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Preface

This thesis is the tangible result of my years as a PhD student at the Institute for
Theoretical Physics of the University of Amsterdam. During this period I have, in
cooperation with my co-authors, published three papers on the pure spinor formal-
ism, which have already been mentioned in this preliminary part. While the content
of these papers forms an important part of this work, the latter also contains an in-
troduction into all the ingredients that are necessary to fully appreciate the results
of the papers. In writing this introduction I only have assumed that the reader is
familiar with quantum field theory and general relativity, so in particular knowledge
of string theory is not absolutely necessary, although readers who have read some
textbook material on perturbative string theory will find this thesis easier to read.

Argueably the best one line description of the first chapter is: “the shortest path
from quantum field theory and general relativity to the pure spinor formalism”.
In this chapter perturbative string theory is introduced along with its motivations.
I have done this in a way that puts emphasis on the parts that are relevant for
the pure spinor formalism, which is the most recent string theory formalism. This
formalism is introduced in chapter two, where I will demonstrate that the pure
spinor formalism distinguishes itself from the two other string theory formalisms
(RNS and Green-Schwarz) by the fact that important symmetries of the theory
(Lorentz invariance and supersymmetry) are manifest. This has a simplifying effect
on amplitude computations and indeed the pure spinor formalism has proved to be
more powerful than the other two formalisms. The next chapter contains details of
the arguments used in chapter two and sets the stage for the derivations in the next
two chapters.

The last couple of chapters before the conclusion is based on my three papers,
which all deal with fundamental issues of the pure spinor formalism. The first
provided a first principles derivation for the amplitude prescription of the pure spinor
formalism. The other two papers contain the proof of an important property that any
quantum theory must have, which involves unphysical states. These are states that
one includes in the theory at an intermediary stage in order to preserve important
symmetries, but should not be part of the physical spectrum of the theory. Thus

xi



Preface

in the end the theory should be such that if one scatters a number of physical
states, unphysical states will not be produced, in other words unphysical states must
decouple. The proof of this decoupling in the case of the pure spinor formalism is the
subject of the fifth chapter. More precisely this chapter contains the proof for one
of the two versions of the pure spinor formalism, the so-called minimal formalism.
Decoupling of unphysical states in the other version is trivial to prove and will
therefore not be discussed at length.

Joost Hoogeveen
Amsterdam, Netherlands
June 2010
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Chapter 1

String theory

1.1 Motivations for supersymmetric string theory

High energy physics describes the most fundamental processes that occur in nature.
These comprise the interaction of elementary particles, which include for instance
electrons, protons and neutrinos. The theoretical description of these processes be-
gan in the beginning of the twentieth century when, among others, Bohr, Heisenberg
and Schrodinger wrote down the laws and principles of quantum mechanics. These
could explain the surprising outcome of the double slit experiment and the peculiar
nature of the hydrogen spectrum. In the succeeding decades much more was learnt
about elementary particle physics, in particular how to combine quantum mechanics
with the theory of relativity as developed by Einstein in the early 1900’s. The re-
placement of all individual particles by a much smaller number of fields, one for each
kind of particle, lied at the heart of the progress in relativistic quantum mechanics,
which goes under the name of quantum field theory. The introduction of fields allows
for the creation and annihilation of particles that any relativistic theory necessarily
contains, since kinetic energy is exchangeable with mass, as expressed by Einstein’s
famous formula E = mc?. Around 1970 all the work on quantum field theory culmi-
nated in a realistic model that describes interactions of elementary particles with a
stunning accuracy, the standard model'. This model provides theoretical explana-
tions and predictions for the behaviour of elementary particles under the influence
of three of the four (known) forces of nature: electromagnetism, the weak (nuclear)
force and the strong (nuclear) force. It accounts for all observed particles, which is
non trivial from a theoretic viewpoint because if the number of fields of some kind
is different from a certain number, the theory would not be unitary, i.e. it predicts

1An excellent reference for quantum field theory is [1]. This book contains the details of the
field theory arguments used in this section.



Chapter 1 - String theory

negative probabilities. It also predicts the existence of one particle that has not
been unobserved (yet), the Higgs boson. This fact and other experimental data put
strong constraints on the allowed values of its mass. If the Higgs boson exists in
nature its mass must lie in the range

115 GeVe 2 < my < 500 GeVe 2. (1.1)

The failure to detect the Higgs boson in particle accelerators to date gives the lower
bound. A Higgs mass higher than the upper bound would have resulted in non
standard model physics at measurable scales. If one assumes the standard model
describes nature all the way up to the Planck scale,

1
G 2
Mp = (h—va> ~ 10" GeVe?, (1.2)

the upper bound on the Higgs mass drops to approximately 180 GeVe™2. As will
become apparent in the next paragraph it is interesting to note how the physical
value of the Higgs mass is obtained in the standard model. One starts with a bare
mass, mY;, and then adds quantum corrections to it:

m3; = (m%y)* + om3,. (1.3)

The quantum correction, dm?%, can be expanded in powers of the cut off of the
theory. This is the scale up to which one assumes the theory is valid.

A
dmi = ciA? + czm%logm—H +oee (1.4)

The first term in this expansion comes completely from the diagram in figure 1.1.

Figure 1.1: Higgs mass renormalisation diagram

In spite of its success the standard model is not a complete theory, the most
serious problems are listed below.

e The standard model does not include grawvity. This is not a problem for describ-
ing earth based particle accelerator experiments like the LHC because gravity
is very weak compared to the other three forces. The lack of a theory of quan-
tum gravity does, however, make for instance the description of the universe

2



Chapter 1 - String theory

just after (and perhaps before) the big bang impossible. Other motivations to
develop such a theory include the desire for a microscopic description of black
holes and the search for dark, i.e. non standard model, matter candidates. The
existence of dark matter can be inferred from cosmological observations on the
expansion of the universe. These observations give an estimate for the total
mass in the universe. The standard model particles can only account for four
percent of the total mass. Hence there is much more to our universe than the
standard model.

The standard model is one element of an 18 parameter family of theories. The
value of these parameters must be obtained from experiment. There is no
physical principle to determine them.

When the underlying mass scale of a theory is of a completely different order
than the masses measured in experiments a theory is said to have a hierarchy
problem. This is considered unnatural by many, because the quantum correc-
tions to the bare mass values are of the order of the fundamental parameters
(cf. (1.4)), which implies that the bare mass mY has to be “fine-tuned” with
the utmost precision to give the observed physical mass. The standard model
is an example of a such a theory. There are two choices for the fundamental
mass scale. The first one is the Planck mass, which is the only mass that can
be constructed out of constants of nature. Furthermore it is the scale at which
gravity starts to play a role. The second choice is the grand unification mass,
which is the scale where the three coupling constants of the standard model
(roughly) meet:

Mcayr ~ 10 GeVe=2. (1.5)

Clearly both these scales are of completely different order than the Higgs mass,
mpg.

The hierarchy problem can also be posed as the lack of an explanation for
the fact that gravity is so weak compared to the other three forces. More
explicitly why do standard model particles carry electric charge of order one
and gravitational charges of order 107!, in dimensionless units.

These three problems have various resolutions, a number of which will be discussed
in this chapter.

The introduction of a new symmetry to the theory, supersymmetry, is a par-

tial resolution to the hierarchy problem. This is a symmetry that relates bosons to
fermions, in particular every standard model particle has a superpartner in a super-
symmetric theory. To see the effect on §m?; first note that a supersymmetric theory
has much more (Lorentz) scalars because all the fermions have superpartners. One
can show that the A? term coming from the diagram in figure 1.1, with the Higgs in

3



Chapter 1 - String theory

the loop replaced by an arbitrary scalar cancels exactly against a A% term coming
from the diagram in figure 1.2, where the fermion running in the loop is the super-
partner of the boson that replaces H in the loop in figure 1.1. The leading order

HQH

Figure 1.2: Higgs mass renormalisation diagram, F = fermion

mAt, where m; is the mass of the heaviest particle. This

solves the naturalness part of the hierarchy problem, there is no need for fine tuning

correction goes like mylog

anymore. The huge gap between the Planck scale and the mass scale of elementary
particles is, however, still unexplained. Nonetheless supersymmetry can be used as
a guidance principle in the search for a more complete theory of nature.

The most obvious (and naive) way to construct a theory of all four forces follows
the same recipe that was used to build the standard model. This means start with
the classical Lagrangian and quantise it. The action that describes gravity at the
classical level is the Einstein-Hilbert action:

¢ / d'o/—gR (1.6)
167Gy g '

Sen =

where g,,, is the spacetime metric, R is its Ricci scalar and

g = det(guw)- (1.7)

Quantising the above action (plus terms that couple gravity to standard model
fields) leads to infinities that cannot be handled in a sensible way, in other words
the Einstein-Hilbert action is non renormalisable. An easy check for non renor-
malisability of an interaction term is provided by calculating the mass dimension
of the coupling constant. If this dimension is negative the interaction term is non
renormalisable. As an example consider ¢* theory:

/d4:z: (0,00"p +m>¢” + Ao?). (1.8)
The mass dimension of ¢ can be inferred from either of the first two terms:
1 1
9] = 5(—lat] — [m?]) = 5(4-2) = 1. (19)

This leads to [A] = 0, hence ¢* theory is (at least superficially) renormalisable. To
determine the mass dimension of Gy note that [g,.] = 0 as follows from

ds® = g, dr"dz”. (1.10)

4



Chapter 1 - String theory

Since the Ricci scalar contains two spacetime derivatives and a number of g, s, its
mass dimension is 2. This implies

[GN] = —2. (1.11)

This is the dimension a coupling constant in a ¢% term would have, which we know
leads to a non renormalisable theory. An example of a divergent Feynman diagram
that cannot be dealt with in case of a coupling constant with negative mass dimension
is depicted in figure 1.3. The Feyman rules dictate to integrate over the position

Figure 1.3: Graviton loop

of the vertices of the above diagram. The divergence comes from the region when
the four vertices are very close to each other. Within the confines of quantum field
theory it is very hard to remove this divergence in a Lorentz invariant way. One of
the basic ideas of string theory is to smear out this interaction over a larger region.

The mere fact that an interaction term is non renormalisable does not rule it
out as part of a realistic model. It could be that the divergence is an artifact of
perturbation theory and that all physical quantities are finite when the exact theory
is considered. Technically speaking such a theory would have a non trivial UV fized
point. Note, however, that finding such a point would not solve all the problems of
the standard model mentioned above.

Before introducing string theory there is one more ingredient of quantum field
theory that needs to be mentioned. It is a very elegant and powerful method,
developed by Feynman, to describe and predict the scattering of elementary particles.
In the case of an elementary particle he proposed that if its position at some time tg
is given by zg, it could evolve to any other position x; at time ¢;. The probability
of this process can be calculated by assigning a weight to all paths with the given
initial and final data, even very non-classical ones. As an example of such a path one
can think of a path that goes to the sun and back, with the initial and final position
within the same room. The probability of the particle evolving from xg to x; is given
by the sum, or integral, of the weights of all possible paths. The very non-classical
paths have very small weights so that they hardly contribute. This is a key concept



Chapter 1 - String theory

in the standard model and quantum field theory in general. Its great importance
to theoretical physics is also demonstrated by the pivotal role that Feynman’s path
integral plays in string theory, a point that will be discussed in detail in due course.

In string theory elementary particles are no longer thought of as point particles
but as strings. More explicitly as one dimensional objects that can either be open
or closed. Different excitations of the string correspond to different particles. To
describe the evolution of strings the path integral method is used:

P(wi(ti,0) — 25(ty,0)) = / DpW (). (1.12)

where P is for probability and o is a variable that parametrises the string. The
integration variable p denotes an arbitrary path, which is a two dimensional surface
in spacetime, the worldsheet. This worldsheet is parametrised by two worldsheet
Land o2, Tts embedding in spacetime is given by X*(o',02%). W is
the weight that needs to be specified. Feynman specified this weight as e*/" for
some action S, so that all weights have the same magnitude and only differ by their

coordinates o

phases. Contributions of highly non-classical paths are suppressed by interference.
To compute the probability of two initial states to interact and produce two final
states, Feynman’s path integral principle tells you to sum over all possible paths
that connect the four states. This path integral splits up in different terms, the
diagrams. Figure 1.4 shows this process in string theory. Note that each diagram

+ higher genera

Figure 1.4: Scattering in closed string theory

depicts a sum over all embeddings with a particular genus (the number of handles).
It is not possible to call one point on the worldsheet in figure 1.4 the interaction
point. This is what is meant by smearing out the interaction. Also note this is an
interaction in closed string theory, which will be described first. Thereafter open
strings will be discussed briefly.



Chapter 1 - String theory

1.2 Bosonic string theory

The easiest choice one can make for the weight is the exponential of the area of the
worldsheet of the string. In general the area of a surface is calculated by

A:/ d*o\/ —dethqy, (1.13)
E!]

where hqp is the metric on the surface, denoted by ¥, where g is the genus. The
torus has genus one for instance. If the surface is embedded in space time this A is
the induced metric and the weight W becomes

W(X(0)) = eh"neX), (1.14)

where Sy¢ is the Nambu Goto action? which reads

1

Sna(X) = 2mad

/ P o(—det[D, X 9y X,1)) . (1.15)

The constant o/ has the dimensions of a length squared and it is interpreted as
the square of the string length. The square root in the Nambu Goto action makes
computation based on it cumbersome. Such a situation is often encountered in
theoretical physics. The way forward is introducing extra degrees of freedom and
(gauge) symmetries at the same time. In this case this results in the Polyakov action:

Sp =

1
5 / 2o \/G9 1 0a X H O X, (1.16)
The field g,p constitutes three extra degrees of freedom and it has the interpretation
of worldsheet metric. The first gauge symmetry is two dimensional diffeomorphism
invariance:

o — (0')*(0), (1.17)
which induces transformations on g and X:
OXH =00, X", 6gab = =V (qWy), (1.18)

where v(0) is a parameter of infinitesimal diffeomorphisms. The second symmetry
is Weyl invariance:

Jab — eQW(U)Qab. (1.19)

Together these are three gauge invariances, equal to the number of introduced de-
grees of freedom. Furthermore one can show the two actions are classically equivalent
by examining the field equations.

2From this point onwards natural units will be used, i.e. c=h=1

7



Chapter 1 - String theory

The path integral based on the Polyakov action is given by
P= / DXDge's7. (1.20)

One can show by performing a Wick rotation (cf. [2]) that the above path integral
is equal to

/DXDge—SP, (1.21)

where the integration is over Euclidean worldsheet metrics g and over all embed-
dings X in target space. In this form without the ¢ in the exponent the functional
integrations tend to be better behaved.

The integrations in (1.20) are over function spaces, the space of all embeddings
X*#(o) and all worldsheet metrics gqp(c). Since these are not ordinary integrals it
needs to be specified how these integrals are evaluated. As an example consider

/DXe‘SP = /DXerla/ J o VaXI VX, (1.22)

where compared to (1.20) the integration over the worldsheet metric is omitted. The
space of all functions X* is spanned by the eigenstates of the operator V2, which

are denoted by Xy(o):
=2 Xy(0). (1.23)
I
The eigenstates satisfy
V32X, = —\2X;, /dQU@X,XJ =47 (1.24)

Integrating over all possible fields X#(o) is the same as integrating over all possible
coefficients a/f. Therefore the functional measure DX can be replaced by an infinite
product of ordinary integration measures:

DX = [ [ dat. (1.25)
I

The integral in (1.22) can now be evaluated as

/DXe_SP —/de e~ TaT Lo NPT — H (271- a) /dxo =

I#0

d
_v2 -2
det/ ( 27T20/> / dzl, (1.26)

where the prime on the determinant denotes the omission of the zero mode. This
mode is annihilated by V2 and therefore there is no Gaussian for {;. The notion of a

8



Chapter 1 - String theory

functional determinant, such as the determinant in (1.26), can be made more precise
[3], however it often suffices to include them in the overall factor. The integration
over the zero modes gives the volume of spacetime in this case. However in a typical
string theory computations there is an insertion e’ so that the zeromode integral
gives §¢(k). It will become clear in due course that k denotes the sum of the momenta
of the external particles.

Quantisation of gauge invariant actions

The path integral in theories with gauge invariance typically diverges badly. This
is easily seen by splitting the measure of the path integral up in variables that
parametrise gauge transformations and those that parametrise the physical compo-
nents of the fields:

7= / Do = / Dgange Dphyec ™ = ( / qugauge) / Dynyee™ = oo.

(1.27)
The proper definition of the path integral in gauge theories is
Z = / ! Depe 511, (1.28)
Vol G

This can be made more precise by using a method developed by Faddeev and Popov.
The first step is writing 1 in a very special way:

| = App(6) / DEDTS(6 — 3(r)), (1.20)

where ( parametrises a single gauge orbit and 7 parametrises the space of gauge
orbits, as depicted in figure 1.5. The integral in (1.29) is nonvanishing because there
is always a choice for ¢ and 7 such that ¢¢ = ¢E(T) Since the integral in (1.29) is
non-vanishing it makes sense to regard (1.29) as the definition of App(¢). It will be
explicitly computed in a number of cases below. Inserting the 1 into Z gives

1
7= / or G DODCDTARR (9)3(6° — d(r))e™ 1 = (1.30)

/ﬁD<D¢CDTAFP(¢)5(¢C _ (;AS(T))e—SW’C]'

In the second line the measure for the classical fields D¢ has been replaced by D¢S.
This gauge invariance of the measure often holds, but should in principle be checked
when one is applying the BRST quantisation procedure. Gauge invariance of the
classical action was used to replace ¢ by ¢¢ in the action. Furthermore the Faddeev
Popov determinant is gauge invariant. In order to see this one has to show the value

9



Chapter 1 - String theory

of the integral in (1.29) does not change when ¢ is replaced by a gauge transformed
version ¢S!:

(App(e©) " = / DCDrS((69 ) — d(r)) = (1.31)

/ DGDr3(6% — 3(r)) = (App(6)) "

where (o = ( o (; and in the second equality one has to use that integrating over
all (o is the same as integrating over all (. Perhaps an easier way to understand
the gauge invariance of the Faddeev Popov determinant is from figure 1.5. The
determinant only depends on the behaviour of the field at the intersection point of
the gauge orbit and the gauge slice, since the delta function vanishes away from that
point. The gauge transformation will move ¢ up or down a gauge orbit, but it will

Field space

Gauge slice

Gauge orbits

Figure 1.5: Field space decomposes into gauge equivalent directions (vertical) and non-
equivalent directions (horizontal). The delta function in (1.29) will only have support at the
intersection of the gauge slice with the gauge orbit that contains ¢. Therefore the Faddeev
Popov determinant only depends on the gauge orbit, not on the field ¢ itself. More precisely
the Faddeev Popov determinant only depends on the derivatives of ¢ at the intersection point
along the gauge slice and the gauge orbit.

not change the intersection point. Using the gauge invariance of the Faddeev Popov

10
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determinant leads to

/ Vv lz TG DEDH DTARp(6°)5(6° — (7))o =

/ DDrARp(8)3(6 — d(r))e 519, (132)

where ¢¢ was relabelled ¢ and after this modification there is no ¢ dependence left
hence the D¢ integration cancels against the volume factor in the denominator. As
a final step one can perform an integration over the classical fields to remove the
delta function:

/ DrApp( [#(m)], (1.33)

Both the delta function and the Faddeev Popov determinant in (1.32) can be
written as functional integrals. The delta function can be rewritten as

/ DBe %1, S,p = / dzBa(¢? — $A (7)), (1.34)

where A runs over the fields that play a role in the gauge fixing. After making this
restriction the number of moduli will be finite in all cases to be discussed in this
thesis. The inverse of the Faddeev Popov determinant is given by

#h(o) = [ arpeates - étr) = [ arDeaton + ¢t 55— -7 55, (139)
where ¢ is the value of the classical fields at the intersection point of the gauge
slice and the relevant gauge orbit. The truncation of the Taylor series is not an
approximation. In order to see this consider the case that the classical field space is
two dimensional, with one gauge direction and one modulus direction, as depicted in
figure 1.5. The intersection point ¢g, the gauge transformed field ¢¢ and the gauge
orbit (ZB(T) can be written more explicitly as

o= (35,95), ¢ = (f(¢),0)+ (35, 45), S(r) = (0,9(r)) + (¥5,6p).  (1.36)
In this example the delta function becomes
1 1
f(Co) 9'(10)’

where (j is the gauge parameter such that ¢<° = ¢y. This equation must have a
unique solution otherwise the gauge fixing condition was erroneous. Similarly 7y is
defined by ¢(19) = ¢g. The RHS of (1.37) can be rewritten as

90 k 09
8(‘1 ork

6 (¢¢ — d(r)) = 8(£(¢))3(9(r)) = 6(¢ — G)d(r — 0)

(1.37)

5((¢ = Co) f'(Co)3((1T — 10)g (T0)) = 6P (¢ —) (1.38)

11
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After this short intermezzo let us return to the Faddeev Popov determinant:

A 2 A
/d DES(¢ W_ ka“b /dTDCDﬁeﬁA st (1.39)

where 34 has the same statistics as . Now one has to replace the fields in the
path integral measure by fields of opposite statistics (G4 — ba,(* — ¢*, 7 — &) to
obtain an expression for App:

App(¢ /DbADc“dge P (1.40)
where
Az DA (e T
SFP = /dd;pbA($) [MT;)(CO)CG(ZE) — %(ﬁ))fn(%) ) (141>

The total amplitude is now given by
= / D¢DbDcDBdrdée™ 5P ~Sss =5k r, (1.42)

where Sp is the Polyakov action, but can be any gauge invariant action. The fields
ba and ¢* are the Faddeev Popov ghosts and B4 is an auxiliary field since it only
appears algebraically. Furthermore b4 and B4 are tensor densities so that S, and
Srp are coordinate invariant. One would expect the indices A and a to run over the
same values, but this need not be true as will be demonstrated below in the case of
the Polyakov action.

As first realised by Becchi, Stora and Rouet (BRS) and independently by Tyutin
(T) the new action is no longer invariant under the gauge transformations of Sp,
but it is invariant under the BRST symmetry given by?

opp = €c0q9, (1.43)
opc® = efiches, (1.44)
O0pba = €eBa, (1.45)
opBa = 0, (1.46)
Spth = ¥, (1.47)
opet = 0, (1.48)

where € is a fermionic parameter, d, are the generators of gauge transformations of
Sp and f;. are the structure constants of these transformations:

[0a, 0] = fopoc. (1.49)

3When this symmetry was discovered, the gauge fixing condition did not involve moduli. There-
fore the 7 and ¢ transformations were not part of their analysis.

12
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By Noether’s procedure one can extract a BRST charge, Q, from the above trans-
formations. By applying the transformations twice the reader can check this charge
is nilpotent:

Q% = 0. (1.50)

With the help of the BRST operator the action in equation (1.42) can be written
in a more illuminating form:

S =Sp+Q[bate" - "), (1.51)

where the quantity in the square brackets is called the gauge firing fermion. One
can see that BRST quantisation amounts to multiplying Z by a factor of the form
14+ 9N, restricting the ¢ integrals to moduli space and introducing the integrations
over the ghosts and auxiliary fields. The above form of Z is appealing since one can
always add a Q exact piece to the action without changing any physical scattering
processes. At a superficial level this is the idea behind BRST quantisation, one adds
a @ exact piece to the action such that the functional integral gives a finite result.

The spectrum of the theory is defined as the cohomology of Q. This means all
states that are Q closed and states that differ by a Q exact state are physically
equivalent:

Qla) =0, |a) ~ |a) + Q|B). (1.52)

One can show the first condition, together with the property (1.51), is necessary
for physical amplitudes to be independent of the gauge choice and since {(vy|a) =
(v|a) + (v|Q|B) for any physical state, |7), |a) and |a) + Q|3) represent the same
state.

The BRST transformations as given in (1.43)-(1.48) only give rise to a symmetry
when the structure constants in (1.49) are really constants, i.e. they do not depend
on the fields and hence they are inert under the BRST transformations. Furthermore
the gauge algebra (1.49) must close, i.e. there cannot be any terms proportional to
the equations of motion in the RHS of (1.49) for the the BRST transformations
to be a symmetry. There exists a generalisation of BRST quantisation, developed
by Batalin and Vilkovisky (BV) [4], which can also handle gauge theories with non
constant “structure constants” and/or open gauge algebras, however the gauge fixing
condition cannot involve a moduli space. In a follow up paper [5] the same authors
have shown how to quantise gauge theories with linearly dependent gauge generators.
This second paper opened up the possibility to apply BV quantisation to theories
with a moduli space, like string theory. The case of the bosonic string has been
worked out in [6]. The fact that (1.42) leads to a consistent quantum theory can
also be derived by applying BV quantisation.

13
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1.2.1 BRST quantisation of Polyakov action

The gauge fixing condition should fix all invariances. The way gauge fixing works
out depends on whether the worldsheet has the topology of a sphere, a torus or a
higher genus surface. On the sphere every metric is Weyl equivalent to the round
metric:

Vg3w(o) : €@ ga(0) = Gan(0), (1.53)

where gqp is the round metric. In coordinates that cover the entire sphere except
the north pole it is given by

ds? = 62“’0(”17”2)[d012 + d022], (1.54)

with
2wo _ 4

1+ (o1)2 + (62)%
Furthermore, since e?*1 g = e2“2¢ if and only if w; = ws, there exists a unique w that
transforms a given metric to the round metric. This fixes all the Weyl invariance.
In order to fix the coordinate invariance expressing the metric in ones favourite
coordinates seems to do the job. Omne has to check however whether there are
diff x Weyl transformations that leave the metric -expressed in certain coordinates-
invariant. Of course g,,do®do? is invariant under all coordinate transformations, but
the question is whether there are coordinate transformations that leave g,;(co!, 02)
invariant up to a Weyl transformation, since this would mean writing down the
metric in certain coordinates does not fix all the diff x Weyl invariance. In complex

. (1.55)

coordinates,
z=ocl+io?, zZ=o'—io?, (1.56)
the metric reads
ds® = 2g,:dzdz, (1.57)
where )
9zz = gew(z’i). (1.58)

The coordinate transformations on the metric become

0g.: = (0,07 + 32112),%2 = (V- v)g.z, (1.59)
5gzz = azvggzia (160)
0gzz = 0:0°g.=. (1-61)

The variation of ¢,z is a Weyl transformation for any v. The variations of g,, and
gzz should vanish, which implies

9.07 =0, 0:v° =0, (1.62)
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Each equation has three independent globally defined solutions on the sphere:
V¥ =c1 + oz + 322, V7 =dy +doZ + d3F2. (1.63)

Note that poles in z are not allowed because they give an infinity at z = 0. Orders
above two are not allowed because they give an infinity at the north pole, z = occ.
These six independent vector fields represent six invariances of the metric up to
Weyl (or conformal) transformations. Hence they are called conformal killing vectors
(CKVs). Together they form the conformal killing group (CKG). This is the group
of residual gauge invariance, after g,;, has been fixed. This residual invariance will
be fixed in a different way, which is discussed after the paragraph on the external
string states.

On the torus it is no longer true that every metric is Weyl equivalent to a given
one. In this case there does exist a one (complex) parameter family of metrics such
that every metric is Weyl equivalent to (exactly) one metric in this family. This
family of metrics is the aforementioned moduli space of metrics on the torus. Hence
the functional integral over the metric contains integration over physical modes, in
contrast to the sphere. Furthermore there is residual gauge invariance on the torus.
The CKG is two dimensional and the CKVs are given by the constant functions:

v¥=¢c, v =d. (1.64)

A systematic way of analysing the CKG for surfaces of arbitrary genus is writing
0 = 0gap in a fancy way:

0=10gap = —2(P10)ap + (20w — V - ) gaps (1.65)

where P, takes symmetric traceless rank n tensors into a symmetric traceless rank
(n + 1) tensors. They are defined by

n

(PTL(Tn))al“'anJrl = v(ll1 (Tn)az“-an+1) - n—_'_lg(a1a2vb(Tn)ba3"'an+1)' (166)

By taking the trace of (1.65) one finds 20w — V - v = 0 which determines éw. The
restriction on v is
(P1v)ap = 0. (1.67)

The number of CKVs, k, is equal to dimension of the kernel of P;. The actual
values will be given together with the dimension of the moduli space after the next
paragraph.

