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Abstract: After a brief introduction of Born’s reciprocal relativity theory is presented, we review the
construction of the deformed quaplectic group that is given by the semi-direct product of U(1,3)
with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative
fiber coordinates and momenta [X,, X;] # 0; [Pa, Py] # 0. This construction leads to more general
algebras given by a two-parameter family of deformations of the quaplectic algebra, and to further
algebraic extensions involving antisymmetric tensor coordinates and momenta of higher ranks
(Xara2--aur Xpybyoooby) 7 0; [Paras--awr Poyby-o,) 7 0. We continue by examining algebraic extensions
of the Yang algebra in extended noncommutative phase spaces and compare them with the above
extensions of the deformed quaplectic algebra. A solution is found for the exact analytical mapping of
the noncommuting x#, p# operator variables (associated to an 8D curved phase space) to the canonical
Y4, T14 operator variables of a flat 12D phase space. We explore the geometrical implications of this
mapping which provides, in the classical limit, the embedding functions Y (x, p), T1(x, p) of an
8D curved phase space into a flat 12D phase space background. The latter embedding functions
determine the functional forms of the base spacetime metric g, (x, p), the fiber metric of the vertical
space h"(x, p), and the nonlinear connection Ny (x, p) associated with the 8D cotangent space of the
4D spacetime. Consequently, we find a direct link between noncommutative curved phase spaces in
lower dimensions and commutative flat phase spaces in higher dimensions.

Keywords: Born Reciprocal Relativity; Yang Algebra; Phase Spaces; Finsler Geometry

1. Introduction: Born’s Reciprocal Relativity Theory

Most of the work devoted to quantum gravity has been focused on the geometry of
spacetime rather than phase space per se. The first indication that phase space should
play a role in quantum gravity was raised by [1]. The principle behind Born’s reciprocal
relativity theory [2-5] was based on the idea proposed long ago by [1] that coordinates and
momenta should be unified on the same footing. Consequently, if there is a limiting speed
(temporal derivative of the position coordinates) in nature, there should be a maximal force
as well, since force is the temporal derivative of the momentum. The principle of maximal
acceleration was advocated earlier on by [6-9]. A maximal speed limit (speed of light) must
be accompanied with a maximal proper force (which is also compatible with a maximal and
minimal length duality) [5,10].

We explored in [5,10] some novel consequences of Born's reciprocal relativity theory
in a flat phase space and generalized the theory to the curved spacetime scenario. We
provided, in particular, some specific results from Born’s reciprocal relativity which are
not present in special relativity. These are: a momentum-dependent time delay in the
emission and detection of photons; the relativity of chronology; an energy-dependent
notion of locality; a superluminal behavior; the relative rotation of photon trajectories due
to the aberration of light; the invariance of area cells in the phase space; and modified
dispersion relations.
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The generalized velocity and force (acceleration) boosts (rotations) transformations
of the flat 8D phase-space coordinates, where X! T, E,Pi;i = 1,2,3 are c-valued (classi-
cal) variables which are all boosted (rotated) into each other, were given by [2—4] based
on the group U(1,3), which is the Born version of the Lorentz group SO(1,3). The
U(1,3) = SU(1,3) x U(1) group transformations leave invariant the symplectic two-form
QO =—dT NdE + 5i]-dXi AdPI;i, j =1,2,3 and also the following Born—-Green line interval
in the flat 8D phase space

(dw)? = 2(dT)? — (dX)? — (dY)? — (dZ)*+
1

= ((dE)2 — A(dPy)? — A(dP,)? — 02(sz)2>

)

The maximal proper force is set to be given by b. The rotations, velocity, and force (accelera-
tion) boosts leaving invariant the symplectic two-form and the line interval in the 8D phase
space are rather elaborate; see [2—4] for details.

These transformations can be simplified drastically when the velocity and force (ac-
celeration) boosts are both parallel to the x-direction and leave the transverse directions
Y, Z, Py, P, intact. There is now a subgroup U(1,1) = SU(1,1) x U(1) C U(1,3) which
leaves invariant the following line interval

(dw)? = R(dT)? — (dX)? + WEL D) _

()

(dT)2<1 + (dE/dr)chz(dP/dTﬂ) _ (dT)2(1 I ),P _p,

2 2
b Fiax

where one has factored out the proper time infinitesimal (d7)? = c?dT? — dX? in (2).
The proper force interval (dE/dt)? — c?(dP/dt)? = —F% < 0 is “spacelike" when the
proper velocity interval ¢?(dT/dt)? — (dX/dt)? > 0 is timelike. The analog of the Lorentz
relativistic factor in Equation (2) involves the ratios of two proper forces.

One may set the maximal proper force acting on a fundamental particle of Planck
mass to be given by Fyy = b = mpc®/Lp, where mp is the Planck mass and Lp is the
postulated minimal Planck length. Invoking a minimal /maximal length duality, one can
also set b = My;c2/ Ry, where Ry is the Hubble scale and M;; is the observable mass of the
universe. Equating both expressions for b leads to My;/mp = Ry /Lp ~ 10%°. The value of
b may also be interpreted as the maximal string tension.

The U(1,1) group transformation laws of the phase-space coordinates X, T, P, E which
leave the interval (2) invariant are [2—4]

T' = Tcosh + (é‘sz + ggzp) Si“gh ¢ (3a)
E' = Ecosh¢ + (—&X + &P) Sirg‘é (3b)
X' = Xcosh & + (@,T - é;;’) Si“gh 6 (4a)

P' = Pcosh @ + (‘:;’ZE + & T) Singh ¢ (4b)

where §, is the velocity-boost rapidity parameter, ¢, is the force (acceleration) boost rapidity
parameter, and ¢ is the net effective rapidity parameter of the primed-reference frame. These
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parameters g, Co, G are defined, respectively, in terms of the velocity v = dX/dT and force
f = dP/dT (related to acceleration) as

o %8 Ca F Co 2 Ca 2
ann () = & () = e V (%) +(%) ®
The U(1,3) generators Z,, = %(L[ub] + M,p)) are comprised of the 6 ordinary Lorentz
generators L, and 10 force (acceleration) boost/rotation generators M), giving a total
of 16 generators.

It is straightforward to verify that the transformations (4a,b) leave invariant the phase-
space interval ¢?(dT)? — (dX)? + ((dE)? — c?(dP)?) /b but do not leave separately invariant

the proper time interval (d7)? = c2dT? — dX?, nor the interval in energy-momentum space
biz[(dE)2 — (dP)?]. Only the combination

F2

(e = e (1- ) ©
Pmax

is truly left invariant under force (acceleration) boosts (4a,b). They also leave invariant the

symplectic two-form (phase-space areas) () = — dT AdE +dX A dP.

Some readers might note that the U(1,3) algebra is usually not used in standard
formulations of particle kinematics and as symmetries in the dynamical, mechanical, and
field-theoretic models. For instance, Kalman [11] long ago studied the SU(1,3) group (and
its discrete representations) as a dynamical group for hadrons. By a dynamical group, one
means in general (a noncompact one) which gives the actual energy or mass spectrum of a
quantum mechanical system [12].

Low [2—4] has explained in great detail that since U(1,3) is noncompact, the U(1, 3)
infinite-dimension unitary representations contain discrete series that may be decomposed
into infinite ladders where the rungs are finite dimensional irreducible unitary U(3) repre-
sentations. In particular, the rest and null frames yield the groups SU(3), SU(2), and U(1)
that appear in the Standard Model, and which is very appealing. If one has a single particle
state, under force-boosts (acceleration) transformations, one would expect to transform it
into a compound state that decomposes into a sum of single particle states representing the
particle interactions of nonuniform velocity frames of reference.

