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Abstract. We solve the massless Dirac equation in the presence of a Bianchi V II0 instanton
metric. In order to separate variables we apply the algebraic method of separation. We
express the curved Dirac gamma matrices in a rotating tetrad and compute the corresponding
spinor connections. The resulting system of equations is completely decoupled after introducing
two new complex space variables. Applying a pairwise separation scheme we also succeed
in separating variables in the massless Dirac equation coupled to a Eguchi-Hanson instanton
metric. The spinor solutions are expressed in terms of weighted spherical spinors.
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1. Introduction
Instantons are finite-action solutions of the classical Yang-Mills equations which are localized in
imaginary time. They provide the dominant contribution to the path integral in the quantization
of the Yang-Mills fields. [1] It is expected that gravitational instantons should play a similar
role in the path integral approach to quantum gravity. The discovery of self-dual instanton
solutions to the Euclidean Yang-Mills theory suggests the possibility that analogous solutions
to the Einstein Equations might be important in quantum gravity. The euclidean Taub-NUT
metric is involved in many problems in theoretical Physics. The Kaluza-Klein monopole of
Gross and Perry[2] was obtained by embedding the Taub-NUT gravitational instanton into five-
dimensional Kaluza-Klein theory. The Hawking’s [3] suggestion that the Euclidean Taub-NUT
metric might give rise to the gravitational analogue of the YangMills instanton holds true on
anisotropic spaces but in this case both the metric and instanton have some anisotropically
renormalized parameters being of higher dimension gravitational vacuum polarization origin.
The anisotropic Euclidean Taub-NUT metric also satisfies the vacuum Einstein’s equations with
zero cosmological constant when the spherical symmetry is deformed, for instance, into ellipsoidal
or even toroidal configuration. Such anisotropic Taub-NUT metrics can be used for generation
of deformations of the space part of the line element defining an anisotropic modification of
the Kaluza-Klein monopole solutions proposed by Gross and Perry [2] and Sorkin [4]. The
principal class of physically interesting gravitational instantons consist of asymptotically locally
Euclidean metrics with self-dual curvature. The Eguchi Hanson instanton [5] belongs to this
class. Gravitational instantons which are described by hyper-Käller metrics have been studied in
the framework of supergravity, M-theory as well as Seiberg-Witten theory. [6, 7] Gravitational
instantons have Euclidean signature metric and self-dual curvature, which implies that they
satisfy the vacuum Einstein equations. In order to compute the vacuum expectation value of
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the stress tensor of a gravitational instanton it is of help to compute the Green’s function for
massless fields, in particular for the Dirac equation. The Dirac equation plays a crucial role in
case of instantons since the zero eingenvalues of the Dirac equation are related to the topological
properties of the solution through the Atiyah-Singer theorem.[8] Previous studies of the Dirac
equation in the background of gravitational instantons [9] have been made using the Newman-
Penrose formalism [10]. In this article we solve the Dirac equation using the algebraic method
of separation of variables [11, 12, 13], which has been successfully applied in the study of Dirac
particles in gravitational fields.

2. The Bianchi V II0 instanton metric
The covariant generalization of the massless Dirac equation in curved space has the form [14]

γµ∇µΨ = γµ(
∂

∂xµ
− Γµ)Ψ = 0 (1)

where the curved matrices satisfy the commutation relations

{γµ(x), γν(x)}+ = 2gµν ,

and γµ(x) are related to the flat gamma matrices γ(a) via the tetrad eµ
(a)(x) as follows

γµ(x) = eµ
(a)(x)γ(a)

The tetrad eµ
(a) satisfies the relation

η(a)(b) = gµνe
µ
(a)e

ν
(b)

where η(a)(b) and gµν are the flat and curved metrics respectively.