In order to figure out the number of moduli one looks at the number of indepen-
dent metric variations that are orthogonal to all the ones in (1.65):

0= (5g,6g) = / P55 gup|—2(Pro)™ + (260 — V - v)g™]. (1.68)
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The inner product denoted by (-, -) is defined by

(1,7 = /dQU\/gT T, (1.69)

where T and T” are tensors of equal rank and the dot denotes contraction of all
indices. Equation (1.68) is equivalent to the following two equations

§'garg™® =0, (8'g, Prv) = 0. (1.70)

The first equation implies all variations orthogonal to diff x Weyl transformations
are traceless. The second equation can be rewritten with the help of the transpose
of P,, which is defined by

(P (T"))aran = V(T bay - (1.71)

and satisfies
(T,P,T") = (PTT,T"). (1.72)

The second condition on §’gy, can now be written as
0= (P{'d'g,v) Vo= PLd'g=0. (1.73)

Hence the number of moduli, y, is equal to the dimension of the kernel of P{. One
can prove £ vanishes on surfaces with genus two and higher [2]. The Riemann-Roch
theorem for closed oriented surfaces, also proved in [2], states

dim kerP,, — dim kerP? = (2n + 1)(2 — 2g). (1.74)
For the special case that n = 1 this gives
Kk —u=06—06g. (1.75)

Together with the results for the torus and the sphere this leads to the table 1.1.

g K p
0 6 0
12 2
>2 0 69—6

Table 1.1: Dimensions of the CKG and the moduli space

The path integral for the genus g term is given by

1 L [ d20\/3(T)9%7 (1)8a X" 05 X i~ SEp[d(7),b,c,€]
Zy = / @7 e DX DbDedge™™ Jog B8 s Xu=5rrld ,
(1.76)
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where 7 parametrises moduli space. This path integral still depends on the initial
and final conditions which specify the states. The BRST procedure guarantees Z
is independent of the gauge fixing condition if initial and final states are physical
(i.e. annihilated by the BRST operator). It is interesting to note that there is a
certain ¢ that gives rise to the genus zero diagram in figure 1.4. It is also possible
to choose ¢ to be the round metric, which simplifies computations. With this new
choice the genus zero diagram is depicted in figure 1.6. The string profile of the

Figure 1.6: Tree level string diagram with local vertex operators

asymptotic states has been mapped to points. In order to understand why these are
really points and not finitely sized holes consider one of the half infinite cylinders in
figure 1.4. This will be mapped to a patch of the sphere that contains a puncture.
The transformation on the metric that took figure 1.4 into figure 1.6 is a Weyl (or
conformal) transformation on the metric. There exists a conformal transformation
from the cylinder to the complex plane (the patch on the sphere) and this transfor-
mation takes the circle at the end of the cylinder to the origin of the complex plane.
Hence in this gauge string states correspond to local operators. The explicit form of
these operators will be discussed in due course.
Let us go back to arbitrary genus. It is tempting to write

1 . )
Z, = / d'r e GDXDchdel(ol)---VN(oN)e_SP[9(T)7X]_SFP[9(T)7Z”C’E], (1.77)

where
1

2ma!

Selo(r). X) = 5o [ oG (00X 0,

EQ
The functional integration over X is no longer constraint by boundary conditions
and V;(o?) are the vertex operators and the label i represents the kind of particle
and its momentum. They are inserted at arbitrary positions o’ on the worldsheet.
However, like in every gauge theory only gauge invariant objects are of physical
interest and V;(c") is not invariant under coordinate transformations. Therefore a

17
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better choice for the vertex operators is

/d20'\/§Vi(O'). (1.78)

This results in

Z, = /d“TC;{GDXDchdﬁdNoi\/f](ol)Vl(Ul) (N V(0N )e =S5,
(1.79)
Since the ¢%’s appear as integration variables in the path integral they can be in-
terpreted as quantum mechanical degrees of freedom. It is these constant fields one
can use to fix the residual gauge invariance consisting of the CKG, which only plays
a role on the sphere and the torus. More explicitly the gauge fixing action that fixes
the entire gauge group including the CKG is given by

K/2

Sor =3 B0l —51) + /d%Bab(gab — Gan(7): (1.80)
=1

After integrating out the auxiliary field B the path integral becomes

/2 N
Zy = /d“TDXDchdN K120 H V(6 Vi(6 H Vi(o))V;(oh)e 5P =5rr,
i=r/2+1
(1.81)
The Faddeev Popov action can be evaluated as
7A 7A
r= [ ata [‘Zﬁ (o) + 22 ek (1.82)

(b, Prc) + (b,€501.9) + bi.c*(6:) + / d*obap§™(V - ¢ — c.)
¥

After plugging this into Z a number of fields appears algebraically in the action: c,,
the trace of byp, b, and ¢*. These can be integrated out:

K/2

Z,= / d"TDX Db, Dc*dN %0 [ v/9(67)eanc® (6" (6')Vi(67)

i=1

N Iz
I[I Vil)vie) H (b, Og)emmar S £oVaITOXI X, =P (1 83)

j=r/241
where b,y is traceless. In all gauges of the form § = € ¢,ounq and complex coordinates
the action reads

ch = D) 7 z@ZX‘L@gX# + bzzagcz + bgg@ch. (184)
T
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Equation (1.83) is the main formula in the bosonic string theory defined by the
Polyakov action. This is where all computations start. In [6] the same formula was
obtained using BV quantisation.

The BRST operator is classically nilpotent by construction. The word classically
means that the transformations in (1.43) are nilpotent. In general this does not
imply Q is also nilpotent quantum mechanically. This means Q2 vanishes inside
(all) correlators:

/D¢Q2(’)1 e Ope™¥ = 0. (1.85)

A very useful tool to examine the behaviour of operators inside a path integral is the
operator product expansion (OPE). This is the statement that when two operators,
say 07 and Os, inside a path integral are close to each other (no other operator is
closer to either one than they are to each other) their product can be approximated
to arbitrary accuracy by a sum of local operators:

'(2,2)¢ (2 Zc W(2,2,2, 2R (2 ). (1.86)

As an example of this construction consider the free boson action:
S = d?20X0X. 1.87
2ra/ / “ ( )

In order to derive the OPE for X (z, 2) X (2/, Z’) consider the following total functional
derivative

0= /DX% (X (2,201 (w1, 1) -+ - Oy (W, Wy )e %) (1.88)

where z and 2’ are close to each other and the operators O are inserted at points
away from z and z’. By evaluating the RHS of (1.88) one obtains
1
0= /DX((SQ(z—z’, 7—Z)+—0.0:X(2,2)X (', 2))O1 (w1, w1) - -- O (wp, Ty )e ™
T

(1.89)
One can conclude that inside correlators

0.0:X(2,2)X (2, 7)) =71’ 6*(2 — 2/, 2 — 7). (1.90)

To be able to write this as a sum of local operators one needs to define the normal
ordered product:

/
X (2,2)X(2,7) = X(2,2)X (<, 5) + %1n|z — 2|2 (1.91)
Note this normal ordered product satisfies

0.0;: X(2,2)X(2,7') :== 0. (1.92)
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Thus in normal ordered products the operators can be brought to the same point
without encountering divergences. The X X OPE can now be written as

!

X(2,2)X(<,7) = —%1n|z — P4 X (2,2)X (2, 7)) = (1.93)
O/
—?ln|z — P XX(2, 7))+

Zl' (=2 XO'X(¢,2):+(z-2)" : XO'X(¢,7) ]
7!

i=1
An OPE is usually denoted as

/

X(2,2)X(2,7) ~ %ln|z — 22, (1.94)

where the ~ means is equal to up to terms that are finite when z — 2’. In the sequel
it will become clear that the poles in the OPE often contain enough information to
do computations. The OPE for the Faddeev Popov ghosts can be obtained similarly:

b(z)e(w) ~ , b(2)b(w) ~0, c(z)c(w)~0 (1.95)

b(z)e(w) ~ . b(2)b(w) ~0, &z)é(w) ~ 0, (1.96)

where b = b,.,c = ¢*,b = bss, ¢ = ¢* and since the equation of motion for b is 9b = 0,
b(z,z) is denoted as b(z). (Note this does not mean the path integral is only over
holomorphic b’s.)

In order to compute Q2 inside the path integral and the cohomology of Q it
is useful to note the action in (1.84) is invariant under all holomorphic coordinate
transformations:

z — f(2). (1.97)
These transformations are known as conformal transformations and the Noether
charges associated to them are the Virasoro generators, which are given by:

'n, n+lT ~n ——’n,+1T 1.
2m/dzz 2m/d (1.98)

where T' = T,, and T(E) = T%; are the only two nonvanishing components of the
stress energy tensor (i.e. the Noether current for translations). In a Weyl invari-
ant theory the stress energy is traceless, therefore T, = T5, = 0. Their explicit
expressions are given by

T(z) =T"(2) + TS (2), T(z)=T(z)+ T%(%), (1.99)

m 1 m 1 A 3
T = = 0X"oX, : T = = 0X"'oX, (1.100)
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T9, =: (8b)c: —=20(: be:), T =: (Ab)é: —20(: b :). (1.101)

All continuous symmetries imply the existence of Ward identities. For an arbitrary
symmetry of the two dimensional action generated by a current (j,j) the Ward
identity reads [2]

7{ (jdz — 545020, %0) = 2260 (20, %), (1.102)
AR €

where € is the parameter of the transformation and R is some small region in the
two dimensional spacetime. In this thesis all symmetries are such that j and j are
conserved separately, i.e. j is holomorphic and j is antiholomorphic. In these cases
(1.102) becomes

Res._..,j(2)O(z0, Z0) + Resz_z,7(2)O(z, %) = %8(9(20, Z0). (1.103)

This form of the Ward identity can be used to determine part of the form of the
OPE of T, T with an arbitrary operator. By considering scale transformations and
translations one finds:

T(z)0O(w,w) ~ -+ ﬁh@(w, w) + . _1 "
T(E)Ow, &) ~ -+ ﬁw(w,m + ﬁé@(w,u_}), (1.105)

0O0(w,w),  (1.104)

where (h, fL) is called the conformal weight of O. A scale transformation is given by:
0'(¢2.¢2) = (O, 2). (1.106)

As an example ¢* has conformal weight (-1,0) and b, has weight (2,0). There is one
further symmetry of (1.83) that comes in handy which is ghost number conservation.
Its current is given by
Joe=—1bcy,  Jra=—:1bé:, (1.107)
so that ¢ has (holomorphic) ghost number 1 and b has (holomorphic) ghost number
-1.
As can be derived from (1.43) the BRST operator is given by

Q = Q+Q, (1.108)
Q = /dzc(z)Tm(z) + % 2 e(2)T9(2) : +ad?c(z), (1.109)
Q = /dzé(z)i’m(z) +% D E6(2)T9(Z) : +ad?E(z), (1.110)

The constant a is yet to be determined. Its value has no effect on the Noether charge
Q@ since it multiplies a total derivative. To compute Q? it is convenient to write

Q= /dsz(z). (1.111)
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Inside the path integral one has to use OPEs to evaluate Q?:

/dzdij 2)jp(w /dzdw Z Oi( )i:/dzO_l(z). (1.112)

1=—00
Hence a sufficient condition for quantum mechanic nilpotency of the BRST charge
is vanishing of the single pole in the jp(z)jp(w) OPE. This term can be calcu-
lated in a computation that requires some careful bookkeeping of minus signs and
anticommuting variables:

1 d

iB(2)js(w)| o= po— [(—g + a)dcd*c(w) + (E —a— ;)0830(111)} , (1.113)

where d is the number of X fields, in other words the dimension of spacetime. The
solution to Q% = 0 is given by

a=2, d=26. (1.114)

The second constraint has huge physical implications, it says the string theory de-
fined by the Polyakov action is only a sensible quantum theory in 26 spacetime
dimensions. Obviously this cannot describe nature. More physical string theories
will be discussed in due course.

Closed string spectrum

Although the Polyakov string is not a realistic model it is still interesting to study
its spectrum, because the lessons learnt from this exercise carry over to the more
realistic string models. As follows from the main formula of Polyakov string theory,
(1.83), vertex operators can be either integrated, U, or unintegrated, V:

V(z,2) = c(2)é(2)V™(z,2), U= /dQZVm(z,E), (1.115)

where V"™ only contains matter fields. Naively one would say V™ can be an arbitrary
function of X(z,z) before imposing QV = 0. However, for a well defined quantum
theory it is necessary that all operators have single valued OPEs among each other.
If one includes X (z,z) in the spectrum of allowed operators, this rule is violated
because the XX OPE is not single valued (cf. (1.94)). A good set of operators is
given by

<H8‘“X’”7 ) HabJX"J ek X(22) . (1.116)

where the argument of 9*X is given as z because the equation of motion implies
0% X is holomorphic, 00X = 0. The weights of these operators are given by

o k2 = k?
h == +Zi:ai’ W == +Xj:bj. (1.117)
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The BRST procedure guarantees that
Q/vm — 0o QeV™) = 0. (1.118)

So determining either the integrated or unintegrated cohomology is enough to obtain
the spectrum. The physical state condition implies vanishing of the conformal weight
of the vertex operator. The OPE of the BRST current with a vertex operator is
given by:

iB(2)c(w)V" (w, @) ~ (1.119)

dc)e(w)V™(w, w),

—— (@e)e(w)V ™ (w, )
For certain operators O, that depend on V™ and whose precise forms are irrelevant
for the argument. The vanishing of the single pole in this OPE indeed implies
vanishing of the conformal weight:

0=jp(2)c(w)V™(w)|__ = (1.120)
1 =1 pal,
—— [ (h = 1)(@c)c(w Zk— w)OF Y (w, )| = h—1=0.

Incidentally one can conclude that ¢V is only BRST closed if all O vanish, i.e. the
OPE of the stress energy tensor and V" does not have poles order three or higher.
Similarly

h—1=0. (1.121)

Note (h —1,h —1) is the conformal weight of the total vertex operator ¢V,

The quantity k in the vertex operators has the interpretation of physical space-
time momentum as can be inferred by constructing a Noether charge associated to
spacetime translation invariance of the Polyakov action. The mass of the state is

therefore given by mass? = —k2. The constraint on the conformal weight can be
transformed into a mass formula:
2 2 4 i 4 i
mass® = —k z—a—l— E a :_J_F E b (1.122)
i J

Incidentally the above formula contains a level matching condition, i.e. the holomor-
phic weight must be equal to the antiholomorphic weight. The mass spectrum is
discrete and bounded from below. The first two mass levels are described below.
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o mass® = —% There is only one Q closed vertex operator at this mass level:

V(z,2) = ¢(2)é(z)em X (=2, (1.123)

Furthermore it cannot be written as V. = QQ for the following reason. By
ghost number conservation the ghost number of €2 must be 0. The conformal
weight of € must vanish too, because () does not change the weight. This
narrows the space of possible 2’s down to operators of the form

Q = (be)"(be)" V™, (1.124)

where the weight of the matter part must be (—n, —n). After some algebra
one can deduce that none of these operators satisfies Q) = V.

From the spacetime point of view this is a Lorentz scalar (i.e. a spin zero
particle). Since it has negative mass squared it is also a tachyon and this
causes uncontrollable divergences when one considers scattering amplitudes.
The tachyon is an artifact of Polyakov string theory and the more sophisticated
models, to be described in due course, do not contain a tachyonic mode.

e mass? =0 The BRST closed vertex operators at this mass level are given by
c(2)E(Z)emnOX ™ (2)0X " (Z)eR X (2:2) (1.125)
subject to the constraints
E2=0, k™emn =k"€mn =0. (1.126)
The exact states are given by

(Q + Q) (Fmc(2)0X™(2) + Ful(2)0X™(5))e X (=2) = (1.127)

c(2)&(Z) (ki fr + finkn)OX ™ (2)OX™(2)eM X2 32 =0, f-k=[-k=0,
where the conditions on k, f and f are crucially used in the equality. Hence
on top of the constraint the polarisation e,,, also has a gauge invariance:

emn = €mn + kmfn + fmkn, f-k=f k=0. (1.128)

In conclusion the massless excitations form a rank two Lorentz tensor and
the physical excitations are the transversal ones. Within this rank two tensor
there are three parts that never mix under Lorentz transformations, so all
observers would agree that it is possible to divide the massless spectrum into
three groups. The decomposition is given by

1
emn — e(mn) _ %nm"eg @ elml g em. (1.129)
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One recognises a symmetric traceless tensor which is interpreted as the gravi-
ton. This is natural because the constraints and gauge invariances on €,y
are precisely those that one finds by plugging gmn = fmn + €(nn) in the Ein-
stein Hilbert action. The antisymmetric part are the physical excitations of
an antisymmetric rank two tensor. In flat space its action is given by

/ A" 20}y, By 0" B, (1.130)

The massless scalar is called the dilaton.

This concludes the discussion on the closed string spectrum. The states with positive
mass® are not of direct interest because their mass is of the order of the Planck
scale. The logical next step would be to compute some scattering amplitudes but
a number of features of the Polyakov string is very unphysical, e.g. 26 dimensions,
the tachyon, no fermions. These will be dealt with first and amplitude computation

will be discussed in more physical theories.

+ higher loops

Figure 1.7: Scattering of open strings

1.2.2 Open strings

The open string analog of figure 1.4 is depicted in figure 1.7. Due to the presence
of a worldsheet boundary the open string Polyakov action does not have as much
gauge invariance as its closed string analog. More explicitly the parameter of the
gauge transformations in (1.18) is restricted by a boundary condition:

nv*(c) =0, o€ 9JL, (1.131)

where n,, is the normal vector to boundary 9X. The above condition on v® carries
over to the BRST ghost ¢®. The Weyl (or conformal) invariance is unchanged. This
can be exploited to map the tree diagram in figure 1.7 to the disk as shown in figure
1.8, where the vertex operators are inserted at points on the boundary.
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N>
Z

Figure 1.8: Scattering of open strings; the four crosses represent vertex operators

In turn the disk can be mapped by a conformal transformation to the upper half
of the complex plane. On the upperhalf plane the boundary condition on ¢* implies

c(z,2) = é(z,z), Imz=0. (1.132)

It is very useful to combine these two fields, one holomorphic and one antiholomor-
phic with both only defined on the upperhalf plane, into one holomorphic field that
is defined on the whole complex plane:

c(z,2) =¢é(z,2), Imz<0. (1.133)

There is a similar boundary condition on the b ghost. This results from the fact that
the variation of an action on a manifold with a boundary also contains boundary
terms. In case of the Faddeev Popov action (1.82) this becomes

dsn®bapdcl. (1.134)
)3

This has to vanish and therefore
natyb® =0, (1.135)

where t% is a tangent vector to the boundary. On the upperhalf plane the above
condition reads
b(z,2) = b(z,2), Imz=0. (1.136)

So that
b(z,2) = b(z,2), Imz<O0. (1.137)

combines the two b ghosts into one holomorphic one. The stress energy tensor on a
surface with a boundary also satisfies a boundary condition:

t*n’T,y, = 0. (1.138)
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In order to see this first note since the translation invariance is partially broken,
only Tt is a conserved current anymore. Equation (1.138) is then the statement
the conserved current cannot flow out of the manifold. The stress energy tensor can
now be treated in the same way as b:

T(z,2) =T(z,2), Imz <0. (1.139)

With this definition the holomorphic object T encapsulates all information of the
stress energy tensor. Also note that this doubling trick can also be applied to the
BRST current since it (only) contains fields discussed just above.

The BRST operator of open string theory, which is the sum of an open holomor-
phic and an open antiholomorphic contour integral in the upperhalf plane, can be
written as a closed holomorphic integral in the complex plane (cf. figure 1.9):

Q=Q+Q= /deB(Z)'i'/dE;B(E) :j{dsz(Z) (1.140)

The spectrum of open string theory can be obtained by studying the cohomology

N, AN Y
NI

Figure 1.9: Contour integrals

of the BRST operator, which is very much like half of the closed string discussion.
A good set of (boundary) operators is given by

(0 X (y)etR X W) (1.141)

where y parametrises the boundary and (’)(y) denotes boundary normal ordering.
Its explicit form is not needed in this thesis but can be derived by going through the
steps leading to (1.94) for manifolds with a boundary. The mass levels of the open
string are given by

s —14+k

(mass)® = — (1.142)
e
The first two mass levels are described below.
e mass? = —% This is a tachyon, its vertex operator is given by
V(y) = c(y):e*XW:, (1.143)
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e mass? = 0 The massless states constitute the physical excitations of a photon:

For completeness the main formula of open string theory is specified below:

3 N
2= [ atrpxouped =y [ Va@)et Vi) [] V(o)
i=1 j=4

(b, Og)emmar o VG5 0 X" 0pX = (b, Prc) (1.145)

o

k=1

1.2.3 Curved backgrounds

As discussed above the Polyakov only defines a consistent quantum theory in 26
dimensions. Moreover string theory has been defined above as the infinite sum of
diagrams as in figure 1.4, but there is no small parameter associated to them such
that the higher loops become negligible when the parameter is small enough. This
section introduces a generalisation of the worldsheet action that resolves these issues.
The choice for the Polyakov action, (1.16), for the weight in the path integral was
based on simplicity. This is not a very good principle. A better strategy is writing
down the most general worldsheet action for the embedding coordinates X with at
most two worldsheet derivatives:

4730/ / d*o\/g [(g“ﬁGW(X) + €9 B, (X)) 0. X195 X" + a/R@)cb(X)} .

(1.146)
The field G, is symmetric and has the interpretation of the background spacetime
metric. This is the vacuum metric about which quantum modes can get excited.
The field B,,, is antisymmetric, it will become clear this field is intimately related
with the antisymmetric modes in the massless closed string spectrum. The last term
contains a spacetime scalar which is the background value of the dilaton. The o
has to be included for the spacetime dimensions to work out.

A priori one can try to compute amplitudes for arbitrary choices of the back-
ground fields. For example the Polyakov action was defined by G, = nuw, By, =
0,® = 0. Already for this choice anomaly cancellation (i.e. quantum nilpotency of
the BRST operator) imposed restrictions on the dimension of spacetime. After a
short discussion on the dilaton it will be shown that anomaly cancellation of the
theory defined by S, implies very natural equations on the background fields. The
lack of a small parameter problem can be resolved by looking at a background with
a constant dilaton:

So =

(X) = By (1.147)
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For a constant dilaton every diagram in the string loop expansion (figure 1.4) gets
multiplied by a factor

1
e 5%, Sp, = — / d*o/gRP ®, (1.148)
47T E_q

This is a topological invariant, i.e. it only depends on quantities like the genus and
the number of boundary components of the worldsheet but not on the metric. The
integral can be evaluated as

C_S(bo = (98)2_2g_b7 gs = 6_4)07 (1149)

where ¢ is the genus of the worldsheet and b the number of boundary components,
e.g. (g,b) = (0,2) is the cylinder. When g, is small it is now possible to approximate
the amplitude by the first few diagrams.

In the discussion of the vertex operators, overall normalisations were not in-
cluded. These might appear to be free parameters of the theory. It turns out
however that all the normalisation factors are related to each other and the string
coupling g if one imposes constraints that follow from unitarity of the S matrix. In
this thesis these normalisations will be suppressed.

The massless spectrum of the Polyakov string theory contained the physical (i.e.
transverse) excitations of a graviton and a photon. The condition k - e = 0 and the
gauge invariance e = e 4+ k were consequences of the fact that the Weyl symmetry
was a quantum symmetry. The first two terms in the generalised action in (1.146)
are classically invariant under Weyl transformations. In other words the trace of
the stress energy tensor vanishes if the equations of motion are used. The third
term is only invariant under rigid Weyl transformation. However, it is still possible
to find background fields such that correlators are Weyl invariant. For arbitrary
background fields the Weyl anomaly is given by

S /Dqﬁ@l e Oye5el0) — /dQU\/géw(cr) /quTj(a)(’)l e One=5. (1.150)
where
a __ 1 G _ab m v [ B _ab I v 1 P n(2)
T) = 507 D9 0a XHOp X 2a/ﬁwe 0g XHOp X 25 R (1.151)
The explicit expressions for the § functions can be obtained by expanding the back-
ground fields about a background. The details of the computations can be found in

[2]. The answer is given by

!

G = &/RY 420/V,V, — %HmmHﬂpT +0(a'?), (1.152)
/
L _%vpﬂpmn + &/ VPDHppy + O, (1.153)
D _ 2 / /
o= = 6 %vz‘cb + o'V, 0P — %Hmanm”p +0(@?),  (1.154)
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where H,,pp is the three form field strength of the two form gauge field B,,,, defined
by
Hinnp = O By (1.155)

Note that H is invariant under gauge transformations By — Bin + (). Quan-
tum Weyl invariance now translates to

= Bh, =p%=0. (1.156)

The vanishing of 3%, is precisely Einsteins equations for the metric in the presence of
sources, in the form of a two form gauge field and a scalar, the dilaton. The vanishing
of BB gives the field equation for the two form gauge field and the last 3 function
is the equation of motion of a scalar coupled to gravity and a two form gauge field.
In conclusion string theory in curved backgrounds only leads to a sensible theory if
the background satisfies the classical field equations (1.152)-(1.154).

The action (1.146) paves the way for more realistic string theories. One can for
instance choose G, to be the metric of a space of the form M?* x May, i.e. four
dimensional Minkowski space times a 22 dimensional compact space. When this
space is chosen to be T22, i.e. the internal space is a torus, the closed string spectrum
2~ —%, where R is the radius of the torus. The vertex
operators of the massless states are given by

contains a tachyon with mass

OXMOX"e X (0X™MIX+ 0XIOX™) eF X (1.157)

(0X™OX' — 0X'OX™) e ¥, 9X'0XTe™X, m,n=0,1,2,3, i,j=4,...,25.

Note the above operators are subject to modding out by BRST exact states. The
physical excitations of the first vertex operator contains the (4d) spacetime graviton,
antisymmetric tensor and dilaton. The second one contains 22 spacetime vectors,
which are standard Kaluza Klein modes that come about when dimensionally re-
ducing. The second line contains the Kaluza Klein vectors from the antisymmetric
tensor and 222 scalars, which can be thought of as moduli (or flat directions) of the
2~ %. Hence
if the radius of the torus is small these states will be very massive and unobservable
by experiments at typical particle accelerator energies.

metric and the antisymmetric tensor. The next mass level is at mass

The above proposal for the internal manifold is a step in the right direction, be-
cause one finds a four dimensional spectrum. However, the existence of huge number
of massless scalars is worrisome, because these are not observed in nature. One needs
to look for more sophisticated choices of the internal manifold. This direction will
not be pursued in this thesis. Instead a string theory will be constructed whose
spectrum on the one hand does not have a tachyon and on the other hand includes
fermions.
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1.3 RNS formalism and its limitations

One way of introducing fermions into the theory is making it supersymmetric. As
mentioned in the beginning of this chapter there are physical reasons to look for
supersymmetric theories. Furthermore the inclusion of extra symmetries provides
a powerful tool to do computations. A spacetime supersymmetric string theory,
which goes by the name of RNS, is defined by the worldsheet action obtained by
covariantising the Polyakov action under N' = 1 worldsheet supersymmetry [7, 8]:

1 1
SerNs = /d20\/§[§g“b8aXm8me + §mm7“va¢m+ (1.158)

2o/
1 . b.a m 1 . m
310" ) (B X™ = Zixad)™)];
where worldsheet fermion indices are suppressed. The fields X are the usual space-
time coordinates and ™ are their 2d supersymmetric partners. Moreover )™ are
Majorana spinors, so that these fields have two real components each in two dimen-
sions. The field g,p is the worldsheet metric and x, is the worldsheet gravitino.
Spacetime supersymmetry is present but not manifest from the worldsheet point
of view. Quantisation of the RNS string works in a similar fashion to the bosonic
string. In particular there will be a BRST operator. In the RNS formalism, however,
this operator is only nilpotent in ten spacetime dimensions. Therefore in the sequel
of this thesis spacetime will be assumed to be ten dimensional.

