiilonboztet-
hetjiik meg. Ezzel szemben a kvantéalt modell esetén az alaguteffektus kovet-
keztében nem johet létre szimmetriasértett alapallapot, a modell mindig a
szimmetrikus fazisban van az m% egylitthato elGjelétsl fliggetleniil. Ez a
tény az RG-moddszer esetén abban nyilvanul meg, hogy a kK — 0 hatareset-
ben értelmezett potencial, melyet effektiv potencidlnak neveznek mindig
konvex. Mindazaltal, amint latni fogjuk, a konvex effektiv potencial el-
érése az RG-modszer kozelitésekkel torténd alkalmazésa esetén nem mindig
garantalhato.

A modellt LPA-ban vizsgaltam, elhanyagolva a térmennyiségtsl fliggs
hullamfiggvény-renormaléast [41], amelynek funkcionalis alakja nagyon ne-
hezen kezelhet6 Taylor-sorfejtéssel. A kvantalt oszcillator esetén LPA-ban
a Wetterich-egyenlet az el6z6 fejezetben ismertetett médon a

1 & Rk

Vi = — dp—- 57
"Tor )y PRA RV (57)

parcialis differencidlegyenletre vezet.

10 Az alkalmazott euklideszi térids egyetlen dimenziéjat az idédimenzi6 altalanositasa-
nak tekinthetjiik, hiszen egy Minkowski-téridében tekintett kvantummechanikai modell
kvantumtérelméletként olyan Minkowski-téridében targyalhato, amely csupan idé jellegii
dimenzi6val rendelkezik.
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Az egyenlet peremfeltételét a skalafliggd potencidlnak a A UV-levagas
esetén érvényes formaja hatérozza meg. A szakirodalmat [41] kovetve A
értékét 1500-nak valasztottuk.

A tovabbiakban az RG-moddszerrel torténd targyalas sordn a potencial
argumentumara a térelméletben szokasos ¢ jelolést alkalmazom. Az (57)
parcialis differencidlegyenlet kozelité megoldésat keresve a potencial alak-
jara a

) N
Vo) = 5+ auo' + 30 G (59)
feltételezést rottam ki, melyben az energiaskalatol figgd my, gk, gon(k)
csatoldsok nem filiggenek a ¢ valtozotol.

A csatolasok szaménak, azaz N értékének optimalis megvélasztasat tobb
tényez6 hatarozza meg. Bar N értékét novelve a (58) formula a Taylor-sor
tobb tagjat veszi figyelembe, a bonyolultabba valo egyenlet a szamitasok
numerikus hibait is noveli. Ezért az optimalis valasztas a csatolédsokra vo-
natkozo egyenletek megoldésa soran alkalmazott numerikus eljarastol fiigg.

Bar a potencidlnak a kezdeti feltételeket meghatarozo, UV-levagasnal
érvényes alakjaban csupéan az els6 két tag csatolasa kiilonbozik nullatol, az
energiaskéla alacsonyabb értékei esetén természetesen a magasabb rendi
tagok csatolasai is jelentGssé valhatnak. A potencial (58) kifejezését az (57)
egyenletbe helyettesitve egy kozonséges differencidlegyenlet-rendszer vezet-
het§ le az mz, 9k, ---g2n (k) csatolasokra. Az egyenleteknek a csatolasok
szaménak novelésével terjedelmessé valo levezetése szimbolikus szamitasok
elvégzésére alkalmas program (pl. a Mathematica [42]) segitségével tortén-
het. Az els6 két csatolasra vonatkozod egyenlet:

12 [ . Ik
.2
m = — d R 9
k T Jo Pk (p®> + Ry + mi)2
. o0 345697 96
_ d k — . (59
9k 487 /0 Ptk [(p2 + R + mz)3 (p?2 + Ry + mi)2 (59)

A magasabb rendd csatolasokra kapott egyenletek hasonlo szerkezetet mu-
tatnak.
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A differencialegyenlet-rendszer megoldésa soran természetesen numeri-
kus modszerek (pl. a Runge-Kutta-modszer [43]) altal szolgaltatott ered-
ményekre kell szoritkozzunk és altalaban a p szerinti integralast szintén csak
numerikusan tudjuk elvégezni. A numerikus szdmitasok elvégzése példaul
a [43] programjai altal torténhet. Az improprius integral numerikus kezelé-
sét az eredeti integralasi tartomanyt véges intervallumra leképez§ integrélt-
ranszforméacio [43] altal valositottuk meg.

Vizsgalataim megkezdésekor a kvantalt anharmonikus oszcillator ta-
nulményozasiban szerzétarsaim mar jelentGs tapasztalatokkal rendelkeztek
[40]. A numerikus szamitasokat tekintve a legfontosabb feladatom az alta-
luk hasznalt program tovabbfejlesztése volt a kompakt tart6ju folytonosan
differencialhat6 regulator alkalmazasa céljabol, majd a konkrét szamitasok
elvégzése ezzel a regulatorral.

Szamitasaim sordn a sémafiliggés vizsgalata céljabodl az oszcillator alap-
allapoti energiajanak és az els6 gerjesztett allapot energiajanak kiilonbségét
hataroztam meg, amelyre a tovabbiakban elsé gerjesztési energiaként hivat-
kozom. Az els§ gerjesztési energia pontos értéke a Schrodinger-egyenlet
numerikus megoldasa altal meghatarozhato, igy a szakirodalomban [41]
megadott értékeket vezérfonalként hasznalhatjuk az RG-moédszerrel kapott
eredményeink ellenérzésére. Ezekre az értékekre a tovabbiakban egzakt ér-
tékekként hivatkozom.

Az elsG gerjesztési energiat esetiinkben a

, (60)

AE = lim,/V)/
k—0 b=<d>

formula segitségével hatarozhatjuk meg [44], ahol (¢) a térmennyiség va-
kuum véarhato értékét jeloli. A vizsgalt kvantummechanikai modell esetén
(¢) = 0, azaz a trivialis térkonfiguracio, ezért

AFE = %irrbmk = my. (61)
Ily médon az elsG gerjesztési energia az my, csatolas IR hatarértékével azo-
nosithatd. Ez az Osszefiiggés szemléletes analdgiat mutat a kvantumtérel-
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1. abra : Az my csatolés fejlodése Callan-Symanzik-séma esetén, m% = 1
kezdeti értékrsl indulva. A kilonbo6zs gorbék a megadott kezdeti g érté-
kekre vonatkoznak. A magasabb rendi csatolasok kezdeti érteke nulla.

mélettel, ahol az elsé gerjesztési energia a szabad részecske tomegével azo-
nosithaté ha nem léteznek kotott allapotok.

Az 1. abra az my, csatolas fejlodését szemlélteti Ry (p) = k% renormélasi
séma esetén a gy, csatolas kiilénbozs kezdeti értékeire. Erre a séméara Callan—
Symanzik-sémaként ill. tomeglevagasként (az angolul ,mass cutoff”-ként )
hivatkoznak a szakirodalomban. Megfigyelhets, hogy az IR hataresetben az
energia dimenzi6ji my csatolas logaritmikus skalat tekintve marginélisan
skalazik, azaz konstans értékhez tart.

Callan—-Symanzik-séma esetén megvizsgaltam, hogyan fliggenek a ger-
jesztési energidra kapott eredmények a potencial alakjara vonatkozo felte-
vésben figyelembe vett csatolasok IN-nel jelolt szamatol. A technikailag
bonyolultabbnak szamito m?\ < 0 esetre vonatkozo tapasztalataimat a 2.
abra szemlélteti.

A 2. abra azt sugallja, hogy LPA-ban az alkalmazott numerikus modszer
esetén Callan—Symanzik-séméban N = 6 csatolast figyelembe véve kozelit-
hetjiik meg legjobban az egzakt értékeket a vizsgalt kezdeti feltételek esetén,
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0.035 T T T T T T
0.03 |- —
0.025 - —
0.02 |- —
0.015 - .
0.01 | —

IAE,-AE |/AE,,

0.005 - =

2. abra : Az els§ gerjesztési energia szamitott értékének (AFE)) eltérése
az egzakt értékektsl (AE,) N fliggvényében kiilonbozs gp kezdeti értékek
esetén. A fekete oszlop gp = 0.4 kezdeti értékre, a sotétsziirke oszlop ga =
0.3 értékre, a vilagossziirke oszlop gp = 0.2 értékre vonatkozik. A magasabb
rendd csatolasok kezdeti érteke nulla. Az dbrazolt adatok Callan—Symanzik-

sémara és m?\ = —1 kezdeti értékre vonatkoznak.
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m?\ gA AEexact AE’PT AE’Litim AEjCS AEexp
1 1 1.9341 | 1.9380 | 1.9386 | 1.9358 | 1.9382
1 0.4 1.5482 | 1.5498 | 1.5507 | 1.5490 | 1.5504
1
1
1
1

0.1 1.2104 | 1.2109 | 1.2110 | 1.2105 | 1.2109
0.05 | 1.1208 | 1.1210 | 1.1211 | 1.1208 | 1.1210
0.03 | 1.0779 | 1.0780 | 1.0780 | 1.0779 | 1.0778
0.02 | 1.0540 | 1.0542 | 1.0542 | 1.0541 | 1.0542
-1 0.4 | 09667 | 09730 | 0.9778 | 0.9733 | 0.9772
-1 0.3 | 0.8166 | 0.8233 | 0.8288 | 0.8241 | 0.8281
-1 0.2 | 0.6159 | 0.6227 | 0.6309 | 0.6262 | 0.6302

3. tablazat : Az elsG gerjesztési energia értéke kiilonb6z6 kezdeti felté-
telek esetén. A kiilonbozs oszlopok rendre a jol ismert egzakt értékeket,
a Schwinger-féle proper time formalizmussal szamitott értékeket [41], és az
altalunk Litim-, Callan—Symanzik- ill. exponenciélis sémakban szémitott
értékeket mutatjak.

ezért a tovabbi szamitasok soran hat csatolast vettem figyelembe. Amint a
3. tablazatbdl is lathato a pozitiv m?\ esetén kapott eredmények joval ponto-
sabbak, ezért a csatoldsok szdméanak megvalasztésa soran a kritikusabbnak
szamité negativ m?\ értékek esetét vettem figyelembe. N = 6 csatolést fi-
gyelembe véve a szakirodalomban gyakran alkalmazott Litim-regulator [45]

Ruiim(p) = (K% — p*)0(k* — p?), (62)
és exponencialis regulator [5]

p2

; (63)

[

Rexp (p ) =

p

ekz — 1

esetére végzett szamitasaimat a 3. tablazat foglalja Gssze.

Amint a bevezetésben emlitettiik a modell RG-moédszerrel torténd vizs-
galata soran az m?\ < 0 eset technikai nehézségeket okozhat. Ekkor a kez-
detben nem konvex potencidlnak a renormélds sordn az IR hataresetben
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konvexszé kellene véalnia. Mindazéltal, ha az anharmonikus tag csatolasa-
nak kezdeti gp értéke kicsi, akkor el6fordulhat, hogy az adott kozelitésben
k csokkentése soran a nem konvex potencial miatt az (59) egyenletekben a
nevezd$ nulldhoz tart. Ekkor adott k értéknél az egyenletek mar nincsenek
értelmezve és nem érhetd el a k — 0 hatareset. Az egyenletek értelmezési
tartomanyénak IR korlatja spontan-szimmetriasértett fazis létezése esetén
fizikailag indokolhato lehetne [3], azonban a vizsgéalt modell nem rendelkezik
szimmetriasértett fazissal, ezért a tapasztalt IR viselkedés magyarazatat a
szamitasok soran alkalmazott kozelitésekben kereshetjiik.

3.3. A renormaéalasi séma optimalizalasa

A Wetterich-egyenlet levezetése soran a regulatortoél megkovetelt altalanos
feltételek tobbféle regulator fiiggvények alkalmazasat megengedik. A koze-
litések alkalmazasa miatt a funkcionalis egyenlet differencialegyenletekkel
torténd helyettesitésével nyert eredmények fliggenek a reguldtor megvalasz-
tasatol, ezért az alkalmazéasok szempontjabol fontossa valik a renormalési
séma optimalizdlasanak kérdése.

A legel6nyGsebb renormalasi séma megvalasztasara tobbféle optimalizé-
lasi stratégia létezik aszerint, hogy milyen tulajdonsagot koveteliink meg az
optimaélisnak tekintett regulatortél. Ha az adott modellt jellemzs egyes fizi-
kai mennyiségek értékei mas modszerrel pontosan meghatarozhatoak, akkor
a legkézenfekvébb eljaras az RG-modszer eredményeinek az ismert érté-
kekkel torténs osszehasonlitdsa. Ekkor tekinthetjiik optimalisnak azt a re-
gulatort amely az ismert értékekhez legk6zelebbi eredményeket szolgéltatja.
Ez az eljaras azonban nem tekinthets prediktivnek egy ismeretlen modell
esetén.

Egy masik kozismert optimalizalasi stratégia [45, 46] annak a regulator-
nak a meghatarozasat takarja, amely a megfelel6 kozelitések fokozatos javi-
tasa soran bizonyos értelemben az eredmények leggyorsabb konvergenciajéit
biztositja. Az LPA esetén igy optimalizalt regulatorra Litim-regulatorként
hivatkoznak, amely gyakran mas szempontok szerint is optimaélisnak bizo-
nyul.
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Egy harmadik, gyakran alkalmazott [47-52] eljarast jelent az un. legki-
sebb érzékenység elvén alapulé optimalizalési stratégia, amely azt a regu-
latort tekinti optiméalisnak, amely esetén a kapott eredmény a legkevésbé
fligg a regulator paramétereitdl.

Egy tovabbi lehetGséget jelent a fazisszerkezet meghatéarozas szerint tor-
ténd optimalizalas. Egyes modellek esetén ugyanis eléfordul, hogy az adott
kozelitésben az RG-modszer tévesen hatarozza meg a modell fazisait. Ek-
kor tekinthets optimalisnak az a regulator, amely bizonyos értelemben a
legjobban reprodukalja a modell fazisszerkezetét [53].

A kvantalt oszcillator modellje esetén lehetdség kinalkozik az ismert iro-
dalmi értékek [41] szerint végrehajtott optimalizalasra. Az egzakt ered-
mények azonban nem jelentenek akkora segitséget, mint azt els§ rénézésre
varnank, mivel az alkalmazott kozelitések kovetkeztében nem véarhato el az
irodalmi értékek pontos reprodukalasa. Az LPA, a potencial sorfejtésének
a csonkolasa és a numerikus szamitésok hibai egyarant hozzéjarulhatnak az
egzakt értékektdl valo eltéréshez, ezért a sémafiiggés vizsgalata szempont-
jabol ez az optimalizalasi stratégia nem tekinthet6 meghatérozonak.

Ertekezésemben a leggyorsabb konvergencian alapulé optimalizalas ne-
hézségeit elkeriilve a legkisebb érzékenység elve és a fazisszerkezet alapjan
torténd optimalizalasra szoritkozom.

A legkisebb érzékenység elve alapjan torténd optimalizalas tulajdonkép-
pen a fizikai mennyiségekre vonatkozo6 szamitasi eredményeknek a regulétor
paraméterei tekintetében stacionarius pontjainak megkeresését jelenti. Ez
a stratégia azt a kézenfekvd elgondolést tiikrozi, hogy minél inkabb fligg a
szamitott eredmény a regulator onkényesen megvalasztott paramétereitsl,
annal kevésbé tekinthet6 megbizhatonak a szdmitasnak a mérhetd meny-
nyiségekre vonatkozo joslata. A modszer hatranya a tobbi optimalizalasi
stratégiaval szemben, hogy segitségével csak azonos funkcionalis forméval
rendelkezd reguldtorok hasonlithatok Gssze.

Erre a problémara megoldést jelenthet az in. kompakt tart6ja folytono-
san differencialhato (angolul compactly supported smooth) regulétor beve-
zetése |54|, amelyre a tovabbiakban CSS-regulatorként hivatkozok. A CSS-
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regulator matematikai alakja a magfizikdiban alkalmazott Salamon—Vertse-
potencialbol [55-57] szarmaztathato.
A szakirodalomban gyakran alkalmazott

Riitim = (K* — p*)0(k* — p?) (64)
Litim-regulator,
2
p
Rexp = — (65)
er? —1

exponencialis regulator és

2 k2 ’
Rpolinom =Dp <F> (66)

hatvanyfiiggvény-regulator az

B 51p°
Ress = T

O(k* — sop™) (67)
exXp [ﬁ] -1
k20 —saop

CSS-regulator speciélis eseteinek tekinthets. A képletekben 6 a Heaviside-
féle egységugrasfiiggvényt jeloli.

A hatvanyfiiggvény-regulator az R = k? Callan-Symanzik-séma altala-
nositasanak tekinthets, amelybdl a Callan-Symanzik-séma a b = 1 valasz-
tassal szarmaztathato. A b paraméter értékére a b > 1 megszoritas érvényes,
amely érvényben marad a CSS-regulator esetén is. A CSS-regulator mésik
két paramétere az s > 0 és so > 0 megszoritdsoknak tesz eleget. A CSS-

regulator ismertetett alakja az [58] szerinti parametrizalasnak felel meg. Az
R
jdk meg, ahol y = 2’—3 dimenzidtlan valtozo. A CSS-regulator dimenzidtlan

irodalomban gyakran a regulatorok r(y) = dimenzidtlan formajat ad-

forméaja
51

exp[s1yb/(1 — s2%)] — 1

ress = 0(1 — say?). (68)
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A CSS-regulator megfelel§ hatéaresetei visszaadjak [58] a korabban emlitett
gyakran alkalmazott regulétor fiiggvényeket:

slligo rcss = (% — SQ) (9(1 — Sgyb), (69)
. 1
A (70)
. S1
dmress = b =1 (1)

Az els6 hatareset a Litim-regulatornak felel meg so = 1 esetén, a masodik
hatareset a hatvanyfiiggvény-regulatort szolgaltatja, a harmadik hatareset
az exponencialis reguldtornak felel meg s; = 1 esetén. A Litim- és az expo-
nenciélis regulator eredetileg emlitett formuléi a b = 1 esetnek felelnek meg,
de ezek a regulatorok a fenti képletek szerint altalanosithatoak tetszdleges
b esetére. Ezaltal a CSS-regulator igy lehetséget nytjt a Litim-, az expo-
nencialis és a hatvanyfiiggvény-regulatornak a legkisebb érzékenység elvével
torténd osszehasonlitasara.

A tovabbiakban vizsgalatainkat a b = 1 esetre korlatozzuk, amely kielé-
giti a

limyr=1és lim yr=0 (72)
y—0 Yy—00
normalési feltételeket [59].

A CSS-regulator esetén az impulzus szerinti integralas nem végezhets el
analitikusan és a regulator bonyolult formajanak koszonhet6en mas regula-
torokhoz képest technikailag joval nehezebben kezelhetS. Ennek ellenére a
szakirodalomban a CSS-regulator optimalizélasdt mar tobb modell esetén
vizsgaltak, példaul a kvantum-Einstein-gravitacio [58], a haromdimenzios
O(1)-modell [58] és a sine-Gordon tipust modell [61] tekintetében.