Low [2-4] has argued that one could think of the timelike states as the rungs of the
ladder and Poincare transformations transform these rungs into themselves with no mixing
of states that are on different rungs; likewise with the null states. There are no Poincare
transformations that take timelike states into null states. However, when one considers
noninertial frames the states in different rungs of the ladder can transform into each other,
and timelike and null states can mix. The reason is that due to the nonzero rates of change
of the momentum, one expects the dynamical symmetry to describe transitions between
these states when viewed from the interacting frames.

One should also add that these arguments presented by [2—4] bear a resemblance to
the Unruh effect (the Fulling—Davies—Unruh effect) [13] which is a kinematic prediction of
quantum field theory that an accelerating observer will observe a thermal bath, such as a
blackbody radiation, whereas an inertial observer would observe none. In other words, the
background appears to be warm from an accelerating reference frame. Heuristically, for a
uniformly accelerating observer, the ground state of an inertial observer is seen as a mixed
state in thermodynamic equilibrium with a nonzero temperature bath of thermal photons
and whose temperature is proportional to the acceleration.

Low [2—4] also constructed the eigenvalue equations for the representation of the set of
Casimir invariant operators which define the field equations of the system. The applications
of the deformed quaplectic algebras studied in this work, in particular corresponding to the
deformed Heisenberg algebras, to theoretical physics models remain to be studied, and in
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particular, within the context of quantum field theories in noncommutative spacetimes.
This is beyond the scope of this work.

After this brief introduction of Born’s reciprocal relativity theory, in Section 2 we review
the construction of the deformed quaplectic group that is given by the semidirect product
of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group corresponding to
noncommutative fiber coordinates and momenta [X,, X;,| # 0; [Py, Py] # 0. This construction
leads at the end of Section 2 to more general algebras given by a two-parameter family of
deformations of the quaplectic algebra and to local gauge theories of gravity based on the
latter deformed quaplectic algebras.

We continue in Section 2 by examining the algebraic extensions of the Yang algebra
in extended noncommutative phase spaces and compare them with the extensions of the
deformed quaplectic algebra involving antisymmetric tensor coordinates and momenta of
higher ranks [Xg,4,---a,, Xb,by.-b,) 7 0 [Payay---ans Poyby--b,] 7 0.

In Section 2, a solution is found for the exact analytical mapping of the noncommuting
xt, pt* operator variables (associated with an 8D curved phase space) to the canonical
Y4, T14 operator variables of a flat 12D phase space. We explore the geometrical impli-
cations of this mapping which provides, in the classical limit, the embedding functions
YA(x, p), I14(x, p) of an 8D curved phase space into a flat 12D phase-space background.
The latter embedding functions determine the functional forms of the base spacetime met-
ric guv(x, p), the fiber metric of the vertical space hh(x, p), and the nonlinear connection
Ny (x, p) associated with the 8D cotangent space of the 4D spacetime. We finalize with
some concluding remarks.

2. The Deformed Quaplectic Group and Complex Gravity

To begin this section we review the construction of the deformed quaplectic group
given by the semidirect product of U(1,3) with the deformed (noncommutative) Weyl-
Heisenberg group involving noncommutative coordinates and momenta [14]. Then, we
proceed to construct a two-parameter family of deformed quaplectic algebras parametrized
by two complex coefficients «, 8.

The (undeformed) quaplectic group is given by the semidirect product of U(1,3) with
the Weyl-Heisenberg group and was studied in detail by [2—4]. Physically, the quaplectic
group is basically the “phase-space” version of the Poincare group (which is given by the
semidirect product of the Lorenz group SO(1,3) with the translation group Tj), where
the translation group is replaced by the Weyl-Heisenberg group and the Lorentz group is
replaced by U(1,3).

The deformed Weyl-Heisenberg algebra involves the generators

1 /X, ,Pa) . 1<Xa ,Pa>
Zo=—(22—i%), Zt= —(224i %), a=1,234 7
G o B R v %

Notice that we must not confuse the generators X, P, (associated with the fiber coordinates
of the internal space of the fiber bundle) with the ordinary base spacetime coordinates and
momenta xy, py. The local gauge theory based on the deformed quaplectic algebra was
constructed in the fiber bundle over the base manifold which is a 4D curved spacetime with
commuting coordinates x* = x%, x!, x?, x3 [14]. The (deformed) quaplectic group acts as the
automorphism group along the internal fiber coordinates. Therefore, we must not confuse
the deformed complex gravitational theory constructed in [14] with the noncommutative
gravity work in the literature where the spacetime coordinates x/ are not commuting.
The four fundamental length, momentum, temporal, and energy scales are, respectively,

fic [ Bib h e
/\l — \/Zr /\p — 7/ )\t - \/;I /\E - hbc' (8)
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where b is the maximal proper force associated with the Born’s reciprocal relativity theory.
In the natural units # = ¢ = b = 1, all four scales become unity. The gravitational coupling
is given by

4 A

== ©)

C
]:mux

G

and the four scales then coincide with the Planck length, momentum, time, and energy,
respectively. One may postulate the maximal proper force to be given by

Fmax = Mp— (10)

where Lp is the Planck scale, the Planck mass mp is assumed to be the maximal mass of a
fundamental particle, and % is postulated to be its maximal proper acceleration. In natural
unitsh =c=G =1, Fpax — 1.

The generators of the U(1,3) algebra given by Z,;, are Hermitian (Z,;,)" = Z,;, with
a,b = 1,2,3,4; while the generators of the deformed Weyl-Heisenberg algebra Z,, Z;L are
Hermitian-conjugate pairs like Ly = Ly +iL,, L = Ly —iLy in the SO(3) algebra. Note
that the Hermitian-conjugate pairs of generators Z,, Z; in Equations (7) are not independent
from each other, hence one is not doubling the number of physical dimensions. For instance,
the complex variables z# = x# 4 ip¥; z¥ = x# —ipt;u = 1,2,---, D are not independent
but complex-conjugate pairs. The number of physical dimensions of the 2D phase space
remains the same.

The standard quaplectic group [2-4] is given by the semidirect product of the U(1, 3)
group and the unmodified Weyl-Heisenberg H(1,3) group Q(1,3) = U(1,3) ®; H(1,3)
and is defined in terms of the generators Z,;, Z,, Z:{ ,Z described below with a,b = 1,2, 3,4.

A careful analysis reveals that the generators Z,, Z} (comprised of Hermitian and
anti-Hermitian pieces) of the deformed Weyl-Heisenberg algebra can be defined in terms
of judicious linear combinations of the Hermitian U(1,4) algebra generators Z 45, where
A,B=1,2,3,4,54a,b=1,2,3,4and nap = diag (+, —, —, —, —). The linear combination is
defined after introducing the following complex-valued coefficients as follows:

. . . . T

Zy = (_Z)l/Z(ZHS —iZ5,); Z;r = (1)1/2(Za5 +iZ50); Zs5 = > (11)
The reason behind this particular choice of the complex coefficients appearing in Equation (11)
is explained below in Equation (20a—c). The Hermitian generators of the U(1,4) algebra are
givenby Z,p =€ g and Zgy = & 1‘3“ ; notice that the position of the indices is very relevant
because Z 45 # Zg4. The commutators are

(€L, €9] = —isbEd viotel;, (€4, €0 = —idlEd; €4, €8 =00t S (12)

and [£2, €] = —i 62 £2 ... such that now, Z(= 2Zs5) no longer commutes with Z,, Z].
The generators Z,;, of the U(1, 3) algebra can be decomposed into the Lorentz subalgebra
generators L, and the “shearlike” generators M ;) as

Zop = 5(Map) + Liap) = Lav = Liay) = (Zap — Zpa); Map = Map) = (Zap + Zpa), (13)

1
2
where the “shearlike” generators M ,;) and the Lorentz generators L, are Hermitian. The
explicit commutation relations of the M,;, L,; generators are given by
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(Lab, Lea) = i(NpeLad — MacLpd — paLac + MadLpc)- (14a)
Mgy, Meg) = —i(1peLag + YacLpa + fpaLac + aaLoc)- (14b)
[Lap, Meg] = i(1pe Mg — HacMpg + 1paMac — 124 Mpe). (14c)

Therefore, given Z,;, = %(Mub + L), Zeg = %(Mcd + L) after straightforward algebra, it
leads to the U(1,3) commutators

[Zab/ ch} = _i(ﬂbczad - Uudzcb) (14d)

as expected. By extension, the U(1,4) commutators are!