Symmetries and gauge fixing

The above action is invariant under diffeomorphisms and local 2d N' = 1 supersym-
metry, the latter is given by

0gab = 2i€Y(aXp), (1.159)
SxXa = 2V (1.160)
SX™ = iep™, (1.161)
oy = wa(aaX’"—%ixaw’”)e. (1.162)

Moreover (1.158) is invariant under Weyl and super Weyl transformations [9]:
XM= X", gap = € gap, " = YT, Xa = e Xa + A, (1.163)

where ) is the parameter of the super Weyl transformations.

The presence of worldsheet fermions makes quantisation much more complicated.
In particular the moduli space is no longer an ordinary finite dimensional manifold,
but also includes anticommuting variables. In other words moduli space becomes
a supermanifold. Furthermore there will be ghosts for the local supersymmetry.
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The particular form of the insertions containing these new fields is hard to derive.
Therefore quantisation of the RNS string on the sphere, where there is no moduli
space, is discussed first.

1.3.1 Tree-level

On the sphere the gauge invariances can be fixed by
Jab = gab - 62WO(Saba Xa = )Za - F)/a/\()- (1164)

The gauge fixed action will not depend on wg and Ag. A convenient choice is to set
them both to zero. In this gauge, the superconformal gauge, the worldsheet action
reads

Sxy = / &2z (axméxm ™ + JJmaJ)m) , (1.165)

where 9™ and 1@’” are the two components of the 2d spinor. In closed string theory
the X coordinates are periodic. In the z coordinate, the one defined on the whole
complex plane, this condition can be expressed as the statement that X™(ze'®) is
periodic in «, with period 27. Note, however, the action is also well defined for
antiperiodic boundary conditions on X™, i.e. X™(ze!®) is antiperiodic in . This
can lead to unitary string theories, but this direction will not be pursued in this
thesis. On the other hand antiperiodic boundary conditions on the fermion will turn
out to be of vital importance. The two possible boundary conditions have a name:

Neveu — Schwarz : ™ (e*™'2) = +¢™(2), (1.166)
Ramond : ™ (e*™2) = —™(2). (1.167)

Together with the boundary conditions for the antiholomorphic side this leads to four
sectors: (NS,NS), (NS,R), (R,NS) and (R,R). From (1.167) one sees that the v part
of a Ramond sector vertex operator is double valued. Such a function can pictorially
be represented by the end of a branchcut, cf. figure 1.10. This figure also shows that
the number of R states must be even, otherwise the branchcuts have nowhere to go.
In a later paragraph the R sector will be related to spacetime fermions. The number
of these fields must also always be even in scattering amplitudes.

Ghost action

The ghost action for the RNS string contains an extra pair of ghost fields that
are related to the local supersymmetry. Since the parameter of this symmetry is
fermionic, the ghost fields are bosonic and they are denoted (3, . To write down the
action for these new ghost fields, it is useful to note the operators P, and P! can
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Figure 1.10: Tree level four point function with two (R,NS) sector states (left) and two
(NS,NS) sector states (right)

also be defined on fields of half integer spin, i.e. spinors. For details see [3]. The
supersymmetry transformation of the gravitino (1.160) can be written as

Oxa = (PY2€),. (1.168)

When the statistics of the fermionic parameter € is flipped, it becomes the Faddeev-
Popov ghost v. The other ghost field, 3, has indices such that it can be contracted
with xq, i.e. it has spin 2. This leads to the following ghost action:

Spy = / 0 \[gBa (P 27)" + -, (1.169)

where the ellipsis contains the gravitino. In superconformal gauge this ghost action
can be written as

Spyeg. = / d*z (657 + Bﬁ’y) : (1.170)
where 3 and 3 have conformal weights (%, 0) and (0, %) respectively, v and 4 have

weights (—1,0) and (0, —31) respectively.

As in the bosonic string the gauge condition (1.164) does not completely fix
all invariances. The CKVs encountered in section 1.2 remain for the RNS string.
In addition there are super conformal Killing vectors (SCKVs), which represent
the residual local supersymmetry. Some vertex operators will contain a factor of
d(7y). (cf. the bosonic string where the Faddeev Popov ghosts are fermionic, hence
d(c) = ¢.) Quantising the worldsheet action of the RNS formalism at an arbitrary
genus, which includes finding the precise form of these insertions, is a formidable
task due to the complicated nature of the (super)moduli spaces, cf. [3]. On the
sphere, however, matters simplify and this case is described below.

Charge conservation in v systems

One can use the charge conservation anomaly to deduce correlators are only non
vanishing if the ghost number has a certain value, depending on the conformal
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weight of the ghosts. Explicitly, consider the action:

/d?zﬁé% (1.171)

where 3 and ~ are conjugate fields of weight A and 1 — A respectively. They can be
either bosonic (¢ = —1) or fermionic (¢ = +1). This paragraph is partly based on
[8]. The OPEs are given by

V(@)Bw) ~ — . A)(w) ~ —

Z—w z—w

(1.172)

The action is invariant under translations, it also possesses a U (1) symmetry called
ghost number. The generators are given by:

T(z) = =ABOy(2) + (1 = N)(@08)(2),  i(z) = =B(2), (1.173)

where coincident operators are understood to be normal ordered. This convention
of suppressing the colons will also be used in the sequel of this thesis. The OPE of
these two operators reads

(I-=2Xx) . 1 1

T(2)j(w) ~ W +50) g 0 (1.174)

In order to show only operators of a certain ghost number are non vanishing consider
(NY90), (1.175)

where the number operator is given by:

N9 = f{ 4z 0 (1.176)

21

and O is an arbitrary operator of ghost number Qo, i.e. [N9, O] = QoO. The
correlator (1.175) can be evaluated in two ways, either by pulling the contour off of
the back of the sphere or by shrinking it in the z patch passing through all insertions.
The latter gives

Qo(0). (1.177)
To evaluate the former one needs to rewrite N9 in the u patch. The transformation
can be derived from Tj OPE with the help of the Ward identity (1.102) (where
O = =By and j(z) = v(2)T(2)):
-1

1 2\
—0j = —vdj — jOou + € d*v. (1.178)
€

Note j denotes the ghost number current. The finite form of the above transforma-
tion is given by

2\ — 1 0%u

(8zu)]u(u) =J= (Z) +€ 2 O.u

(1.179)
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Using this result one can rewrite N9 in the u patch:

]{d—z.j(z) :j{id“[ju(u)zﬂ Ce(2A— Du] = —e(2A— 1) +7fd—“ju(u) (1.180)

21 2 u2 21

and since there are no insertions inside the contour anymore the contour integral
vanishes, hence

<7§ 92 5()0) = —e(2) - 1)(0) (1.181)

o’
In conclusion, if —Qo # €(2A — 1) then (O) = 0.

This agrees with the results of the bosonic string, because €(2\—1) is minus three
in that case. Hence only operators with ghost number three are non vanishing. All
tree level amplitudes have this property. For the bosonic ghosts of the RNS string
the above argument implies the total charge of the  insertions must be minus
two. Note this can be achieved by two §(7y)’s because [N9,6(y)] = —d(v). Since
d(y) is not written as a proper function of worldsheet fields it is difficult to perform
computations. In the next paragraph d(y) will be given in terms of a smooth function
of fields of a different worldsheet CF'T. The precise map between the two CFTs will
be given. Furthermore this mapping allows for writing down the double valued
vertex operator, needed for the R sector states.

Bosonisation

Bosonisation is a map from a given CFT to another CFT that respects all OPEs.
In case of the CFT formed by two of the ten holomorphic fields 1™ (2), say ' and
1?2, the OPEs between the the 1’s themselves can be given as

YEBw) ~ ——, P(Ew) ~ 0, PEEw) ~0,  (1182)
where
! ) ) = i z) — ) (z
w(z>=ﬁ<w1(z>+w2<z>>, U(z) = ﬁ(wlu $?(2)). (1.183)

The second, equivalent, CFT consists of the holomorphic part of a boson, i.e. it
satisfies the OPE:

H(2)H(w) ~ —In(z — w). (1.184)
The map between the two CFT's is given by
Y(z) 2 e qh(z) = e HE), (1.185)

The form of the number current and the stress energy tensor in the H CFT can be
obtained via the OPEs:

¢tHl(z) il (w) +i0H (w) + OHOH (w)(z — w) + O((z — w)?), (1.186)

Z—w
1

Z—Ww

+9i(w) — P (w)(z —w) + O((z —w)?),  (1.187)

»(2)P(w)
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where one recognises the number currents in the O(1) terms and the stress energy
tensors in the next ones. Note ¢*1(*) is single valued since H(z) is single valued. An
obvious realisation of a double valued operator constructed from H(z) is given by

. 1
el sez+ 5 (1.188)

Indeed the 1) part of the R state vertex operators has the above form. In the actual
case there are five 11 pairs, so there will be five copies of H, which are labelled by
p=1,...,5: HP. By carefully studying the commutation relations of the R sector
vertex operators, one can discover the need for cocycles [10]. These are exponentials
of the zero modes of H. However these cocycles only affect relative signs of certain
amplitudes and one can often ignore them. The weight of e?#(2) can be obtained
from its OPE with the stress energy tensor. The answer is h = %ZQ.

An explicit form of §(v) can be found be performing a similar mapping for the
bosonic Gy CFT with A = % The equivalent CF'T consists of the chiral bosons:

6(2)p(w) ~ —In(z —w), x(2)x(w) ~ In(z — w). (1.189)
The mapping is given by
Be X0y, 4 =efTX, (1.190)
The number current and the stress energy tensor read
By =06 T —%8@58(;5 + %axax — P+ %aQX. (1.191)
The operator 6(7) should have ghost number minus one and obey the OPE
5(7)(2)1(w) = O(z — w). (1.192)
These two conditions have a solution:
5(y) e ?. (1.193)

This concludes the discussion on bosonisation. The results of this paragraph will be
used when the vertex operators are constructed.

Spectrum

The spectrum of physical states is as usual given by the cohomology of the BRST

operator:

1

Q=5 f{ (dzjp — dzj) - (1.194)
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The BRST current is, up to total derivatives, given by

. 1
iB = at + YGmat + 5 (CTgh + "ngh) (1.195)

where T4 is the stress energy tensor of the matter sector which now includes a
term containing 1’s, Ty, is the stress energy tensor of the ghost fields, which can
be read off from (1.173). The current associated to worldsheet supersymmetry is
denoted G, this also splits up in a matter and a ghost part. They are given by

Trat = —i,aXNaXN—%wma¢m, T, = —2b80—(8b)c—%687—%(65)7, (1.196)
«

Gmat(z) = i\/gwaxm(z), Ggn(z) = (0B)c(z) + gﬂac(z) —2by(z). (1.197)

The spectrum is worked out in [2]. Let us start by looking at only the holomorphic
part of the vertex operator and start with the NS sector, which is characterised by
the singlevaluedness of the 1) and 3 sector vertex operators. Similar to the bosonic
string the mass spectrum is discrete and bounded from below. The first two levels

are given below.
o mass® = —% The (holomorphic part of the) Q closed operator at this mass

level is given by

, . 1
Vi = ¢(z)e ?@eikX(2) g2 = ~ 57" (1.198)

Note e~? comprises the 3v part of the vertex operator and it is indeed single-
valued. This is a tachyon. However in the RNS formalism there is a consistent
way of removing this mode from the spectrum, which is described below.

e mass> =0 The BRST closed vertex operators at this mass level are given by
Vs = euc(2)e @Bk (2)et XE2 0 k2 =0, k.e=0, ee+k (1.199)

Hence the physical content is a massless vector. In open string theory this
would be a photon. In closed string theory this could be part of the graviton,
that is when the antiholomorphic side is also a massless vector.

These are all the NS sector states with non positive mass squared. In the Ramond
sector all physical states have non negative mass squared. Recall that the ¢ part of
Ramond sector states is doublevalued. The massless states are given below.

e mass> =0 The BRST closed vertex operators are given by

Ve= Y usc(z)e ®@e= k2 =0, K'TL ug =0, (1.200)

1
sp==%3
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where s = (s1, $2, 83,54, 55) and as indicated under the sum all s, are either
1/2 or —1/2 so that s takes 32 values. Both the ¢ and the 8 part are indeed
doublevalued, since they involve square roots of holomorphic operators. The
polarisation spinor, us, has 32 components to start with. This is a Dirac
spinor, which is a reducible representation that consists of two 16 component
Weyl spinors of opposite chirality?. The physical state condition removes eight
components of each Weyl spinor. In conclusion the spectrum consists of the
physical modes of two Weyl spinors with opposite chirality.

A consistent string theory cannot contain all of the above states. An important
consistency condition is that the OPEs of all vertex operators do not contain branch
cuts. Furthermore tachyons cannot be present in any physical theory. Luckily these
two conditions are compatible. A consistent string theory is obtained by removing
the tachyon from the NS sector and one of the two Weyl spinors from the Ramond
sector. For closed string theory this basically leaves two possibilities. Either the
chirality of the Weyl spinor on the holomorphic side has the same chirality as the
Weyl spinor on the antiholomorphic side or the opposite. The former is called type
IIB string theory, the latter type IIA and the projection is known as the GSO
projection. The spectrum of the two theories is summarised in table 1.2. The
physical states are obtained by applying the appropriate field equation, e.g. for a
p-form field strength this is k,,, fm1 =,

1IB ITA
NS-NS @, Bimn], mn) (traceless) ®, Blmn], Mmn) (traceless)
NS-R (A1)* 7(1/)1)am (7%5(1/)1)? =0)  (M)as ()™ (72%(#11)51 =0)
R-NS  (A2)” wz)am (vl (W2)g =0) (M), (V2)am (vl (¥2)F = 0)

R-R f(1)7f [mimams] ,f [mimamamams] f[m1m2 ,f [mimamamy]

Table 1.2: The spectrum of type IIA and type IIB string theory. Note the position of the
Weyl spinor index, o, indicates the chirality.

Amplitude prescription

A tree level scattering amplitude in the RNS formalism is given by
= /Dtp(% o One SrNSTSbe =83y =Sy p0x —Ss)0KV (1.201)

where Sy 1.4 is the gauge fixing action that sets the metric to the round one and
the gravitino to zero. The action S(g)cxv is needed to fix the residual (bosonic
and fermionic) gauge invariances. It will be discussed after a short exposition of the

4Details about this statement can be found in section 3.2
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vertex operators. The case that all external excitations are in the NS sector is dealt
with first. As in the bosonic string the vertex operators should be invariant under
the symmetries of the action, in particular under the N/ = 1 supersymmetry. The
general form of a vertex operator (after fixing the metric and the gravitino), written
as an integral over two (bosonic) dimensional superspace, is given by

/ P2d0dB(V (=) + 0U (2))(V (5) + 00 (3)) e X 2. (1.202)
The two superfield components are related by a supersymmetry transformation
Uw) = / 92 GV (w), (1.203)
271

where the supersymmetry current is given by
G(Z) = Gmat(z) + Ggh (Z), (1204)

The residual gauge invariance includes the super conformal Killing vectors. Re-
call that the bosonic residual invariance could be eliminated by fixing three (bosonic)
coordinates. Similarly the fermionic residual gauge invariance can be removed by
fixing two fermionic coordinates. The number two follows from the fact that P% has
two zero modes on the sphere [3]. Hence the action S(g)ckv is given by

3 2
Ssicxv = »_ Bi(of —68)+ Y €65, (1.205)
i=1 j=1

where s is a 2d spinor index. The second term fixes the residual supersymmetry.
The measure Dy in (1.201) includes all fields, in particular it contains a factor
d?c1---d?ond?0;---d%0y. After the functional integrations, that set the metric
and the gravitino to their fixed values, have been performed, the remaining action
is a CFT and has a holomorphic and an antiholomorphic sector. After integrating
out the auxiliary field CJ and the 6;’s, one sees that there are two V’s and N — 2
U’s in the amplitude prescription.

The functional integral (1.201) can be processed by integrating out the auxil-
iary fields. This will impose the gauge conditions and hence will put the action in
conformal gauge. Moreover it will introduce ghost insertions multiplying the vertex
operators and finally it will remove integrations over (both bosonic and fermionic)
worldsheet coordinates. The open string N-NS states tree level function is given by

AN = (V7 (y1)eVy H(y) eV (ys) / dya Vi (ya) -+ / dyn VS (yn)) + (V1 = W),
(1.206)
Viy) = e V(y), V(y)=Uly). (1.207)

Note the superscripts denote the 87 charge. A number of comments about this
formula are in order:
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The three ¢ insertions come from the Faddeev-Popov action (cf. (1.82)) in
exactly the same fashion as in the bosonic string. Recall that this ¢ is actually
a d(c). In the RNS string there are also two factors of d(7), which come from
the bosonic discrete ghosts. After bosonization these become e¢.

Since both Vg and ¢V~! are in BRST cohomology at k% = 0 they must be
equal. Hence

Vns =cV L (1.208)

The explicit form of the integrated vertex operators is obtained from (1.203).

There exists an infinite tower of guises of the vertex operators, each with
different 3y charge, --- , V=1, V% V! ..., One can go from one to the next by
using the so-called picture changing operator, X [8]:

X V' (y) = V" (y). (1.209)

So in fact the vertex operators in section 1.3.1 do not comprise a complete
list. However one can prove that as long as the total 3+ charge is equal to
minus two, the amplitude is independent of the pictures of the individual vertex
operators. So the omitted vertex operators represent states that were listed in
section 1.3.1.

To be able to compute amplitudes involving Ramond states note that Vi can
be written as

Vi =cV 3. (1.210)

This allows for the construction of an infinite tower vertex operators with half
integer picture for the R states via (1.209). An arbitrary amplitude involving
both NS and R states is given by

A = (@ (yn)Vi () Vi ) [ dyaVitton) -+ [ du Vi (o) + (1 2),

(1.211)
where the pictures i1, -+ ,ixy € %Z. When the k-th picture, i, is half integer
valued the k-th state is a Ramond state. In order to find a nonzero answer
one has to ensure that the total picture, i.e. the sum of all i’s, is equal to -2.

In [3] it was shown the amplitude prescription is independent of the gauge

choice. Note this was not guaranteed due to the ad hoc way of introducing the
R state vertex operators.
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1.3.2 Higher genus and limitations of RNS

At higher genus the gauge fixing condition for the metric is the same as in the
bosonic string. The fixing of the local worldsheet supersymmetry deserves some
more explanation. In the same manner as there were two different ways to put
the spinor field %), on the infinite leg representing an external state, there are 229
topologically distinct ways to put a spinor field on a worldsheet of genus g. This
number is obtained by noting one has a choice for every non trivial cycle:

Xa(€*™'2) = £xa(2). (1.212)

Local diffeomorphisms or local worldsheet supersymmetry can never change the spin
structure of the gravitino field. Therefore one can only gauge fix a given gravitino
to another one with the same spin structure, as depicted in figure 1.11. This results
in a sum over spin structures in the amplitude prescription.

Gauge slice

Gauge orbits

Figure 1.11: Gravitino space consists of a number of disconnected components. This case
would be gravitino space for a genus one surface, a torus.

Schematically the higher loop amplitude prescription is given by

ny nyg n
S(1;---m) = Ze*X/ d™td™ v <H B; [] 6(Ba) HV> : (1.213)
XY X j=1 a=1 i=1

where the sum is over topologies x and spin structures -, n, is the number of
bosonic moduli and ny is the number of fermionic moduli, B; is some fermionic
object containing the BRST ghosts b and ( and the Beltrami differentials. The
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ghosts b and 3 are contained in the bosonic object B,, in addition these depend on
the supersymmetric analog of the Beltrami differentials. The precise form of these
insertions at two loops and higher is hard to derive. There have been numerous
attempts to write them down based on educated guesswork (see introduction of [11]
and references therein), but the authors of [3] showed the prescriptions in all of these
proposals were not independent of the gauge choice. The same authors derived the
insertions from a first principles derivation in a series of papers [12, 13, 14, 15],
conveniently summarised in [11]. This shows the importance of a first principles
derivation and incidentally provides motivation for the first principles derivation of
the pure spinor formalism in chapter 4.

In conclusion the two main problems of the RNS formalism in a flat background
are:

1. In order to compute a string diagram of genus g one needs to perform 229
integrations due to the sum over spin structures. This is a consequence of the
presence of worldsheet spinors.

2. The insertions in higher loop diagrams are rather complicated, also in large
part due to the presence of worldsheet spinors.

The pure spinor formalism, which will be introduced in the next chapters does not
have worldsheet spinors. Hence the above issues do not play a role in the pure
spinor formalism. The presence of worldsheet spinors causes one more problem.
The total amplitude is the sum over genera, therefore it is important to know the
relative factors between the diagrams. The precise value of these factors also plays an
important role in checking a conjectured symmetry of string theory, S-duality [10].
It is, however, difficult to compute the overall coefficient of string diagrams. These
coefficients include functional determinants (cf. (1.26)). Note that the eigenstates
of the kinetic operators, for example V2, depend on the genus of the surface and
hence the determinant of V2 also depends on the genus. One also needs to compute
functional determinants for the kinetic operators of the worldsheet spinors, which
involves bosonisation. For the four point function the overall coefficient has been
computed in the RNS formalism in [16]. The two-loop four-point [17] has only
been determined up to an overall factor due to unknown factors in the bosonisation
formulae of [18]. However in [16] the normalisation of the two-loop amplitude has
been obtained by the indirect method of factorisation to lower-loop amplitudes.
There is yet another problem with the RNS formalism, which is related to string
theory in a curved background. Within RNS it is hard to generalise (1.146) to back-
grounds that involve nonzero RR fields, since the vertex operators for the RR states
involve spin half fields. Furthermore the fact that states are represented by an infi-
nite tower of vertex operators related by picture changing complicates the problem.
In the pure spinor formalism a generalisation has been written down in [19], which

42



Chapter 1 - String theory

might not come as a surprise since the pure spinor formalism is manifestly spacetime
supersymmetric. This thesis deals with string theory in flat backgrounds, therefore
this point will not be elaborated on. Nonetheless it is an important motivation to
study the pure spinor formalism.
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Chapter 2
Pure spinor formalism

This chapter introduces the pure spinor formalism in a flat background. The world-
sheet action is an educated guess originally written down by Berkovits. His starting
point was not an analog of the Polyakov action, i.e. an action with 2d diff x Weyl
invariance, instead he directly wrote down an analog of the worldsheet action in
conformal gauge. This means that the action must have a conformal symmetry, zero
central charge and a nilpotent fermionic operator that is used to define the spectrum,
similar to the way a BRST operator defines a spectrum. Berkovits’ proposal satisfies
these conditions and on top of that it exhibits manifest spacetime supersymmetry
and the worldsheet fields are free. This chapter will discuss the explicit form of the
action and some of its properties. Also the prescription for computing scattering
amplitudes is provided. This chapter does not contain any explicit computations
using this prescription. A good exposition of computations can be found in [20],
section 5.1.2 of this thesis also contains some computations.

A number of years after the pure spinor formalism was introduced, Berkovits pre-
sented a different but similar formalism. To distinguish the two, the original one was
renamed to minimal pure spinor formalism and the modification, the non-minimal
pure spinor formalism. The latter was introduced to get rid of some awkward fea-
tures of the former which will be discussed in due course. Both formalisms are
described below. The most recent loop computations, which are also the more com-
plicated ones, have only been performed in the non-minimal formalism, cf. section
2.3 for a precise overview.

This chapter utilises a lot of basic (mathematical) techniques that may or may
not be familiar to the reader. In any case these techniques are explained in detail in
the next chapter, which can serve either as a necessary addition for a reader new to
the subject or as a useful reference for an expert.
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2.1 Minimal pure spinor formalism

The worldsheet action in the minimal pure spinor formalism for the left movers in
conformal gauge and flat target space is given by

S = /d22 <%8$m<§xm + padf® — woﬁ/\o‘) , (2.1)

with m =0,...,9and o = 1,...,16. The fields p, and w, have conformal weight
one and are Weyl spinors, 6% and A\* have conformal weight zero and are Weyl spinor
of opposite chirality. In addition A* is a pure spinor, i.e. it satisfies

Ay =0, (2.2)

where 7j; are the ten dimensional Pauli matrices, which are defined in section 3.2.
The decomposition of a Weyl spinor under the SU(5) subgroup, 16 — 1 & 10 & 5,
which is used intensively throughout this work, is also discussed there. Since the
worldsheet action consists of two (v systems quantisation seems straightforward,
but A* is a pure spinor and therefore the A\w part is actually a curved (v system
[21]. To deal with this we work on a patch in pure spinor space that is defined by
AT # 0. On this patch the pure spinor condition expresses A® in terms of Ay, and

At with a,b=1,...,5. The solution is (in SU(5) covariant components)
a __ 11 abede
A= g)\—+€ )\bCAd@. (23)

A constraint on fields in the action induces a gauge invariance on the conjugate
fields. In this case the gauge transformations are given by

oWy = Am”yg},/\‘?. (2.4)

In the original papers, e.g. [22], this gauge invariance is dealt with by only using
gauge invariant quantities. This means w, can only appear in the Lorentz current
N™" the ghost number current J and the stress energy tensor 7|y,

1
N = Swa (™) 5N, T = wak, Ty = wadX°. (2.5)

Since the Aw part of the action is not free due to the pure spinor constraint it is
not obvious what the OPE between w and A\ will be. One way to proceed is by
properly fixing the gauge invariance of (2.4). By making the gauge choice w, = 0
and employing BRST methods, one can replace [ d? 2w, 0N by the free action,

/dQ,z(w+5)\+ + %wabé)\ab). (2.6)

The details can be found in section 3.3.2. One might have expected BRST ghosts
associated to the gauge fixing of w,. It turns out these can be integrated out. As a
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check of the validity of this procedure the OPE of the Lorentz currents (N™"|,, o)
should give rise to the Lorentz algebra. Using (2.6) one finds

NN () ~ S (N TN W) ~ A, (2)
NN ) ~ g (7)o NI — ),
T )~ g TN () ~ veglar
N ()T (w) ~ —— N J(T(w) ~ — )

G ) P T o wpe

The explicit computations can be found in appendix 3.3 and it should be noted
there are subtleties regarding the double poles in the OPE. There is freedom to add
conserved currents to the Lorentz currents without changing the single poles, which
must have the above form for Lorentz currents. However if one demands that N™"
is a primary field with Lorentz level —3, the above OPE’s follow unambiguously.
One wants the level of the Lorentz current to be —3, since this implies that the level
of the total non X sector is 4 — 3 = 1 which coincides with the level of the RNS
1) Lorentz current. The factor of —8 of the triple pole in the JT OPE implies at
tree level only correlators with total J charge —8 will be nonzero (cf. (1.181)). The
OPE’s for the matter variables can be straightforwardly derived from (2.1):
1

2" ()" w) ~ —n"oglz — wl?, pa(2)67(w) ~ 65— (2.8)

The action (2.1) is invariant under a nilpotent fermionic symmetry generated by*

Qs = ]{ Ay, (2.9)

where ) )
do = pa — 57;”[,953% — gapTm 5056706°. (2.10)

The transformations it generates are given by
0x™ = My"0,  00% =Y, SN =0, ddo = -—1"VmAN)a, Ows=4ds, (2.11)

where 1™ = 0z + %97’”89 is the supersymmetric momentum and again we restrict
to the left movers (so in particular, the full transformation for ™ contains a similar
additive term with right moving fields).

It seems very natural to consider Qg as a BRST operator that showed up after
fixing a worldsheet symmetry, in particular diffeomorphism invariance. However to

1The unconventional subscript S is used to distinguish this operator from another nilpotent
fermionic operator which will appear in chapter 4.
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date nobody has succeeded in substantiating this conjecture, although the authors
of [23] describe how it is possible to obtain the pure spinor formalism as a twisted
version of a gauge fixed string theory with diffeomorphism invariance. In chapter 4
the worldsheet action in conformal gauge will be derived by gauge fixing a worldsheet
action with diffeomorphism symmetry. However the 2d coordinate invariant action
is already invariant under @)g, the gauge fixing of the diffeomorphisms gives rise to
a second nilpotent fermionic operator. This is a different point of view where Qg is
not a BRST operator of fixing 2d coordinate invariance.