A numerikus szamitasok soran a (67) kifejezés kozvetlen alkalmazasa
problémakat okozhat. p = 0 esetén a kifejezés értelmezése hatarérték-
szamitast igényel, a nevez&ben 1évS kiilonbség kis értékei esetén a lebeg&pon-
tos szamabrazolas jelentSs hibat eredményezhet, tovabba a nevezében 1évs
exponencialis fliggvény tulcsordulast okozhat. Ezért a program elkészitése
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AE
U 1.2118
e 1.211
1.2118 ~ - 1.211?1
C i 1.2112
12114 | 1511
T 1.2108
1.2110 | 1.2108
1.2106 1.2104

_______ .25

3. abra: A AFL gerjesztési energia a regulator s; és so paramétereinek
fiiggvényében. A b paraméter értéke 1. A csatolasok kezdeti értéke m3 = 1
és gn = 0.1. A magasabb rendii csatolasok kezdeti érteke nulla.

soran kiilén gondoskodtam ezeknek a problémés eseteknek a kezelésérsl. A
programozas soran természetesen a Heaviside-fliggvény implementalasat is
meg kellett oldanom.

A legkisebb érzékenység elve szerinti optimalizalds céljabol a kvantalt
anharmonikus oszcillator esetén az els§ gerjesztési energiat a regulator s;
és sy paramétereinek fiiggvényében vizsgéltam. A 3. abra az m?\ =1 és
gan = 0.1 kezdeti értékek esetén kapott eredményeket szemlélteti.

A 3. abra szerint az els§ gerjesztési energia nagyon kevéssé fiigg a regula-
tor megvalasztasatol, a vizsgalt kiillonb6zs sémék esetén az eltérés altalaban
csupan a 4. tizedesjegyben jelentkezik. Ez kiilontsen azért érdekes, mert
més modellek esetén, példaul a kvantum-Einstein-gravitacio [58] esetén na-
gyon erds sémafiiggés tapasztalhato.
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A kvantummechanikai modell esetén tapasztalt gyenge regulatorfiiggés
valoszintileg azzal kapcsolatos, hogy a kvantummechanikai modell egydi-
menzids téridében tekintett térelméleti modellnek tekinthetd, igy nem je-
lennek meg benne UV-divergencidk, mig a magasdimenziés modellek esetén
az UV-divergencidk kiilonboz&képpen torténd eltavolitasa erdsitheti az ered-
mények sémafiiggését.

Amint az a 3. Aabrarol lathato a kapott felilet az s; = 0 érték ko-
zelében szignifikdns maximummal rendelkezik, amely més kezdeti értékek
esetén is megjelenik. Ez megleps eredmény, mert a szélsGérték nem a Litim-
regulatornak megfelel§ s; — 0, so = 1 pontban jelenik meg, ezért a legki-
sebb érzékenység elve alapjan a Litim-félétsl eltéré renormélasi sémat kell
optimélisnak tekinteni. Bar az abrazolt feliilet olyan tartoméannyal is rendel-
kezik, amelyben az energiakiilonbség értéke nem véltozik jelent&sen, ebben
a tartomanyban nem figyelhetiink meg szignifikans szélsGértéket. Ezért a
tovabbiakban a Litim-reguldtornak megfelel6 pont kozelében, de attol elté-
réen helyen megjelend maximumot vizsgaltam.

Az abrazolt esetben éppen a maximum esetén a legnagyobb az eltérés
az egzakt értéktol (1.2104), igy a legkisebb érzékenység elvének figyelembe-
vétele az egzakt értékek szerint torténd optimalizalastol eltér§ eredményt
szolgaltat. Ez azonban nem meglepd, hiszen a funkcionélis RG-egyenlet
differencialegyenletekkel torténé helyettesitése és az egyenletek numerikus
megoldasa altal kozelitéseket alkalmaztunk. A tovabbiakban a legkisebb
érzékenység elvét alkalmazzuk, amely akkor is helyesen hatarozza meg az
optimélis regulétort, ha a kapott eredmények a kozelitések hibai miatt ko-
riilbeliil azonos értékkel eltolodnak.

A 3. abra kezdeti feltételei esetén a gerjesztési energia maximalis értékét
kozelitbleg az s; = 0.05 és so = 3 paraméterek esetén kapjuk, amelyek az

B 0.05
Fmax = exp[0.05y/(1 — 3y)] — 1

regulatornak felelnek meg. A 4. abran részletesebben lathato a gerjesztési

0(1 - 3y) (73)

energia értékének valtozasa a Litim-regulator kornyezetében!!.

1 Az eredményeinket targyalé publikacioban eliras kovetkeztében az adott abrahoz tar-
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1.2118

1.2116

1.2114

AE

1.2112

1.211

1.2108

1.2106 . L . L .

4. abra : AF feliiletének a maximumon athalado, so = 3 ill. s; = 0.05
rogzitésével kapott metszetei. A csatolasok kezdeti értékei m?\ =1¢ésgp =
0.1. A magasabb rendii csatolésok kezdeti érteke nulla.

Mindazaltal a (73) képlettel adott regulator az s; paramétert tekintve
nagyon kevéssé tér el a Litim-regulatortol, igy ez a regulétor kozelithetd a
CSS-regulatornak az s; = 0 pontban tekintett sy szerinti Taylor-sorfejtésé-

vel, azaz
1- 32yb 51 ybs% b
max & | ———— — —+ ————— 4 ... ) 6(1 — . 74
fma ( o > ") T (1 =5y (1)
Az s1 tekintetében linedrisndl magasabb rendii tagokat elhanyagolva az
1—soy® s
Tlin = <T ) 0(1 — Szyb)a (75)

regulatort kapjuk, amely a Litim-regulator perturbativ altaldnositdsanak
tekinthetd. Ekkor a b = 1 esetet tekintve az (57) egyenlet a
1 (V= 2k?

Vi = d
k=50 ; pk2—|—p2(1—82—%)—|—Vk”’

(76)

toz6 ga értéke tévesen van megadva.
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alakot olti. Ekkor a p impulzus szerinti integrélas analitikusan elvégezheté
és a potencialra a

k2 1 . (1— 59— 3)k2
Vi = P D aTo R tan \/—S 2V (77)
V(=52 = F)(F + V) 2 k

egyenletet nyerjik.

Az alkalmazott kozelitésben az RG-modszer tévesen szimmetriasértett
fazis megjelenését josolja, igy lehetdség nyilik a renormaéalasi séménak a fazis-
szerkezet alapjan torténd optimalizalasara. A latszolagos szimmetriasériilés
akkor jelenik meg szamitasainkban, amikor az m?\ kezdeti érték negativ és
a ga kezdeti érték egy kritikus értéknél kisebb. Igy lehetséges optimalisnak
tekinteni azt a reguldtort, amelyre a legkisebb ga kritikus értéke. Tapasz-
talataim szerint m% = —1 esetén kozelit6leg giritikus = 0.08 a g csatolas
legkisebb kezdeti értéke, amely esetén még az effektiv potencial meghata-
rozhato az alkalmazott kozelitések és numerikus mddszerek keretein beliil. A
szakirodalomban [41] a potencial sorfejtésének elkeriilésével RG-modszerrel
gn = 0.02 érték esetén is kaptak eredményt az elsG gerjesztési energiara
vonatkozban, mindazaltal ebben a tartomanyban az alkalmazott moédszer
csupan mingségi lefrast nytjt.

A 4. tablazat a gerjesztési energianak kiilonb6zs s1 és so paraméterekkel
rendelkezd regulatorok altal nyert értékeit tartalmazza gn = 0.08 esetén. A
hidnyzé adatokhoz tartozé si és so értékek esetén nem lehetséges az effektiv
potencial meghatarozasa. A szélsGségesen magas értékek a szamitasok soran
megjelend numerikus instabilitdsokra utalnak.

A tablazat eredményei azt sugalljak, hogy a fazisszerkezet szerint tor-
ténd optimalizalas nem a kordbban optimaélisnak bizonyulé regulatorhoz,
hanem a Litim-regulatorhoz vezet, mert a Litim-regulatorhoz kozeli regu-
lator (s;1 = 0.001, s; = 1) esetén a legkisebb a gerjesztési energia értéke.
Ezért agy tinik, hogy a kiillonb6z6 optimalizalasi médok alapjan kiilonbozé
regulatorok bizonyulnak optimaélisnak.

Osszefoglalva tapasztalatainkat a kvantalt anharmonikus oszcillator egy-
szerd problémajanak RG-moddszerrel torténd megkdzelitése 0j fényt vetett a
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82:0.001 82:1 82:2 82:3
s1 = 0.001 - 0.23538 0.23679 753913.25671
51 =0.05 - 0.23598 0.23785 23102.53408
s1=1 0.23766 0.23556 | 341061.15077 -
51 =2 0.23612 0.23604 - -
51=3 0.23566 0.23644 - -

4. tablazat : Az elsG gerjesztési energia értéke a regulator kiilonbozd sq
és s paraméterei esetén m?\ = —1 és gy = 0.08 kezdeti értékeket tekintve.

sémafiliggés vizsgalatara, mivel esetiinkben LPA-ban a legkisebb érzékeny-
ség elve szerint végzett optimalizalas a széles korben optimélisnak tekintett
Litim-regulatortol eltérd optimélis regulatorra vezetett. A fejezetben ismer-
tetett eredmények a [62] és [60] cikkben keriiltek publikalasra.
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4. A Caldeira—Leggett-modell folytonos spektrumni
valtozatainak vizsgalata

4.1. A Caldeira—Leggett-modell

Amint az értekezés bevezetésében emlitésre keriilt, az RG-mo6dszer alkalma-
zési teriiletének bévitésére az egyik lehetGséget a Caldeira—Leggett-modell
(tovabbiakban CL-modell) kiilonb6z6 valtozatainak részletesebb vizsgalata
kinalja. A modell egyes folytonos spektrumu kvantalt valtozataiban fazis-
atalakulés jelenik meg, melynek tanulmanyozésa indokoltté teszi az RG-
modszer alkalmazasat.

A fazisatalakulas tanulmanyozasa soran annak tisztazasat tiztik ki cé-
lul, hogy a spektrélfiiggvényben szerepld levigés kiilonbo6zs értékei ill. a
levagas bevezetésének modja hogyan befolyasolja a fazisatalakulas kritikus
exponenseinek értékét. Eredményeim targyaldsa el6tt a CL-modell tobb
valtozatat attekintve ismertetem a tanulményozott modellek megalkotasara
vonatkozo eljarést és ennek motivacidjat, majd kitérek a kvantalt valtoza-
tokban folytonos spektralfiiggvény esetén megjelend fazisatalakulasra. Ezt
kovetSen ismertetem az alkalmazott kozelitésben nyerheté RG-egyenleteket
és a szuszceptibilitas ill. a korrelaciés hossz kritikus exponenseire vonatkozo
1j eredményeket.

Ha precizen fogalmazunk meg kell allapitanunk, hogy a Caldeira-Leggett
elnevezés nem csupan egyetlen modellre, hanem modellek egy csoportjara
hasznélatos, hiszen a folytonos spektrumi kérnyezetet jellemz6 kvantéalt mo-
dell definidlasa nem a szintén e névvel illetett [65] klasszikus modell szokésos
kvantalasa altal torténik. Ezeknek a modelleknek a legfontosabb kozos jel-
lemzGje, hogy vizsgalataink soran megkiilonboztetiink egy olyan alrendszert,
amely a kornyezetével torténd kolcsonhatas miatt nem tekinthetd zartnak.

A CL tipust modellek bevezetését 63, 64] elsGsorban a modell bizonyos
mértékben empirikus kvantélt valtozatai indokoljak, amelyek disszipativ je-
lenségek a kvantummechanika keretei kozott torténd targyalasara [65] adnak
lehetGséget. A disszipécid fellépése esetén a vizsgéilat szempontjabol rele-
vans alrendszer nem zart, ezért olyan kvantalt modell alkotésa, amely csak
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az adott alrendszer szabadsagi fokait tartalmazza nehézségekbe titkozik [66].
Bar a relevans alrendszer a kornyezetével egyiitt zart rendszert alkot, mely-
nek vonatkozésaban a klasszikus modell kvantélasa konynyen elvégezhetd,
a kornyezetszabadsagi fokainak eliminalasa technikailag csak nagyon kivé-
teles esetekben végezhetd el, ezért indokoltta valik az ismertetésre keriilg
egyszertsitett modellek megalkotésa.

A folytonos spektralfiiggvénnyel rendelkez6 modellek lehetGséget nyij-
tanak arra, hogy a vizsgalt alrendszer és kornyezete kozotti kolcsonha-
tast csupan néhany paraméter segitségével, a kolcsonhatas konkrét alak-
janak megadésa nélkiil vegyiik figyelembe, igy &ltaluk fizikai rendszerek
széles kore tanulméanyozhat6. A CL tipusit modellek felhasznalhatoak a
Brown-mozgéas kvantummechanikai targyalasara [67], a Josephson-atmenet
[68, 69], a szenynyezidést tartalmazo fémekben megvalosulo elektrontransz-
port |69, 70|, az optikai rezonatorban lévé Bose-Einstein-kondenzatum |71]
és egyes magfizikai folyamatok [72| vizsgalta soran, tovabba egyes hurelmé-
leti problémakkal is kapcsolatba hozhatoak [73].

A lehetséges alkalmazasokon tilmenden a nyilt rendszerek vizsgalata
elméleti szempontbol is figyelmet érdemel. A kornyezet szerepe kulcsfon-
tossagu a dekoherencia kialakulasaban [74], amely jelenség fontos szerepet
tolt be annak vizsgalataban, hogy a kvantummechanika torvényeinek enge-
delmeskedd rendszer hogyan keriilhet a mérés sorén a klasszikus fizika altal
leirhato allapotba.

Altalanos esetben a kvantalt modellek megalkotésanak ismertetésre ke-
riil§ gondolatmenete egy viszonylag hosszadalmas, tobb 1épésbdl 4116 eljaras.
Ennek sordn abbdl a képbdl indulunk ki, amelyben a vizsgalat szempont-
jabol relevans alrendszer egy anharmonikus oszcillator, amely linearisan
csatolodik a kornyezetét alkotd, egymassal kolecson nem haté harmonikus
oszcillatorok sokasagahoz 75|, amelyet hofurdének is neveznek. Ebben az
esetben a klasszikus hatas az

t2 1 . 1 . 1
Sd — / |:§]\4q2 — V(q) + Z §mnqi — Z gmnwiqi + q Z CnQn:| dt(78)
tl n n n

alakban irhato fel, ahol a q, M és V jelolések rendre az anharmonikus osz-
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cillator koordinatajara, tomegére és potencialjara vonatkoznak, a q,, m,,
wy, és C, jelolések rendre a kornyezethez tartozé m. harmonikus oszcilla-
tor koordinatajara, tomegére, rezgésének korfrekvenciajara és csatolasara
vonatkoznak. A hatas d indexe arra utal, hogy ebben az esetben az anhar-
monikus oszcillator kornyezetének gerjesztéseit diszkrét frekvenciak altal
jellemezhetjik. Amint a jel6lés sugallja ¢g-t nem tekintjiik tébb kompo-
nenst vektornak, mivel az egyszertiség kedvéért a [76] munkat kovetve egy
térdimenzioban tekintett modellt vizsgalunk. Az el6z6 fejezet vizsgalatai-
hoz hasonloan a potencial V(q) fiiggvényét paros negyedfokd polinomnak
tekintjik.

A héfiirds jellemzése céljabol érdemes bevezetniink a J-vel jelolt'? spekt-
ralfiiggvényt, amelyet a (78) egyenletben szerepl hatés esetén a
02
Ja(w) = ; 4mn"wn 210 (w — wy) (79)

modon definidlhatunk. A J4(w) bevezetése azért elényds, mert a héfiirdst
alkoté harmonikus oszcillatorok mozgésegyenletére vonatkozo kezdeti fel-
tételeket megfelelGen megvalasztva a relevans alrendszerre vonatkozd moz-
gasegyenlet olyan forméba irhato [76], amelyben a héfiirds hatasa csupan a
spektralfliggvényen keresztiil jelenik meg.

Ekkor a relevans alrendszerre vonatkozé mozgasegyenlet altal olyan klasz-
szikus modellt definidlhatunk, amely mar nem tartalmazza a nyilt alrend-
szer kornyezetének ¢, szabadsagi fokait, hanem a kornyezetre vonatkozo
minden informaciot a spektréalfiiggvény altal vesz figyelembe. Ezt a modellt
modosithatjuk tgy, hogy a mozgasegyenletben a Jy diszkrét spektrumii kor-
nyezetet jellemzd spektralfiiggvényt folytonos fiiggvénnyel helyettesitjik. E
lépés soran a modellnek t6bb, a spektralfiiggvény megvalasztasa szerint kii-
16nb6z6 valtozatat definidlhatjuk. Mar a klasszikus modell megalkotésat
is jelentGsen befolyasolja, hogy milyen a bevezetni kivant spektralfiiggvény

12 Az irodalomban szerencsétlen modon mind a kérnyezetet jellemzs spektralfiiggvény,
mind a térelméleti targyalasban megjelend kiils6 forras esetén szokasos a J jelolés alkal-
mazasa.
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viselkedése. Ha megengedjiik, hogy a spektralfiiggvény tetszélegesen nagy
értéket is felvegyen, akkor a mozgasegyenletben divergalé tag jelenhet meg.
Nem megfelel§ viselkedésii spektralfiiggvények alkalmazaséra is lehet&séget
nytjt azon (a fizikai szemlélet szempontjabol kifogasolhato, mindazaltal az
irodalomban [76] mégis alkalmazott) eljaras, amely soran egy mesterséges
ellentagot bevezetésével végessé tessziik a relevans alrendszer mozgasegyen-
letében szerepls ereds erét. Az ellentag csupan a V' (q) potencial kvadratikus
tagjahoz ad korrekciot, ezért hatasa az elmélet egyetlen paraméterébe beol-
vaszthato és a klasszikus modellek esetén nem jarul hozza a disszipacidhoz.
Ezt az eljarast alkalmazzak

Jao(w) = nw (80)

fliggvény esetén is, amely a spektralfiiggvény megvalasztasanak egyik leg-
egyszertibb lehetéségét kindlja. A képletben szereplé n tényezé a kornye-
zettel torténd kolcsonhatas erésségét jellemzd pozitiv paraméter. Ebben az
ohmikus disszipaciénak nevezett esetben a relevans alrendszerre vonatkozo
mozgasegyenletben olyan tag jelenik meg, amely aranyos a sebességgel (g-
tal) [76], ezaltal a szokésos disszipativ er6komponensnek feleltetheté meg.