[ZaB, Zcp) = —i(nBcZAp — NaDZCB)- (14e)

The commutators of the Lorentz boosts generators L, with the X,, P, generators are

(Lap, Xc] = i(11pcXa — 1acXp);  [Lap, Pe] = i(pePa — HacPp)- (15)

The Hermitian M,;, generators are the “reciprocal” boosts/rotation transformations which
exchange X for P, in addition to boosting (rotating) those variables, and one ends up with
the commutators of M,; with the X, P. generators given by

Xe
Ap

P

[M bs 3
a /\p

i i
] = 7)\7(77bcpa + ﬂach); (Map, ] = 7/\7(17176}{57 + Wﬂfxb)' (16)
p 1

The commutators in Equation (14d) and the definitions in Equation (11) lead to

[Zab/ ZC] = (_i)S/z (WchaS + i’?acZSb)

. . (17)
(Zap, 28] = — ()2 (inpcZas + 1acZsp),

which are consistent with the commutators in Equation (14a—c) and the definitions in
Equations (11) and (13). The right-hand side of Equation (17) can be rewritten in terms of
Za, Z:{, Zy, ZZ after the following replacements:

Zis = Sl(=)"2Z5+ ()22, 7= (<022 - () Pz). ()

N =

After some algebra one finds

i i 1 1
(Zap, Ze) = _Eﬂbcza + E”/uczb - E’?bcz;r - EWCZIJ; (19)

i 1 1 1
(Za, 28] = —Eﬂbcz;r + EnacZZ + E’?bcza + E”]aczb-

The particular choice of the complex coefficients appearing in Equation (11) leads to
the following deformed Weyl-Heisenberg algebra

Za, Z§) = —(napT + Map);  [Za, Zs) = (28, Z}] = —iLy (20a)
2o, T) =27%; (2}, T) = ~2Z4; [Z4,T) =0. T =2Zs5 (20b)
leading to
X, P, P, X,
L1 =228 |, 7] =28 2
T = ] =2
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and the metric 77, = (4+1,—1,—1,—1) is used to raise and lower indices. The Planck
constant is given in terms of the length and momentum scales of Equation (8) as i = AjA,.
In i = 1 units, A\jJAp, — 1.

The deformed quaplectic algebra is given explicitly by Equations (14d), (17), (19), and
(20a—c) and obeys the Jacobi identities by virtue of the definitions in Equations (11) and (13).
After recurring directly to the definitions in Equation (7), one finds that Equation (20a)
explicitly reflects the deformation of the Weyl-Heisenberg algebra resulting from the non-
commutative algebra of coordinates and momenta given by

X, P .
H' Aﬂ = (T + Mgp) (21a)
[Xa, Xp) = —i(A) Loy [Pa, Py) = i(Ap) Lo (21b)

One could interpret the term 77,, Z 4+ M,; as a matrix-valued Planck constant 7, (in units
of i = 1). One may also note that the generator Z no longer commutes with Z,, Z;r, but it
exchanges them, as one can see from Equation (20b) resulting from the definition of 7 given
byI = 2255 = M55.

One of the salient features of the construction of the deformed quaplectic (Weyl-
Heisenberg) algebra is that by varying the values of the following complex coefficients «, 8
appearing in the linear combinations

7
Zo=uaZss+ ﬁZSa; Z;r = “*ZHS + ﬁ*ZSa} Zs5 = 5’ (22)

it furnishes different commutation relations than the ones described by Equations (20a—c)

and (21a,b). The latter commutators are found in the special case when & = (—i)!/2,
B = (—i)%/?, as chosen in Equation (11). For instance, if either « = 0 or B = 0 it
leads instead to vanishing commutators [Z,, Z{| = [Z,,Z,] = [Z],Z}] = 0 as a result

of Equation (14e). In turn, one would have [X,, X] = [P, Py] = [X4, Pp] = 0 instead of
Equations (21a,b). Therefore, the introduction of nonvanishing complex coefficients &, , via
Equation (22), yields a two-parameter family of deformed fiber coordinates and momenta
algebras parametrized by «, 8. In particular, one may explicitly introduce these parameters
by writing Z,(«, B), Z} (a*, B*).

After introducing the complex-valued vierbein Ej, = ¢/,

wt i fﬁ, it leads to the complex

metric
Suv = E;’i(Eﬁ)*ylab = 8(w) + ig[],n/] (23a)
with
S(u) = (EZEIIZ + f;fll/])ﬂab' ig[;w] = _i(erf - elb/f;)rlub' (23b)
The 4 x 4 complex metric g, is Hermitian g;;l, = guv as aresult of g, = (guv)*. To verify
that g[,,,] = —g[], one just needs to relabel the indices a <+ b in Equation (23b) and recur
to #pa = Hap-
The two-parameter family of U(1, 4)-valued Hermitian gauge fields is given by
1 * * *
Ay = O Zop + T [EjZa(a, B) + (ER)*Z3 (o, B)] + Oy T, (24)

where L is a length scale that is introduced for dimensional reasons since the physical units
of A, are (length) 1. fo’Zub is given by %(Q;{lb)Mﬂb + Q,[fb} Lay), and Z,(a, B), Z1 (a*, B*)
are displayed in Equation (22).
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One can rewrite the two-parameter family of U(1, 4)-valued Hermitian gauge fields
(24) as

Ay =Q0Z + QO Mes + O s + T, O, = Q. (25)
After some straightforward algebra, one finds that the real-valued connection components

Q;’f, 015[* are given by suitable linear combinations of the ¢}, f; components of the complex-
valued vierbein as follows

o -a(t1) B o -a(BE) (), e

such that

5 1 5 1
oY = SO+, o = E(0;35 - Q). (26b)
Because a # B, one finds that 0“5 #* QH ; consequently, () ;é 0; Q[HS] # 0. Therefore,

the introduction of the two dlstmct complex coefficients «, ,B is tantamount to choosing an
infinite family of real-valued connection components Q;‘f’, fo‘ given by the many different
linear combinations of e}, and f;. The real-valued coefficients of these linear combinations
are given by the real and imaginary parts of « and B as displayed in Equation (26a).
One should also emphasize that no zero torsion conditions were imposed in reaching the
relations in Equation (26a,b) between Q;ﬁS, Q;Sf and e;, fﬁ

The Hermitian U(1, 4)-valued field strength is defined by

Fu = 0,A, — d)Ay +i [Ay, A, (27)
from which one can read the curvature components R;fvb) ; R%’ ) , and the other components

of the field strength (such as torsion), in terms of the connection components (and their
derivatives) of Equation (24) from the following decomposition of the field strength

a a 1
Fuv = Rt Moy + Rl Loy + T [FuZa(e B) + (E) ZE (@, B)] + FuZ.  (28)

By proceeding as one did in [14], one may then construct the generalized actions for
complex gravity after using the complex metric (vierbein) and its inverse to raise and lower
indices. The simplest actions can have terms linear and quadratic in the curvature and also
quadratic terms in the torsion. For further details, we refer to [14].