The Bianchi V II0 instanton metric is [5]

ds2 =
1
2
a2 sinh 2x(dx2+dθ2)+

2
sinh 2x

[
(sinh2 x + sin2 θ)dy2 − sin 2θdydz + (sinh2 x + cos2 θ)dz2

]

Choosing the curved gamma matrices

γ1 =
√

2
a(sinh 2x)1/2

γ̃1, γ2 = −
√

2 sinhx sin θ

(sinh 2x)1/2
γ̃2 +

√
2 cosh x cos θ

(sinh 2x)1/2
γ̃3

γ3 =
√

2 sinhx cos θ

(sinh 2x)1/2
γ̃2 +

√
2 cosh x sin θ

(sinh 2x)1/2
γ̃3, γ0 =

√
2

a(sinh 2x)1/2
γ̃0

we obtain that the spinor connections defined by the relation

Γµ =
1
4
γν∇µγν

are
Γ1 = 0, Γ4 = 0,

Γ2 = −1
2

sin θ

sinh 2x sinhx
γ̃3γ̃4 +

1
2

cos θ

sinh 2x cosh x
γ̃2γ̃4 +

cos θ sinh x

a sinh2 2x
γ̃1γ̃3 +

cosh x sin θ

a sinh2 2x
γ̃1γ̃2

Γ3 =
1
2

sin θ

sinh 2x cosh x
γ̃2γ̃4 +

1
2

cos θ

sinh 2x sinh x
γ̃3γ̃4 − cos θ cosh x

sinh2 2x
γ̃1γ̃2 +

sin θ sinh x

a sinh2 2x
γ̃1γ̃3
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Substituting the gamma matrices and the spin connections into the Dirac equation (1) we obtain
two equivalent sets of coupled differential equations corresponding to particle and antiparticle
states. Since we are dealing with the massless case, our problem reduces to the following system
of equations: (

∂

∂x
+ i

∂

∂θ
+

1
2

)
ψ2 = a

[
cosh(x − iθ)

∂

∂y
+ i sinh(x − iθ)

∂

∂z

]
ψ1

(
∂

∂x
− i

∂

∂θ
+

1
2

)
ψ1 = −a

[
i sinh(x + iθ)

∂

∂y
+ cosh(x + iθ)

∂

∂z

]
ψ2

Introducing the transformation [9]
(

ψ1

ψ2

)
= exp(−x

2
+ i(ny + mz))

(
h1

h2

)

and the angle α in terms of of n and m

n√
n2 + m2

= cos α,
m√

n2 + m2
= sin α

and defining the complex variables ν and µ as

ν = x + i(θ − α), µ = x − i(θ − α)

we obtain the system of equations

∂h1

∂v
− i

a

2

√
n2 + m2 cosh ν h2, (2)

∂h2

∂u
+ i

a

2

√
n2 + m2 cosh u h1. (3)

Introducing the transformation ρ = sinh u, the system of equations (2)-(3) becomes

∂h1

∂ρ∗
− i

a

2

√
n2 + m2h2 = 0 (4)

∂h1

∂ρ
+ i

a

2

√
n2 + m2h2 = 0 (5)

whose solution are plane waves in the complex coordinates,
(

h1

h2

)
=

(
1
1

)
exp(i

a

2

√
n2 + m2(ρ − ρ∗)),

(
1
−1

)
exp(i

a

2

√
n2 + m2(ρ − ρ∗)) (6)

3. The Eguchi-Hanson instanton metric
The Eguchi-Hanson instanton metric is the solution of of Einstein equations with self-dual
curvature. The metric possesses a topology R×S3 and its line element is given by the expression
[5]

ds2 =
1

1 − (a
r )4

dr2 + r2(σ2
x + σ2

y) + r2
(

1 − (
a

r
)4

)
σ2

z (7)

The differential forms are expressed in terms of the Euler angles θ, φ, and ψ as

σx =
1
2
(− cos ψdθ − sin θ sinψdφ)
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σy =
1
2
(sinψdθ − sin θ cos ψdφ)

σz =
1
2
(−dψ − cos θdφ)

In order to separate variables in the massless Dirac equation we choose the rotating tetrad

γ1 =

√
1 −

(
a

r

)4

γ̃1, γ2 =
2
r
γ̃2, γ3 =

2
r sin θ

γ̃3, γ4 = −2 cot θ

r
γ̃3 +

2

r
√

1 −
(

a
r

)4
γ̃4 (8)

Substituting the tetrad (8) into the massless Dirac equation we obtain the expression

2γ3

r

[
1

sin θ

∂

∂φ
− cot θ

∂

∂ψ

]
Ψ + γ2

(
cot θ

2
+

∂

∂θ

)
Ψ

+γ1

([
(1 − (

a

r
)4

]1/2 ∂

∂r
+

3
2

1
r(1 − (a

r )4
− 1

2
a4

r5(1 − (a
r )4

)
Ψ

γ2γ3γ4

[
1
2

a4

r5(1 − (a
r )4)1/2

− 1
2r(1 − (a

r )4)1/2

]
Ψ +

2γ4

r(1 − (a
r )4)1/2

∂Ψ
∂ψ

= 0 (9)