Realisztikusabb modelleket kapunk ha elkeriilve az ellentag mesterséges
bevezetését olyan spektralfiiggvényt valasztunk, amely levagast tartalmaz
vagy gyorsan lecseng w nagy értékei esetén. Ez megtorténhet a 0 egységug-
rasfiiggvény (méas néven Heaviside-fiiggvény) segitségével a

Ju(w) = nwb(Ay — w) (81)
modon és a Lorentz-fliggvény segitségével a

Af

S(w) = HWW

(82)
modon, ahol Ay ill. Ay a levagés értékét ill. a lecsengés gyorsasagat meg-
hatarozo pozitiv paraméter. Az egyszertiség kedvéért a tovabbiakban az
utobbi esetre is a levagas kifejezést hasznalom. Az (81) ill. (82) egyen-
letek a szilardtestfizikiban a fononspektrum esetén bevezetett Debye-féle
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ill. Drude-féle levagasnak feleltethetGek meg. Ertekezésemben CL-modell
mindkét valtozatat az ellentag bevezetése nélkiil vizsgélom, ezért a késGbbi
egyenletekben A, — 0 ill. A; — 0 hatéresetek nem feleltethetGek meg
az irodalomban korabban vizsgélt ellentagot tartalmazé modellnek [76, 77|
annak ellenére, hogy a ezekben a hataresetekben visszakapjuk az ohmikus
spektralfiiggvényt.

A kvantalt CL-tipusi modellek megalkotasdhoz vezetd eljaras kezdetén
a harmonikus oszcillatorok altal megvalositott héfiirds (78) egyenletben is-
mertetett esetébdl indulunk ki. A |76, 77| publikaciokat kovetve euklideszi
téridében tekintett modellt tanulmanyozva, a

Sga = /00 EM@T(])Q +Vi(a)

b Y @)+ 3 i~ 0 Y Cofar ()

euklideszi hatést irhatjuk fel, ahol az integralast a térelméleti targyalés
céljabol a teljes idGtengelyre kiterjesztettiik és bevezettiik a 7 = it valtozot.

Ekkor pélyaintegralos kvantalast alkalmazva kvantummechanikai mo-
dellt definidlhatunk. Az egyszertiség kedvéért csupan a generald funkcionéal
zérus kiilsg forras esetére vonatkozé alakjat 77| irom fel, amely A =c =1

- /%/ / Dql;l{ / an}eSE»d, (84)

ahol a N a normélasi tényez6t jeloli. Az Sg 4 hatas esetén a héfiirdst har-

egységrendszerben:

monikus oszcillatorok valésitjak meg, ezért a kornyezet ¢, szabadségifokai
tekintetében gaussi palyaintegralt kapunk, melyet analitikusan elvégezve a

2 = 35 [reeo{ [ [gM@ar + via|ar+ asi|

egyenletet nyerjiik, ahol

N :——Z / G (), (86)
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_ 1 > —iTw
g(w) = N /OO q(T)e”T¥dr. (87)

A ¥4 sajatenergia bevezetésével a hatasban a héfiirds AS jaruléka

1 o
ASa=5 [ atw)Saw)a(-w)ds (59)
alakban irhaté, amely
1 [ 40’
E - !/ - /
a(w) o7 ), Jq(w )w2 o dw (89)

modon fejezhets ki a (79) egyenletben bevezetett Jy spektralfiiggvény se-
gitségével. Ekkor a generald funkcionalt a (85) és (88) egyenletek &ltal a
qn szabadsagi fokokra torténd hivatkozas nélkiil is definidlhatjuk, ezéltal a
harmonikus oszcillatorok altal megvalésitott fenti specialis héfiirdg esetén
a relevans alrendszer kornyezetének jellemzGit a kvantalt modellek esetén is
a spektralfiiggvénybe olvaszthatjuk.

Ha a relevans alrendszer kornyezetének spektrumét a levagast tartal-
mazo6 Jy ill. Jj spektralfiiggvényekkel kivanjuk leirni, akkor a sajitenergi-
ara vonatkozo (89) egyenletbe Jg helyébe a J, ill. J; spektralfiiggvényeket
helyettesitve az el6bbiekhez hasonldéan definialhatjuk a kvantalt CL-modell
folytonos spektrumu valtozatait. Ezaltal a klasszikus elmélet kvantalasa-
nak szokasos eljarésat kikeriilve empirikus médon alkotunk modellt a nyilt
alrendszer leirasara.

A (89) egyenletbe Jg helyett az ohmikus disszipacio esetének megfeleld
Jo spektralfiiggvényt beirva az w’ szerinti integral divergalni fog. Ebben
az esetben a modell a klasszikus esethez hasonléan a hatasba bevezetett
ellentag segitségével definidlhatd. Az ellentagot az irodalomban [77] ismert
modon bevezetve a divergalé sajatenergiat a

Eor(w) = nlwl (90)
véges, renormalt kifejezéssel helyettesithetjiik. Ennek segitségével a hatés
kornyezetet leird tagjat és a generald funkcionalt a a (88) és (85) egyen-
letekhez hasonléan definidlva megalkothatjuk a kvantalt modellt ohmikus
disszipacid esetén is.
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4.2. A kvantum-klasszikus atmenet

A CL tipusi modellek hatasaban a kornyezet szerepét tekintetbe vevs tag
megvaltoztatja a modellek fazisszerkezetét az anharmonikus oszcillator el6z6
fejezetben targyalt esetéhez képest. A statisztikus fizika szemszogébdl te-
kintve a problémat megallapithatjuk, hogy az ekvivalens egydimenzios O(1)
modellt tekintve az j tagnak az energia kifejezésében megjelené nemloka-
lis jarulék felel meg, amely az egyetlen dimenzié ellenére lehetévé teheti
spontan-szimmetriasértett fazis kialakuldsat. Ez a jarulék az n paramé-
terrel arényos, igy a fazisatalakulds soran 7 t6lti be a kontrollparaméter
szerepét. Ennek kovetkeztében a modellekben megjelend fazisédtalakulésra
disszipativ fazisatalakulasként is hivatkoznak |78|, amely zérus hémérsékle-
ten megjelend kvantum-fazisatalakuldsra szolgaltat példéat.

Amint az el6z6 fejezetben targyaltakbol kdvetkezik a kvantalt anharmo-
nikus oszcillator esetén a spontan szimmetriasértés az alaguteffektus elnyo-
masénak feleltethet6 meg. Ez az eltérés a héfiirds nélkiil tekintett oszcillator
esetétdl bar elsé ranézésre furcsanak tiinik valojaban nem rendkiviili, hiszen
régbéta ismert, hogy a kornyezettel torténé kolcsonhatas megsziinteti az al-
rendszer hullamfiliggvényének koherenciajat. Mivel a kdrnyezet hatasanak
koszonhetGen egyes kvantummechanikai jelenségek nem figyelhetGek meg
az alrendszerben. A szimmetriasértett fazis megjelenésére az irodalomban
kvantum-klasszikus atmenet néven hivatkoznak [77]. Ohmikus disszipacio
esetén a fazisitalakulas létezését az RG modszerrel végzett vizsgalatok mel-
lett az instanton modszerrel kapott eredmények [77] is megerdsitik.

Az el6z6ek alapjan evidensnek tiinik, hogy konkév V(g) potencial ese-
tén az n paraméter értékének novelésével bekovetkezik a szimmetrikusbol a
szimmetriasértett fazisba torténé atmenet, azonban a konkrét szamitasok
elvégzése el6tt nem ismerjiik 7-nak azon értékét, amelynél a fazisatalakulas
bekovetkezik, ezért a fazisidtalakulds vizsgalata soran olyan modszert cél-
szerd alkalmazni, amely nem tdmaszkodik az n szerinti perturbativ sorfej-
tésre. Amellett, hogy ez megvalosithaté a nem perturbativ renormalas altal
[76, 77| az RG kiilonosen hatékony eszkozt kinal az atalakulasi pont koze-
lében megjelend kritikus viselkedés tanulményozasara.
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4.3. A renormalasicsoport-egyenletek

Ertekezésemben az euklideszi téridében kvantalt CL-modell ellentag nél-
kili, Jy ill. J; spektrélfiiggvények altal bevezetett valtozatait, tovabba az
ohmikus disszipacio ellentag bevezetésével értelmezett esetét vizsgilom. A
modell ezen véaltozatait a diszkrét spektrumi héfiirdé esetéhez hasonloan
general6 funkcionél altal definidlhatjuk a

z - J\%/quxp{/j: [%M(BTq)Q—i—V(q)}dT—irAS}, (91)
a5 = 3 [ aws@at-w)d, (92)

_ 1 > —iTw
i@ = o= [ aner (93)

egyenletek segitségével, ahol a 3-val jelolt, sajatenergianak nevezett mennyi-
séget a a bevezetni kivant spektralfiiggvény paraméterei segitségével a

Yor(w) = njw] az ellentag bevezetésével
tekintett ohmikus
disszipécid esetén,

||

Y=L E(w) = —2?’7 (Au — |w| arctan h) Jy spektralfiiggvény (94)

esetén,
2
77A1

EI(W) = T A

Ji spektralfiiggvény

L esetén.

modon definialjuk. Az egységugrasfiiggvény szerinti levagas bevezetése ese-
tén ill. a Lorentz-fliggvény szerinti levagas bevezetése esetén a sajatener-
giara vonatkozo kifejezést a diszkrét esethez (89) hasonldéan a megfelels
spektralfiiggvény integralasa altal nyerjik.

A CL tipust modellek tanulményozasat a technikai elényokre tekintettel
WH- és Litim-séméaban [45] végeztem. Az RG-egyenletek levezetése soran
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a [76] munkat kovetve az n-t nem tekintettem az energiaskalatol fiiggs csa-
tolasnak. Az egyszertiség kedvéért a tovabbi szamitasokat M = 1 egység-
rendszerben végzem, amelyben 7 témeg dimenzi6ji. Erdemes megemliteni,
hogy ezen keretek kozott az n-nak megfelel6 dimenziotlan 7 = # paraméter
vonatkozésaban nem talalunk nem triviélis fixpontot.

A WH-séma esetén az energiafiiggé hatésra az

s = [ 5| +viw]ars [ |Gren-uae)]|e o

—00 —00

szerint LPA-t alkalmazva a WH-egyenlet a
. k
Ve=—5-In (K> + V! + ) (96)

forméban adodik, ahol Vi = kdy, V! = 92V, és B(k) = S(w). Amint lat-
hato az alkalmazott kozelitésben a WH-séma esetén a nagyenergiaji modu-
sokra torténd integralas a sajatenergia forméjatol figgetleniil analitikusan
elvégezhetd.

Az energiaskalatol fliged potenciél alakjara a

1 1 o~ gon ()
V — - 2 2 = 4 2n 2n 97
b= gmid® + ot + ) G (97)
n=3

feltételezést rottam ki, amelyben figyelembe vettiik, hogy a renormélas altal
negyedfokiinil magasabb rendi tagok is generalédnak. Munkém soran a
korabbi numerikus tapasztalatokat felhasznilva N = 6-nak valasztottam a
figyelembe vett csatolasok szdmat.

Az RG-modszert a Wetterich-féle effektivhatéas-szemlélet keretében al-
kalmazva LPA-ban a

Vi = 98
k /pp2+vkﬂ+2k+Rk ( )
egyenlet irhat6 fel, amelyet az

Ry, = (K — p»)0(k* — p?) (99)
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regulator altal definiélt Litim-sémaban tanulmanyoztam. A Litim-séméban
az ohmikus disszipécio és a Lorentz-fliggvényt tartalmazo spektralfiiggvény
esetén a p szerinti integralas analitikusan elvégezhetd, ezekben az esetekben
a (98) egyenlet a

. k? nk
=—In(l+ 55— 1
Vi o n< + k:2+Vk”>’ (100)

illetve

. k2
Vi = ———=
g (k2 + V)2
k k2 VI/
( +2 k ) + ka//
k3 + 2k2A) — 20A2 + (k + 2A,)V”
(101)

X <k3 + 277A12arctanh<

forméat olti.

4.4. A kritikus exponensek vizsgalata

Amint a héfiirdé nélkiili oszcillator esetén is tettiik, a konkrét szamitasok
elvégzése soran a potencidlra vonatkozo (97) egyenletet alkalmazva a (96)
ill.  (98) parcialis differencidlegyenleteket kozonséges differencialegyenlet-
rendszerre vezethetjiik vissza, amelynek kezdeti feltételeit a csatoldsoknak
a A levagasnal felvett értékei adjak meg.

A differencidlegyenlet-rendszer megoldésa rendkiviil rossz numerikus tu-
lajdonsagokkal rendelkezik, a vizsgalt tartomanyban a csatolasok értékei
tobb nagysagrenden keresztiil valtoznak. Az egyenletek megoldasanak minél
pontosabb meghatéirozasa céljabol olyan Runge-Kutta-modszert alkalmazo
programot irtam, amely a csatolasok valtozasainak megfeleléen adaptivan
valtoztatja a differencidlegyenletek numerikus megoldasa soran alkalmazott
lépéskozt. A lépéskoz valtoztatasa kiilonosen fontos a szimmetriasértett
fazisban az energiaskala kritikus értékének meghatéarozasa soran.
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A szimmetrikus és a szimmetriasértett fazis kozotti kiilonbség a propaga-
tor eltérs viselkedésében mutatkozik meg. Altalanosan az inverz propagétor
a

Gl =k 4+ M3, (102)

moédon definialhato, ahol M2 = mz + ¥k a héflirdével térténd kolesénha-
tas altal feloltoztetett tomeg, amely az mz csatolas mellett a sajatenergié-
nak a spektralfiiggvény levagasanak értékétdl fliggs jarulékat is tartalmazza.
A szimmetrikus fazisban az energiaskalatol fiiggs inverz propagator értéke
mindig pozitiv, a szimmetriasértett fazis esetén azonban k valamely adott
értékénél az inverz propagator zérussa valik. Az energiaskala ezen kritikus
értékét a tovabbiakban k.-vel jeloljiik. Altalaban a csatolasokra levezett
RG-egyenletek olyan nevez6t tartalmaznak, amely k. értékét megkozelitve
nulldhoz tart, ezért a a szimmetriasértett fazisban az egyenletek numeri-
kus megoldéasa soran (a szimmetrikus fazissal ellentétben) nem érhetjiik el
a k — 0 hataresetet [3, 79, 80]. Ilyen modon a szamitasok soran az ered-
mények részletes kiértékelése nélkiil is eldonthets, hogy a fazistér vizsgélt
pontja a szimmetrikus vagy a szimmetriasértett fazishoz tartozik.

A differencial-egyenletrendszer megoldéasara adaptiv 1épéskozt alkalmazd
program esetén a kritikus érték megkozelitése soran a csatolasok gyors val-
tozasanak kovetkeztében a 1épéskoz értéke sok nagységrendet csokken. Ez-
altal a futéasi eredmények kitiintetnek egy értéket az energiaskalan, melyet
a k.-vel azonositottam.

Vizsgélataim sorén a leirtak szerint azonositva a fazisokat a szuszcep-
tibilitas és a korrelaciés hossz kritikus viselkedését tanulményoztam. Az
altalanos szuszceptibilitast a szimmetrikus fazisban a

1

—s 103
T (103)

X = GkHO =

modon definidlhatjuk, amely a fazisdtalakulasi ponthoz kizeledve divergal.
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Ezaltal a vizsgalt esetekben a szuszceptibilitas

(2

mg az ellentag bevezetésével tekintett
) ohmikus disszipaci6 esetén,
X = H% ={mé— %”Au az egységugrasfiiggvény (104)
szerinti levagas esetén,
\m% —nly a Lorentz-fliggvény szerinti levagas esetén.

A megfelel6 kritikus exponenst a szokasos médon ~-val jelolve a kritikus
viselkedés

X~ (e —mn)"" (105)

alakban irhato, ahol 7. az n paraméter fazisatalakulasi ponthoz tartozo kri-
tikus értéke. Az 5. dbra WH-séma és ohmikus disszipécio esetén szemlélteti
a szuszceptibilitas viselkedését.

A szimmetriasértett fazisban a propagator divergalasa altal meghata-
rozott k. érték az elmélet kitiintetett impulzus értékének felel meg, amely-
nél alacsony energiaji gerjesztések altal alkotott kondenzatum megjelenését
feltételezhetjiik [3|. Ezaltal magatol értetGdGen feltétezhetjiik, hogy k. re-
ciproka a kondenzitum méretét jellemzi, igy a korrelaciés hossz £ = kic
modon hatarozhaté meg [3, 81]. Ezt az értéket numerikusan meghatarozva
szintén kritikus viselkedést tapasztalunk, azaz

§~(n—me)™", (106)

ahol szokésos moédon v jeloli a & korrelaciés hosszhoz tartozo kritikus ex-
ponenst. A v exponens értéke a ~-hoz hasonléan a fazisatalakulasi pont
kozelében a log-log skalan abréazolt adatokra illesztett egyenes meredekségé-
bél leolvashato.

A frekvencialevagas nélkiili ohmikus disszipacié esetén a ~y exponens
értékét mar tanulmanyoztdk a szakirodalomban [76]. Ezt az esetet WH-
sémaban vizsgalva v =1 és v = 1 értéket kaptam.
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5. abra : A x szuszceptibilitds skilazasa a kritikus 7. érték kozelében.
A log-log skalan abréazolt gorbe meredeksége a v = 1 értéket szolgaltatja
a kritikus exponensre. Az abra a levagast nem tartalmazd ohmikus spekt-
ralfiiggvény esetén WH-séméban N = 6 csatolas figyelembevételével kapott
eredményeket mutatja.

A ~ exponensre kapott érték eltér a [76]-ban szerepls értéktsl. Az elté-
rés azzal magyarazhato, hogy az idézett munkdban mas numerikus modszert
alkalmaztak az exponens meghatarozasara. Az altalam alkalmazott modszer
soran a kritikus viselkedést tanulmanyozva pontosabban megkozelitettem a
fazisatalakulasi pontot és lehetGség nyilt arra, hogy 7. numerikus értéké-
nek utolsé jegyeit a kritikus viselkedés log-log skalan torténd abrazolasa
sordn az adatpontokra illesztett egyenes altal hatarozzam meg. Ezeknek
koszonhetGen az exponensek értékének joval pontosabb meghatarozasa valt
lehetségessé.
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A modell olyan valtozatai esetén, amelyekben a spektralfiiggvény frek-
vencialevagast tartalmaz a kritikus exponensek természetesen fiiggenek a
levagastol, ezért a v és a v exponenseket a levagas értékét széles tarto-
méanyban valtoztatva vizsgaltam. A szamitasokat WH-sémaban mind az
egységugrasfiiggvény, mind a Lorentz-fiiggvény éltal bevezetett levagés ese-
tén elvégeztem. A tovabbiakban az egyszertiség kedvéért a kétféle levagas
hasonlosagat hangsulyozva bevezetem a A, jel6lést, amely mind A,-t, mind
Ai-t helyettesiti.

A ~ exponensre vonatkozd eredményeket a 6. abra szemlélteti. Megal-
lapithatjuk, hogy A, értékét kicsinek valasztva, azaz A, IR hataresetében
mind a két fajta levigis esetén visszanyertem a levagas nélkiili esetben
kapott v = 1 értéket. Az alacsony A, értékeknél lathato széles platobol ko-
vetkezGen ezen séméban az exponens értéke tobb nagysagrenden keresztiil
fiiggetlennek mutatkozik a levagas értékétdl és fajtajatol. A, UV hatérese-
tében szintén levagasfiiggetlenséget tapasztaltam, ekkor viszont v ~ 0.57
érték adodik. Azonban a nagy A, esetén kapott értékeket nem tekinthetjiik
fizikailag relevansnak, mert ekkor a A, paraméter nem hanyagolhat6 el a
renormalas soran bevezetett UV-levagashoz képest, melynek értékét [76]-t
kovetve mindig A = 10%-nek valasztottuk. A 6. dbra kozépss tartoméanyan
tapasztalt gyors valtozas bizonyara a A, és n. kozotti tobb nagysagrendnyi
kiilonbségnek a fazisdtalakulasi pont eltolodasa miatti cstkkenésével ma-
gyarazhat6. A numerikus eredmények szerint 7. jelentésen fiigg A,-t6l,
ne ~ A;1 alakt korrelaciot mutatva.

