
1949

A funkcionális renormálási csoport
néhány alkalmazása a
kvantumelméletben

Egyetemi doktori (PhD) értekezés

Kovács József

Témavezető: Dr. Sailer Kornél

DEBRECENI EGYETEM

Természettudományi Doktori Tanács

Fizikai Tudományok Doktori Iskolája

Debrecen, 2017





Ezen értekezést a Debreceni Egyetem Természettudományi Doktori Tanács
Fizikai Tudományok Doktori Iskolájának Részecskefizika programja kereté-
ben készítettem a Debreceni Egyetem természettudományi doktori (PhD)
fokozatának elnyerése céljából. Nyilatkozom arról, hogy a tézisekben leírt
eredmények nem képezik más PhD disszertáció részét.

Debrecen, 2017. 07. 19. ................................................
Kovács József

jelölt

Tanúsítom, hogy Kovács József doktorjelölt 2012-2015 között a fent
megnevezett Doktori Iskola Részecskefizika programjának keretében irányí-
tásommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt
önálló alkotó tevékenységével meghatározóan hozzájárult. Nyilatkozom
továbbá arról, hogy a tézisekben leírt eredmények nem képezik más PhD
disszertáció részét.
Az értekezés elfogadását javasolom.

Debrecen, 2017. 07. 19. ................................................
Dr. Sailer Kornél

témavezető





A FUNKCIONÁLIS RENORMÁLÁSI CSOPORT
NÉHÁNY ALKALMAZÁSA A

KVANTUMELMÉLETBEN

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében
a fizika tudományágban

Írta: Kovács József, okleveles fizikus

Készült a Debreceni Egyetem Fizikai Tudományok Doktori Iskolájának
Részecskefizika programja keretében

Témavezető: Dr. Sailer Kornél

A doktori szigorlati bizottság:

elnök: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tagok: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A doktori szigorlat időpontja: . . . . . . . . . . . .

Az értekezés bírálói:

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A bírálóbizottság:

elnök: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tagok: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Az értekezés védésének időpontja: . . . . . . . . . . . .





Köszönetnyilvánítás

Szeretném köszönetemet kifejezni témavezetőmnek Dr. Sailer Kornél tanár
úrnak, akitől nagyon sokat tanulhattam, bevezetve engem a kvantumtérel-
mélet tudományába és lehetőséget nyújtva számomra a kutatómunkába való
bekapcsolódásra.

Nagyon sok köszönettel tartozom Dr. Nagy Sándor tanár úrnak min-
den részletre kiterjedő segítségéért, irányításáért és folyamatos bátorításáért
továbbá a funkcionális renormálás vonatkozásában átadott ismeretekért.

Szeretnék köszönetet mondani Dr. Nándori Istvánnak a kétdimenziós
kvantum-színdinamikát tárgyaló publikációhoz nyújtott hozzájárulásáért és
további hasznos tanácsaiért.

Köszönetet mondok Dr. Schram Zsoltnak a kézirat nagyon alapos átné-
zését követően nyújtott számos javaslatért.

Az említett személyek mellett Dr. Kruppa Andrástól, Dr. Salamon
Pétertől, Dr. Sohler Dórától és Dr. Trócsányi Zoltántól is kaptam tanácso-
kat az értekezés ill. a tézisfüzet megírása során melyeket szintén szeretnék
megköszönni.

Sok köszönettel tartozok jelenlegi főnökömnek, Dr. Lévai Gézának az ér-
tekezésem elkészítéshez nyújtott támogatásáért. Emellett köszönetet mon-
dok a Debreceni Egyetem és a MTA Atommagkutató Intézet nagyon sok
munkatársának, akiktől az évek folyamán segítséget kaptam, különös tekin-
tettel a doktori iskola tanárainak.

Végül, de nem utolsó sorban köszönetet mondok édesanyámnak és bá-
tyámnak akik végig mellettem álltak és segítettek. Különösen köszönöm a
bátyámnak az értekezés és a tézisfüzet vonatkozásában nyújtott technikai
segítségét.





Alkalmazott rövidítések

CL Caldeira-Leggett
CSS kompakt tartójú folytonosan differenciálható
IR infravörös
LPA lokálispotenciál-közelítés
QED2 kétdimenziós téridőben tekintett kvantum-elektrodinamika
QCD2 kétdimenziós téridőben tekintett kvantum-színdinamika
RG renormálási csoport
SG sine-Gordon
UV ultraibolya
WH Wegner–Houghton





Tartalomjegyzék

1. Bevezetés . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. A funkcionális renormálásicsoport-módszer . . . . . . . . . . 5

2.1. Bevezetés . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. A funkcionális renormálás alapgondolata . . . . . . . 6
2.3. A kvantumtérelmélet és a statisztikus fizika kapcsolata 8
2.4. A Wegner–Houghton-féle renormálási séma . . . . . 13
2.5. Az effektívhatás-szemlélet . . . . . . . . . . . . . . . 17
2.6. A fázisátalakulások vizsgálata . . . . . . . . . . . . . 22
2.7. A kvantumtérelméleti modellek osztályozása a renor-

málás szempontjából . . . . . . . . . . . . . . . . . . 33
3. A renormálási séma optimalizálása a kvantált anharmonikus

oszcillátor esetén . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1. Bevezetés . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2. A kvantált anharmonikus oszcillátor renormálása . . 37
3.3. A renormálási séma optimalizálása . . . . . . . . . . 44

4. A Caldeira–Leggett-modell folytonos spektrumú változatai-
nak vizsgálata . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1. A Caldeira–Leggett-modell . . . . . . . . . . . . . . 53
4.2. A kvantum-klasszikus átmenet . . . . . . . . . . . . 59
4.3. A renormálásicsoport-egyenletek . . . . . . . . . . . 60
4.4. A kritikus exponensek vizsgálata . . . . . . . . . . . 62

5. A sine-Gordon-modell nagyenergiás kiterjesztésének vizsgálata 70
5.1. A sine-Gordon-modell . . . . . . . . . . . . . . . . . 70



5.2. A nagyenergiás kiterjesztés RG vizsgálata . . . . . . 74
5.3. A sine-Gordon-modell fázisszerkezete . . . . . . . . . 76
5.4. A sine-Gordon modell nagyenergiás kiterjesztése . . 81
5.5. A modellben megnyilvánuló dualitás . . . . . . . . . 84

6. A bozonizált kétdimenziós kvantum-színdinamika vizsgálata
a renormálásicsoport-módszerrel . . . . . . . . . . . . . . . . 88
6.1. Alacsonydimenziós modellek . . . . . . . . . . . . . . 88
6.2. A bozonizált QCD2 . . . . . . . . . . . . . . . . . . . 91
6.3. A renormálásicsoport-egyenlet ultraibolya

viselkedése . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4. A renormálásicsoport-egyenlet infravörös

viselkedése . . . . . . . . . . . . . . . . . . . . . . . . 100
7. Összefoglalás . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8. Angol nyelvű összefoglalás (Summary in English) . . . . . . 110

Irodalomjegyzék I



1. fejezet 1

1. Bevezetés

Értekezésem témáját különböző elméleti modellek funkcionális renormálási-
csoport-módszerrel történő vizsgálata képezi. Ennek az elméleti módszer-
nek az alkalmazási köre a fizika több területét felöleli, magába foglalva a
részecskefizikához és a szilártestfizikához tartozó modelleket is. A funkcio-
nális renormálás által elért eredmények közül bizonyára a térelméleti mo-
dellek fázisszerkezetének kutatásában elért sikerek a legismertebbek, melyek
forradalmasították a folytonos fázisátalakulások tanulmányozását. Részben
ezeknek az eredményeknek, részben az eljárás elvi jelentőségének köszönhe-
tően jelenleg is fontos kutatási terület a renormálás több évtizede ismert
eljárásának további fejlesztése és alkalmazásának kiterjesztése.

A funkcionális renormálás jelentőségének értékeléséhez szemléletének
több előnyös tulajdonságát érdemes megemlíteni. Ilyen tulajdonságnak te-
kinthető a nemperturbatív megközelítés, a különböző hullámhosszú gerjesz-
tésekhez tartozó szabadsági fokok elkülönítése és a vizsgált modell kevésbé
lényeges jellemzőit elhanyagoló hatékony közelítések alkalmazása. Ezek a
jellegzetes előnyök a módszert a térelméleti modellek vizsgálatának ígéretes
eszközévé avatják, amelynek alkalmazása nem csupán a fázisátalakulások
leírására korlátozódik.

Az elsőként említett nemperturbatív tárgyalás jelentősen kiterjeszti a
módszer alkalmazási körét. A perturbációszámítás alkalmazása általában
jelentősen korlátozza a vizsgált kölcsönhatás erősségét jellemző paraméter-
nek, azaz a csatolásnak a megválasztását. A funkcionális renormálás ese-
tén nincs ilyen elvi korlát, mivel ez a módszer a perturbatív renormálással
ellentétben nem támaszkodik a csatolás értéke szerinti sorfejtés gyors kon-
vergenciájára.

A funkcionális renormálás egyik legfontosabb sajátossága, hogy a ha-
gyományos tárgyalástól eltérően lehetőséget kínál a szabadsági fokok cso-
portjainak elkülönülten történő kezelésére. A térelméleti szemlélet során
az euklideszi téridő formalizmusát és a Fourier-transzformációt alkalmazva
független szabadsági fokoknak a vizsgált rendszer különböző hullámhosszú
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gerjesztései tekinthetőek, így természetes lehetőség kínálkozik a szabadsági
fokok méretskála szerinti rendezésére. Mindazáltal a különböző hullám-
hosszú gerjesztéseket általában nem különítjük el élesen. A hullámhossz
szerinti rendezés a Fourier-módusok (a ~ = c = 1 egységrendszerben ener-
gia dimenziójú) hullámszáma szerinti fordított irányú rendezésnek felel meg,
így általában energiaskála szerinti csoportosításról beszélünk.

A fizikai rendszerek tanulmányozása során a szabadsági fokok csopor-
tosításának előnye többrétű. Egyrészt a szabadsági fokok fentiek szerinti
elkülönítése nyilvánvalóan fizikai jelentést hordoz, ezért információt veszí-
tenénk, ha a különböző energiával jellemezhető folyamatoknak csupán az
összhatását vennénk figyelembe. Másrészt azáltal, hogy számításaink adott
lépésében csupán adott energiájú gerjesztéseket veszünk figyelembe, lehe-
tőség nyílik az elmélet korlátainak tiszteletben tartására és ezen korlátok
feltárására.

A tárgyalás során a szabadsági fokok ilyen szétválasztása annak remé-
nyével is kecsegtet, hogy a természet strukturált felépítését kihasználva
közelítéseinket hatékonyabbá tehetjük. Ez alatt azt értem, hogy mivel
a természetben a különböző térbeli illetve időbeli kiterjedéssel rendelkező
folyamatok gyakran elkülönülnek egymástól, a vizsgált rendszernél nagy-
ságrendekkel kisebb vagy nagyobb objektumok hatását sokszor érdemes az
adott rendszer modelljének kisebb módosításain keresztül figyelembe ven-
nünk. Például az atommag leírására sikeresen alkalmazhatóak azon effektív
modellek, melyekben eltekintünk a nukleonok belsejében zajló részecskefi-
zikai folyamatok és a magot körülvevő elektronfelhő részletes tárgyalásától.

Mindezek mellett a módszer szemléletének alapvető sajátossága, hogy a
a tanulmányozott elméletet a számítások során egyszerűbb effektív model-
lekre leképezve a vizsgált rendszer leglényegesebb jellemzőinek megragadá-
sára törekszik. Számítási képességeink korlátjainak köszönhetően a fiziká-
ban általános az a törekvés, hogy az adott modellből levonható következte-
téseket a természet pontos leírásából adódó egyenletek nyers erővel történő
megoldása helyett az elhanyagolható részleteket mellőzve határozzuk meg.
Más szavakkal megfogalmazva megpróbálunk az elmélet számunkra érdek-
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telen jellemzőinek kiszámítását elkerülő hidat építeni a bonyolult, valósághű
modell és az alkalmazások során felmerülő egyszerű kérdések között. Ennek
köszönhetően a renormálás alkalmazása indokolt lehet olyan kérdések esetén
is, amelyek más eszközökkel is tárgyalhatóak.

A renormálási csoport gazdag irodalmának ellenére még számos nyitott
kérdés található mind a módszer fejlesztésének, mind a lehetséges alkalma-
zások kiaknázásának területén. Az első csoportba tartozik a renormálási
séma optimalizálásának kérdése, melynek megközelítésére több különböző
út ismert. Bár a különböző sémák elvileg egyenértékűnek tekinthetőek,
a gyakorlatban a kutatások során a rendelkezésre álló erőforrások korlá-
tosságának köszönhetően az optimalizálás hiánya vagy elégtelensége egyik
akadálya lehet a módszerben rejlő lehetőségek maximális kihasználásának.
Kutatásunk során többek között azt a célt tűztük ki, hogy az optimalizálást
egy viszonylag egyszerű modell, a kvantált anharmonikus oszcillátor esetén
tanulmányozzuk, amely modellre vonatkozóan nagy pontosságú irodalmi
adatok állnak rendelkezésre.

A renormálás számos ígéretes alkalmazási területe közül értekezésem-
ben három modellt ismertetek. Elsőként a nyílt kvantummechanikai rend-
szerek vizsgálatában kiemelt szerepet betöltő kvantált Caldeira–Leggett-
modell folytonos spektrumú környezetet leíró változatait tárgyalom. Az
értekezésemben tanulmányozott esetekben a releváns alrendszer környeze-
tére vonatkozó információinkat a modell hőfürdőjének spektrálfüggvényében
foglaljuk össze. A spektrálfüggvény realisztikus megválasztása a spektrum
nagyenergiás levágásának bevezetését igényli, amely szükségessé teszi an-
nak tisztázását, hogy a különböző típusú és értékű levágások alkalmazása
hogyan befolyásolja a modellben megfigyelhető fázisátalakulást. Ekkor a
kritikus exponensek pontos meghatározásán túlmenően a spektrálfüggvény-
ben megjelenő csatolás esetleges nem perturbatív jellege is a funkcionális
renormálás alkalmazására ösztönöz.

További alkalmazást jelent a jelentős érdeklődésre számot tartó sine-
Gordon-modell nagyenergiás kiterjesztésének tanulmányozása. A sine-Gor-
don-modell több különleges tulajdonsága által (topologikus fázisátalakulás,
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periodikus potenciál, integrálhatóság) egyszerűsége ellenére kiemelkedik a
kvantumtérelméleti modellek sorából és új elméleti módszerek kipróbálására
nyújt lehetőséget. A modell nagyenergiás kiterjesztése olyan hatással jel-
lemezhető, melynek kifejezésében a térváltozó magasabb rendű deriváltjai
is megjelennek. Ezért célul tűztük ki olyan renormálásicsoport-egyenletek
levezetését, melyek ilyen nagyenergiás kiterjesztések vizsgálatára nyújtanak
lehetőséget. Az ilyen irányú vizsgálatok az aszimptotikus biztonság kérdésé-
nek teljesebb tárgyalását és a fázisszerkezet mélyebb megismerését kínálják.

Harmadik modellként az egy fermionízzel rendelkező kétdimenziós kvan-
tum-színdinamikát tekintem. Bár az alacsonydimenziós tárgyalás nyilván-
valóan minőségi eltérést jelent a valósághű, négydimenziós elmélethez ké-
pest ezen egyszerűsített modell tanulmányozása mégis egy lépést jelenthet
a rendkívül bonyolult erős kölcsönhatás megértése felé vezető úton. Vizs-
gálataink során a fermionikus elmélet bozonizációja által nyert skaláris mo-
dellből indultunk ki, amely sine-Gordon típusú önkölcsönhatást tartalmaz.
Ez jelentős motivációt jelent arra, hogy a modellt alávessük a periodikus
modellek tanulmányozásában rendkívül hatékonynak bizonyuló renormálási
csoport vizsgálatnak. Az egyik legfontosabb kérdés a lehetséges fázisok meg-
határozása, amely a speciális tömegmátrixú réteges sine-Gordon-modellre
vezető alacsonyenergiás közelítés keretén belül megválaszolható.

Ezeket a különböző kérdésfelvetéseket figyelembe véve doktori érteke-
zésem hét további fejezetre tagolódik. Az elméleti hátteret ismertető feje-
zet után külön fejezetben tárgyalom a kvantált anharmonikus oszcillátor-
nak, a Caldeira–Leggett-modell folytonos spektrumú változatainak, a sine-
Gordon-modell nagyenergiás kiterjesztésének és a kétdimenziós kvantum-
színdinamikának RG-módszerrel történő vizsgálatát, majd a magyar és an-
gol nyelvű összefoglaló fejezetekkel zárom az értekezést.
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2. A funkcionális renormálásicsoport-módszer

2.1. Bevezetés

A funkcionális renormálásicsoport-módszer (angolul renormalization group
method, a továbbiakban RG-módszer) alábbi általános áttekintése közben
nem törekedhettem a teljességre, a célom csupán az, hogy az irodalom-
ban megtalálható eredmények részleges ismertetésével bevezetést nyújtsak
az értekezésemben tanulmányozott kérdésekhez. Az RG-módszer gazdag
szakirodalmából az általános áttekintés vonatkozásában a [1-7] munkákra
hivatkozom. A matematikai formalizmus bemutatása során csupán a tézi-
seim szempontjából releváns skaláris elméleteket tekintem, nem térve ki a
funkcionális renormálás fermionikus elméletekre [8], mértékelméletekre [9] és
kvantumgravitációra [10] történő alkalmazására. A teljesség kedvéért meg-
említem, hogy az RG-módszer által az értekezésemben érintett területek
mellett véges hőmérsékletű kvantumtérelméleti modellek [11] és nemegyen-
súlyi statisztikus fizikai rendszerek [12] is vizsgálhatóak, továbbá a renor-
málásnak a zárt időtengelyes formalizmussal [13-15] történő összekapcsolása
is fontos kutatási terület.

A funkcionális RG-módszerre a szakirodalomban több különböző elne-
vezés is használatos, úgymint nemperturbatív, egzakt ill. differenciális RG.
Ezeknek a jelzőknek a célja a módszernek a csatolások szerinti sorfejtésen
alapuló perturbatív renormálástól történő megkülönböztetése. A további-
akban renormálás alatt mindig a funkcionális RG alkalmazását értem.

A fejezet további részében először áttekintem a funkcionális renormálás
alapgondolatát, majd a statisztikus fizikát a kvantumtérelmélettel összekap-
csoló funkcionális formalizmust. Ezt követően tárgyalom az RG-egyenletek
levezetését mind a Wegner–Houghton-séma szemléletében, mind a Wette-
rich-féle effektívhatás-szemlélet esetén. Végül kitérek a módszernek a fá-
zisátalakulások tanulmányozásában betöltött szerepére és az alkalmazott
megközelítés jelentőségére a kvantumtérelméleti modellalkotás vonatkozá-
sában.
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2.2. A funkcionális renormálás alapgondolata

A funkcionális RG-módszer bevezetése és céljának megjelölése többfélekép-
pen is megtehető [2], így az alább ismertetett megközelítés nem kizárólagos.
Mivel a módszer alkalmazási köre szilárdtestfizikai és részecskefizikai mo-
delleket is felölel, a renormálás bevezetése megtörténhet mind a statisztikus
fizika, mind a kvantumtérelmélet fogalmain keresztül. Az euklideszi kvan-
tumtérelméleti modellek és a folytonos térváltozóval jellemzett statisztikus
fizikai modellek közötti nagyon szoros analógia [16, 17] következtében az
RG-egyenletek levezetése során általában mindegy, hogy melyik esetre gon-
dolunk, noha a képletek fizikai interpretációja a két esetben különböző.

Az RG alapgondolata nagyon hasonló a statisztikus fizikában alkalma-
zott modellalkotáshoz. Általában a statisztikus fizika tárgykörébe tartozó
sok szabadsági fokkal rendelkező rendszerek vizsgálata során olyan model-
leket alkotunk, amelyek nem képesek számot adni minden egyes szabadsági
fokról, viszont meghatározzák az adott fizikai rendszert jellemző legfonto-
sabb mennyiségek értékeit [18]. A rendkívül sok szabadsági fokkal rendel-
kező rendszerek esetén elkerülhetetlenné válik egyes részletek elhanyagolása
a leírás során. Ezért a statisztikus fizika egyik alapvető kérdése, hogy egy
adott fizikai rendszer esetén hogyan alkossunk olyan egyszerűbb modellt,
amely viszonylag pontosan reprodukálja az eredeti bonyolult rendszer leg-
fontosabb tulajdonságait. Ebből a nézőpontból a funkcionális renormálást
olyan műveletnek tekinthetjük, amelynek célja a fizikai valóságot leíró bo-
nyolult modellek egyszerűbb modellekre történő leképezése az eredeti rend-
szernek a vizsgálat szempontjából lényeges tulajdonságait megörző közelí-
téseket alkalmazva.

A renormálás szó arra utal, hogy az új modell bevezetése az eredeti mo-
dell paramétereinek megváltoztatása, „újranormálása” által történik. Az a
követelmény, hogy a renormálással kapott modell csupán a paramétereinek
értékeiben különbözzön az eredeti modelltől valójában nem jelent szigorú
megszorítást. Ha a renormálással kapott modell partíciós függvényének ex-
ponensében (ill. térelméleti modell esetén a generáló funkcionál exponensé-
ben) új tagok jelennek meg, akkor úgy tekinthetjük, hogy ezek a tagok az
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eredeti modell esetén is szerepeltek zérus együtthatóval. A renormálás ál-
tal kapott modellt azért tekinthetjük egyszerűbbnek, mert abban már nem
szerepeltetjük a korábbi modell egyes szabadsági fokait. Az elhanyagolt
szabadsági fokok hatását csupán közelítések alkalmazásával, a renormált
modell megváltoztatott paraméterei által vesszük figyelembe.

Általában a közelítések következtében a szabadsági fokok eltávolítását
több lépésben kell elvégezni [1], azaz egy adott lépésben kapott renormált
modellt újabb renormálási transzformációnak alávetve modellek láncolatát
szükséges végigkövetni. Gyakran differenciálegyenletekkel leírható folytonos
transzformációkat alkalmazunk. Ekkor az egyenleteket numerikusan meg-
oldva az elmélet paraméterterében kirajzolódó görbén haladunk végig, me-
lyet RG-trajektóriának nevezünk. Mindazáltal a számítások általában nem
korlátozódnak egyetlen trajektóriára, mert gyakran szükséges megvizsgálni
a kezdeti modell paramétereinek több lehetséges értékét.

A renormálás nemcsak egyszerűbb modellekre vezet, hanem gyakran el-
vileg teljes értékű módszerként alkalmazható az adott modell vizsgálatára.
Ez annak a következménye, hogy a szabadsági fokok következetes eltávo-
lítása a modellek partíciós függvényében (ill. generáló funkcionáljában) a
mikroállapotokra történő összegzés (ill. a térkonfigurációkra) történő integ-
rálás elvégzésének felel meg, amely által a fizikai rendszert jellemző mennyi-
ségek értéke meghatározható. Emellett bizonyos kérdések (ilyen általában
a fázisátalakulások kimutatása) nem igénylik a trajektóriákat meghatározó
differenciálegyenletek, azaz az RG-egyenletek megoldását, hanem megvála-
szolhatóak a renormálási transzformációnak a dimenziótlanított egyenletek
fixpontjai körül linearizált alakjának vizsgálatával. Ezáltal a módszer fontos
szerepet kap bonyolult modellek kvalitatív viselkedésének feltérképezésében.

A funkcionális renormálás nagyon szemléletessé válik azon gyakori meg-
valósítás során, amikor a fizikai rendszert Fourier-térben tekintjük és a re-
normálás egyes lépéseiben mindig a legkisebb hullámhosszú Fourier-módu-
sokat távolítjuk el. Ekkor eljárásunk olyan képzeletbeli mikroszkóp mű-
ködéséhez hasonlítható [20], amelynek felbontását fokozatosan csökkentjük
azért, hogy láthatóvá váljon a fizikai rendszer makroszkopikus viselkedése.
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A szakirodalomban széleskörűen használt renormálási csoport elnevezés-
sel kapcsolatban érdemes megemlíteni, hogy a történetileg kialakult elneve-
zés bizonyos szempontból félrevezető, ugyanis az alkalmazások során vég-
rehajtott renormálási transzformációk általában nem alkotnak csoportot,
mert nem invertálható leképezést valósítanak meg. Ez azért nyilvánvaló,
mert általában végtelen sok szabadsági fokú rendszereket vizsgálva közelí-
téseket alkalmazva egy adott renormálási lépésben végtelen sok szabadsági
fokot mellőzünk, melyek hatását véges sok paraméter megváltoztatásával
vesszük figyelembe.

2.3. A kvantumtérelmélet és a statisztikus fizika kapcsolata

Az RG-egyenletek levezetése előtt röviden ismertetem a statisztikus fizikát
a kvantumtérelmélettel összekapcsoló funkcionális formalizmust.

Ebben a formalizmusban a kvantumtérelmélet vizsgálata során kulcssze-
repet játszik a generáló funkcionál fogalma, melyet a Minkowski-téridőben
tekintett egy komponensű skaláris térelmélet esetén ~ = c = 1 egységrend-
szert alkalmazva a

Z[J ] =

∫

Dφei
R

γ
dt

R

d3x(L+Jφ) (1)

funkcionális integrállal definiálhatunk [17]. A képletben Dφ jelöli a pályain-
tegrált definiáló, a φ-vel jelölt térkonfigurációkon értelmezett dimenziótlan
integrálási mértéket, L jelöli az elmélet Lagrange-sűrűségét, J jelöli a tér-
változóhoz csatolt külső forrást. A téridő koordináták szerinti integrálás
határait természetesen a vizsgált rendszert magába foglaló téridőbeli tarto-
mány határai szolgáltatják. A γ index arra utal, hogy az időváltozó szerinti
integrálás során az integrálási kontúrt óramutató járása szerinti irányban
infinitezimálisan elforgatjuk a komplex számsíkon.

Érdemes megemlíteni, hogy a fenti formális definíció véges együtthatók-
kal jellemzett Lagrange-sűrűség esetén általában divergáló fizikai mennyisé-
gekhez vezet, ezért a térelméleti modellek szigorú matematikai definiálásá-
hoz az adott elmélet esetén alkalmazott regularizációs eljárásokat is figye-
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lembe kellene venni. Ez a kérdés azonban alapvetően nem érinti a kvantum-
térelmélet és a statisztikus fizika kapcsolatát.

Értekezésem további részében euklideszi téridőben tekintett kvantumtér-
elméleti modelleket vizsgálok. Az euklideszi téridőre történő áttérés annak
felel meg, hogy az időváltozó szerinti integrálás kontúrját a komplex síkon
az imaginárius tengelyre forgatjuk el az óramutató járása szerint végzett
forgatás által. Ha az értelmezési tartományt az egyszerűbb tárgyalás céljá-
ból a teljes téridőre kiterjesztjük, az euklideszi téridőben tekintett elméletet
a

ZE[J ] =

∫

Dφei
R −i∞
i∞ dt

R

d3x(L+Jφ) (2)

generáló funkcionál által definiálhatjuk.
A τ = it változó bevezetésével az

∫ −i∞
i∞ dt →

∫∞
−∞(−i)dτ helyettesítéses

integrálást alkalmazva

ZE[J ] =

∫

Dφei
R ∞
−∞(−i)dτ

R

d3x(L(~x,t(τ))+J(~x,t(τ))φ(~x,t(τ))), (3)

így az
∫

d4xE =
∫∞
−∞ dτ

∫

d3x és LE(~x, τ) = −L(~x, t(τ)) jelöléseket beve-
zetve a

ZE[J ] =

∫

Dφe−
R

d4xE(LE−Jφ) =

∫

Dφe−SE+
R

Jφd4xE (4)

alakot [17] nyerjük, ahol SE =
∫

LEd4xE az euklideszi hatás. Az irodalom-
ban [17] szokásos módon a Minkowski-térbeli Lagrange-sűrűséget

L =
1

2
(∂tφ)2 − 1

2
(∇φ)2 − V (φ) (5)

alakúnak tekintjük. A τ változó definíciójából következően ∂t = i∂τ , azaz
(∂tφ)2 = −(∂τφ)2, így az euklideszi Lagrange-sűrűség az

LE = −L =
1

2
(∂τφ)2 +

1

2
(∇φ)2 + V (φ) ≡ 1

2
(∂Eφ)2 + V (φ) (6)
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formában írható. A továbbiakban az egyszerűség kedvéért ha az ellenkező-
jét nem említem mindig feltételezem a potenciál Z2-szimmetriáját, azaz a
V (φ) = V (−φ) feltétel teljesülését.

Célszerű definiálni az összefüggő Feynman-gráfok generáló funkcionálját,
a

W [J ] = lnZE[J ] (7)

funkcionált, és ennek Legendre-transzformáltját, az effektív hatásnak vagy
átlagos effektív hatásnak nevezett

Γ[ϕ] =

∫

Jϕd4xE −W [J ] (8)

funkcionált [21]. A Legendre-transzformációból következően a (8) egyenlet-
ben szereplő J függvényt a ϕ függvény határozza meg a ϕ = δW [J ]

δJ egyenlet
által. Az effektív hatás hatékonyan foglalja össze a modell legfontosabb
jellemzőit. Az effektív hatás triviálistól eltérő minimuma az elméletben
fellépő spontán szimmetriasértésre mutat, második deriváltjának zérushe-
lyei meghatározzák a részecske tömegét, továbbá a Γ[ϕ] funkcionál által
generált egyrészecske-irreducibilis Feynman-gráfok a Lehmann-Symanzik-
Zimmermann redukciós formulának [17] köszönhetően meghatározzák a szó-
rási kísérletek eredményét leíró S-mátrix elemeit.

Az euklideszi kvantumtérelmélet generáló funkcionáljának a (4) egyen-
letben felírt alakja analógiát mutat a paramágneses-ferromágneses fázisát-
alakulás tanulmányozására bevezetett modellek partíciós függvényével. A
mágnese rendszereket leíró modellek közül talán a legismertebb az Ising-
modell [19]. A modell szerint a rendszer mikroállapota a diszkrét rács-
pontokban definiált spinnek nevezett változó értekeivel írható le, melynek
értéke kétféle lehet, 1 ill. -1. Ez annak felel meg, hogy egy adott rácspont
spinje kétféle irányban állhat, a külső mágneses tér irányával megegyezően
ill. azzal ellentétesen.