The main motivation to introduce the pure spinor formalism is its manifest su-
persymmetry. This symmetry is generated by

1 1
Jo = ?{dz(pa + 57215953337,1 + ﬂvgﬁ(ym)75959796). (2.12)

2.1.1 Spectrum

Physical states are defined as element of the cohomology of Qg with Jy,, charge one
and conformal weight zero. In theories derived from a worldsheet diffeomorphism
invariant action, the conformal weight constraint follows from the condition that
physical states must be annihilated by the BRST operator. In the case of the pure
spinor action the operator (Js does not impose a constraint on the conformal weight
and it has to be included by hand. In chapter 4 the origin of conformal weight
constraint is explained from first principles in the case of the pure spinor formalism.
The reason to look at ghost number one states is more subtle. At least one can say
that the cohomology at this Jy,, charge yields the super-Maxwell multiplet (for the
open string).
Hence elements of the physical spectrum satisfy:

QsV(z)=0, V(z)~V(z)+ Qs 2). (2.13)

Let us focus on the massless spectrum. The most general vertex operator (before
imposing the above conditions) at Jy, charge one with conformal dimension zero
and k2 = 0 is given by

V(z) = eF X @A\ (2) A, (0(2)). (2.14)
A number of comments are in order

e For the X sector one uses the standard operators (1.116) and note that the
weight is only non positive when no derivatives on X are present.

e The weight of the p, # and w, A sector is only non positive when V only contains
A and 6.
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e The total weight of V' in the massless case can only be zero if it only consists
of weight zero fields. This determines the form of (2.14) completely.

e Since there are no negative weight fields, there is no tachyon present in the
spectrum. There is an infinite tower of massive states, but these will not be
considered in this thesis.

After using the gauge invariance to set a number of components to zero the
solution to (2.13) is given by [24]

V = A\ (z,0), (2.15)

where

Aa (xa 0) = eikm(%am(,}/me)a - %(§7m6‘)(’7m9)a T )7 (216)

where a,, and £% are the polarisations and £™ is the momentum. They satisfy
k? = k™ap, = k™ (ym&)a = 0, there is a residual gauge invariance a,, — an + kmw
and the ellipsis contains products of k™ with a,, or £*. The operator V(z) can be
used as unintegrated vertex operator.

The integrated vertex operators can again be obtained by an educated guess
based on comparison with the bosonic string and/or the RNS string. In those
theories the integrated vertex operator satisfies

QsU(z) =0V (z) (2.17)

This equation also has a solution in the pure spinor formalism, which is given by

1
U=00"As(z,0) + 1T Ap(z,0) + da W*(,0) + ENm"}"mn(x, 0), (2.18)
with
1
Ap = gpay;:ng, (2.19)
1
wh = E7;‘15(D04Am —9™MAL), (2.20)
1 (0%
Foan = gDa(%m) WP, (2.21)

where D, = % + %957215 -

2.1.2 Tree-level prescription

Originally the amplitude prescription in the pure spinor formalism was motivated
by analogy to the bosonic string. The guiding principles are given by

e There are three unintegrated vertex operators and N — 3 integrated ones to
deal with the CKG.
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e The total Jy, charge must equal the charge anomaly (2.7).

The N point open string tree-level amplitude prescription presented in [22] satisfies
the above guiding principles.

A= <V1(z1)V2(z2)V3(Z3)/dZ4U4(Z4)'"/dZNUN(ZN)Ycl(yl)"'Ycu(yn)> =

/ (D04 [ D6 DO [D N [D ] Vi (21)Va (2) Vi (2) / A2l (24) - / danU (2n)

Yo, (1) -+ Yoy, (yin)e™®, (2.22)

where [D¢] denotes functional integration over the field ¢. The functional integration
over ™ have been studied in detail and the same correlation functions appear in
the RNS formalism. This factor will be ignored when it is not relevant to the
computation.

Yo are the picture changing operators (PCOs):

Yely) = Caf®(y)3(CsX (y)), (2.23)

where C,, is a constant spinor. The presence of the PCOs in the amplitude prescrip-
tion is explained from first principles in chapter 4. In short, they come from fixing
a gauge invariance due to the zero modes of the weight zero fields, \“,6%. Note
the weight one fields do not have zero modes? at tree level. At higher loops there
will also be PCOs for these fields. Since the PCOs are introduced as a gauge fixing
term, amplitudes should be independent of the constant tensors C,. The name pic-
ture changing operator was also given to an operator in the RNS formalism (1.209).
These operators change the (bosonic) ghost number of the vertex operators. The
A, w sector can be seen as a ghost sector since it is not part of the ten dimensional
superspace and they have the “wrong” spin-statistics relation. Since Y change the
Jyw charge by one, these operators were also named picture changing operators.

The functional integral (2.22) is evaluated by first using the OPE’s of (2.7)
and (2.8). Note that this operation reduces the total conformal dimension of the
worldsheet fields involved in the OPE. For example in the p, 8 OPE, the conformal
weight of pg(2)0%(w) is one and the conformal weight of 65 is zero. Thus in the end
the correlator only contains worldsheet fields of weight zero. This can be evaluated by
replacing the fields by their zero modes and performing the zero mode integrations.
The justification for this step is given in section 4.6.

After integrating out the nonzero modes the amplitude reduces to

A= /[dA]dlﬁaxaxﬁmfam(9)(019)5(01A) - (CHe)s(CMN), (2.24)

2This can be inferred from the Riemann Roch theorem (1.74) and the fact that weight zero
fields have precisely one zero mode at any genus.
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where fn.g, depends on all the polarisations and momenta. Note the functional
integration of ™ is omitted here as will be done in all computations in this thesis.
A priori fap, also depends on 21, 22, 23. Of course we expect the final result to be
independent of these coordinates. Also note all the fields are zero modes including
those in the measure. [dA] is the unique Lorentz invariant measure of +8 ghost
number on the space of pure spinors (cf. section 3.4). It is given by

[ANACNIXT = dA Ao A dA (eT)2P7 (2.25)
where
(ET)P7 ) = €aroang Vs 127 18y 14 (y PP ) 2150418, (2.26)

Note no gamma trace is subtracted. This tensor is already gamma matrix traceless
as explained in section 3.4.

Lorentz invariance

The PCOs contain constant spinors. Therefore the prescription is not manifestly
Lorentz invariant and one has to check Lorentz invariance by hand. The Lorentz
variation of one PCO is given by:

(CH™™O)(CH)IS(CN)].

(2.27)
The last equality shows that the Lorentz variation of the PCO is Qg exact. This
decouples if all other insertions are Qg closed and (QgsK) vanishes for all K. The

M™"Ye = L(O™0)5(CN) + 5(CB)(CY™ N (ON) = Qs]

N =

second condition is satisfied because after integrating out the non-zero modes (QsX)
reduces to

/ [ANd"SON N XY D, £5.,(0)CO5(CHN) - - CH OS5 (CMN) = 0, (2.28)

because fleHDag(G) = 0 for any function g. The first condition is more subtle.
The vertex operators are Qg closed, due to the physical state condition (2.13). In
order to see whether the PCOs are closed consider

QsYo = CoA*6(CAP). (2.29)

This seems to be zero, but there are subtleties due to the presence of factors of A in
the denominator form the measure (2.25). A detailed exposition of these subtleties
can be found in chapter 5.

It is possible to restore manifest Lorentz invariance by integrating over all possible
choices for C. This guarantees the prescription is Lorentz invariant. However it does
not guarantee that Qg exact states will decouple. After including the C integral
(2.24) becomes

A= / [dC[ AN S ON* NN fu3, (0)(C1O)S(CPA) - - - (CMO)S(CMN). (2.30)
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2.1.3 One and higher-loop prescription

Let us start with giving the one-loop amplitude prescription. Compared to a tree-
level function a one-loop function exhibits three new features:

e PCOs for the weight one worldsheet fields p, w,
e zero mode integrals over p, w,
e a composite b ghost constructed out of the worldsheet fields from (2.1).

The first two points are direct consequences of the presence of a zero mode of weight
one fields on the torus. The new PCOs are given in terms of the gauge invariant
quantities N™" and J:

Zp(z) = %an/\(z)vm”d(z)é(anNm"(z)), Z5(z) = X (2)da(2)0(J(2)). (2.31)

Note that the picture raising® operators, Zp and Z;, are @Qg-closed without sub-
tleties:

QsZp = ian)\ym”dBm/n/Aym/”,dé’(quNpq) = %(anAymnd)Qa’(quNm) =0.

(2.32)
This vanishes because it contains the square of a fermionic quantity. Let us also
record the Lorentz variation of Zp,

M™Zz = Qs[2nP™ 6" B,y N7 §(BN)], (2.33)

which is Qg exact.
All string theory amplitude prescriptions at one loop contain a b ghost which
satisfies
{Qs,0(2)} = T(2). (2.34)
In the RNS formalism this field appears as one of the two reparametrisation Faddeev
Popov ghosts and note that at one loop there should be one (holomorphic) b ghost
insertion to absorb the zero mode (cf. table 1.1). In the bosonic string amplitude
prescription, which the pure spinor amplitude prescription is analogous to, this b
insertion enters through (b, d-¢g), where the brackets have been defined in (1.69) and
7 is the modulus of a genus one surface. While the full derivation of the form of this
insertion will be given in chapter 4, it is possible to show this insertion in consistent
with BRST invariance, since its variation equals a total derivative in moduli space
which vanishes upon integrating over the moduli:
05 0gab s __ 9 s

Qs(b,0-g)e™ = (T, d,g9)e” " = =S,

= 2.
Ogap OT or (2.35)

3These are called raising operators because they have +1 Jy,, charge, hence they raise the
picture in the language of (1.209).
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The derivative of the metric with respect to the modulus is called a Beltrami differ-
ential, 4, and on higher genus surfaces the Beltrami differential has an index that
runs over the number of moduli, u.

In the pure spinor formalism, however, the b ghost is constructed out of the
worldsheet fields from (2.1) as explained from first principles in chapter 4. It is not
possible to solve equation (2.34) in the minimal pure spinor formalism, because of
ghost number (J charge) conservation combined with gauge invariance of objects
containing w,. The former implies b must have ghost number minus one and since
there are no gauge invariant quantities with negative ghost number the latter rules
out any solution. A resolution to this problem is combining the (composite) b field
with a PCO, Zp, such that

{Qs,bp(u,2)} = T(u)Zp(2). (2.36)

This equation ensures the Qg variation of the b ghost vanishes after integrating over
moduli space. The solution is given by

b, 2) = bis(u) + T(w) / " duB,, ONP(0)5(BN (1), (2.37)

The local b ghost, bp(u), is a composite operator, constructed out of the worldsheet
fields:

bp(2) = bpo(2)0(BN(2))+bp1(2)0 (BN (2))+bpa(2)d" (BN (2))+bp3(2)0" (BN (2)),

where the primes denote derivatives, BN = B,,, N™" and 233

bpy = %va”dan— %H“B(*yp*ym")agHPan—l— (2.39)
SO 50 (0 00)a B + 55 (P13 (070N B

bp, = iHO‘B(Bd)a(Bd)g—i— (2.40)
TGP g (Bd)aTly B+ K (577 15 (Bl) Ty By +
iff”ﬁ U™ )e(Bd) o (100)5) — (174" i (Bd)g) (100)) B
(Y Das(FPY"™ )5 + (Y Das(VPAY™) gy ) p Bimn I By,

by =~ KO (Bd)a(Bd)s(Bd)y — LI (77 )y (Bd)s(Bd)a +  (2.41)
(Y"7"™")p1y (Bdd) 5 (Bd)o + %(7 Y"")als(Bd)y (Bd) ) Byn,

by = gL (BA)a(Bd)s(Bd), (B, (242)

where (Bd)y = Bpn(Y""d) and G, H, K, L are given in appendix 3.6.
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The one-loop amplitude prescription in the minimal pure spinor formalism is
given by

10 11
AN = /d27-<|/d2uu(u)l~)31(u,z1) H Zpr(zp)Zj(211) H Yo, (y))? (2.43)
P=2 1=1

N
V(e I] [ @erta(en)
T=2

where p(u) is the zz component of the Beltrami differential.

Above one loop there are no conformal killing vectors anymore, so that there
is no unintegrated vertex operator. The number of metric moduli at genus g is
given by 6g — 6 (cf. table 1.1) and all conformal weight one fields have g zero modes
each. This leads to the multiloop amplitude prescription of the minimal pure spinor
formalism:

3g—3

AN — /d271 ~d*734_3( H /d uppp(up)bs, (up, zp) (2.44)

10g

H ZBp Zp HZJ'UR HYcIy] /dtTUTtT
P=3g—2

As described in [22], the amplitudes (2.43) and (2.44) are evaluated by first
using the OPE’s to remove all fields of nonzero weight. After this step all fields
have weight zero. This can be evaluated by replacing the fields by their zero modes
and performing the zero mode integrations. Therefore one needs to know how to
integrate over the zero modes. For the d, 0, x variables this is standard, so only the
integration over A\, N, B, C' is discussed.

A typical integral one encounters is given by [22]:

g
A= /d)\ 1[dB][dC] H dNg]f(\, Ng, Jr,C, B), (2.45)

where [dN] is the zero mode measure for (each zero mode of) Ny, (cf. section 3.4.2).

It must have Jy,, charge -8, since the JT OPE in (2.7) implies only correlators with

a total Jy, charge of 8 — 8¢ can be non vanishing at g loops [8]. It is given by
[ANTAY o \¥8 = NI Ao A NTHOTO A JROL S (2.46)

mini---Mmionio’?

with
R&1 a8 = (2.47)

ming--Mionio

(a1 azaq asag arag))

7m1n1m2m3m47m n5n2m6m77mgngn3n6mg7m10n10n4n7n9 + permutatlons.
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The permutations make R antisymmetric under exchange in both m; < n; and
m;n; < m;n; and the double brackets denote subtraction of the gamma trace. The
zero mode integral (2.45) is only nonzero if the function f depends on (A, N, J, C, B)
as

F(\N,J,C,B) = (2.48)
g g
h(\,N,J,C,B) [ ™77 H [ o"~=6(B" Ng) H 15N,
R=1 P=1 R=1 I=1

where the polynomial h assumes the form

g 10 11
(/\)89—8+Z}1:1(K1+1) H (Jp)Mr (NR)Z}DL Lpr H (BPEr.ns H(OI)KI‘Fl.
R=1 P=1 =1

(2.49)
The integration over the zero modes of the pure spinor variables and the constant
tensors is defined in [22] as

1L 5 10 g 9 g
A ZCH(WW ) H H 8BP 3Npq )hr H 3— (2.50)
I=1 4 P=1R=1 =1
0 o 0 0 s
ock  OCK axer e T3
[R%ngumm R aBZm . 8B£anrw,NR,JR,c,B>,

for some proportionality constant c.

2.1.4 Decoupling of ()5 exact states and PCO positions

The amplitude prescriptions, (2.22) and (2.43), put the PCOs at arbitrary points
on the worldsheet. Of course the final result cannot depend on these positions,
since they do not contain any physical significance. To study the dependence on the
insertions point one looks at the worldsheet derivatives of the PCOs:

0Ye(y) = Qs((CO6(y))(COy))' (CAy))], (2.51)

0Zp(z) = Qs[—BpgONP4(2)6(BN(2))], 0Z;(z) = Qs[—-0J(2)0(J(2))]. (2.52)

These are Qg exact, like the Lorentz variation of the PCOs. Hence the amplitude
is only guaranteed to be independent of these insertions points if Qg exact states
decouple. Due to the subtleties with Qg closedness of Yo this is non-trivial. In
chapter 5 the problem is completely solved and a proof of decoupling of Qg exact
states is given, hence also proving Lorentz invariance and independence of PCO
positions.
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2.2 Non-minimal pure spinor formalism

The minimal pure spinor formalism has the desired property of manifest spacetime
supersymmetry. However, manifest Lorentz invariance is not present, due to the
appearance of the constant spinors/tensors C' and B. Furthermore the b ghost
equation (2.34) could not be solved. These two problems are resolved in the non-
minimal pure spinor formalism.

The non-minimal version of the formalism [25] (see [26] for a review) amounts
to introducing a set of non-minimal variables, the complex conjugate Ao of A%, a
fermionic constrained spinor rs satisfying

Mg =0, Xavlrs=0 (2.53)

and their conjugate momenta, w® and s®. Analogous to the minimal formalism these
conditions induce a gauge invariance:

5% = K™ (1 A)” = @™ (yr)®,  35% = 6™ (3 )" (2.54)

This implies w® and s* can only appear in the gauge invariant quantities

N™" = (MY — $Ymnt), J = M0 — s, Tsgy = W ONg — $“0ra,  (2.55)

Do =

1 _ _
Smn = Esvmnx\, S = s\

The action (2.1) is modified by the addition of the term S,,:
S— S+ Sum,  Spm= /cﬂz (—0*ONg + s"0rq) (2.56)

and the generator Qg by
Qs — Qs + fdzw“m. (2.57)

This acts on the non-minimal variables as follows
Ao =Tay,  Ora =0, ="  f0®=0. (2.58)

These transformation rules imply that the cohomology is independent of the non-
minimal variables. In other words the vertex operators can always be chosen such
that they do not include these variables. A more natural point of view, which will
be adopted in chapter 4, is to consider the non-minimal variables as fields that
appear in the BRST treatment of gauge freedom due to shifts of the zero modes
of the worldsheet fields. This also explains why vertex operators do not depend on
the non-minimal fields and why only the zero modes of these fields appear in the
path integral. Furthermore the OPE’s given in section 2.1 still comprise a complete
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list, since the new fields do not have non zero modes. The tree-level amplitude
prescription is given by

N
A=V, (zl)Vg(zQ)V3(Z3)H/dinz-(zz-)e—<k<y>k<y>+r<y>"<y>>>. (2.59)
=4

Compared to the minimal case the PCOs have been replaced by

N(y) = eUQs,=A®)0W)}) — o~ AWAW)+(1)0(v)) (2.60)

Originally this factor was postulated by Berkovits, but it can also be derived from
first principles. This will be done in chapter 4. Unlike the PCOs N is Qg closed
without subtleties:

se_ir:s—f—l—re‘iT:—r—re_irz. .
Qge~ 70 — AN - 70— OA+70) A Ve~ Ar+r6) _ 2,61

Furthermore amplitude will not depend on the insertion point y since y only appears
in a Qg exact term. More precisely A/ can be written as 1 + Qs for some Q and
all y dependence is in that .

After performing the OPE’s between the vertex operators, which results in ex-
actly the same function f,z- as the minimal manipulations, all fields can be replaced
by their zero modes:

A= / d*%0 fo5-(0) / [AN][dN][dr]A* NP AT e~ M0 (2.62)

where [d\] and [dr] are Lorentz invariant measures:

[N Aa A Ay = (€T)2L 1 dNg, -+ - dAay, (2.63)

afBy

and 9 5
— aBy X Y.\ o
[dr] = (eT) AaAgAy o Fro

Qp-ogp
The invariant tensor (e1') with indices in the opposite positions compared to (2.26)
is defined by

(2.64)

(GT)zlﬁ:y.au = ealmam'Ygiau'Ygalg'ﬁaM ('anp)msam' (2'65)

We know [[d\][dN][dr]A* AP A7e= (M +70) must be a Lorentz tensor with three
spinor indices and it must also contain eleven 0’s, because the r integration requires
eleven r’s to be non vanishing and all the terms with eleven 7’s also contain eleven
0’s. There is only one invariant tensor, up to scaling, with these symmetries which
is (eT):

/ "0 fopy (0)(eT) 507 5, 0% - 071, (2.66)
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At higher loops two new issues arise, (1) appearance of the b ghost which is a
composite field constructed from the worldsheet fields, including the non-minimal
variables, (2) the weight one fields have zero modes. To deal with the second issue,
N will also include zero modes of weight one fields. For the one-loop case weight
one fields have one zero mode, this results in*

N(y) = e~ CWID+Hr@OW+3 N N 45 Sy [ dzdy™ " dI0104S [y dzxd) (9 67)
This is invariant under Qg:

— L 1 - -
QsN(y) = Ar(y) = Ar(y) + N™" 5 X0mnd = N™" 5 Amnd + T (M) = JAd)N (y) = 0.
(2.63)
The non-minimal b ghost satisfies

{Qs,0nm(2)} = T (2) = Trnin(2) + Txp(2)- (2.69)

This equation can be solved in the non-minimal formalism and its solution is given
by

A 27 (Y d)® = Ny (Y700) — JOO — 15207

bam = §“0\a _ 2.70
S + YN ( )
(;\'anpr) (d%’rmpc{'i' 24NmnHP) . (T'Ymnpr) (;\:Ymd)an (T'Ymnpr) (;\'quiT)NmanT
192(AN)2 16(AN)3 128(AN)*

The one-loop amplitude prescription in the non-minimal pure spinor formalism
is given by

N
A% = i) ][ [ dui) [ dopolbon @V @) (2.71)

where A is given is (2.67). After integrating out the non zero modes by using the
OPE’s a typical one-loop amplitude in the non-minimal formalism becomes

AN = / 4145 / (AN [dN[AN][AN][ds][dr] F O\, X, MO, (2.72)

where the Lorentz invariant measures are defined by

[AN Aoy - - Aag = RIALM0M0GN, o dN oo dT (2.73)

and 9 9 5
o1--as Aoy Aa . 2.74
[ ] Rm1n1 “M10M10 8 8Sm1'n,1 aSmlgnlo 85 ( )

4The zero mode of a holomorphic field ¢(z) is given by: ¢° = fA dz¢(z). A is the non-trivial
A-cycle that satisfies [, w(z) = 1, where w(z) is the holomorphic one-form on the torus.
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Note by, has poles in A\ which can cause the zero mode integrals over A and
X to diverge. At one loop this will not cause any problems because the measure
[dA][dA][dN][dN][dr][ds] goes like (M) (X)!! and the b field like A/(AX)* when A — 0.
At three loops and higher the number of b fields is high enough to cause divergences.
They have originally been regularised in [27] and more recently in [28], but this
method has not been applied to actual computations. (See however [29] where this
regularisation method is reviewed and applied to the one-loop four-point amplitude
with four integrated vertex operators. This requires a modification of the amplitude
prescription that will not be discussed in this thesis.)

2.3 Results from the pure spinor formalism

In this chapter two new string theory formalisms have been introduced. Although
it is not been proved rigorously, there is a lot of evidence that the minimal pure
spinor formalism, the non-minimal pure spinor formalism and the RNS formalism
are equivalent to each other.

Let us start with the equivalence between RNS and the minimal pure spinor
formalism. The spectra of these two were shown to coincide in® [24]. The most
direct approach to show equivalence is to compare the amplitude computations. In
[30] the equivalence was proved for N-point massless tree-level amplitudes with four
or fewer Ramond states. For massless four-point one-loop amplitudes the amplitudes
were shown to be identical in [31]. The four-point massless two-loop amplitude has
been computed in the pure spinor formalism in [32]. This computation includes all
possible choices (Neveu-Schwarz or Ramond) of the external states. The analogous
computation in the RNS formalism is extremely complicated due to the sum over
spin structures (cf. (1.213)) and is only successfully performed in the case of four NS
states [17]. For this choice of external states the pure spinor result agrees with the
RNS result. In conclusion one can say that the pure spinor formalism agrees with
all known results of the RNS formalism. On top of this the pure spinor formalism
produces more results, especially involving RR states, due to its manifest spacetime
supersymmetry. All pure spinor computations referred to in this paragraph were
performed in the manifestly Lorentz invariant version of the minimal formalism. This
means including integrals over the constant tensors/spinors C' and B (cf. (2.30)).

Equivalence of the minimal and non-minimal at tree-level is not difficult to show
when one utilises the manifestly Lorentz invariant version of the minimal formalism.

5This reference shows coincidence of the spectrum of the minimal pure spinor formalism and
the spectrum of the Green-Schwarz superstring, yet another superstring formalism. However as
explained in [10] the GS string is equivalent to the RNS string.
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The A and C' integrals in (2.30) can be evaluated by Lorentz invariance:

11 Qi ”

/ [AOYANA“NXTCL - O §(CHN) -+ 5(CHN) = (eT) 2P0 (2.75)
Using this result (2.30) becomes

A= / 0'°0 fug (0) (€T)P 670 %0, (2.76)
which coincides with the non-minimal result (2.66). At higher loops there does not
exist such a general proof, but in [33] the non-minimal one- and two-loop four-point
functions are shown to coincide with their minimal counterparts. The most recent
computation, the five-point one-loop amplitude, has only been computed in the non-
minimal formalism [34]. In chapter 4 formal equivalence between the minimal and
and non-minimal formalism will be proved by providing a first principles derivation
from the same starting point for both minimal and non-minimal.

The power of the pure spinor formalism is not only illustrated by the fact that
the complexity of all the amplitudes mentioned in the previous paragraph does not
depend on the number of external fermions (unlike RNS). In addition there exists a
number of non-renormalisation theorems that have been proved in the pure spinor
formalism and not in RNS. Four theorems are listed below in chronological order.
It is also indicated which formalism is used in the reference.

e The p-loop four graviton function vanishes above one loop [22] (minimal). In
other words the R* term in the low energy effective action does not receive
perturbative corrections above one loop. This is a consequence of a conjectured
selfduality of type IIB string theory, S-duality. In the RNS formalism the
conjecture was verified only at two loops after much effort [11].

e The massless N-point multiloop (g > 2) function vanishes whenever N < 4
[22] (minimal). This result is the main ingredient of the proof of perturba-
tive finiteness of string theory. As explained in [22] the only other possible
obstruction to proving perturbative finiteness is the existence of unphysical
divergences in the interior of moduli space. Such divergences are not expected
in the pure spinor formalism. Within the RNS formalism there are no results
beyond two loops.

e In [35] (non-minimal) two more conjectures based on string dualities are pre-
sented and subsequently proved. The first theorem states that when 0 < n <
12, 9" R* terms do not receive perturbative corrections above n/2 loops. The
second theorem states that when n < 8, perturbative corrections to 9" R?*
terms in the ITA and IIB effective actions coincide.
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e The analysis of the previous reference was extended to the open string in [306]
(non-minimal). In this case it has been shown that the so-called double trace
term, 9%tg(trF?)?2, does not receive corrections above two loops, whereas no
such restriction holds for the single trace term, 9%tg(trF?).

Furthermore the (non-minimal) pure spinor formalism has also caught up and
overtaken the RNS formalism in the area of overall coefficients. The normalisation
of the one-loop four-point in the non-minimal pure spinor formalism was computed
in [37]. The tree-level and two-loop computations were performed in [38]. This refer-
ence also shows that the results from the pure spinor formalism are in agreement with
predictions from S-duality. Moreover the results are consistent with factorisation.
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Chapter 3
Basic techniques

This chapter contains the mathematical details of a lot of the arguments used in
the previous chapter. The starting point will be the definition of a representation
and all results will follow without the need for any further prerequisites'. Important
results in this chapter include

e The Wick rotated Lorentz group, SO(10), has an SU(5) subgroup.
e A pure spinor has eleven independent components in ten dimensions.

e There exist unique Lorentz invariant measures for the zero modes of A\* and
Nmn

e Proof of equation (2.75).

Furthermore this chapter contains results on representation theory and invariant
tensors that will be useful in due course.

3.1 Invariant tensors

Before the definition of an invariant tensor is given it is necessary to recall how the
vector and spinor representations of SO(N) are defined.

Definition A representation of SO(N) consists of an d dimensional vector space
and a map

f:SO(N) x Cc?— ¢, (3.1)
f(A,v) = g(A)v,

1Section 3.2.3 is an exception where knowledge of Dynkin labels is assumed. These are peda-
gogically introduced in [39].
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where g(A) is a linear map from C? to itself for every A € SO(N). In addition g
must satisfy

9(AB)v = g(A)g(B)v, g(e)v = v, (3-3)
where e is the unit element of SO(10).