Alternatively, one could instead start with the U(1, 4)-valued Hermitian gauge field in
Equation (25) leading to the field strength

2 Loy + RitaS)MuS + R;[fs] Lgs + F;WI (29)

Fu = R M, + R
and expressed in terms of Q(”h) Q[ﬂb fy, 055 = )y, and their derivatives. Note that
U(1,4) has 25 generators, whereas the metrlc affme group in 4D, given by the semidirect
product of GL(4, R) with the translation group Ty, has 20 generators. Therefore, the complex
gravitational theory based on U(1,4) and inspired from Born’s reciprocal relativity theory,
has more degrees of freedom than the metric affine theory of gravity in 4D. This is not
surprising since one is dealing with gravity in curved phase spaces. There is also torsion in
our construction.

A curved phase-space action associated with the geometry of the cotangent bundle of
spacetime and based on Lagrange-Finsler and Hamilton—Cartan geometry [15-18] can be
found in [19-21]. To conclude this section, there are two different approaches to construct
generalized gravitational theories in curved phase spaces: (i) via the U(1,4) local gauge
theory construction presented here, or (ii) via Finsler’s geometric methods.
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3. The Yang Algebra versus the Deformed Quaplectic Algebra

This section is devoted to an extensive analysis of the Yang and the deformed quaplec-
tic algebras associated with noncommutative phase spaces. Secondly, we present ex-
tensions of such algebras involving antisymmetric tensor coordinates and momenta of
different ranks.

3.1. The Yang Algebra and Its Extension via Generalized Angular Momentum Operators in
Higher Dimensions

Given a flat 6D spacetime with coordinates YM — {Yl, Y2, Y3, Y4 Y5, Y6} and a metric
nmn = diag(—1,+1,+1,...,+1)?, the Yang algebra [22,23], which is an extension of the
Snyder algebra [24], can be derived in terms of the SO(5,1) Lorentz algebra generators
described by the angular momentum /boost operators®

d d

MN MpN _ yN[My — ivM N

=—(YVII" =Y IIY) =iYV —— — Y ——

J ( )= irMope —iYN oo, (30)
where TTM = —i(9/9Y,) is the canonical conjugate momentum variable to YM. Their

commutators are
YM yN] = o, [IM, 1TIN] =0, [YM,11V] = iyMN, M,N =1,2,3,4,5,6.  (31)

The coordinates Y™ commute. The momenta ITM also commute, and the canonical conju-
gate variables YM, TN obey the Weyl-Heisenberg algebra in 6D.

Adopting the units 71 = ¢ = 1, the correspondence among the noncommuting 4D space-
time coordinates x*, the noncommuting momenta p#, and the Lorentz SO(5, 1) algebra
generators leading to the Yang algebra [22,23] is given by

Xt & LpJ* = —Lp(YMIT® — Y°IIV) (32a)
1 6 1 6 6
pt < Z]V = —Z(W‘H —-Y°I1"), u,v=1,234, (32b)

which requires the introduction of an ultraviolet cutoff scale Lp given by the Planck scale,
and an infrared cutoff scale £ that can be set equal to the Hubble scale Ry (which determines
the cosmological constant). It is very important to emphasize that despite the introduction
of two length scales Lp, £, the Lorentz symmetry is not lost. This is one of the most salient
features of the Snyder [24] and Yang [22,23] algebras4.

The other generators are given by

N = o= (Y11° — Yo1D), ™ = — (YFIIY — Y'II*), u,v=1,2,3,4 (33)

One can then verify that the Yang algebra is recovered after imposing the correspon-
dence in Equations (32a,b) and (33)

(x4, 2) = LB, [t pt) = i PP, o = =1 (34)
[x, JP) = i(y"ex" — ) (35)
[p", J7P] = i(n"p" — 0" pf) (36)

(¥, ) = —in SEN, [N = 0 @)
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1
[x¥,N| =iLpLp¥, [pH, N]|=—i—7xF (38)
LpL
where the [J*Y, JP?] commutators are the same as in the SO(3,1) Lorentz algebra in 4D.
They are of the form

[]Hlllz,]Vle] = —igti]H2v2 4 jpiava JH2v1 4
(39)
1’;7V2V1]P11V2 — 1'17}421/2]}411/1, h=c=1

The generators are assigned to be Hermitian so there are 7 factors in the right-hand side of
Equation (39) since the commutator of two Hermitian operators is anti-Hermitian. The 4D
spacetime metric is 17, = diag(—1,1,1,1).

Before continuing, it is important to point out the differences/similarities between the
U(1,4) algebra and the Yang algebra which is based on SO(4,2) (or SO(5,1)). Firstly, U(1,4)
has 25 generators while SO (4, 2) has 15. Secondly, the modified Weyl-Heisenberg algebra
in Equation (37) differs from the one displayed by Equation (21a). Equation (34) is similar
to Equation (21b); Equation (38) is similar to Equation (20c); and Equations (35) and (36)
are trivially similar to Equation (15). Thirdly, there is no analog in the Yang algebra of the
Hermitian M, generators which act as the “reciprocal” boosts/rotation transformations
which exchange X for P, in addition to boosting (rotating) those variables, and leading to
the commutators of M,; with the X, P, generators given by Equation (16).

Another difference between the Yang and the deformed quaplectic algebra is that in
the Yang algebra case, one adds two additional coordinates and momenta Y®, Y0, 11°, and
I1° in order to construct the SO(4,2), SO(5, 1) algebras with 15 generators. Whereas in the
(deformed) quaplectic algebra case, one adds one additional coordinate and momentum
Y5, IT°, and the extra generators My, M5, M55 = Z in order to construct the U(1,4) algebra
with 25 generators. Furthermore, the construction of the Yang algebra requires the two
length scales Lp, £, whereas in the (deformed) quaplectic algebra, one has the length scale
Aj and the momentum scale A,.

One may also clarify that quantum phase spaces can be described by real or complex
phase space coordinates. A typical example of the use of complex coordinates is in the de-
scription of the coherent state |z) that is defined to be the unique eigenstate of the (bosonic)
annihilation operator 4|z) = z|z) [25]. The formal solution of this eigenvalue equation is
the vacuum state displaced to a location z in phase space, and it is obtained by letting the
unitary displacement operator D(z ) operate on the vacuum |z) =e ) = D(2)|0),
where the annihilation operator 4 = X +iP and creation operator 4t = X — iP are expressed
in terms of the phase-space coordinates associated with the quantum harmonic oscillator.

Using the representation of the coherent state in the basis of Fock states, one finds

_ \ *4 i
e ez |0), where |n) are the energy (number) eigenvec-

Zﬂ —z*a

2|2 n
2) =% T Zmln) =
tors of the quantum harmonic oscillator Hamiltonian H = hcw(a*a + %) [25].

Pertaining the role of the U(1,4) symmetry, one should point that there is a standard
procedure to obtain the U(N) generators Ej; = a;-rak in terms of the complex CI(2N, C)
algebra generators via the Creation and annihilation fermionic oscillators defined as follows:
a; = 2(1"2] +iTpj1);a (1"2] il 1);j=1,2,--+,N. One can verify that the follow-
ing anticommutators {a],ak} = {aj,a} =0; {a}f,a{} = 0 lead to the U(N) commutation
relations [Ejk, E;nl = k1 Ejm — 0jmEjx- This construction is just a reflection of the fact that
U(N) C SO(2N). In particular, U(4) C SO(8).