A korrelacios hossz kritikus viselkedését hasonlé moédon vizsgalva a 7.
abran ismertetett eredményeket kapjuk. A A, levagas IR hatéaresetében az
exponens értéke v = 1-hez tart, amely szintén megegyezik a levagas nélkiili
esetben kapott értékkel. Amint az abrarol latszik IR hataresetben az adott
renormalési séméaban v is fliggetlen a levagés értékétsl és fajtajatol. A A,
levagas UV hatéaresetében v ~ 0.3, de amint emlitettiik az ekkor kapott
eredmény nem hordoz fizikai jelentést.

Eredményeimet ellendrizve a Lorentz-fiiggvényt tartalmazoé levigés és az
ohmikus disszipacié esetén a Litim-féle renormaéalasi séméban is elvégeztem
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6. abra : A ~ kritikus exponens értéke a frekvencialevagas fliggvényében.
Az x index az u ill. [ indexeket helyettesiti. A hdromszogek az egységugrés-
fliggvényt tartalmazo spektralfiiggvény esetén, a korok a Lorentz-fliggvényt
tartalmazé spektralfiiggvény esetén mutatjak a kritikus exponens értékét.
Az abra az m?(A) = —1, g(A) = 1, A = 10* médon megvalasztott kezdeti
feltételekre vonatkozik.

a v exponens vizsgilatdt. Ezeknek a szamitdsaimnak az eredményei a 8.
abran lathatoak.

Az abra két kiugré pontot tartalmaz, melyeket a kovetkeztetések levo-
nasa soran nem vehetiink figyelembe. A A} = 0,1 érték esetén a program
futasa soran gytijtott adatokat részletesebben megvizsgalva a legmagasabb
rendd csatoléas tekintetében rendhagyo viselkedést tapasztalhatunk. Ez arra
utal, hogy az adott tartoményban a vizsgalataim soran alkalmazott eljé-
rds nem kielégit6. Fz a probléma bizonyara technikai jellegt, hiszen az
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7. abra : A v kritikus exponens értéke a frekvencialevagas fiiggvényében.
Az x index az u ill. [ indexeket helyettesiti. A hdromszogek az egységugrés-
fliggvényt tartalmazo spektralfiiggvény esetén, a korok a Lorentz-fliggvényt
tartalmazé spektralfiiggvény esetén mutatjak a kritikus exponens értékét.
Az abra az m?(A) = —1, g(A) = 1, A = 10* médon megvalasztott kezdeti
feltételekre vonatkozik.

LPA mellett tovabbi kozelitéseket alkalmaztunk a magasabb rendi csato-
lasok elhanyagolasa, differencidlegyenletek numerikus megoldasa és a spon-
tan szimmetriasértés azonositasa alkalmazott modszer altal. (Az utobbi az
1 paraméter kritikus értékének meghatarozasan keresztiil befolyasolhatja a
szimmetrikus fazisban nyert eredményeket.)

A legszélss adatpont (A; = 0,001) esetén probléméat jelent, hogy ekkor
n kritikus értéke (7. ~ 2311) nagyon nagy. Ekkor Aj nagy értékei esetén
adott érvelést megismételve kétségessé valik az eredmények megbizhatoséga.
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8. abra : A v kritikus exponens értéke a Lorentz-fliggvényt tartalmazo
levagas esetén Litim-féle renormélasi sémaban. Az abra az m2(A) = —1,
g(A) =1, A = 10* moédon megvalasztott kezdeti feltételekre vonatkozik.

Ezeket figyelembe véve a Litim-sémara vonatkozé szamitasaim megerdsitik
a WH-séma esetén nyert v = 1 eredményt.

Osszefoglalva eredményeimet a CL tipust modellek RG-modszerrel tor-
ténd vizsgalata a szuszceptibilitas és a korrelacids hossz kritikus viselkedé-
séhez tartozo exponens pontosabb meghatarozasa altal lehetévé tette a mo-
dellekben megjelend fazisatalakulas pontosabb leiraséat és igazolta a modell
kiilonb6z6 spektralfiggvényt tekinté valtozatainak hasonl6 kritikus viselke-
dését. A fejezetben bemutatott eredmények az Annals of Physics folyodirat-
ban kertiltek publikalasra [82].
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5. A sine-Gordon-modell nagyenergias kiterjeszté-
sének vizsgalata

5.1. A sine-Gordon-modell

A kétdimenzios sine-Gordon-modell (tovabbiakban SG-modell) a kiilénbozs
szilardtestfizikai alkalmazasok mellett tobb érdekes tulajdonsaggal (periodi-
kussag, végtelen rendi fazisatalakulés, integralhatosag) rendelkezik, melyek
a modell vizsgalatat elméleti szempontboél indokoltta teszik. A modell RG-
modszerrel torténd tanulméanyozasaval mar LPA-ra szoritkozva [83-85] is
jelent6s eredményeket értek el, melyeket kiegészitettek a hullamfiiggvény-
renormalas [86-88] figyelembevételével végzett vizsgalatok.

Ertekezésemben a modell nagyenergias kiterjesztését vizsgalom, amely
az eredeti modell csatolasainak b&vitését igényli. Ezt impulzusfiiggs hullam-
fliggvény-renormalés alkalmazasaval valositjuk meg, a fazistér b&vitését egy
1j csatolas bevezetésére korlatozva. Ennek a kiterjesztésnek tanulmanyo-
zésa az aszimptotikus biztonsag és a dualitas kérdésének teljesebb targya-
lasat teszi lehet&vé.

A tovabbiakban a modell attekintése utan a nagyenergias viselkedés kér-
désének RG szemléletére térek ki, majd az impulzustol fiiggetlen hullamfiigg-
vény-renormélas esetén nyert fazisszerkezet és az 1j csatolas figyelembevéte-
lének hatasat targyalom. Ezt kdvetSen az SG-modell dudlis szimmetridjat,
tovabba a tomeges SG-modell és az SG-modell tanulmanyozott kiterjesztése
kozott fennalld dualis kapcsolatot ismertetem. Az SG-modellt az

£= S(066) + cos(0) (105)

euklideszi Lagrange-stirtiség altal definidlhatjuk, melynek Minkowski-téri-
débeli megfelelGje egyetlen térdimenzio esetén az SG-egyenletként [89] is-
mert

D2p(x,t) — 02¢(x,t) + sin(o(x,t)) = 0 (106)

mozgésegyenletet szolgaltatja a ¢ térvaltozora.
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A Lagrange-stirtiség potencialjat a

V() = ucos(B¢) (107)

modon altalanosithatjuk, bevezetve a kolcsonhatas erdsségét jellemzs u
paramétert és a térvaltozoban periodikus potencial periodushosszit megval-
toztato 0 paramétert. Mivel a 0 paramétert a kinetikus tag egyttthatojaba
olvaszthatjuk ha a Lagrange-stiriiséget egy 0j ¢/ = B¢ térvaltozoval fejezziik
ki, a tovabbiakban az

L5 = 5(9p6)° +ucos(@) (108)

Lagrange-stirtiséggel definidlt modellt tekintem, a (3 paraméter helyett a
kinetikus tag z egyiitthatojat bevezetve.

A modell felirasahoz t6bb iranybdl is eljuthatunk, az SG-egyenlet a tor-
zi6s szallal Gsszekapcesolt ingarendszer folytonos hataresetet tekints altala-
nositasatol [7, 188] kezdve egyes hurelméleti problémékig [90, 91| a fizika sza-
mos teriiletén felbukkan. Kisérleti szempontbol a modell jelentGsége nagy
részben annak koszonhetd, hogy a kétdimenzios Coulomb-gézzal [92] ekvi-
valensnek tekinthets [7, 93|, igy tobb alkalmazési lehetdsége ismert [94].
Erre lathatunk példat a szuperfolyékony *He és szupravezets filmek [92],
a kétdimenzios kristalyok olvadasanak [95] és a szilard testek feliileteinek
[96] vizsgalata soran. Tovabba az SG-modell tobb térvaltozora torténd &l-
talanositasaval mind a méagneses csatolassal [97] mind a Josephson tipusi
csatolassal [98| Gsszekapcsolt szupravezetd rétegek targyalhatoak.

Emellett a nem linearis rendszerek tanulmanyozasara lehet&séget nyijto
[99] SG-egyenlet megjelenik példaul a racshibak modellezésére alkalmazhato
Frenkel-Kontorova-modell folytonos kozelitésében [100, 101|, nem lineéris
optikai rendszerek [102] vizsgalataban és a DNS-molekula leirasa soran [103]
is.

Bar természetesen az SG-modell magasabb térdimenzidéban is tekinthetd
[7, 88, 104, 105] targyalasomat az irodalomban gyakran vizsgalt kétdimen-
zi6s modellre korldtozom. Ez a Coulomb-géznak torténd megfeleltetésen
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kiviil a korabban emlitett Ising tipust modellekkel is szoros kapcsolatban
van, mivel a kétdimenzids XY-spin-modell kozelitése az SG-modellre ve-
zet [7, 186]. Emellett az SG-modell tomegtagot tartalmazo kiterjesztése
a Yukawa-gaz modelljével ekvivalens [7], tovabba a modell kovetkezd feje-
zetben targyalt megfelel§ altalanositasai fermionikus elméletek bozonizalt
megfelelGinek tekinthetGek. Maga az SG-modell megfelel§ paraméterekkel
a tomeges Thirring-modell bozonizaltjanak tekinthets [106].

Bar az SG-modell részecskefizikai modellként nem tekinthetd realiszti-
kusnak, mégis szamos, a nagyenergiés fizika nézépontjabol is érdekes elmé-
leti vizsgalat targyat képezi a modell kiilonleges tulajdonsagainak koszon-
het6en. Ezek koziil a legkdnnyebben lathatd, hogy a Lagrange-siirtiség a
Zo-szimmetria mellett egy tovabbi diszkrét szimmetriaval rendelkezik, mi-
vel a potencidl a térvaltozéban periodikus. Ennek koévetkeztében a més
esetekben gyakran alkalmazott perturbativ megkozelités, amely a potencial
Taylor-sorfejtésén alapul megsérti a modell szimmetridjat, igy nempertur-
bativ modszerek alkalmazasa valhat sziikségessé [107].

Az elmélet egyik érdekes jellemzdGje, hogy féazisszerkezete nem trivia-
lis, igy az RG-modszer alkalmazésa kiilondsen indokoltté valik. A fazisok
megkiilonboztetésének probléméajat tébb modon is megkozelithetjiik. Erre
szemléletes utat kindl az XY-spin-modell nyelvét alkalmazva a topologikus
rendezettség fogalmanak bevezetése [36], mindazaltal az RG szemléletének
esetén egyszertibb a dimenziétlan potencil viselkedésének vagy a potencial
IR univerzalitasanak vizsgéalata [3]. Szimmetria szempontjabol a fazisatala-
kulas a modell periodikussaga kovetkeztében fennallo diszkrét szimmetria
spontan sériilésével hozhato kapcsolatba [83, 108]. A modell két fazissal ren-
delkezik, melyek kozott Kosterlitz-Thouless tipust fazisatalakulast [31-35,
109-112] figyelhetiink meg.

A fazisatalakulast meghatéarozo kritikus fixpont mellett az RG-egyenlet
més fixpontjainak vizsgalata is érdekes. A fixpontok definicio szerint ska-
lainvarians rendszernek, azaz globalis dilatacios szimmetriaval rendelkezé
elméletnek feleltethetGek meg. Nagyon gyakran a skalainvarians modellek
a konformaélis transzformaciokkal, azaz a szogtarté koordinatatranszforma-
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ciokkal szemben is invariansak, annak ellenére, hogy ez nem feltétele a ska-
lainvariancianak [113].

A kétdimenzids téridg kitiintetett, mivel ekkor a konformalis szimmetria
altal generalt algebra végtelen sok generatorral rendelkezik [114]. A gene-
ratorok a Virasoro-algebra szerinti

C
(Lo, L] = (n — m) Ly + E(n3 —1)0ntm.0 (109)

kommutécios relaciot |7, 115] elégitik ki, ahol a ¢ az an. centralis toltés,
melynek értéke az adott fixpontnak megfelels elméletet jellemzi. Az RG-
modszer és a konformalis szimmetrian alapulé megkozelités kozott Zamo-
lodchikov tétele teremt kapcsolatot |7, 116-118], amely a csatolasok olyan
fliggvényének konstrualédsira ad lehet&séget, melynek értéke a trajektori-
akon a szokasos iranyban (az energiaskalat csokkentve) haladva monoton
csOkken és a megfelel§ fixpontokban a jellemz§ centralis toltés értékét veszi
fel.

Az SG-modell iranti érdekl6déshez az is hozzajarul, hogy az elmélet
az an. integralhato modellek kozé tartozik [119]. A térelméletben, amely
végtelen sok szabadségi fokkal irhaté le, a klasszikus modell integréalha-
tosédga végtelen sok fiiggetlen megmaradé mennyiség létezésében nyilvanul
meg [120]. Az integralhatosag kiilonosen érdekessé valik a kvantalt elmélet
vizsgalata soran mivel a szérdsmatrix és a korrelécios fiiggvények kiszami-
tasanak 4j megkozelitését veti fel [120].

A jelent6s irodalommal rendelkezd SG-modell vizsgalataval kapcsolat-
ban t6bb modszert (az S-matrix faktorizalasa [121, 122|, 6nmegoldé kvanta-
las [120], peremfeltételek alkalmazasa [123-126]) meg lehet emliteni, melyek
targyaldsa értekezésem témajén tilmutat.

A kétdimenziés modellek értékeléséhez érdemes kiemelni, hogy bar az
alacsonydimenzios targyalds hatranyt jelent a négydimenziés realisztikus
kvantumtérelméleti modellek nézdpontjabol, a kétdimenzids térids kitiin-
tetett szerepet jatszik a hurelmélet szempontjabol. Ez annak kdszonhetd,
hogy az egydimenzités hir a térid6beli mozgasa soran egy kétdimenziés tn.
vilagfeliiletet sopor végig [127, 128|, igy a har pontjainak koordinatai a
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kétdimenzios vilagfeliileten értelmezett térelmélet altal [129] értelmezhe-
téek. A kétdimenzios modellek iranti érdeklGdést az is noveli [120], hogy
az AdS/CFT megfeleltetés [130] feltételezése szerint létezik olyan négydi-
menzids szuperszimmetrikus konformélis mértékelmélet melynek hirelmé-
leti modell feleltetheté meg.

A teljesség kedvéért kiemelem, hogy az eredeti modell t6bb kiterjesztése
ill. moédositasa ismert az irodalomban melyekre SG tipusi modellekként
hivatkozhatunk [7]. Igy megemlithets a témeges [108, 131, 132], a szuper-
szimmetrikus [133, 134], és a kétfrekvencias [135-139] a sinh-Gordon-modell
[140, 141], az altalanositott SG-modell [104] tovabba a kovetkezd fejezetben
targyalt réteges modellek.

5.2. A nagyenergias kiterjesztés RG vizsgalata

Az RG-modszer alkalmazasa egy adott elmélet nagyenergias kiterjesztésé-
nek kutatasara a kordbban bemutatottol kissé eltéré megkozelitést igényel.
A kiilonbség matematikailag abban mutatkozik meg, hogy a nagyenergias
viselkedést tanulmanyozva az RG-egyenletek megoldédsa soran a korabbiak-
kal ellentétben az energiaskala novekedésének irdnyaba haladunk.

A renormélasnak ilyen alkalmazaséat elsGsorban a részecskefizika szem-
lélete indokolja. A térelméleti formalizmus hasonléséga ellenére a részecs-
kefizika megkozelitése altalaban kiilonbozik a szilardtestfizikaétol [19]. A
részecskefizikdban gyakran jelentkezik a korlatozott energiaju kisérletekre
tamaszkodva felallitott fenomenologikus modellek nagyenergias kiterjeszté-
sének igénye. Maéas szavakkal élve, megprobaljuk megkeresni azt az elmé-
letet, amely amellett, hogy reprodukélja a kisérletek ismert eredményeit,
leirja azon mikroszkopikus folyamatokat is, melyek megfigyelését a detekto-
rok felbontasa nem teszi lehetévé.

Ez az RG-modszer altal ugy valosithatdé meg, hogy egy alacsony UV-
levagéassal definialt modellt tekintiink, majd meghatarozzuk a csatolasokra
vonatkozo differencidlegyenletek megoldésanak az UV-levagasnéal nagyobb
energiaju tartomanyra vonatkozo értékeit. Az ilyen irdanyu vizsgalatok azért
is érdekesek, mert lehetGséget nyujtanak a fazisatalakulas és a fazis fogal-
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ménak altaldnositasara is. Eszerint a nagyenergids viselkedés szempontja-
bol kiilonbo6z6 fazisaaknak tekinthetjiik egy modell paraméterterének olyan
pontjait is, amelyek kozott a mindségi kiilonbség csupan a nagyenergias ki-
terjesztéseik kozott 1athato. Ezéltal lehetGség nyilik olyan fazisatalakulasok
és kritikus viselkedés tanulmanyozéasara is, melyek hagyoményos moddon,
csupan az alacsonyenergias viselkedésre tekintve rejtve maradnanak.

A nagyenergias viselkedést jellemezve az egyik legfontosabb kérdés, hogy
a fizikai mennyiségekre vonatkozé RG-egyenletek megoldasa a k — oo ha-
taresetben divergél vagy véges értékhez tart. Az els6 eset nagyon gyakori,
hiszen az irrelevans modon skalazo (azaz az UV-tartomany felé haladva
novekvd) csatolasok esetén a divergencia elkeriilése specialis feltételeket igé-
nyel. Elméletileg azonban a masik lehetGség is megvaldsulhat, hiszen példaul
a kvantum-szindinamika esetén a perturbativ eredmények szerint az energi-
askalat novelve a kolesonhatés erdssége nulldhoz tart [143], amely jelenséget
aszimptotikus szabadsagnak neveziink.

Az elméleteknek k — oo hatéareset viselkedése szerinti osztalyozéasat
az aszimptotikus szabadsag &altalanositasa, az aszimptotikus biztonsag fo-
galma (3, 10, 144| irja le. Aszimptotikus biztonsagrol akkor beszéliink ha
az RG-egyenletek megoldésanak ezen hatéaresetéhez is jol definialt, véges
csatolasokkal rendelkez§ elmélet tartozik. Ekkor az energiaskéla novelésével
az RG-trajektoridk egy fixpontba folynak bele, melyhez az eredeti hatés
paramétereinek véges, ugyanakkor nem feltétleniil trivialis értéke tartozik.
Ilyen fixpont létezését mutattak ki példaul a kvantum-Einstein-gravitacio
[10, 58, 59| vizsgalata soran. Ezen modell vizsgalta altal az utobbi idk-
ben el6térbe keriilt az RG-modszer alkalmazasa a nagyenergias viselkedés
tanulmanyozaséara [142], igy az SG modell ezen szempontbol torténd vizsgé-
lata is id@szertivé valt, amelyre a modell alabb ismertetett kozelitése nyidjt
lehetGséget.