A szomszédos rácspontok kölcsönhatnak egymással oly módon, hogy a
kölcsönhatás a spinek irányát azonossá igyekszik állítani. Ennek megfelelően
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egy adott s spinkonfiguráció által megvalósított mikroállapot energiája az

Es =
∑

<i,j>

Jsisj −
∑

i

siB (9)

kifejezéssel jellemezhető, ahol si a i. rácspont spinje, J < 0 a szomszédos
spinek közötti kölcsönhatás erősségét meghatározó paraméter, a B paramé-
ter a külső mágneses tér erősségét jellemzi.

∑

<i,j>
a szomszédos rácspontokra

történő összegzést jelöli, amely során adott pontpárt csak egyszer veszünk
figyelembe.

Kanonikus eloszlást feltételezve T hőmérsékletű rendszer esetén a mo-
dellt jellemző makroszkopikus mennyiségek várható értéke a

Z =
∑

s

e−βEs (10)

partíciós függvény által számítható ki , ahol β = 1
kT , k a Boltzmann-állandó

és az összegzés az összes lehetséges1 spinkonfigurációra kiterjed. A modell
vizsgálata során azért, hogy a számított mennyiségek értéke ne függjön a
rácspontok N számától, gyakran célszerű az intenzív mennyiségek vonat-
kozásában az N → ∞ ún. termodinamikai határeset képzése, melyet a
rácspontok számának és a rendszer térfogatának hányadosát rögzítve való-
sítunk meg.

A modell általánosítható azon esetre, amikor a térváltozónak nevezett,
φ-vel jelölt „spinváltozó” folytonos függvénye a térkoordinátának és tetsző-
leges értéket felvehet. Az általánosítás során megengedjük, hogy a külső
mágneses tér a koordináta tetszőleges függvénye legyen és megengedjük,
hogy az adott térkonfiguráció energiája függjön a térváltozó deriváltjától.
Az általánosítás során bevezetjük továbbá az α paramétert. Így d térdi-
menzióban a

Z =

∫

Dφe−
R

ddxH (11)

1Az összegzésből ki kell zárni azokat a térkonfigurációkat, amelyek bár energetikailag
kedvezőek, viszont a rendszer vizsgálatának ideje alatt nem valósulhatnak meg. Ilyen
eset léphet fel például spontán szimmetriasértés vagy több fázis létezése esetén [19].
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partíciós függvénnyel definiált modellt kaphatjuk2, ahol

H(~x) = H0(~x) − βB(~x)φ(~x), (12)

H0 =
1

2
α(∇φ)2 + V (φ). (13)

A folytonos esetre történő általánosítás során a funkcionális integrál a
térkonfigurációkra történő összegzés általánosítását valósítja meg. A végte-
len térfogatnak megfelelő határeset képzését (a diszkrét esethez hasonlóan)
természetesen a partíciós függvény helyett a várható értékekre kapott kife-
jezésekben kell elvégezni. A V (φ) függvény

V (φ) =
1

2
µ2φ2 +

1

4!
λφ4 (14)

módon történő megválasztása esetén az úgynevezett Landau–Ginzburg-mo-
dellt [19] kapjuk.

Az LE ↔ H0, J ↔ βB megfeleltetés esetén a partíciós függvény (11)
képlete és a generáló funkcionál (4) képlete formailag megegyezik, így a d
dimenziós euklideszi téridőben tekintett kvantumtérelmélet d dimenziós tér-
ben tekintett statisztikus fizikai rendszernek feleltethető meg. Több kom-
ponensű térváltozót tartalmazó térelméleti modellnek természetesen több
komponensű spinváltozót tartalmazó statisztikus fizikai modell felel meg.
Teljessé téve az analógiát a W [J ] funkcionál a Helmholtz-féle szabadener-
giával, a Γ[ϕ] funkcionál a Gibbs-féle szabadenergiával (azaz a szabadental-
piával) állítható párhuzamba.

A fenti formalizmus segítségével a kvantummechanikai modellek is ha-
sonló módon vizsgálhatóak, ekkor a Lagrange-sűrűség szerepét a klasszikus
elmélet Lagrange-függvénye, a térmennyiség szerepét a pályát meghatározó
koordináta-idő függvény veszi át [20, 22]. Ekkor több térdimenzióban te-
kintett kvantummechanikai rendszernek több komponensű térmennyiséget
tartalmazó egydimenziós statisztikus fizikai rendszer feleltethető meg.

2Az itt alkalmazott jelölés során a β tényezőt H-ba olvasztjuk, ezért itt H nem az
energiasűrűséget jelöli.
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2.4. A Wegner–Houghton-féle renormálási séma

A térelméleti modellek esetén a funkcionális renormálás megvalósításának
legalább két fontosabb megközelítését különböztethetjük meg [1]: a Wilson–
Polchinski-féle szemléletet [23-25] és az ún. effektívhatás-formalizmust,
amely a Wetterich-egyenletre vezet [5, 26]. A matematikai formalizmus
tárgyalás során nem ismertetem részletesen a levezetéseket, csupán a leg-
fontosabb összefüggések kiemelésére törekszek, mivel a célom csupán az,
hogy bevezetést nyújtsak a később tárgyalt kutatási kérdésekhez.

A Wilson–Polchinski-féle szemléletet vonatkozásában csupán a munkám
szempontjából releváns Wegner–Houghton-féle renormálási séma (a további-
akban WH-séma) ismertetésére szorítkozom. Ebben a renormálási sémában
[23] a modell szabadsági fokainak fokozatos eltávolítását a nagyenergiájú
Fourier-módusoktól az alacsony energiájú módusok felé haladva végezzük
el. Az euklideszi téridőben tekintett φ(~xE) térváltozót a

φ(~xE) =

∫

1

(2π)d
ei~pE~xE φ̃(~pE)ddpE (15)

módon fejezhetjük ki a tér Fourier-módusai segítségével, az általánosság
céljából nem rögzítve a téridő d-vel jelölt dimenzióját. A továbbiakban
az egyszerűség kedvéért általában elhagyom az euklideszi téridőre utaló E
indexeket és alkalmazom a tömörebb x = ~x, p = ~p,

∫

x f(x) =
∫

f(x)ddx,
∫

p f(p) =
∫

1
(2π)d f(p)ddp jelöléseket.

A WH-egyenlet alábbi levezetése során az euklideszi generáló funkcio-
nálnak a

Zd =

∫

Dφ̃e−S[φ̃]+
R

x
Jφ (16)

alakjából indulunk ki, amelyben a pályaintegrált a φ̃ Fourier-módusok te-
rében végezzük el.

A d index arra utal, hogy a (16) képletbe klasszikus elméletek hatását
behelyettesítve általában egyes fizikai mennyiségek értékére divergáló ered-
mények adódnak, így az elmélet módosítása válik szükségessé. Ennek vég-
rehajtására, azaz a regularizált elmélet bevezetésére több lehetőség van. A
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WH-séma esetén a nagyenergiás, azaz ultraibolya (továbbiakban UV) mó-
dusok által okozott divergenciák elkerülését az integrálási tartomány mó-
dosításával végezzük el. Ekkor a pályaintegrált csupán azokra a Fourier-
módusokra írjuk elő, amelyekre φ̃ ∈ FΛ, ahol FΛ azon φ̃(~p) függvények
terét jelöli, amelyek csupán a |~p| ≤ Λ intervallumban különböznek nullától.
Az önkényesen bevezetett Λ paraméterre általában UV-levágásként hivat-
kozunk.

A generáló funkcionál így módosított képletét a továbbiakban a

Z =

∫

DΛφ̃e−SΛ[φ̃]+
R

x
Jφ (17)

módon jelölöm.
A statisztikus fizikai modellek esetén a Λ paraméter fizikai jelentése

annak feleltethető meg, hogy mivel a rács atomjainak távolsága nem le-
het tetszőlegesen kicsiny, ezáltal a Fourier-módusok energiája nem lehet
tetszőlegesen nagy. A kvantumtérelméleti modellek esetén a Λ paraméter
olyan energiaértéknek feleltethető meg, amelynél már nem alkalmazható
az alacsonyenergiás viselkedést leíró modell. Ilyen esetre szolgáltat példát
a Planck-tömegnek megfelelő energiaérték [17], mivel ilyen energiájú fo-
lyamatok leírása során a gravitációs kölcsönhatást figyelmen kívül hagyó
modellek várhatóan érvényüket vesztik. Fontos hangsúlyozni, hogy mind a
kvantumtérelméleti, mind a statisztikus fizikai modellek esetén általában az
elmélet alacsonyenergiás viselkedését vizsgáljuk, amelyet nem befolyásol Λ

értékének önkényesnek tűnő megválasztása.
A WH-egyenlet levezetése során az egyszerűség kedvéért feltételezzük,

hogy a külső forrás nagy frekvenciájú Fourier-módusainak értéke zérus, így
a forrás jelenléte nem befolyásolja a nagy energiájú módusokra történő in-
tegrálás elvégzését. A funkcionális renormálás szemléletét alkalmazva a ha-
tás funkcionálját a továbbiakban a k-val jelölt energiaskála függvényének
tekintjük oly módon, hogy a

Z =

∫

DΛφ̃e−SΛ[φ̃]+
R

x
Jφ =

∫

Dkφ̃e−Sk [φ̃]+
R

x
Jφ (18)
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egyenlet teljesüljön, ahol
∫

Dkφ̃ a pályaintegrálnak a φ̃ ∈ Fk módusokra tör-
ténő korlátozását jelöli, ahol Fk azon φ̃(~p) függvények terét jelöli, amelyek
csupán a |~p| ≤ k intervallumban különböznek nullától. A szokásos jelölés
során a k index az egyes mennyiségeknek az energiaskálától történő függését
hangsúlyozza. Az energiaskálától függő hatás bevezetésével olyan modellt
definiálunk, amely nem tartalmazza a k-nál nagyobb energiájú Fourier-
módusokat, ezáltal az RG programját megvalósítva csökkentjük a modell
szabadsági fokait.

A WH-egyenlet alábbiakban ismertetett levezetése megtalálható például
a [2] munkában. Ennek során a

Z =

∫

Dkφ̃e−Sk[φ̃]+
R

x
Jφ =

∫

Dk−∆kφ̃e−Sk−∆k[φ̃]+
R

x
Jφ (19)

egyenlettel definiálva az Sk−∆k funkcionált, majd a φ̃ = φ̃′+φ̃′′, φ̃′ ∈ Fk−∆k,
φ̃′′ ∈ Fk \ Fk−∆k módon szétválasztva a különböző energiájú módusokat a

Z =

∫

Dφ̃′
∫

Dφ̃′′e−Sk[φ̃′+φ̃′′]+
R

x
Jφ =

∫

Dφ̃′e−Sk−∆k[φ̃′]+
R

x
Jφ, (20)

azaz

e−Sk−∆k[φ̃′] =

∫

Dφ̃′′e−Sk [φ̃′+φ̃′′] (21)

egyenletet írhatjuk fel. Az Sk-ra funkcionálra vonatkozó differenciálegyen-
let, azaz a ∆k → 0 határeset levezetéséhez az Sk[φ̃

′ + φ̃′′] funkcionált úgy
közelítjük, hogy annak φ̃′′ szerinti, φ̃′′ azonosan zérus helyen tekintett sor-
fejtését a kvadratikus tagig bezárólag vesszük figyelembe. Ezt a

Sk[φ̃
′ + φ̃′′] ≈ Sk[φ̃

′] +
∫

dp
δSk[φ̃

′ + φ̃′′]

δφ̃′′(p)

∣

∣

∣

∣

φ̃′′=0

φ̃′′(p)

+
1

2

∫

dp1

∫

dp2
δ2Sk[φ̃

′ + φ̃′′]

δφ̃′′(p1)δφ̃′′(p2)

∣

∣

∣

∣

φ̃′′=0

φ̃′′(p1)φ̃
′′(p2)

(22)
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közelítést alkalmazva a (21) egyenlet δ2Sk[φ̃]

δφ̃′′δφ̃′′ > 0 esetén gaussi funkcionális

integrálra vezet, amelyet elvégezve az

Sk[φ̃] − Sk−∆k[φ̃] =

∫

dp1

∫

dp2
1

2

δSk[φ̃]

δφ̃′′(p1)

(

δ2Sk[φ̃]

δφ̃′′(p1)δφ̃′′(p2)

)−1 δSk[φ̃]

δφ̃′′(p2)

− 1

2
Tr ln

δ2Sk[φ̃]

δφ̃′′δφ̃′′
(23)

egyenletet vezethetjük le, ahol a traceképzés alatt a funkcionális derivált
változóit azonossá téve az impulzus térben a k − ∆k ≤ |~p| ≤ k gömbhé-
jon végzett integrálást értjük3. A levezetett egyenletre Wegner–Houghton-
egyenletként hivatkoznak az irodalomban [2].

Ahhoz, hogy a sorfejtéssel kapott egyenlet egzakttá váljon természetesen
szükséges a ∆k → 0 határeset képzése, ekkor a hatásfunkcionálra vonatkozó
differenciálegyenletet kapunk, melynek kezdeti feltételét a hatásnak a k = Λ

helyen felvett értéke határozza meg. Mivel az alkalmazások során általában
δSk [φ̃′+φ̃′′]

δφ̃′′(p)

∣

∣

∣

∣

φ̃′′=0

= 0, azaz a nyeregpont triviális, ezért a továbbiakban az

általánosabb esetben fellépő nehézségeket [2] elkerülve a sorfejtés lineáris
részéből származó tagot elhagyom.

Az úgynevezett lokálispotenciál-közelítés (az angolul local potential app-
roximation, a továbbiakban LPA) által lehetőség nyílik arra, hogy a hatás-
funkcionálra vonatkozó differenciálegyenlet helyett a V potenciál függvé-
nyére vonatkozó differenciálegyenlettel dolgozzunk.

LPA esetén feltételezzük, hogy az energiaskálától függő hatás az

Sk[φ(x)] =

∫

x

1

2
Z(∂Eφ(x))2 + Vk(φ(x)) (24)

alakban írható fel és a Z együttható nem függ k értékétől. Általában a Vk

potenciál φ szerinti sorfejtésének konstans tagjának értéke nem befolyásolja
a modell vizsgált tulajdonságait, ezért értéke szabadon megválasztható.

3Az irodalmat követve nem jelölöm külön a logaritmus és a trace képzése során az
egyenlet dimenziótlanításáért felelős tényezőket.
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Ekkor a Z = 1 esetet tekintve a (23) egyenletből a konstans φ térkonfi-
gurációra vonatkozóan a ∆k → 0 határeset képzését követően a

k
∂

∂k
Vk(φ) = − Ωdk

d

2(2π)d
ln

(

k2 + V ′′
k (φ)

k2

)

(25)

egyenlet [20] vezethető le. Az irodalomban szokásos jelölést alkalmazva
a vessző a térváltozó szerinti deriválást jelöli és Ωd a d dimenziós gömbi
koordináta-rendszerben elvégzett impulzusintegrálnak a térszögre történő
integrálásból származó járulékát jelöli, amely az

Ωd =
2π

d
2

Γ(d
2)

(26)

módon fejezhető ki az Euler-féle Γ-függvény segítségével. A (25) egyen-
letben a logaritmus argumentumának nevezőjét az egyszerűségre törekedve
választottuk meg. A térváltozótól független nevező valójában többfélekép-
pen megválasztható a potenciál konstans tagjának megválasztását követve.

Az ismertetett WH-sémának történelmi jelentősége és technikai egysze-
rűsége ellenére jelentős hátránya, hogy ebben a renormálási sémában az
LPA túllépése nehézségekbe ütközik [2].

2.5. Az effektívhatás-szemlélet

Az RG-egyenletek levezetésének másik lehetséges megközelítése, az effektív-
hatás-szemlélet [5, 26] lehetőséget nyújt az LPA túllépésére. Ebben a meg-
közelítésben a Wetterich-egyenletnek nevezett funkcionális differenciálegyen-
letet vezethetjük le, amelynek segítségével az elméletet definiáló hatásfunk-
cionálból mint kezdeti feltételből kiindulva meghatározhatjuk az effektív
hatást. Az egyenlet alább ismertetett levezetése megtalálható az [1] mun-
kában.

A továbbiakban a jelölés egyszerűsítése céljából elhagyom a Fourier-
transzformáltak ∼-vel történő jelölését és az impulzustérre történő áttérést
csupán a függvény argumentuma által jelölöm f(p) =

∫

x e−ipxf(x) illetve



18 2. fejezet

f(p, q) =
∫

x

∫

y e−ipxe−iqyf(x, y) módon. Bevezetem továbbá az f · g =
∫

x f(x)g(x) =
∫

p f(−p)g(p) és f · M · g =
∫

x

∫

y f(x) M(x, y) g(y) =
∫

p

∫

q f(−p)M(p, q)g(−q) jelöléseket.
A Wetterich-féle megközelítésben fontos szerepet játszik az ún. regulátor

funkcionál, melyet az

Rk[φ(p)] =
1

2

∫

p
φ(p)Rk(p)φ(−p) (27)

módon az Rk(p) regulátor függvény által definiálunk. A WH-sémához ha-
sonlóan a k változóra szokásos a skála elnevezés használata. A számítások
során a k-tól és p-től függő regulátor függvényt bizonyos általános felté-
telek kielégítése mellett szabadon választhatjuk meg és eszerint különböző
renormálási sémákról beszélhetünk.

A regulátor függvénytől a következő tulajdonságok teljesítését követeljük
meg:

1. Rk(p) p-nek páros függvénye.
2. k 6= 0 esetén lim

p→0
Rk(p) > 0.

3. lim
k→0

Rk(p) = 0 a p impulzus bármely értéke esetén.

4. p kis értékei esetén RΛ(p) ≈ Λ2 vagy RΛ(p) → ∞.
Koordinátatérben a regulátort az

Rk[φx] = −1

2

∫

x

∫

y
φ(x)Rk(x− y)φ(y) (28)

egyenlettel definiálhatjuk. Bizonyos esetekben kényelmes az

Rk(p1, p2) = (2π)dδd(p1 + p2)Rk(p1) (29)

és

Rk(x, y) = Rk(x− y) (30)

módon bevezetett több változót tartalmazó regulátor függvények alkalma-
zása.
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Az effektív hatásra vonatkozó funkcionális egyenlet levezetése során a
k-tól függő regulátoron keresztül a modellek egyparaméteres seregét defini-
áljuk, a

Zk =

∫

Dφe−SΛ[φ]−Rk[φ]+J ·φ (31)

generáló funkcionál által. A Λ index arra utal, hogy a modellt definiáló SΛ

funkcionál értékét a nagy energiájú φ(p) /∈ FΛ módusok esetén zérusnak vá-
lasztjuk az esetleges UV-divergenciák elkerülése érdekében. Ezt figyelembe
véve a pályaintegrált és a regulátor funkcionál értelmezési tartományát a
Fourier-módusok teljes terére kiterjesztjük. Az eredeti regulátort nem tar-
talmazó modellnek a k → 0 határeset felel meg.

Mindegyik modell esetén definiáljuk a Wk[J ] = lnZk[J ] funkcionált és
ennek Legendre-transzformáltját a Γ′

k[ϕ] funkcionált, továbbá a

Γk[ϕ] = Γ′
k[ϕ] −Rk[ϕ] (32)

funkcionált. Megemlítem, hogy a szakirodalomban elterjedt jelölés kissé
félrevezető, ugyanis a Γk[ϕ] funkcionál csak a k → 0 határesetben azonos
az effektív hatással.

Az irodalomban [1] részletesebben ismertetett levezetést során a (31)
egyenletből kiindulva ∂kZk-ra a

∂kZk[J ] =

(

− 1

2

∫

x,y
∂kRk(x− y)

δ

δJx

δ

δJy

)

eWk [J ] (33)

egyenletet, ∂kWk-ra a

∂kWk[J ] = −1

2

∫

x,y
∂kRk(x− y)

(

δ2Wk

δJxδJy
+
δWk

δJx

δWk

δJy

)

(34)

egyenletet, ∂kΓk-ra

∂kΓk[ϕ] =
1

2

∫

x,y
∂kRk(x− y)

δ2Wk

δJxδJy
(35)
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egyenletet írják fel. A következő lépés a ∂kΓk-ra vonatkozó egyenlet jobb
oldalának kifejezése Γk segítségével. Ezáltal a

∂kΓk[ϕ] =
1

2

∫

x,y
∂kRk(x− y)

(

Γ
(2)
k +Rk

)−1
(x, y) (36)

egyenlet vezethető le, ahol Γ
(2)
k a Γk funkcionál ϕ szerinti másodrendű funk-

cionális deriváltját jelöli és az invertálást operátorra vonatkozóan kell értel-
mezni az

∫

y f(x, y)f−1(y, z) = δ(x−z) módon. Ennek felhasználása céljából
az egyenletet olyan tartományban értelmezzük, melyben az operátor inverze
létezik.

Az egyenlet a Fourier-térben bevezetett mennyiségek segítségével a

∂kΓk[ϕ] =
1

2

∫

p
∂kRk(p)

(

Γ
(2)
k +Rk

)−1
(p,−p) (37)

alakban írható fel, amely egyenletben a Γ(2) a Fourier-térbeli Γ(2)(p, q) =
∫

x,y e−i(px+qy)Γ(2)(x, y) függvényt jelöli. A Γk funkcionálra levezetett (37)
funkcionális differenciálegyenlet [26] Wetterich-egyenlet néven ismert az iro-
dalomban.

Érdemes hangsúlyozni, hogy bár az egyenletben megjelenik a regulátor
függvény, a funkcionális egyenletnek a különböző regulátort alkalmazó re-
normálási sémák esetén kapott megoldása a k → 0 határesetben azonos
[27].

Az egyenlet alkalmazásához a ΓΛ kezdeti feltétel meghatározása szüksé-
ges. Ez a probléma úgy oldható meg, hogy kellően nagy Λ érték esetén ΓΛ

SΛ-val megegyezőnek tekinthető [1]. Ez azért teljesül, mert a

e−Γk [ϕ] =

∫

Dφe
−SΛ[φ]+

R

x

δΓk
δϕ(x)

(φ(x)−ϕ(x))− 1
2

R

x,y
(φ(x)−ϕ(x))Rk(x−y)(φ(y)−ϕ(y))

(38)
egyenletben a k → Λ határesetben a regulátor függvénytől megkövetelt 4.
tulajdonság következtében az integrálhoz csupán a ϕ-hez közeli φ térkon-
figurációk adhatnak jelentős járulékot [1]. Ekkor viszont a pályaintegrál a



2. fejezet 21

normálási tényezőtől eltekintve az integrandus φ = ϕ helyen felvett értéké-
vel közelíthető, amelyből ΓΛ[ϕ] ≈ SΛ[φ] következik.

Az alkalmazott módon az effektív hatás kiszámítása a (37) funkcionális
differenciál egyenlet megoldására vezethető vissza elkerülve a pályaintegrált
tartalmazó képlet alkalmazását. Az egyenletben szereplő Γk fizikai jelenté-
sét tekintve az effektív hatásnak a k-nál nagyobb frekvenciájú módusoktól
származó járulékával hozható kapcsolatba [1], bár a Wetterich-féle szemlélet
esetén a WH-sémával ellentétben a különböző energiájú módusok járuléka
nem különül el élesen. Érdemes továbbá megemlíteni, hogy a szemlélet-
beli különbségek ellenére a WH-sémában kapott egyes eredmények bizonyos
esetekben reprodukálhatóak a Wetterich-egyenlettel speciális regulátort al-
kalmazva [5, 28], ezért a Wetterich-egyenlet általánosabbnak tekinthető.

A térelméleti modellek kvantitatív vizsgálata általában csupán közelí-
tések alkalmazásával végezhető el. Ezáltal lehetővé válik, hogy az effektív
hatásra kapott eredményt a funkcionálra vonatkozó (37) egyenlet helyett
függvényekre vonatkozó differenciálegyenletek megoldása által határozzuk
meg. A közelítések egyik ára, hogy az eredmények bizonyos mértékben füg-
geni fognak a regulátor megválasztásától.

LPA esetén a Γk funkcionál alakjára a

Γk[ϕ(x)] =

∫

x

1

2
Z(∂Eϕ(x))2 + Vk(ϕ(x)) (39)

feltételezést rójuk ki, ahol a Z hullámfüggvény-renormálás a k skálától és a
térváltozótól független. A Z = 1 esetben a homogén, azaz térben állandó ϕ
térkonfiguráció esetén a potenciálra vonatkozó

∂kVk =
1

2

∫

p

∂kRk(p)

p2 +Rk(p) + V ′′
k

(40)

egyenlet vezethető le [1], ahol a vessző a ϕ szerinti deriváltat jelöli. Az
effektív hatás az egyenlet megoldásának k → 0 határesete által határozható
meg.

Az LPA-n túlmutató közelítésre a hullámfüggvény-renormálás skálafüg-
gésének és térváltozófüggésének figyelembevétele nyújt lehetőséget. A Γk
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funkcionál alakjára a

Γk[ϕ] =

∫

x

(

Vk(ϕ) +
1

2
Zk(ϕ)(∂Eϕ)2

)

(41)

feltételt kiróva a Wetterich-egyenletből a Vk potenciálra a

k∂kVk =
1

2

∫

p

k∂kRk

Zkp2 +Rk + V ′′
k

(42)

a Zk hullámfüggvény-renormálásra a

k∂kZk =
1

2

∫

p
k∂kRk(p)

[

− Z ′′
k

(p2Zk +Rk + V ′′
k )2

+
2
dZ

′2
kp

2 + 4Z ′
k(Z

′
kp

2 + V ′′′
k )

(p2Zk +Rk + V ′′
k )3

−2
(Z ′

kp
2 + V ′′′

k )2(Zk + ∂p2Rk + 2
dp

2∂2
p2Rk)

(p2Zk +Rk + V ′′
k )4

−2
4
dZ

′
kp

2(Z ′
kp

2 + V ′′′
k )(Zk + ∂p2Rk)

(p2Zk +Rk + V ′′
k )4

+
8
dp

2(Z ′
kp

2 + V ′′′
k )2(Zk + ∂p2Rk)

2

(p2Zk +Rk + V ′′
k )5

]

(43)

egyenlet [3] vezethető le, ahol a vessző a térváltozó szerinti deriválást je-
löli. Az LPA legegyszerűbb túllépésére, a Zk hullámfüggvény-renormálást
térváltozótól függetlennek tekintő közelítésre LPA’ néven hivatkoznak az
irodalomban [1].

Az ismertetett közelítő eljárásra, amely a Γ funkcionálra kirótt feltevés-
ben ∂Eϕ magasabb rendű hatványait figyelembe véve fejleszthető gradiens
ill. derivált sorfejtés néven hivatkoznak az irodalomban [1, 2, 29].

2.6. A fázisátalakulások vizsgálata

Bizonyos kérdések az ismertetett differenciálegyenletek k → 0 határesetben
tekintett megoldásának meghatározása nélkül, pusztán az RG-egyenletek vi-
selkedésének tanulmányozása által megválaszolhatóak. A fázisátalakulások
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tanulmányozása olyan alkalmazási terület, amely a fázishatárok és a kriti-
kus exponensek kiszámításán keresztül lehetőséget nyújt arra, hogy ilyen
módon kvantitatív információkat nyerjünk a vizsgált modellről.

Az egyensúlyban lévő termodinamikai rendszerek lényeges tulajdonságai
általában a szabadenergia ill. a szabadentalpia függvényéből kiolvashatóak,
ezért elméleti szempontból a statisztikus fizikai modellek egyes fázisainak
megkülönböztetése gyakran a vizsgált termodinamikai potenciál4 viselke-
dése szerint történik. Eszerint az egyes fázisok a termodinamikai potenciál
analitikus tartományainak feleltethetőek meg [30] és a fázisok közötti minő-
ségi különbséget a tartományok határán tapasztalt nem analitikus viselke-
dés jelzi5. Aszerint, hogy a termodinamikai potenciál elsőrendű deriváltja
folytonos-e a fázisátalakulási pontban6 megkülönböztethetünk elsőrendű és
folytonos fázisátalakulásokat, amely csoportosítás tulajdonképpen megfelel
a látens hő megjelenése szerinti osztályozásnak [19, 20]. A továbbiakban az
egyszerűség céljából a folytonos fázisátalakulások tárgyalására szorítkozom.

A fentebb említett ferromágneses-paramágneses átalakulást leíró mo-
dellek mellett nagyon sok fizikai rendszerben találkozhatunk folytonos fázis-
átalakulással, amelyre példát szolgáltat a kritikus pontban bekövetkező
folyékony-légnemű halmazállapot-változás, a megfelelő összetételű kétkom-
ponensű folyadékok hűtése során a poláris és az apoláris összetevő elkü-
lönülése, a folyékony hélium hűtése során a szuperfolyékony kondenzátum
megjelenése továbbá egyes szupravezető anyagok esetén külső mágneses tér
hiányában a szupravezető állapot kialakulása [19].

További példát szolgáltat a folytonos fázisátalakulásokra a kétdimen-
ziós XY-spin-modell [19] megfelelő közelítésében és a későbbiekben tárgya-

4Az egyszerűbb szóhasználat kedvéért nem jelzem külön, hogy a végtelen térfogatú
határesetben a térfogattal arányos termodinamikai potenciál helyett annak egységnyi
térfogatra eső értékét, azaz a potenciálsűrűséget kell tekinteni.

5Bizonyos esetekben (pl. folyékony-légnemű fázis) a fizikai rendszer az egyik fázisból
a másikba fázisátalakulás nélkül is átvihető, ezért a fázisok ilyen megkülönböztetése nem
minden szempontból egyértelmű [30].

6A továbbiakban feltételezem, hogy a termodinamikai határeset képzése által a fázis-
átalakulás a kontrollparaméter infinitezimális tartományára korlátozható, azaz elhanya-
golom az ún. véges méret effektust ld. [30] 2.3.3 alfejezete.
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landó sine-Gordon-modellben megjelenő [32-34] Kosterlitz–Thouless (vagy
Berezinskii–Kosterlitz–Thouless [31]) fázisátalakulásnak nevezett topologi-
kus fázisátalakulás.

Ekkor az XY-spin-modell esetén az alacsony hőmérsékletű fázisnak vor-
tex-antivortex7 párokat tartalmazó spinkonfiguráció felel meg, míg a ma-
gas hőmérsékletű fázisban ezen párok felbomlanak [35]. Ekkor az ala-
csonyhőmérsékletű fázist nem jellemzi hosszútávú térbeli rendezettség csu-
pán rövidtávú, ún. topologikus rendezettség figyelhető meg [36]. A fázisát-
alakulás egyik különlegessége, hogy végtelen rendű, azaz a fázisátalakulási
pontban a szabadenergia folytonosan differenciálható [35].