The fundamental representation is given by d = N and ¢ is the identity map
(9(A) = A). In physics notation, which is used throughout this thesis, this repre-
sentation would be denoted as

v — A%, (3.4)

or even shorter
v — Awv. (3.5)

In order to see this is a representation note both sides of (3.3) reduce to ABv. A
second representation of SO(N) is given by

vg — vp(A™HY or v — (A7), (3.6)
This also satisfies the defining condition for representations because
ATT(B™ ) = (A7 BTy = (AB) . (3.7)

In fact this can be generalised to construct a second representation from any given
one. One just replaces v — g(A)v by

v — (g(A)) " (3.8)

This is called the conjugate representation. Note the position of the indices on the
conjugate representation is opposite to the original representation. This is very
convenient because together with the rule that indices can only be summed over
if one is up and one is down, tensors transform as indicated by their free indices.
In particular combinations without free indices are invariant. For example for an
arbitrary representation and its conjugate

Wev® — wb((g(A)_l)bag(A)“CvC = wbdgvc = wv®. (3.9)

The first equality is a consequence of (3.3) with B = A1,

An invariant tensor is a tensor that transforms into itself under all elements of
the group. For example 07 is an invariant tensor for any representation. Note the
range, that a and b run over, depends on the (dimension of the) representation. Its
transformation is given by

05 — 9(A)°85((g(A) ™))% = o5 (3.10)

For SO(N) §% is also an invariant tensor where a, b denote the vector representation,
hence they run from 1 to N. This tensor is invariant because

5% — A% AP5 = (AAT)® = g7, (3.11)
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The last equality follows from the definition of SO(NN). For an arbitrary representa-
tion of SO(N) of dimension d with the property det(g(A)) =1VA € SO(N), ¢*'
is an invariant tensor:

€ (g(A), - (g(A))7%, € = (detg (e (312)

N is an invariant

Since the fundamental representation falls in this class, €™
tensor. Invariant tensors can be used to construct invariants from tensors. Objects
that consist of (covariant) tensors and invariant tensors transform according to their
free indices. In particular combinations without free indices are invariant. For

example,
Vawpd® — vewg(BT1)C, (B™H)%6% = veawg 6, (3.13)

where (3.11) with A = B~! was used in the last equality.

For the purposes of this thesis two representations, v an w, are defined to be
equivalent if they have the same dimension and w can be contracted with invariant
tensors such that the resulting index structure exactly matches the indices of v. For
example the vector representation of SO(N) is equivalent to its conjugate because
59wy, has the same index structure as v and therefore transforms as a fundamental
vector.

A representation is reducible if the matrix g(A) is blockdiagonal for all A €
SO(N). In addition the same blocks must appear for all A’s and the number of
blocks must be two or greater.

The complex conjugate of a representation, g(A), is given by g*(A4). One can
check this always defines a representation if g(A) did. If a representation is equivalent
to its complex conjugate it is real. For SU(N) the conjugate of the fundamental
representation is equivalent to the complex conjugate because A~'7 = A*.

3.2 Clifford algebra and pure spinors

The Clifford algebra in ten dimensions with Euclidian signature is given by
{7 =288, m,n=0,---,9 ab=1,---,32 (3.14)

These I'"’s can be used to construct a representation of the Lorentz algebra and
by exponentiating also of the Lorentz group. The objects, X™" = 1[I "], satisfy
the Lorentz algebra.
Definition Let
(Jm)P, = (5”[’”5;‘], (3.15)
then AP, = (e%“m"("mn))pq € SO(10) and each element of SO(10) is covered by an
w. The spinor representation is defined by

g(Aw))? = (e zem &8 (3.16)
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With this definition (I'™)% is an invariant tensor. Note that the notation implies
that one has to transform the b index as a conjugate spinor. Let us show this by
considering infinitesimal transformations:

(T = (B -+ 5 (T2 — S0 (SN (G  Sp(EP9)). (317)

With spinor indices suppressed and only keeping terms to first order (plus one second
order term) in w this becomes

' —1T"4(1- §wpq2pq)F (1+ §wpq2pq) —(1- gwqupq) o (3.18)
By using the definition of ¥ and J the second and third term can be shown to be
equal. This proves (I'™)% is an invariant tensor.

The Clifford algebra has a solution in which the 32 by 32 components I' matrices
are off diagonal:

0 mafS
I = ( o7 ) , (3.19)
’Yaﬁ O
where o, 5 = 1,---,16. The notation suggests that there is a sixteen dimensional

representation. Moreover it suggests that the two 7’s are invariant tensors with
respect to this new representation. To see this first of all note the Clifford algebra
now reduces to

mo‘ﬁ n mn So
ymTan) = 2gmnse. (3.20)

In particular (y™)*? is the inverse of (y™)a3. The Lorentz generators Y. become

L[ (ymymye 0
nmn — — B : 21
4 ( 0 (yImamh) B (3.21)

This implies the representation of the Lorentz group is reducible. An explicit solution
to (3.20) is given in the next section after some explanation about how representa-
tions decompose under subgroups. From this explicit solution one can see the two
representations are irreducible. The two blocks are the Weyl representation and its
conjugate. The 32 dimensional spinor is called a Dirac spinor. To see (7™)*% is
an invariant tensor, note since X satisfies the Lorentz algebra so does i(ﬂy[m*y”])o‘g
These are the Lorentz generators in the Weyl representation. By a similar argument

as for the I'’s one sees «y is an invariant tensor.

3.2.1 The SU(N) subgroup of SO(2N)

This section is devoted to showing SO(2N) has an SU(N) subgroup. In addition it
will be demonstrated how representations of SO(2N) decompose into representations
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of SU(N). Part of this analysis is based on [39]. To start define for any SO(2N)
vector v:

1
(02 —iv? )y, = 5(vza +iw?* ) a=1,...,N. (3.22)

o 1
v = -
2

The Clifford algebra can now be written as
{Ta, T} =6, (3.23)

with all other anticommutators zero. The SU(N) subalgebra of SO(2N) cousists of
the generators,

T, =T, T%, a=1,...,N>—1, jk=1,....N, (3.24)

where Tajk are Gell-Mann matrix elements for SU(N), i.e. they satisfy [T,, T3] =
fup“Te. By virtue of the Clifford algebra one can show the T, also satisfy the SU(N)
algebra:

[T, Ty) = 0,07, Ty ] = (3.25)
~ i ~1
T, Ty (D {0, T 0™ — T, 0 {0, ™} 4 {[;, [} 0% — Ty {[;, T }T%) =

Lj([Ta, Ty))\Th = fop (L), I0" = .

a

bcTc.

Moreover the T, form a subalgebra of SO(2N) since

1 1
DTE = {1, TF) G, T (3.26)
_ 151; _ 3'223‘,21@ + 122j+1,2k _ 122j,2k+1 _ 122j+1,2k+1
27 2 2 2 2 '

The (5;’? does not contribute to 7T, because Ta is traceless.
The SO(2N) algebra is given by

[M™", MPY) = — (6™ pran — gnlepgam™y o on,pg=1,-- 2N, (3.27)

One can also give this algebra with the components of the generators labelled by the
indices from (3.22):

1 a
(M M, = —55[[6Mbjl], a,byec,d=1,---, N, (3.28)
a C 1 a C C a
(MG, M = 5(5de — 6 M), (3.29)
a e L e rda “ 1.,
(M, M d] 551[, M7 . (MG, M) = _gé[ch]ln (3.30)
[MabaMCd] - [MabaMcd] = 0. (331)
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These equalities can be proved by using (3.22), M9 = —M,* and noting

1
(52N)g _ Z(((S?N)Qa)% o i(62N)2a+1,2b + i(52N)2a,2b+1 + (52N)2a+1,2b+1)
1 1
= 5(5N)§ = 55{,’, (3.32)
(52N)ab _ i((52N)2a,2b _ Z-((SQN)2a+1,2b o Z-(52N)2a,2b+1 _ (52N)2a+1,2b+1)
= 0, (3.33)

where dj, is the k dimensional Kronecker delta. From (3.29) one sees the SO(2N) al-
gebra has an N2 dimensional subalgebra. This subalgebra contains a U(1) generated
by M = M and the other N* — 1 generators?,

(M), = MY, — 250, (3.3
are traceless and generate an SU(N):
(M), (Ms)ea] = [MS, — £05M, M — £55M%) = (3.35)
Locanre _ Leagenre _sepra _ Lsccan s Losarnrye _ seinfae
— 508N, — BTN, — M — Z563M)) = —2 (M), — G5(Ms)"y).
The U(1) charges of the generators are given by
[M, M%) = —M [M,M% =0, [M,M]= Mq. (3.36)

This concludes the proof of the existence of the SU(5) subgroup. The next step is
to examine how SO(10) representations behave under SU(5) transformations.
Every representation of SO(2N) can be decomposed into representations of
SU(N). This means the vector space, that the tensors live in, can be written as a di-
rect sum of subspaces and the subgroup does not mix the elements of the subspaces.
The vector representation of SO(2N) for example decomposes into the vector of
SU(N) and its conjugate, which for SU(N) is equivalent to the complex conjugate.
The subspace of C?V that is invariant under SU(N) is V = {v|v® = 0;v € C*V}.
The variation of an SO(2N) vector by an element of the SU(5) subgroup is
o™ — (e MDYy — (A(w)v)™, (3.37)

n

where w® = 0. If v € V, (A(w)v) is also an element of V. To show this one needs
to prove (A(w)v)¢ = 0:

(A(w)v)® = 2(e M a)3 b 4 2(e2 M a)aby, = (. (3.38)

2The subscript S on M has no relation with the subscript on the nilpotent fermionic operators

Qs-
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The first term is zero because v® = 0. The second term because
(M)ab = 0. (3.39)
This follows from (3.15), (3.22) and (3.33). The other components are

(A(w)v), = (e“’chcd) bup = vy — vy, + O(w?). (3.40)

a

For a vector with v, = 0 we get
(A(w)v)e =0, (3.41)
(A(w)v)* = (e“’chCd)abvb = v + wio’ + O(w?). (3.42)

From (3.40) and (3.42) one sees the two representations are each others conjugate.
Since there are only two N dimensional representations of SU (), namely the vector
and its conjugate which is equivalent to the complex conjugate of the vector, one
can conclude

2N - N@ N. (3.43)

As shown above SO(10) has a sixteen dimensional spinor representation. This
also decomposes under the SU(5) subgroup. To find the precise decomposition note
that any representation of the Clifford algebra is also a representation of SO(10).
Since the Clifford algebra in the form of (3.23) is just a set of raising and lowering
operators, representations are easily constructed by choosing a vacuum |0) that
satisfies

I',|0) = 0. (3.44)

32 states are created by acting with I'*:
e” =|0), MU =T%...T%|0), k=1,.,5. (3.45)

Note that all e’s are antisymmetric in their indices, so that there is indeed a total
of 32 basis vectors. This representation is the Dirac spinor. These basis vectors can
also be labelled with downstairs SU(5) indices

1
ey = 8_, €hede = 6abcdeeaa €ede = §€abcdeeab7 (346)
1 1
€de = gfabcdeeabca Ce = ﬂfabcdeeadea € = meabcdeeabai6 - 8+.
A generic spinor can be written as
1 1
§=Eheq 48" + SEape™ + €M ew + % + ¢ (3.47)
The M charges of the states are given by
5 1
Me™ = —Ze_, Me® %k = —1(5 — 2k)er K, (3.48)
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This can also be interpreted as M charges of the components

Mt = —th M&ay.oap = —=(5 — 2k)Ea,ay- (3.49)

Because the difference of the number of I'*’s and T',’s is always even in the SO(10)
generators, all SO(10) transformations will change the M charge by an integer. This
shows the reducibility of the Dirac spinor into two Weyl spinors. Incidentally we
can read off the decomposition under the SU(5) subgroup:

16 — 1_% @1_0_% ®5
16’—>1% © 10,1 D5_

A = AT N ans A (3.50)

Wo — Wi, W2 w,. (3.51)

[IN[SRN[

where the subscripts are the U(1) charges. For completeness the decomposition of
the vector and the antisymmetric rank two tensor of SO(10) are also specified:

10—-5_.® 5% o™ — 0%, v, (3.52)
45 — 19 ® 249 ®10_; ® 10, M™ — M® ., (Mg)%, M, My, (3.53)

3.2.2 Charge conservation and tensor products

In order to solve the pure spinor constraint (2.2) one needs an explicit representation
of the gamma matrices. The M charge conservation property of invariant tensors
proves a large number of components of invariant tensors is zero, which is very
useful if one is doing computations by using the explicit expressions of the tensors,
in particular gamma matrices. An invariant tensor Tf;‘ 56 satisfies

0= MTs“f = (M"(a) + M"™(B) + M(y) + M*(8))T57, (3.54)

where M¥(+) = M%(ajaz) = —1, M%) = 2, MY+) = 2, M%araz) =
1. Ma) = -3, The w is for up and the d for down This refers to the posi-
tion of the Weyl index not the SU(5) indices. So if the M charges of the indices
of a components do not sum up to zero the component vanishes. In this case one
can for instance conclude T+b1 baed = 0, because the M charge of the components
is —3(5+1+3+3)#0.

In this thesis questions of the following type often arise: how many independent
invariant tensors T(’Zgw exist? The upper index ¢ denotes the Weyl representation,
the lower indices stand for the conjugate Weyl representation and m is the ten
dimensional vector. To answer this question first of all note that the space of all
tensors with the index structure and symmetries of 7" forms a representation of
SO(10). The question how many independent invariant tensors exist in that space
now translates to what the dimension of the invariant subspace is. This number
can be obtained by computing the number of scalars in the relevant tensor product.
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This is one of the features of the computer algebra program LiE [40]. For the case
of T one computes

10016 @ Sym®16’ =1 045045 B 45@ - - -, (3.55)

where the ellipsis denotes higher dimensional irreducible representations. The above
decomposition shows that the space of invariant tensors with the symmetries of T’
is one dimensional. Based on this result we can for example conclude

m 8 n m €0

In order to find the constant of proportionality, computing a single component on
both sides suffices. Alternatively one can contract both sides with a suitable invariant
tensor.

3.2.3 Duynkin labels and gamma matrix traceless tensors

Throughout this work irreducible representations are denoted by their dimensions.
This is slightly ambiguous. A more precise label is the Dynkin label of the highest
weight state of the representation [39)].

10 « (1,0,0,0,0), 16 < (0,0,0,1,0), 16" < (0,0,0,0,1), 45« (0,1,0,0,0).

(3.57)
There is one further irreducible representation of interest, which is given by sym-
metric and gamma matrix traceless tensors:

T(ren)) o (0,0,0,n,0) < Gam"16, (3.58)

where the Dynkin labels are specified. These representations are discussed in more
detail in [41]. There are three gamma matrix traceless tensors that are of particular
interest:

(111)((011&2&3))7 (T2)E(a1...a8)) (Tg)((alvvvau)) (359)

[B1-+B11] [mina],- [mionio]]’ [B1-+-Bri][[mana],--,[mionio]]”

The first one has already appeared in chapter 2, the other two will play a role in
one-loop computations. For the three tensors above the computer algebra program
LiE can be used to conclude there is only one independent invariant tensor. Note
this is consistent with the arguments in [33], where it is argued that a tensor which is
symmetric and gamma matrix traceless, let us say in some indices «;, is completely
specified by the components where the a’s are all +. In order to see this implies
there is only one independent invariant tensor of the form of 7T} note that for an
invariant tensor the components

(X057, (3.60)
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are only nonvanishing if
Bl"'ﬁll :+7127137 7457 (361)

which follows from the charge conservation property of invariant tensors. By anti-
symmetry of the ’s there is only one independent component in (3.60). If one now
uses the argument from [33] the entire invariant tensor is completely specified by a
single component, therefore the space of invariant tensors of the form of 7} is one
dimensional. The above argument applies equally well to Ts and T5.

3.2.4 Explicit expression for gamma matrices

A solution to the Clifford algebra for the ten dimensional Pauli matrices (3.20) is
given by

0 0 5k 0 0 0
('Yk)aﬁ _ 0 —ekaiazbibe 0 7 ('Yk)aﬁ _ 0 0 5][:15;2] ’
sk 0 0 0 olsb? 0
(3.62)
0 0 0 0 0 &
() =10 0 5[]21522] ()= 0 —€karasbib, 0 |
0 05,05 0 58 0 0
(3.63)

where all Latin indices are SU(5) vector indices. The top left corner of the matrices
is the +, + component, top middle is the +, b1b2 component and top right is the 4, b
component etc. Note these matrices are skew diagonal, this is a consequence of the
charge conservation property of invariant tensors.

In chapter 5 not only the gamma matrices itself will be important, but also their
antisymmetrised products. In particular the three form gamma matrices. Their
explicit expression is given by:

1 0 €k1kaksby by 0
(7k1k2k3)a5 = 6(7{1@1%2%3])0‘5 = | —€kikoksaias 0 0 (3.64)
0 0 0

o 1 « « «
(7k1k2k3) e E(('ykl')/[lm’yks]) - (W[kzlykl’)/ks]) o + (W[kzwks]’ykl) ﬁ) =

k1 sb
oo 0 —of %
2 0 6[al1 €aslkaksbiby 5[b116b2]/€2/€3a1a2 0 ) (3.65)
gl ey 0 0
« 1 « « «
(7F57,)°7 = S (2 ) — (1P P2) o o (y Py =
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0 0 0
ki sk (k1 ko]
0 - 0 (ks <ho] 6[0.11 50;]523 + %6&16(121] 5]632' ) (366)
a 1sa 1 gR2
0 —5[b11(5b22] by — 55[b1(5b2] O 0
1 0 0 0
('yklkzk?’)o‘ﬁ = E('y[kl'ykZ’yk?’])aﬁ = 0 0 0 . (367)
0 0 —€rikoksab
3.2.5 Pure spinors
A pure spinor is a Weyl spinor that satisfies
Ay = 0. (3.68)

After plugging in the explicit expression for the gamma matrices this becomes

1
22T — ZeabchAbcAde =0, (3.69)
22\ = 0. (3.70)

These equations are solved by

11 ,pea
)\a = gA_-‘rea C eAbc/\de- (371)
This is clearly a solution to the first equation. For the second equation one makes
use of the fact that a six component SU(5) tensor vanishes when antisymmetrised
over all indices:

0= /\[ab1 )\5253)\1,41,5] = 6/\,1[1,1 )\5253)\1,41,5]. (3.72)

The result (3.71) shows that a pure spinor has eleven independent components. A
number of great significance in the pure spinor formalism, since it plays a crucial
role in the vanishing of the central charge of the pure spinor formalism action in
conformal gauge (2.1).

3.3 Pure spinor Lorentz generators

The goal of this section is deriving the Lorentz generator OPE’s as given in (2.7).
This can be achieved by breaking manifest SO(10) invariance to manifest SU(5)
invariance. As a warm up exercise the Lorentz currents for an unconstrained Weyl
spinor are studied. Incidentally the results obtained in this exercise apply to the
Lorentz generators of the p,0 sector of the worldsheet action (2.1). The Lorentz
generators of an unconstrained bosonic spinor £* and its conjugate variable yz are
given by

M™ = Sya(y™") %87 A = S =), (3.73)
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In this subsection these components are given in terms of the SU(5) components of
¢ and y. The SU(5) components of (3.73) are given by

M = Jualiw)® ()ast’,
MY = i(ya(vk)‘)‘ﬁ(%)ﬁsf‘;—ya(w)“ﬂ(v’“)aai‘s)v (3.74)
MM = %ya(v[’“)“ﬂ(v”)aéfé-

In order to write these Lorentz generators in terms of the SU(5) components of y
and ¢ one uses the explicit expressions of the gamma matrices (3.62) and (3.63).

1 1
M = -3y — —y? abc c7
Kl 5Y &l Ve beklé
1 1
Mkl _ §ykl€++ Zyaeabcklé-bc’
1 11 1 1 1
k _  _ ~sket+,— g5k, ab —,ak - ask _ — l
Ml - 45l€ Yy 425ly gab'i‘ 2y gal+4ya§ 61 2yk§a
5 11 3
M = MY =—2y ¢ — -y + Syal” 3.75
1Y€ v e + e, (3.75)
1
(Mg)*, = M* —géfM

1 1 1 1
_ __5k ab . —,ak u — a5k - k.
0%Y €b+2y Sat + Tg¥as 01 = SUS

The current J can also be written in terms of the SU(5) components of its con-
stituents:

1
J =yl =y & + §y“b§ab + Ya&". (3.76)

3.3.1 Lorentz current OPE’s with unconstrained spinors

For unconstrained spinors there is no need to break to SU(5) in order to derive the
OPE of the Lorentz currents. It can be derived by the SO(10) covariant OPE of the
bosonic spinors &, and y°:

1

o(2)E% (w) ~ 87 : 3.77
al2)E (w) ~ 6] —— (3.77)
The OPE of the pure spinor Lorentz current with itself is given by

MR (Z) M2 (w) ~ (=yal(2)y™ "2y "2 (w)+ (3.78)

4z—w

L Tx(ymmaqgmne)

ninsa __mimsf3
ya(“’)’Y 87 'yé.’y(z)) + _Z (Z — ’U})2
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The following two identities can be used

1 1 1
[§7m1m27 5 n1n2] — E(nnl[mQ,}/ml]ng _ nng[mgﬂyml]nl)’ (379)
Tr(ymame2yminz) = _167]m1["17]n2]m2. (3.80)

The MM OPE now reduces to
_(nnl[m2Mm1]n2 _ 77"2[m2Mm1]n1)
z—w

Ui

M™™2 () M™™2 (1) ~ (3.81)

TM1MN2 MM 1N MmN

et
(z —w)?

One can read off the algebra of the Lorentz charges from the single pole in the OPE
[Mmlmz’anfm] _ _(nn1[m2Mm1]n2 _ nnz[m2Mm1]n1)' (3.82)

—4

In case the worldsheet fields are fermionic, the OPE remains the same:
1
Pa()6° (w) ~ 5 —— (3.83)

z—w’

The Lorentz generator for the fermionic variables has a minus sign:
M™" = —py™ng. (3.84)

This sign is necessary to reproduce the commutation relation (3.82). As a conse-
quence the sign in the double pole in the OPE changes from -4 to +4. This coefficient
is called the level. One would like the Lorentz current of the combined p, # and A\, w
sector to have level one, since this is the level of the 9 sector in the RNS formalism.
This implies the N(,,) generators must have level —3. The next two subsections
contain an explanation how such currents can be obtained from the pure spinor
action after gauge fixing.

3.3.2 Gauge fixing w, invariance

As mentioned before \w part of the pure spinor action 2.1 has a gauge invariance.
To deal with this one can start by relaxing the pure spinor condition on \* and
introducing a Lagrange multiplier /,,, to impose it in the path integral. The (w, \)
part of the action (2.1) thus now reads

Stwn) = / 2z (WaOA™ + L (MY N)) - (3.85)

where A\® is now an unconstrained bosonic Weyl spinor. This action has a gauge

invariance?,

W = A (YN as 5% = %5/&“. (3.86)

3There is also a gauge invariance associated with l,, but since the constraint from which this
is derived is completely solved by the [% constraint, the [, gauge invariance will not be present
anymore after gauge fixing the (¢ invariance.
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This gauge transformation has rank five, so one can gauge fix it by requiring
w* = 0. (3.87)

Following the steps of BRST quantisation (and expressing the gamma matrices in
the U(5) basis) one finds that corresponding ghost action is given by

/ @2 (Cy(1a) 5N C* 4 uimy) = / Pz (CATC" futn,),  (3.88)

where Cy,C%, 7, are the corresponding antighost, ghost and auxiliary fields. In-
tegrating them out sets w® = 0 and inserts the factor (A*)® in the path integral
measure. Furthermore, integrating out [ leads to the delta function §(2A, AT +
ieabcde/\bc)\de) which can be used to integrate out A, (so we are left with the eleven
independent components A*, A?’) and also results in the insertion (A*)~° in the path
integral measure, which cancels the factor (A™)% from the ghosts. Finally integrat-
ing out [, sets Ay, A to zero and hence removes [* from the action. Therefore [ is
pure gauge and since it does not appear in the action anymore, BRST quantisation
amounts to removing the measure factor associated to )\, from the path integral
measure. The end result is that the action (3.85) becomes the free action

/ d?z2(wyONT + %wabé/\ab), (3.89)

with all factors coming from eliminating the 5 and gauge fixing the gauge invariance
canceling out.

The gauge fixed action (3.89) is no longer invariant under Qg = § dzA*d,, but
it is invariant under Qg defined by

R do | o
Qswa = da — (7 Na- (3.90)

On all other fields Qg acts the same as Qg. Note the second term in (3.90) is a
gauge transformation with A, = :\i—i,A“ = 0. This implies that when acting on
gauge invariant quantities Qg = Q5. Moreover Qsw, = 0. So that for instance

A 1
QsN™"|w,=0 = QsN™" = SX™"d. (3.91)

QS also satisfies
Q% =0, (3.92)

on all fields including w, unlike Qg.
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3.3.3 Currents containing pure spinors

As argued before one would like to find Lorentz currents constructed from the fields
in the gauge fixed action (3.89) that (by definition) satisfy the Lorentz algebra and
have level minus three. Let us start by looking what one gets by just imposing the
gauge condition (3.87) on the Lorentz generators of (3.75):

1 1 wab)\kl/\ab 1 wab)\ka)\lb
Ny = ——w g — - — 3.93
& 2 T 2 AF (8.93)
1
Nk = §w’”A+, (3.94)
5 11
_ Y =+ _ - _—,.ab
N = ik A 13Y Aabs (3.95)
1,1
(Ns)ty = 5(—g5lkwab/\ab + w™ Aar). (3.96)
The number current in the gauge w, = 0 becomes
1
J=w" At + gw“b)\ab. (3.97)

One might expect that imposing w, = 0 in all (gauge invariant) operators de-
pending on w, does not break Lorentz covariance. For the OPE’s of N and J with
A Lorentz covariance is indeed not lost, as will be shown below. The NN OPE is
not Lorentz covariant anymore after imposing the gauge condition. The single pole
is the same as in (3.81), the level of the OPE, however, depends on which SU(5)
components one chooses. This spoils Lorentz invariance, but it can be cured as
demonstrated below.

The OPE of J and N™" with \ are given by

1 1 1

o w)\o‘(w), N ()M (w) ~ P Eﬂym”aﬁ)\ﬁ(w). (3.98)

J(2)AY(w) ~

In order to check these OPE’s we set w, = 0 and use the free field OPE’s

1

Z—w

W N (W) ~ w2 Aeal) ~ 51 (3.99)

Let us start with J:

J(2)AT (w) = w™ AT (2)A T (w) ~ AT (w) (3.100)

and similarly for A,p. A% is more involved. By using

1 1 -1

T (w) ~ W O (3.101)

w (z)
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one can reproduce the Lorentz invariant answer:

6abcde)\bc/\de 1 1
T (W)~ — ¥
8\ z—w 8\

J(2)A*(w) = (w™ AT + %wab)\ab)(z) €00e Ny A e ().

(3.102)
Let us continue with the trace of N™". In terms of unconstrained spinors it is given

by
5., 11 w3 a4
N = 2/\ w 22wab/\ + 2w Aa- (3.103)
From here one can see that the expected charge of A* is % The OPE of N with AT

or A\gp trivially reproduces the Lorentz invariant result, the OPE of N with A\ is

a 5 _ 11 a Eadee)\bC)\de
N(Z)A (’U}) = (—5)\"'111 — §§wabA b)( )T(U}) ~ (3104)
1 (% — % — %)EabchA )\de (w)
Z—w 8T '

All other components of the NA OPE can be checked along the same lines.