A konkrét egyenletek targyalasa el6tt érdemes hangsilyozni, hogy a
modellek nagyenergias viselkedésének vizsgéalatabol levonhaté fizikai kovet-
keztetések altalaban korlatozottak, mivel a modellek alkalmazhatosaganak
energiatartomanyabol kilépve a tanulmanyozott rendszer leirdsa 1j szabad-
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ségi fokok figyelembevételét igényelheti. Ezen vizsgalatok mégis fontosak,
mert kijel6lhetik a modell érvényességi korét és otleteket adhatnak az el-
mélet tovabbfejlesztéséhez. Példaul kozismert, hogy a gyenge kolcsonhatéas
Fermi-féle elméletének az unitaritast sértd nagyenergias viselkedése [38] az
elmélet modositasanak sziikségességére hivja fel a figyelmet.

5.3. A sine-Gordon-modell fazisszerkezete

Ertekezésemben az SG-modellt Callan-Symanzik-sémaban, azaz Ry(p) =
k? regulator esetén targyalom és csupan a skalafiiggd potencial Fourier-
sordnak els6 tagjat veszem figyelembe, amely az eredeti potencidlban is
szerepel. Ekkor a I'y funkcionél forméajara a

te= [ [Feoner + vito)] = [

T

[Z—z’“(amf + ug cos((b)} (110)

feltételt kirova a dimenzidtlan @ = ,;‘—2 és z = Z csatolasokra az

. 1
i = 20+ —— [1—\/1—112},
Tuz

1 ?
= _Ei(l—zﬂ)f*/? (111)
egyenleteket nyerjiik, melyek megoldasat mér tanulményoztak az irodalom-
ban [86]. Az ismertetésre keriil§ fazisszerkezetet a 9. dbra szemlélteti.
Mivel & = 0-ban az els6 egyenlet nincs értelmezve, szigortian tekintve az
egyenletrendszer nem rendelkezik fixponttal. Ugyanakkor az elsg egyenlet
4 = 0 koriili

U= —20+ 1—+v1-— a?} = 20 + % M +0@@)  (112)

2mruz { 2

sorfejtésébdl lathatd, hogy a hatéaresetet értelmezve az @ = 0 pontokat fix-
pontoknak lehet tekinteni. Ezek koziil kiilonleges a z = 8% értékkel rendel-
kez§, in. Kosterlitz—Thouless-pont, amely elvilasztja egyméastol a kiilon-
bo6z6 viselkedést fixpontokat. A z > 8% esetén az u csatolés relevinsan, mig
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9. &abra : Az SG-modell fazisszerkezete. Az Sle paraméterhez tartozo
tengely skalazasa logaritmikus. Az abra szemlélteti, hogy az @ = 0 egyenes
pontjai, tovabba az (a =1, z — 0) és (a = 1, z — o0) pontok fixpontoknak

tekinthetsek.

z < % esetén irrelevansan skilazik, ezért az u = 0 egyenes el6bbi pontjai
IR-taszité mig az utébbiak IR-vonzo6 fixpontoknak tekinthetGek.

Ebbdl kovetkezGen a Kosterlitz—Thouless-pont kritikus fixpontnak te-
kinthets, amely a fazistér trajektoriait két kiilonb6zé alacsonyenergias vi-
selkedést mutato csoportba osztja. Az alacsonyenergias viselkedést tekintve
az energiaskala IR értékei felé haladva az o = 0-ban végzdds trajektoridk a
szimmetrikus fazishoz [3|, mig a tobbi trajektoria a szimmetriasértett fazis-
hoz tartozik, ezaltal a fazisatalakulas kimutathato.

Az abragzolt trajektoriak tovabbi fixpontok létezését sugalljak melyeket
a (111) egyenletek atparametrizalasaval talalhatunk meg. Az w = /1 — a2,

X = i és 0; = w?kO), modon bevezetett 0j valtozok segitségével az egyen-
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letrendszer a

w
Orw = 2w(l—w?) — 2—7TX(1 —w),
2 2
Oy = *— (1 -+ (113)
241 21

alakot 6lti, mely a (y = 0, w = 0) fixpontot szolgaltatja, amely az eredeti
valtozokat tekintve az 4 — 1 és z — oo hataresetnek felel meg. Ezen a szim-
metriasértett fazishoz tartozé trajektoridkat Gsszegytijté 1R-vonzo fixpont
létezése nemrég valt ismertté az irodalomban [86, 87].

Az IR fixpont megjelenését mas skalaris modellek is megfigyelhetjiik
[3, 87, 81, 145]. A fazistér az IR fixponthoz kozeli tartoméanya a kriti-
kus fixponttol vald tévolsag ellenére szintén érdekes lehet a fazisatalakulés
vizsgélata sorédn, mivel bizonyos esetekben lehetGséget kinal a korrelacios
hossz kritikus viselkedésének meghatéarozasara [145]. Az SG-modell esetén
is, akarcsak a CL-modell esetén az energia csokkentése sorén a szingulari-
tas megjelenése altal kitiintetett energiaérték reciproka altal meghatarozott
tavolsagérték a spontéan szimmetriasértés altal kialakuld rendezett fazisra
jellemz6 korrelacios hossz becslésére nytjt lehetSséget [3]. A spontan szim-
metriasértett fazisban tapasztalt viselkedést mélyebben megvizsgalva kézen-
fekvé azon értelmezés mely szerint a fixpont kdrnyezetében az egyenletek
szinguléris viselkedése azt jelzi, hogy a spontén-szimmetriasértett fazisban
minGségileg 1Gj kollektiv gerjesztések jelennek meg, melyek leirdsa kényel-
metlen a modell nagyenergias viselkedésének tanulméanyozéasa soran alkal-
mazott szabadsagi fokok nyelvén. Ezt tgy is megfogalmazhatjuk, hogy bi-
zonyos értelemben az RG-moédszer az eredeti modell alkalmazhatésédganak
alacsonyenergias korlatjat jeloli ki.

A 9. &abra az egyenletek tovabbi, nagyenergias fixpontjanak létezését
veti fel, melyet az w = /1 — @2 és ( = zw valtozokat bevezetve talalhatunk
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meg. Ekkor a csatolasokra vonatkozd egyenletek a

2y W
orw = 20w(l —w*)— %(1 —w),
00 = (2 5) (1-u) e -w) (114)

alakba frhatoak melyek az (w = 0, ¢ = 0) fixpontot szolgéltatjak. Ez a
fixpont, mely az 4 — 1 és z — 0 hatéaresetnek felel meg UV-vonzo, azaz ha
a szokasos modon az [R-tartomény felé haladnank, akkor taszitané a trajek-
toridkat. Ha ugy tekintjiik, hogy a k — oo hatéaresetben a trajektoridk ezen
fixpontba folynak bele, akkor ezen nem trivialis (nem gaussi) fixpontban az
aszimptotikus biztonsag példajat lathatjuk. Ugyanakkor hangsilyozni kell,
hogy a fazistér ezen pontja csupén hataresetként értelmezhetd, nem része
az eredeti egyenletrendszer értelmezési tartomanyanak és a 10. dbran szem-
léltetett megoldasok szerint a trajektéridk mér a k skala véges értékénél
belefolynak a fixpontba. Az ismertetett fixpontok altal a fazistér trajek-
tériai harom csoportba sorolhatéak aszerint, hogy az adott trajektéria az
4 = 1 UV fixpontot koti dssze az 4 = 0 egyenes egy fixpontjaval, az @ = 1
UV fixpontot koti 6ssze az 4 = 1 IR fixponttal, vagy az @ = 0 egyenes egy
fixpontjat koti 6ssze az o = 1 IR fixponttal.

A z és az u csatolés viselkedését tanulményozva lathato, hogy az ener-
giaskala egy adott értékénél az egyenletek megoldasa szingularissé valik.
Mindazéltal az u csatolés hirtelen novekedése és a z csatolés hirtelen csokke-
nése bizonyos értelemben kompenzalja egymast, ezért a trajektoridk folyasa
regularis marad, az UV fixponthoz tartozo trajektoridkra a fli—g differen-
cidlhdnyados a z — 0, @ — 1 hataresetben nullahoz tart. Az UV fixpont
kornyezetében a csatolasok viselkedése a z = (1— ﬂ)% Osszefliggéssel kozelit-
hetd. A csatolasok szingularis viselkedése az IR hatéaresetben tapasztaltak-
hoz hasonléan egy kritikus k. energiaértéket hataroz meg, melynek reciproka
lehetGséget kinal a rendszert jellemzd korrelaciés hossz definidlasara.

Mivel az energiaskala novekedésének iranyaban haladva nem minden tra-
jektoria folyik bele az UV fixpontba, a trajektéridk mingségileg kiilonbozs
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10. abra: Az u és a z csatolasokra vonatkozo egyenletek megoldasanak vi-
selkedése. Az IR-tartoményhoz hasonldéan a hirtelen csokkenés és a hirtelen
novekedés az energiaskala ugyanazon kritikus értékénél jelenik meg.

viselkedése alapjan a nagyenergias viselkedés szempontjabol a modell két fa-
zisat kiilonboztethetjiik meg. A fazishatarhoz tartozé kritikus kezdeti érté-
keket megkozelitve ebben az esetben is lehet&ség adodik a kritikus viselkedés
tanulmanyozéasara. A redukalt homérséklet!3 a hullamfiiggvény-renorma-
las kezdeti értékének a kritikustol valo eltérésével aranyosnak tekinthetd a
t ~ z*(A) — z(A) modon. Ezt felhasznalva a modell UV-tartomanyaban
is megfigyelhet a korrelacios hossz In(€) ~ ¢t~ szerinti viselkedése, azaz a
Kosterlitz—Thouless tipusi skalézas.

Az SG-modellt a kétdimenzidés XY-spin-modell targyalasara alkalmazva
az UV-tartomanyban a szingularis viselkedés altal kijelolt kritikus érték-
nek szemléletes jelentés tulajdonithaté. Ekkor alacsony energian a modellt
elképzelhetjiik ugy, hogy elemi gerjesztéseinek a vortexeket tekintjik. Az

13 A redukalt hémeérséklet a hémérsékletnek a fazisatalakulasi hémeérséklettsl valo elté-
rését jellemzd dimenzidtlan mennyiség.
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energiaskala novelése a szokasos blokkositassal' [1, 20, 19] ellentétes folya-
mattal szemléltethets, amely a rendszer egyre kisebb méretdi vortexekkel
torténd leirasanak felel meg. Ekkor a vortexek méretével a racsallando ér-
tékéhez kozelitve a csomoéponthoz rogzitett spinek 4j, elemibb szabadsagi
fokait hasznalo leirds valik sziikségessé.

5.4. A sine-Gordon modell nagyenergias kiterjesztése

Az SG-modell nagyenergias kiterjesztése olyan hatéssal definialhat6, amely
a térvaltoz6é magasabb rendi derivaltjait is tartalmazza. Ezért vizsgéla-
taink soran a korabbi targyalashoz hasonléan a potencial Fourier-soranak
magasabb rendd tagjait mell6zve a 'y funkcional matematikai forméajara a

Z1,(6*
ro= | [—k; ) (06)? + ug cos(9) (115)
x

feltevést rojuk ki, melyben a Z-vel jelolt hullamfiiggvény-renormélast az
altalanosabb targyalas céljabol operatornak tekintjiik.

A modellt Fourier-térben vizsgalva a hullamfiiggvény-renormélast egy-
szertibben, az impulzus fiiggvényeként irhatjuk fel, melynek a tovabbiakban
a

Z(P?) = z + 2 P? (116)

sorfejtett alakjat tekintjiik. Ebben a formaban z és z; operatorok helyett
fliggvényeket jeldlnek, igy egyetlen 1j csatolas bevezetése altal figyelembe
vehetd. Késgbb latni fogjuk, hogy a z; csatolds az UV-tartoméanyban akkor
is jelentGs értéket vehet fel, ha az energiaskala alacsonyabb helyén értékét
nulldnak valasztjuk. Ez egyértelmtien mutatja, az j csatolas sziikségességét
a nagyenergias kiterjesztés tanulmanyozéasa soran.

14Peldaul az Ising-modellt tekintve az energiaskala csokkentése esetén a renormalas
soran alkalmazott transzformécié ugy szemléltethet, hogy az adott lépésben egy na-
gyobb racsallandéval rendelkezs rendszer vizsgédlatara tériink at dgy, hogy az eredeti
rendszer egymashoz kozel 1év8 spinjeibdl csoportokat (blokkokat) képeziink, majd egy
adott blokk spinjeit meghatérozott szabaly szerint egyetlen spinnel reprezentaljuk.
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A tovabbiakban bevezetem a P, jelolést arra az operatorra, amely tet-
sz6leges 1 fiiggvényre a P,y = (2m)~1 02” d¢ cos(ng)y modon hat. Az
impulzusfiiggé hullamfiiggvény-renormalésra vonatkozoan a

k: n
PQBka P2 — / > 8]9Rk5 p(Vk ) .
Zy(p?) + Rk p Vi )2

( (P +p)?Zr((P +p) ) + Ripip + V!

1
117
P*Ze(p?) + Rip + V!) (17)

RG-egyenlet all fenn.

A modell vizsgélata soran a legfontosabb 6nallo6 eredményem a z és z;
csatolasokra vonatkozo RG-egyenleteknek a fenti egyenletbdl torténd leveze-
tése volt. A levezetést a b = 1 paraméterrel tekintett CSS-regulétor esetére
végeztem el. A terjedelmes, nehezen automatizalhatd szamitasok eredmé-
nyét a az Acta Physica Debrecina folyoiratban publikaltuk [187], értekezé-
semben csupan az Ry, = k? regulatorra, azaz a Callan-Symanzik-séméara
vonatkoz6 végeredményt ismertetem.

Ekkor a dimenzids csatolasokra a

w = P / k*D
p

i o= 2P, / KPV"DY [<0,2Z — 2219 + 2p*(0,22)* D]
p

s o= Po / K2V pt [—22«
p
+[24p*21 0,27 + 20,2 2)? + 1223p*]D
—[12p%(8,22)* + 36p™21 (8,2 Z)?| D?
+12p4(8p2 Z)4D3:| , (118)

egyenleteket nyerjiik, ahol alkalmaztuk a D = W jelolést a propa-
k

gatorra.
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A dimenziotlan csatolasokra a

. - /[ Zy+1
U = —2u-= — —=
U Jy [(Zy +1)2 — a2]l/2
. 12_2/[—(26?42+4Z1y)(2y+1) y(0,2)2(4(Zy +1)% + @2)
40yl [(Zy+1)2 — a2 [(Zy + 1) — @)/
. 1 242 (Zy + 1)
= 25 +— _
T J[(zwlv—mw

(72210, Z)y + 6(9,Z)% + 3623y?) (4(1 + 2y + £1y%)% + @)
[(Zy + 1) — @]/
| (=36(0,2)%y — 10821 (9,2)*”)(Zy + D) (4(Zy + 1)* + 33°)
(Zy+1)2 — a2/
N (18(8, Z) ) (8(Zy + 1)* +12(Zy + 1)%a® + @)
[(Zy +1)2 - 122]11/2

_|_

(119)

P2

egyenletek adodnak, ahol bevezettitk a Z = zy + 2192, 31 = 21k és y = o

jeloléseket.

Az egyenletek numerikus vizsgélata szerint az j csatolasra a Z; ~ k2
irrelevans skalazas jellemz§, minGségileg nem moédositja az [IR-tartomanyra
vonatkozo korabbi eredményeket. Az UV-tartoményban azonban jelentGs
valtozéast tapasztalhatunk a korabbi fazisszerkezethez képest.

A modell nagyenergias viselkedését két kiillonboz6 skalazas versengése
hatarozza meg. Az RG-egyenletek a polust megkozelitve szingularisan vi-
selkednek, a Z; csatolas novekedése azonban megakadalyozhatja a szingula-
ritds megjelenését. Fzaltal amint a 11. abran lathaté a modellben az UV
viselkedés alapjan két eltérd fazis kiilonboztetheté meg.

A Z; csatolas figyelembevétele az UV-tartomény mindkét fazisaban j
eredményeket szolgaltat. A szimmetriasértett fazisban az egyenletek szin-
gularitasa a korabbiakhoz hasonléan kitiintet egy kritikus értéket az ener-
giaskalan. Az altala meghatarozott korrel4cids hossz azonban a szingulari-
tas kornyezetében a & ~ t7¥ modon fiigg a redukalt hémérséklettsl, azaz
Kosterlitz—Thouless helyett Ising tipust kritikus viselkedést mutat, tovabba
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(o))

11. Aabra : Az SG-modell nagyenergias kiterjesztésének néhany trajek-
toridja a Z1(A) = 0,0 kezdeti feltétel esetén. Az abra a két kiilonbozs
nagyenergias fazist szemlélteti.

a kritikus exponensre v = i érték adodik. A maésik fazis esetén a k — oo
hataresetben a Z; csatolas divergal, megsziintetve a modell aszimptotikus
biztonsagat. Ezaltal a Z; csatolds bevezetése megsérti az SG-modell fazis-
szerkezetének szimmetridjat.

5.5. A modellben megnyilvanul6é dualitas

Az SG-modellt tanulmanyozva szembetiing a 9. abran lathaté fazisszerkezet
szimmetridja. A mindségileg megnyilvanulé tiikorszimmetria a

z — - (120)
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és
k — = (121)

transzforméciok altal egyszertien tanulmanyozhat6. Az els6 transzformé-
ci6 (a logaritmikus abrézolas miatt) kozelitGleg a tiikrozésnek felel meg, a
méasodik pedig az energiaskalan torténd haladas iranyat forditja meg. Az
azért sziikkséges, hogy a szimmetria a trajektoridk iranyitédsédnak figyelem-
bevétele esetén is fennélljon. Ez a transzformécié a modell alacsony- és
nagyenergias viselkedését cseréli fel.

A tovabbiakban a (120) és (121) transzformaciok alkalmazasaval nyer-
hetd 1j modellt az adott modell duélisanak nevezziik. Az impulzusfiiggetlen
hullamfiliggvény-renormélas kozelitésében tekintett SG-modell trajektoriai-
nak szimmetriaja kévetkeztében azt mondhatjuk, hogy az SG-modell ebben
az esetben kozelit6leg onmaga dualisanak tekinthet6. Ez nem csupan a
duélis fixpont létezésben nyilvanul meg, hanem a fixpont koriili viselkedés
hasonlosagaban is, azaz mind az IR, mind az UV fixpont esetén a korrelacios
hossz Kosterlitz—Thouless tipusi skaldzast mutat v = % exponenssel.

Az elméleti fizikaban altalaban a szimmetriak kitiintetett szerepet tolte-
nek be. A dualis transzformacidéhoz tartozo szimmetria is nagy jelent&ségi,
mert teljesiilése esetén kovetkeztetéseket vonhatunk le a modell alacsony-
energias viselkedésébdl a modell nagyenergias viselkedésére és forditva, je-
lentGsen egyszertsitve a modell vizsgalatat.