Gyakran vizsgálunk olyan modelleket amelyben spontán szimmetriasér-
tés léphet fel mivel a fizikai rendszer alapállapota nem feltétlenül invariáns a
modellt definiáló Hamilton-függvény ill. Hamilton-operátor szimmetriájával
szemben. Erre az egyik legegyszerűbb példa a ferromágneses anyagok azon
állapota, melyben a mágnesezettség egy térbeli irányt kitüntetve spontán
módon megsérti a rendszer forgásszimmetriáját. Ezen szempontból megkü-
lönböztethetjük a rendszer szimmetrikus és szimmetriasértett fázisát. A
kvantitatív leírás érdekében célszerű bevezetni a rendparamétert, amelynek
értéke a szimmetrikus (rendezetlen) fázisban nulla, míg a szimmetriasértett
(rendezett) fázisban nullától különböző [35].

A folytonos fázisátalakulások statisztikus fizikai leírása során általában
kulcsszerepet játszanak a fizikai mennyiségek fluktuációi, melyek a korre-
lációs függvények segítségével jellemezhetőek. Az ~r1 és ~r2 pontokban az
X-szel jelölt mennyiségnek a várhatóértékétől való eltérésének korrelációja
a

G(~r1, ~r2) =< X(~r1)X(~r2) > − < X(~r1) >< X(~r2) > (44)

módon definiált korrelációs függvény által írható le, ahol < > az adott
statisztikus fizikai sokaságon értelmezett várhatóérték képzését jelöli.

7A vortexek a spinváltozó zárt görbe mentén történő elfordulása által megvalósuló spe-
ciális spinkonfigurációk, melyek részletesebb ismertetése megtalálható például [19] 13.3
alfejezetében. A vortex és az antivortex közötti különbség a spinek elfordulásának irá-
nyában van.
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A továbbiakban izotrop Hamilton-függvénnyel ill. Hamilton-operátorral
rendelkező transzlácóinvariáns rendszert tételezek fel, ekkor a fenti függvény
csupán a kiválasztott pontok r távolságától függ. Ekkor a rendparaméterhez
tartozó korrelációs függvény a fázisátalakulási ponthoz közeledve nagy r

távolságok esetén a

G(r) ∼ e−
r
ξ (45)

aszimptotikus alakot ölti, ahol a korrelációk fennállásának távolságát jellem-
ző ξ mennyiség a korrelációs hossz. A fázisátalakulási pontban az aszimp-
totikus alak a

G(r) ∼ 1

rd−2+η
(46)

kifejezéssel adható meg, ahol η a korrelációs függvény jellemzésére beveze-
tett kritikus exponens és d a rendszer dimenzióját jelöli. Az η exponensre
szokásos az anomális dimenzió elnevezés használata is.

A fázisátalakulási ponthoz közeli rendszerek szokásos módszerekkel tör-
ténő tárgyalásának nehézségét az okozza [35], hogy a hatványfüggvény sze-
rinti viselkedés következtében a fázisátalakulási pontban a korrelációs hossz
divergál, ezért minden hullámhosszú fluktuáció jelentőssé válik.

A folytonos fázisátalakulások általában ún. kritikus viselkedést mutat-
nak, melynek során egyes fizikai mennyiségek a fázisátalakulási ponthoz
közelítve hatványfüggvénnyel jellemezhető módon divergálnak. E hatvány-
függvények kitevői, az ún. kritikus exponensek között skálatörvényeknek
nevezett összefüggések állnak fenn. Az időtől független folyamatok jellem-
zése során több kritikus exponens használatos, melyek közül a skálatörvé-
nyek következtében általában kettő tekinthető egymástól függetlennek [35].
A vizsgált jelenségek egyik legérdekesebb jellemzője az univerzalitás, amely
a skálatörvényeknek a modellspecifikus jellemzőktől való függetlenségében
is megnyilvánul. Ezenkívül a kritikus exponensek értéke a modell néhány
tulajdonsága által meghatározott, így ennek alapján a fizikai rendszerek
univerzalitási osztályokba sorolhatóak.
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Exponens Az exponenst definiáló kritikus viselkedés
a fázisátalakulási pont környezetében

α cB = kβ2

N
∂2 ln Z(β,B)

∂β2 ∼ α−1

((

|T−Tc|
Tc

)−α

− 1

)

β M =

〈

P

i si

N

〉

= 1
βN

∂ ln Z(β,B)
∂B ∼ (Tc − T )β

γ χT = ∂M
∂B ∼ |T − Tc|−γ

δ M(T = Tc) ∼ B
1
δ

η lim
r→∞

G(r, T = Tc) ∼ 1
rd−2+η

ν ξ ∼ |T − Tc|−ν

1. táblázat : Hat gyakran alkalmazott kritikus exponens definíciója az
Ising-modell esetén. A táblázat [19] 1.1 táblázata nyomán készült. Az
egyszerűség kedvéért nem jelöltem külön, hogy a δ exponens esetének kivé-
telével a kritikus viselkedés mindig zérus külső mágneses tér esetére vonat-
kozik. Z a partíciós függvény, Tc a fázisátalakulási ponthoz tartozó kritikus
hőmérséklet, k a Boltzmann-állandó, β = 1

kT , N a rácspontok száma, B a
külső mágneses tér erősségét meghatározó paraméter, cB az állandó külső
mágneses tér esetén tekintett egy rácspontra eső fajlagos hőkapacitás, M a
mágnesezettség, χT az állandó hőmérséklet esetén tekintett szuszceptibili-
tás, G az összefüggő kétpont-korrelációs függvény, d a modell dimenziója és
ξ a korrelációs hossz.

Az Ising-modell esetén a rendparaméternek az M -mel jelölt a mágnese-
zettség felel meg, amelyet a spinváltozók átlagának várhatóértékeként defi-
niálhatunk. Az 1. táblázat az Ising-modell vonatkozásában a hőkapacitás,
a mágnesezettség, a szuszceptibilitás, a korrelációs függvény és a korrelációs
hossz kritikus viselkedését jellemző exponensek definícióját ismerteti, míg a
2. táblázat hat nevezetes skálatörvényt foglal össze.

A fejezet további részében a fázisszerkezet tanulmányozását az egyszerű-
ség kedvéért LPA-ra szorítkozva ismertetem. Az RG-egyenletekkel vég-
zett vizsgálatok során gyakran megtehető, hogy a Vk potenciálra vonat-



2. fejezet 27

Elnevezés Skálatörvény
Widom γ = β(δ − 1)

Griffiths α+ β(δ + 1) = 2

Rushbrooke α+ 2β + γ = 2

Josephson 2 − α = νd

Fisher (2 − η)ν = γ

Buckingham-Gunton 2 − η = d(δ − 1)(δ + 1)−1 = dγ(2β + γ)−1

2. táblázat : Nevezetes skálatörvények. A táblázat [35] 7.5 alfejezete
szerint készült. Fontos hangsúlyozni, hogy amint a megjelölt forrásban
kifejtésre kerül, a dimenziók d-vel jelölt számától függő skálatörvények nem
teljesülnek d tetszőleges értékére.

kozó (40) egyenletben a potenciált térváltozó szerinti Taylor-sorfejtett alak-
jával közelítjük, ezáltal a parciális differenciálegyenlet helyett a sorfejtési
együtthatókra vonatkozó közönséges differenciálegyenlet-rendszerrel dolgoz-
hatunk. A sorfejtés együtthatóit csatolásoknak nevezzük, melyeket a k skála
függvényeinek kell tekinteni. A továbbiakban a figyelembe vett csatolások
összességére a ~g jelölést alkalmazom. Ekkor a kapott differenciálegyenlet-
rendszer a

k∂k~g = ~β(~g, k) (47)

alakban írható, ahol a jobb oldal jelölése arra utal, hogy az egyes csatolások
skálafüggését meghatározó egyenleteket a szakirodalomban β-függvényeknek
nevezik.

Az RG-egyenletek viselkedésének tanulmányozása kényelmesebben vé-
gezhető el fizikai dimenzióval nem rendelkező mennyiségek bevezetése ál-
tal. Az impulzus dimenziójú k változó helyett bevezetjük a dimenziótlan
t = ln k

Λ változót, melyet renormálási időnek nevezünk. A t szerinti de-
riválást az irodalomban szokásos módon ponttal jelölöm. Az irodalom [3]
jelöléseit követve bevezethetjük továbbá a fizikai mennyiségek ∼ -vel je-
lölt dimenziótlan megfelelőit, melyeket az eredeti dimenzióval rendelkező
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mennyiségek és az impulzus dimenziójú k váltózó megfelelő hatványának
szorzataként definiálunk. Ekkor a kdi-nek megfelelő fizikai dimenzióval ren-
delkező gi csatolásra vonatkozó

k∂kgi = ġi = βi(~g, k) (48)

egyenlet a dimenziótlan g̃i = gik
−di csatolásra vonatkozó

˙̃gi = −dig̃i + βi

(

~̃g, 1
)

≡ β̃i

(

~̃g
)

(49)

egyenlettel helyettesíthető.
A dimenziótlan mennyiségek bevezetése annak felel meg, hogy a renor-

málási transzformáció elvégzése során a modellt jellemző fizikai mennyisége-
ket újraskálázzuk k új értékének megfelelően. Ennek hasznossága azáltal
szemléltethető, hogy pl. az Ising-modell esetén a rendszer viselkedése szem-
pontjából nem a korrelációs hossz számszerű értéke, hanem annak a rácsál-
landóhoz viszonyított értéke a lényeges [1].

A

~̇̃g =
~̃
β
(

~̃g
)

(50)

differenciálegyenlet-rendszer megoldása által a modell paraméterterében ki-
rajzolt, trajektóriának nevezett görbe irányának általában a k skála csökke-
nésének irányát tekintjük. Mivel a fizikai rendszer leírásához a kísérletileg
változtatható paraméterek (pl. a hőmérséklet) mellett általában kísérletileg
nem változtatható paraméterek (pl. a kölcsönhatás erőssége) figyelembe-
vétele is szükséges, ezért a paramétertér pontjai általában fizikailag nem
megvalósítható állapotoknak felelnek meg. Ennek következtében a renor-
málási transzformációt leíró trajektóriák még a statisztikus fizikai modellek
esetén sem feleltethetők meg fizikai folyamatoknak.

Bár a modellek fázisszerkezete a különböző kezdeti feltételekhez tartozó
trajektóriák által feltérképezhető, a fázistér hatékony vizsgálata az egyen-
letek fixpontjainak megkeresése által lehetséges. Fixpontoknak nevezzük
a paramétertér azon ~̃g∗ pontjait, amelyekre a dimenziótlan β̃-függvények
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zérus értéket vesznek fel, azaz az adott pontban alkalmazott renormálási
transzformáció a dimenziótlan csatolások értékeit változatlanul hagyja. A
triviális ~̃g∗ = ~0 fixpontot gaussi fixpontnak nevezzük, amely szabad, tömeg
nélküli térelméleti modellnek felel meg.

Természetesen lehetséges, hogy a ~̃β = ~0 egyenlet aszimptotikusan telje-
sül amikor valamely csatolás értéke divergál. A továbbiakban erre nem térek
ki, feltételezve, hogy ez az eset a modell átparametrizálása által visszave-
zethető a csatolások véges értékénél megjelenő fixpont esetére.

A legegyszerűbb eseteket tekintve megkülönböztethetünk vonzó, taszító
és hiperbolikus fixpontot. A fixpont környezetéből indított trajektória vonzó
fixpont esetén a fixpontba tart, taszító fixpont esetén attól távolodik, míg
hiperbolikus pontok esetén a fixpont környezetéből indított trajektória vi-
selkedése a kezdőpont megválasztása szerint változik.

A fixpont viselkedésének meghatározását megkönnyíti, hogy az adott
fixpont környezetében általában lehetőség nyílik arra, hogy a (50) egyenle-
teket sorfejtésük lineáris tagjával közelítésük. Ezáltal a ~̃g∗ fixpont esetén
a

˙̃gi = β̃i(~̃g∗) +
∑

j

∂β̃i

∂g̃j
|~̃g=~̃g∗

(g̃j − g̃∗,j) (51)

egyenleteket nyerjük. Bevezetve az

Mij =
∂β̃i

∂g̃j
|~̃g=~̃g∗

(52)

érzékenységi mátrixot és az yi = g̃i − g̃∗,i változókat az egyenletrendszer az

~̇y = M~y (53)

alakba írható. Sok esetben az érzékenységi mátrix diagonalizálható, így az
egyenletrendszer még egyszerűbb alakban írható. Legyen S olyan mátrix,
amely esetén az M ′ = S−1MS módon definiált mátrix diagonális. Ekkor a
~z = S−1~y vektor bevezetésével az egyenletrendszert

~̇z = M ′~z (54)
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alakban felírva ~z komponenseire a

żi = sizi (55)

egyenletek adódnak, ahol si a diagonális M ′ mátrix megfelelő sajátértékét
jelöli. Az egyenletek t0-ban ismert kezdeti feltételhez tartozó megoldása

zi(t) = zi(t0)e
sit. (56)

Természetesen ezek az egyenletek csupán akkor adnak jó közelítést, ha a
trajektória t0-beli értéke is a fixpont közelében van.

Ezáltal látható, hogy ha az M ′ mátrix minden saját értéke negatív,
akkor a fixpont infravörös (IR) taszító8; ha minden saját értéke pozitív,
akkor a fixpont IR-vonzó; ha mind pozitív, mind negatív sajátértékekkel
rendelkezik, akkor a fixpont hiperbolikus pont más néven nyeregpont.

Egy adott fixpont tekintetében megkülönböztetünk [35] releváns, margi-
nális és irreleváns csatolásokat aszerint, hogy az érzékenységi mátrix adott
csatoláshoz tartozó sajátértéke negatív, nulla vagy pozitív. Az elnevezések
arra utalnak, hogy egy adott trajektórián k csökkenésének irányában ha-
ladva a fixpont közelében a releváns csatolások esetén a csatolás eltérése a
fixponti értéktől növekszik, az irreleváns csatolások esetén csökken.

Emellett az irodalomban [3] szokásos releváns skálázásról beszélni ha
a csatolás abszolút értéke k függvényében monoton csökkenő és irreleváns
skálázásról beszélni, ha a csatolás abszolút értéke k függvényében monoton
növekvő. Az elnevezések ezen használata érthetővé válik, ha figyelembe
vesszük, hogy általában viszszafele haladunk a skálán és a célunk a k → 0

határeset vizsgálata.
Az RG-módszernek a fázisátalakulások vizsgálatában betöltött szerepét

[20, 19, 30, 35, 37] csupán általánosságban mutatom be, ezáltal a legegy-
szerűbb viselkedést feltételezve nem térek ki a bonyolultabb speciális esetek
elemzésére.

8Az infravörös jelző arra utal, hogy a trajektóriák irányának a k skála irányának
csökkenését, azaz t csökkenésének irányát tekintjük. Ellenkező irányt vizsgálva a vonzó
és taszító fixpontok szerepe természetesen felcserélődik.
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A továbbiakban az egyszerűség céljából érdemes feltételezni, hogy a mo-
dell egyetlen paraméterének finomhangolása által a fázisátalakulási pontban
lévő rendszert írhatunk le. A (9) és (10) képletekkel definiált Ising-modell
példája azt mutatja, hogy a mágnesezettséget tekintve rendparaméternek
a fázisátalakulás megjelenéséhez a kritikus hőmérséklet beállítása mellett a
B = 0 feltétel biztosítása, azaz a külső mágnesestér kikapcsolása is szüksé-
ges. Ezért a továbbiakban [1] szóhasználatát követve a külső mágneses tér
erősségét nem számítom a modell paramétereihez, azaz úgy tekintem, hogy
a (11) képlettel megadott modellek paraméterterét a H0-ban megjelenő pa-
raméterek feszítik ki.

Abból, hogy a fázisátalakulás létrejöttéhez egy paraméter rögzítése elég-
séges az következik, hogy a modell paraméterterében a fázisátalakulási pont-
ban lévő rendszereknek megfelelő tartomány, amelyet kritikus felületnek
nevezünk egykodimenziós [1]. A továbbiakban azon egyszerű, mindazáltal
gyakori esetet tekintem, amikor az egyszeresen összefüggő kritikus felület a
két fázisnak megfelelően két részre vágja a paraméterteret.

A trajektóriák kvalitatív viselkedése legkönnyebben a WH-séma esetén
vezethető le, mert ekkor a renormálási transzformáció a generáló funkcio-
nál értékét és így a ξ korrelációs hossz értékét is változatlanul hagyja. A
korrelációs hossznak a folytonos fázisátalakulás során mutatott kritikus vi-
selkedését kihasználva a kritikus felületet olyan tartományként is értelmez-
hetjük, melyen a korrelációs hossz divergál. Felhasználva, hogy a k skálát
csökkentve a ξ dimenziós korrelációs hossz változatlan marad, ebből követ-
kezően a skálát csökkentve a dimenziótlan ξ̃ = ξk korrelációs hossz csökken,
nyilvánvalóvá válik, hogy a kritikus felület pontjaiból indított trajektóriák
nem hagyhatják el a felületet, míg a felületen kívüli pontból indulva távo-
lodunk a kritikus felülettől.

Az egyszerűbb modellek esetén a kritikus felületről induló trajektóriák a
kritikus felületen lévő fixpontba folynak bele. Ezen fixpont, melyet Wilson–
Fischer-fixpontnak is neveznek hiperbolikus fixpont, mivel a kritikus felü-
leten kívüli trajektóriákat taszítja. Általában az egykodimenziós kritikus
felület következtében a kritikus fixpont érzékenységi mátrixa megfelelően
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parametrizálva csupán egyetlen negatív sajátértékkel, azaz egyetlen rele-
váns iránnyal rendelkezik [35].

A kritikus felületen kívülről induló trajektóriák a legegyszerűbb esetben
az adott fázisnak megfelelő vonzó fixpontba torkollnak, ezáltal mutatva a
különböző fázisoknak megfelelő rendszerek eltérő alacsonyenergiás viselke-
dését. A legegyszerűbb esetben ezen vonzó fixpontok a zérus hőmérsékletű
rendszernek megfelelő alacsonyhőmérsékleti fixpont (melynek a rendezett,
szimmetriasértett fázis felel meg) és a végtelen hőmérsékletű rendszernek
megfelelő magashőmérsékleti fixpont (melynek a rendezetlen, szimmetrikus
fázis felel meg) [35].

A RG-módszer a transzformáció hiperbolikus fixpontjainak megtalálása
által teszi lehetővé a fázisátalakulás és a rendszer lehetséges új fázisainak ki-
mutatását. Tovább haladva a leírásban a módszer számot ad a kritikus visel-
kedés jellemzőiről. A hatványfüggvényekben megnyilvánuló skálainvariáns
viselkedést a divergáló korrelációs hossz következményének tekinthetjük, a
skálatörvények fennállása, azaz a két független mennyiség általi jellemzés
lehetősége pedig a kritikus felületet az adott fázis oldaláról megközelítő tra-
jektóriák hasonló viselkedése által magyarázható.

Ennek a képnek [1, 4] a keretében a hasonló viselkedés a következőkép-
pen értelmezhető. A kritikus felület megközelítéséhez két független feltétel
biztosítása szükséges; zérushoz közeli külső mágnesestér választása és egy
további paraméter finomhangolása. A felülethez közeli pontból indulva a
trajektória kezdetben a felületen haladó trajektóriákhoz hasonlóan viselke-
dik, azaz a felülettel szinte párhuzamosan haladva a kritikus fixpont felé
tart, majd annak közelében (mivel a kiinduló pont nem volt rajta a kri-
tikus felületen) eltávolodik attól. Így az egymástól távoli kezdeti pontok-
ból induló trajektóriák egymáshoz közel kerülnek, azaz a sok paraméterük
tekintetében különböző fizikai rendszerek hasonlóan viselkednek. A külön-
böző modelleket ugyanazon paramétertér különböző pontjainak tekintve a
skálatörvények mellett a kritikus exponensek értékében megnyilvánuló uni-
verzalitásra is magyarázatot kapunk.
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A fázisátalakulásra vonatkozó kvantitatív információkat tekintve a kont-
rollparaméter kritikus értékét (pl. a fázisátalakuláshoz tartozó kritikus
hőmérsékletet) mint a modell többi paraméterének függvényét folytonos
fázisátalakulás esetén a kritikus felület egyenlete határozza meg [35], míg a
kritikus exponensek értékét az egyenletek fixpont körüli viselkedésével hoz-
hatjuk kapcsolatba.

A legegyszerűbb esetben a ν és η exponenseket könnyen meghatározhat-
juk, majd a többi exponens értékét a skálatörvényeket felhasználva kaphat-
juk meg. A ν exponens értékét a kritikus fixponthoz tartozó érzékenységi
mátrix s-sel jelölt releváns sajátértékének ismeretében a

ν = −1

s
(57)

módon határozhatjuk meg [3]. Az η anomális dimenzió értéke LPA-ban zé-
rusnak adódik [1]. η értékének pontosabb meghatározása a hullámfüggvény-
renormálás figyelembevétele által történhet, amely a kritikus fixpont kör-
nyezetében k−η szerinti skálafüggést mutat [5].

2.7. A kvantumtérelméleti modellek osztályozása a renor-

málás szempontjából

A funkcionális renormálás szemlélete nemcsak jelentős eredményeket ért el
a kvantumtérelméleti modellek vizsgálatában, hanem új megvilágításba is
helyezte azokat.

A kvantumtérelméleti modellek esetén nehézséget okoz, hogy általában
a véges értékű paramétereket tartalmazó klasszikus hatásból kiindulva vég-
zett számítások során a felírt integrálok divergálnak. A történetileg ko-
rábbi perturbatív megközelítés esetén a térelméleti modellekben megjelenő
kölcsönhatásokat a perturbatív sorfejtés tagjaiban megjelenő divergenciák
viselkedése szerint ún. szuperrenormálható, renormálható és nemrenormál-
ható osztályokba sorolhatjuk [17].

Az ezen osztályozás szerint szuperrenormálhatónak és renormálhatónak
nevezett elméletek esetén a fizikai mennyiségekre kapott divergáló eredmé-
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nyek véges sok mennyiség által kifejezhetőek, ezáltal lehetőség nyílik arra,
hogy a számítások eredményeit mérhető mennyiségek értékeivel kifejezve a
kísérletek eredményeire jóslatokat tegyünk. Ezzel szemben a nemrenormál-
ható csoportba sorolt elméletek esetén ez az út nem járható, mert ekkor
a perturbáció számítás magasabb rendjeiben megjelenő divergenciák keze-
lése a korábban figyelembe vett mennyiségek mellett további mennyiségek
ismeretét követelné meg. Ennek következtében kialakult egy olyan szemlé-
let, amely szerint vizsgálatainkat a renormálható elméletekre kell korlátozni.
Azonban a funkcionális renormálás nézőpontjából tekintve a problémát ez
nem szükségszerű [20].

Matematikai szempontból a divergáló eredmények gyakran elkerülhe-
tőek akkor, ha a pályaintegrálban a nagy energiájú Fourier-módusok já-
rulékát nem vesszük figyelembe. Mivel nincs okunk feltételezni, hogy az
egyes modellek a fizikai valóság teljes körű leírását leírását adják, ezért arra
gondolhatunk, hogy a számítások során kapott divergáló integrálok a mo-
dell érvényességi tartományának túllépésére figyelmeztetnek. Így a modell
nagy-energiájú folyamatok leírására vonatkozó korlátait a Λ-val jelölt UV-
levágás bevezetésével figyelembe véve az elmélet véges eredményeket szol-
gáltathat. Ekkor az elmélet jóslatai formálisan függeni fognak Λ értékétől.
Ezért további problémát jelent annak tisztázása, hogy egy alacsonyenergiás
folyamatban mérhető mennyiség értéke hogyan függhet a nála általában sok
nagyságrenddel nagyobb Λ értékétől.

Ez a kérdés az RG-módszer által a hatás különböző kölcsönhatásokat le-
író tagjait szorzó csatolások skálafüggését tanulmányozva megválaszolható.
A V (φ) = φn potenciállal definiált d dimenzióban tekintett skaláris elmélet
példáján [20, 19] látható, hogy általában a nemrenormálható kölcsönhatás-
hoz (pl. négy dimenzióban a φ6 típusú kölcsönhatáshoz) tartozó csatolás
irreleváns módon skálázik, azaz értéke a k skála csökkentésével csökken míg
a renormálható kölcsönhatás csatolása marginálisan, a szuperenormálható
kölcsönhatás csatolása releváns módon skálázik. Ennek következtében a
nemrenormálható kölcsönhatások figyelembevétele csupán rendkívül gyen-
gén befolyásolja az elmélet alacsonyenergiás mérésekre vonatkozó jóslatait,



2. fejezet 35

így a Λ levágás a mérhető mennyiségek értékénél nagyságrendekkel nagyobb-
nak választható. Ezáltal a nemrenormálhatónak nevezett elméletek vizsgá-
lata is lehetővé válik.

Az elektromágneses, gyenge és erős kölcsönhatásokra vonatkozó ismere-
teinket összefoglaló Standard modell perturbatívan renormálható a csato-
lások szerinti sorfejtések kezdeti tagjainak tekintetében, amennyiben a sor-
fejtések alappontját a jelenlegi nagyenergiás kísérleteknek megfelelően vá-
lasztjuk. Ennek ellenére korai lenne a a nemrenormálható elméletek jelentő-
ségéről ítéletet mondani, hiszen nem ismerjük teljesen a természet alapvető
kölcsönhatásait. Nagyon keveset tudunk a Standard modell kiterjesztéseiről
és a tömegvonzás a kvantumelmélettel konzisztens leírásáról, továbbá ezen
kölcsönhatásnak a Planck-tömegnek megfelelő energiatartományon muta-
tott viselkedéséről.

Emellett az is előfordulhat, hogy egy perturbatívan renormálható köl-
csönhatás alacsonyabb energián nemrenormálható effektív elméletként ír-
ható le. Ilyen nemrenormálható effektív elméletre talán a legismertebb
példát a gyenge kölcsönhatás alacsonyenergiás viselkedésének tárgyalására
alkalmazható Fermi-féle modell [38] szolgáltatja.

A fejezetet lezárásaként értékelve a bemutatott módszert megállapíthat-
juk, hogy az RG amellett, hogy új eszközzel gazdagította az elméleti fizika
fegyvertárát és átütő eredményeket hozott a fázisátalalakulások során fel-
lépő kritikus jelenségek megértésében hozzájárult az alapvető kölcsönhatá-
sokról kialakult szemléletünk fejlődéséhez.
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3. A renormálási séma optimalizálása a kvantált
anharmonikus oszcillátor esetén

3.1. Bevezetés

Az effektívhatás-szemlélet során a regulátor megválasztására több lehetőség
adódik, így felmerül a renormálási séma optimalizálásának kérdése. Ennek
az összetett kérdésnek többféle megközelítése ismert. Az egydimenziós kvan-
tált anharmonikus oszcillátor viszonylag egyszerű modellje esetén nagypon-
tosságú irodalmi adatok állnak rendelkezésre, így ideális lehetőség adódik a
sémaoptimalizálás bonyolult kérdésének tanulmányozására.

Azért, hogy minél kevesebb paraméterrel rendelkező modellt tekinthes-
sünk tárgyalásunkat olyan egydimenziós modellre korlátozzuk, amelyben
a potenciál operátora a koordináta operátor negyedfokú polinomja. Ezen
egyszerűsítés mellett további érvet szolgáltat, hogy ezen típusú kölcsönha-
tás (amelyet gyakran φ4 típusú kölcsönhatásnak neveznek) kiemelt szerepet
tölt be a fizikában. Ugyanis négydimenziós téridőben a φ4 típusú kölcsönha-
tás perturbatív módon renormálható, míg a magasabb rendű polinomokkal
megadott kölcsönhatások perturbatív úton nem renormálhatóak [17]. To-
vábbá a Standard modell szerint a Higgs-mező φ4 típusú önkölcsönhatással
rendelkezik, míg magasabb rendű φ6, φ8... stb. típusú alapvető kölcsönha-
tások jelenlegi ismereteink szerint nem valósulnak meg a természetben.

Látszólagos egyszerűsége ellenére a kvantált anharmonikus oszcillátor-
nak az RG-módszerrel történő teljes körű tárgyalása nem tekinthető triviális
feladatnak [39, 40], ha az eredeti modell nem konvex potenciállal rendelke-
zik, akkor a konvexszé váló effektív potenciál kiszámítása technikai nehéz-
ségeket okozhat. Ugyanakkor a modell kétség nélkül megfelelő lehetőséget
nyújt a különböző renormálási sémák összehasonlítására, mivel megfelelő
kezdeti potenciál esetén az első gerjesztett állapot energiájának meghatáro-
zásában az RG megközelítése már sikeresnek bizonyult [41].

Az eredmények ismertetése során elsőként a vizsgált modell és az RG-
módszer alkalmazásának jellemzőit tekintem át, majd ezt követően fejtem
ki az optimalizálás kérdését.
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3.2. A kvantált anharmonikus oszcillátor renormálása

Az általunk vizsgált egydimenziós modell klasszikus fizikai megfelelője az

SM =

∫

dt

{

1

2
q̇2 − V (q)

}

, (53)

hatással és a

VΛ =
m2

Λ

2
q2 + gΛq

4, (54)

potenciállal9 jellemezhető, ahol az M index a Minkowski-téridőre utal és q
a modell egyetlen szabadsági fokát jellemző mennyiség. A kvantumtérelmé-
letben szokásos ~ = c = 1 mértékegységrendszert használva a hatás dimen-
ziótlan és a q mennyiség dimenziója a távolság dimenziójának négyzetgyöke.
Ez lehetővé teszi, hogy a kinetikus tag együtthatóját a fenti módon dimenzi-
ótlannak válasszuk. A potenciál együtthatóinak Λ indexe arra utal, hogy a
kvantált modell RG-módszerrel történő vizsgálata során a klasszikus modell
paramétereit kell a csatolások UV-levágásnál megadott értékeinek megfelel-
tetni. A potenciál kvadratikus tagját tömegtagnak is nevezik, mivel kvan-
tumtérelméletek esetén a megfelelő kvadratikus tag együtthatója határozza
meg a részecskék tömegét.

