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Abstract. In this work, the equations of geodesic curves on surfaces embedded in euclidean
space are obtained. By introducing a vector Lagrange multiplier, we show that the geodesic
curvature of the curves are zero and the normal curvature of them can be identified with the
force transmitted to the surface. We then obtain the corresponding formulas in the case of
axially symmetric surfaces, where a first integral of the geodesic equations can be interpreted
as a particle moving in an effective potential (being zero the total energy), and the angular
momenta is conserved. The methodology developed is illustrated with some examples: the
catenoid and the pseudosphere.

1. Introduction
In geometry, a geodesic curve is defined as the curve of minimum length (and less curvature)
joining two given points on a given surface. Geodesics are one of the families of curves often
called special lines or curves. The term comes from the word geodesy, science to measure the
size and shape of the Earth. The formal study of the geodesic starts the year 1691, when John
Bernoulli proposed the brachistochrone problem [1]. In 1731 A.C. Clairaut published a treatise
on curves of double curvature, Recherches sur les courbes a double curvature, which allowed
his admission to the French Academy of Sciences [2]; subsequently, C.F. Gauss (1777-1855)
emphasizes the geometric nature of the mathematical analysis, with mainly two contributions:
the birth of complex analysis and the differential geometry analysis [2]. In 1866 Jean Gaston
Darboux in his doctoral thesis began a prolific development on geometry, some results published
in two articles in the journal Annales de l’Ecole Normale Suprieure de Paris, Darboux was the
first to characterize a curve on a surface (given its curvature and torsion) by the differential
equation, this was done around 1871. Particularly a surface of revolution is a surface which is
generated from the rotation of a planar curve around an axis which lies in the same plane, and
is a Liouville surface.

Although the analysis of geodesic curves appear in any book of geometry, most of the
analysis is done intrinsically, especially as an application of variational calculus [3]. One of
the main applications of geodesic analysis is given in physics where free particles follow geodesic
trajectories [4]. Recently it has been shown that, in the interaction of crystalline order on curved
surfaces, there is a non-local effect that forces normal lines to be on geodesic curves [5]. If one
includes the bending energy, the equilibrium configurations of elastic polymers on surfaces as
spheres can be found [6]. Indeed it is even possible to include both long range forces between
the curve itself, as well as between the curve and the surface [7].

X Workshop of the Gravitation and Mathematical Physics Division, Mexican Physical Society IOP Publishing
Journal of Physics: Conference Series 545 (2014) 012014 doi:10.1088/1742-6596/545/1/012014

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Geodesic curves confined on surfaces
Let x = (x1, x2, x3), be a point ∈ R3, and x = Y(s), a curve parametrized by s, restricted to
be along the surface x = X(ξa), parametrized by local coordinates ξa, a = 1, 2. To take into
account this requirement, we follow [6] and introduce a vector Lagrange multiplier λ, so that
the length functional is given by

L(Y, ξa) =

∫
ds+

∫
λ · [Y(s)−X(ξa)] ds, (1)

where the dot denotes the internal product in R3. In order to find the Euler-Lagrange equations
we have to consider deformations δL as a consequence of deformations of the variables δY and
δξa. We obtain

δL(Y, ξa) =

∫
d

ds
(δY) ·Tds+

∫
λ · δY, (2)

where T = dY/ds = Ẏ is the tangent vector field to the curve. By doing one integration by
parts, we have that δL = 0, implies that,

Ṫ = λ. (3)

Variation respect to the variable ξa gives δL = −
∫
λ · eaδξa, where ea = ∂aX, are the two

tangent vectors to the surface. We thus see that δL = 0 implies that λ = −λn, being n the unit
normal to the surface. Projection of Ṫ along the Darboux basis {T,n, l = T× n}, gives us

Ṫ = −Kabt
atbn +

(
ṫc + Γcabt

atb
)

ec,

= −κnn + κgl, (4)

where the normal curvature κn = Kabt
atb with ta = dξa/ds, and the geodesic curvature

κg =
(
ṫc + Γcabt

atb
)
lc has been introduced. One conclude from equation (3) that κg = 0 for

geodesic curves, as it should be. We also see that λ = κn, can be interpreted as the force
transmitted to the surface. Some examples about this curves and forces are given below.

3. Surfaces of revolution
A surface of revolution can be described parametrically through

X(ϕ, v) = (ρ(v) cosϕ, ρ(v) sinϕ, z(v)). (5)

The infinitesimal element of distance along the surface can be written as ds2 = ρ2dϕ2 + (ρ′2 +
z′2)dv2, where – ’ – indicates derivative respect to v. The two tangent vectors ea are given by

eϕ = (−ρ sinϕ, ρ cosϕ, 0),

ev = (ρ′ cosϕ, ρ′ sinϕ, z′),

whereas the normal unit vector to the surface can be written in the form,

n =
1√

ρ′2 + z′2
(z′ cosϕ, z′ sinϕ,−ρ′). (6)

The second fundamental form Kab of the surface can be calculated through its definition in the
Gauss equation, ∂aeb = −Kabn. As a consequence of the cylindrical symmetry a diagonal matrix

is found for the extrinsic curvature, being Kϕϕ = ρz′√
ρ′2+z′2

and Kvv = ρ′z′′−ρ′′z′√
ρ′2+z′2

, its nonzero
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elements. Being also diagonal the matrix Kb
a, their components are the principal curvatures

of the surface, Kϕ
ϕ = z′

ρ
√
ρ′2+z′2

and Kv
v = Kvv

ρ′2+z′2 . The trace of the second fundamental form

K = gabKab is given by

K =
1√

ρ′2 + z′2

(
z′

ρ
+
ρ′z′′ − ρ′′z′

ρ′2 + z′2

)
. (7)