After this detour, given the above correspondence (9), we can extend it further to the
higher-grade polyvector-valued coordinates and momenta operators in noncommutative
Clifford phase spaces [26,27]. Given a Clifford algebra {y*,9"} = 25"'1, a polyvector-
valued coordinate is defined as X = X);T™ and admits the following expansion in terms of
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the Clifford algebra generators in D-dimensions, 1, y#, y#1 Ay#2, .- y#1L A2 Ao A9HD,
as follows:

(40a)
Xﬂlﬂzﬂs ------ MD'YW ANyH2 N s A D,

The numerical combinatorial factors can be omitted by imposing the ordering prescription
M1 < pa < p3--- < up. In order to match physical units in each term of (17), a length scale
parameter must be suitably introduced in the expansion in Equation (17). In [28,29], we
introduced the Planck scale as the expansion parameter in (17), which was set to unity,
when one adopted the units 1 =c =G = 1.

Similarly, the polyvector-valued momentum P = Py '™ admits the following expan-
sion in terms of the Clifford algebra generators in D-dimensions

P = P1+ Puy" + Py, Y'Y AYP2 4 Puygupps YO N Y2 A 4
(40b)
P},Wﬂl3 ______ ],D'y’“ AyHz ANyMs.... A yHD

The scalar, vectorial, antisymmetric tensorial coordinates X, Xy, Xy, = —Xyppuy, -+,
Xuypo-up are the scalar, vector, bivector, trivector, etc., components of the polyvector-
valued coordinates. The X}, ,, bivector (antisymmetric tensor of rank two) corresponds
to an oriented area element. The trivector X, ;,,; (antisymmetric tensor of rank three)
corresponds to an oriented volume element, and so forth.

Similarly, the scalar, vectorial, antisymmetric tensorial coordinates P, Py, Py, =
—Puyyys v+ Puypy--up are the scalar, vector, bivector, trivector, etc., components of the
polyvector-valued momentum coordinates. The P, bivector (antisymmetric tensor of
rank two) corresponds to an oriented areal-momentum element. The trivector Py, ,,
(antisymmetric tensor of rank three) corresponds to an oriented volume-momentum ele-
ment, and so forth.

We constructed in [26,27] the corresponding nonvanishing commutators among the
noncommutative antisymmetric tensors X#1#2, XHi#a#s ... pHika prif2ks ... of different
ranks. We coined such extension of the Yang algebra the Clifford—Yang algebra, since it
involves polyvector-valued coordinates and momenta associated with a Clifford algebra.
The noncommuting bivector coordinates obey

[XMH2, XV1¥2] ~ iL‘llm55]H1V2|V1V2, Jiakalviv: = —(YHu2ITY2 — yivaT T (41a)

YH1#2 js a bivector coordinate associated with the CI(5,1) algebra of the 6D flat spacetime.
ITM#2 = —i(d/0Y),, ) is the corresponding bivector canonical momentum conjugate. Their
commutators are

[Yii#2 yni2] =0, [[TM1F2,111"2] =0, [YF1F2, pY1¥2] = 1‘,7#1}42|V1V2, (41b)
where the generalized metric involving bivector indices is defined as
nﬂlﬂz\vlvz — ,7V1V2|ﬂ1142 =yt _ piva ity (41¢)
The noncommuting bivector momenta obey

[Plak2, P1va] ~ L4900 Jip2lv1v2 (41d)
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and so forth. All the commutators have the same structural form of a generalized angular
momentum algebra as follows

[JA()IB(r2)  JC(s1)ID(s2)] = 71';714(71)IC(Sl)]B(fz)\D(Sz) + 1'171‘1(71)ID(Sz)]B(Vz)lc(Sl)Jr

(41e)
1‘;73(?2)\C(Sl)]A(fl)\D(Sz) — 1‘;73(72)\D(Sz)]A(Vl)lc(Sl), h=c=1,

where the grades of the polyvector indices A(r1)B(r2), C(s1), and D(sy) appearing in the
generators are 11,7, 51, and sy, respectively. The shorthand notation for J1%27 [biba+bry jg
JArIB(2) ... The generalized metric tensor 74IC = 0 if the grade of A is not equal to the
grade of C. Similarly, 74P = 0if the grade of A is not equal to the grade of D, - - - . Moreover,
7t = y#® = 0 since the 6D metric is diagonal. The commutators (41e) ensure that the
Jacobi identities are satisfied. In addition, we found the spectrum of the quantum harmonic
oscillator in noncommutative spaces in terms of the eigenvalues of the generalized angular
momentum operators in higher dimensions and discussed how to extend these results to
higher-grade polyvector-valued coordinates and momenta. For full details, we refer the
reader to [26,27].

3.2. Realization of the Deformed Quaplectic Algebra and its Extensions

We saw above how the noncommutative coordinates and momenta of the Yang algebra
in 4D can be realized in terms of the angular momentum operators in 6D, which, in
turn, are expressed in terms of the canonical-conjugate variables Y™, ITN in 6D shown
in Equations (32a,b) and (33) and obeying the standard commutation relations displayed
in Equations (31). Inspired by this procedure, next, we find a realization of the deformed
quaplectic algebra generators in terms of the canonical coordinate and momentum variables
Y;, Iy, Y5, 15 as follows:

—_

1
My = My, = E(Yanb +1IL,Y,) + E(Ybﬂa +11,Y) (42a)

1 1
M5 = Ms, = E(YQHS + H5Ya) + E(YSH[Z + HaY5), Mss = (Y5H5 + H5Y5) (42b)
1 1
Ly = —Lp, = E(Yuﬂb + HbYa) — E(Y;,Ha + HaYb) (42¢)

1 1
L{ZS = —LSH = E(YQHS + H5Yﬂ) - E(YSHIJ + HIIYS) (42d)

From Equations (41a-e) and (42a—d), one then finds an explicit realization of the generators
Zag = %(M AB + Lap) of the deformed quaplectic algebra, with A, B = 1,2, 3,4, 5, directly
in terms of the canonical coordinate and momentum variables Y;, 11}, Y5, 115, and obeying
the following commutation relations:

Yo, Y] =0, [Ya,¥5] =0, [, 11} =0 (43a)

1, 115] =0, [Yy, I1y) = inep, [Y5,115] = injss. (43b)

From Equation (43a,b), one learns that when a # b, the generator M,;, reduces to Y,IT, +
Y,I1,, and when a = b, My, = Y,I1, + I1,Y,, while the generator L, = Y,II;, — Y;11,.
Similarly, M5 reduces to Y,I15 4 Y511, Mss = Y5115 + I15Y5, and L5 = Y, 115 — Y511,

The antisymmetric rank-two tensor coordinates and momenta operators’ extensions
of the expressions in Equations (41a—e) and (42a—d) are given by:
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1 1
Mﬂlaz‘bﬂ)z = E(Yﬂ]ﬂznblbz + HbleYﬂlﬂz) + E(Yblbznﬂlﬂz + Hﬂlﬂzyblbz) (44&)

1 1
Lalﬂz‘blbz = E(Yﬂlu2nh1b2 + HbthYulaz) - E(Yblhznalﬂz + HaluZthbz) (44b)
where
Mﬂlﬂz\hhz = _Mﬂza1|b1b2 = _Mﬂlﬂz\bzh = Mb1b2\a1a2 (45a)
Lﬂwz\blbz = _Lﬂzﬂl\blbz = _Lﬂ1ﬂ2|b2b1 = _Lblbz\ﬂlﬂz (45b)