A kvantált modell definiálása során az RG szemléletére tekintettel az
euklideszi téridő formalizmusát és a Feynman-féle pályaintegrálos kvantálást
alkalmazzuk. Ezáltal a kvantált anharmonikus oszcillátornak az

SE =

∫

dτ

{

1

2
(∂τq)

2 + V (q)

}

(55)

hatással és

ZE[J ] =

∫

Dqe−SE+
R

Jqdτ (56)

9A térelméleti tárgyalásmód nyelvezetére tekintettel a klasszikus mechanika szóhasz-
nálatától eltérően a V függvényre potenciálként hivatkozom.
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generáló funkcionállal definiált, egydimenziós téridőben10 tekintett kvan-
tumtérelméleti modell feleltethető meg.

Mivel a potenciál V (q) függvényét párosnak választottuk mind a klasszi-
kus, mind a kvantált modell a belső téren érvényesülő tükrözési szimmet-
riával rendelkezik, melyre gyakran Z2-szimmetriaként hivatkoznak. Ezen
egyszerű szimmetria azért különösen érdekes, mert ennek spontán sérülését
tekintve a kvantált modell és klasszikus megfelelője eltérő viselkedést mutat.

Ha a potenciál két minimummal rendelkezik (konkáv), akkor a klasszi-
kus oszcillátor legalacsonyabb energiájú állapota spontán megsérti a Z2-
szimmetriát, ami nem fordulhat elő az egyetlen minimummal rendelkező
potenciál esetén. Ezáltal a potenciál kvadratikus tagjának előjelétől függően
a klasszikus modell szimmetrikus és szimmetriasértett fázisait különböztet-
hetjük meg. Ezzel szemben a kvantált modell esetén az alagúteffektus követ-
keztében nem jöhet létre szimmetriasértett alapállapot, a modell mindig a
szimmetrikus fázisban van az m2

Λ együttható előjelétől függetlenül. Ez a
tény az RG-módszer esetén abban nyilvánul meg, hogy a k → 0 határeset-
ben értelmezett potenciál, melyet effektív potenciálnak neveznek mindig
konvex. Mindazáltal, amint látni fogjuk, a konvex effektív potenciál el-
érése az RG-módszer közelítésekkel történő alkalmazása esetén nem mindig
garantálható.

A modellt LPA-ban vizsgáltam, elhanyagolva a térmennyiségtől függő
hullámfüggvény-renormálást [41], amelynek funkcionális alakja nagyon ne-
hezen kezelhető Taylor-sorfejtéssel. A kvantált oszcillátor esetén LPA-ban
a Wetterich-egyenlet az előző fejezetben ismertetett módon a

V̇k =
1

2π

∫ ∞

0
dp

Ṙk

p2 +Rk + V ′′
k

, (57)

parciális differenciálegyenletre vezet.

10Az alkalmazott euklideszi téridő egyetlen dimenzióját az idődimenzió általánosításá-
nak tekinthetjük, hiszen egy Minkowski-téridőben tekintett kvantummechanikai modell
kvantumtérelméletként olyan Minkowski-téridőben tárgyalható, amely csupán idő jellegű
dimenzióval rendelkezik.
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Az egyenlet peremfeltételét a skálafüggő potenciálnak a Λ UV-levágás
esetén érvényes formája határozza meg. A szakirodalmat [41] követve Λ

értékét 1500-nak választottuk.
A továbbiakban az RG-módszerrel történő tárgyalás során a potenciál

argumentumára a térelméletben szokásos φ jelölést alkalmazom. Az (57)
parciális differenciálegyenlet közelítő megoldását keresve a potenciál alak-
jára a

Vk(φ) =
m2

k

2
φ2 + gkφ

4 +
N
∑

n=3

g2n(k)

(2n)!
φ2n, (58)

feltételezést róttam ki, melyben az energiaskálától függő mk, gk, g2n(k)

csatolások nem függenek a φ változótól.
A csatolások számának, azaz N értékének optimális megválasztását több

tényező határozza meg. Bár N értékét növelve a (58) formula a Taylor-sor
több tagját veszi figyelembe, a bonyolultabbá váló egyenlet a számítások
numerikus hibáit is növeli. Ezért az optimális választás a csatolásokra vo-
natkozó egyenletek megoldása során alkalmazott numerikus eljárástól függ.

Bár a potenciálnak a kezdeti feltételeket meghatározó, UV-levágásnál
érvényes alakjában csupán az első két tag csatolása különbözik nullától, az
energiaskála alacsonyabb értékei esetén természetesen a magasabb rendű
tagok csatolásai is jelentőssé válhatnak. A potenciál (58) kifejezését az (57)
egyenletbe helyettesítve egy közönséges differenciálegyenlet-rendszer vezet-
hető le az m2

k, gk, . . . g2N (k) csatolásokra. Az egyenleteknek a csatolások
számának növelésével terjedelmessé váló levezetése szimbolikus számítások
elvégzésére alkalmas program (pl. a Mathematica [42]) segítségével történ-
het. Az első két csatolásra vonatkozó egyenlet:

ṁ2
k = −12

π

∫ ∞

0
dpṘk

gk

(p2 +Rk +m2
k)

2
,

ġk =
1

48π

∫ ∞

0
dpṘk

[

3456g2
k

(p2 +Rk +m2
k)

3
− g6

(p2 +Rk +m2
k)

2

]

. (59)

A magasabb rendű csatolásokra kapott egyenletek hasonló szerkezetet mu-
tatnak.
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A differenciálegyenlet-rendszer megoldása során természetesen numeri-
kus módszerek (pl. a Runge–Kutta-módszer [43]) által szolgáltatott ered-
ményekre kell szorítkozzunk és általában a p szerinti integrálást szintén csak
numerikusan tudjuk elvégezni. A numerikus számítások elvégzése például
a [43] programjai által történhet. Az improprius integrál numerikus kezelé-
sét az eredeti integrálási tartományt véges intervallumra leképező integrált-
ranszformáció [43] által valósítottuk meg.

Vizsgálataim megkezdésekor a kvantált anharmonikus oszcillátor ta-
nulmányozásában szerzőtársaim már jelentős tapasztalatokkal rendelkeztek
[40]. A numerikus számításokat tekintve a legfontosabb feladatom az álta-
luk használt program továbbfejlesztése volt a kompakt tartójú folytonosan
differenciálható regulátor alkalmazása céljából, majd a konkrét számítások
elvégzése ezzel a regulátorral.

Számításaim során a sémafüggés vizsgálata céljából az oszcillátor alap-
állapoti energiájának és az első gerjesztett állapot energiájának különbségét
határoztam meg, amelyre a továbbiakban első gerjesztési energiaként hivat-
kozom. Az első gerjesztési energia pontos értéke a Schrödinger-egyenlet
numerikus megoldása által meghatározható, így a szakirodalomban [41]
megadott értékeket vezérfonalként használhatjuk az RG-módszerrel kapott
eredményeink ellenőrzésére. Ezekre az értékekre a továbbiakban egzakt ér-
tékekként hivatkozom.

Az első gerjesztési energiát esetünkben a

∆E = lim
k→0

√

V ′′
k

∣

∣

∣

∣

φ=<φ>

, (60)

formula segítségével határozhatjuk meg [44], ahol 〈φ〉 a térmennyiség vá-
kuum várható értékét jelöli. A vizsgált kvantummechanikai modell esetén
〈φ〉 = 0, azaz a triviális térkonfiguráció, ezért

∆E = lim
k→0

mk = m0. (61)

Ily módon az első gerjesztési energia az mk csatolás IR határértékével azo-
nosítható. Ez az összefüggés szemléletes analógiát mutat a kvantumtérel-
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1. ábra : Az mk csatolás fejlődése Callan–Symanzik-séma esetén, m2
Λ = 1

kezdeti értékről indulva. A különböző görbék a megadott kezdeti gΛ érté-
kekre vonatkoznak. A magasabb rendű csatolások kezdeti érteke nulla.

mélettel, ahol az első gerjesztési energia a szabad részecske tömegével azo-
nosítható ha nem léteznek kötött állapotok.

Az 1. ábra az mk csatolás fejlődését szemlélteti Rk(p) = k2 renormálási
séma esetén a gk csatolás különböző kezdeti értékeire. Erre a sémára Callan–
Symanzik-sémaként ill. tömeglevágásként (az angolul „mass cutoff”-ként )
hivatkoznak a szakirodalomban. Megfigyelhető, hogy az IR határesetben az
energia dimenziójú mk csatolás logaritmikus skálát tekintve marginálisan
skálázik, azaz konstans értékhez tart.

Callan–Symanzik-séma esetén megvizsgáltam, hogyan függenek a ger-
jesztési energiára kapott eredmények a potenciál alakjára vonatkozó felte-
vésben figyelembe vett csatolások N -nel jelölt számától. A technikailag
bonyolultabbnak számító m2

Λ < 0 esetre vonatkozó tapasztalataimat a 2.
ábra szemlélteti.

A 2. ábra azt sugallja, hogy LPA-ban az alkalmazott numerikus módszer
esetén Callan–Symanzik-sémában N = 6 csatolást figyelembe véve közelít-
hetjük meg legjobban az egzakt értékeket a vizsgált kezdeti feltételek esetén,
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2. ábra : Az első gerjesztési energia számított értékének (∆En) eltérése
az egzakt értékektől (∆Ee) N függvényében különböző gΛ kezdeti értékek
esetén. A fekete oszlop gΛ = 0.4 kezdeti értékre, a sötétszürke oszlop gΛ =
0.3 értékre, a világosszürke oszlop gΛ = 0.2 értékre vonatkozik. A magasabb
rendű csatolások kezdeti érteke nulla. Az ábrázolt adatok Callan–Symanzik-
sémára és m2

Λ = −1 kezdeti értékre vonatkoznak.
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m2
Λ gΛ ∆Eexact ∆EPT ∆ELitim ∆ECS ∆Eexp

1 1 1.9341 1.9380 1.9386 1.9358 1.9382
1 0.4 1.5482 1.5498 1.5507 1.5490 1.5504
1 0.1 1.2104 1.2109 1.2110 1.2105 1.2109
1 0.05 1.1208 1.1210 1.1211 1.1208 1.1210
1 0.03 1.0779 1.0780 1.0780 1.0779 1.0778
1 0.02 1.0540 1.0542 1.0542 1.0541 1.0542
-1 0.4 0.9667 0.9730 0.9778 0.9733 0.9772
-1 0.3 0.8166 0.8233 0.8288 0.8241 0.8281
-1 0.2 0.6159 0.6227 0.6309 0.6262 0.6302

3. táblázat : Az első gerjesztési energia értéke különböző kezdeti felté-
telek esetén. A különböző oszlopok rendre a jól ismert egzakt értékeket,
a Schwinger-féle proper time formalizmussal számított értékeket [41], és az
általunk Litim-, Callan–Symanzik- ill. exponenciális sémákban számított
értékeket mutatják.

ezért a további számítások során hat csatolást vettem figyelembe. Amint a
3. táblázatból is látható a pozitívm2

Λ esetén kapott eredmények jóval ponto-
sabbak, ezért a csatolások számának megválasztása során a kritikusabbnak
számító negatív m2

Λ értékek esetét vettem figyelembe. N = 6 csatolást fi-
gyelembe véve a szakirodalomban gyakran alkalmazott Litim-regulátor [45]

RLitim(p) = (k2 − p2)θ(k2 − p2), (62)

és exponenciális regulátor [5]

Rexp(p) =
p2

e
p2

k2 − 1
, (63)

esetére végzett számításaimat a 3. táblázat foglalja össze.
Amint a bevezetésben említettük a modell RG-módszerrel történő vizs-

gálata során az m2
Λ < 0 eset technikai nehézségeket okozhat. Ekkor a kez-

detben nem konvex potenciálnak a renormálás során az IR határesetben
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konvexszé kellene válnia. Mindazáltal, ha az anharmonikus tag csatolásá-
nak kezdeti gΛ értéke kicsi, akkor előfordulhat, hogy az adott közelítésben
k csökkentése során a nem konvex potenciál miatt az (59) egyenletekben a
nevező nullához tart. Ekkor adott k értéknél az egyenletek már nincsenek
értelmezve és nem érhető el a k → 0 határeset. Az egyenletek értelmezési
tartományának IR korlátja spontán-szimmetriasértett fázis létezése esetén
fizikailag indokolható lehetne [3], azonban a vizsgált modell nem rendelkezik
szimmetriasértett fázissal, ezért a tapasztalt IR viselkedés magyarázatát a
számítások során alkalmazott közelítésekben kereshetjük.

3.3. A renormálási séma optimalizálása

A Wetterich-egyenlet levezetése során a regulátortól megkövetelt általános
feltételek többféle regulátor függvények alkalmazását megengedik. A köze-
lítések alkalmazása miatt a funkcionális egyenlet differenciálegyenletekkel
történő helyettesítésével nyert eredmények függenek a regulátor megválasz-
tásától, ezért az alkalmazások szempontjából fontossá válik a renormálási
séma optimalizálásának kérdése.

A legelőnyösebb renormálási séma megválasztására többféle optimalizá-
lási stratégia létezik aszerint, hogy milyen tulajdonságot követelünk meg az
optimálisnak tekintett regulátortól. Ha az adott modellt jellemző egyes fizi-
kai mennyiségek értékei más módszerrel pontosan meghatározhatóak, akkor
a legkézenfekvőbb eljárás az RG-módszer eredményeinek az ismert érté-
kekkel történő összehasonlítása. Ekkor tekinthetjük optimálisnak azt a re-
gulátort amely az ismert értékekhez legközelebbi eredményeket szolgáltatja.
Ez az eljárás azonban nem tekinthető prediktívnek egy ismeretlen modell
esetén.

Egy másik közismert optimalizálási stratégia [45, 46] annak a regulátor-
nak a meghatározását takarja, amely a megfelelő közelítések fokozatos javí-
tása során bizonyos értelemben az eredmények leggyorsabb konvergenciáját
biztosítja. Az LPA esetén így optimalizált regulátorra Litim-regulátorként
hivatkoznak, amely gyakran más szempontok szerint is optimálisnak bizo-
nyul.
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Egy harmadik, gyakran alkalmazott [47-52] eljárást jelent az ún. legki-
sebb érzékenység elvén alapuló optimalizálási stratégia, amely azt a regu-
látort tekinti optimálisnak, amely esetén a kapott eredmény a legkevésbé
függ a regulátor paramétereitől.

Egy további lehetőséget jelent a fázisszerkezet meghatározás szerint tör-
ténő optimalizálás. Egyes modellek esetén ugyanis előfordul, hogy az adott
közelítésben az RG-módszer tévesen határozza meg a modell fázisait. Ek-
kor tekinthető optimálisnak az a regulátor, amely bizonyos értelemben a
legjobban reprodukálja a modell fázisszerkezetét [53].

A kvantált oszcillátor modellje esetén lehetőség kínálkozik az ismert iro-
dalmi értékek [41] szerint végrehajtott optimalizálásra. Az egzakt ered-
mények azonban nem jelentenek akkora segítséget, mint azt első ránézésre
várnánk, mivel az alkalmazott közelítések következtében nem várható el az
irodalmi értékek pontos reprodukálása. Az LPA, a potenciál sorfejtésének
a csonkolása és a numerikus számítások hibái egyaránt hozzájárulhatnak az
egzakt értékektől való eltéréshez, ezért a sémafüggés vizsgálata szempont-
jából ez az optimalizálási stratégia nem tekinthető meghatározónak.

Értekezésemben a leggyorsabb konvergencián alapuló optimalizálás ne-
hézségeit elkerülve a legkisebb érzékenység elve és a fázisszerkezet alapján
történő optimalizálásra szorítkozom.

A legkisebb érzékenység elve alapján történő optimalizálás tulajdonkép-
pen a fizikai mennyiségekre vonatkozó számítási eredményeknek a regulátor
paraméterei tekintetében stacionárius pontjainak megkeresését jelenti. Ez
a stratégia azt a kézenfekvő elgondolást tükrözi, hogy minél inkább függ a
számított eredmény a regulátor önkényesen megválasztott paramétereitől,
annál kevésbé tekinthető megbízhatónak a számításnak a mérhető meny-
nyiségekre vonatkozó jóslata. A módszer hátránya a többi optimalizálási
stratégiával szemben, hogy segítségével csak azonos funkcionális formával
rendelkező regulátorok hasonlíthatók össze.

Erre a problémára megoldást jelenthet az ún. kompakt tartójú folytono-
san differenciálható (angolul compactly supported smooth) regulátor beve-
zetése [54], amelyre a továbbiakban CSS-regulátorként hivatkozok. A CSS-
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regulátor matematikai alakja a magfizikában alkalmazott Salamon–Vertse-
potenciálból [55-57] származtatható.

A szakirodalomban gyakran alkalmazott

RLitim = (k2 − p2)θ(k2 − p2) (64)

Litim-regulátor,

Rexp =
p2

e
p2

k2 − 1
(65)

exponenciális regulátor és

Rpolinom = p2

(

k2

p2

)b

(66)

hatványfüggvény-regulátor az

RCSS =
s1p

2

exp
[ s1p2b

k2b−s2p2b

]

− 1
θ(k2b − s2p

2b) (67)

CSS-regulátor speciális eseteinek tekinthető. A képletekben θ a Heaviside-
féle egységugrásfüggvényt jelöli.

A hatványfüggvény-regulátor az R = k2 Callan–Symanzik-séma általá-
nosításának tekinthető, amelyből a Callan–Symanzik-séma a b = 1 válasz-
tással származtatható. A b paraméter értékére a b ≥ 1 megszorítás érvényes,
amely érvényben marad a CSS-regulátor esetén is. A CSS-regulátor másik
két paramétere az s1 > 0 és s2 > 0 megszorításoknak tesz eleget. A CSS-
regulátor ismertetett alakja az [58] szerinti parametrizálásnak felel meg. Az
irodalomban gyakran a regulátorok r(y) = R(y)

p2 dimenziótlan formáját ad-

ják meg, ahol y = p2

k2 dimenziótlan változó. A CSS-regulátor dimenziótlan
formája

rCSS =
s1

exp[s1yb/(1 − s2yb)] − 1
θ(1 − s2y

b). (68)
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A CSS-regulátor megfelelő határesetei visszaadják [58] a korábban említett
gyakran alkalmazott regulátor függvényeket:

lim
s1→0

rCSS =

(

1

yb
− s2

)

θ(1 − s2y
b), (69)

lim
s1→0,s2→0

rCSS =
1

yb
, (70)

lim
s2→0

rCSS =
s1

exp[s1yb] − 1
. (71)

Az első határeset a Litim-regulátornak felel meg s2 = 1 esetén, a második
határeset a hatványfüggvény-regulátort szolgáltatja, a harmadik határeset
az exponenciális regulátornak felel meg s1 = 1 esetén. A Litim- és az expo-
nenciális regulátor eredetileg említett formulái a b = 1 esetnek felelnek meg,
de ezek a regulátorok a fenti képletek szerint általánosíthatóak tetszőleges
b esetére. Ezáltal a CSS-regulátor így lehetőséget nyújt a Litim-, az expo-
nenciális és a hatványfüggvény-regulátornak a legkisebb érzékenység elvével
történő összehasonlítására.

A továbbiakban vizsgálatainkat a b = 1 esetre korlátozzuk, amely kielé-
gíti a

lim
y→0

yr = 1 és lim
y→∞

yr = 0 (72)

normálási feltételeket [59].
A CSS-regulátor esetén az impulzus szerinti integrálás nem végezhető el

analitikusan és a regulátor bonyolult formájának köszönhetően más regulá-
torokhoz képest technikailag jóval nehezebben kezelhető. Ennek ellenére a
szakirodalomban a CSS-regulátor optimalizálását már több modell esetén
vizsgálták, például a kvantum-Einstein-gravitáció [58], a háromdimenziós
O(1)-modell [58] és a sine-Gordon típusú modell [61] tekintetében.

A numerikus számítások során a (67) kifejezés közvetlen alkalmazása
problémákat okozhat. p = 0 esetén a kifejezés értelmezése határérték-
számítást igényel, a nevezőben lévő különbség kis értékei esetén a lebegőpon-
tos számábrázolás jelentős hibát eredményezhet, továbbá a nevezőben lévő
exponenciális függvény túlcsordulást okozhat. Ezért a program elkészítése
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3. ábra: A ∆E gerjesztési energia a regulátor s1 és s2 paramétereinek
függvényében. A b paraméter értéke 1. A csatolások kezdeti értéke m2

Λ = 1
és gΛ = 0.1. A magasabb rendű csatolások kezdeti érteke nulla.

során külön gondoskodtam ezeknek a problémás eseteknek a kezeléséről. A
programozás során természetesen a Heaviside-függvény implementálását is
meg kellett oldanom.

A legkisebb érzékenység elve szerinti optimalizálás céljából a kvantált
anharmonikus oszcillátor esetén az első gerjesztési energiát a regulátor s1
és s2 paramétereinek függvényében vizsgáltam. A 3. ábra az m2

Λ = 1 és
gΛ = 0.1 kezdeti értékek esetén kapott eredményeket szemlélteti.

A 3. ábra szerint az első gerjesztési energia nagyon kevéssé függ a regulá-
tor megválasztásától, a vizsgált különböző sémák esetén az eltérés általában
csupán a 4. tizedesjegyben jelentkezik. Ez különösen azért érdekes, mert
más modellek esetén, például a kvantum-Einstein-gravitáció [58] esetén na-
gyon erős sémafüggés tapasztalható.
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A kvantummechanikai modell esetén tapasztalt gyenge regulátorfüggés
valószínűleg azzal kapcsolatos, hogy a kvantummechanikai modell egydi-
menziós téridőben tekintett térelméleti modellnek tekinthető, így nem je-
lennek meg benne UV-divergenciák, míg a magasdimenziós modellek esetén
az UV-divergenciák különbözőképpen történő eltávolítása erősítheti az ered-
mények sémafüggését.

Amint az a 3. ábráról látható a kapott felület az s1 = 0 érték kö-
zelében szignifikáns maximummal rendelkezik, amely más kezdeti értékek
esetén is megjelenik. Ez meglepő eredmény, mert a szélsőérték nem a Litim-
regulátornak megfelelő s1 → 0, s2 = 1 pontban jelenik meg, ezért a legki-
sebb érzékenység elve alapján a Litim-félétől eltérő renormálási sémát kell
optimálisnak tekinteni. Bár az ábrázolt felület olyan tartománnyal is rendel-
kezik, amelyben az energiakülönbség értéke nem változik jelentősen, ebben
a tartományban nem figyelhetünk meg szignifikáns szélsőértéket. Ezért a
továbbiakban a Litim-regulátornak megfelelő pont közelében, de attól elté-
rően helyen megjelenő maximumot vizsgáltam.

Az ábrázolt esetben éppen a maximum esetén a legnagyobb az eltérés
az egzakt értéktől (1.2104), így a legkisebb érzékenység elvének figyelembe-
vétele az egzakt értékek szerint történő optimalizálástól eltérő eredményt
szolgáltat. Ez azonban nem meglepő, hiszen a funkcionális RG-egyenlet
differenciálegyenletekkel történő helyettesítése és az egyenletek numerikus
megoldása által közelítéseket alkalmaztunk. A továbbiakban a legkisebb
érzékenység elvét alkalmazzuk, amely akkor is helyesen határozza meg az
optimális regulátort, ha a kapott eredmények a közelítések hibái miatt kö-
rülbelül azonos értékkel eltolódnak.

A 3. ábra kezdeti feltételei esetén a gerjesztési energia maximális értékét
közelítőleg az s1 = 0.05 és s2 = 3 paraméterek esetén kapjuk, amelyek az

rmax =
0.05

exp[0.05y/(1 − 3y)] − 1
θ(1 − 3y) (73)

regulátornak felelnek meg. A 4. ábrán részletesebben látható a gerjesztési
energia értékének változása a Litim-regulátor környezetében11.

11Az eredményeinket tárgyaló publikációban elírás következtében az adott ábrához tar-
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4. ábra : ∆E felületének a maximumon áthaladó, s2 = 3 ill. s1 = 0.05
rögzítésével kapott metszetei. A csatolások kezdeti értékei m2

Λ = 1 és gΛ =
0.1. A magasabb rendű csatolások kezdeti érteke nulla.

Mindazáltal a (73) képlettel adott regulátor az s1 paramétert tekintve
nagyon kevéssé tér el a Litim-regulátortól, így ez a regulátor közelíthető a
CSS-regulátornak az s1 = 0 pontban tekintett s1 szerinti Taylor-sorfejtésé-
vel, azaz

rmax ≈
(

1 − s2y
b

yb
− s1

2
+

ybs21
12(1 − s2yb)

+ . . .

)

θ(1 − s2y
b). (74)

Az s1 tekintetében lineárisnál magasabb rendű tagokat elhanyagolva az

rlin =

(

1 − s2y
b

yb
− s1

2

)

θ(1 − s2y
b), (75)

regulátort kapjuk, amely a Litim-regulátor perturbatív általánosításának
tekinthető. Ekkor a b = 1 esetet tekintve az (57) egyenlet a

V̇k =
1

2π

∫ k√
s2

0
dp

2k2

k2 + p2(1 − s2 − s1
2 ) + V ′′

k

, (76)

tozó gΛ értéke tévesen van megadva.
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alakot ölti. Ekkor a p impulzus szerinti integrálás analitikusan elvégezhető
és a potenciálra a

V̇k =
k2

π

1
√

(1 − s2 − s1
2 )(k2 + V ′′

k )
tan−1

(
√

(1 − s2 − s1
2 )k2

s2(k2 + V ′′
k )

)

(77)

egyenletet nyerjük.
Az alkalmazott közelítésben az RG-módszer tévesen szimmetriasértett

fázis megjelenését jósolja, így lehetőség nyílik a renormálási sémának a fázis-
szerkezet alapján történő optimalizálására. A látszólagos szimmetriasérülés
akkor jelenik meg számításainkban, amikor az m2

Λ kezdeti érték negatív és
a gΛ kezdeti érték egy kritikus értéknél kisebb. Így lehetséges optimálisnak
tekinteni azt a regulátort, amelyre a legkisebb gΛ kritikus értéke. Tapasz-
talataim szerint m2

Λ = −1 esetén közelítőleg gkritikus = 0.08 a g csatolás
legkisebb kezdeti értéke, amely esetén még az effektív potenciál meghatá-
rozható az alkalmazott közelítések és numerikus módszerek keretein belül. A
szakirodalomban [41] a potenciál sorfejtésének elkerülésével RG-módszerrel
gΛ = 0.02 érték esetén is kaptak eredményt az első gerjesztési energiára
vonatkozóan, mindazáltal ebben a tartományban az alkalmazott módszer
csupán minőségi leírást nyújt.

A 4. táblázat a gerjesztési energiának különböző s1 és s2 paraméterekkel
rendelkező regulátorok által nyert értékeit tartalmazza gΛ = 0.08 esetén. A
hiányzó adatokhoz tartozó s1 és s2 értékek esetén nem lehetséges az effektív
potenciál meghatározása. A szélsőségesen magas értékek a számítások során
megjelenő numerikus instabilitásokra utalnak.

A táblázat eredményei azt sugallják, hogy a fázisszerkezet szerint tör-
ténő optimalizálás nem a korábban optimálisnak bizonyuló regulátorhoz,
hanem a Litim-regulátorhoz vezet, mert a Litim-regulátorhoz közeli regu-
látor (s1 = 0.001, s2 = 1) esetén a legkisebb a gerjesztési energia értéke.
Ezért úgy tűnik, hogy a különböző optimalizálási módok alapján különböző
regulátorok bizonyulnak optimálisnak.

Összefoglalva tapasztalatainkat a kvantált anharmonikus oszcillátor egy-
szerű problémájának RG-módszerrel történő megközelítése új fényt vetett a
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s2 = 0.001 s2 = 1 s2 = 2 s2 = 3

s1 = 0.001 – 0.23538 0.23679 753913.25671
s1 = 0.05 – 0.23598 0.23785 23102.53408
s1 = 1 0.23766 0.23556 341061.15077 –
s1 = 2 0.23612 0.23604 – –
s1 = 3 0.23566 0.23644 – –

4. táblázat : Az első gerjesztési energia értéke a regulátor különböző s1
és s2 paraméterei esetén m2

Λ = −1 és gΛ = 0.08 kezdeti értékeket tekintve.

sémafüggés vizsgálatára, mivel esetünkben LPA-ban a legkisebb érzékeny-
ség elve szerint végzett optimalizálás a széles körben optimálisnak tekintett
Litim-regulátortól eltérő optimális regulátorra vezetett. A fejezetben ismer-
tetett eredmények a [62] és [60] cikkben kerültek publikálásra.
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4. A Caldeira–Leggett-modell folytonos spektrumú
változatainak vizsgálata

4.1. A Caldeira–Leggett-modell

Amint az értekezés bevezetésében említésre került, az RG-módszer alkalma-
zási területének bővítésére az egyik lehetőséget a Caldeira–Leggett-modell
(továbbiakban CL-modell) különböző változatainak részletesebb vizsgálata
kínálja. A modell egyes folytonos spektrumú kvantált változataiban fázis-
átalakulás jelenik meg, melynek tanulmányozása indokolttá teszi az RG-
módszer alkalmazását.

A fázisátalakulás tanulmányozása során annak tisztázását tűztük ki cé-
lul, hogy a spektrálfüggvényben szereplő levágás különböző értékei ill. a
levágás bevezetésének módja hogyan befolyásolja a fázisátalakulás kritikus
exponenseinek értékét. Eredményeim tárgyalása előtt a CL-modell több
változatát áttekintve ismertetem a tanulmányozott modellek megalkotására
vonatkozó eljárást és ennek motivációját, majd kitérek a kvantált változa-
tokban folytonos spektrálfüggvény esetén megjelenő fázisátalakulásra. Ezt
követően ismertetem az alkalmazott közelítésben nyerhető RG-egyenleteket
és a szuszceptibilitás ill. a korrelációs hossz kritikus exponenseire vonatkozó
új eredményeket.

Ha precízen fogalmazunk meg kell állapítanunk, hogy a Caldeira-Leggett
elnevezés nem csupán egyetlen modellre, hanem modellek egy csoportjára
használatos, hiszen a folytonos spektrumú környezetet jellemző kvantált mo-
dell definiálása nem a szintén e névvel illetett [65] klasszikus modell szokásos
kvantálása által történik. Ezeknek a modelleknek a legfontosabb közös jel-
lemzője, hogy vizsgálataink során megkülönböztetünk egy olyan alrendszert,
amely a környezetével történő kölcsönhatás miatt nem tekinthető zártnak.