Erdemes megvizsgalni, hogy a hullamfiiggvény-renormalas impulzusfiig-
gését figyelembevevs modellnek milyen duélis modell feleltethet6 meg. Mi-
vel a bevezetett Z; csatolas irrelevansan skalazik, ezért a korabbi transzfor-
méciokkal altal meghatarozott dualis modell (mivel valtozik a trajektoriak
iranyitésa is) az eredeti modelltdl eltérGen viselkedik . Ezért kézenfekvének
tinik a (120) és (121) transzforméaciokat ugy kiterjeszteni, hogy az irre-
levansan skalazo Z; csatolasnak relevansan skalazéd csatolast feleltessenek
meg.

Relevansan skéilazo csatolas bevezetésére az egyik legegyszeriibb lehet6-
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ség a modell tomegtaggal torténd bévitése, azaz a tomeges SG-modellnek
nevezett [108, 131]

Lyse = 2(@89)° + 3md® + ucos(9) (122)

euklideszi Lagrange-stirtiséggel definialt modell vizsgéalata. A tomegtag be-
vezetése jelentSs valtoztatasnak felel meg, mert megsérti az eredeti mo-
dell periodikussaga kovetkeztében fennalld szimmetriat. A hullamfiggvény-

renormalas impulzusfiiggését elhanyagolva a modell dimenzidtlan @ = %

k:2’
Z=z6ésm?= 7;—22 csatolasaira az
i o= 24— [1+m2— (1+m2)2—a2] :
2ruz
. 1 >
2 = ——
247 (14 m2)2 — 42)3/2’
m? = —2m? (123)

RG-egyenleteket nyerjiik. A m? dimenziétlan csatolas relevans modon skala-
zik, ezért megvaltoztatja az eredeti modell alacsonyenergias viselkedését, vi-
szont elhanyagolhato a nagyenergias viselkedés targyalasa soran. Igy amint
az b. tablazat kiemeli az IR fixpont kérnyezetében megvaltozik a korrela-
cios hossz kritikus viselkedésének tipusa, mig az UV fixpont kérnyezetében
valtozatlan marad.

A korabbi transzforméaciokat célszert a

Z o m? (124)

transzforméciéval kiegésziteni ezaltal a Z; csatolas figyelembevételével vizs-
galt SG-modell az impulzusfiiggetlen hullamfiiggvény-renormaléssal tekin-
tett tomeges SG-modellnek feleltethetd meg. A kolesonds megfeleltetés ko-
vetkeztében a két modell dudlis part alkot. Ez a megfeleltetés nem jelent
ekvivalens leképezést, amely az Ising tipusi viselkedést mutatoé fixpontok
kritikus exponensének eltérésében is megnyilvanul. Az egyes modellek UV
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| modell || UV \ IR \
SG KT tipusa, v =1/2 | KT tipust, v =1/2
MSG KT tipust, v =1/2 | Ising tipusa, v = 1/2
75G Ising tipust, v =1/4 | KT tipusa, v =1/2

5. tablazat : Az értekezésemben targyalt SG tipust modellek esetén az
UV és az IR-tartomanyban megjelend szingularitas kornyezetében az ener-
giaskala kritikus értéke altal meghatarozott korrelacios hossz kritikus visel-
kedése és a hozza tartozd exponens értéke. A tablazatban SG a tomegtag
nélkili SG-modellt, MSG tomeges SG-modellt, ZSG az SG-modellnek az 1j
csatolas bevezetésével nyert nagyenergias kiterjesztését jeloli, a KT rovidités
a Kosterlitz—Thouless tipusi viselkedésre utal.

és IR fixpontjainak kornyezetében megfigyelhetd kritikus viselkedést az 5.
tablazat foglalja Gssze.

A tomeges modell vonatkozasaban megnyilvanulé dualis kapcsolat egy
tovabbi motivaciot szolgaltathat az SG-modellnek a fejezetben ismertetett,
a hulllamfiiggvény-renorméalas impulzusfiiggését figyelembe vevs bévitett
fazistéren torténd vizsgélatara. A fejezetben ismertetett eredmények a Phy-
sical Review D folydiratban keriiltek publikalasra [146].
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6. A bozonizalt kétdimenziés kvantum-szindinami-
ka vizsgalata a renormalasicsoport-moédszerrel

6.1. Alacsonydimenziés modellek

A kvantumtérelméleti modellek vizsgalata soran a természet leirdsaban elért
jelentGs sikerek mellett az is nyilvanvalova valt, hogy a modellek matema-
tikai kezelése, azaz az elmélet joslatainak pontos kiszamitasa soréan Oriési
technikai nehézségek lépnek fel. Kiilonosen nagy kihivast jelent az erés kol-
csonhatéast leird elmélet, a kvantum-szindinamika alacsonyenergias viselke-
désének targyaldsa, amely megvalaszolatlan kérdéseket vet fel. Megoldatlan
feladat példaul az erds kolcsonhatas egyik legnyilvanvalébb tulajdonsaga-
nak, a kvarkbezaras jelenségének az elméletbdl torténd levezetése [147].

A problémak megoldasahoz vezets Ut keresése soran kézenfekvs lehe-
t&ség egyszertibb modellek vizsgalata, amelyek a valosagtol vald eltérés
aran matematikailag sokkal konnyebben kezelhet&ek, ezaltal otleteket ad-
hatnak a bonyolultabb realisztikus modellek vizsgalatahoz. Igy az alacsony-
dimenziés kvantumtérelméleti modellek bar nem rendelkeznek kozvetlen fizi-
kai jelentéssel, jatékmodellként kitiinG lehetGséget nytjtanak Gj médszerek
kiprobalasara mivel jelentGsen egyszertibbek négydimenzios megfelel§jiik-
nél. A kvantum-elektrodinamika kétdimenzids téridében térténd térgya-
lasa, a QED, [148-153] az abeli mértékszimmetria ellenére lehetéséget ki-
nal a kvarkbezaras egyes kérdéseinek vizsgalatara [149, 154-156], tovabba a
kvantum-szindinamika kétdimenzios megfelelgjének a QCDy-nek [150, 157-
160] a keretében a szinszam reciproka szerinti sorfejtés [157|, a barion spekt-
rum [161-163| és a mezon-barion szorasi folyamat [164] tanulmanyozhato.

A kétdimenzids modellek egyszertisége abban a minGségi kiilonbségben
is megnyilvanul, hogy ekkor a bozonizacionak nevezett eljaras [16, 106,
161, 165-167| altal lehetGség nyilik arra, hogy fermionikus elméleteknek és
mértékelméleteknek skalaris modellt feleltessiink meg, melynek vizsgalata-
val az eredeti modell tulajdonsigaira kovetkeztethetiink. Ezen modellek
egyszeriisége azonban nem jelent trivialitdst, hiszen a bozonizalt model-
lek gyakran periodikus potenciéllal leirhat6 dnkolcsonhatast tartalmaznak,
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amely a szokasos perturbativ médon nem renormaéalhat6. Ez a koriillmény
indokoltta teszi ezen bozonizalt modelleknek a periodikus SG-modell vizs-
gélataban sikeresen alkalmazott RG-modszerrel torténd vizsgélatat.

A tovabbiakban az Einstein-féle jel6lési moédot alkalmazom, mely szerint
az azonos indexek Osszegzést jeldlnek a szumma jel szerepeltetése nélkiil. A
kétdimenzios térids kovetkeztében a gordg betiis indexek 0-tél 1-ig futnak
tovabba a Minkowski-téridébeli modellek esetén a jelolések vonatkozasaban
a [168] jegyzetben ismertetett kovaridns formalizmust kovetem, amelyben
g =a" =ct, x1 = —a' = —xésag? =1, ¢ =¢'0 =0, ¢!t = -1
komponensekkel definidlt metrikus tenzort alkalmazom.

A kétdimenzios térid6 esetén a fermionokat reprezentéld spinorok két-
komponenstiek, ezért a fermionikus elméletek definidlésa el6tt sziikséges ki-
térni a v métrixok két dimenziora torténd altalanositédsara. Ennek sordn
a

{797} = 29" Taxo (124)

antikommutécios relacid teljesiilését koveteljiik meg, ahol Ioxo a 2 X 2-es
egységmatrix. A Minkowski-térid6 esetén az ezen feltételt kielégits v métri-

#=(1 ) (125)

ey o

Az alacsonydimenzios fermionikus modellek koziil torténetileg az egyik

xok megvélasztasa példaul a

modon torténhet.

legjelentGsebb a négy fermionos vektor-vektor kolesonhatast tartalmazoé Thir-
ring-modell [169], amely az

) - a B
Lty = ¢i7“a;ﬂp —myyp — 5(¢7p¢)(¢’7”¢) (127)
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Lagrange-stirtiség altal definialhato [170]. A tomeg nélkiili Thirring-modell
szabad bozonikus térelméletnek feleltethet6 meg, mig a tomeges Thirring-
modell bozonizécioja az SG-modellre vezet [106].

Az alacsonydimenzios mértékelméletek definialédsa a négydimenzids meg-
felelgjiikkel analég modon torténhet. A QED, esetén a fermiontémeget nem
tartalmazo modell Schwinger-modellként [171, 172] ismert az irodalomban.
A QEDy-ben a négydimenzios modelltd] eltérden lényeges [149] a vakuum-
allapotot jellemz§ 6 paraméter szerepe. A bozonizacidé altal az egyetlen
fermionizt tartalmazé modell a 6 paraméter megfelel§ értéke esetén tome-
ges SG-modellnek feleltethetd meg [170]. T6bb fermionizt tartalmazé mo-
dell esetén a bozonizacio altal tn. réteges SG-modellt nyerhetiink [173],
ahol a rétegek szama a fermionizek szamaéval egyezik meg. Az elnevezés a
szilardtestfizikai alkalmazasbol |7, 97, 98| szarmazik utalva a modellnek a
szupravezetd rétegekben kialakulo vortexek leirasaban betoltott szerepére.

A nemabeli mértékszimmetria alacsonydimenzios vizsgélatara a QCD,
keretében nyilik lehet8ség. A kétdimenzios mértékelméletek bozonizéacio-
janak jelent&s el6nye, hogy a bozonizacidval nyert skalaris modellek nem
tartalmazzak a mértékteret, ezéltal az RG-modszer alkalmazésa soran elke-
riilhet a mértékszimmetria megérzésének problémaja [174-177]. Altalanos
esetben a skalaris modell levezetése in. nemabeli bozonizacio [166, 167, 178]
alkalmazéasat igényli, ezért értekezésemben a QCD, egyetlen fermionizt tar-
talmazo6 valtozatat targyalom, amikor az egyszertibb abeli bozonizacié a
szinek tetszdleges N, szama esetén alkalmazhato.

A tomeges Thirring-modell bozonizaltjanak megfelel§ SG-modell mellett
az irodalomban korabban méar az RG-mddszerrel sikeresen tanulményoztak
a QED, bozonizaciojaval nyert réteges SG-modellt [153, 173], igy kézen-
fekvévé valt ezen munkék kiegészitése a bozonizalt QCD, vizsgalataval. A
modell tanulményozésa soran a fazisszerkezet meghatérozasara fokuszalok,
ezaltal lehet&ség nyilik a Hamilton-stirtiségben végzett sorfejtés alkalmaza-
sara.

A tovabbi targyalas sorén elGszor ismertetem a QCD, bozonizacidja altal
kapott skalaris modellt és annak alacsonyenergias kozelitését, kiemelve a ha-
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sonlosagot ezen kozelités és a réteges SG-modellre vezets bozonizalt QED,
kozott. Ezt kdvetGen felirom a sorfejtett modellre az LPA-ban levezetett
RG-egyenletet, majd az irodalomban sikeresen alkalmazott kozelitéseket fel-
hasznélva ismertetem a csatolasok UV és IR viselkedésének vizsgalatdbol a
modell fazisszerkezetével kapcsolatban levonhato kovetkeztetéseket, kitérve
a modellnek a szinszadm novelésével kapott altalanositasara.

6.2. A bozonizalt QCD,

A QCD, tanulményozasa soran az altalanossag céljabol a vizsgalt modellben
egyel6re nem rogzitem a szinek N, > 2 szaméat, amely meghatarozza modell
szimmetriajat leiro SU(N,)-csoportot. A modell bozonizalasat mér tobben
targyaltak az irodalomban [161, 179].

A tovabbiakban egyetlen kvarkizt tekintve a

o= X |G+ @0, - yoos2yme)|

2
a

+ AZ( ¢b + BZ Sln 2\/_ (ba - )) (128)
a,b (bb
Hamilton-stirtiséggel definialt skalaris modellbél indulunk ki'®, ahol az 6sz-
szegzést természetesen N, szamu skalartérre kell elvégezni, és I1, jeldli a ¢,
skalartérhez tartozo kanonikusan konjugélt impulzust.

A modell vizsgélata lényegesen egyszertibbé valik, ha lehet&ség nyilik a
Hamilton-stirtiség utolsd tagjaban a ¢, — ¢p = 0 helyen végzett sorfejtés
magasabb rendi tagjainak elhagyasara. FEzen kozelités nem sérti meg a mo-
dell szimmetriait, ezért nem varhato, hogy mindéségileg befolyasolja a modell
fazisszerkezetét. Azért, hogy alatamasszam a trividlis térkonfiguracié koril
végzett sorfejtés jogossagat a [151, 153] munkakhoz hasonl6an numerikusan

5Mivel a tovabbi vizsgalatok szempontjabél nem relevans, mell6zém annak targya-
lasat, hogy a bozonikus modell y, A és B paraméterei milyen kapcsolatban vannak az
eredeti modell paramétereivel. A részletesebb targyalas tekintetében a [179] publikaciora
utalok.
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vizsgaltam a Hamilton-strtiség integralasaval szamitott energidt minimali-
zal6 statikus térkonfiguraciot N, = 2 és N, = 3 esetén.

A QED, vizsgalataban jelent&s tapasztalatokkal rendelkezd szerzGtar-
saim rendelkezésemre bocsatottak egy numerikus szélsGértékkeresést meg-
valositd programot, melyet tovabbfejlesztettem a vizsgalt modellre térténd
alkalmazés céljabol. A program a diszkretizalt Hamilton-stirtiséget minima-
lizalo térkonfiguracié megkeresését a konjugalt gradiens modszer [43] alkal-
mazasaval végzi.

A szélsGértékkeresést elvégezve N, mindkét értéke esetén azt kaptam
eredményiil, hogy az energia akkor minimalis, ha mindegyik térvéiltozo ér-
téke azonos. Ez lehetGséget nyujt arra, hogy amikor vizsgéilatainkat az
alapallapothoz kozeli térkonfiguraciokra korlatozzuk, elhagyjuk a kvadrati-
kusnal magasabb rendii tagokat (128) utolso tagjanak a trivialis térkonfi-
guracid kortl tekintett sorfejtésében. Ekkor a térfliggetlen konstans tagtol
eltekintve a Hamilton-stirtiség a

H ~ Z B(HZ + (01¢4)?) — ACOS(Q\/Egba)] + % Z(¢a —¢p)®  (129)

a,b

alakba frhat6. A kés6bbiekben felhasznalasra keriil, hogy a fizikailag rele-
vans esetekben a bevezetett J paraméter értéke pozitiv.
Bevezetve a tomorebb ®7 = (¢1, ¢a, ..., ¢y, ) jelolést és az

(Mécp,),, = (Ne = 1)Jbap — J (130)

tomegmatrixot a ® oszlopvektor segitségével a (129) egyenlet kvadratikus
tagja az %@TMZQCDQQ alakba frhat6. A tomegmaétrix egyetlen zérus értéki
sajatértéket és N.—1 zérustdl kiilonbozs, N.J értékd sajatértéket szolgaltat.

Alkalmazva a 3(9g®)? = 3, 3(0r¢,)? jeldlést a (129) egyenlet koze-
litésében a bozonizalt modell az

N,
1 1 =
Lqcp, = 5(3E<I>)2 + §¢TMgCD2@ +y ) cos(2y7mda) (131)
a=1
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euklideszi Lagrange-stirtiséggel definialhat6. Ezért az euklideszi téridében

1 1 al
Lrsc = 5(3E‘I>)2 + §(I)TM%SGCI) +y Y cos(6a) (132)

a=1

Lagrange-siirtiséggel definialt N = N, skalarteret tartalmazo réteges (ango-
lul layered) SG-modell [7, 97, 98, 180-182| a bozonizalt QCD, alacsonyener-
gias kozelitésének felel meg a 3 = 2./7 paramétervalasztas és a tomegmatrix
megfelel6 megvalasztasa esetén. Az /\/%CD2 tipusi tomegmaétrix a réteges
SG-modell nyelvén Josephson-csatoléassal [98] dsszekapcesolt rétegeknek felel
meg.

Ezaltal a QCD, szoros kapcsolatot mutat a tobbizi QED,-vel, melynek
bozonizalt formaja az

Ny
1 1 0
LQED2 = 5(8E(I))2 + §<1>TM(2QED2‘I> + Yy E COS <2\/’7_T¢a - N) (133)

a=1

Lagrange-stirtiséggel definialhat6 [173], ahol Ny jeloli a fermionizek szamat,
o7 = (f1, b2, - .. ,qﬁNf) és 0 a vakuumallapotot jellemzs paraméter. Er-
demes hangstlyozni, hogy a tomegmétrix megvalasztasira a modell szim-
metridja kovetkeztében tobb lehetSség is kinalkozik, melyek az egyes ele-
mek elGjelében kiilonboznek. A méatrix minden elemét azonosnak valasztva
/\/%ED2 elemei G = % értékiinek valaszthatoak, ahol e a fermionikus mo-
dellben a fermiontér és a mértéktér csatolasat meghatarozo paraméter. A
tovabbiakban a tomegmatrix

(M@ep,)ap = (=D)*TG,  a,b=1,2,..., Ny (134)

modon torténd megvalasztasaval éliink. A matrix Ny — 1 zérus értékid
sajatértékkel és egyetlen N;G értéki sajatértékkel rendelkezik.

A bozonizalt QED, a 6 paraméter megfelels értéke esetén a sorfejtett
QCDy-h6z hasonloan réteges SG-modellnek felel meg. Ennek ellenére, amint
a zérus értéki sajatértékek szamabol lathato, No > 2 ill. Ny > 2 esetén
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./\/%CD2 és MéEDQ nem lehet azonos, azaz altalanos esetben a két modell
kiilonbo6z6 réteges SG-modellnek felel meg. Ugyanakkor figyelemre mélto,
hogy két réteget tekintve, azaz No = Ny = 2 esetén a két modell azonosnak
tekinthets, mivel ekkor a diagonalizalt tomegmaétrixok azonos szignatura-
janak ad6dnak.

A tovabbiakban a QCD,y-hoz tartozo bozonizalt modell fazisait a tome-
ges SG-modellhez hasonléan a Zs-szimmetria spontéan sériilése szerint kiilon-
boztetjlik meg. Azonnal felvetddik a kérdés, hogy ténylegesen megvaldsul-
hat-e mind a két fazis, hiszen példaul a tobbizi QED, bozonizalasaval nyert
réteges SG-modell esetén végzett korabbi vizsgalatok [173] alapjan lehetsé-
ges, hogy csak a szimmetriasértett fazis valosulhat meg. Ugyanakkor egyet-
len iz esetén a QED, két kiilonboz6 fazissal rendelkezik [131, 173, 183].
Amint latni fogjuk, az alacsonyenergias bozonizalt modell esetén a Zo-
szimmetrikus fazis létezésének kérdése a megfelel§ kozelitések keretei kozott
az RG-modszer alkalmazaséival megvalaszolhato.