The N™"NP? OPE is a different story. The single pole always leads to the
correct Lorentz algebra, but the coefficient of the double pole depends on which
SU(5) components we choose to take. For instance

N(z)N(w) ~ —%ﬁ = —Zﬁﬁﬁlkﬁ (3.105)
N'2(2)Nia(w) ~ r1 + ! 1(N11(w) + N3 (w)) = (3.106)

4(z—w?  z—w?2

- (2 —1w)2 (=) + ﬁ%u\ﬂl (w) + N%(w)).

The first OPE would imply a Lorentz current level of —% and the second one —1.
It will be shown below that it is possible to deform the currents in equations (3.93)-
(3.96) by conserved quantities such that the level of the N™"NP? OPE is minus
three [42]. There is not only a freedom to add conserved quantities to N™", also
J and the stress energy tensor T),, are subject to this freedom. However now that
the Lorentz current is completely fixed by the level -3 constraint, the form of the
deformation of the number current J is unique determined by demanding that the
OPE of J and N does not contain any poles (2.7). Similarly by demanding that
the Lorentz currents are primary field the (pure spinor part of) the stress energy
tensor is completely determined. If one now computes the JT' OPE, a Jy,, number
anomaly value of minus eight follows. This cannot be adjusted.
The deformations are most easily given after bosonization of A\ and w, which is
given by
M =X wm e X9y, ATwT =06, (3.107)
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where ¢, x are chiral bosons satisfying

9(2)¢(0) ~ —Inz,  x(2)x(0) ~ Inz. (3.108)
Now define
1 1
S=X— 0, 2t=¢+x<—>¢>:§(2t—s), x=§(s+2t) (3.109)
The OPE’s for these new variables are
s(2)s(0) ~ regular, ¢(2)t(0) ~ regular ¢(2)s(0) ~ Inz. (3.110)

The original worldsheet fields A and w can be expressed in terms of s, ¢ as

A es %e‘s(as +20t), Mtw™ = =(20t — 0s). (3.111)

N | =

The Lorentz currents of (3.93)-(3.96) in bosonised form are given by*

1
N = —g(Zat—Qs)—gwab/\ab, (3.113)
N = %eswab, (3.114)
a 1 ac 1 a, cd
(Ns)% = 5(10 )\bc_g5bw Acd)s (3.115)
1,1 1 1
Nap = e *[=5(508Xab + OAap) — chdAabAcd + §w6d)\ac)\bd]. (3.116)

The deformations one should add to (3.93)-(3.96) to make the NN OPE Lorentz
invariant are given by [42]:

AN = —gﬁs, (3.117)
AN = 0, (3.118)
A(Ns)%, = 0, (3.119)
AN,, = e_s(—gas)\ab—F@)\ab)23(6_5)\@)—%(36_5)/\@. (3.120)

Note that the field equations imply the O operator annihilates these deformations.
Hence the deformed charges are still conserved. Furthermore the deformations do
not modify the NA OPE, which is manifest in the s, variables.

4In [42] the Lorentz currents, denoted (NB), here, have a different normalisation. The relation
with ours is given by
V5

1 1 1
N = —7NB7 Neb = 5(NB)ab, (Ns)%, = §(Nfg3)“b, Ngp = 5(NB)M,. (3.112)

79



Chapter 3 - Basic techniques

3.4 Lorentz invariant measures

The Lorentz invariant measures for both the weight zero field, A“, and the weight
one field, N™", are discussed below. Both these measures were first introduced in
[22] and the A zero mode measure is also discussed in [43].

3.4.1 Measure for the zero modes of A\

From the Jy, number anomaly in the JT OPE (2.7) one can deduce a tree level
correlator can only be nonzero if the Jy,, charge of the insertions is -8 (cf. section
1.3.1). Since there are no w (or N™") zero modes at tree level, the measure for the
A zero modes must have ghost number +8. In addition the measure must be Lorentz
invariant. This results in

= X5 PA AT :
AN NN = X507, AN’ d\® 3.121

for some invariant tensor X. The number of independent invariant (3,11) tensors
with spinor indices that are symmetric in the upper indices and antisymmetric in
lower ones is one [40]. In other words there is only one possibility for X which is
(€T'), cf. (2.26). Because the LHS of (3.121) is zero when contracted with +/j, the
RHS should vanish too. It does because there are no scalars in 10016 ® Asym''16’.
Thus

I (eT)37 5 =0. (3.122)

In equation (3.121) one is free to choose «o3y. Different choices lead to different
guises of the measure. In [21] it was shown all these are related to each other by a
coordinate transformation in pure spinor space. A choice for Gy that results in a
convenient form of the measure is afy = + + +. This gives [d)\] as

AT AdNia Ao Addas
(AT)? '

[d\] = (3.123)

The charge conservation property was used to conclude that (eT);rl’_L_J_rB11 is only
nonzero if 1, -, f11 = +,b1b2, b3bs, -+, b1gbag. In the form (3.123) one explicitly
sees factors of AT in the denominator. These are the reason that the Qg variation
of the PCO for A, which is of the form Ad()\), does not vanish inside correlators as
discussed in chapter 5.

3.4.2 Measure for the zero modes of N™"

The Jy, number anomaly and Lorentz invariance imply the measure for the zero
modes of N must be of the form

[AN]A® - A% = X 1o AN™™ Ao A ANTOM0 A ], (3.124)

minyg--Mmionio
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There exists only one independent invariant tensor of this kind (cf. 3.2.3) and since
(2.47) is an example:

[AN]A® - A5 = Rou-as AN™™ A A AN A ] (3.125)

miny---Mmionio

A more explicit form of [dN] is obtained by choosing all o’s equal to 4. The relevant
gamma matrix components are

szfug; = €qy--as, ’yil_i'_"% = 179, (3.126)
all other components of 4,5 ¥ . vanish. Using these one sees [dN] can be written
out as

8 b b
[dN]/\+ = 61111711121131146a5b5b2a6a76a8b8b3b6a96a10b10b4b7b9dNa1 A NANTOPO AT =

AN2 A - AN A dT = AT d0w P dwy = [dN] = (ZT)Pdw, dOw®,  (3.127)

where the gauge condition w, = 0 is imposed in the first equality of the second line.

3.5 Gamma matrix traceless projectors

In general the space of symmetric tensors forms an invariant subspace in tensor
spaces that are direct products of a certain representation. For example the tensor
space ®*16 is given by the tensors 7% **. The subspace of symmetric tensors is
given by T(@1@x)  Since invariant subspaces are linear subspaces one can define
a projection onto this subspace. In the case the space of symmetric tensors the
projector is given by

Pk = gleh ok, (3.128)

Note P satisfies P? = 0 and P is surjective. In the pure spinor formalism one is often
interested in projections on the subspace of symmetric and gamma matrix traceless
tensors, since the bilinear A*\? has these properties. A tensor 7®1"®* is gamma
matrix traceless when it satisfies

Tererym =0 1<i,j<k (3.129)

for all choices of 7 and j. Note this condition also defines a linear subspace. Also
note that the above condition is preserved by Lorentz transformations. This is
a consequence of the fact that 77} is an invariant tensor. Hence gamma matrix
traceless tensor form an invariant linear subspace in the space of all tensors T **.
The explicit form of the projectors onto gamma matrix traceless tensors for arbitrary
k will be specified in this section. The projection on symmetric tensors is already
given in (3.128), therefore one only needs the projection of symmetric tensors onto
gamma matrix traceless tensors.
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Let us start with the case of three indices. Note that the required projector is an
invariant tensor with three symmetrised upper spinor indices and three symmetrised
lower spinor indices. The SO(10) invariant tensors of the form T((o(j‘,%',y,)y,) form a vector
space which is two dimensional as can be computed by counting the number of scalars
in Sym®16 ® Sym®16’ [40]. A basis of this vector space is given by

(aeB 7)) _(aB.m v)
{0505,07 1m0 } (3.130)
Thus an arbitrary invariant tensor is given by
c1058,07) + oy 5,07 (3.131)

One can determine the coefficients up to an overall normalisation by imposing van-
ishing of the gamma trace:

0 = 19500 09,07 + oyt 01 (3.132)

—_ (Cl + 4002)52/&/753,7/),

where the following identity was used (cf. (3.56))
Fy?”byoc,-y&a,'yg/,y/) = 26(’70/72/},7/). (3133)

One could have anticipated ending up with one equation for ¢1, co because 10® 16 ®
Sym®16’ contains one scalar. In conclusion the projector is given by
afy _ slags s _ sass o) L ap 7)
PO/B/’Y, - 60/ 56,57/ = 60/ 65/67/ - Eﬁy,ﬂ? 7&/6/67,) (3134)
In summary the number of scalars in Sym>16 ® Sym>16’ determined the number of

degrees of freedom (c;) and the number of scalars in 10 ® 16 ® Sym®16’ determined
the number of relations between them.

3.5.1 Arbitrary rank

The tensor in equation (3.134) is unique because the number of scalars in Gam>16 ®
(16")3 is one (cf. (3.58) for the meaning of Gam). In fact there is one scalar in
Gam"16®(16’)" for any n. In order to write an explicit expression for (52(10‘1 e 5;‘:))
for any n one looks for a basis of rank (n,n) invariant tensors that are symmetric in
both their upper and lower indices. For even n the number of scalars in Sym”16 ®
Sym"16’ is 2+ 1. For odd n the number of scalars in Sym”16 @ Sym™16’ is 2% +1.
Since odd n is of more relevance to this work the basis for odd n is explicitly given.
The "T_l + 1 basis elements are given by

_ (Ot Otn) _ a1 m « Otn)
Ty =65 05", T = Al RO P (3.135)
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up to

Tt = V008, VoV Lo, 050 (3.136)

where k = "T_l In order to see these tensors are independent compute the following
components:

TE I T (3.137)
One can conclude
5é(la1 e 62:5)) = ClTl + v + Cka, (3138)

for some coefficients ¢;, which can be explicitly computed as was done for the n = 3
case. Note the above is for odd n. Even n works very much in the same way, the
only difference is the last ¢ in all the 77s. If one removes this, the 7”s form a basis
for the even case.

3.6 Chain of operators for b ghost

This section is only for reference purposes. It does not contain any results or deriva-
tions. The following chain of operators plays an important role in the b ghost:

QsG* = AT, (3.139)
QSHOLL? — /\OfGﬁ3 + g((aﬁ))’ (3140)
QK% = N HPY 4 hg(aﬁ))v + hg((ﬁv))’ (3.141)
QgLoP = NoKPI 4 k§(0¢5))’y5 + kg((ﬂv))é + kgfﬂ((’ﬂs))’ (3.142)
0 = /\aLﬁ'yép + l;(aﬂ))'ﬂsﬁ 4 l;‘((ﬂ'Y))‘;P + lg‘ﬁ(('ﬂs))l’ 4 lZ‘ﬂ’Y(@P))' (3143)

The last equation implies there exists an S®*7 such that
LoBYS — \aghve Sg(aﬁ))vé T Sg((ﬁv))t; + Sgﬁ((%)). (3.144)
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The text below is essentially a summary of section 3 of [44]. The primary fields of
weight two that solve the above equations are given by

G = %Hm(ymd)a — len(W"ae)a — iJaea + 2829, (3.145)

4

1 1
HoB  — _167;;5 (N, — S JIT™ 4 20T1™) (3.146)
1 1
afy mnp Nman
+og Tmnp(7d""Pd + 6 );

« 1 «a mn 1 «a m n

1 3
= By a pnrmn Qlam N T m «a
Hggm’ |(md)*N™" + 5 (v"d)* T — 6(y"™0d)
1
Y C
192'7mnp
1

LI = e () P () INTP Ny (3.148)

(’ymd)aan,

NB1: Only the antisymmetric part of L*#7 is given because in [44] the full L*%7°
is not given in terms of gauge invariant objects. An explicit expression is known
within the Y formalism [44, 45, 46] and it is also proved all ¥ dependence from
L*57% disappears when contracted with Z,g.s. In [22] L7 is given as

LOPT0 = ¢y @00 NN P45 0010 TN 460 T T4 e7 80P N +-c5 P70, (3.149)

with unknown coefficients.
NB2: the coefficients of the total derivative terms depend on the normal ordering
prescription and the ones above are only consistent with the prescription of [44].
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BRST quantisation of the
pure spinor superstring

As mentioned throughout chapter 2 there are several unexplained aspects of the pure
spinor formalism. These include

e the origin of the picture changing operators,

e the conformal weight constraint on the vertex operators,

e the b ghost equation (2.34),

e the relation between integrated and unintegrated vertex operators (2.17).

In a theory derived from first principles, for example the bosonic string, the above
aspects all follow from one starting point, namely

Z = /DgDX V;Ge—SP. (4.1)
In addition to providing an explanation for the above aspects a first principles deriva-
tion of the pure spinor formalism could also help in the search of a simplified version.
Furthermore in chapter 2 it was advertised that one can replace all fields by their
zero modes in a correlator that only contains weight zero fields. This will also be
proved in this chapter.

In this chapter a first principles derivation is provided. There have been many
works in the past involving modifications and/or extensions of the pure spinor for-
malism with the same aim, see for example [47, 48, 49, 50, 23, 51, 52, 53]. The
approach of this chapter is different and is guided by topological string construc-
tions. Instead of searching for a model with a local symmetry which after gauge
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fixing would lead to the pure spinor formalism with Qg and the pure spinors emerg-
ing as a BRST operator and ghost fields, the pure spinors A will be considered as
“matter” fields as well and the worldsheet theory as a sigma model with a nilpotent
symmetry Qg and target space the ten-dimensional superspace times the pure spinor
space. To construct a string theory this theory will be coupled to two-dimensional
gravity in a way that preserves the fermionic symmetry Qg and then BRST quantise
the resulting theory in a conventional fashion.

4.1 Coupling to 2d gravity

To construct a string theory the pure spinor worldsheet action will be coupled to
two-dimensional gravity in a way that preserves the Qg symmetry. Subsequently
this system will be quantised using BRST methods. Since this model has zero central
charge, one should couple it to topological gravity'. This approach is thus similar to
the construction of topological string theories, see [54] for a review. In that context
one starts from a supersymmetric sigma model which upon topological twisting yields
a topological sigma model. In this procedure one of the supersymmetry charges is
identified with the BRST operator of the sigma model. The corresponding operator
in the case at hand is the nilpotent operator s. Note that the pure spinor sigma
model has been obtained by twisting an N = 2 model in [23].

The first step in this procedure is thus to relax the conformal gauge in the action
(2.1) (or (2.56) for the non-minimal version). The part that involves the z™ is
standard?,

Sy = / d%(i\/ggabaaxmabxm) (4.2)

The rest of the action (2.1) (or (2.56) for the non-minimal version) is a sum of first
order actions involving a field of dimension one and a field of dimension zero (with
an overall sign that depends on whether the fields are bosonic or fermionic). The
covariantisation of all these terms is the same, so it suffices to discuss one of them,
say

S0y = /dQZpa(%‘a . (4.3)

The fields of dimension one are vectors on the worldsheet, so p, is more accurately
labeled as pao. However, only the z-component participates in (4.3), as one can
conclude by looking at the conformal weight of the various objects in (4.3). Similarly,
only the Z component of the right-moving momentum p,,., participates in the action.

1By definition topological gravity does not change the central charge of the conformal field
theory obtained after gauge fixing

2The worldsheet has a Euclidean signature and the conventions are the same as in chapter 1,
i.e. z=o0! +i0?, the flat metric is g,z = 1/2 etc.
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To account for this, one can introduce projection operators
1
+)b b, 7b
P — 5(% Fid"), (4.4)
where J,? is the complex structure of the worldsheet, i.e. it satisfies
JL e = =65, V., =0. (4.5)

In terms of the worldsheet volume form and the worldsheet metric, it is given by
Jb = —eacgd’, with €, = \/g€ap and €p1 = 1, and holomorphic and anti-holomorphic
functions on the worldsheet are defined by J,%0,f = i0,f and Jab('?bf = —z’@af,
respectively. Using (4.5) one shows that

pEbpEe — phe  pEbpEe _ g, (4.6)
Notice also that
a +)c C a
g PG = gt P (4.7)
One can obtain vectors with only z-component by multiplying by P(E)b and vectors

with only zZ-component by multiplying by P

Pa =Py, pa= P . (4.8)
In other words, the only nonzero component of P(J{l)b is P(J;)Z
nonzero component of P(;)b

= 1 and the only
is P(;)z = 1. More generally, these projection operators
can be used to covariantise any tensor given in conformal gauge. The action (4.3)
can then be covariantised as

S(P-,G) = /d20\/§gab]§aaab9a~ (49)
In summary the action of the minimal model coupled to gravity is given by
1
S, = / d?o\/99"" (Zaaa:mabxm + Paa 00 — wmabx“) (4.10)

with an obvious addition for the case of the non-minimal model. The stress energy
tensor for the model can be obtained by varying w.r.t. the worldsheet metric,

2 68, 1 o1 . N
Ty = o5 = 5 GatmOha™ = S0 Desndic™) (4.11)
@ 1 cd a (Aw)
+ (Plalal 0" — 5 9ab9"'Peadat™) + Ty,

2

The contribution of the pure spinor part (and the non-minimal variables) is the
same as the one for the (p, §) part with p — w and § — X\ and an overall minus sign
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(with similar replacements for the non-minimal fields). This stress energy tensor is
(manifestly) traceless and covariantly conserved, reflecting the fact that the action
is invariant under diffeomorphisms and Weyl transforms,

5gab - Le(o’)gab + 2¢(U)gab (412)
00 = —€%9,®
6Py, = —€“0,P + 04" Py

where €%(0), (o) are diffeomorphism and Weyl gauge parameters, L. is the Lie
derivative (cf. (1.65)), ® = {a™, 0%, A%, ...} collectively denotes all worldsheet scalars
and P, = {Paa, Waas, - - -} collectively denotes all worldsheet vectors.

The stress energy tensor (4.11) can be rewritten as

Ty, = PHepHITE | p(ey (P<—b>dad9a) T (4.13)

where the ellipsis indicate the contribution from the pure spinor and non-minimal
variables, which will be suppressed from now on since they are similar to the (p, 6)
contribution. The anti-holomorphic contribution of z™ is also suppressed. The
first term in (4.13) is the covariantisation of the stress energy tensor appearing in
Berkovits’ work,

1
T£ = §8axm8bxm + PaaOpl* + - - (4.14)

while the second term is proportional to the 0% field equation. This additional term
can be removed by modifying the transformation rule of psq in (4.12).

4.1.1 Topological gravity and ()5 invariance

If one was to quantise the model just described one would find that it is anomalous,
since the diffeomorphism ghosts would contribute ¢ = —26 and the original sigma
model had ¢ = 0. This problem is avoided by extending the g symmetry to act
on the worldsheet metric, so that the 2d gravity is topological. With this aim, the
following transformation rule is introduced,

5Sgab - P(;)CP(_b)ddjcd = 1/A)aba 651zjcd =0. (415)

where 1, is a new field that has only one holomorphic component, ¥zz(z). (To
extend this discussion to the anti-holomorphic sector one would also need to turn
on ¥.,(z), i.e. the full transformation is dggap = P(;)CP(_b)dUch + PH,;)CP(JZ)ddNch).

Since the metric now transforms, the action is not invariant anymore and its Qg
variation yields,

1 1 -
5y =~ [ ova T5sgu =~ [ @ovig g Thva,  (410)
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where again only the holomorphic sector is discussed, and the second equality makes
use of the fact that due to the projector operators the second term in (4.13) does
not contribute. To construct an invariant action one now has to add a new term to
the action,

1 R
S, —»S=58,+ 5 / d?0\/99%4" G apthea (4.17)
The new action is invariant under the condition there exists a G, transforming as
05Gap = Tﬁ). (4.18)

Note that because @ab has only one fermionic component, the variation of the explicit
worldsheet metrics in the new term does not contribute. Including both sectors one
finds that for the discussion to go through G,; must be traceless. In conformal gauge
and complex coordinates the (holomorphic part of) equation (4.18) becomes

TP(2) = {Qs, G(2)}. (4.19)

The G currents generate a fermionic symmetry of the action in conformal gauge.
In the language of [54] equation (4.19) defines the pure spinor action in conformal
gauge to be a topological conformal theory.

Equation (4.18) for G is the equation for a composite “b-field”, cf. (2.34).
Such a composite field has been constructed in conformal gauge in the non-minimal
formalism. In the minimal case it was more difficult to solve equation (4.18). A
detailed account of its solution will be given in section 4.4. Once the conformal
gauge solution to (4.18) has been found, it can be covariantised to obtain a Qg,
diffeomorphism and Weyl invariant action.

4.2 Adding vertex operators

The vertex operators should be invariant under the symmetries of the theory, in this
case: diffeomorphisms, Weyl transformations, Qg transformations and the trans-
formations generated by Gu,. In order to preserve the Qg symmetry the vertex
operators depend?, in addition to the worldsheet coordinate o, on its Qg partner

7
a
7

dsoi = ' dsGi' =0, (4.20)

K2

or in complex coordinates,

6szi =G, 65z =, 655G =0, 8s¢=0. (4.21)

31t is not possible to choose dsof = 0, since the (’s are needed to fix the residual gauge invariance
of the symmetry generated by Ggp.
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Since (; is a fermionic variable the i*" vertex operator V; has the expansion (in
complex basis)

Vilel(zi, G) = V¥ lel(z) + GVl (za), (4.22)

where only the holomorphic part of the vertex operator is given. The symmetry
generated by Qg poses further constraints on the vertex operators:

ds (Vilgel(zi, G)) = 0. (4.23)

The Qg transformation can act either on worldsheet fields ¢ or on the positions z;
and we obtain

6sViliel (24 Gi) = 05V ) (i) + G 0V (20) = 65V, ) (20)) (4.24)

which implies
559 =0, 55V =V, (4.25)

where now Qg acts only on the fields. The equality is exactly the relation between
integrated and unintegrated vertex operators in the pure spinor formalism postulated
in (2.17). Moreover from (4.25) one finds that the integrated vertex operator

U; = / dzvV (4.26)

is Qg invariant.
The second transformation in (4.25) can be rewritten in a form that is useful to
determine how G acts on the superfield components

55V = 6s{G, V). (4.27)

The partial derivative in (4.25) is generated by T and this can be replaced by a
G transformation followed by a Qg transformation. The G transformations of the
components are given by

(G v =v e vi=o. (4.28)

Hence in order to construct a vertex operator invariant under the G symmetry one
has to integrate over (:

/dCi‘/i[<P](zia Gi)- (4.29)

Finally invariance under diffeomorphisms is achieved in the same way as in the
bosonic string (cf. (1.78)), namely by integrating over the worldsheet coordinate z;.
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4.3 BRST quantisation

The action S in equation (4.17) constructed in the previous section is invariant under
diffeomorphisms and local Weyl transformations. This theory can be quantised
using the BRST methods developed in chapter 1. Recall that BRST quantisation
amounts to adding a term Qv WV to the action, where ¥ is the gauge fixing fermion
and Qv is the BRST operator (cf. (1.51)). However in the case at hand there is a
second nilpotent fermionic symmetry, generated by Qg. In order to preserve both
symmetries the gauge fixing term is of the following type

S — S+ dyigV. (4.30)

In fact the order of the symmetries does not matter, since as shown in [54] Qy and
Qs anticommute:

{Qv,Qs} =0. (4.31)

A proper gauge fixing condition for the group of diffeomorphism and Weyl trans-
formation has been discussed at length in section 1.2.1 and the Qg variation in
(4.30) ensures that the G symmetry is also gauge fixed. The gauge fixing fermion
has two terms in general, one that involves the metric (L1) and one that involves
vertex operators positions (Ls2). The latter is only necessary on the sphere and on
the torus, since only in those cases L; leaves residual gauge invariance, which can
be fixed by imposing a condition on the vertex operator positions. The two gauge
fixing terms are given by

K/2
Ly = 6v85(8*[gab — Jan(7)]), L2 = 6vds Zﬂi(ﬁ —d5) ] (4.32)
j=1
where k is the number of conformal killing vectors, § is the reference metric and
¢ are some chosen worldsheet positions. The (’s are bosonic fields which can be
concluded from the fact that the L’s must be bosonic. Furthermore B“b is a tensor
density such that L; is coordinate invariant. The object ﬂf; does not depend on the
worldsheet coordinates, it is similar to the B:’s from gauge fixing the residual gauge
invariance in the bosonic string (cf.(1.80)), the only difference is the statistics.
The next step is performing the Qg and Qy transformations in the gauge fixing
terms (4.32). To this end it is useful to have an overview of the transformations.
The diffeomorphism and Weyl ghosts, ¢* and C,, have Qg partners,

Ssc =+, 65C = Y s (4.33)

which are bosonic BRST ghosts for the fermionic symmetry generated by G. Note
that due to the nilpotency of both charges and the fact that they anticommute, the
fields will appear in quartets. These quartets are given in figure 4.1.
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ko — £k Bab - . _pab o Ca(O'i)
S l S sl s s l S
~k i ék Bab i Bab Ca i ,Ya (0'1)
. \% . \%
6(]1 _pfl Gab ‘chab + 2ngab
sl l S sl l S
bz i» _Bg wab i» chﬁab - L’ygab R

727wgab + 2waab

Figure 4.1: Qv and Qs transformations on moduli, auziliary/b ghost field, worldsheet
coordinates, constant auxiliary/b ghost fields and the metric.

Using the transformations in figure 4.1 one can process the gauge fixing terms in
(4.32). Let us start with Ly:

Ly = 6y (6" [gab — Jab(7)] + B [hat — 7* Okgan(7)] (4.34)
= Bab[gab - gab(T)] - Bab[Qngab + £cgab - gkakgab(’r)] - pab[d}ab - %kakgab(’r)]
_'_Bab [‘Cci)ab + 2Ow"/;ab - L’ygab - 2'ngab + ékakgab(T) - 7A-kglakalgab(T)] 5
where O Gap(7) = 0Gap(7)/07" is a derivative of the reference metric w.r.t. the moduli
and 1, is defined in (4.15). This gauge fixing action contains the usual gauge fixing

terms for the metric and the ghost actions for b, ¢ and B, ~. The gauge fixing term
for the residual gauge invariance can also be processed:

/2

Ly = by Zbﬂ )+ 534‘1 (4.35)

/2

—ZBJ ) = bic®(o3) = PACE + Bin(o3).

At this point all gauge symmetries have been treated, except the ones associated
with zero modes of the original fields X, p,0,w, . These will be discussed in the
next section.

To summarise, a general scattering amplitude is given by

N
Z = /dugduH Vilel(os,G) exp (—S — Ly — Ly) | (4.36)
i=1
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where S, L1 and Lo are given in (4.17),(4.34) and (4.35), du, is the measure factor
associated with X, p, 0, w, A (and non-minimal variables) that will be discussed in
the next section and du is the measure that follows from the analysis of this section,
i.e.
K/2
H BoiN/g(03)d>¢ H dr*dekartagt I db! dpl d3idBI

k=1 j=1

X Dthay Dgar DDy DC,, Dy, Dp™* DS DB DH® (4.37)

The first line contains the integration over all constant “fields” while the fields in
the second line are functionally integrated over. The integration over most of these
variables can be done exactly.

As in previous sections only the holomorphic sector is discussed. Firstly, inte-
grating over B and g4 sets the worldsheet metric equal to the reference metric g
in all expressions. Integrating over Bj pZ;, leads to delta functions §(z; — £;)d(¢;)

which can be used to integrate over z;, (5. So k/2 insertions will involve V( )( J)

while the remaining (N — r/2) vertex operators will involve Vi( )(zl) and Wlll be
integrated. Furthermore integrating out &7, 3’ leads to the insertion c(£5)0(v(%5)).