Given Mg, 4, (b,6,7 Laya |,5, the generalization of the operator Z;, is

1
Ztlltlzlblbz = E(Multlﬂb]bz + Lll1112|b1b2> (45C)

The generalization of the commutators in Equations (14a—c) corresponding to the

M., 4501657 Layay b b, ENETAtOTS IS given by
[Lﬂlﬂz\blbz’Lflcz\dldz] = lT]blb2|5152Lﬂlﬂ2‘d1d2 - l””l”Z‘ClCZLblbﬂdldzi
(46)
by by|dydy Layas|ercy T Payay|dyds Loyboescs
[Mab/ MCd] = _irlblbz‘quLﬂlﬂz‘d]dz - i’?{l1ﬂ2|ch2Lb1b2‘d1d2_
(47)
Z"7l71bz|dldzL111f12|0102 - i%lﬂz\dldthlbzklcz
[Lub’ MCd] = i77b1b2|c1c2Ma1az\d1dz - i’7u1a2\c1c2Mb1bz\d1dz+
(48)
i’7b1b2|d1d2Ma1a2|c1c2 - iﬂﬂlﬂz\d1d2Mb1b2|Clcz
where
ayay|byby —  a1bq,,a,b a1by ,asb
;712\12:,711,722_,712,721 (49)
From Equations (45c) and (46)—(49), one finds that
[Zﬂ1ﬂ2|b1b2’zclc2‘d1d2] = 7i(17b1b2‘C]CZZﬂ1ﬂ2|d]d2 - 77a1a2|d1dzzc1c2\b1b2)‘ (50)

This is a result of the canonical antisymmetric rank-two tensor coordinates and momenta
variables Yp,4,,I1j,5, obeying the following commutation relations (the generalization of
Equation (43a,b)

[Yﬂlaz/ thbz] =0, [Hﬂﬂlzlnblbz] =0, {YHWQIHblbz] = i7’/a1112|b1b2 (51)

The other dimensionless generators are”

- Yaluz HS YS Halaz
ﬂ1112|5 - /\12 Tp )\7[ )\% ’
M _ Y5 Htllllz Yuluz H5
5 p— i

ST
— Yalﬂz E _ Enﬂﬂz

Lyais = ,
wnls T2, N A2

M

(52)
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Y5 Halaz Yalﬂz E

Lsjg10, = N2 A A, (53)
such that
1 1
Zpayl5 = E(Malaz\S + Loay5):  Zsjaga, = E(M5|a1a2 + Ls|aya,) (54)
and leading to the following generators
Z(ayay) = \2 <X;:2ﬂ2 - inCgZ) = aZayay[5 + BZ5(ay0, (55a)

1 (X P,
ZE;Zlﬂz} = \ﬁ( ;\112“2 T jC%:lz) B lx*Z“l”Z\S + 'B*Z5|111ﬂ2 (55b)

where a, f are suitable complex-valued coefficients chosen so that®

[Z[alaz]rzrblbz}] = _(Ualaz\blbzz + Ma1a2|b1b2> (56)

[Z[ﬂwz]’z[blbz}] = [Zfrulaz]’zfrblbﬂ] = _iLﬂmz\bﬂ?z' (57)

Finally, from Equations (55a,b)—(57), one arrives at the desired result

Xaya, Poyp :
;\11;2 ’ /\1%721 B 1(’7”1“2%11721 + Mﬂ1a2|b1bz) (58)
[Xﬂlﬂ21 Xblbz} = 71’()\1)4Lu1u2|h1b2; [Palﬂzlpblbz] = i(AP)4LH1a2|h1h2; (59)

The above construction can be extended to higher-rank antisymmetric tensor coordinates and
momenta Yo, ay,a5, Ilajaza;, - - - leading to the generators Z, 4, q. 150,657 Zayazas |5 Z5|ayasas - - - #
and whose commutators are the extensions of the equations above. The end result is

Xayar--a, Poyby-by .
alzzln &, 1/\% = i(Mayay-an|byby--by L + Mayay--ap|byby---by) (60)
[XﬂlﬂZ"'ﬂn’Xblbz"'bn] = _i(/\l)anll]az---a”‘b]bz*“b,l (613)
[Palﬂz“'llnlpblbz"'bn] = i(/\P)ZnLalaz--ﬂ,,|b1b2---bnr (61b)

where 1, 4.4, b, b,---b, Can be written as the determinant of the n x n matrix whose entries

are "% with i,j = 1,2,- - - ,n. The same occurs with lelzsg” where the entries are (52’:. One
n ]

finds that Equations (60) and (61a,b) do not differ too much from those corresponding
equations of the Clifford—Yang algebra [26,27]. In the latter algebra, Z = 2Zs5 = M55
is replaced by N/ = J%°; there are no M, 050, |byby---b, terms, and Aj, Ay, are replaced by
Lp, L7}, respectively, where Lp, £ are the lower and upper length scales.
To sum up, all the commutation relations can be obtained from
[Za1u2~~~an|b1b2~~bnrchcz~~~cn|d1d2~~-dn} =
(62a)

_l(qblbzmbn|01cz'--cn Zﬂl”Z"'ﬂn|d1d2"'dn ~ Nayay--ay|dida---dy chcz--cn\hbz'"hn )-

[ZﬂllZZ-“anIS’ ‘Z5|b1b2bn] = 71.(1755‘2”]”2"'”}1|h1b2"'bn - ﬂlllﬂz---aﬂ‘blbz-“bﬂ Z55)/ e (62b)
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We finalize this section by pointing out that Meljanac and collaborators introduced
also the tensorial canonical Heisenberg algebras as a tool to provide the solution, e.g., of the
Snyder models describing noncommutative quantum spacetime coordinates. In particular,
the Yang model and its generalizations were discussed very recently [30] .

4. Curved Phase Space Due to Noncommutative Coordinates and Momenta

Noncommuting momentum operators are a reflection of the spacetime curvature
after invoking the QM prescription p;, <> —ilV,. By Born’s reciprocity, noncommuting
coordinates are a reflection of the momentum space curvature after invoking x, «» iV,
where the tilde derivatives represent derivatives with respect to the momentum variables.

Having reviewed the basics of the Yang algebra of noncommutative phase spaces,
Born’s reciprocal relativity, and the extended Yang and (deformed) quaplectic algebras, in
this section, we provide a solution for the exact analytical mapping of the noncommuting
x#, pt operator variables (associated to an 8D curved phase space) into the canonical Y#, 14
operator variables of a flat 12D phase space. We explore the geometrical implications of this
mapping which provides, in the classical limit, the embedding functions Y (x, p), [14(x, p)
of an 8D curved phase space into a flat 12D phase space background. The latter embedding
functions determine the functional forms of the base spacetime metric g,y (x, p), the fiber
metric of the vertical space 1" (x, p), and the nonlinear connection N, (x, p) associated
with the 8D cotangent space of the 4D spacetime.

Instead of working with the above canonical coordinates Y# and momenta I1# in
a flat 12D phase space (A = 1,2,---,5,6), the authors [31] were interested in finding
Hermitian realizations of the above Yang algebra in an 8D phase space, and given in terms
of the canonical variables %, p satisfying (%, %,] = [py, pv] = 0, and [%, pv] = i1, with
u,v=12734

The Yang model studied by [31] was characterized by the choice of the commutator
(x4, pv] = i7uv(x, p), and where the rank-two tensor 7, (x, p) is of the form

Yuv = h(x?, P2, X p+p-X)u (63)

with /1 a judicious function of the Lorentz scalars x2, pz, X+ p+ p-x, which is determined by
solving the Jacobi identities. The rank-two tensor 7, (x, p) is what leads to the generalized
uncertainty relations. The triple special relativity model [32], an extension of [33,34], was
characterized by a different choice of 7, (x, p). The Lorentz generators were represented as

1
T = E(xupv — XyPyu + PvXp — PuXv) (64)

In particular, the authors [31] looked for representations where the generators 7, and the
tensor 7,y could be written in terms of the canonical variables £, and f,. This required
the arduous task of finding the nontrivial map among the noncanonical variables x,,, p, and
the canonical ones %, iy : X, = x,(%, P); pu = pu(%, p). The map was found iteratively in
powers of %, p. The explicit technical details of this map can be found in [31].