From which we obtain the system of equations
⎛
⎝√

1 − (
a

r
)4

∂

∂r
− 2

r

m − 1
2√

1 − (a
r )4

⎞
⎠ ψ1 +

2
r

[
− ∂

∂θ
+

i

sin θ

∂

∂φ
+ (m − 1

2
) cot θ

]
χ1

⎛
⎝√

1 − (
a

r
)4

∂

∂r
+

2
r

m + 1
2√

1 − (a
r )4

⎞
⎠ χ1 +

2
r

[
∂

∂θ
+

i

sin θ

∂

∂φ
+ (m +

1
2
) cot θ

]
ψ1

⎛
⎝√

1 − (
a

r
)4

∂

∂r
− 2

r

m + 1
2√

1 − (a
r )4

⎞
⎠ ψ2 +

2
r

[
− ∂

∂θ
+

i

sin θ

∂

∂φ
+ (m − 1

2
) cot θ

]
χ2

⎛
⎝√

1 − (
a

r
)4

∂

∂r
− 2

r

m − 1
2√

1 − (a
r )4

⎞
⎠ χ2 +

2
r

[
∂

∂θ
+

i

sin θ

∂

∂φ
+ (m +

1
2
) cot θ

]
ψ2

where we have written the upper and lower components of the Dirac spinor as

(
Θ1

Θ2

)
=

(
ei(m+ 1

2
)ψψ1(r, θ, φ)

ei(m− 1
2
)ψχ1(r, θ, φ)

)
(10)

and (
Ω1

Ω2

)
=

(
ei(m+ 1

2
)ψψ2(r, θ, φ)

ei(m− 1
2
)ψχ2(r, θ, φ)

)
(11)

introducing the change of variables (
r

a

)2

= cosh x (12)

139



we obtain that the angular dependence of the Dirac spinor can be expressed in terms of the
weighted spherical harmonics as

(
ψ1

χ1

)
= einφ

⎛
⎜⎝ (sinh x)|m− 1

2 | 2F1(α+, α−, γ+;− sinh2 x)dj

n,m+ 1
2

(θ)

(sinh x)|m+ 1
2 | 2F1(β+, β−, γ−;− sinh2 x)dj

n,m− 1
2

(θ)

⎞
⎟⎠ (13)

(
ψ2

χ2

)
= einφ

⎛
⎜⎝ (sinh x)|m+ 1

2 | 2F1(β+, β−, γ−;− sinh2 x)dj

n,m+ 1
2

(θ)

(sinh x)|m− 1
2 | 2F1(α+, α−, γ+;− sinh2 x)dj

n,m− 1
2

(θ)

⎞
⎟⎠ (14)

where n is half-integer, m is integer, and

j = −1
2
±

√
λ2 +

1
2
− m2

α± =
1
4

+
1
2

∣∣∣∣m − 1
2

∣∣∣∣ ± 1
2

√
λ2 + m2, β± =

1
4

+
1
2

∣∣∣∣m +
1
2

∣∣∣∣ ± 1
2

√
λ2 + m2

γ± =
∣∣∣∣m +

1
2

∣∣∣∣ +
1
2

The irreducible representations of the rotation group are given by:

dj
n,m(θ) =

(−1)j−m

n + m

√
(j + n)!(j + m)!
(j − n)!(j − m)!

(cot
θ

2
)n+m(sin

θ

2
)2j .2F1(n − j; n + m + 1;− cot2

θ

2
) (15)

4. Concluding remarks
In this article we have solved the massless Dirac equation in the presence of a Bianchi V II0

and the Eguchi-Hanson instanton metrics. Using rotating no-null tetrads we have completely
separated variables in the massless Dirac equation in the two Euclidean instanton metrics. The
Bianchi V II0 instanton metric is a particular example of a metric where a complete separation
of variables is not possible using the standard algebraic scheme. The introduction of complex
variables permits one to decouple the resulting system of differential equations. The Dirac
equation in the Eguchi-Hanson metric was completely separated using a pairwise scheme. In
this case the separation procedure is analogous to the Schwarzschild case [14]. The results
obtained in this article encourage us to continue working on a complete scheme of separability
for the Dirac in Euclidean metrics.
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