A CL típusú modellek bevezetését [63, 64] elsősorban a modell bizonyos
mértékben empirikus kvantált változatai indokolják, amelyek disszipatív je-
lenségek a kvantummechanika keretei között történő tárgyalására [65] adnak
lehetőséget. A disszipáció fellépése esetén a vizsgálat szempontjából rele-
váns alrendszer nem zárt, ezért olyan kvantált modell alkotása, amely csak



54 4. fejezet

az adott alrendszer szabadsági fokait tartalmazza nehézségekbe ütközik [66].
Bár a releváns alrendszer a környezetével együtt zárt rendszert alkot, mely-
nek vonatkozásában a klasszikus modell kvantálása könynyen elvégezhető,
a környezetszabadsági fokainak eliminálása technikailag csak nagyon kivé-
teles esetekben végezhető el, ezért indokolttá válik az ismertetésre kerülő
egyszerűsített modellek megalkotása.

A folytonos spektrálfüggvénnyel rendelkező modellek lehetőséget nyúj-
tanak arra, hogy a vizsgált alrendszer és környezete közötti kölcsönha-
tást csupán néhány paraméter segítségével, a kölcsönhatás konkrét alak-
jának megadása nélkül vegyük figyelembe, így általuk fizikai rendszerek
széles köre tanulmányozható. A CL típusú modellek felhasználhatóak a
Brown-mozgás kvantummechanikai tárgyalására [67], a Josephson-átmenet
[68, 69], a szenynyeződést tartalmazó fémekben megvalósuló elektrontransz-
port [69, 70], az optikai rezonátorban lévő Bose–Einstein-kondenzátum [71]
és egyes magfizikai folyamatok [72] vizsgálta során, továbbá egyes húrelmé-
leti problémákkal is kapcsolatba hozhatóak [73].

A lehetséges alkalmazásokon túlmenően a nyílt rendszerek vizsgálata
elméleti szempontból is figyelmet érdemel. A környezet szerepe kulcsfon-
tosságú a dekoherencia kialakulásában [74], amely jelenség fontos szerepet
tölt be annak vizsgálatában, hogy a kvantummechanika törvényeinek enge-
delmeskedő rendszer hogyan kerülhet a mérés során a klasszikus fizika által
leírható állapotba.

Általános esetben a kvantált modellek megalkotásának ismertetésre ke-
rülő gondolatmenete egy viszonylag hosszadalmas, több lépésből álló eljárás.
Ennek során abból a képből indulunk ki, amelyben a vizsgálat szempont-
jából releváns alrendszer egy anharmonikus oszcillátor, amely lineárisan
csatolódik a környezetét alkotó, egymással kölcsön nem ható harmonikus
oszcillátorok sokaságához [75], amelyet hőfürdőnek is neveznek. Ebben az
esetben a klasszikus hatás az

Sd =

∫ t2

t1

[

1

2
Mq̇2 − V (q) +

∑

n

1

2
mnq̇

2
n −

∑

n

1

2
mnω

2
nq

2
n + q

∑

n

Cnqn

]

dt(78)

alakban írható fel, ahol a q, M és V jelölések rendre az anharmonikus osz-
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cillátor koordinátájára, tömegére és potenciáljára vonatkoznak, a qn, mn,
ωn és Cn jelölések rendre a környezethez tartozó n. harmonikus oszcillá-
tor koordinátájára, tömegére, rezgésének körfrekvenciájára és csatolására
vonatkoznak. A hatás d indexe arra utal, hogy ebben az esetben az anhar-
monikus oszcillátor környezetének gerjesztéseit diszkrét frekvenciák által
jellemezhetjük. Amint a jelölés sugallja q-t nem tekintjük több kompo-
nensű vektornak, mivel az egyszerűség kedvéért a [76] munkát követve egy
térdimenzióban tekintett modellt vizsgálunk. Az előző fejezet vizsgálatai-
hoz hasonlóan a potenciál V (q) függvényét páros negyedfokú polinomnak
tekintjük.

A hőfürdő jellemzése céljából érdemes bevezetnünk a J-vel jelölt12 spekt-
rálfüggvényt, amelyet a (78) egyenletben szereplő hatás esetén a

Jd(ω) =
∑

n

C2
n

4mnωn
2πδ(ω − ωn) (79)

módon definiálhatunk. A Jd(ω) bevezetése azért előnyös, mert a hőfürdőt
alkotó harmonikus oszcillátorok mozgásegyenletére vonatkozó kezdeti fel-
tételeket megfelelően megválasztva a releváns alrendszerre vonatkozó moz-
gásegyenlet olyan formába írható [76], amelyben a hőfürdő hatása csupán a
spektrálfüggvényen keresztül jelenik meg.

Ekkor a releváns alrendszerre vonatkozó mozgásegyenlet által olyan klasz-
szikus modellt definiálhatunk, amely már nem tartalmazza a nyílt alrend-
szer környezetének qn szabadsági fokait, hanem a környezetre vonatkozó
minden információt a spektrálfüggvény által vesz figyelembe. Ezt a modellt
módosíthatjuk úgy, hogy a mozgásegyenletben a Jd diszkrét spektrumú kör-
nyezetet jellemző spektrálfüggvényt folytonos függvénnyel helyettesítjük. E
lépés során a modellnek több, a spektrálfüggvény megválasztása szerint kü-
lönböző változatát definiálhatjuk. Már a klasszikus modell megalkotását
is jelentősen befolyásolja, hogy milyen a bevezetni kívánt spektrálfüggvény

12Az irodalomban szerencsétlen módon mind a környezetet jellemző spektrálfüggvény,
mind a térelméleti tárgyalásban megjelenő külső forrás esetén szokásos a J jelölés alkal-
mazása.
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viselkedése. Ha megengedjük, hogy a spektrálfüggvény tetszőlegesen nagy
értéket is felvegyen, akkor a mozgásegyenletben divergáló tag jelenhet meg.
Nem megfelelő viselkedésű spektrálfüggvények alkalmazására is lehetőséget
nyújt azon (a fizikai szemlélet szempontjából kifogásolható, mindazáltal az
irodalomban [76] mégis alkalmazott) eljárás, amely során egy mesterséges
ellentagot bevezetésével végessé tesszük a releváns alrendszer mozgásegyen-
letében szereplő eredő erőt. Az ellentag csupán a V (q) potenciál kvadratikus
tagjához ad korrekciót, ezért hatása az elmélet egyetlen paraméterébe beol-
vasztható és a klasszikus modellek esetén nem járul hozzá a disszipációhoz.

Ezt az eljárást alkalmazzák

JΩ(ω) = ηω (80)

függvény esetén is, amely a spektrálfüggvény megválasztásának egyik leg-
egyszerűbb lehetőségét kínálja. A képletben szereplő η tényező a környe-
zettel történő kölcsönhatás erősségét jellemző pozitív paraméter. Ebben az
ohmikus disszipációnak nevezett esetben a releváns alrendszerre vonatkozó
mozgásegyenletben olyan tag jelenik meg, amely arányos a sebességgel (q̇-
tal) [76], ezáltal a szokásos disszipatív erőkomponensnek feleltethető meg.

Realisztikusabb modelleket kapunk ha elkerülve az ellentag mesterséges
bevezetését olyan spektrálfüggvényt választunk, amely levágást tartalmaz
vagy gyorsan lecseng ω nagy értékei esetén. Ez megtörténhet a θ egységug-
rásfüggvény (más néven Heaviside-függvény) segítségével a

Ju(ω) = ηωθ(Λu − ω) (81)

módon és a Lorentz-függvény segítségével a

Jl(ω) = ηω
Λ2

l

Λ2
l + ω2

(82)

módon, ahol Λu ill. Λl a levágás értékét ill. a lecsengés gyorsaságát meg-
határozó pozitív paraméter. Az egyszerűség kedvéért a továbbiakban az
utóbbi esetre is a levágás kifejezést használom. Az (81) ill. (82) egyen-
letek a szilárdtestfizikában a fononspektrum esetén bevezetett Debye-féle
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ill. Drude-féle levágásnak feleltethetőek meg. Értekezésemben CL-modell
mindkét változatát az ellentag bevezetése nélkül vizsgálom, ezért a későbbi
egyenletekben Λu → 0 ill. Λl → 0 határesetek nem feleltethetőek meg
az irodalomban korábban vizsgált ellentagot tartalmazó modellnek [76, 77]
annak ellenére, hogy a ezekben a határesetekben visszakapjuk az ohmikus
spektrálfüggvényt.

A kvantált CL-típusú modellek megalkotásához vezető eljárás kezdetén
a harmonikus oszcillátorok által megvalósított hőfürdő (78) egyenletben is-
mertetett esetéből indulunk ki. A [76, 77] publikációkat követve euklideszi
téridőben tekintett modellt tanulmányozva, a

SE,d =

∫ ∞

−∞

[

1

2
M(∂τ q)

2 + V (q)

+
∑

n

1

2
mn(∂τ qn)2 +

∑

n

1

2
mnω

2
nq

2
n − q

∑

n

Cnqn

]

dτ (83)

euklideszi hatást írhatjuk fel, ahol az integrálást a térelméleti tárgyalás
céljából a teljes időtengelyre kiterjesztettük és bevezettük a τ = it változót.

Ekkor pályaintegrálos kvantálást alkalmazva kvantummechanikai mo-
dellt definiálhatunk. Az egyszerűség kedvéért csupán a generáló funkcionál
zérus külső forrás esetére vonatkozó alakját [77] írom fel, amely ~ = c = 1

egységrendszerben:

Zd =
1

N

∫

Dq
∏

n

{∫

Dqn
}

e−SE,d, (84)

ahol a N a normálási tényezőt jelöli. Az SE,d hatás esetén a hőfürdőt har-
monikus oszcillátorok valósítják meg, ezért a környezet qn szabadságifokai
tekintetében gaussi pályaintegrált kapunk, melyet analitikusan elvégezve a

Zd =
1

N ′

∫

Dq exp

{
∫ ∞

−∞

[

1

2
M(∂τ q)

2 + V (q)

]

dτ + ∆Sd

}

(85)

egyenletet nyerjük, ahol

∆Sd[q] = −1

2

∑

n

∫ ∞

−∞
q̄(ω)

C2
n

mn(ω2 + ω2
n)
q̄(−ω)dω, (86)
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q̄(ω) =
1√
2π

∫ ∞

−∞
q(τ)e−iτωdτ. (87)

A Σd sajátenergia bevezetésével a hatásban a hőfürdő ∆S járuléka

∆Sd =
1

2

∫ ∞

−∞
q̄(ω)Σd(ω)q̄(−ω)dω (88)

alakban írható, amely

Σd(ω) = − 1

2π

∫ ∞

0
Jd(ω′)

4ω′

ω2 + ω′2 dω
′ (89)

módon fejezhető ki a (79) egyenletben bevezetett Jd spektrálfüggvény se-
gítségével. Ekkor a generáló funkcionált a (85) és (88) egyenletek által a
qn szabadsági fokokra történő hivatkozás nélkül is definiálhatjuk, ezáltal a
harmonikus oszcillátorok által megvalósított fenti speciális hőfürdő esetén
a releváns alrendszer környezetének jellemzőit a kvantált modellek esetén is
a spektrálfüggvénybe olvaszthatjuk.

Ha a releváns alrendszer környezetének spektrumát a levágást tartal-
mazó Ju ill. Jl spektrálfüggvényekkel kívánjuk leírni, akkor a sajátenergi-
ára vonatkozó (89) egyenletbe Jd helyébe a Ju ill. Jl spektrálfüggvényeket
helyettesítve az előbbiekhez hasonlóan definiálhatjuk a kvantált CL-modell
folytonos spektrumú változatait. Ezáltal a klasszikus elmélet kvantálásá-
nak szokásos eljárását kikerülve empirikus módon alkotunk modellt a nyílt
alrendszer leírására.

A (89) egyenletbe Jd helyett az ohmikus disszipáció esetének megfelelő
JΩ spektrálfüggvényt beírva az ω′ szerinti integrál divergálni fog. Ebben
az esetben a modell a klasszikus esethez hasonlóan a hatásba bevezetett
ellentag segítségével definiálható. Az ellentagot az irodalomban [77] ismert
módon bevezetve a divergáló sajátenergiát a

ΣΩ,r(ω) = η|ω| (90)

véges, renormált kifejezéssel helyettesíthetjük. Ennek segítségével a hatás
környezetet leíró tagját és a generáló funkcionált a a (88) és (85) egyen-
letekhez hasonlóan definiálva megalkothatjuk a kvantált modellt ohmikus
disszipáció esetén is.
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4.2. A kvantum-klasszikus átmenet

A CL típusú modellek hatásában a környezet szerepét tekintetbe vevő tag
megváltoztatja a modellek fázisszerkezetét az anharmonikus oszcillátor előző
fejezetben tárgyalt esetéhez képest. A statisztikus fizika szemszögéből te-
kintve a problémát megállapíthatjuk, hogy az ekvivalens egydimenziós O(1)
modellt tekintve az új tagnak az energia kifejezésében megjelenő nemloká-
lis járulék felel meg, amely az egyetlen dimenzió ellenére lehetővé teheti
spontán-szimmetriasértett fázis kialakulását. Ez a járulék az η paramé-
terrel arányos, így a fázisátalakulás során η tölti be a kontrollparaméter
szerepét. Ennek következtében a modellekben megjelenő fázisátalakulásra
disszipatív fázisátalakulásként is hivatkoznak [78], amely zérus hőmérsékle-
ten megjelenő kvantum-fázisátalakulásra szolgáltat példát.

Amint az előző fejezetben tárgyaltakból következik a kvantált anharmo-
nikus oszcillátor esetén a spontán szimmetriasértés az alagúteffektus elnyo-
másának feleltethető meg. Ez az eltérés a hőfürdő nélkül tekintett oszcillátor
esetétől bár első ránézésre furcsának tűnik valójában nem rendkívüli, hiszen
régóta ismert, hogy a környezettel történő kölcsönhatás megszünteti az al-
rendszer hullámfüggvényének koherenciáját. Mivel a környezet hatásának
köszönhetően egyes kvantummechanikai jelenségek nem figyelhetőek meg
az alrendszerben. A szimmetriasértett fázis megjelenésére az irodalomban
kvantum-klasszikus átmenet néven hivatkoznak [77]. Ohmikus disszipáció
esetén a fázisátalakulás létezését az RG módszerrel végzett vizsgálatok mel-
lett az instanton módszerrel kapott eredmények [77] is megerősítik.

Az előzőek alapján evidensnek tűnik, hogy konkáv V (q) potenciál ese-
tén az η paraméter értékének növelésével bekövetkezik a szimmetrikusból a
szimmetriasértett fázisba történő átmenet, azonban a konkrét számítások
elvégzése előtt nem ismerjük η-nak azon értékét, amelynél a fázisátalakulás
bekövetkezik, ezért a fázisátalakulás vizsgálata során olyan módszert cél-
szerű alkalmazni, amely nem támaszkodik az η szerinti perturbatív sorfej-
tésre. Amellett, hogy ez megvalósítható a nem perturbatív renormálás által
[76, 77] az RG különösen hatékony eszközt kínál az átalakulási pont köze-
lében megjelenő kritikus viselkedés tanulmányozására.
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4.3. A renormálásicsoport-egyenletek

Értekezésemben az euklideszi téridőben kvantált CL-modell ellentag nél-
küli, Ju ill. Jl spektrálfüggvények által bevezetett változatait, továbbá az
ohmikus disszipáció ellentag bevezetésével értelmezett esetét vizsgálom. A
modell ezen változatait a diszkrét spektrumú hőfürdő esetéhez hasonlóan
generáló funkcionál által definiálhatjuk a

Z =
1

N ′

∫

Dq exp

{∫ ∞

−∞

[

1

2
M(∂τq)

2 + V (q)

]

dτ + ∆S

}

, (91)

∆S =
1

2

∫ ∞

−∞
q̄(ω)Σ(ω)q̄(−ω)dω, (92)

q̄(ω) =
1√
2π

∫ ∞

−∞
q(τ)e−iτωdτ (93)

egyenletek segítségével, ahol a Σ-val jelölt, sajátenergiának nevezett mennyi-
séget a a bevezetni kívánt spektrálfüggvény paraméterei segítségével a

Σ =
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ΣΩ,r(ω) = η|ω| az ellentag bevezetésével

tekintett ohmikus

disszipáció esetén,

Σu(ω) = −2η
π

(

Λu − |ω| arctan Λu
|ω|

)

Ju spektrálfüggvény

esetén,

Σl(ω) = − ηΛ2
l

Λl+|ω| Jl spektrálfüggvény

esetén.

(94)

módon definiáljuk. Az egységugrásfüggvény szerinti levágás bevezetése ese-
tén ill. a Lorentz-függvény szerinti levágás bevezetése esetén a sajátener-
giára vonatkozó kifejezést a diszkrét esethez (89) hasonlóan a megfelelő
spektrálfüggvény integrálása által nyerjük.

A CL típusú modellek tanulmányozását a technikai előnyökre tekintettel
WH- és Litim-sémában [45] végeztem. Az RG-egyenletek levezetése során
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a [76] munkát követve az η-t nem tekintettem az energiaskálától függő csa-
tolásnak. Az egyszerűség kedvéért a további számításokat M = 1 egység-
rendszerben végzem, amelyben η tömeg dimenziójú. Érdemes megemlíteni,
hogy ezen keretek között az η-nak megfelelő dimenziótlan η̃ = η

k paraméter
vonatkozásában nem találunk nem triviális fixpontot.

A WH-séma esetén az energiafüggő hatásra az

Sk[q] =

∫ ∞

−∞

1

2

[

q̇2 + Vk(q)

]

dτ +

∫ ∞

−∞

[

1

2
Σ(ω)q̄(−ω)q̄(ω)

]

dω (95)

szerint LPA-t alkalmazva a WH-egyenlet a

V̇k = − k

2π
ln
(

k2 + V ′′
k + Σk

)

(96)

formában adódik, ahol V̇k = k∂k, V ′′
k = ∂2

qVk és Σ(k) = Σ(ω). Amint lát-
ható az alkalmazott közelítésben a WH-séma esetén a nagyenergiájú módu-
sokra történő integrálás a sajátenergia formájától függetlenül analitikusan
elvégezhető.

Az energiaskálától függő potenciál alakjára a

Vk =
1

2
m2

kq
2 +

1

4!
gkq

4 +
N
∑

n=3

g2n(k)

(2n)!
q2n (97)

feltételezést róttam ki, amelyben figyelembe vettük, hogy a renormálás által
negyedfokúnál magasabb rendű tagok is generálódnak. Munkám során a
korábbi numerikus tapasztalatokat felhasználva N = 6-nak választottam a
figyelembe vett csatolások számát.

Az RG-módszert a Wetterich-féle effektívhatás-szemlélet keretében al-
kalmazva LPA-ban a

V̇k =

∫

p

Ṙk

p2 + V ′′
k + Σk +Rk

(98)

egyenlet írható fel, amelyet az

Rk = (k2 − p2)θ(k2 − p2) (99)
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regulátor által definiált Litim-sémában tanulmányoztam. A Litim-sémában
az ohmikus disszipáció és a Lorentz-függvényt tartalmazó spektrálfüggvény
esetén a p szerinti integrálás analitikusan elvégezhető, ezekben az esetekben
a (98) egyenlet a

V̇k =
k2

ηπ
ln

(

1 +
ηk

k2 + V ′′
k

)

, (100)

illetve

V̇k =
k2

π(k2 + V ′′
k )2

×
(

k3 + 2ηΛ2
l arctanh

(

k(k2 + V ′′
k )

k3 + 2k2Λl − 2ηΛ2
l + (k + 2Λl)V ′′

)

+ kV ′′
k

)

(101)

formát ölti.

4.4. A kritikus exponensek vizsgálata

Amint a hőfürdő nélküli oszcillátor esetén is tettük, a konkrét számítások
elvégzése során a potenciálra vonatkozó (97) egyenletet alkalmazva a (96)
ill. (98) parciális differenciálegyenleteket közönséges differenciálegyenlet-
rendszerre vezethetjük vissza, amelynek kezdeti feltételeit a csatolásoknak
a Λ levágásnál felvett értékei adják meg.

A differenciálegyenlet-rendszer megoldása rendkívül rossz numerikus tu-
lajdonságokkal rendelkezik, a vizsgált tartományban a csatolások értékei
több nagyságrenden keresztül változnak. Az egyenletek megoldásának minél
pontosabb meghatározása céljából olyan Runge–Kutta-módszert alkalmazó
programot írtam, amely a csatolások változásainak megfelelően adaptívan
változtatja a differenciálegyenletek numerikus megoldása során alkalmazott
lépésközt. A lépésköz változtatása különösen fontos a szimmetriasértett
fázisban az energiaskála kritikus értékének meghatározása során.
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A szimmetrikus és a szimmetriasértett fázis közötti különbség a propagá-
tor eltérő viselkedésében mutatkozik meg. Általánosan az inverz propagátor
a

G−1 = k2 + M2
k, (102)

módon definiálható, ahol M2
k = m2

k + Σk a hőfürdővel történő kölcsönha-
tás által felöltöztetett tömeg, amely az m2

k csatolás mellett a sajátenergiá-
nak a spektrálfüggvény levágásának értékétől függő járulékát is tartalmazza.
A szimmetrikus fázisban az energiaskálától függő inverz propagátor értéke
mindig pozitív, a szimmetriasértett fázis esetén azonban k valamely adott
értékénél az inverz propagátor zérussá válik. Az energiaskála ezen kritikus
értékét a továbbiakban kc-vel jelöljük. Általában a csatolásokra levezett
RG-egyenletek olyan nevezőt tartalmaznak, amely kc értékét megközelítve
nullához tart, ezért a a szimmetriasértett fázisban az egyenletek numeri-
kus megoldása során (a szimmetrikus fázissal ellentétben) nem érhetjük el
a k → 0 határesetet [3, 79, 80]. Ilyen módon a számítások során az ered-
mények részletes kiértékelése nélkül is eldönthető, hogy a fázistér vizsgált
pontja a szimmetrikus vagy a szimmetriasértett fázishoz tartozik.

A differenciál-egyenletrendszer megoldására adaptív lépésközt alkalmazó
program esetén a kritikus érték megközelítése során a csatolások gyors vál-
tozásának következtében a lépésköz értéke sok nagyságrendet csökken. Ez-
által a futási eredmények kitüntetnek egy értéket az energiaskálán, melyet
a kc-vel azonosítottam.

Vizsgálataim során a leírtak szerint azonosítva a fázisokat a szuszcep-
tibilitás és a korrelációs hossz kritikus viselkedését tanulmányoztam. Az
általános szuszceptibilitást a szimmetrikus fázisban a

χ = Gk→0 =
1

M2
0

, (103)

módon definiálhatjuk, amely a fázisátalakulási ponthoz közeledve divergál.
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Ezáltal a vizsgált esetekben a szuszceptibilitás

χ =
1

M2
0

=
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


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


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



m2
0 az ellentag bevezetésével tekintett

ohmikus disszipáció esetén,

m2
0 − 2η

π Λu az egységugrásfüggvény

szerinti levágás esetén,

m2
0 − ηΛl a Lorentz-függvény szerinti levágás esetén.

(104)

A megfelelő kritikus exponenst a szokásos módon γ-val jelölve a kritikus
viselkedés

χ ∼ (ηc − η)−γ (105)

alakban írható, ahol ηc az η paraméter fázisátalakulási ponthoz tartozó kri-
tikus értéke. Az 5. ábra WH-séma és ohmikus disszipáció esetén szemlélteti
a szuszceptibilitás viselkedését.

A szimmetriasértett fázisban a propagátor divergálása által meghatá-
rozott kc érték az elmélet kitüntetett impulzus értékének felel meg, amely-
nél alacsony energiájú gerjesztések által alkotott kondenzátum megjelenését
feltételezhetjük [3]. Ezáltal magától értetődően feltétezhetjük, hogy kc re-
ciproka a kondenzátum méretét jellemzi, így a korrelációs hossz ξ = 1

kc

módon határozható meg [3, 81]. Ezt az értéket numerikusan meghatározva
szintén kritikus viselkedést tapasztalunk, azaz

ξ ∼ (η − ηc)
−ν , (106)

ahol szokásos módon ν jelöli a ξ korrelációs hosszhoz tartozó kritikus ex-
ponenst. A ν exponens értéke a γ-hoz hasonlóan a fázisátalakulási pont
közelében a log-log skálán ábrázolt adatokra illesztett egyenes meredekségé-
ből leolvasható.

A frekvencialevágás nélküli ohmikus disszipáció esetén a γ exponens
értékét már tanulmányozták a szakirodalomban [76]. Ezt az esetet WH-
sémában vizsgálva γ = 1 és ν = 1 értéket kaptam.
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5. ábra : A χ szuszceptibilitás skálázása a kritikus ηc érték közelében.
A log-log skálán ábrázolt görbe meredeksége a γ = 1 értéket szolgáltatja
a kritikus exponensre. Az ábra a levágást nem tartalmazó ohmikus spekt-
rálfüggvény esetén WH-sémában N = 6 csatolás figyelembevételével kapott
eredményeket mutatja.

A γ exponensre kapott érték eltér a [76]-ban szereplő értéktől. Az elté-
rés azzal magyarázható, hogy az idézett munkában más numerikus módszert
alkalmaztak az exponens meghatározására. Az általam alkalmazott módszer
során a kritikus viselkedést tanulmányozva pontosabban megközelítettem a
fázisátalakulási pontot és lehetőség nyílt arra, hogy ηc numerikus értéké-
nek utolsó jegyeit a kritikus viselkedés log-log skálán történő ábrázolása
során az adatpontokra illesztett egyenes által határozzam meg. Ezeknek
köszönhetően az exponensek értékének jóval pontosabb meghatározása vált
lehetségessé.
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A modell olyan változatai esetén, amelyekben a spektrálfüggvény frek-
vencialevágást tartalmaz a kritikus exponensek természetesen függenek a
levágástól, ezért a γ és a ν exponenseket a levágás értékét széles tarto-
mányban változtatva vizsgáltam. A számításokat WH-sémában mind az
egységugrásfüggvény, mind a Lorentz-függvény által bevezetett levágás ese-
tén elvégeztem. A továbbiakban az egyszerűség kedvéért a kétféle levágás
hasonlóságát hangsúlyozva bevezetem a Λx jelölést, amely mind Λu-t, mind
Λl-t helyettesíti.

A γ exponensre vonatkozó eredményeket a 6. ábra szemlélteti. Megál-
lapíthatjuk, hogy Λx értékét kicsinek választva, azaz Λx IR határesetében
mind a két fajta levágás esetén visszanyertem a levágás nélküli esetben
kapott γ = 1 értéket. Az alacsony Λx értékeknél látható széles platóból kö-
vetkezően ezen sémában az exponens értéke több nagyságrenden keresztül
függetlennek mutatkozik a levágás értékétől és fajtájától. Λx UV határese-
tében szintén levágásfüggetlenséget tapasztaltam, ekkor viszont γ ≈ 0.57

érték adódik. Azonban a nagy Λx esetén kapott értékeket nem tekinthetjük
fizikailag relevánsnak, mert ekkor a Λx paraméter nem hanyagolható el a
renormálás során bevezetett UV-levágáshoz képest, melynek értékét [76]-t
követve mindig Λ = 104-nek választottuk. A 6. ábra középső tartományán
tapasztalt gyors változás bizonyára a Λx és ηc közötti több nagyságrendnyi
különbségnek a fázisátalakulási pont eltolódása miatti csökkenésével ma-
gyarázható. A numerikus eredmények szerint ηc jelentősen függ Λx-től,
ηc ∼ Λ−1

x alakú korrelációt mutatva.
A korrelációs hossz kritikus viselkedését hasonló módon vizsgálva a 7.

ábrán ismertetett eredményeket kapjuk. A Λx levágás IR határesetében az
exponens értéke ν = 1-hez tart, amely szintén megegyezik a levágás nélküli
esetben kapott értékkel. Amint az ábráról látszik IR határesetben az adott
renormálási sémában ν is független a levágás értékétől és fajtájától. A Λx

levágás UV határesetében ν ≈ 0.3, de amint említettük az ekkor kapott
eredmény nem hordoz fizikai jelentést.

Eredményeimet ellenőrizve a Lorentz-függvényt tartalmazó levágás és az
ohmikus disszipáció esetén a Litim-féle renormálási sémában is elvégeztem
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6. ábra : A γ kritikus exponens értéke a frekvencialevágás függvényében.
Az x index az u ill. l indexeket helyettesíti. A háromszögek az egységugrás-
függvényt tartalmazó spektrálfüggvény esetén, a körök a Lorentz-függvényt
tartalmazó spektrálfüggvény esetén mutatják a kritikus exponens értékét.
Az ábra az m2(Λ) = −1, g(Λ) = 1, Λ = 104 módon megválasztott kezdeti
feltételekre vonatkozik.

a γ exponens vizsgálatát. Ezeknek a számításaimnak az eredményei a 8.
ábrán láthatóak.

Az ábra két kiugró pontot tartalmaz, melyeket a következtetések levo-
nása során nem vehetünk figyelembe. A Λl = 0, 1 érték esetén a program
futása során gyűjtött adatokat részletesebben megvizsgálva a legmagasabb
rendű csatolás tekintetében rendhagyó viselkedést tapasztalhatunk. Ez arra
utal, hogy az adott tartományban a vizsgálataim során alkalmazott eljá-
rás nem kielégítő. Ez a probléma bizonyára technikai jellegű, hiszen az
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7. ábra : A ν kritikus exponens értéke a frekvencialevágás függvényében.
Az x index az u ill. l indexeket helyettesíti. A háromszögek az egységugrás-
függvényt tartalmazó spektrálfüggvény esetén, a körök a Lorentz-függvényt
tartalmazó spektrálfüggvény esetén mutatják a kritikus exponens értékét.
Az ábra az m2(Λ) = −1, g(Λ) = 1, Λ = 104 módon megválasztott kezdeti
feltételekre vonatkozik.

LPA mellett további közelítéseket alkalmaztunk a magasabb rendű csato-
lások elhanyagolása, differenciálegyenletek numerikus megoldása és a spon-
tán szimmetriasértés azonosítása alkalmazott módszer által. (Az utóbbi az
η paraméter kritikus értékének meghatározásán keresztül befolyásolhatja a
szimmetrikus fázisban nyert eredményeket.)