4.1. Mapping of x*, p* to the YA, T14 Variables in Flat Phase Space

The Y5, Y®,T1%, and T1° canonical coordinates and momenta (operators) in the flat 12D
phase space are scalars from the point of view of the 8D curved phase space parametrized
by the noncanonical coordinates x* and momenta p*. Therefore, Y5, Y, I1°, and IT® must
be functions of the Lorentz scalars

X =nuxtxt, pr=neptp’, xop=nuxtpt, peox=gupty’, wv=1234 (65
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Setting « = L1, = Lp, due to the Born reciprocity principle, one must have
functions f(z1, 22, z3) of the arguments z1, 2, and z3 given by the following combination of
Hermitian variables (operators)

2=+ %), n=(xptpx), m=ilcp-px), a=LT, p=Lp (60)

The arguments z1, zp, and z3 are invariant under & <+ B, x <+ p, and i <+ —i, if one wishes
to implement Born’s reciprocity symmetry. Therefore, one must have functions of the form

Y5 =Y5(z1,20,23), YO =Y0(z1,22,23), TI° =T1D(z1,22,23), T1®=T1%(z1,22,23) (67)

For instance, one could have functions linear in z1, zp, and z3 defined as follows

Y5(x,p) = a1 (a®x® + B2p?) + by (x - p) + b5 (p-x) + 1 (68a)
YO(x,p) = ax(a®x® + B2p*) + ba(x - p) + b5 (p-x) + 2 (68b)
I1°(x, p) = az(a®x® + B2p?) + ba(x - p) + b3 (p-x) +c3 (68c)
I18(x, p) = ag(a®x? + B*p?) 4+ by(x - p) + b} (p - x) +c4. (68d)

where a;, b;, ¢; (i = 1,2,3,4) are judicious numerical (dimensionful) coefficients. The units
of the coefficients in Equations (68a,b) are those of length, while those in Equations (68c,d)
are those of mass. Note that the b; coefficients in Equations (68a—e) are complex-valued:
b; = 7; + i4;. The reason is that the combination

bi(x-p)+bi(p-x)=vi(x-p+p-x)+idi(x-p—p-x) =7viza+diz3, i=1,23,4 (68e)

ensures that Equation (68e) is Hermitian by construction. Equation (68e) is also invariant
under Born’s reciprocity x <+ p and i <+ —i. We show that Equations (68a—e) should, in
principle, provide satisfactory solutions to the embedding problem defined below.

The [x#, p'] commutator is defined as

[, p'] = xMp" — p"xt =iy (x, p), (69)

where vV (x, p) is a second-rank tensor, not necessarily symmetric, that we refrain from
identifying as a metric tensor. The above commutator can also be expressed in terms of the
6D angular momenta variables displayed by Equations (32a,b) and (33) as

[, p'] = iy (x, p) = —iap]*®(x, p)yt =
(70)
iaB[Y° (x, p)ITe(x, p) — YO (x, p)IP (x, p)Iy#", a= L1, B=Lp

Therefore, from Equations (69) and (70), one arrives at the following relation, after contract-
ing both equations with 7,,,,

il (XFpY = p'xt) = H(x-p—p-x) =

(Y (x, p)II°(x, p) = YO (x, p)IP(x, p))) = —apN

(71)

Therefore, in this particular case, one finds that the tensor is symmetric v*(x,p) =
®(x, p)ny"” and such that the conformal factor ®(x, p) is Hermitian and given by the left-
hand side of Equation (71). The right-hand side of (71) is Hermitian because | %6 is Hermitian
due to the canonical and Hermiticity nature of the 6D variables: (Y°TT%)t = IT16Y5 = Y°TT°,
and (YIT®)t = IT°Y® = Y®II® resulting from the commutators of the 6D canonical vari-
ables given by Equation (31).
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From Equations (32a,b), one learns that the 4D operators x*, p# admitted a 6D angular
momentum realization of the form

= BJI° = —B(Y'IP = Y’II"), B =Lp (72)

pl = aJt® = —a(YFITC — YOITH), a = L7} (73)
From Equations (72) and (73), one can deduce the relation
jyv — xypv . xvpy — aﬁ]56(yyl—[v o YUHV), (74)

where J%© = A and J#¥ are given by Equation (33) explicitly in terms of the 6D canonical
variables Y4, T1B.

One can invert the relations in Equations (72) and (73) as follows. After multiplying
Equations (72) and (73) on the right by IT° and I1°, respectively, and subtracting the top
equation from the bottom one, it yields

BIAMITC — a1 pHIT = TI'N = NTIH (75a)

due to the canonical nature of the 6D variables Y# and I1# described by the commu-
tators in Equation (31) and which allows us to reorder the relevant factors due to the
commutativity.

Moreover, multiplying Equations (72) and (73) on the right by Y® and Y, respectively,
and subtracting the top equation from the bottom one yield

BlxlYe —aIphYS = YEN = NYH (75b)

Next, we see that the functional forms of Y>(x, p), Y®(x, p),IT°(x, p), and T1°(x, p)
provided by Equations (68a—e) lead to solutions to Equation (71), which, in turn, yields
automatically the solutions to Equation (75a,b). In doing so, one finds the solutions to
the embedding problem Y* = Y¥(x,p);TI* = TI*(x,p), with N'(x,p) = J°(x,p) =
—(Y°I1® — YOIT)(x, p), where [N, Y#] = [N, I1#] = 0. The operator N appearing in the
right-hand side of Equation (75a,b) can be moved to the left-hand side via the inverse N’ -1
operator, and that can be defined as a formal power series as follows: [1 — (1 — N)]7! =
1+(1-N)+(1-N)>+--

Thus, from Equations (71) and (75a,b) one can then construct the maps from the x¥*, p*
noncanonical (operator) variables in 4D to the canonical (operator) variables Y4, 114 in 6D.
After a laborious but straightforward procedure we find the following family of solutions

Y5(x, p) = K1Bz1 + K2z + K3Pz3 + K4 (76a)

YO(x, p) = 11821 + KBz + K3Pz3 + (x4 + 1)B (76b)
IP(x,p) = k18 21 + k2B L2p + ZK3,B_123 + 4Bt (76¢)
I°(x, p) = Klﬁ_lzl + Kzﬁ_lzz + ZK3‘B_123 + (kg4 + 1)[5_1 (76d)

where k3 = (aB)~! and 1, ko, and x4 are three arbitrary parameters. This is due to the
nonlinearity of the equations that one is solving. These solutions (76a—d) have the form

Yo = Y5+ B;I1° = I1° — B! such that ap YP I1° = —% = —aBN as required by
Equation (71).
When one takes the classical limit, upon restoring  which was set to unity in the

terms 7y;zp — %zz of Equations (68e), in order to match units, one can see that these terms
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are singular in the i — 0 limit, whereas the terms %23 — —4¢6; are well-behaved and
yield constants.