6.3. A renormalasicsoport-egyenlet ultraibolya
viselkedése

A bonyolultabb modellek vizsgalatat kézenfekvs az RG-egyenletek nagyener-
gids (UV) kozelitésének tanulmanyozéasaval kezdeni, ezért els6ként az UV-
levagasnal linearizalt RG-egyenletbdl levonhato kovetkeztetéseket tekintem
at és a kovetkez$ szakaszban térek ki arra, hogy helytallo-e a modell fazis-
szerkezetére ebben a kozelitésben nyert eredmény.

Mivel elsédleges célunk a fézisszerkezet minGségi leirdsa az alacsony-
energias bozonizalt QCD, RG-modszerrel térténd vizsgalatat LPA-ra kor-
latozzuk. Az egyszetliség kedvéért a modell vizsgala soran a WH-féle renor-
maéalasi sémét alkalmazzuk, amely a tanulmanyozott kétdimenzids esetben
LPA-ban a Callan-Symanzik-sémaval azonosnak tekinthets [108]. A WH-
féle renormalasi sémat alkalmazva a Vi, = k~2V}, modon definialt dimenzi-
6tlan potencialra vonatkozéan a
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(24 ky) V(@) = —ﬁ In [det (5 + V(@) )] (135)

egyenletet nyerjiik [173], ahol f/k” = 04,04, Vi

Az egyenlet kezdeti feltételét, azaz a potencidl UV-levagasnal megadott
alakjat természetesen a modellt definidlé Lagrange-stirtiség hatarozza meg.
A nagyenergias kozelités ismertetése soran az altalanosabb targyalas célja-
bol a (132) egyenlettel definialt réteges SG-modellt tekintem &t, nem rog-
zitve a tOmegmatrixot és a § paraméter értékét. Az M%SG modon jelolve
az M%SGk:_Q dimenzidtlan tomegmaéatrixot az egyenlet megoldésa soran a
potencialra a

N
Te(®) = 507 M (M + (k) D cos(56,) (136)

n=1

feltételt rojuk ki. Ezen feltételben a felharmonikusokat elhanyagoljuk fel-
hasznélva azt a tapasztalatot [86], hogy az SG-modell esetén a Fourier-
sorfejtés magasabb rendi tagjainak figyelembevétele mingségileg nem befo-
lyésolja a fazisszerkezet meghatarozasat.

Az egyenlet periodikus és nem periodikus részét szétvalasztva a dimen-
ziotlanftott tomegmatrixra vonatkozo

(2 + k) Migg (k) =0, (137)

egyenletet nyerjiilk. Az egyenlet megoldasa szerint a témegmaétrix MéCDQ
ill. ./\/%ED2 szerinti megvalasztésa esetén a dimenziotlan J ill. G csatolas
a kanonikus dimenzié szerint skalazik, azaz eltiinik a dimenziés J ill. G
csatolas skalafiiggése.

Bevezetve az Uy, = §(k) ZnNzl cos(3 ¢n) jelolést a dimenziotlan poten-
cial periodikus tagjara és a

det (@-j + Vi (cp)) ~ C + 1 (Ty) + O(02) (138)
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modon a (135) egyenletben szerepls determinéns Ug-ban magasabb rendi
tagjait elhagyva az RG-egyenlet linearizalasa a

1R

(2+k6k)Uk = = C

(139)
egyenletre [173| vezet. Ezen kozelitésre tomeg-korrigalt RG-aramlasigorbe-
ként hivatkoznak a szakirodalomban [173] megkiilonboztetve az egyszerd
Bg)n Vi-ban térténd sorfejtéstsl, mely a hig gaz kozelitésnek feleltethets meg
[173].

A (139) egyenlet megoldasaként az ¢ dimenzidtlan csatolas skalafiiggeé-
sére az ./\/%CD2 tOmegmatrix esetén

B\ F 2 2 N S

~ ~ N4ar + I

y(k) = g(A) (K) (7/\2 - NJ> : (140)
mig az ./\/%ED2 tomegmatrix esetén

2

8
2 (K24 NG\
A2+ NG

(N-1)p2

i =i (7)

adodik, ahol §(A) a csatolasnak a A UV-levagasnal felvett értékét jeloli.
Annak ellenére, hogy az N, = 1 esetre a QCD5, nincs definidlva egyetlen

(141)

réteg esetén is definidlhatjuk QCD, tipust tomegtagot tartalmazo réteges
SG-modellt. Mivel az

1 Yo e g
T p 42 _ o N2
5% Mgep,® = > 1 (Pa = ) (142)
a=1 b=1

egyenletbdl kiindulva N, = 1 esetén a QCD, tipust tomegtag elttinik az
M%QCDQ tomegmaétrixa réteges SG-modellnek egyetlen réteg esetén az egy-
szerd tomegtelen SG-modell feleltetheté meg. Erdemes hangstlyozni, hogy
ez eltérést jelent a tomegmatrix N, > 1 esetben érvényes (130) egyenletben
szerepld kifejezésétsl.
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Az egyenletekbdl leolvashatdo a k — 0 aszimptotikus hataresetben ¢
relevans és irrelevans skalazasat elvalaszto kritikus G érték. A QCD, tipust
tomegméatrixra vonatkozo (140) egyenlet esetén (2 kritikus értéke 32 =
87N, mig a QED, tipust tomegmaétrixra vonatkozo (141) egyenlet esetén
a kritikus érték B2 = %. A kritikus érték fiiggését a rétegek szaméatol
a QCD, és QED, tipust tomegmatrixok esetén a 12. abra szemlélteti. A
kapott kritikus értékek szerint a nagyenergias kozelitésbdl az kovetkezik,
hogy mind a bozonizalt QED,, mind az alacsonyenergias bozonizalt QCD,
a réteges SG-modell szimmetriasértett fazisanak felel meg mivel az ezen
modelleknek megfelels 32 = 47 érték ($2-nél kisebb.

Amint az el6z6 fejezetekben vizsgalt modellek példajan lathattuk a szim-
metriasértett fazisban az RG-egyenlet a szimmetrikus fazistoél mingségileg
eltérg viselkedést mutat, melynek tanulmanyozasa egy tovabbi moédot ad
annak eldontésére, hogy az adott kezdeti feltétel melyik fazishoz tartozik.
Vizsgalatainkat a (136) feltétel szerint az alapharmonikusra korlatozva a
(135) egyenletben a logaritmus argumentuméanak zérussa valasa altal meg-
jelend polus utal a szimmetriasértett fazisra. Els6 kozelitésben azt a kérdést
tehetjiik fel, hogy megjelenik-e a polus az RG-egyenletek UV viselkedését a
k skala alacsonyabb értékei felé extrapolalva.

Hérom szin, azaz harom réteg esetén a (135) RG-egyenlet a

. 1 - . . s
2+ k0 Ve = —-Inf (L4 Vi) + V(1 +VF) + VEvEve
+OVBTAYS g1 4 p22) s
— VEVEO14+ V3 - 1+ vihyByE (143)
alakot 6lti, a (136) feltétel pedig (QCD, tipust tomegméatrix esetén) a

T(¢1=¢2)*+(62—03)°+ (b3~ 61)*|+5cos(B1) +-cos(Ba) +cos(Bps)]
(144)
alakban irhato fel. A potencidlnak ezt a forméajat az RG-egyenletbe helyet-

Vi =

N |
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4.0 T

30

20

BAN)/(8)

1.0

12. abra : A g hanyados az egyenletek UV viselkedése szerint meg-
hatarozott 8 = (. kritikus érték esetén az N rétegszam fliggvényében. A
szaggatott vonallal 6sszekotott értékek a QEDo tipusd tomegmatrix esetére,
a folytonos vonallal 6sszekotott értékek a QCDso tipust tomegmatrix ese-
tére vonatkoznak. A (.-nek megfelel§ érték minden esetben az elsziirkitett
tartomanyon kivil talalhato.
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tesitve a ¢1 = ¢o = ¢3 = 0 helyen a polus létezésének feltételére az
(1-8%9)(1+3J = 3%5)* =0 (145)

egyenlet adodik, ahol J > 0. Az egyenlet UV viselkedésének extrapolalasé-
bol az kovetkezik, hogy 7 a (140) egyenlet szerint relevans modon skalazik
és 1 — 32§ valamely k értéknél nulldhoz tart, ezaltal polus jelenik meg az
RG-egyenletben. Ezen kozelités szerint N, = 3 esetén az RG-egyenlet min-
den kezdeti feltétele a szimmetriasértett fazishoz tartozik, ezért a modellnek
egy fazisa van.

Hasonl6 vizsgalat természetesen a QED, tipusi tomegmétrix esetén is
elvégezhets, ekkor a haromrétegii modell esetén a poélus megjelenésének fel-
tételére az

(1—3%*))*(1+3G - ) =0 (146)

egyenletet nyerjiik, igy mivel a (141) egyenlet szerint az § csatolas ebben
az esetben is aszimptotikusan tekintve a k skala negativ kitev6jd hatva-
nyaval aranyos igy az érvelésiink szintén a polus megjelenéséhez, azaz a
szimmetriasértett fazis kizarolagossédgahoz vezet, 6sszhangban a szakiroda-
lom eredményével [173].

Az altalanossag céljabol vizsgélatainkat nagy rétegszam esetére kiter-
jesztve a QCD, tipusi tomegmatrix esetén a polusra vonatkozo feltételre
az

(1-91+NJ - =0 (147)

egyenlet adodik, amely a csatolas (140) egyenlet szerinti skalafiiggése esetén
mindig divergencia megjelenéséhez vezet. Ezért a megkozelitésiink azt su-
gallja, hogy tetsz6leges szinszam esetén a spontan szimmetriasértés mindig
megvalosul a modellben, azaz az alacsonyenergias bozonizalt QCD, egyetlen
fazissal rendelkezik.

Ez a kozelités nem veszi figyelembe azt, hogy az RG-egyenlet megoldasa
soran az energiaskéla csokkentésével a potenciadlban a magasabb frekvenci-
4ju modusokbdl szarmazéd jarulékok is megjelennek, amelyek az g csatoléds



100 6. fejezet

skalazasat is megvaltoztathatjak. Ennek kovetkeztében a fazisszerkezetre
levont kévetkeztetést ellendrizni sziikséges, amelyre az RG-egyenlet IR visel-
kedésének targyaldsa soran nyilik lehet&ség.

6.4. A renormalasicsoport-egyenlet infravoros
viselkedése

A réteges SG-modellre vonatkozo (135) RG-egyenlet megoldasa technikailag
jelentds kihivas, mindazéltal az egyenlet alacsonyenergias (IR) viselkedésé-
nek tanulményozésa numerikusan kezelhetévé valik az alabbiakban ismerte-
tett kozelités altal. Ennek alkalmazasdhoz az N-komponenstd @ térvaltozo
elforgatasaval 0j térvaltozot vezetiink be, melynek segitségével a tomegmét-
rix diagonélis forméaban irhato fel. QCD, tipust tomegmatrix esetén (amint
a matrix sajatértékeibsl kovetkezik) az 1 térvaltozé komponensei egyetlen
tomegtelen és N — 1 tomeggel rendelkezs skalartérnek felelnek meg. Ezt
kihasznélva feltételezhetjiik, hogy a tomeggel rendelkezd skalarterek nagy
amplitadoji fluktuécioi el vannak nyomva, azaz alkalmazhatjuk a potencial
tomeggel rendelkezé térkomponensekben sorfejtett alakjat. Hasonld megko-
zelitést korabban mar sikeresen alkalmaztak a réteges SG-modell vizsgalata
soran [184].

Ezt az utat kovetve a harom szinre vonatkozé6 N = 3 esetben az j
térvaltoz6 komponenseit az

3
a; = Rijo; (148)
j=1
egyenlettel vezetjiik be, ahol az R matrixot az
1 1 1
R=|-5 VU & (149)
1 V2 1
V6 V3 V6

alakban véalasztjuk meg. Az 0j térvaltozok segitségével a Lagrange-stiriiség
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azZ
_ 1 2 1 2 1 2 § 2 2
Lo = 2(8Ea1) + 2(anzQ) + 2(amg) + 2J(a2 +a3)+V,  (150)

alakba irhato, ahol'®

Vo = 2gcos (ﬁ%) Cos (ﬁ%) oS <ﬁ%>
—2ysin <5%> cos <5722> sin <ﬁ%>
v (555 on® (55) e (355) 0 (53%)
(D))

Az ismertetett stratégia szerint a potencialt az as = a3 = 0 helyen a t6-
meggel rendelkezé komponensekben Taylor-sorba fejtve a sorfejtés elsé tagja
az

L0 = %(8,3041)2 + 3§ cos (5%) (152)

Lagrange-stirtiségre vezet. Ebbd] kdvetkezSen a modell alacsonyenergias vi-
selkedése az egyszertd SG-modell IR viselkedése altal irhat6 le. A bozonizacio
soran a  paraméter értéke rogzitett, ezért a hdromszind bozonizalt QCD,-
nek megfelels SG-modell paramétere Ggo = % = 2\/§ amely paraméter a
szimmetriasértett fazishoz tartozik [86].

A fazisszerkezetre vonatkozd megallapitas mellett érdemes kitérni a mo-
dell IR viselkedésének néhany tovabbi jellemzgjére. Az RG-trajektoriak
viselkedését az [R-tartomanyban egy vonzo fixpont hatérozza meg, amely-
nek kovetkeztében a k skila értékét csokkentve a potencial az ultraibolya-
levagasban felvett értékétdl fliggetlenné valik, amire az irodalomban szupe-
runiverzalis skalazasként hivatkoznak. A potencial ezen viselkedését a 13.

16 Az eredményeinket targyalo [185] publikacioban V,, képlete tévesen szerepel, mind-
azaltal ez nem befolyasolja a levont kovetkeztetéseket.
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log 3y

45 -4 35 -3 25 -2 -15 -1 -05 0
log kIN

13. abra : A dimenzidtlan § csatolasnak az [R-tartoméyban megfigyelt
szuperuniverzalis skalazéasa kiilonbozd kezdeti értékek esetén. A betétrész
szemlélteti a potencial alakjanak valtozasat a k skala csokkentése soran. A
betétrész gorbéi a k/A = 10~* értékekre vonatkoznak.

abra szemlélteti megjelenitve az RG-egyenlet néhany kiilonb6zd kezdeti fel-
tételhez tartozo megoldasat. Az irodalom egyes korabbi vizsgéalatai [108, 84|
abba az iranyba mutattak, hogy az univerzalissi valé dimenziétlan potencial
alakja a térvaltozo alacsony értékei esetén parabola. A Fourier-sorfejtés el-
keriilésével végzett nagy pontossagti numerikus szamitésok szerint azonban
a potencial alakja eltér a parabolatol, amint azt a 13. abra betétrésze szem-
lélteti. Lathato tovabba, hogy a potencidlnak az RG-egyenlet megoldésaval
nyert alakja nem analitikus, ezért a spontdn szimmetriasértés megjelenésére
kovetkeztethetiink.

Vizsgalatainkat érdemes kiterjeszteni tetszéleges szinszam esetére. Ek-
kor a fenti érvelés szerint a tomeggel rendelkezd térkomponensekben elvég-
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zett sorfejtés magasabb rendi tagjait elhagyva az

Ll = %(aEal)Q + Ny cos <ﬂ\j—lﬁ> (153)

Lagrange-stirtiséget nyerjiik, amely (sqg = % = 2\/% paraméterid SG-
modellnek felel meg. Ebbdl kovetkezGen a bozonialt QCD, alacsonyenergias
viselkedését tekintve tetsz6leges szinszdm esetén csupan a szimmetriasértett
fazis valosulhat meg.

Végezetiil feltehetjiik azt a kérdést, hogy a szuperuniverzalis potenciél
alakja hogyan fiigg a szinek szamatol!”. A parabolatol eltérd szuperuniver-
zélis potencial tekintetében a Fourier-sorfejtés elkertilésével végzett szami-
tasok és a korabbi eredmények kozotti kiilonbség az alapharmonikusnak a
2 értektdl valo eltérésével, ezaltal a 2 — 5% mennyiség IR-ben tekintett
értékével jellemezhets. A 14. abra azt szemlélteti, hogy hogyan fiigg ez a
mennyiség a szinek szamatol.

Lathato, hogy a szinek szdmanak novelésével a potencidl alakja egyre
kevésbé tér el a a korabbi eredményektsl. Az abra alapjan feltételezhetjiik,
hogy a parabolikus potencial az N — oo hataresetnek felel meg. Ennek
ellenére ezt az allitdst az ismertetett modszerrel kozvetleniil nem ellenriz-
hetjiik, mivel a numerikus szamitésok elvégzése N névelésével technikailag
egyre nehezebbé valik.

Az RG-moddszer altal a QC D5 alacsonyenergias kozelitésének vizsgalata-
ban elért 4j eredményeink a Journal of High Energy Physics folydiratban
keriiltek publikalasra [185].

17 Az egyszeriiség kedvéért a szinek szama kifejezést hasznalom, amelyet az N = 1 esetre
tekintettel a QCD,, tipust tomegmatrixszal jellemzett réteges SG-modell rétegszamaként
kell értelmezni.
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7. Osszefoglalas

Ertekezésemben euklideszi téridében tekintett kvantalt fizikai modelleket
vizsgaltam a funkcionalis renormalasicsoport-modszer (RG-modszer) alkal-
mazasaval. Ez a modszer amellett, hogy forradalmasitotta a folytonos fa-
zisatalakulasok vizsgalatat, kvantumelméleti és statisztikus fizikai modellek
rendkiviil elegdns megkozelitésére nyujt lehetGséget. Az RG szemléletének
az elényei kozé tartozik a nemperturbativ targyalas mellett a vizsgilando
rendszer lényeges jellemzGit megragadé kozelitések alkalmazasa és az energi-
askala kiilonbozdé tartomanyaihoz tartozo szabadsagi fokok elkiilonitése. A
modszer alkalmazasa soran kovetkezetesen figyelembe vehetjiik a modellek
érvényességének mind az alacsony-, mind a nagyenergias korlatjat ill. bizo-
nyos kozelitésekben ezeknak a korlatoknak az értékére is kovetkeztethetiink.

A kutatési kérdések targyalasa el6tt értekezésem 2. fejezetében attekin-
tést adtam az RG-modszerrdl. A modszer altalanos szemléletének ismerte-
tését kovetGen kitértem az euklideszi téridGben tekintett kvantumtérelméleti
modellek és a statisztikus fizikai modellek kapcsolatara, melynek koszonhe-
téen a renormalas fogalma mind a szilradtestfizika, mind a részecskefizika
teriiletérdl megkozelithets. Ennek az analégidnak az ismertetése soran révi-
den kitértem az Ising-modellre és ennek folytonos altalanositasara, és meg-
emlitettem, hogy a formalizmus kvantummechanikai modellek kezelésre is
lehet&séget nyujt.