A legszélső adatpont (Λl = 0, 001) esetén problémát jelent, hogy ekkor
η kritikus értéke (ηc ≈ 2311) nagyon nagy. Ekkor Λl nagy értékei esetén
adott érvelést megismételve kétségessé válik az eredmények megbízhatósága.
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8. ábra : A γ kritikus exponens értéke a Lorentz-függvényt tartalmazó
levágás esetén Litim-féle renormálási sémában. Az ábra az m2(Λ) = −1,
g(Λ) = 1, Λ = 104 módon megválasztott kezdeti feltételekre vonatkozik.

Ezeket figyelembe véve a Litim-sémára vonatkozó számításaim megerősítik
a WH-séma esetén nyert γ = 1 eredményt.

Összefoglalva eredményeimet a CL típusú modellek RG-módszerrel tör-
ténő vizsgálata a szuszceptibilitás és a korrelációs hossz kritikus viselkedé-
séhez tartozó exponens pontosabb meghatározása által lehetővé tette a mo-
dellekben megjelenő fázisátalakulás pontosabb leírását és igazolta a modell
különböző spektrálfüggvényt tekintő változatainak hasonló kritikus viselke-
dését. A fejezetben bemutatott eredmények az Annals of Physics folyóirat-
ban kerültek publikálásra [82].
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5. A sine-Gordon-modell nagyenergiás kiterjeszté-
sének vizsgálata

5.1. A sine-Gordon-modell

A kétdimenziós sine-Gordon-modell (továbbiakban SG-modell) a különböző
szilárdtestfizikai alkalmazások mellett több érdekes tulajdonsággal (periodi-
kusság, végtelen rendű fázisátalakulás, integrálhatóság) rendelkezik, melyek
a modell vizsgálatát elméleti szempontból indokolttá teszik. A modell RG-
módszerrel történő tanulmányozásával már LPA-ra szorítkozva [83-85] is
jelentős eredményeket értek el, melyeket kiegészítettek a hullámfüggvény-
renormálás [86-88] figyelembevételével végzett vizsgálatok.

Értekezésemben a modell nagyenergiás kiterjesztését vizsgálom, amely
az eredeti modell csatolásainak bővítését igényli. Ezt impulzusfüggő hullám-
függvény-renormálás alkalmazásával valósítjuk meg, a fázistér bővítését egy
új csatolás bevezetésére korlátozva. Ennek a kiterjesztésnek tanulmányo-
zása az aszimptotikus biztonság és a dualitás kérdésének teljesebb tárgya-
lását teszi lehetővé.

A továbbiakban a modell áttekintése után a nagyenergiás viselkedés kér-
désének RG szemléletére térek ki, majd az impulzustól független hullámfügg-
vény-renormálás esetén nyert fázisszerkezet és az új csatolás figyelembevéte-
lének hatását tárgyalom. Ezt követően az SG-modell duális szimmetriáját,
továbbá a tömeges SG-modell és az SG-modell tanulmányozott kiterjesztése
között fennálló duális kapcsolatot ismertetem. Az SG-modellt az

L =
1

2
(∂Eφ)2 + cos(φ) (105)

euklideszi Lagrange-sűrűség által definiálhatjuk, melynek Minkowski-téri-
dőbeli megfelelője egyetlen térdimenzió esetén az SG-egyenletként [89] is-
mert

∂2
t φ(x, t) − ∂2

xφ(x, t) + sin(φ(x, t)) = 0 (106)

mozgásegyenletet szolgáltatja a φ térváltozóra.
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A Lagrange-sűrűség potenciálját a

V (φ) = u cos(βφ) (107)

módon általánosíthatjuk, bevezetve a kölcsönhatás erősségét jellemző u

paramétert és a térváltozóban periodikus potenciál periódushosszát megvál-
toztató β paramétert. Mivel a β paramétert a kinetikus tag együtthatójába
olvaszthatjuk ha a Lagrange-sűrűséget egy új φ′ = βφ térváltozóval fejezzük
ki, a továbbiakban az

LSG =
z

2
(∂Eφ)2 + u cos(φ) (108)

Lagrange-sűrűséggel definiált modellt tekintem, a β paraméter helyett a
kinetikus tag z együtthatóját bevezetve.

A modell felírásához több irányból is eljuthatunk, az SG-egyenlet a tor-
ziós szállal összekapcsolt ingarendszer folytonos határesetet tekintő általá-
nosításától [7, 188] kezdve egyes húrelméleti problémákig [90, 91] a fizika szá-
mos területén felbukkan. Kísérleti szempontból a modell jelentősége nagy
részben annak köszönhető, hogy a kétdimenziós Coulomb-gázzal [92] ekvi-
valensnek tekinthető [7, 93], így több alkalmazási lehetősége ismert [94].
Erre láthatunk példát a szuperfolyékony 4He és szupravezető filmek [92],
a kétdimenziós kristályok olvadásának [95] és a szilárd testek felületeinek
[96] vizsgálata során. Továbbá az SG-modell több térváltozóra történő ál-
talánosításával mind a mágneses csatolással [97] mind a Josephson típusú
csatolással [98] összekapcsolt szupravezető rétegek tárgyalhatóak.

Emellett a nem lineáris rendszerek tanulmányozására lehetőséget nyújtó
[99] SG-egyenlet megjelenik például a rácshibák modellezésére alkalmazható
Frenkel–Kontorova-modell folytonos közelítésében [100, 101], nem lineáris
optikai rendszerek [102] vizsgálatában és a DNS-molekula leírása során [103]
is.

Bár természetesen az SG-modell magasabb térdimenzióban is tekinthető
[7, 88, 104, 105] tárgyalásomat az irodalomban gyakran vizsgált kétdimen-
ziós modellre korlátozom. Ez a Coulomb-gáznak történő megfeleltetésen
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kívül a korábban említett Ising típusú modellekkel is szoros kapcsolatban
van, mivel a kétdimenziós XY-spin-modell közelítése az SG-modellre ve-
zet [7, 186]. Emellett az SG-modell tömegtagot tartalmazó kiterjesztése
a Yukawa-gáz modelljével ekvivalens [7], továbbá a modell következő feje-
zetben tárgyalt megfelelő általánosításai fermionikus elméletek bozonizált
megfelelőinek tekinthetőek. Maga az SG-modell megfelelő paraméterekkel
a tömeges Thirring-modell bozonizáltjának tekinthető [106].

Bár az SG-modell részecskefizikai modellként nem tekinthető realiszti-
kusnak, mégis számos, a nagyenergiás fizika nézőpontjából is érdekes elmé-
leti vizsgálat tárgyát képezi a modell különleges tulajdonságainak köszön-
hetően. Ezek közül a legkönnyebben látható, hogy a Lagrange-sűrűség a
Z2-szimmetria mellett egy további diszkrét szimmetriával rendelkezik, mi-
vel a potenciál a térváltozóban periodikus. Ennek következtében a más
esetekben gyakran alkalmazott perturbatív megközelítés, amely a potenciál
Taylor-sorfejtésén alapul megsérti a modell szimmetriáját, így nempertur-
batív módszerek alkalmazása válhat szükségessé [107].

Az elmélet egyik érdekes jellemzője, hogy fázisszerkezete nem triviá-
lis, így az RG-módszer alkalmazása különösen indokolttá válik. A fázisok
megkülönböztetésének problémáját több módon is megközelíthetjük. Erre
szemléletes utat kínál az XY-spin-modell nyelvét alkalmazva a topologikus
rendezettség fogalmának bevezetése [36], mindazáltal az RG szemléletének
esetén egyszerűbb a dimenziótlan potenciál viselkedésének vagy a potenciál
IR univerzalitásának vizsgálata [3]. Szimmetria szempontjából a fázisátala-
kulás a modell periodikussága következtében fennálló diszkrét szimmetria
spontán sérülésével hozható kapcsolatba [83, 108]. A modell két fázissal ren-
delkezik, melyek között Kosterlitz-Thouless típusú fázisátalakulást [31-35,
109-112] figyelhetünk meg.

A fázisátalakulást meghatározó kritikus fixpont mellett az RG-egyenlet
más fixpontjainak vizsgálata is érdekes. A fixpontok definíció szerint ská-
lainvariáns rendszernek, azaz globális dilatációs szimmetriával rendelkező
elméletnek feleltethetőek meg. Nagyon gyakran a skálainvariáns modellek
a konformális transzformációkkal, azaz a szögtartó koordinátatranszformá-
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ciókkal szemben is invariánsak, annak ellenére, hogy ez nem feltétele a ská-
lainvarianciának [113].

A kétdimenziós téridő kitüntetett, mivel ekkor a konformális szimmetria
által generált algebra végtelen sok generátorral rendelkezik [114]. A gene-
rátorok a Virasoro-algebra szerinti

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (109)

kommutációs relációt [7, 115] elégítik ki, ahol a c az ún. centrális töltés,
melynek értéke az adott fixpontnak megfelelő elméletet jellemzi. Az RG-
módszer és a konformális szimmetrián alapuló megközelítés között Zamo-
lodchikov tétele teremt kapcsolatot [7, 116-118], amely a csatolások olyan
függvényének konstruálására ad lehetőséget, melynek értéke a trajektóri-
ákon a szokásos irányban (az energiaskálát csökkentve) haladva monoton
csökken és a megfelelő fixpontokban a jellemző centrális töltés értékét veszi
fel.

Az SG-modell iránti érdeklődéshez az is hozzájárul, hogy az elmélet
az ún. integrálható modellek közé tartozik [119]. A térelméletben, amely
végtelen sok szabadsági fokkal írható le, a klasszikus modell integrálha-
tósága végtelen sok független megmaradó mennyiség létezésében nyilvánul
meg [120]. Az integrálhatóság különösen érdekessé válik a kvantált elmélet
vizsgálata során mivel a szórásmátrix és a korrelációs függvények kiszámí-
tásának új megközelítését veti fel [120].

A jelentős irodalommal rendelkező SG-modell vizsgálatával kapcsolat-
ban több módszert (az S-mátrix faktorizálása [121, 122], önmegoldó kvantá-
lás [120], peremfeltételek alkalmazása [123-126]) meg lehet említeni, melyek
tárgyalása értekezésem témáján túlmutat.

A kétdimenziós modellek értékeléséhez érdemes kiemelni, hogy bár az
alacsonydimenziós tárgyalás hátrányt jelent a négydimenziós realisztikus
kvantumtérelméleti modellek nézőpontjából, a kétdimenziós téridő kitün-
tetett szerepet játszik a húrelmélet szempontjából. Ez annak köszönhető,
hogy az egydimenziós húr a téridőbeli mozgása során egy kétdimenziós ún.
világfelületet söpör végig [127, 128], így a húr pontjainak koordinátái a
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kétdimenziós világfelületen értelmezett térelmélet által [129] értelmezhe-
tőek. A kétdimenziós modellek iránti érdeklődést az is növeli [120], hogy
az AdS/CFT megfeleltetés [130] feltételezése szerint létezik olyan négydi-
menziós szuperszimmetrikus konformális mértékelmélet melynek húrelmé-
leti modell feleltethető meg.

A teljesség kedvéért kiemelem, hogy az eredeti modell több kiterjesztése
ill. módosítása ismert az irodalomban melyekre SG típusú modellekként
hivatkozhatunk [7]. Így megemlíthető a tömeges [108, 131, 132], a szuper-
szimmetrikus [133, 134], és a kétfrekvenciás [135-139] a sinh-Gordon-modell
[140, 141], az általánosított SG-modell [104] továbbá a következő fejezetben
tárgyalt réteges modellek.

5.2. A nagyenergiás kiterjesztés RG vizsgálata

Az RG-módszer alkalmazása egy adott elmélet nagyenergiás kiterjesztésé-
nek kutatására a korábban bemutatottól kissé eltérő megközelítést igényel.
A különbség matematikailag abban mutatkozik meg, hogy a nagyenergiás
viselkedést tanulmányozva az RG-egyenletek megoldása során a korábbiak-
kal ellentétben az energiaskála növekedésének irányába haladunk.

A renormálásnak ilyen alkalmazását elsősorban a részecskefizika szem-
lélete indokolja. A térelméleti formalizmus hasonlósága ellenére a részecs-
kefizika megközelítése általában különbözik a szilárdtestfizikáétól [19]. A
részecskefizikában gyakran jelentkezik a korlátozott energiájú kísérletekre
támaszkodva felállított fenomenologikus modellek nagyenergiás kiterjeszté-
sének igénye. Más szavakkal élve, megpróbáljuk megkeresni azt az elmé-
letet, amely amellett, hogy reprodukálja a kísérletek ismert eredményeit,
leírja azon mikroszkopikus folyamatokat is, melyek megfigyelését a detekto-
rok felbontása nem teszi lehetővé.

Ez az RG-módszer által úgy valósítható meg, hogy egy alacsony UV-
levágással definiált modellt tekintünk, majd meghatározzuk a csatolásokra
vonatkozó differenciálegyenletek megoldásának az UV-levágásnál nagyobb
energiájú tartományra vonatkozó értékeit. Az ilyen irányú vizsgálatok azért
is érdekesek, mert lehetőséget nyújtanak a fázisátalakulás és a fázis fogal-
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mának általánosítására is. Eszerint a nagyenergiás viselkedés szempontjá-
ból különböző fázisúaknak tekinthetjük egy modell paraméterterének olyan
pontjait is, amelyek között a minőségi különbség csupán a nagyenergiás ki-
terjesztéseik között látható. Ezáltal lehetőség nyílik olyan fázisátalakulások
és kritikus viselkedés tanulmányozására is, melyek hagyományos módon,
csupán az alacsonyenergiás viselkedésre tekintve rejtve maradnának.

A nagyenergiás viselkedést jellemezve az egyik legfontosabb kérdés, hogy
a fizikai mennyiségekre vonatkozó RG-egyenletek megoldása a k → ∞ ha-
táresetben divergál vagy véges értékhez tart. Az első eset nagyon gyakori,
hiszen az irreleváns módon skálázó (azaz az UV-tartomány felé haladva
növekvő) csatolások esetén a divergencia elkerülése speciális feltételeket igé-
nyel. Elméletileg azonban a másik lehetőség is megvalósulhat, hiszen például
a kvantum-színdinamika esetén a perturbatív eredmények szerint az energi-
askálát növelve a kölcsönhatás erőssége nullához tart [143], amely jelenséget
aszimptotikus szabadságnak nevezünk.

Az elméleteknek k → ∞ határeset viselkedése szerinti osztályozását
az aszimptotikus szabadság általánosítása, az aszimptotikus biztonság fo-
galma [3, 10, 144] írja le. Aszimptotikus biztonságról akkor beszélünk ha
az RG-egyenletek megoldásának ezen határesetéhez is jól definiált, véges
csatolásokkal rendelkező elmélet tartozik. Ekkor az energiaskála növelésével
az RG-trajektóriák egy fixpontba folynak bele, melyhez az eredeti hatás
paramétereinek véges, ugyanakkor nem feltétlenül triviális értéke tartozik.
Ilyen fixpont létezését mutatták ki például a kvantum-Einstein-gravitáció
[10, 58, 59] vizsgálata során. Ezen modell vizsgálta által az utóbbi idők-
ben előtérbe került az RG-módszer alkalmazása a nagyenergiás viselkedés
tanulmányozására [142], így az SG modell ezen szempontból történő vizsgá-
lata is időszerűvé vált, amelyre a modell alább ismertetett közelítése nyújt
lehetőséget.

A konkrét egyenletek tárgyalása előtt érdemes hangsúlyozni, hogy a
modellek nagyenergiás viselkedésének vizsgálatából levonható fizikai követ-
keztetések általában korlátozottak, mivel a modellek alkalmazhatóságának
energiatartományából kilépve a tanulmányozott rendszer leírása új szabad-



76 5. fejezet

sági fokok figyelembevételét igényelheti. Ezen vizsgálatok mégis fontosak,
mert kijelölhetik a modell érvényességi körét és ötleteket adhatnak az el-
mélet továbbfejlesztéséhez. Például közismert, hogy a gyenge kölcsönhatás
Fermi-féle elméletének az unitaritást sértő nagyenergiás viselkedése [38] az
elmélet módosításának szükségességére hívja fel a figyelmet.

5.3. A sine-Gordon-modell fázisszerkezete

Értekezésemben az SG-modellt Callan–Symanzik-sémában, azaz Rk(p) =

k2 regulátor esetén tárgyalom és csupán a skálafüggő potenciál Fourier-
sorának első tagját veszem figyelembe, amely az eredeti potenciálban is
szerepel. Ekkor a Γk funkcionál formájára a

Γk =

∫

x

[zk
2

(∂Eφ)2 + Vk(φ)
]

=

∫

x

[zk
2

(∂Eφ)2 + uk cos(φ)
]

(110)

feltételt kiróva a dimenziótlan ũ = u
k2 és z = z̃ csatolásokra az

˙̃u = −2ũ+
1

2πũz

[

1 −
√

1 − ũ2
]

,

ż = − 1

24π

ũ2

(1 − ũ2)3/2
(111)

egyenleteket nyerjük, melyek megoldását már tanulmányozták az irodalom-
ban [86]. Az ismertetésre kerülő fázisszerkezetet a 9. ábra szemlélteti.

Mivel ũ = 0-ban az első egyenlet nincs értelmezve, szigorúan tekintve az
egyenletrendszer nem rendelkezik fixponttal. Ugyanakkor az első egyenlet
ũ = 0 körüli

˙̃u = −2ũ+
1

2πũz

[

1 −
√

1 − ũ2
]

= −2ũ+
1

2πz

[

ũ

2

]

+ O(ũ3) (112)

sorfejtéséből látható, hogy a határesetet értelmezve az ũ = 0 pontokat fix-
pontoknak lehet tekinteni. Ezek közül különleges a z = 1

8π értékkel rendel-
kező, ún. Kosterlitz–Thouless-pont, amely elválasztja egymástól a külön-
böző viselkedésű fixpontokat. A z > 1

8π esetén az ũ csatolás relevánsan, míg
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9. ábra : Az SG-modell fázisszerkezete. Az 1
8πz paraméterhez tartozó

tengely skálázása logaritmikus. Az ábra szemlélteti, hogy az ũ = 0 egyenes
pontjai, továbbá az (ũ = 1, z → 0) és (ũ = 1, z → ∞) pontok fixpontoknak
tekinthetőek.

z < 1
8π esetén irrelevánsan skálázik, ezért az ũ = 0 egyenes előbbi pontjai

IR-taszító míg az utóbbiak IR-vonzó fixpontoknak tekinthetőek.
Ebből következően a Kosterlitz–Thouless-pont kritikus fixpontnak te-

kinthető, amely a fázistér trajektóriáit két különböző alacsonyenergiás vi-
selkedést mutató csoportba osztja. Az alacsonyenergiás viselkedést tekintve
az energiaskála IR értékei felé haladva az ũ = 0-ban végződő trajektóriák a
szimmetrikus fázishoz [3], míg a többi trajektória a szimmetriasértett fázis-
hoz tartozik, ezáltal a fázisátalakulás kimutatható.

Az ábrázolt trajektóriák további fixpontok létezését sugallják melyeket
a (111) egyenletek átparametrizálásával találhatunk meg. Az ω =

√
1 − ũ2,

χ = 1
ωz és ∂τ = ω2k∂k módon bevezetett új változók segítségével az egyen-
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letrendszer a

∂τω = 2ω(1 − ω2) − ω2χ

2π
(1 − ω),

∂τχ = χ2 1 − ω2

24π
− 2χ(1 − ω2) +

ωχ2

2π
(1 − ω) (113)

alakot ölti, mely a (χ = 0, ω = 0) fixpontot szolgáltatja, amely az eredeti
változókat tekintve az ũ→ 1 és z → ∞ határesetnek felel meg. Ezen a szim-
metriasértett fázishoz tartozó trajektóriákat összegyűjtő IR-vonzó fixpont
létezése nemrég vált ismertté az irodalomban [86, 87].

Az IR fixpont megjelenését más skaláris modellek is megfigyelhetjük
[3, 87, 81, 145]. A fázistér az IR fixponthoz közeli tartománya a kriti-
kus fixponttól való távolság ellenére szintén érdekes lehet a fázisátalakulás
vizsgálata során, mivel bizonyos esetekben lehetőséget kínál a korrelációs
hossz kritikus viselkedésének meghatározására [145]. Az SG-modell esetén
is, akárcsak a CL-modell esetén az energia csökkentése során a szingulari-
tás megjelenése által kitüntetett energiaérték reciproka által meghatározott
távolságérték a spontán szimmetriasértés által kialakuló rendezett fázisra
jellemző korrelációs hossz becslésére nyújt lehetőséget [3]. A spontán szim-
metriasértett fázisban tapasztalt viselkedést mélyebben megvizsgálva kézen-
fekvő azon értelmezés mely szerint a fixpont környezetében az egyenletek
szinguláris viselkedése azt jelzi, hogy a spontán-szimmetriasértett fázisban
minőségileg új kollektív gerjesztések jelennek meg, melyek leírása kényel-
metlen a modell nagyenergiás viselkedésének tanulmányozása során alkal-
mazott szabadsági fokok nyelvén. Ezt úgy is megfogalmazhatjuk, hogy bi-
zonyos értelemben az RG-módszer az eredeti modell alkalmazhatóságának
alacsonyenergiás korlátját jelöli ki.

A 9. ábra az egyenletek további, nagyenergiás fixpontjának létezését
veti fel, melyet az ω =

√
1 − ũ2 és ζ = zω változókat bevezetve találhatunk
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meg. Ekkor a csatolásokra vonatkozó egyenletek a

∂τω = 2ζω(1 − ω2) − ω2

2π
(1 − ω),

∂τζ =

(

2ζ2 − ζ

24π

)

(

1 − ω2
)

− ωζ

2π
(1 − ω) (114)

alakba írhatóak melyek az (ω = 0, ζ = 0) fixpontot szolgáltatják. Ez a
fixpont, mely az ũ→ 1 és z → 0 határesetnek felel meg UV-vonzó, azaz ha
a szokásos módon az IR-tartomány felé haladnánk, akkor taszítaná a trajek-
tóriákat. Ha úgy tekintjük, hogy a k → ∞ határesetben a trajektóriák ezen
fixpontba folynak bele, akkor ezen nem triviális (nem gaussi) fixpontban az
aszimptotikus biztonság példáját láthatjuk. Ugyanakkor hangsúlyozni kell,
hogy a fázistér ezen pontja csupán határesetként értelmezhető, nem része
az eredeti egyenletrendszer értelmezési tartományának és a 10. ábrán szem-
léltetett megoldások szerint a trajektóriák már a k skála véges értékénél
belefolynak a fixpontba. Az ismertetett fixpontok által a fázistér trajek-
tóriái három csoportba sorolhatóak aszerint, hogy az adott trajektória az
ũ = 1 UV fixpontot köti össze az ũ = 0 egyenes egy fixpontjával, az ũ = 1

UV fixpontot köti össze az ũ = 1 IR fixponttal, vagy az ũ = 0 egyenes egy
fixpontját köti össze az ũ = 1 IR fixponttal.

A z és az ũ csatolás viselkedését tanulmányozva látható, hogy az ener-
giaskála egy adott értékénél az egyenletek megoldása szingulárissá válik.
Mindazáltal az ũ csatolás hirtelen növekedése és a z csatolás hirtelen csökke-
nése bizonyos értelemben kompenzálja egymást, ezért a trajektóriák folyása
reguláris marad, az UV fixponthoz tartozó trajektóriákra a dũ

dz differen-
ciálhányados a z → 0, ũ → 1 határesetben nullához tart. Az UV fixpont
környezetében a csatolások viselkedése a z = (1− ũ) 3

2 összefüggéssel közelít-
hető. A csatolások szinguláris viselkedése az IR határesetben tapasztaltak-
hoz hasonlóan egy kritikus kc energiaértéket határoz meg, melynek reciproka
lehetőséget kínál a rendszert jellemző korrelációs hossz definiálására.

Mivel az energiaskála növekedésének irányában haladva nem minden tra-
jektória folyik bele az UV fixpontba, a trajektóriák minőségileg különböző
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10. ábra : Az ũ és a z csatolásokra vonatkozó egyenletek megoldásának vi-
selkedése. Az IR-tartományhoz hasonlóan a hirtelen csökkenés és a hirtelen
növekedés az energiaskála ugyanazon kritikus értékénél jelenik meg.

viselkedése alapján a nagyenergiás viselkedés szempontjából a modell két fá-
zisát különböztethetjük meg. A fázishatárhoz tartozó kritikus kezdeti érté-
keket megközelítve ebben az esetben is lehetőség adódik a kritikus viselkedés
tanulmányozására. A redukált hőmérséklet13 a hullámfüggvény-renormá-
lás kezdeti értékének a kritikustól való eltérésével arányosnak tekinthető a
t ∼ z∗(Λ) − z(Λ) módon. Ezt felhasználva a modell UV-tartományában
is megfigyelhető a korrelációs hossz ln(ξ) ∼ t−ν szerinti viselkedése, azaz a
Kosterlitz–Thouless típusú skálázás.

Az SG-modellt a kétdimenziós XY-spin-modell tárgyalására alkalmazva
az UV-tartományban a szinguláris viselkedés által kijelölt kritikus érték-
nek szemléletes jelentés tulajdonítható. Ekkor alacsony energián a modellt
elképzelhetjük úgy, hogy elemi gerjesztéseinek a vortexeket tekintjük. Az

13A redukált hőmérséklet a hőmérsékletnek a fázisátalakulási hőmérséklettől való elté-
rését jellemző dimenziótlan mennyiség.
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energiaskála növelése a szokásos blokkosítással14 [1, 20, 19] ellentétes folya-
mattal szemléltethető, amely a rendszer egyre kisebb méretű vortexekkel
történő leírásának felel meg. Ekkor a vortexek méretével a rácsállandó ér-
tékéhez közelítve a csomóponthoz rögzített spinek új, elemibb szabadsági
fokait használó leírás válik szükségessé.

5.4. A sine-Gordon modell nagyenergiás kiterjesztése

Az SG-modell nagyenergiás kiterjesztése olyan hatással definiálható, amely
a térváltozó magasabb rendű deriváltjait is tartalmazza. Ezért vizsgála-
taink során a korábbi tárgyaláshoz hasonlóan a potenciál Fourier-sorának
magasabb rendű tagjait mellőzve a Γk funkcionál matematikai formájára a

Γk =

∫

x

[

Zk(∂
2)

2
(∂Eφ)2 + uk cos(φ)

]

(115)

feltevést rójuk ki, melyben a Z-vel jelölt hullámfüggvény-renormálást az
általánosabb tárgyalás céljából operátornak tekintjük.

A modellt Fourier-térben vizsgálva a hullámfüggvény-renormálást egy-
szerűbben, az impulzus függvényeként írhatjuk fel, melynek a továbbiakban
a

Zk(P
2) = z + z1P

2 (116)

sorfejtett alakját tekintjük. Ebben a formában z és z1 operátorok helyett
függvényeket jelölnek, így egyetlen új csatolás bevezetése által figyelembe
vehető. Később látni fogjuk, hogy a z1 csatolás az UV-tartományban akkor
is jelentős értéket vehet fel, ha az energiaskála alacsonyabb helyén értékét
nullának választjuk. Ez egyértelműen mutatja, az új csatolás szükségességét
a nagyenergiás kiterjesztés tanulmányozása során.

14Például az Ising-modellt tekintve az energiaskála csökkentése esetén a renormálás
során alkalmazott transzformáció úgy szemléltethető, hogy az adott lépésben egy na-
gyobb rácsállandóval rendelkező rendszer vizsgálatára térünk át úgy, hogy az eredeti
rendszer egymáshoz közel lévő spinjeiből csoportokat (blokkokat) képezünk, majd egy
adott blokk spinjeit meghatározott szabály szerint egyetlen spinnel reprezentáljuk.
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A továbbiakban bevezetem a Pn jelölést arra az operátorra, amely tet-
szőleges ψ függvényre a Pnψ = (2π)−1

∫ 2π
0 dφ cos(nφ)ψ módon hat. Az

impulzusfüggő hullámfüggvény-renormálásra vonatkozóan a

P 2∂kZk(P
2) = P0

∫

p

k∂kRk,p(V
′′′
k )2

(p2Zk(p2) +Rk,p + V ′′
k )2

×
(

1

(P + p)2Zk((P + p)2) +Rk,P+p + V ′′
k

− 1

p2Zk(p2) +Rk,p + V ′′
k

)

(117)

RG-egyenlet áll fenn.
A modell vizsgálata során a legfontosabb önálló eredményem a z és z1

csatolásokra vonatkozó RG-egyenleteknek a fenti egyenletből történő leveze-
tése volt. A levezetést a b = 1 paraméterrel tekintett CSS-regulátor esetére
végeztem el. A terjedelmes, nehezen automatizálható számítások eredmé-
nyét a az Acta Physica Debrecina folyóiratban publikáltuk [187], értekezé-
semben csupán az Rk,p = k2 regulátorra, azaz a Callan–Symanzik-sémára
vonatkozó végeredményt ismertetem.

Ekkor a dimenziós csatolásokra a

u̇ = P1

∫

p
k2D

ż = 2P0

∫

p
k2V ′′′2D4

[

−∂p2Z − 2z1p
2 + 2p2(∂p2Z)2D

]

ż1 = P0

∫

p
k2V ′′′2D4

[

−2z1

+[24p2z1∂p2Z + 2(∂p2Z)2 + 12z2
1p

4]D
−[12p2(∂p2Z)3 + 36p4z1(∂p2Z)2]D2

+12p4(∂p2Z)4D3

]

, (118)

egyenleteket nyerjük, ahol alkalmaztuk a D = 1
Zkp2+k2+V ′′

k
jelölést a propa-

gátorra.
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A dimenziótlan csatolásokra a

˙̃u = −2ũ− 1

ũ

∫

y

[

1 − Z̃y + 1

[(Z̃y + 1)2 − ũ2]1/2

]

ż =
ũ2

4

∫

y

[−(2∂yZ̃ + 4z̃1y)(Z̃y + 1)

[(Z̃y + 1)2 − ũ2]5/2
+
y(∂yZ̃)2(4(Z̃y + 1)2 + ũ2)

[(Z̃y + 1)2 − ũ2]7/2

]

˙̃z1 = 2z̃1 +
1

48

∫

y

[ −24z̃1(Z̃y + 1)

[(Z̃y + 1)2 − ũ2]5/2

+
(72z̃1(∂yZ̃)y + 6(∂yZ̃)2 + 36z̃2

1y
2)(4(1 + zy + z̃1y

2)2 + ũ2)

[(Z̃y + 1)2 − ũ2]7/2

+
(−36(∂yZ̃)3y − 108z1(∂yZ̃)2y2)(Z̃y + 1)(4(Z̃y + 1)2 + 3ũ2)

[(Z̃y + 1)2 − ũ2]9/2

+
(18(∂yZ̃)4y2)(8(Z̃y + 1)4 + 12(Z̃y + 1)2ũ2 + ũ4)

[(Z̃y + 1)2 − ũ2]11/2

]

(119)

egyenletek adódnak, ahol bevezettük a Z̃ = zy + z̃1y
2, z̃1 = z1k

2 és y = p2

k2

jelöléseket.
Az egyenletek numerikus vizsgálata szerint az új csatolásra a z̃1 ∼ k2

irreleváns skálázás jellemző, minőségileg nem módosítja az IR-tartományra
vonatkozó korábbi eredményeket. Az UV-tartományban azonban jelentős
változást tapasztalhatunk a korábbi fázisszerkezethez képest.