The curvature scalar R can be obtained intrinsically using the induced metric gab through the
Christoffel symbols. Nevertheless, we can calculate it, through the integrability condition given
by the Codazzi identity identity R = K2 −KabKab, so we have

R =
2z′

ρ

ρ′z′′ − ρ′′z′

(ρ′2 + z′2)2
. (8)

In addition, because the symmetry under rotations around the z axis, ` = L · k is conserved
along the curve, where L = x× ẋ, is the angular momenta. We find

` = ρ2
dϕ

ds
. (9)

With these elements, we can write the normal curvature along the trajectory of the particle as
follows

κn = Kϕϕ

(
dϕ

ds

)2

+Kvv

(
dv

ds

)2

. (10)

Note also that, using the infinitesimal element of distance we can get a first integral of the
geodesic equation

1

2

(
dv

ds

)2

+ Ueff = 0, (11)

where

Ueff = − 1

2(ρ′2 + z′2)

(
1− `2

ρ2

)
, (12)

can be interpreted as an effective potential that depends on the coordinates and on the conserved
angular momentum explicitly. Then we can write the normal curvature along geodesic curves as

κn =
`2

ρ3
z′√

ρ′2 + z′2
+

ρ′z′′ − ρ′′z′

(ρ′2 + z′2)3/2

(
1− `2

ρ2

)
, (13)

thus, the force λ is completely determined.

3.1. Catenoid
In this case we have X(ϕ, v) = (cosh v cosϕ, cosh v sinϕ, v). Then we identify ρ(v) = cosh v and
z(v) = v. We have Kϕϕ = 1 and Kvv = −1, and the trace K = 0 (a minimal surface), its
curvature R = −2 sech4v < 0. The effective potential of the fictitious particle (of total energy
zero) is given by

Ueff (v) = −1

2
sech2v

(
1− `2sech2v

)
. (14)

Figure (1) shows the behavior of geodesic curves: For 0 < ` < 1, geodesics crosses parallels along
the catenoid; for ` > 1, the potential barrier does not allow the geodesic going from one side to
another of the catenoid. The equator corresponds to the geodesic with ` = 1, the geodesic with
` = 0 is a meridian. The transmitted force to the surface in this case reads as follows

λ`(v) = sech2v
(
2`2sech2v − 1

)
. (15)

In Fig. (2), the force λ, transmitted to the catenoid is shown. For curves crossing the catenoid,
such that ` ≥ 1/

√
2, there exist v0 where the force transmitted to the surface is zero, λ`(v0) = 0.
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Figure 1. The effective potential (14) of
the catenoid, for several values of the angular
momenta `: the bottom curve correspond to
` = 0. After reaching ` = 1, a barrier appears.
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Figure 2. The transmitted force to the
catenoid for several values of the angular
momenta `: the bottom curve correspond to
` = 0, the upper one to ` = 1.

3.2. Pseudosphere
A parametrization of the pseudosphere is given by X(ϕ, v) = (sechv cosϕ, sechv sinϕ, v−tanh v).
We identify then ρ(v) = sechv, and z(v) = v − tanh v. The non-zero components of the second
fundamental are given by Kϕϕ = sechv tanh v and Kvv = −Kϕϕ. The trace is given by

K =
(cosh 2v − 3)

2 sinh v
. (16)

As it is well known, the pseudosphere is a surface of negative curvature with R = −2. The
effective potential is now given by

Ueff (v) = − 1

2 tanh2 v

(
1− `2

sech2v

)
. (17)

Figure (3) shows the behavior of pseudosphere’s geodesic curves: For 0 < ` < 1, geodesics
remain on one side of the surface; for ` ≥ 1, the potential barrier does not allow the geodesic to
exist. Meridians are geodesic curves (ϕ = const.) along that ` = 0.

The force transmitted to the surface can be written in the form

λ`(v) =
`2 cosh3 v − sechv

tanh v
. (18)

4. Conclusions
By introducing a vector Lagrange multiplier into the length functional, we obtain the geodesic
curves on surfaces embedded in euclidian space, through the obtention of the Euler-Lagrange
equations. We found that the geodesic curvature vanishes for geodesic curves and the normal
curvature is directly related with the transmitted force to the surface. We studied two axially
symmetric surfaces, namely, the catenoid and the pseudosphere, where a first integral of the
geodesic equation can be thought as a particle (with vanishing energy) moving in an effective
potential Ueff . In such a cases the force or the normal curvature are completely determined
and turn out to be a function of the conserved angular momenta.
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Figure 3. The effective potential (14) of the
pseudosphere for several values of the angular
momenta `: the bottom curve corresponds to
` = 0. The upper one to ` = 1.
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Figure 4. The transmitted force to the
catenoid for several values of the angular
momenta `, the bottom curve corresponds to
` = 0.
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X Workshop of the Gravitation and Mathematical Physics Division, Mexican Physical Society IOP Publishing
Journal of Physics: Conference Series 545 (2014) 012014 doi:10.1088/1742-6596/545/1/012014

5