For these reasons, we just adhere to the following prescription when finding the
classical limit of the embedding functions Y% (x, p), T14(x, p). We could simply drop the
singular %zz terms in Equation (76a—d) by setting the arbitrary constant x, to zero x; = 0
and set the %23 terms to constants that can be reabsorbed into a redefinition of the x4
parameter in the explicit solutions for Y%, Y®,IT°, and IT° given by Equation (76a—d). In
doing so, one ends up with the following expressions in the classical limit

Y5(z1) = 11821 + By — 4(aB) 1) (77a)
Y8(z1) = x1Bz1 + Brs + 1 — 4(aBf) ™) (77b)
I1°(z1) = k1B 'z + B (kg — 5(aB) 1) (77¢)
11%(z1) = 1B 'z + B Mg +1—5(ap) ) (77d)

To conclude, one can finally obtain the explicit solutions for Y¥, (z1, x*, p*); IT#(z1, x, p*),
in the classical limit, given in terms of the functions Y®(z;), Y®(z1),11°(z1), and I1%(z1) in
Equation (77a—d) (and x¥, p¥) as follows:

axtT18(z1) — BpHIT (z1) = —TTF(z1, ¥, p*) (78a)
axtY®(z) — Bp"Y>(z1) = —Y* (21, 2", p*) (78b)

where z; = a?x? + B2p?, a = L71; = Lp. Next, we study the geometrical implications of
the (classical) embedding solutions found in this section and provided by Equations (77a—d)
and (78a,b).

4.2. Embedding an 8D Curved Phase Space into a 12D Flat Phase Space

The previous section involved the use of coordinates and momenta operators. In this
section, we shall deal with classical variables (c-numbers) x, p. A more rigorous notation in
the previous section would have been to assign “hats” to operators £#, p#; Y4, TT4. For the
sake of simplicity, we avoided it. The geometry of the cotangent bundle of spacetime (phase
space) can be best-explored within the context of Lagrange-Finsler, Hamilton—Cartan
geometry [15-18]. The line element in the 8D curved phase space is

(d5)2 = g (x, p)dxdx’ + b (x, p) (dpa + Now(x, p)dx) (dpy + Ny (x, p)dx")  (79)

where g, (x, p), h% (x, p) are the base spacetime and internal space metrics, respectively,
witha, b =1,2,3,4, u,v =1,2,3,4, and N, (x, p) is the nonlinear connection.

One should note that the metric tensor gy is not the vertical Hessian of the square of a
Finsler function, and 1 is not the inverse of Suv- h™ represents, physically, the cotangent
bundle’s internal-space metric tensor which is independent from the base-spacetime metric
tensor g,,. The number of total components of g, ht, Ng, is 10+ 10+ 16 = 36 =
(8x9)/2).

The generalized (vacuum) gravitational field equations associated with the geometry
of the 8D cotangent bundle differ considerably from the standard (vacuum) Einstein field
equations in 8D based on Riemannian geometry. Thus, for instance, by using a base-
spacetime g, metric to be independent from the internal-space metric h,;, and a nonlinear
connection N4, it might avoid the reduction of the solutions of the generalized gravitational
field equations to the standard Schwarzschild (Tangherlini) solutions when radial symmetry
is imposed.
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For example, in [19] we further studied a scalar-gravity model in curved phase spaces
proposed by [20,21]. After a very laborious procedure, the variation of the action S with
respect to the fundamental fields

58 58 58 58
=0, =2 =0, =0, = =0 80
g Shap SNy (80)

led to very complicated field equations which differed considerably from the Einstein field
equations. Exact nontrivial analytical solutions for the base-spacetime g, the internal-
space metric h,, components, the nonlinear connection Nj,, and the scalar field ® were
found that obeyed the generalized gravitational field equations, in addition to satisfying
the zero-torsion conditions for all of the torsion components. See [19] for details.

The embedding of the 8D curved phase space into the 12D flat phase space is described
by equating the 8D line interval ds? in (79) with the 12D one ds*> = ya3dZ4dZB. After
doing so, given Z4 = (Y4,T14) one learns that

0z4 974
b
Suv + h* NﬂﬂNbV = 1AB 783&[ w (81)
0Z4 074
hab _ 82
1AB RIS (82)
0z4 974
b _ _
ht NbV_UABTpaW AB=12---,56 (83)

Equations (81)-(83) determine the functional form of g, heb, N, after one inserts the func-
tional forms of the embedding functions Z4(x, p) = Y4 (x, p),[14(x, p) found in the pre-
vious section. However, there is a subtlety: to match indices with the ones appearing
in Equations (77a—d) and (78a,b) it is necessary to make the following key replacements
(index adjustments) p, — p7, pp — P, = hye, Nay — Nf, , Ny, — N in Equations (79)
and (81)—(83).

To sum up, the (classical) embedding functions Z4(x, p) = Y4 (x, p), T1*(x, p) ob-
tained in the previous section in Equations (77a—d) and (78a,b) determine the functional
form of gy, h, Ngy, in Equations (81)—(83), after adjusting the indices. The key question is
whether or not the solutions found for g, ht, Ny, also solve the vacuum field equations.
If not, can one find the appropriate field /matter sources which are consistent with these
solutions? It is natural to assume that quantum matter/fields could be the source of the
noncommutativity of the spacetime coordinates and momenta. After all, quantum fields
live in spacetime. If this were not the case, what then is the source of this phase-space
noncommutativity? Is it spacetime foam, dark matter, dark energy? If one expects to
have a space-time—-matter unification in the quantum gravity program, then, if matter
curves spacetime, spacetime, in turn, could backreact on matter curving momentum space,
“curving matter”. To conclude, to find solutions of Equations (81)—(83) for g, heb, Ny, (after
adjusting indices) is a highly nontrivial task, and so is to verify that they also solve the field
equations in [19-21].

5. Concluding Remarks

After a review of Born's reciprocal relativity and its physical implications, this work
was mainly devoted to the Yang and the deformed quaplectic algebras associated with
noncommutative phase spaces, and to their extensions involving antisymmetric tensor coor-
dinates and momenta of different ranks. Our approach to construct extended Yang algebras
differs from the study by [35]. We finalized with an analysis of the embedding of an 8D
curved phase space into a 12D flat phase space which provided a direct link between non-
commutative curved phase spaces in lower dimensions to commutative flat phase spaces
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in higher dimensions. Left from our discussion was the role of quantum groups, Hopf alge-
bras, x-deformed Poincare algebras, and of the deformed special relativity [32-34,36—40].
This will be the subject of future investigations.
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Notes

1

Strictly speaking, U(1,4) is a pseudo-unitary group. After performing the Weyl unitary “trick” via an analytical continuation
U(1,4) — U(5), one obtains the unitary group U(5) comprised of 5 x 5 unitary matrices obeying UT = U~!. A unitary matrix
can be written as U = e”, where A is an anti-Hermitian matrix A" = —A, and any anti-Hermitian matrix A can be written as
A = £iH, where H is Hermitian; therefore, all group elements can be written in the form U = eiieABZAB, where 048 are the
corresponding parameters associated to every generator.

2 We choose a different signature than the one in the Introduction.

3 Our choice differs by a minus sign from the conventional definition.

4 A simple inspection reveals that a correspondence of the form {—; = a1 + by JH; Lp! = ay ] + by JM® will automatically lead
tob) = 0,ap = 0; or by = 0,47 = 0 resulting from the antisymmetry of the commutators [x*, x"], [p#, p"]

5 Since AjAp = 1, in units of i = 1, the powers of A;, A, decouple explicitly from Equation (44a,b)

6 Note that one must not confuse Z,, = %(Mab + L) with Z (a1a2] defined by Equation (55a)
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