A modell nagyenergiás viselkedését két különböző skálázás versengése
határozza meg. Az RG-egyenletek a pólust megközelítve szingulárisan vi-
selkednek, a z̃1 csatolás növekedése azonban megakadályozhatja a szingula-
ritás megjelenését. Ezáltal amint a 11. ábrán látható a modellben az UV
viselkedés alapján két eltérő fázis különböztethető meg.

A z̃1 csatolás figyelembevétele az UV-tartomány mindkét fázisában új
eredményeket szolgáltat. A szimmetriasértett fázisban az egyenletek szin-
gularitása a korábbiakhoz hasonlóan kitüntet egy kritikus értéket az ener-
giaskálán. Az általa meghatározott korrelációs hossz azonban a szingulari-
tás környezetében a ξ ∼ t−ν módon függ a redukált hőmérséklettől, azaz
Kosterlitz–Thouless helyett Ising típusú kritikus viselkedést mutat, továbbá
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11. ábra : Az SG-modell nagyenergiás kiterjesztésének néhány trajek-
tóriája a z̃1(Λ) = 0,0 kezdeti feltétel esetén. Az ábra a két különböző
nagyenergiás fázist szemlélteti.

a kritikus exponensre ν = 1
4 érték adódik. A másik fázis esetén a k → ∞

határesetben a z̃1 csatolás divergál, megszüntetve a modell aszimptotikus
biztonságát. Ezáltal a z̃1 csatolás bevezetése megsérti az SG-modell fázis-
szerkezetének szimmetriáját.

5.5. A modellben megnyilvánuló dualitás

Az SG-modellt tanulmányozva szembetűnő a 9. ábrán látható fázisszerkezet
szimmetriája. A minőségileg megnyilvánuló tükörszimmetria a

z → 1

z
(120)
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és

k → 1

k
(121)

transzformációk által egyszerűen tanulmányozható. Az első transzformá-
ció (a logaritmikus ábrázolás miatt) közelítőleg a tükrözésnek felel meg, a
második pedig az energiaskálán történő haladás irányát fordítja meg. Az
utóbbi, amely a t = ln( k

Λ ) ún. „renormálási idő” tükrözésének felel meg,
azért szükséges, hogy a szimmetria a trajektóriák irányításának figyelem-
bevétele esetén is fennálljon. Ez a transzformáció a modell alacsony- és
nagyenergiás viselkedését cseréli fel.

A továbbiakban a (120) és (121) transzformációk alkalmazásával nyer-
hető új modellt az adott modell duálisának nevezzük. Az impulzusfüggetlen
hullámfüggvény-renormálás közelítésében tekintett SG-modell trajektóriái-
nak szimmetriája következtében azt mondhatjuk, hogy az SG-modell ebben
az esetben közelítőleg önmaga duálisának tekinthető. Ez nem csupán a
duális fixpont létezésben nyilvánul meg, hanem a fixpont körüli viselkedés
hasonlóságában is, azaz mind az IR, mind az UV fixpont esetén a korrelációs
hossz Kosterlitz–Thouless típusú skálázást mutat ν = 1

2 exponenssel.
Az elméleti fizikában általában a szimmetriák kitüntetett szerepet tölte-

nek be. A duális transzformációhoz tartozó szimmetria is nagy jelentőségű,
mert teljesülése esetén következtetéseket vonhatunk le a modell alacsony-
energiás viselkedéséből a modell nagyenergiás viselkedésére és fordítva, je-
lentősen egyszerűsítve a modell vizsgálatát.

Érdemes megvizsgálni, hogy a hullámfüggvény-renormálás impulzusfüg-
gését figyelembevevő modellnek milyen duális modell feleltethető meg. Mi-
vel a bevezetett z̃1 csatolás irrelevánsan skálázik, ezért a korábbi transzfor-
mációkkal által meghatározott duális modell (mivel változik a trajektóriák
irányítása is) az eredeti modelltől eltérően viselkedik . Ezért kézenfekvőnek
tűnik a (120) és (121) transzformációkat úgy kiterjeszteni, hogy az irre-
levánsan skálázó z̃1 csatolásnak relevánsan skálázó csatolást feleltessenek
meg.

Relevánsan skálázó csatolás bevezetésére az egyik legegyszerűbb lehető-
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ség a modell tömegtaggal történő bővítése, azaz a tömeges SG-modellnek
nevezett [108, 131]

LMSG =
z

2
(∂Eφ)2 +

1

2
mφ2 + u cos(φ) (122)

euklideszi Lagrange-sűrűséggel definiált modell vizsgálata. A tömegtag be-
vezetése jelentős változtatásnak felel meg, mert megsérti az eredeti mo-
dell periodikussága következtében fennálló szimmetriát. A hullámfüggvény-
renormálás impulzusfüggését elhanyagolva a modell dimenziótlan ũ = u

k2 ,

z̃ = z és m̃2 = m2

k2 csatolásaira az

˙̃u = −2ũ+
1

2πũz

[

1 + m̃2 −
√

(1 + m̃2)2 − ũ2
]

,

ż = − 1

24π

ũ2

((1 + m̃2)2 − ũ2)3/2
,

˙̃m2 = −2m̃2. (123)

RG-egyenleteket nyerjük. A m̃2 dimenziótlan csatolás releváns módon skálá-
zik, ezért megváltoztatja az eredeti modell alacsonyenergiás viselkedését, vi-
szont elhanyagolható a nagyenergiás viselkedés tárgyalása során. Így amint
az 5. táblázat kiemeli az IR fixpont környezetében megváltozik a korrelá-
ciós hossz kritikus viselkedésének típusa, míg az UV fixpont környezetében
változatlan marad.

A korábbi transzformációkat célszerű a

z̃1 ↔ m̃2 (124)

transzformációval kiegészíteni ezáltal a z̃1 csatolás figyelembevételével vizs-
gált SG-modell az impulzusfüggetlen hullámfüggvény-renormálással tekin-
tett tömeges SG-modellnek feleltethető meg. A kölcsönös megfeleltetés kö-
vetkeztében a két modell duális párt alkot. Ez a megfeleltetés nem jelent
ekvivalens leképezést, amely az Ising típusú viselkedést mutató fixpontok
kritikus exponensének eltérésében is megnyilvánul. Az egyes modellek UV
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modell UV IR

SG KT típusú, ν = 1/2 KT típusú, ν = 1/2

MSG KT típusú, ν = 1/2 Ising típusú, ν = 1/2

ZSG Ising típusú, ν = 1/4 KT típusú, ν = 1/2

5. táblázat : Az értekezésemben tárgyalt SG típusú modellek esetén az
UV és az IR-tartományban megjelenő szingularitás környezetében az ener-
giaskála kritikus értéke által meghatározott korrelációs hossz kritikus visel-
kedése és a hozzá tartozó exponens értéke. A táblázatban SG a tömegtag
nélküli SG-modellt, MSG tömeges SG-modellt, ZSG az SG-modellnek az új
csatolás bevezetésével nyert nagyenergiás kiterjesztését jelöli, a KT rövidítés
a Kosterlitz–Thouless típusú viselkedésre utal.

és IR fixpontjainak környezetében megfigyelhető kritikus viselkedést az 5.
táblázat foglalja össze.

A tömeges modell vonatkozásában megnyilvánuló duális kapcsolat egy
további motivációt szolgáltathat az SG-modellnek a fejezetben ismertetett,
a hulllámfüggvény-renormálás impulzusfüggését figyelembe vevő bővített
fázistéren történő vizsgálatára. A fejezetben ismertetett eredmények a Phy-
sical Review D folyóiratban kerültek publikálásra [146].
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6. A bozonizált kétdimenziós kvantum-színdinami-
ka vizsgálata a renormálásicsoport-módszerrel

6.1. Alacsonydimenziós modellek

A kvantumtérelméleti modellek vizsgálata során a természet leírásában elért
jelentős sikerek mellett az is nyilvánvalóvá vált, hogy a modellek matema-
tikai kezelése, azaz az elmélet jóslatainak pontos kiszámítása során óriási
technikai nehézségek lépnek fel. Különösen nagy kihívást jelent az erős köl-
csönhatást leíró elmélet, a kvantum-színdinamika alacsonyenergiás viselke-
désének tárgyalása, amely megválaszolatlan kérdéseket vet fel. Megoldatlan
feladat például az erős kölcsönhatás egyik legnyilvánvalóbb tulajdonságá-
nak, a kvarkbezárás jelenségének az elméletből történő levezetése [147].

A problémák megoldásához vezető út keresése során kézenfekvő lehe-
tőség egyszerűbb modellek vizsgálata, amelyek a valóságtól való eltérés
árán matematikailag sokkal könnyebben kezelhetőek, ezáltal ötleteket ad-
hatnak a bonyolultabb realisztikus modellek vizsgálatához. Így az alacsony-
dimenziós kvantumtérelméleti modellek bár nem rendelkeznek közvetlen fizi-
kai jelentéssel, játékmodellként kitűnő lehetőséget nyújtanak új módszerek
kipróbálására mivel jelentősen egyszerűbbek négydimenziós megfelelőjük-
nél. A kvantum-elektrodinamika kétdimenziós téridőben történő tárgya-
lása, a QED2 [148-153] az abeli mértékszimmetria ellenére lehetőséget kí-
nál a kvarkbezárás egyes kérdéseinek vizsgálatára [149, 154-156], továbbá a
kvantum-színdinamika kétdimenziós megfelelőjének a QCD2-nek [150, 157-
160] a keretében a színszám reciproka szerinti sorfejtés [157], a barion spekt-
rum [161-163] és a mezon-barion szórási folyamat [164] tanulmányozható.

A kétdimenziós modellek egyszerűsége abban a minőségi különbségben
is megnyilvánul, hogy ekkor a bozonizációnak nevezett eljárás [16, 106,
161, 165-167] által lehetőség nyílik arra, hogy fermionikus elméleteknek és
mértékelméleteknek skaláris modellt feleltessünk meg, melynek vizsgálatá-
val az eredeti modell tulajdonságaira következtethetünk. Ezen modellek
egyszerűsége azonban nem jelent trivialitást, hiszen a bozonizált model-
lek gyakran periodikus potenciállal leírható önkölcsönhatást tartalmaznak,
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amely a szokásos perturbatív módon nem renormálható. Ez a körülmény
indokolttá teszi ezen bozonizált modelleknek a periodikus SG-modell vizs-
gálatában sikeresen alkalmazott RG-módszerrel történő vizsgálatát.

A továbbiakban az Einstein-féle jelölési módot alkalmazom, mely szerint
az azonos indexek összegzést jelölnek a szumma jel szerepeltetése nélkül. A
kétdimenziós téridő következtében a görög betűs indexek 0-tól 1-ig futnak
továbbá a Minkowski-téridőbeli modellek esetén a jelölések vonatkozásában
a [168] jegyzetben ismertetett kovariáns formalizmust követem, amelyben
x0 = x0 = ct, x1 = −x1 = −x és a g00 = 1, g01 = g10 = 0, g11 = −1

komponensekkel definiált metrikus tenzort alkalmazom.
A kétdimenziós téridő esetén a fermionokat reprezentáló spinorok két-

komponensűek, ezért a fermionikus elméletek definiálása előtt szükséges ki-
térni a γ mátrixok két dimenzióra történő általánosítására. Ennek során
a

{γµ, γν} = 2gµν
I2×2 (124)

antikommutációs reláció teljesülését követeljük meg, ahol I2×2 a 2 × 2-es
egységmátrix. A Minkowski-téridő esetén az ezen feltételt kielégítő γ mátri-
xok megválasztása például a

γ0 =

(

0 1
1 0

)

, (125)

γ1 =

(

0 1
−1 0

)

(126)

módon történhet.
Az alacsonydimenziós fermionikus modellek közül történetileg az egyik

legjelentősebb a négy fermionos vektor-vektor kölcsönhatást tartalmazó Thir-
ring-modell [169], amely az

LTh = ψ̄iγµ∂µψ −mψ̄ψ − G

2
(ψ̄γµψ)(ψ̄γµψ) (127)
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Lagrange-sűrűség által definiálható [170]. A tömeg nélküli Thirring-modell
szabad bozonikus térelméletnek feleltethető meg, míg a tömeges Thirring-
modell bozonizációja az SG-modellre vezet [106].

Az alacsonydimenziós mértékelméletek definiálása a négydimenziós meg-
felelőjükkel analóg módon történhet. A QED2 esetén a fermiontömeget nem
tartalmazó modell Schwinger-modellként [171, 172] ismert az irodalomban.
A QED2-ben a négydimenziós modelltől eltérően lényeges [149] a vákuum-
állapotot jellemző θ paraméter szerepe. A bozonizáció által az egyetlen
fermionízt tartalmazó modell a θ paraméter megfelelő értéke esetén töme-
ges SG-modellnek feleltethető meg [170]. Több fermionízt tartalmazó mo-
dell esetén a bozonizáció által ún. réteges SG-modellt nyerhetünk [173],
ahol a rétegek száma a fermionízek számával egyezik meg. Az elnevezés a
szilárdtestfizikai alkalmazásból [7, 97, 98] származik utalva a modellnek a
szupravezető rétegekben kialakuló vortexek leírásában betöltött szerepére.

A nemabeli mértékszimmetria alacsonydimenziós vizsgálatára a QCD2

keretében nyílik lehetőség. A kétdimenziós mértékelméletek bozonizáció-
jának jelentős előnye, hogy a bozonizációval nyert skaláris modellek nem
tartalmazzák a mértékteret, ezáltal az RG-módszer alkalmazása során elke-
rülhető a mértékszimmetria megőrzésének problémája [174-177]. Általános
esetben a skaláris modell levezetése ún. nemabeli bozonizáció [166, 167, 178]
alkalmazását igényli, ezért értekezésemben a QCD2 egyetlen fermionízt tar-
talmazó változatát tárgyalom, amikor az egyszerűbb abeli bozonizáció a
színek tetszőleges Nc száma esetén alkalmazható.

A tömeges Thirring-modell bozonizáltjának megfelelő SG-modell mellett
az irodalomban korábban már az RG-módszerrel sikeresen tanulmányozták
a QED2 bozonizációjával nyert réteges SG-modellt [153, 173], így kézen-
fekvővé vált ezen munkák kiegészítése a bozonizált QCD2 vizsgálatával. A
modell tanulmányozása során a fázisszerkezet meghatározására fókuszálok,
ezáltal lehetőség nyílik a Hamilton-sűrűségben végzett sorfejtés alkalmazá-
sára.

A további tárgyalás során először ismertetem a QCD2 bozonizációja által
kapott skaláris modellt és annak alacsonyenergiás közelítését, kiemelve a ha-
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sonlóságot ezen közelítés és a réteges SG-modellre vezető bozonizált QED2

között. Ezt követően felírom a sorfejtett modellre az LPA-ban levezetett
RG-egyenletet, majd az irodalomban sikeresen alkalmazott közelítéseket fel-
használva ismertetem a csatolások UV és IR viselkedésének vizsgálatából a
modell fázisszerkezetével kapcsolatban levonható következtetéseket, kitérve
a modellnek a színszám növelésével kapott általánosítására.

6.2. A bozonizált QCD2

A QCD2 tanulmányozása során az általánosság céljából a vizsgált modellben
egyelőre nem rögzítem a színek Nc ≥ 2 számát, amely meghatározza modell
szimmetriáját leíró SU(Nc)-csoportot. A modell bozonizálását már többen
tárgyalták az irodalomban [161, 179].

A továbbiakban egyetlen kvarkízt tekintve a

H =
∑

a

[

1

2
(Π2

a + (∂1φa)
2) − y cos(2

√
πφa)

]

+ A
∑

a,b

(φa − φb)
2 +B

∑

a,b

sin(2
√
π(φa − φb))

φa − φb
(128)

Hamilton-sűrűséggel definiált skaláris modellből indulunk ki15, ahol az ösz-
szegzést természetesen Nc számú skalártérre kell elvégezni, és Πa jelöli a φa

skalártérhez tartozó kanonikusan konjugált impulzust.
A modell vizsgálata lényegesen egyszerűbbé válik, ha lehetőség nyílik a

Hamilton-sűrűség utolsó tagjában a φa − φb = 0 helyen végzett sorfejtés
magasabb rendű tagjainak elhagyására. Ezen közelítés nem sérti meg a mo-
dell szimmetriáit, ezért nem várható, hogy minőségileg befolyásolja a modell
fázisszerkezetét. Azért, hogy alátámasszam a triviális térkonfiguráció körül
végzett sorfejtés jogosságát a [151, 153] munkákhoz hasonlóan numerikusan

15Mivel a további vizsgálatok szempontjából nem releváns, mellőzöm annak tárgya-
lását, hogy a bozonikus modell y, A és B paraméterei milyen kapcsolatban vannak az
eredeti modell paramétereivel. A részletesebb tárgyalás tekintetében a [179] publikációra
utalok.
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vizsgáltam a Hamilton-sűrűség integrálásával számított energiát minimali-
záló statikus térkonfigurációt Nc = 2 és Nc = 3 esetén.

A QED2 vizsgálatában jelentős tapasztalatokkal rendelkező szerzőtár-
saim rendelkezésemre bocsátottak egy numerikus szélsőértékkeresést meg-
valósító programot, melyet továbbfejlesztettem a vizsgált modellre történő
alkalmazás céljából. A program a diszkretizált Hamilton-sűrűséget minima-
lizáló térkonfiguráció megkeresését a konjugált gradiens módszer [43] alkal-
mazásával végzi.

A szélsőértékkeresést elvégezve Nc mindkét értéke esetén azt kaptam
eredményül, hogy az energia akkor minimális, ha mindegyik térváltozó ér-
téke azonos. Ez lehetőséget nyújt arra, hogy amikor vizsgálatainkat az
alapállapothoz közeli térkonfigurációkra korlátozzuk, elhagyjuk a kvadrati-
kusnál magasabb rendű tagokat (128) utolsó tagjának a triviális térkonfi-
guráció körül tekintett sorfejtésében. Ekkor a térfüggetlen konstans tagtól
eltekintve a Hamilton-sűrűség a

H ≈
∑

a

[

1

2
(Π2

a + (∂1φa)
2) −A cos(2

√
πφa)

]

+
J

4

∑

a,b

(φa − φb)
2 (129)

alakba írható. A későbbiekben felhasználásra kerül, hogy a fizikailag rele-
váns esetekben a bevezetett J paraméter értéke pozitív.

Bevezetve a tömörebb ΦT = (φ1, φ2, . . . , φNc) jelölést és az

(M2
QCD2

)
a,b

= (Nc − 1)Jδa,b − J (130)

tömegmátrixot a Φ oszlopvektor segítségével a (129) egyenlet kvadratikus
tagja az 1

2ΦTM2
QCD2

Φ alakba írható. A tömegmátrix egyetlen zérus értékű
sajátértéket ésNc−1 zérustól különböző, NcJ értékű sajátértéket szolgáltat.

Alkalmazva a 1
2 (∂EΦ)2 =

∑

a
1
2(∂Eφa)

2 jelölést a (129) egyenlet köze-
lítésében a bozonizált modell az

LQCD2
=

1

2
(∂EΦ)2 +

1

2
ΦTM2

QCD2
Φ + y

Nc
∑

a=1

cos(2
√
πφa) (131)
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euklideszi Lagrange-sűrűséggel definiálható. Ezért az euklideszi téridőben

LLSG =
1

2
(∂EΦ)2 +

1

2
ΦTM2

LSGΦ + y

N
∑

a=1

cos(βφa) (132)

Lagrange-sűrűséggel definiált N = Nc skalárteret tartalmazó réteges (ango-
lul layered) SG-modell [7, 97, 98, 180-182] a bozonizált QCD2 alacsonyener-
giás közelítésének felel meg a β = 2

√
π paraméterválasztás és a tömegmátrix

megfelelő megválasztása esetén. Az M2
QCD2

típusú tömegmátrix a réteges
SG-modell nyelvén Josephson-csatolással [98] összekapcsolt rétegeknek felel
meg.

Ezáltal a QCD2 szoros kapcsolatot mutat a többízű QED2-vel, melynek
bozonizált formája az

LQED2
=

1

2
(∂EΦ)2 +

1

2
ΦTM2

QED2
Φ + y

Nf
∑

a=1

cos

(

2
√
πφa −

θ

N

)

(133)

Lagrange-sűrűséggel definiálható [173], ahol Nf jelöli a fermionízek számát,
ΦT = (φ1, φ2, . . . , φNf

) és θ a vákuumállapotot jellemző paraméter. Ér-
demes hangsúlyozni, hogy a tömegmátrix megválasztására a modell szim-
metriája következtében több lehetőség is kínálkozik, melyek az egyes ele-
mek előjelében különböznek. A mátrix minden elemét azonosnak választva
M2

QED2
elemei G = e2

π értékűnek választhatóak, ahol e a fermionikus mo-
dellben a fermiontér és a mértéktér csatolását meghatározó paraméter. A
továbbiakban a tömegmátrix

(M2
QED2

)a,b = (−1)a+bG, a, b = 1, 2, . . . , Nf (134)

módon történő megválasztásával élünk. A mátrix Nf − 1 zérus értékű
sajátértékkel és egyetlen NfG értékű sajátértékkel rendelkezik.

A bozonizált QED2 a θ paraméter megfelelő értéke esetén a sorfejtett
QCD2-höz hasonlóan réteges SG-modellnek felel meg. Ennek ellenére, amint
a zérus értékű sajátértékek számából látható, NC > 2 ill. Nf > 2 esetén
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M2
QCD2

és M2
QED2

nem lehet azonos, azaz általános esetben a két modell
különböző réteges SG-modellnek felel meg. Ugyanakkor figyelemre méltó,
hogy két réteget tekintve, azaz NC = Nf = 2 esetén a két modell azonosnak
tekinthető, mivel ekkor a diagonalizált tömegmátrixok azonos szignatúrá-
júnak adódnak.

A továbbiakban a QCD2-höz tartozó bozonizált modell fázisait a töme-
ges SG-modellhez hasonlóan a Z2-szimmetria spontán sérülése szerint külön-
böztetjük meg. Azonnal felvetődik a kérdés, hogy ténylegesen megvalósul-
hat-e mind a két fázis, hiszen például a többízű QED2 bozonizálásával nyert
réteges SG-modell esetén végzett korábbi vizsgálatok [173] alapján lehetsé-
ges, hogy csak a szimmetriasértett fázis valósulhat meg. Ugyanakkor egyet-
len íz esetén a QED2 két különböző fázissal rendelkezik [131, 173, 183].
Amint látni fogjuk, az alacsonyenergiás bozonizált modell esetén a Z2-
szimmetrikus fázis létezésének kérdése a megfelelő közelítések keretei között
az RG-módszer alkalmazásával megválaszolható.

6.3. A renormálásicsoport-egyenlet ultraibolya

viselkedése

A bonyolultabb modellek vizsgálatát kézenfekvő az RG-egyenletek nagyener-
giás (UV) közelítésének tanulmányozásával kezdeni, ezért elsőként az UV-
levágásnál linearizált RG-egyenletből levonható következtetéseket tekintem
át és a következő szakaszban térek ki arra, hogy helytálló-e a modell fázis-
szerkezetére ebben a közelítésben nyert eredmény.

Mivel elsődleges célunk a fázisszerkezet minőségi leírása az alacsony-
energiás bozonizált QCD2 RG-módszerrel történő vizsgálatát LPA-ra kor-
látozzuk. Az egyszeűség kedvéért a modell vizsgála során a WH-féle renor-
málási sémát alkalmazzuk, amely a tanulmányozott kétdimenziós esetben
LPA-ban a Callan–Symanzik-sémával azonosnak tekinthető [108]. A WH-
féle renormálási sémát alkalmazva a Ṽk = k−2Vk módon definiált dimenzi-
ótlan potenciálra vonatkozóan a
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(2 + k ∂k) Ṽk(Φ) = − 1

4π
ln
[

det
(

δij + Ṽ ij
k (Φ)

)]

(135)

egyenletet nyerjük [173], ahol Ṽ ij
k = ∂φi

∂φj
Ṽk.

Az egyenlet kezdeti feltételét, azaz a potenciál UV-levágásnál megadott
alakját természetesen a modellt definiáló Lagrange-sűrűség határozza meg.
A nagyenergiás közelítés ismertetése során az általánosabb tárgyalás céljá-
ból a (132) egyenlettel definiált réteges SG-modellt tekintem át, nem rög-
zítve a tömegmátrixot és a β paraméter értékét. Az M̃2

LSG módon jelölve
az M2

LSGk
−2 dimenziótlan tömegmátrixot az egyenlet megoldása során a

potenciálra a

Ṽk(Φ) =
1

2
ΦTM̃2

LSG(k)Φ + ỹ(k)

N
∑

n=1

cos(β φn) (136)

feltételt rójuk ki. Ezen feltételben a felharmonikusokat elhanyagoljuk fel-
használva azt a tapasztalatot [86], hogy az SG-modell esetén a Fourier-
sorfejtés magasabb rendű tagjainak figyelembevétele minőségileg nem befo-
lyásolja a fázisszerkezet meghatározását.

Az egyenlet periodikus és nem periodikus részét szétválasztva a dimen-
ziótlanított tömegmátrixra vonatkozó

(2 + k∂k)M̃2
LSG(k) = 0, (137)

egyenletet nyerjük. Az egyenlet megoldása szerint a tömegmátrix M2
QCD2

ill. M2
QED2

szerinti megválasztása esetén a dimenziótlan J̃ ill. G̃ csatolás
a kanonikus dimenzió szerint skálázik, azaz eltűnik a dimenziós J ill. G

csatolás skálafüggése.
Bevezetve az Ũk = ỹ(k)

∑N
n=1 cos(β φn) jelölést a dimenziótlan poten-

ciál periodikus tagjára és a

det
(

δij + Ṽ ij
k (Φ)

)

≈ C + F1(Ũk) + O(Ũ2
k ) (138)
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módon a (135) egyenletben szereplő determináns Ũk-ban magasabb rendű
tagjait elhagyva az RG-egyenlet linearizálása a

(2 + k ∂k)Ũk = − 1

4π

F1(Uk)

C
(139)

egyenletre [173] vezet. Ezen közelítésre tömeg-korrigált RG-áramlásigörbe-
ként hivatkoznak a szakirodalomban [173] megkülönböztetve az egyszerű
∂2

φn
Ṽk-ban történő sorfejtéstől, mely a híg gáz közelítésnek feleltethető meg

[173].
A (139) egyenlet megoldásaként az ỹ dimenziótlan csatolás skálafüggé-

sére az M2
QCD2

tömegmátrix esetén

ỹ(k) = ỹ(Λ)

(

k

Λ

)
β2

N4π
−2( k2 +NJ

Λ2 +NJ

)

(N−1)β2

N8π

, (140)

míg az M2
QED2

tömegmátrix esetén

ỹ(k) = ỹ(Λ)

(

k

Λ

)
(N−1)β2

N4π
−2( k2 +NG

Λ2 +NG

)

β2

N8π

(141)

adódik, ahol ỹ(Λ) a csatolásnak a Λ UV-levágásnál felvett értékét jelöli.
Annak ellenére, hogy az Nc = 1 esetre a QCD2 nincs definiálva egyetlen

réteg esetén is definiálhatjuk QCD2 típusú tömegtagot tartalmazó réteges
SG-modellt. Mivel az

1

2
ΦTM2

QCD2
Φ =

Nc
∑

a=1

Nc
∑

b=1

J

4
(φa − φb)

2 (142)

egyenletből kiindulva Nc = 1 esetén a QCD2 típusú tömegtag eltűnik az
M2

QCD2
tömegmátrixú réteges SG-modellnek egyetlen réteg esetén az egy-

szerű tömegtelen SG-modell feleltethető meg. Érdemes hangsúlyozni, hogy
ez eltérést jelent a tömegmátrix Nc > 1 esetben érvényes (130) egyenletben
szereplő kifejezésétől.
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Az egyenletekből leolvasható a k → 0 aszimptotikus határesetben ỹ

releváns és irreleváns skálázását elválasztó kritikus β érték. A QCD2 típusú
tömegmátrixra vonatkozó (140) egyenlet esetén β2 kritikus értéke β2

c =

8πN , míg a QED2 típusú tömegmátrixra vonatkozó (141) egyenlet esetén
a kritikus érték β2

c = 8πN
N−1 . A kritikus érték függését a rétegek számától

a QCD2 és QED2 típusú tömegmátrixok esetén a 12. ábra szemlélteti. A
kapott kritikus értékek szerint a nagyenergiás közelítésből az következik,
hogy mind a bozonizált QED2, mind az alacsonyenergiás bozonizált QCD2

a réteges SG-modell szimmetriasértett fázisának felel meg mivel az ezen
modelleknek megfelelő β2 = 4π érték β2

c -nél kisebb.
Amint az előző fejezetekben vizsgált modellek példáján láthattuk a szim-

metriasértett fázisban az RG-egyenlet a szimmetrikus fázistól minőségileg
eltérő viselkedést mutat, melynek tanulmányozása egy további módot ad
annak eldöntésére, hogy az adott kezdeti feltétel melyik fázishoz tartozik.
Vizsgálatainkat a (136) feltétel szerint az alapharmonikusra korlátozva a
(135) egyenletben a logaritmus argumentumának zérussá válása által meg-
jelenő pólus utal a szimmetriasértett fázisra. Első közelítésben azt a kérdést
tehetjük fel, hogy megjelenik-e a pólus az RG-egyenletek UV viselkedését a
k skála alacsonyabb értékei felé extrapolálva.