Az RG-mddszer matematikai formalizmusat attekintve nagy vonalakban
ismertettem a Wegner—Houghton-egyenlet és a Wetterich-egyenlet levezeté-
sét. A Wegner—-Houghton-féle megkozelités technikailag egyszertibb, de al-
kalmazéasanak jelentds korlatjai vannak. A Wetterich-féle formalizmus alta-
lanosabban alkalmazhato, viszont az tgynevezett regulator fiiggvény tébb-
féle megvalasztasat engedélyezi, mely szerint kiilonbo6z6 renormalési séma-
kat kiillonboztetiink meg.

Az alkalmazasok sorén altaldban a hatéas alakjara kirott feltevésekkel
éliink, igy kozelitések altal a funkciondlis RG-egyenletet az energiaskila-
tol fliggs fiiggvényekre vonatkozo differencidlegyenlet-rendszerre képezhet-
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jik le. A vizsgalt modell makroszkopikus jellemzgsit az egyenleteknek az
energiaskéla alacsony értékeihez tartozé megoldasa hatarozza meg.

Az RG-modszer fazisatalakulasokra vonatkozo alkalmazasat targyalva
ismertettem a fazisatalakulas kritikus fixpont létezésén keresztiil torténd
kimutatésat és a linearizalt RG-egyenletek kapcsolatat a korrelacios hossz
kritikus exponensével. A tovabbi kritikus exponensek kielégité meghataro-
zdsa a hullamfiiggvény-renormélas viselkedése éltal meghatarozott anomélis
dimenzi6 altal torténhet. A kvantitativ jellemzés mellett az RG-moddszer a
trajektoriak kritikus feliilethez kozeli viselkedését leirva egyszert, szemlé-
letes magyarazatot ad a kiilonb6z6 rendszerek fazisatalakulasa soran ta-
pasztalhatd unverzalitdsra. Emellett az RG moddszer jelentGsége abban is
megnyilvanul, hogy tj megvilagitasba helyezte a torténeti osztéilyozas alap-
jan az un. nemrenormalhat6 elméletek kozé sorolt térelméleti modelleket,
hozzajarulva az alapvet§ kolcsonhatasokrol kialakult szemléletiink fejlgdé-
séhez.

Ertekezésemben a kutatési problémak kifejtése a vizsgalt modellek sze-
rint négy részre tagolodik. A 3. fejezetben a kvantalt anharmonikus osz-
cillatort, a 4. fejezetben a Caldeira-Leggett-modell egyes valtozatait, az 5.
fejezetben a sine-Gordon-modell nagyenergias kiterjesztését, a 6. fejezet-
ben a kétdimenzios kvantum-szindinamikénak megfelel6 bozonizalt modell
alacsonyenergias kozelitését targyaltam.

Az egydimenzids kvantélt anharmonikus oszcillator tanulményozésanak
motivaciojat az szolgalttatta, hogy ez a viszonylag egyszert modell idealis
lehetdséget nyijt a renormélasi séma optimalizalasanak viszgalatara. Az
optimalizalast az elsd gerjesztett allapot és az alapéllapot energidjanak kii-
lonbségének tekintetében végeztem, amely mennyiség vonatkozasdban pon-
tos irodalmi értékek allnak rendelkezésre.

Mivel az eredmények pontossagat a renormélasi séma megvalasztasitol
fliggetlen kozelitések is befolyasoljak, az irodalomban gyakran a legkisebb
érzékenység elvét alkalmazzak. Ez altal azt a regulatort tekintik optima-
lisnak, amely esetén a vizsgalt fizikai mennyiségre vonatkozo, a regulétor
paraméterétsl fliggd eredménynek stacionérius helye van.



7. fejezet 107

A kozelmiltban bevezetett CSS-regulator lehetdséget nydjt a Litim-
regulator, a hatvanyfliggvény-regulator és az exponenciilis regulator leg-
kisebb érzékenység elve szerint torténd Gsszehasonlitasara, mivel ezek a kii-
16nb6z6 formaju regulatorok elGallithatoak a CSS-regulator specialis hatér-
eseteiként. Ertekezésemben a CSS-regulator két paraméterét véltoztatva
az emlitett energiakiilonbség tekintetében tanulményoztam a renormélasi
séma optimalizélasat. Eredményeim szerint a modell esetén a legkisebb
érzékenység elve a széles korben optimélisnak tekintett Litim-regulédtornal
elényesebb regulatorra vezet. Tapasztalataim alapjan javaslatot tettiink
a Litim-reguldtor olyan modositéséra, amely esetén az impulzusintegral a
Litim-sémahoz hasonléan analitikusan elvégezhetd.

A 4. fejezetben a kvantalt Caldeira—Leggett-modell egyes folytonos
spektrumi véltozatait targyaltam, melyek nyilt kvantummechanikai rend-
szerek targyalasara kindlnak lehet&séget. Ezekben a modellekben a vizs-
galat szempontjabol relevans alrendszer kornyezetének hataséit a kornyezet
gerjesztéseinek frekvenciait jellemz§ spektralfiiggvényen keresztiil vessziik fi-
gyelembe. A kornyezet spektrumanak realisztikus leirdsa a spektralfiiggvény
levagasanak bebezetését igényli. Ertekezésemben a levagasnak a Heaviside-
féle egységugrasfiiggvénnyel megadott Debye-féle és a Lorentz-fliggvénnyel
megadott Drude-féle bevezetését alkalmaztam.

A kornyezettel torténd kolcsénhatas kovetkeztében a modellekben a Zo-
szimmetria spontan sériilésével kapcsolatos fazisatalakulés jelenik meg, mely-
re kvantum-klasszikus atmenetként hivatkoznak az irodalomban. A fazisat-
alakulashoz kapcsolodo kritikus viselkedést az RG eszozeivel tanulmanyoz-
tam. A Wegner—Houghton-séma alkalmazaséval a Debye- és Drude-féle leva-
gas esetén meghataroztam a szuszceptibilitas és a korrelaciés hossz kritikus
viselkedését jellemz§ exponensek értékét, kitérve annak vizsgalatara, hogy
a bevezetett levigés értéke ill. a levagas tipusanak megvélasztisa hogyan
befolyasolja az exponensek értékét.

Az eredményeim szerint a leviagés alacsony értékei esetén a kritikus ex-
ponensek a spektralfiiggvény levagasatol fiiggetlennek tekinthetGek és a két-
féle tipusu levagas egyez6 értékeket szolgaltat. A Drude-féle levagéas esetén
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a szuszceptibilitasra vonatkozoéan Litim-sémaban is végeztem szadmitasokat.
Emellett a folytonos spektrumii kvantalt Caldeira-Leggett modell levagas
nélkiili valtozatanak kritikus viselkedését is targyaltam.

Az 5. fejezetben a kétdimenzids sine-Gordon-modell nagyenergias ki-
terjesztését targyaltam. A sine-Gordon-modell tanulmanyozasaban az RG-
modszer mar korabban is jelents sikereket ért el lefrva a modell Gsszetett
fazisszerkezetét és jellegzetes Kosterlitz—Thouless tipust fazisatalakulésat.

A sine-Gordon-modellre vonatkozé rovid irodalmi attekintést kdvet&en
ismertettem a modell két csatolas figyelembevétele altal nyert fazisszerkeze-
tét, amely az altalanosan értelmezett aszimptotikus biztonsag kérdését veti
fel. A kérdés teljesebb targyalasa a modell nagyenergias kiterjesztésének
részletesebb vizsgalatit igényli.

Az RG-moddszer a szamitasok soran az energiaskalan a szokasossal el-
lentétes irdnyban haladva bizonyos keretek kozott lehetGséget nytjt a mo-
dell nagyenergias kiterjesztésének tanulmanyozéisara is. A nagyenergias
kiterjesztés a térvaltoz6 magasabb rendd derivaltjait tartalmazo hatéas al-
tal jellemezhets, melynek tanulményozasa impulzusfiiggs hullamfiiggvény-
renormélést igényel. Az értekezésemben Callan—Symanzik-séma esetén is-
mertetett RG-egyenletek vizsgaltainkat a potencil alapharmonikusara kor-
latozva egy 1j csatolds bevezetése altal impulzusfiiggd hullamfiiggvény-renor-
maélas alkalmazasara nyidjtanak lehetdséget.

Az egyenletek alkalmazasaval a nagyenergias viselkedés tekintetében egy
1j fazis megjelenése altal Kosterlitz—Thouless tipusu fazisatalakuléast figyel-
hetiink meg. Az 10j fazis létezése megsérti a modellben két csatolasanak
figyelembevétele esetén tapasztalhatd altaldnositott aszimptotikus bizton-
sagot.

A fejezet végén ismertettem a modellben kozelitSleg érvényesiils dualis
szimmetriat és a dudlis transzforméacio6 altalanositasat. Ez az altalanositas a
modell nagyenergias kiterjesztését a tomeges sine-Gordon-modell alacsony-
energias viselkedésével kapcsolja Gssze.

A 6. fejezetben az egy fermionizzel rendelkez6 kétdimenzios kvantum-
szindinamika bozonizalédséval nyerhetd skalaris modell alacsonyenergias ko-
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zelitésének fazisszerkezetét targyaltam. A bozonizélt modell Hamilton-str-
ségében a trividlis térkonfiguraciéo koriil végzett sorfejtés vezets tagjai a
réteges sine-Gordon modellnek felelnek meg. Ahhoz, hogy ebben a kozeli-
tésben az alacsonyenergias viselkedést targyalhassuk kulcsfontossagu, hogy
a Hamilton-striséget minimalizal6é térkonfiguracié trividlis legyen. Ennek
ellenérzése céljabol a diszkretizalt Hamilton-strtiséget tekintve a konjugélt
gradiens modszerrel numerikusan kerestem meg az energiafunkcionalt mini-
malizéld térkonfiguraciot.

Ertekezésemben kitértem a tobbizt kétdimenzios kvantum-elektrodina-
mika targyaldsara, melynek bozonizalasa szintén réteges sine-Gordon-mo-
dellre vezet. A rétegek szama ekkor a fermionizek szamaval, mig a korabban
emlitett modell esetén a szinek szaméval egyezik meg.

Ertekezésemben a réteges sine-Gordon modell tekintetében lokalis po-
tencial kozelitésre szoritkoztam. Az RG-modszer keretében a fazisszerke-
zetre tobb modon probalhatunk kovetkeztetni. Ertekezésemben téargyal-
tam a csatolas skilafliggésének a tomegkorrigalt dramlasigérbék ultraibolya-
tartomanyban érvényes RG-egyenlete szerinti meghatarozasit a potencial
alapharmonikusara szoritkozo kozelités esetén. Emellett targyaltam az infra-
voros-tartoméany felé extrapolalt egyenlet polusdnak vizsgalatat is. Mindkét
érvelés arra utal, hogy a modell egyetlen fézissal rendelkezik, amely a szim-
metriasértett fazis.

A fazisszerkezet egyértelmii meghatarozésa a RG-egyenlet infravords vi-
selkedésének ismeretét igényli. A tomegmaétrix 4j térvaltozok bevezetésével
torténd diagonalizaldsa utan az alacsonyenergias viselkedés meghataroza-
sara a hatas témeges komponensekben sorfejtett kozelitését alkalmazhatjuk,
amely esetben az infravords viselkedés kérdése mar technikailag konnyebben
kezelhets. Az igy végzett vizsgélat egyértelmien egyetlen fazis 1étezését mu-
tatja. Ekkor a potencial felharmonikusainak szerepe is vizsgéilhat6, amely
csupan mennyiségi valtozast okoz az alapharmonikusra szoritkozo kozelités-
hez képest.
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8. Angol nyelvii 6sszefoglalas (Summary in English)

In my dissertation quantum theoretical models in Euclidean spacetime are
examined by the functional renormalization group (RG) method. This
method has revolutionised the investigation of the continuous phase transi-
tions and given extremely elegant approach for field theoretical models both
in quantum physics and in statistical physics. Advantages of this method are
the non-perturbative treatment, the efficient approximations of the studied
system and the separation of degrees of freedom according to the different
energy domain. Furthermore in certain cases applying this method we can
respect and compute the limits of the theory in the energy scale.

Before the studied questions in chapter 2 RG method was reviewed. Af-
ter reviewing the features of the method the connection between the quan-
tum field theories in Euclidean spacetime and statistical physics is discussed.
Due to this analogy the functional renormalization can be introduced both
from the viewpoint of solid state physics and from viewpoint of particle
physics. Describing this analogy I mentioned the Ising model, the continu-
ous generalization of this model and the application of the formalism for
quantum mechanical systems.

Reviewing the mathematical formalism of the RG method the derivation
of the Wegner-Houghton equation and the Wetterich equation were roughly
described. The Wegner-Houghton approach is easier, but there are several
limits for its application. The second approach is more general and here we
can apply various regulators. According to our choice we may distinguish
different renormalization schemes.

During computations we apply assumptions for the form of the scale
dependent action so we get a differential equation system from the original
functional equation. The macroscopic feature of the investigated model can
be determined from the solution in the low-energy domain of the energy
scale.
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The most common application of the RG method is the investigation
of phase transitions. Usually phase transitions can be established by crit-
ical fixed point of RG transformations and critical exponents of the tran-
sition can be determined by the linearized RG equations around the fixed
point. In my dissertation the determination of the anomalous dimension
and the determination of the exponent corresponding to the critical behav-
iour of the correlation length were mentioned. The RG approach for the
explanation of the universality in critical phenomena and for the so-called
non-renormalizable theories were also reviewed.

In the dissertation the investigated problems posed by different models
were discussed in separated chapters. Chapter 3 is devoted to the quantized
anharmonic oscillator, chapter 4 to the Caldeira-Leggett type models, chap-
ter 5 to the high-energy extension of the sine-Gordon model and chapter 6 to
the low-energy behaviour of the two dimensional quantum chromodynamics.

Study of quantized anharmonic oscillator is motivated by the optimiza-
tion of the renormalization. This simple model gives ideal ground for the
subtle problem of scheme optimization. The optimization was investigat-
ed with respect to the energy gap between the first excited state and the
ground state. In the literature there are precise values for this quantity. The
applied approximations which independent from the choice of the renormal-
ization scheme influence the result of the RG method, so in the literature
the principle of minimal sensitivity is often applied for optimization. This
optimization strategy considers that scheme to optimal where the computed
quantity as function of the regulator’s parameter has stationary point.

Applying the recently introduced CSS regulator we can compare the Li-
tim, the power-law and the exponential regulator by the principle of minimal
sensitivity, because these regulators can be reproduced by special limits of
the CSS regulator. In case of the anharmonic oscillator the optimizatiton
of two parameters of the CSS regulator was investigated with respect to
the noted energy gap. In this case the principle of minimal sensitivity we
get such optimal regulator which differs from the Litim regulator, which
is usually considered optimal. Based on our experience we recommended
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the modification of the Litim regulator. In this modified case in the lo-
cal potential approximation we get RG equation for the potential in which
the momentum integral can be performed analitycally similar to the Litim
scheme.

In chapter 4 certain versions of the quantized Caldeira-Leggett model
defined by continuous spectral functions are discussed. These empirical
models can be applied to investigate open quantum mechanical systems.
In these models the impact of the environment of the relevant subsystem
is incorporated to the spectral function which characterize the frequency
spectrum of the environment. The realistic description of the spectrum
demands to introduce a frequency cutoff in the spectral function. In this
dissertation I applied the Debye type cutoff defined by the Heaviside type
unitstep function and the Drude type cutoff defined by Lorentzian function.

In this models due to the environment a phase transition appears, which
is referred to in the literature as the quantum-classical transition. This
phase transition can be characterized by the spontaneous broken of the Zo
symmetry. The control parameter of the phase transition is the amplitude
of the spectral function. This parameter characterizes the strength of the
interaction between the relevant subsystem and the environment.

Applying RG method in Wegner-Hougton scheme I determined the ex-
ponents correspond to the critical behaviour of the susceptibility and the
correlation length both in the case of Debye type cutoff and in the case of
Drude type cutoff. I investigated that the chosen value of the cutoff and the
type of the cutoff how affect the value of the exponents. I showed that in
the case of low value of the cutoff the critical exponents can be considered
independent from the value and the type of the cutoff. Besides I also dis-
cussed the critical behaviour of that version of the Caldeira-Leggett model
which does not contain cutoff.

In chapter 5 the high-energy extension of two dimensional sine-Gordon
model is discussed. In the investigation of the sine-Gordon model the RG
method has already achieved serious successes, describing the Kosterlitz-
Thouless type phase transition of the model. After a short review of the
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literature of the sine-Gordon model I described its phase structure limiting
our approach to two couplings. This known results pose the problem of
the asymptotic safety in general sense. A more dedicate discussion of the
problem can be performed by a more careful investigation of the high-energy
extension of the model.

In the framework of the RG method going along the energy scale in
the opposite direction as usual we can examine the high-energy extension.
The high-energy extension can be characterized by action extended with
the inclusion of higher-order derivative terms, so it demands momentum
dependent wave-function renormalization.

In my dissertation in Callan-Symanzik scheme new RG equations were
discussed which takes momentum dependent wave-function renormalization
into account via the introduction of a new coupling. Applying these equa-
tions we experience the emergence of a new phase which breaks asymptotic
safety and we experience a Kosterlitz-Thouless type phase transition in the
high-energy extension.

The phase space of the sine-Gordon model considering with two cou-
plings shows an approximate symmetry which can be characterized by the
so-called dual transformation. The generalization of this transformation are
also discussed. By this generalization the investigated high-energy exten-
sion and the low-energy behaviour of the massive sine-Gordon model are
connected.

In chapter 6 the low-energy behaviour of the bosonized model corre-
sponds to the two dimensional quantum chromodynamics in the case of one
fermion flavour is discussed. If we examine the low-energy behaviour of
the model we can use the truncated expansion of the Hamiltonian density
restricting our investigations to field configuration around the ground state.

The leading terms of the expansion in Hamiltonian around the trivial
field configuration correspond to the layered sine-Gordon model which was
successfully studied in literature in the framework of the RG method. The
extension of the known succesful RG investigations of the layered sine-
Gordon model to the low-energy approximation of the bosonized quantum
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chromodynamics demands trivial field configuration in the ground state.
I numerically determined the field configuration which minimizes the dis-
cretized Hamiltonian by conjugated gradient method. Due to the gained tri-
vial configuration we can consider the theory as layered sine-Gordon model
in the low-energy case.

The phase structure of the model in respect of the Zs symmetry was
discussed. In local potential approximation considering the fundamental
frequency of the potential the approximation of the mass corrected RG flow
in the ultraviolet domain shows that the model has only a single phase
which is the broken symmetric phase. The extrapolation of this equation
towards the infrared domain possesses pole which affirmed this result also.

More detailed investigations can be performed if we study the infrared
behaviour of the RG equation for the potential. Introducing new field vari-
ables the mass matrix of the model can be diagonalized and leading terms
of expansion with respect to the massive components get the problem ame-
nable for numerical methods. This examination confirms the earlier results
for the single phase. In this manner higher frequency modes of the potential
also can be studied but they give only quantitative changes.

Chapter 7 was devoted to the summarization of the results.
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