Note that the V(O) and V( ) do not depend on the ghost fields?, so the path
integral factorises 1nto a part that only depends on the ghosts and the rest. One
might anticipate that the ghost contributions will cancel each other since ¢, C,, and
the v*, v, are related by the Qg symmetry. So to simplify the presentation the
ghosts are set to zero. The complete computation including the ghosts is given in
section 4.5. The scattering amplitudes thus take the form

K/2

Vi V) = /du,, So dfie™ SHV Oz, H /dsz( ) (2), (4.38)

i=k/2+1

where

dﬂe_s H dr* d7F Dip oy, Dp® exp (/ d*o \/_ Gy —l—pabW)ab — O Gan (T )]))

k=1
(4.39)
Integrating out p®® gives a delta function that sets ¥a; = 7¥0kgap(7). Finally inte-
grating out 7* leads to (69 — 6) (of which (3g — 3) are holomorphic) insertions of
(;Vab7

K/2
Vi V) = / duge-sv];[drk(a,akg)nv;“(zj) I / dz ViV (z) (4.40)
7=1 i=Kr/2+

4The ghost fields are consistently denoted as ¢/ and lowercase b/3. In this case there are two
b/ ghosts and four ¢/~ ghosts.
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where (G, 0r9) = [y, d*0/GG Ok Gab.

4.3.1 Summary

Let us summarise the results so far. The starting point was a theory with a fermionic
nilpotent symmetry Qg and zero central charge. This theory was coupled to topolog-
ical gravity in a way that preserves the Qg symmetry. Quantising this system using
BRST methods leads to the formula (4.40) for the scattering amplitudes. In this

formula the position of x/2 of the vertex operators Vi(o) is fixed while the remain-

ing ones, Vi(l)

sector),

, are integrated. These vertex operators satisfy (in the holomorphic

55V =0, sV =ov 0. (4.41)

Furthermore, one needs (6g — 6) insertions ((3g — 3) holomorphic ones) of the field
Ggp defined by
05Gap = Tup (4.42)

where T}y, is the stress energy tensor of the worldsheet theory. This composite field
is the analogue of the b ghost in the scattering prescription of bosonic string theory.
One may have anticipated these results based on the scattering amplitude prescrip-
tion for the bosonic string and studies of topological strings. Indeed this is precisely
the prescription used in the literature. The novelty here is its derivation from a first
principles BRST quantisation. Notice that these results hold irrespectively of what
the original sigma model is.

4.4 Pure spinor measure

Let us now return to the pure spinor sigma model. Two aspects deserve further
attention. The first is finding an explicit form of the current G,,. The second is
determining whether the sigma model path integral measure du, contains gauge
directions, i.e. whether evaluating the functional integral would lead to divergences.
Let us start with the second one.

It turns out that there are gauge directions in du, and they are given by the zero
modes of the sigma model (or matter) fields. The zero modes are gauge directions
because by definition a zero mode is annihilated by the kinetic operator in the action
and therefore zero modes do not appear in the action. For fermionic zero modes
this does not present a problem; the vertex operators can provide the appropriate
number of fermionic zero modes so that the final expressions are non-vanishing.
Non-compact bosonic zero modes however are a problem, even in the presence of
vertex operators. The action S, does not contain a convergence factor because of the
zero mode gauge invariance. This can be remedied by gauge fixing the bosonic zero
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mode gauge invariances, as is discussed in this section. Due to the Qg invariance,
part of the invariance related to the fermionic zero modes is also fixed.

On a genus g surface, a worldsheet scalar ® has one zero mode ®y and a world-
sheet vector P has g zero modes, Py(z) = Y.9_, Plw;(z), where wy(z) are the g
holomorphic Abelian differentials of first kind® satisfying [ A dzwy = 075 and the
contour integral is around the g non-trivial A-cycles of a genus g surface. Note
that ®g and P! are constants. In the minimal pure spinor formalism there are ten
zero modes z{)', sixteen zero modes 6 and eleven zero modes Af from the world-
sheet scalars and 16g zero modes d%,I = 1,...g, and 11g zero modes w’, from the
worldsheet vectors. Of these z', \$ and w! are bosonic. The treatment of the
zero modes of x™ is standard and will not be discussed here. Furthermore w,,
which transforms under the gauge transformation (2.4), will be traded for the gauge
invariant variables,

1
Noppn, = 5%(%”)“@5, J = wa A\, (4.43)

where N, is the (contribution of the pure spinors to the) Lorentz current and
J is the ghost generator. As discussed in [27], the pure spinor condition implies
enough relations between N,,,, and J so that one can express the eleven independent
components of w, in terms of J and ten component of N,,,. In what follows the
11g zero modes of Ny, J will be denoted by N7 J7.

The zero mode gauge invariances cause divergences in the functional integral.
Hence one can apply BRST quantisation to obtain a finite result. The BRST trans-
formations corresponding to the zero mode gauge invariance are given by

SyAG =c¢*,  ovlg =9 bvdl =1k dvwl =]

a?

(4.44)

where ¢, ¢!, are constant fermionic ghosts and v, . are constant bosonic ghosts.

The transformations for Ay, wl require some explanation, since \* satisfy a quadratic
constraint and w, has a gauge invariance. These zero modes are most easily de-
scribed in U(5) variables since the system in terms of AT, A% w, wgy is uncon-
strained and has no gauge invariance (see section 3.3.2). The BRST transformation
is then given by shifting these variables by their zero modes. Reversing the steps
in section 3.3.2 one may express ¢® in terms of the eleven zero modes of AT, A%
and cé in terms of the 11g zero modes of w,,wq,. The arbitrariness due to the
gauge invariance (2.4) is then eliminated by passing to the gauge invariant variables
NL L.

To maintain Qg invariance one must further require

dsy™ =7, sscl =L, (4.45)

5In the language of section 4.6, which contains a detailed account of what a zero mode really is,
this Abelian differential is a realisation of Goy.
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To gauge fix the bosonic invariances one needs constant fermionic and bosonic ghost
fields, ba, ba each containing eleven independent components, 5™, ™! each con-
taining 10g independent components and bl b1, each containing g components and
corresponding auxiliary fields. The Qv and Qg transformations of these fields are
given in figure 4.2.

\% A% A%
b o bmnl - . 71.mnl bI 7.‘.I
S l s s l l s s l S
5 -V 7~To¢ an[ -V ﬁ.mn[ Z)I Y 7~TI

Figure 4.2: Qv and Qs transformations of the auziliary and b ghost fields that play a
role in gauge firing zero mode invariances.

The gauge fixing of the zero mode gauge invariances can be performed by intro-
ducing the following gauge fixing Lagrangian:

)
Ls = by <ba93 +> (mINE, + b1J1)> (4.46)
I=1

g
- 1 - -
=0y | =ba Xy + 005 + ) (0™ (dl o) + 6™INE b (dNg) + BT (w! No))
2
J 1
= TS — 705 + § (wmnfgdf%on amrI N 4wt dl NG — ﬁIJI)

1-
+b C + boz’y + Z( bmn[ (IYIIYmn)\O - dl')/mnc) - gbmnl (CI'YmnAO - wl')/mnc)
I=1

+bl (v g — dPe) — bl (e N — wlc)>.

Integrating over b and b leads to delta functions for ¢® and ~4*, which can be
used to integrate out ¢®,~®. This sets ¢® and v“ to zero, in particular four of the
eight terms in the sum in the last two lines of (4.46) disappear. Both the bosonic
variables ™" b! I and the fermionic variables pmnd bl ¢! only appear in the sum
in the last lines of (4.46). Integration over these six variables leads to a factor of
one, because the integration over the bosonic variables leads to a factor that is the
inverse of the integral over the fermionic variables. More explicitly

/ (b [dy ]e S "o = ( / [dl;I][ch]eZIEICI’\")_l, (4.47)

96



Chapter 4 - BRST quantisation of the pure spinor superstring

where the integration over b™"! is suppressed to avoid cluttering of the equation.
So the zero mode measure now becomes

g
(At zm. = [d"00][d" 7][d" o] [d" ] [ [ [d" ) [d™ 71)[d" Np]x (4.48)
I=1

g
1
exp <—ﬁaxg — 7l + ) <7rm”f§d17mnA0 FrI N rldl g — fﬂﬂ)) ,
I=1

where [d'*\] and [];[d"' N;] are the Lorentz invariant zero mode integration mea-
sures discussed in section 3.4, whose explicit form is not needed here. The auxiliary
fields 7 seem to have to many components. For instance 7, has sixteen components
whereas only eleven are needed to gauge fix the zero modes of . Similarly 7,,, has
45 components while only ten are needed for the gauge fixing. This paradox can
be resolved by realising that the exponent in (4.48) is invariant under a number of
symmetries that render the “unwanted” components of 7 pure gauge. The symmetry
for m,, is similar to the gauge invariance for w, (cf. (2.4)):

e = [ (YmA)a- (4.49)

This can be used to remove five components of 7, and since 7, = Qg7 this prop-
agates to T,. The symmetry for the higher loop auxiliary fields is given by

0hn = (Mm)afi, o7l == f) (4.50)
0 = M)afafs 07 == f)) (4.51)

This symmetry can be used to eliminate 35 out of the 45 components of each «/
and 7! which is as expected since the number of BRST auxiliary fields should be
equal to the number of gauge fixing conditions.

mn?

The next step is actually integrating out 7, 7, 7!, #1. This can be done in multiple
ways, one leads to the minimal formalism and another to the non-minimal formalism.

4.4.1 Minimal formulation

The fields m, and 7, have eleven independent components each. One way to
parametrise them is to write

o = piCL, fo =piCL, i=1,...,11 (4.52)

where p;, p; are the independent components and C}* is a constant matrix of rank
eleven. Then [d'!'7]|[d'' 7] = [], dp;dp; and integrating over p yields [], 5(CLAG),
while integrating over p* yields [], C%.65. Putting it differently, one may have started
with ghosts and auxiliary fields b’, b, p’, j' and gauge fixing condition C%AG = 0,
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for the invariance due to the eleven zero modes of \* and gauge fixing condition
C:05 = 0 for the invariance due to eleven of the sixteen zero modes of #. Note
that the insertions can be combined into eleven insertions of the picture lowering
operator

Yo = Co050(CuAG). (4.53)

Similarly, one may parametrise the 10g independent components of 7™ and of
ﬁ.mn[ as

= pl B, ol = pl B, j=1,...,10 (4.54)

where p/!, p/1 are the 10g independent components and BJj" are constants. Inte-
grating over p;r, p,;r and w7, 77 leads to the insertions

10g

9 10 9

1
[T { @20 T 585" (@ vmnro)d (B Niw) | = ] Zs(zn) [] 25 (we),
I=1 j=1 R=1 P=1

(4.55)
where the insertions have been reassembled in terms of the picture raising operators,

1
ZB = §an1d1,ymnA05(anIann)’ ZJ = (/\S‘dé)é‘(JI)’ (456)

inserted at positions zr, wr. These insertions correspond to gauge fixing conditions
B}”j”N,{m = 0,J' = 0, for the gauge invariance due to the 11g w, zero modes
and B}’}”(dlvmn/\o) = 0,d.\g = 0 for the gauge invariance due to 11g of the 16g
zero modes of d,. Note that the constants C;,, B} enter through a gauge fixing
term and there is a formal argument, presented below (1.51), that says physical
predictions do not depend on the gauge fixing term and therefore not on B and
C. However decoupling of Qg exact states in the pure spinor formalism is a non
trivial subject which is discussed in the next chapter. The precise statements about
Lorentz invariance and dependence on B and C' are specified there.

What is left is to discuss G4p. By definition, G, should satisfy (now in complex
coordinates and dropping the indices)

5sG=T, T= %Hmnm + dad0% — wa A" (4.57)

Since dg is nilpotent, this equation defines a cohomology class [G], i.e. solutions G
up to dg exact terms. A solution of (4.57) is given by [55]

CoG* 1 1 1 1
— « a _ Zm m a = o mn a = a T 92pa 4.
Go= Gy G =3I Omd)? = 2 Nun (7700)7 = 2J00° — 70°0°, (4.58)

for a constant spinor C,. This expression also appeared in [23] as a twisted world-
sheet supersymmetry current. This solution is however not acceptable because it
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contains a factor of (C,A¥) 1. Allowing such operators renders the Qg cohomology
trivial. Indeed, consider the field &

CL”

5_ OaAa7

5s€=1. (4.59)

Then any closed operator V is also exact since
55V =0 = V= 55(§V). (4.60)

A related issue is that the positions of the poles of Gy are also the positions of the
zeros of the path integral insertions thus making the expressions ill-defined.

One might hope to arrive at well-defined expression by finding a different rep-
resentative of the cohomology class [G] such that the poles in the new G cancel
against zeros in other path integration insertions. Indeed, such a representative G
exists and it is given by G; = bg/Zp, where Zpg is the picture raising operator in
(4.56) and bp is the picture-raised b ghost originally constructed in [22] by solving
the equation,

o0sbp = ZpT. (4.61)

It was shown in [56] that G is in the same cohomology class as G and the poles of
(G1 indeed cancel against zeros coming from the picture raising operators.

After the BRST quantisation the end result is that a multi-loop amplitude in the
minimal pure spinor formalism should include 3g — 3 insertions of b, 10g — (3g — 3)
insertions of Zp, g insertions of Z; and eleven insertions of Y. This is precisely the
prescription proposed in chapter 2.

4.4.2 Non-minimal formulation

Let us now return to (4.48) and recall that 7, and 7, are Qg partners, dgmy = Tq,
see figure 4.2, and each has eleven independent components. These are precisely the
properties of the non-minimal variables A\, and r,,, see section 2, so one may identify

To = A0, o =10 (4.62)

«

where A, r0 are the zero modes of A\, and r,. (Actually since the non-minimal
variables are cohomologically trivial their nonzero modes do not contribute to any
observable and one may only keep their zero modes). Recall also that the non-
minimal sector has a gauge invariance similar to (2.4) (whose explicit form is not
needed here) and the following combinations are gauge invariant [25]:

_ 1 _ _ _
N = §(w7mn)\ — $YmnT), J =0\ — 574, (4.63)

1 _ _
Smn - 587mnA, S = Saka.
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The canonical momenta w® and s* have 11g zero modes each which, as in the
discussion of the minimal variables, can be traded for 10g zero modes of N/, and

SI and g zero modes of J! and ST. Using the Qg transformations in (2.58) one
finds
05Spn = Nppy 8557 =J". (4.64)

Thus the fields NZ,,,, SL ST J! have the same degrees of the freedom and the same

Qs transformations as 7™ 7mn! 7l 71 Therefore it is natural to identify them,

= Nt gl =gl 7l =8t # =T (4.65)

With these identifications the exponential factor in (4.48) is precisely the regulari-
sation factor N of equation (2.67) (up to inconsequential numerical factors).

It remains to discuss Gu,. This field was constructed in [25] (with an elegant
interpretation of the construction in terms of Cech cohomology given in [27])

G = MaGY  XargHIP Norgr K19 XorgryrsLIofd
TN T BNE ONF

(4.66)

where G is given in (4.58) and H®? K%Y 679 are specified in section 3.6. Note
also that this field is cohomologically equivalent to G [44]. Hence after a careful
treatment of the zero mode invariances and finding the solution for G in the non-
minimal formalism, the functional integral derived from first principles (4.40) reduces
to the amplitude prescription advocated in section 2.2.

Notice that G field has poles as AX — 0 so one might wonder whether this
prescription suffers from the same problems as the one using Gy. Indeed, there is
a non-minimal version of the argument around (4.59)-(4.60). The corresponding
non-minimal ¢ field is [25]

W

S = 5\5)\5 + T‘ﬁeﬁ

(4.67)

This diverges as (A\)~!'! so one must ensure that no operators which diverge with
this rate are allowed. A related issue is that the path integral with the insertions
just discussed will diverge if the insertions diverge as fast as (AX) ™. As discussed
in [25, 27] this can only happen for genus g > 2 (since the pure spinor measure
converges as (A\)!! and Gp diverges as (AX\)™3). One way to deal with this issue
is look for a different representative G ) of the Qs cohomology class of [G] which
is less singular than Gp as AA — 0. A construction of such a G ) is presented in
[27]. Using this Gp,) field one then arrives at a prescription that in principle works
to all orders. See also [29] for more recent work.

This solves the problem in principle. The actual construction of G () however is
very complicated. Given that the issues with singularities are related to the A\ — 0
limit, a different approach would be to modify the gauge fixing condition for the
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pure spinor zero modes such that they are fixed to a nonzero value. It would be
interesting to investigate if such gauge fixing can be implemented and whether it
would lead to a simpler scattering amplitude prescription. Moreover chapter 5 will
provide further motivation to look for a different gauge fixing condition.

4.5 Ghost contribution

There remains one loose end that needs to be tied up. In equation (4.38) the ghost
fields were set to zero without sound motivation. This is provided in this section.
Without setting the ghost fields to zero (4.38) is given by

/2

(Vq - /duge "du ne S dfie” SHV 0) H /dzZV(1 2i),
j=1 i=k/2+1

) (4.68)

where djie™® is given in (4.39),
dpgn = DF** Db Dc* Dy DC, D, DEFDER T ¢*(65)5(v*(55) (4.69)

j=1
and
Son = [ (226 5us(r) = 206" Gun(r) ~ 5 (4.70)
by

F0P [V aeh + Vical + BV avs + Vival + 0%€8 Opap(7)
—hap[0c(B?c%) — 2B 0] — B [E* Ok Ga(T) — +’“£lakazgab<f)]) :

where @a is the covariant derivative associated with g,;. The goal is to show that
the “BRST factor” in (4.68), let us call it Xprsr, can be manipulated to give the
result of section 4.3:

6g—6

XpRrsT = /dughe_sghdﬂe_g = I a*(G. 0rg(7)). (4.71)
k=1

The first step is integrating out v, and S(7) = gab(T)Bab. This sets the trace
of 3% equal to zero. The traceless part of 5 will be denoted by 4. Integrating
out &¥ introduces (6g — 6) insertions of the 3% zero modes, while integrating over
p® 1ha and 7* leads to insertions of the zero mode of G,

G 8kg /d2 ﬁab c) 2ﬁc(bacca) +2ﬂab0w+ \/EGab‘Fﬁabglal) 8kgab(7-)-
(4.72)
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After these integrations one is left with

XBRsT = /dﬂﬁwdﬂgh8_59h7 (4.73)
where

Syn = /d20 (ﬁab(@a% + ViYa) + b (2C0Gab + Vacs + Vica) + Eabﬁkakﬁab(ﬂ)

(4.74)
and
6g—6 K
dpp = [dB)[dy"] ] 6((8,0:9) [] 6(+*(57)) (4.75)
k=1 G=1
6g—6 K
djign = [db™)[dc][dC,] [] dr™(G.oeg(7)) [ ] ¢*(65) (4.76)
k=1 G=1

The (7 system is now a standard CFT with a U(1) charge conservation and the
path integral measure contains all appropriate zero mode insertions. It follows that
the O-dependent part of (4.72) drops out of (4.73) since it is charged w.r.t. the 8y
U(1). Integrating out C,, sets the trace of b to zero; the traceless part will denoted
by b, and integrating out &¥ leads to (6g — 6) insertions of the b® zero modes. The
BRST factor is now given by

XBRST — /dquMQVdﬂbce_ fdzo(ﬂab(@a')’b"r@b')’a)"rb@b(ﬁacb—}—ﬁbca))’ (477)

with dpgy as in (4.75) and

6g—6 69—6
dﬂbc _ [dbab][dca] H b, qug Hc & dM'r = H di (G, 8k§(7')) (4.78)
k=1 k=1

It is now manifest that the integration over (b?°, c%) cancels against the integration
over (3%, ~4) and after integrating out b, ¢, 3,7 one finds:

6g—6

Xprsr = ] d7*(G, 0k4(7)). (4.79)

k=1

4.6 Replacing worldsheet fields by zero modes

In chapter 2 the amplitude prescription for the pure spinor formalism was presented.
In order to evaluate the correlators it was stated that one should first remove all
fields of nonzero conformal weight by using the OPE’s and thereafter replace the
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remaining fields, which all have weight zero, by their zero modes. The first principles
derivation of this chapter has set the stage for justifying that step.

First it is useful to clarify what a zero mode really is. In general a zero mode is
an eigenstate of some (differential) operator. In the case of 57 systems it is not clear
from the action in conformal gauge, i.e. for a special choice of coordinates, what this
operator is, since such an action is only defined on one coordinate patch. Consider
the pf action, which is a fermionic 37y system. Its action in conformal gauge is given
by

Sy = / d%2p,00”, (4.80)

where the weights of p and 6 are one and zero respectively. In order to write this
action in a coordinate free form, one uses the differential operators Py and P defined
in (1.66). The action (4.80) can now be written in either of the two following forms
S(p6) = (Pa, Po0) = (P Pa, %), (4.81)
o _ p+)p (+)b . I .
where (Po)a = P4 (pa)p and P g'" is a projection operator defined in (4.4), not to
be confused with the differential operator P,, it depends on the complex structure
of the worldsheet and in conformal gauge its only nonzero component is P(t)z =1.
The operators P, and PT do not have eigenstates because they change the rank of

the tensors they act on, therefore zero modes cannot be eigenstates of one of these
operators. Operators that can be diagonalised are P! P, and P, PT:

P,PIF7 " (o) = v'iFjl”‘a““(a), PIP,G3 (o) = v GY 7 (o), (4.82)

where F; and G are symmetric traceless tensors of respectively rank n + 1 and n.
Any traceless symmetric worldsheet field can be expanded in a basis of eigenfunctions
of PTP, for some n. In addition it can expanded in eigenfunctions of P, 41 PT ;.
This basis can be chosen to be orthonormal with respect to (1.69):

(Fj,Fyp)=9657, (Gr,Gg')= 0Kk (4.83)

Do and 0 can be expanded as

Pal0) =Y (pa)sF3(0), 0°(0) =Y 0%Gxl(0). (4.84)
K

J

There is a one to one correspondence between the nonzero modes of PI P, and
P,,PT. The number of zero modes can differ. This follows from

(P,PTYP,G ;(0) = P,(PTP,)Gs(0) = (v')2P.G (o). (4.85)

Thus P,G ; is an eigenfunction of (P, PT). Along the same lines it follows that PZ F;
is an eigenfunction of (P P,). This shows a one to one correspondence between the
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modes that satisfy P,,G; # 0 and PT F; # 0, these are precisely the nonzero modes.
These can be separated in positive (J, K > 0) and negative modes (J, K < 0). The
zero modes are denoted as Foj;, Gop, where j =1,--- ,pand k =1,--- , k. The values
of ;1 and k depend on both the genus of the worldsheet and the value of n. Canonical
quantisation amounts to imposing the commutation relations

[FJ7GK:| == 6J)_K7 [FJ,FJ/] == [GK,GK/] == O. (4.86)
A vacuum can be defined by
F;|0) = Gkl0) =0, J K >0. (4.87)

Consider a number of (7 systems of weight one, which is the relevant one for
the pure spinor formalism. In the Hilbert space language a correlator, that only
contains weight zero fields,

A= (' (21) AN (2n)), (4.88)
can be expanded as
A= 0y (z1) 7Y (2w)|0) = (0] Z(V&)ij(ﬁ) - Z(vé\’)j/Goj-/(zN)IO%
" o (4.89)

because the positive modes vanish against the vacuum on the right and the nega-
tive ones against the vacuum on the left. Also note there are only non vanishing
(anti)commutators between a positive v mode and a negative § mode or vice versa,
so one can (anti)commute all v modes through each other. This justifies replacing
the fields in a correlator by their zero modes if all these fields are of weight zero.
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Decoupling of unphysical
states

Any theory whose spectrum is defined as the cohomology of a certain nilpotent
fermionic operator must have the property that all amplitudes with an exact state
vanish. Otherwise two operators representing the same physical state give rise to
different scattering amplitudes and there is no way to prefer either of the two answers.
In chapter 2 it was shown that decoupling of unphysical states is guaranteed if all
insertions are Qg closed. For the non-minimal pure spinor formalism this was easy
to show, cf. (2.61). The minimal formalism, however, contains constant spinors (Cy,)
and constant tensors (B,,,) in its amplitude prescription. These constant tensors
enter the theory via the picture changing operators. It was argued in [22] that
amplitudes are independent of C' and B, because the Lorentz variation of the PCOs
is Qg exact.

In this chapter it will be shown by explicit computations that the amplitudes do
depend on the choice of the constant tensors and Qg exact states do not decouple.
This happens already at tree level, but in this case one can show that there is
a unique Lorentz invariant operator that can replace the PCOs in the tree-level
amplitude prescription. With this replacement Qg exact terms do decouple and one
can further show that this prescription is equivalent to the tree-level prescription
obtained by integrating over C' [22], which correctly reproduces known tree-level
amplitudes.

Amplitudes at one loop are discussed next. The main result will be that the
PCOs, Y¢, are not Qg closed. Furthermore a no-go theorem will be proved which
states that Qg closed Lorentz covariant PCOs lead to vanishing of all one-loop
amplitudes. Hence if one wishes to replace the PCOs by Qg closed ones, manifest
Lorentz invariance cannot be maintained.
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Note that QgsYe # 0 by itself does not imply that Qg exact states do not decou-
ple. It only implies that the standard argument for decoupling of unphysical states
that involves integrating Qg by parts does not automatically lead to decoupling.
Hence one needs another argument. This new argument does not use integration
of Qg by parts. Rather it makes use of an invariance of the path integral measure
and the fact the zero mode integrals act as projectors on a certain Lorentz scalar.
Then one can show that the integrand that results from Qg exact insertions does
not contain this scalar, hence amplitudes that contain unphysical states vanish after
integration.

Even though there is a proof of decoupling of unphysical states in the formulation
with integration over C' and B, the fact that the PCOs are not Q)5 closed is somewhat
unsatisfactory. The technical origin of the problem is that the PCOs are Q) closed
only in a distributional sense and it turns out that the amplitudes are singular enough
so that distributional identities do not hold. To understand why the amplitudes
are singular, let us recall that the PCOs originate from gauge fixing zero mode
invariances as discussed in chapter 4. The PCOs contain eleven delta functions of the
form §(CLA\?), where C are the constant spinors mentioned above. It turns out that
for any choice of C7 that give an irreducible set of eleven constraints, the solution
of CLA\* = 0 is given by A\* = 0, which is the tip of the cone that represents pure
spinor space. As discussed in [21], the A* = 0 locus should be removed from the pure
spinor space. Thus this prescription corresponds to a singular gauge fixing condition
and the problems with Qg closedness of the PCOs reflect that fact. Furthermore the
PCOs are not globally defined on pure spinor space. Ultimately one would like to
use globally defined, Qs closed PCOs that gauge fix the zero modes of A to a nonzero
value. Such an operator has not been found. Note however that this operator cannot
be a Lorentz scalar, due to the no-go theorem.

There is one final point that deserves to be mentioned in this introduction. As
stated in chapter 2 the most complicated loop amplitude computations have only
been performed in the non-minimal pure spinor formalism. This suggests that the
minimal loop computations are technically more involved. The analysis of this chap-
ter, in particular the previously unnoted invariance of the path integral measure,
might be used to simplify minimal loop computations.

5.1 Tree level

In the first part of this section, a number of tree-level amplitudes is computed in the
formulation without an integral over the constant spinors C. The conclusion will be
that these amplitudes are not Lorentz invariant and unphysical states do not decou-
ple. In the second part a manifestly Lorentz invariant prescription without constant
spinors is presented. As will be shown this new prescription leads to decoupling
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of unphysical states and is equivalent to the prescription with an integral over the
constant spinors C.

5.1.1 No C integration

This section presents two problems regarding the minimal amplitude prescription
(2.22) when it is evaluated using the definition of the zero mode measure (2.25) and
the usual definition of a delta function:

/dxé(x)f(x) = f(0), xd0'(x)=—6(x). (5.1)
The problems are

e A is not Lorentz invariant or equivalently A depends on the choice of C’s

e Qg exact states do not decouple.

Lorentz invariance

In section 2.1.2 it was argued the PCOs are Lorentz invariant inside correlators if
they are Qg closed. The Qg variation is given in (2.29) and this seems to vanish but
if one chooses C, = 07, the result is QsYe = AT(AT). This is not zero because
the measure contains ﬁ All one can use is (AT)*6(A\T) = 0. This problem is
made even more explicit in the computation below. It will be shown that choosing
particular C’s does not result into a Lorentz invariant answer.

Let us choose!