Három szín, azaz három réteg esetén a (135) RG-egyenlet a

(2 + k∂k)Ṽk = − 1

4π
ln

[

(1 + Ṽ 11
k )(1 + Ṽ 22

k )(1 + Ṽ 33
k ) + Ṽ 12

k Ṽ 23
k Ṽ 31

k

+ Ṽ 13
k Ṽ 21

k Ṽ 32
k − Ṽ 13

k (1 + Ṽ 22
k )Ṽ 31

k

− Ṽ 12
k Ṽ 21

k (1 + Ṽ 33
k ) − (1 + Ṽ 11

k )Ṽ 23
k Ṽ 32

k

]

(143)

alakot ölti, a (136) feltétel pedig (QCD2 típusú tömegmátrix esetén) a

Ṽk =
1

2
J̃ [(φ1−φ2)

2+(φ2−φ3)
2+(φ3−φ1)

2]+ỹ[cos(βφ1)+cos(βφ2)+cos(βφ3)]

(144)
alakban írható fel. A potenciálnak ezt a formáját az RG-egyenletbe helyet-
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12. ábra : A β2

8π hányados az egyenletek UV viselkedése szerint meg-
határozott β = βc kritikus érték esetén az N rétegszám függvényében. A
szaggatott vonallal összekötött értékek a QED2 típusú tömegmátrix esetére,
a folytonos vonallal összekötött értékek a QCD2 típusú tömegmátrix ese-
tére vonatkoznak. A βc-nek megfelelő érték minden esetben az elszürkített
tartományon kívül található.
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tesítve a φ1 = φ2 = φ3 = 0 helyen a pólus létezésének feltételére az

(1 − β2ỹ)(1 + 3J̃ − β2ỹ)2 = 0 (145)

egyenlet adódik, ahol J̃ > 0. Az egyenlet UV viselkedésének extrapolálásá-
ból az következik, hogy ỹ a (140) egyenlet szerint releváns módon skálázik
és 1 − β2ỹ valamely k értéknél nullához tart, ezáltal pólus jelenik meg az
RG-egyenletben. Ezen közelítés szerint Nc = 3 esetén az RG-egyenlet min-
den kezdeti feltétele a szimmetriasértett fázishoz tartozik, ezért a modellnek
egy fázisa van.

Hasonló vizsgálat természetesen a QED2 típusú tömegmátrix esetén is
elvégezhető, ekkor a háromrétegű modell esetén a pólus megjelenésének fel-
tételére az

(1 − β2ỹ)2(1 + 3G̃− β2ỹ) = 0 (146)

egyenletet nyerjük, így mivel a (141) egyenlet szerint az ỹ csatolás ebben
az esetben is aszimptotikusan tekintve a k skála negatív kitevőjű hatvá-
nyával arányos így az érvelésünk szintén a pólus megjelenéséhez, azaz a
szimmetriasértett fázis kizárólagosságához vezet, összhangban a szakiroda-
lom eredményével [173].

Az általánosság céljából vizsgálatainkat nagy rétegszám esetére kiter-
jesztve a QCD2 típusú tömegmátrix esetén a pólusra vonatkozó feltételre
az

(1 − β2ỹ)(1 +NJ̃ − β2ỹ)N−1 = 0 (147)

egyenlet adódik, amely a csatolás (140) egyenlet szerinti skálafüggése esetén
mindig divergencia megjelenéséhez vezet. Ezért a megközelítésünk azt su-
gallja, hogy tetszőleges színszám esetén a spontán szimmetriasértés mindig
megvalósul a modellben, azaz az alacsonyenergiás bozonizált QCD2 egyetlen
fázissal rendelkezik.

Ez a közelítés nem veszi figyelembe azt, hogy az RG-egyenlet megoldása
során az energiaskála csökkentésével a potenciálban a magasabb frekvenci-
ájú módusokból származó járulékok is megjelennek, amelyek az ỹ csatolás
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skálázását is megváltoztathatják. Ennek következtében a fázisszerkezetre
levont következtetést ellenőrizni szükséges, amelyre az RG-egyenlet IR visel-
kedésének tárgyalása során nyílik lehetőség.

6.4. A renormálásicsoport-egyenlet infravörös

viselkedése

A réteges SG-modellre vonatkozó (135) RG-egyenlet megoldása technikailag
jelentős kihívás, mindazáltal az egyenlet alacsonyenergiás (IR) viselkedésé-
nek tanulmányozása numerikusan kezelhetővé válik az alábbiakban ismerte-
tett közelítés által. Ennek alkalmazásához az N -komponensű Φ térváltózó
elforgatásával új térváltozót vezetünk be, melynek segítségével a tömegmát-
rix diagonális formában írható fel. QCD2 típusú tömegmátrix esetén (amint
a mátrix sajátértékeiből következik) az új térváltozó komponensei egyetlen
tömegtelen és N − 1 tömeggel rendelkező skalártérnek felelnek meg. Ezt
kihasználva feltételezhetjük, hogy a tömeggel rendelkező skalárterek nagy
amplitúdójú fluktuációi el vannak nyomva, azaz alkalmazhatjuk a potenciál
tömeggel rendelkező térkomponensekben sorfejtett alakját. Hasonló megkö-
zelítést korábban már sikeresen alkalmaztak a réteges SG-modell vizsgálata
során [184].

Ezt az utat követve a három színre vonatkozó N = 3 esetben az új
térváltozó komponenseit az

αi =
3
∑

j=1

Rijφj (148)

egyenlettel vezetjük be, ahol az R mátrixot az

R =







1√
3

1√
3

1√
3

− 1√
2

0 1√
2

1√
6

−
√

2√
3

1√
6






(149)

alakban választjuk meg. Az új térváltozók segítségével a Lagrange-sűrűség
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az

Lα =
1

2
(∂Eα1)

2 +
1

2
(∂Eα2)

2 +
1

2
(∂Eα3)

2 +
3

2
J(α2

2 + α2
3) + Vα (150)

alakba írható, ahol16

Vα = 2ỹ cos

(

β
α1√

3

)

cos

(

β
α2√

2

)

cos

(

β
α3√
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)
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β
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)
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β
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)
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α1√
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)
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(

β
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+2ỹ sin

(

β
α1√

3

)
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(

β
α3√

6

)

sin

(

β
α3√

6

)

. (151)

Az ismertetett stratégia szerint a potenciált az α2 = α3 = 0 helyen a tö-
meggel rendelkező komponensekben Taylor-sorba fejtve a sorfejtés első tagja
az

L0
α =

1

2
(∂Eα1)

2 + 3ỹ cos

(

β
α1√

3

)

(152)

Lagrange-sűrűségre vezet. Ebből következően a modell alacsonyenergiás vi-
selkedése az egyszerű SG-modell IR viselkedése által írható le. A bozonizáció
során a β paraméter értéke rögzített, ezért a háromszínű bozonizált QCD2-
nek megfelelő SG-modell paramétere βSG = β√

3
= 2
√

π
3 amely paraméter a

szimmetriasértett fázishoz tartozik [86].
A fázisszerkezetre vonatkozó megállapítás mellett érdemes kitérni a mo-

dell IR viselkedésének néhány további jellemzőjére. Az RG-trajektóriák
viselkedését az IR-tartományban egy vonzó fixpont határozza meg, amely-
nek következtében a k skála értékét csökkentve a potenciál az ultraibolya-
levágásban felvett értékétől függetlenné válik, amire az irodalomban szupe-
runiverzális skálázásként hivatkoznak. A potenciál ezen viselkedését a 13.

16Az eredményeinket tárgyaló [185] publikációban Vα képlete tévesen szerepel, mind-
azáltal ez nem befolyásolja a levont következtetéseket.
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13. ábra : A dimenziótlan ỹ csatolásnak az IR-tartomáyban megfigyelt
szuperuniverzális skálázása különböző kezdeti értékek esetén. A betétrész
szemlélteti a potenciál alakjának változását a k skála csökkentése során. A
betétrész görbéi a k/Λ = 10−a értékekre vonatkoznak.

ábra szemlélteti megjelenítve az RG-egyenlet néhány különböző kezdeti fel-
tételhez tartozó megoldását. Az irodalom egyes korábbi vizsgálatai [108, 84]
abba az irányba mutattak, hogy az univerzálissá váló dimenziótlan potenciál
alakja a térváltozó alacsony értékei esetén parabola. A Fourier-sorfejtés el-
kerülésével végzett nagy pontosságú numerikus számítások szerint azonban
a potenciál alakja eltér a parabolától, amint azt a 13. ábra betétrésze szem-
lélteti. Látható továbbá, hogy a potenciálnak az RG-egyenlet megoldásával
nyert alakja nem analitikus, ezért a spontán szimmetriasértés megjelenésére
következtethetünk.

Vizsgálatainkat érdemes kiterjeszteni tetszőleges színszám esetére. Ek-
kor a fenti érvelés szerint a tömeggel rendelkező térkomponensekben elvég-
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zett sorfejtés magasabb rendű tagjait elhagyva az

L0
α =

1

2
(∂Eα1)

2 +Nỹ cos

(

β
α1√
N

)

(153)

Lagrange-sűrűséget nyerjük, amely βSG = β√
N

= 2
√

π
N paraméterű SG-

modellnek felel meg. Ebből következően a bozoniált QCD2 alacsonyenergiás
viselkedését tekintve tetszőleges színszám esetén csupán a szimmetriasértett
fázis valósulhat meg.

Végezetül feltehetjük azt a kérdést, hogy a szuperuniverzális potenciál
alakja hogyan függ a színek számától17. A parabolától eltérő szuperuniver-
zális potenciál tekintetében a Fourier-sorfejtés elkerülésével végzett számí-
tások és a korábbi eredmények közötti különbség az alapharmonikusnak a
2
β2 értéktől való eltérésével, ezáltal a 2 − ỹβ2 mennyiség IR-ben tekintett
értékével jellemezhető. A 14. ábra azt szemlélteti, hogy hogyan függ ez a
mennyiség a színek számától.

Látható, hogy a színek számának növelésével a potenciál alakja egyre
kevésbé tér el a a korábbi eredményektől. Az ábra alapján feltételezhetjük,
hogy a parabolikus potenciál az N → ∞ határesetnek felel meg. Ennek
ellenére ezt az állítást az ismertetett módszerrel közvetlenül nem ellenőriz-
hetjük, mivel a numerikus számítások elvégzése N növelésével technikailag
egyre nehezebbé válik.

Az RG-módszer által a QCD2 alacsonyenergiás közelítésének vizsgálatá-
ban elért új eredményeink a Journal of High Energy Physics folyóiratban
kerültek publikálásra [185].

17Az egyszerűség kedvéért a színek száma kifejezést használom, amelyet az N = 1 esetre
tekintettel a QCD2 típusú tömegmátrixszal jellemzett réteges SG-modell rétegszámaként
kell értelmezni.
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7. Összefoglalás

Értekezésemben euklideszi téridőben tekintett kvantált fizikai modelleket
vizsgáltam a funkcionális renormálásicsoport-módszer (RG-módszer) alkal-
mazásával. Ez a módszer amellett, hogy forradalmasította a folytonos fá-
zisátalakulások vizsgálatát, kvantumelméleti és statisztikus fizikai modellek
rendkívül elegáns megközelítésére nyújt lehetőséget. Az RG szemléletének
az előnyei közé tartozik a nemperturbatív tárgyalás mellett a vizsgálandó
rendszer lényeges jellemzőit megragadó közelítések alkalmazása és az energi-
askála különböző tartományaihoz tartozó szabadsági fokok elkülönítése. A
módszer alkalmazása során következetesen figyelembe vehetjük a modellek
érvényességének mind az alacsony-, mind a nagyenergiás korlátját ill. bizo-
nyos közelítésekben ezeknak a korlátoknak az értékére is következtethetünk.

A kutatási kérdések tárgyalása előtt értekezésem 2. fejezetében áttekin-
tést adtam az RG-módszerről. A módszer általános szemléletének ismerte-
tését követően kitértem az euklideszi téridőben tekintett kvantumtérelméleti
modellek és a statisztikus fizikai modellek kapcsolatára, melynek köszönhe-
tően a renormálás fogalma mind a szilrádtestfizika, mind a részecskefizika
területéről megközelíthető. Ennek az analógiának az ismertetése során rövi-
den kitértem az Ising-modellre és ennek folytonos általánosítására, és meg-
említettem, hogy a formalizmus kvantummechanikai modellek kezelésre is
lehetőséget nyújt.

Az RG-módszer matematikai formalizmusát áttekintve nagy vonalakban
ismertettem a Wegner–Houghton-egyenlet és a Wetterich-egyenlet levezeté-
sét. A Wegner–Houghton-féle megközelítés technikailag egyszerűbb, de al-
kalmazásának jelentős korlátjai vannak. A Wetterich-féle formalizmus álta-
lánosabban alkalmazható, viszont az úgynevezett regulátor függvény több-
féle megválasztását engedélyezi, mely szerint különböző renormálási sémá-
kat különböztetünk meg.

Az alkalmazások során általában a hatás alakjára kirótt feltevésekkel
élünk, így közelítések által a funkcionális RG-egyenletet az energiaskálá-
tól függő függvényekre vonatkozó differenciálegyenlet-rendszerre képezhet-
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jük le. A vizsgált modell makroszkopikus jellemzőit az egyenleteknek az
energiaskála alacsony értékeihez tartozó megoldása határozza meg.

Az RG-módszer fázisátalakulásokra vonatkozó alkalmazását tárgyalva
ismertettem a fázisátalakulás kritikus fixpont létezésén keresztül történő
kimutatását és a linearizált RG-egyenletek kapcsolatát a korrelációs hossz
kritikus exponensével. A további kritikus exponensek kielégítő meghatáro-
zása a hullámfüggvény-renormálás viselkedése által meghatározott anomális
dimenzió által történhet. A kvantitatív jellemzés mellett az RG-módszer a
trajektóriák kritikus felülethez közeli viselkedését leírva egyszerű, szemlé-
letes magyarázatot ad a különböző rendszerek fázisátalakulása során ta-
pasztalható unverzalitásra. Emellett az RG módszer jelentősége abban is
megnyilvánul, hogy új megvilágításba helyezte a történeti osztályozás alap-
ján az ún. nemrenormálható elméletek közé sorolt térelméleti modelleket,
hozzájárulva az alapvető kölcsönhatásokról kialakult szemléletünk fejlődé-
séhez.

Értekezésemben a kutatási problémák kifejtése a vizsgált modellek sze-
rint négy részre tagolódik. A 3. fejezetben a kvantált anharmonikus osz-
cillátort, a 4. fejezetben a Caldeira–Leggett-modell egyes változatait, az 5.
fejezetben a sine-Gordon-modell nagyenergiás kiterjesztését, a 6. fejezet-
ben a kétdimenziós kvantum-színdinamikának megfelelő bozonizált modell
alacsonyenergiás közelítését tárgyaltam.

Az egydimenziós kvantált anharmonikus oszcillátor tanulmányozásának
motivációját az szolgálttatta, hogy ez a viszonylag egyszerű modell ideális
lehetőséget nyújt a renormálási séma optimalizálásának viszgálatára. Az
optimalizálást az első gerjesztett állapot és az alapállapot energiájának kü-
lönbségének tekintetében végeztem, amely mennyiség vonatkozásában pon-
tos irodalmi értékek állnak rendelkezésre.

Mivel az eredmények pontosságát a renormálási séma megválasztásától
független közelítések is befolyásolják, az irodalomban gyakran a legkisebb
érzékenység elvét alkalmazzák. Ez által azt a regulátort tekintik optimá-
lisnak, amely esetén a vizsgált fizikai mennyiségre vonatkozó, a regulátor
paraméterétől függő eredménynek stacionárius helye van.
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A közelmúltban bevezetett CSS-regulátor lehetőséget nyújt a Litim-
regulátor, a hatványfüggvény-regulátor és az exponenciális regulátor leg-
kisebb érzékenység elve szerint történő összehasonlítására, mivel ezek a kü-
lönböző formájú regulátorok előállíthatóak a CSS-regulátor speciális határ-
eseteiként. Értekezésemben a CSS-regulátor két paraméterét változtatva
az említett energiakülönbség tekintetében tanulmányoztam a renormálási
séma optimalizálását. Eredményeim szerint a modell esetén a legkisebb
érzékenység elve a széles körben optimálisnak tekintett Litim-regulátornál
előnyesebb regulátorra vezet. Tapasztalataim alapján javaslatot tettünk
a Litim-regulátor olyan módosítására, amely esetén az impulzusintegrál a
Litim-sémához hasonlóan analitikusan elvégezhető.

A 4. fejezetben a kvantált Caldeira–Leggett-modell egyes folytonos
spektrumú változatait tárgyaltam, melyek nyílt kvantummechanikai rend-
szerek tárgyalására kínálnak lehetőséget. Ezekben a modellekben a vizs-
gálat szempontjából releváns alrendszer környezetének hatását a környezet
gerjesztéseinek frekvenciáit jellemző spektrálfüggvényen keresztül vesszük fi-
gyelembe. A környezet spektrumának realisztikus leírása a spektrálfüggvény
levágásának bebezetését igényli. Értekezésemben a levágásnak a Heaviside-
féle egységugrásfüggvénnyel megadott Debye-féle és a Lorentz-függvénnyel
megadott Drude-féle bevezetését alkalmaztam.

A környezettel történő kölcsönhatás következtében a modellekben a Z2-
szimmetria spontán sérülésével kapcsolatos fázisátalakulás jelenik meg, mely-
re kvantum-klasszikus átmenetként hivatkoznak az irodalomban. A fázisát-
alakuláshoz kapcsolódó kritikus viselkedést az RG eszözeivel tanulmányoz-
tam. A Wegner–Houghton-séma alkalmazásával a Debye- és Drude-féle levá-
gás esetén meghatároztam a szuszceptibilitás és a korrelációs hossz kritikus
viselkedését jellemző exponensek értékét, kitérve annak vizsgálatára, hogy
a bevezetett levágás értéke ill. a levágás típusának megválasztása hogyan
befolyásolja az exponensek értékét.

Az eredményeim szerint a levágás alacsony értékei esetén a kritikus ex-
ponensek a spektrálfüggvény levágásától függetlennek tekinthetőek és a két-
féle típusú levágás egyező értékeket szolgáltat. A Drude-féle levágás esetén



108 7. fejezet

a szuszceptibilitásra vonatkozóan Litim-sémában is végeztem számításokat.
Emellett a folytonos spektrumú kvantált Caldeira-Leggett modell levágás
nélküli változatának kritikus viselkedését is tárgyaltam.

Az 5. fejezetben a kétdimenziós sine-Gordon-modell nagyenergiás ki-
terjesztését tárgyaltam. A sine-Gordon-modell tanulmányozásában az RG-
módszer már korábban is jelentős sikereket ért el leírva a modell összetett
fázisszerkezetét és jellegzetes Kosterlitz–Thouless típusú fázisátalakulását.

A sine-Gordon-modellre vonatkozó rövid irodalmi áttekintést követően
ismertettem a modell két csatolás figyelembevétele által nyert fázisszerkeze-
tét, amely az általánosan értelmezett aszimptotikus biztonság kérdését veti
fel. A kérdés teljesebb tárgyalása a modell nagyenergiás kiterjesztésének
részletesebb vizsgálatát igényli.

Az RG-módszer a számítások során az energiaskálán a szokásossal el-
lentétes irányban haladva bizonyos keretek között lehetőséget nyújt a mo-
dell nagyenergiás kiterjesztésének tanulmányozására is. A nagyenergiás
kiterjesztés a térváltozó magasabb rendű deriváltjait tartalmazó hatás ál-
tal jellemezhető, melynek tanulmányozása impulzusfüggő hullámfüggvény-
renormálást igényel. Az értekezésemben Callan–Symanzik-séma esetén is-
mertetett RG-egyenletek vizsgáltainkat a potenciál alapharmonikusára kor-
látozva egy új csatolás bevezetése által impulzusfüggő hullámfüggvény-renor-
málás alkalmazására nyújtanak lehetőséget.

Az egyenletek alkalmazásával a nagyenergiás viselkedés tekintetében egy
új fázis megjelenése által Kosterlitz–Thouless típusú fázisátalakulást figyel-
hetünk meg. Az új fázis létezése megsérti a modellben két csatolásának
figyelembevétele esetén tapasztalható általánosított aszimptotikus bizton-
ságot.

A fejezet végén ismertettem a modellben közelítőleg érvényesülő duális
szimmetriát és a duális transzformáció általánosítását. Ez az általánosítás a
modell nagyenergiás kiterjesztését a tömeges sine-Gordon-modell alacsony-
energiás viselkedésével kapcsolja össze.

A 6. fejezetben az egy fermionízzel rendelkező kétdimenziós kvantum-
színdinamika bozonizálásával nyerhető skaláris modell alacsonyenergiás kö-
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zelítésének fázisszerkezetét tárgyaltam. A bozonizált modell Hamilton-sűrű-
ségében a triviális térkonfiguráció körül végzett sorfejtés vezető tagjai a
réteges sine-Gordon modellnek felelnek meg. Ahhoz, hogy ebben a közelí-
tésben az alacsonyenergiás viselkedést tárgyalhassuk kulcsfontosságú, hogy
a Hamilton-sűrűséget minimalizáló térkonfiguráció triviális legyen. Ennek
ellenőrzése céljából a diszkretizált Hamilton-sűrűséget tekintve a konjugált
gradiens módszerrel numerikusan kerestem meg az energiafunkcionált mini-
malizáló térkonfigurációt.

Értekezésemben kitértem a többízű kétdimenziós kvantum-elektrodina-
mika tárgyalására, melynek bozonizálása szintén réteges sine-Gordon-mo-
dellre vezet. A rétegek száma ekkor a fermionízek számával, míg a korábban
említett modell esetén a színek számával egyezik meg.

Értekezésemben a réteges sine-Gordon modell tekintetében lokális po-
tenciál közelítésre szorítkoztam. Az RG-módszer keretében a fázisszerke-
zetre több módon próbálhatunk következtetni. Értekezésemben tárgyal-
tam a csatolás skálafüggésének a tömegkorrigált áramlásigörbék ultraibolya-
tartományban érvényes RG-egyenlete szerinti meghatározását a potenciál
alapharmonikusára szorítkozó közelítés esetén. Emellett tárgyaltam az infra-
vörös-tartomány felé extrapolált egyenlet pólusának vizsgálatát is. Mindkét
érvelés arra utal, hogy a modell egyetlen fázissal rendelkezik, amely a szim-
metriasértett fázis.

A fázisszerkezet egyértelmű meghatározása a RG-egyenlet infravörös vi-
selkedésének ismeretét igényli. A tömegmátrix új térváltozók bevezetésével
történő diagonalizálása után az alacsonyenergiás viselkedés meghatározá-
sára a hatás tömeges komponensekben sorfejtett közelítését alkalmazhatjuk,
amely esetben az infravörös viselkedés kérdése már technikailag könnyebben
kezelhető. Az így végzett vizsgálat egyértelműen egyetlen fázis létezését mu-
tatja. Ekkor a potenciál felharmonikusainak szerepe is vizsgálható, amely
csupán mennyiségi változást okoz az alapharmonikusra szorítkozó közelítés-
hez képest.
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8. Angol nyelvű összefoglalás (Summary in English)

In my dissertation quantum theoretical models in Euclidean spacetime are
examined by the functional renormalization group (RG) method. This
method has revolutionised the investigation of the continuous phase transi-
tions and given extremely elegant approach for field theoretical models both
in quantum physics and in statistical physics. Advantages of this method are
the non-perturbative treatment, the efficient approximations of the studied
system and the separation of degrees of freedom according to the different
energy domain. Furthermore in certain cases applying this method we can
respect and compute the limits of the theory in the energy scale.

Before the studied questions in chapter 2 RG method was reviewed. Af-
ter reviewing the features of the method the connection between the quan-
tum field theories in Euclidean spacetime and statistical physics is discussed.
Due to this analogy the functional renormalization can be introduced both
from the viewpoint of solid state physics and from viewpoint of particle
physics. Describing this analogy I mentioned the Ising model, the continu-
ous generalization of this model and the application of the formalism for
quantum mechanical systems.

Reviewing the mathematical formalism of the RG method the derivation
of the Wegner-Houghton equation and the Wetterich equation were roughly
described. The Wegner-Houghton approach is easier, but there are several
limits for its application. The second approach is more general and here we
can apply various regulators. According to our choice we may distinguish
different renormalization schemes.

During computations we apply assumptions for the form of the scale
dependent action so we get a differential equation system from the original
functional equation. The macroscopic feature of the investigated model can
be determined from the solution in the low-energy domain of the energy
scale.
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The most common application of the RG method is the investigation
of phase transitions. Usually phase transitions can be established by crit-
ical fixed point of RG transformations and critical exponents of the tran-
sition can be determined by the linearized RG equations around the fixed
point. In my dissertation the determination of the anomalous dimension
and the determination of the exponent corresponding to the critical behav-
iour of the correlation length were mentioned. The RG approach for the
explanation of the universality in critical phenomena and for the so-called
non-renormalizable theories were also reviewed.

In the dissertation the investigated problems posed by different models
were discussed in separated chapters. Chapter 3 is devoted to the quantized
anharmonic oscillator, chapter 4 to the Caldeira-Leggett type models, chap-
ter 5 to the high-energy extension of the sine-Gordon model and chapter 6 to
the low-energy behaviour of the two dimensional quantum chromodynamics.

Study of quantized anharmonic oscillator is motivated by the optimiza-
tion of the renormalization. This simple model gives ideal ground for the
subtle problem of scheme optimization. The optimization was investigat-
ed with respect to the energy gap between the first excited state and the
ground state. In the literature there are precise values for this quantity. The
applied approximations which independent from the choice of the renormal-
ization scheme influence the result of the RG method, so in the literature
the principle of minimal sensitivity is often applied for optimization. This
optimization strategy considers that scheme to optimal where the computed
quantity as function of the regulator’s parameter has stationary point.

Applying the recently introduced CSS regulator we can compare the Li-
tim, the power-law and the exponential regulator by the principle of minimal
sensitivity, because these regulators can be reproduced by special limits of
the CSS regulator. In case of the anharmonic oscillator the optimizatiton
of two parameters of the CSS regulator was investigated with respect to
the noted energy gap. In this case the principle of minimal sensitivity we
get such optimal regulator which differs from the Litim regulator, which
is usually considered optimal. Based on our experience we recommended
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the modification of the Litim regulator. In this modified case in the lo-
cal potential approximation we get RG equation for the potential in which
the momentum integral can be performed analitycally similar to the Litim
scheme.

In chapter 4 certain versions of the quantized Caldeira-Leggett model
defined by continuous spectral functions are discussed. These empirical
models can be applied to investigate open quantum mechanical systems.
In these models the impact of the environment of the relevant subsystem
is incorporated to the spectral function which characterize the frequency
spectrum of the environment. The realistic description of the spectrum
demands to introduce a frequency cutoff in the spectral function. In this
dissertation I applied the Debye type cutoff defined by the Heaviside type
unitstep function and the Drude type cutoff defined by Lorentzian function.

In this models due to the environment a phase transition appears, which
is referred to in the literature as the quantum-classical transition. This
phase transition can be characterized by the spontaneous broken of the Z2

symmetry. The control parameter of the phase transition is the amplitude
of the spectral function. This parameter characterizes the strength of the
interaction between the relevant subsystem and the environment.

Applying RG method in Wegner-Hougton scheme I determined the ex-
ponents correspond to the critical behaviour of the susceptibility and the
correlation length both in the case of Debye type cutoff and in the case of
Drude type cutoff. I investigated that the chosen value of the cutoff and the
type of the cutoff how affect the value of the exponents. I showed that in
the case of low value of the cutoff the critical exponents can be considered
independent from the value and the type of the cutoff. Besides I also dis-
cussed the critical behaviour of that version of the Caldeira-Leggett model
which does not contain cutoff.

In chapter 5 the high-energy extension of two dimensional sine-Gordon
model is discussed. In the investigation of the sine-Gordon model the RG
method has already achieved serious successes, describing the Kosterlitz-
Thouless type phase transition of the model. After a short review of the
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literature of the sine-Gordon model I described its phase structure limiting
our approach to two couplings. This known results pose the problem of
the asymptotic safety in general sense. A more dedicate discussion of the
problem can be performed by a more careful investigation of the high-energy
extension of the model.

In the framework of the RG method going along the energy scale in
the opposite direction as usual we can examine the high-energy extension.
The high-energy extension can be characterized by action extended with
the inclusion of higher-order derivative terms, so it demands momentum
dependent wave-function renormalization.

In my dissertation in Callan-Symanzik scheme new RG equations were
discussed which takes momentum dependent wave-function renormalization
into account via the introduction of a new coupling. Applying these equa-
tions we experience the emergence of a new phase which breaks asymptotic
safety and we experience a Kosterlitz-Thouless type phase transition in the
high-energy extension.

The phase space of the sine-Gordon model considering with two cou-
plings shows an approximate symmetry which can be characterized by the
so-called dual transformation. The generalization of this transformation are
also discussed. By this generalization the investigated high-energy exten-
sion and the low-energy behaviour of the massive sine-Gordon model are
connected.

In chapter 6 the low-energy behaviour of the bosonized model corre-
sponds to the two dimensional quantum chromodynamics in the case of one
fermion flavour is discussed. If we examine the low-energy behaviour of
the model we can use the truncated expansion of the Hamiltonian density
restricting our investigations to field configuration around the ground state.

The leading terms of the expansion in Hamiltonian around the trivial
field configuration correspond to the layered sine-Gordon model which was
successfully studied in literature in the framework of the RG method. The
extension of the known succesful RG investigations of the layered sine-
Gordon model to the low-energy approximation of the bosonized quantum
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chromodynamics demands trivial field configuration in the ground state.
I numerically determined the field configuration which minimizes the dis-
cretized Hamiltonian by conjugated gradient method. Due to the gained tri-
vial configuration we can consider the theory as layered sine-Gordon model
in the low-energy case.

The phase structure of the model in respect of the Z2 symmetry was
discussed. In local potential approximation considering the fundamental
frequency of the potential the approximation of the mass corrected RG flow
in the ultraviolet domain shows that the model has only a single phase
which is the broken symmetric phase. The extrapolation of this equation
towards the infrared domain possesses pole which affirmed this result also.

More detailed investigations can be performed if we study the infrared
behaviour of the RG equation for the potential. Introducing new field vari-
ables the mass matrix of the model can be diagonalized and leading terms
of expansion with respect to the massive components get the problem ame-
nable for numerical methods. This examination confirms the earlier results
for the single phase. In this manner higher frequency modes of the potential
also can be studied but they give only quantitative changes.

Chapter 7 was devoted to the summarization of the results.
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