CL =6k, (C?)me =glmsed (oMo = slstl o all other €L = 0. (5.2)

Note CZ has rank eleven for this choice, as it should. As is discussed in section 5.5
the lack of Lorentz invariance, which is shown below, would also be found, if any
other choice was made, see footnote 9. The three-point tree-level function is given
by

.A = </\QA1Q(21))\BA25(22))\’YA3V(Zg)YCl (OO) ce YCH (OO)> (53)

The PCOs operators are inserted at infinity, since this simplifies the computation.
All OPE’s of the PCOs with the vertex operators vanish due to this choice. Therefore
one can replace all fields in (5.3) by their zero modes:

A= /[dA]dweAaAﬁMfam(e)Cgl9“1 O 0o §(CL A - §(CL A1) (5.4)

a11 a11

= / [AN Y ONTNONY foy5 (0)0F 012 - - - 0455(AT)S(N12) - - - 6 (as)

1See section 3.2.1 for notational conventions.
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AOON NN fop (0)0T 012 - - - 0456 (AT)S(A12) - - - S(\as)-

. d//\+/\d)\12/\'--/\d//\45
= v

The only term that contributes is the one with oy = + 4+, in all other cases there
is an integral of the form [ dAqpAap0(Aas) (n0o sum). There is a subtlety with these
integrals, for instance

Acd

/ AN O 2Ad (AT )5(A2) - - - 6(has) = / AN 0 S5O )5 (Nr2) 5 0hss) =

/ dA+Ai+5(A+) / Dt dead(Ded) = 000. (5.5)

Note however that (5.5) has N charge one (cf. (3.50)). Since the outcome of the
integral (maybe after some regularisation) must be a number, which does not trans-
form under N, the integral has to vanish. In other words only integrals with zero
N charge, like [[dAJ(AT)36(AT)8(A12) - 8(A\s5) can be non-vanishing. After the
integration over the A\ zero modes one is left with

A= /d169f+++9+912~-~945, (5.6)

where fi44 = AL A% A3 and this can be evaluated with the help of the explicit
expressions for the gamma matrices from section 3.2.4. If one chooses the external
states to be two gauginos and one gauge boson the amplitude becomes:

A= / d'00(E7 0kl + 41,0707 )(E5000" + €7,0°0")0°a20F 01 - - a5 = €14, €% a2,
(5.7)
This answer is not Lorentz invariant and different from the expected answer,

m a a 1 (l cae
e an, = 28 G al + €18 ay — a0l + Eaas + E1€00),  (5.8)
where m is an SO(10) index and all Latin letters that come before m in the alphabet
are SU(5) indices. In conclusion this shows that tree-level amplitudes do not yield
Lorentz invariant answers when one does not integrate over C.

Dependence on C'

On top of the lack of Lorentz invariance amplitudes depend on the choice of constant
spinors C. In other words they are not invariant under C! — CL + 6CL. This
variation changes the Ith PCO by a Qg exact quantity. However when one computes
a tree-level amplitude with the Ith PCO replaced by this Q¢ exact quantity, it does
not vanish. Hence incidentally this computation demonstrates that not all Qg exact
states decouple. In the computation below the same C’s as in (5.2) are used and
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§CLY = 61 where the 1 is an SU(5) vector index. The delta only has one non-

(o]

vanishing component. This changes Y¢,, by
8Yey, = 6C1140%0(C11) + C1140%3C11 578 (C1i ) (5.9)

= Qs(0C11,0%Cr150°6' (C115\°)) = Qs(0"0458" (\a5)).

Under this change in C the tree-level three-point function changes by

0A = (Vi(21)Va(22)V3(23) Y, (00) - - - Y0 (00)0Y 0y, (00)) = (5.10)

(Vi(21)Va(22)Va(23)Qs (Yo, (00) - - You,(00))8" (00)fa5 (00)8 (Aas (00))
dll/\ N
= /dlﬁeWA NIXNTALAZAZQs (Yo, -+ Yey,)0" 0456 (Aas).

There is a total of four A*’s in the numerator (one hidden in Qg) one of them has
to be Ag5 and the other three have to be AT to give a non-vanishing answer. The

term that contributes comes from Qg hitting 67 5(AT), this AT then cancels against
a AT in the denominator and the variation becomes

5A = /dlﬁod“AA(in(A3>)45915(A+)9125(A12)---9455(A45) = (5.11)

/ 4994 A (A)15019,15 - - - 0.

By choosing suitable polarisations it is not difficult to see this does not always vanish.

5.1.2 Including C integration

Obtaining amplitudes which are not Lorentz invariant is a serious problem and one
might ask why the tree-level amplitude computations [22, 57] in the minimal pure
spinor formalism gave Lorentz invariant answers and why Q¢ exact states decoupled.
Both these points are explained in the first part of this section. In the second part
the tree-level amplitude prescription is reformulated in a way that does not contain
any constant spinors.

Lorentz invariance is restored by integrating over all possible choices of C, and
this also results in decoupling of Qg exact states as will become apparent in this sec-
tion. The manifestly Lorentz invariant tree-level amplitude in the minimal formalism
is given by

A= [CHVAGVaeaVa(en) [ dealia(za) - [ denU(a)¥er (20) -+ Yoy, (o).
(5.12)
After performing the OPE’s and replacing the fields by their zero modes this becomes

A= / 1dC] / AN SO NN fa (0)(CO)S(CIN) - - (CULO)S(CIN).  (5.13)
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Note the eleven PCOs, Yo, have been replaced by a manifestly Lorentz invariant
PCO which will be called Y:

y = / [ACY(C0)5(CIN) - - (CM10)3(CMLA). (5.14)
Now one uses

/ [dCI[ANA N XYC, -+ OB S(CMA) - 6(CHA) = (1) 577 4 (5.15)

11"

This is justified by Lorentz invariance, because the LHS is Lorentz invariant and the
only invariant tensor with the appropriate symmetries is? (¢T'), as can be verified
with [40]. Thus

A= (eD)257 /dlﬁefamwwm g, (5.17)

The amplitude A is manifestly Lorentz invariant.

This prescription also ensures the decoupling of unphysical states. Amplitudes
with unphysical states will be denoted by B throughout this chapter, while A is used
for any amplitude, so at tree level with V; = Qs(1,

N
B:/[dO](QSQ(zl)VQ(zg)Vg(zg)H/din(zi) (5.18)
1=4

CL ... CIL g1 5(CIN) - 5(CMIN)).

x11

This can be written in the following form:

B= /dO (22)A(23)gas (d, 0, N)Qs(CL 6% - - CLT 6°11)§(CMA) - -~ §(CN)) ~

/[dC](x\o‘(zz)/\ﬁ(23)gag(d, 0, N)CL A -+ CLL 9o 6(CHA) - 6(CMN)).  (5.19)

where in going from the first to the second line an overall numerical factor of eleven
was omitted. Such overall inconsequential factors will be neglected throughout this

2Incidentally, the following related integral can also be computed using Lorentz invariance:

/[dC}d)\D‘l A NAXTLCE - CRt §(CMA) - 5(CMN) = (5.16)
[on ai1] [agag ymp 5o a11]
616ﬁ1 h 6 11 T e2Ymnp Y [8182 653 h .6511] ’

where ¢; and co are nonzero numerical constants. This structure follows from the fact Asym'116 ®
Asym''16’ contains two scalars (see section 3.2.2 for explanation about the notation and the
argument). The constants can be computed using judicious choices of the indices. For example,
the integral vanishes for the choice ay = 1, -+ ,a11 = B11 = +,12,...,35,5, implying that one
needs a nonzero constant ca. Equation (5.16) corrects formula (3.25) of [22].
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chapter. After using the OPE’s to integrate out the nonzero modes one gets:

B = /[dC]dwﬁ[d/\])\a/\ﬂfag(G)Cél)\C“Cizacm S CRL 00 S(CHN) - 5(CMN) =

/ 0% fop(0)(€T)307,,,6° - 0% =0, (5.20)
where fo3(6) is some function of § zero modes and (5.15) was used in the second
equality. The integral vanishes because® 126 ® Asym'°16 does not contain a scalar
(see section 3.2.2 for explanation about the notation and the argument), in other
words
618 —
(eT)ﬁi»jﬁu =0. (5.21)

In this case one can also write out (eT") explicitly and check that its trace contains
a contraction of an antisymmetric tensor (¢) and a symmetric one (v2%).

Lorentz invariant tree-level prescription without constant spinors

There exists a replacement for the eleven PCOs that does not contain any constant
spinors and is manifestly Lorentz covariant. The prescription that uses this replace-
ment is equivalent to the one given in [22], when the integral over C' in included.
The prescription is given by

A= <V1 (Zl)VQ(Z2)V3(23)/dZ4U4(Z4) e /dZNUN(ZN)Aagv(OO) (5.22)

(e1)57,5,,6™ (00) - 87 (00)).

The replacement of the eleven PCOs Y is called Ay (00). After integrating out
the nonzero modes and replacing the fields by their zero modes A reduces to

A= / Q[N NN fusn (O)(T)ETE 0% 0PN, 55 (5.23)

The tensor Angy is defined by

/ [ANN NN Ay gy = 65605,67) — %75,357{;;, g0 =056, (5.24)
and is a function of the \’s only. More accurately, all components contain eleven
delta functions or derivatives thereof. The precise form of (5.24) follows from the
fact that the integral must be an invariant tensor combined with the pure spinor
constraint. Detailed arguments are provided in section 3.5. Explicit expressions of
the components can be found by examining certain components of (5.24). In order

3Note 126 denotes a gamma matrix traceless symmetric rank two tensor (recall that \* AP~
)\,Ymnpqr)\,ygﬁlqu).
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to see what conditions (5.24) imposes on A4 note that choosing afy = + + +
gives

/[d)\]/\+3A+++ = 6. (5.25)

Moreover this is the only condition because for all other choices the LHS of (5.24)
is not invariant under M, the generator of a U(1) subgroup of Lorentz group (see
section 3.2.1 for the definition of M). Therefore the LHS is equal to zero. The
solution is given by

At =65(AT)5(A12) - 6(\as)- (5.26)

It is possible to verify this object is indeed part of a representation of the Lorentz
group. In order to do so one needs to check the Lorentz algebra holds when acting
on A+++. First note

. 15
(Ns) %At = NapAyi =0, NAL = IA+++’ (5.27)

N™" denote the realisation of Lorentz generators M™™ in terms of pure spinors, see
section 3.3 for the precise expressions. The nontrivial commutation relations that
remain to be checked are

. 1 e 1., 3.,

Vo NN = 500N A = — 2000 N A = — 000 Ayt (5.28)
1 1. o

NG, N“NAyyy = 551[; NN (5.29)

Because of the symmetric form of A, it suffices to check

3

[Nig, NPJA Ly = _ZA+++5 (5.30)

[Ni2, NP]A i = 0, (5.31)
1

[N, NP|A iy = —§N13A+++- (5.32)

Let us start with the LHS of (5.30)

1
[Nz, NPJA oy = NiaN Ay = Nip | 560T6(AT)8 (M12)d(Ms) -+ 6(Nas) | =

3 11 1
5(—w+)\12 - 5)\—+wab/\ab)\12 + /\—+wab/\1a/\2b) ANTO(AT)0 (A12)8(A13) -+ 6(Mas)| =
9 3 3
=(0- i §)A+++ = _ZA+++7 (5.33)

Note that N does not contain factors of (A12)? (possible such factors cancel out).
This is useful when acting with Nyo in this second line. In going from the second
to the last line ¢’ (x) = —(z) was used twice. The other two commutators, (5.31)
and (5.32), follow along the same lines.
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It is instructive to compute the next two levels (distinguished by N charge) of
the components of Ayg,. For the components on the second (N = i1) level consider

1 1 1 3
N2 Ap = _§Aa1a2++ - §Af1ai - §A++ala2 - _§Aa1a2++ = (5.34)

2
Aa1a2++ — _gNa1a2A+++-
The factor of —% is consistent with Nw, = —1w®. Going to the next level
=1
NblbgAa1a2 _ 1 alagblbgeA 1Aa1azblb2 1A¢11¢l2 b1ba __ 5.35
++—_§6 et+ T 5 +7 35 + = (5.35)

_ %€a1a2b1b26A6++ _ Aa1a2b1b_2,'_.
This seems to leave freedom to define one of the two components, which would indeed

be true if Ang, was just a symmetric rank three tensor and nothing more. However
Anpy is gamma matrix traceless,

Y2 Aopy = 0. (5.36)

This imposes one additional condition that relates components of equal N charge
to each other. Consequently all components of Ayg are uniquely fixed in terms of
A4 4+. Note that this is consistent with the discussion under (3.134), where Lorentz
invariance arguments were used to come to the same conclusion.

Decoupling of Qs exact states

The new insertion A,g, was motivated by manifest Lorentz invariance, but it also
results in a prescription in which Qg exact states decouple. Indeed, the tree-level
amplitude with one Qg exact state,

N
B = (QsQ(21)Va(22)V3(23) H/dZiU(Zi)(ET)gﬁ‘.S??u@BI -+ 0711 (00) A, 5,55 (00)),
=4

(5.37)
can be written in the following form:
B = (\*(22)X(23) fap (0)Qs (7)1 205, 07 - - 071 Ay 5,5,)) = (5.38)
(A (22)A7 (23) fap (0) (€T) 5208 X107 - 0711 A, 5,6, ). (5.39)
After using the OPE’s to integrate out the nonzero modes one gets:
B= / A" 0[N N fo(0)(T)%%20%8 NP2 - 0911 Ag 5,5, = (5.40)

/ d'90 fop(0) ()57, 0% 0% = 0.

The last line vanishes because all traces of (eT") vanish (cf. (5.21)).
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5.1.3 Global issues

The computations in section 5.1.1 showed that not all Qg exact states decouple.
From this result it is tempting to conclude that the PCOs are not Qg closed. This
is true as will be shown in section 5.3, but one cannot conclude it just yet. For the
computations above involve integrations over the space of pure spinors, which is a
manifold that cannot be covered by one coordinate patch. Therefore the computa-
tions in section 5.1.1 can best be viewed as evidence for the need of a globally well
defined PCO. Note however that when one integrates over C, Lorentz invariance can
be used and consequently any possible ambiguity goes away. Alternatively one can
use A, globally defined in (5.24), which will be done in the one-loop computations
in the next section.

5.2 One loop

In this section one-loop amplitudes with one unphysical state are considered both
in the prescription with an integral over B and without. Let us first consider the
case in which there is no B integration. All amplitudes, including those with an
unphysical state, can be evaluated by first integrating out the nonzero modes. One
is then left with a certain zero mode integral. At tree level one could show that
these integrals vanish after the A integration is performed, cf. (5.40). This section
contains the corresponding one-loop computation. The result is that the zero mode
integrals do not vanish after the A\, N integrations.

The analysis of amplitudes with an unphysical state when one includes an integral
over B is analogous to the tree-level case. After one has integrated out the nonzero
modes the zero mode integral over A and N can be performed by Lorentz invariance.
Recall that decoupling of unphysical states at tree level followed from the vanishing of
the trace of €T cf. (5.40). This €T showed up in the A zero mode integral (5.15). The
analogous one-loop zero mode integral can be evaluated to give the one-loop analog
of €I'. Moreover one-loop amplitudes with an unphysical state are proportional to
the trace of this one-loop invariant tensor. However this trace does not vanish.
Therefore the question whether Qg exact states decouple remains unanswered in
this section. The computation including the B integral does show that the PCOs
are not Qg closed. In section 5.4 it will be shown using a different argument that
unphysical states decouple to all orders, when one integrates over B and C.

5.2.1 No B integration

A one-loop amplitude with one unphysical state is given by
N
B™) = (Qs0(21) H/dini(zi)/du,u(u)i)Bl(u,w)()\Bzd)(y) - (ABYad)(y)
i=2
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(A (W)3(B'N () -+ 6(B N (9))8(J (4)) Assas, (4) (€T) 37205 07 () - 074 (1)),
(5.41)
where A\Bd = B, AY"""d. Note that the Yo insertions have been replaced by the
Lorentz covariant insertion, Angy, as in the tree-level computation. This is equivalent
with inserting Yo and integrating over C. On the torus one cannot insert the PCOs
such that all their OPE’s would vanish. They are inserted at some arbitrary point
y. For later convenience b is inserted at a different point, w.

The next step is integrating Qg by parts. When Qg acts on b one gets a total
derivative in moduli space, as usual. If this total derivative is non-vanishing the
theory has a BRST anomaly. These total derivative terms will be suppressed below
because they are not important for our discussion. The terms that come from
Qs hitting a picture raising operator, Zp, vanish since the Qg variation vanishes
without subtleties, cf. (2.32). The vertex operators are also Qg closed. The only
non-vanishing terms come from Qg hitting a 6. This results in a A\ contracted
with Aam(ET)glﬂ. v 5,,» very similar to tree-level amplitudes with an unphysical state.
However the one-loop pure spinor zero mode integration also involves N™". As will
be shown

)\Bl Aaﬁ'Y(ET)glﬁjﬂu (542)

does not vanish after the one-loop pure spinor zero mode integrals have been per-
formed.
After integrating Qs by parts the amplitude (5.41) becomes

N ~
B = (o) [ [ @iz [ dunwben (w w) 0B w) - A a)5) 0d)w)
1=2

(5.43)
S(B2N(y)) -+ 6(B N ())3(J (y)) As, .8, (1) (€1)522% ()N ()07 () -+ - 07 ().

In this subsection BXY) will be evaluated without integrating over B. The particular
choice of B used here is given by

(BY)ap = 6100, -+, (BO)y = 0157, (B)™ = (BT)3, = 0. (5.44)

The amplitude BN) can be evaluated by first integrating out the nonzero modes
and then evaluating the zero mode integrals. The nonzero mode integration is a little
tedious since there is quite a number of NA OPE’s one has to consider. Therefore the
nonzero mode integration is explained in detail after the subsection on the zero mode
integrals. Once the nonzero mode integrals have been performed the amplitude B(Y)
can be written as a sum of terms that are all proportional to a certain A, N zero
mode integral, Is,...3,,. This integral contains (5.42). In the next section it will be
shown Ig,...3,, does not vanish. This non-vanishing does not prove that there exists
a non-vanishing amplitude with a Qg exact state, because there may be additional
cancellations when one performs the remaining integrals. It does show however that
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the PCOs are not Qg closed, i.e. (5.42) does not vanish when integrated against an
arbitrary function.

Zero mode integral

After integrating out the nonzero modes, which is discussed in detail in the next
subsection, one-loop amplitudes (5.43) can be written as a sum of terms that are
proportional to the following zero mode integral,

131152'“511 = (5'45)

JINNIA (019) - QP ADBN'Z) - SN )5 iy TV,

Note that there is one unintegrated vertex operator at one loop, which explains the
presence of A1, The factors Ay**d§(N?) originate from the picture raising operators
Zp and §(N1?) stems from the b ghost. If one of the states is an unphysical state,
the amplitude can be written as a sum of terms proportional to the trace of Igll___ Bu1
which is called Ig,...3,,:

Ig,...p1 = 31152...511 = (5.46)
J NI 02 0 P DODIN?) SN *)5) A (T,

This integral is the one-loop analog of (5.40) (or (5.20)). Therefore this integral must
vanish if the PCOs are Qg closed. Note that, in spite of the notation, Igfﬁzm 5y, 18
not manifestly Lorentz invariant. Whether it is Lorentz invariant remains to be seen.
Let us proceed by evaluating Ig,...3,, -

After using expression (3.127) for [dN] to evaluate the N integral in Ig,...3,, one
finds

1 5 «
Iﬁz'“ﬁu = /[d)‘] (/\+)8 /\61 ()\'713d) T ()"740d)()\d)Aaﬁy (GT)BIE_’_Y_BH. (547)

In this form it becomes apparent that the problems with factors of A™ in the denom-
inator only increase at one loop. At this point one can only surmise this. To find a
definitive answer one has to evaluate the A integral. This can be done by expanding
the integrand by powers of AT, using the explicit gamma matrix expression from

section 3.2.4: )

o) - 00 ) (Ad) = (5.48)

1 1
()\+>2D12d+ 4 5)\+)\a1a2 <D12da1a2 4 56aba1azchDuabd_,_>_|_

1
aaiazasza abaiaszc asa
g)\alag)\ag,m; -D12E 1a2as 4da+€ 1z dc-DIZabd 3944
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6
1 1 e
_6aba1a2c€dea3a4fdcdelzabded+) + Z W)‘alaz . )\a%ila%}/m 2k (d)’

2
k=3

where

0 0
- Odor—1ak o Odaraz D
The Y (d)’s can be expressed in terms of the d’s similar to the first three terms. Note
that the minimal number of d,’s in Y% %2t ig k — 1. This is the reason the series
stops at £k = 6. The maximum number of d,’s in Y% 2% is k. The A integration of
(5.48) can be evaluated term by term. Ig,..s,, then becomes

D=d2...d*® Dg.q, (5.49)

6

152"'[311 = Z(Ik)al“'azkﬁz"ﬂnYalma%' (550)
k=0

The integrals I}, are investigated order by order in the sequel of this subsection.
For k = 0,1,2 one can use the definition of Aygy, (5.24), and the fact that the
invariant tensor (eT') is traceless, (5.21), to show the A integrals vanish:

(10)52“'511 = /[d/\])‘ﬁl ()‘+)2A616253 (eT)glfz%Su = (eT);j:?ﬁlu =0, (551)

(Il)a1¢1252'--511 - /[dA]Aﬂl /\+)‘a1¢l2A515253 (ET)?I@‘;?’H = (eT)+B1a1a2 BrBin 0,

51020
(12)01“11452'“511 = /[d/\])‘ﬁl /\alag/\a3a4A616253 (eT)ﬁly'z'ﬁ?’u =
B —
(ET) 1a1a2a3a4 BiB11 0.

If k > 2, however, there are also factors of AT in the denominator. As shown in
appendix A.1 the X integrals do not vanish anymore. For example consider the
integral Is. By M charge conservation all components of I3 vanish except when the
indices are chosen to be

B2, ..., P11 = +,biba, ... bobig,c1,c2,c3,C4 (5.52)
or

B2, ..., 011 = biba, ..., bigb1a, c1, 2, C3.

This is explained in detail in the first part of appendix A. Let us explicitly compute
I for the first choice of indices. Since Sym>*10 ® Asym®10 ® Asym™*5 contains one
scalar, one finds

bibs:--bgb
(I3)a1~~~a6+61626364 e o0 = (5'53)
1 o breb
/[dA]FAﬁlAa1a2 o ')\asasAaﬂ’Y(eT) 57514-010203041 =
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by---b .
C1€aiaza3a4b14€bigasasbiibia (610) ' 20601020304517eblsblsblsblgbzo + 2 perms,

where (elo)bl"'b2° is antisymmetric under both ba;_1 < by; and baj_1b2; <= baj_1bo;
and (eq0)'2131415232425343545 — 1 The two permutations add terms to make the RHS
symmetric under as;_1a2; < azj—1az;. The constant c¢; is computed in appendix

A.2 and is given by
129

c1 5 (5.54)
The integral I, can be computed similarly, but this computation will not be presented
here. The next integral is I5. The only choice of s, ..., 311 that leads to a nonzero

answer for Iy is

1
bs---b 610203 bz---b
(15)a1~~-a103 1212345 = /[d/\]m)\ﬁl )\a1a2 "')\a9a1oA516263 (GT) 1 351 ¢ 1212345 =

2

by---b .
_g651301a2a3¢146b15¢15¢16¢17aseblﬂlgaloblbz (610) ! 20€b14b16b18b19b20 + 14 perms. (555)

The details are given in appendix A.2. Finally I can be evaluated as:

1
(Iﬁ)a1~~~a12[32"'511 = /[d/\]m)\ﬁl/\maz "'/\a11a12Aaﬁ’Y(6T)g16-’-Y-511 = (556>
€braiazazas€brasasaras Chbzagaioariarz (eT)z-lﬁbzbSBu + permutations = 0.
This vanished because (eT)Z_’Flgj?‘?ﬂn = 0 and that follows from the M charge con-
servation rule for invariant tensors. In other words it is not possible to choose
B2, ..., 011 such that the total M charge of the components is zero (cf. equation

(3.54)). This concludes the computation of the pure spinor zero mode integrals that
appear at one loop. It has been shown that the Q¢ variation of the PCO as given in
(5.42) does not vanish after the integration over the pure spinor sector in a typical
one-loop zero mode integral. Therefore the PCOs are not Qg closed.

Nonzero mode integration

It remains to demonstrate that all one-loop amplitudes with an unphysical state can
be written as a sum of terms proportional to Is,...5,,. After this proof the argument
will be modified to prove that AM) can be written as a sum of terms proportional
to Ig .5, In general the amplitude, B®Y), becomes a sum of terms of the form

N
B, = [ONDNIDADO] [ do)fminsmim 1o 2x) (557

N (z,) - N (2 ) () () - - O™ d) () ) ()X (9) My () (€T) 51,

072 (y) - 07 (y) / dup(w)bpr (u, w)5(N' (y)) - S(N*(9))5(J (y))e
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where the indices in the PCOs are SU(5) indices, i; € {2,..., N} and fi,,...n, does
not contain any A’s or w’s. The number £ indicates how many vertex operators
provide an N™". The functional integrals over A and N can be evaluated by per-
forming the OPE’s to remove all fields of nonzero weight. Then one replaces the
fields by their zero modes and performs the integration over these modes. In order
to perform the OPE between N™" and §(BN) one has to Taylor expand 6(BN), as
discussed in [22],

5((BN(y)) = 6(BNow(y) + BN(y)) = (5.58)

8(BNow(y)) + (BN (y))8'(BNow(y)) + %(BN(y))Qts”(BNow(y)) o

where N denotes N after omission of the zero mode. The holomorphic one form

w(y) is constant on the torus:
1

47‘(27'27

w(y) (5.59)

where 79 is the imaginary part of the modulus 7. The b ghost also contains N™"’s
which have to be taken into account if one is removing all fields of nonzero weight.
Let us start with the first term, the local b ghost, bg(u). The second term of b(u, ),
with the integration in it, will be dealt with later. After replacing B(u, y) by b(u) in
the amplitude, Bl(lN)Zk, becomes a sum over n, which counts the number of N™™’s
the local b ghost provides, of the following objects:

N 3
B, = [ONONDADO] [ ) [ dunstw) Y Fimmrvomimns )
i=2 j=0

N (g5, ) e N (25 YN () < N () Ay d) (y) - - (AP d) (y)
MDA (1) (€T)57 5. Naps ()07 (y) -+ 071 (y)
SO (N2 (w)s(N(y)) - S(N**())5(J (y))e*, (5.60)

where 60) denotes the jth derivative of the delta function and the sum runs from
zero to three because b does not contain 6(*)(B*N) or higher derivatives.

The product of the eleven delta functions, including the one from b, becomes a
sum of products of eleven §() (BT Ny) after the Taylor expansion. Let us start with
the first term in this sum, i.e. the one without N’s and no derivatives on the delta
functions. In this case the N"i" (z;)’s from (5.57) have OPE’s with themselves and
with the \’s from the PCOs. Let us first concentrate on the term in which all N™"’s
get contracted with an explicit \. That term is given by*

N
H / dzl‘| /dufmlnlvvvmk+nnk+n (Zl7 e 7ZN7 u)
=2

4Since the distinction between worldsheet fields and their zero modes plays a central role in the
argument, zero modes are denoted in an explicit way, unlike in other parts of this work.

i1eigm

v / (AN [AN][D'5d)[D'5]
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Chapter 5 - Decoupling of unphysical states

k

HF(Zilvy)

=1

(Mod(®))(A0)apy (€T)57 5, 0% (y) - - 07 ()3 (NG?) - - 5(Ng*)8(Jo)e e, (5.61)

F(w, y)" ™™ N N (o y 13 d(y)) - - (Aoy*d(y))

where
F(z,y) = 0;logE(z,y) (5.62)

and F(z,y) is the holomorphic prime form, which goes like z —y when z — y [3, 18].
N™" are abstract Lorentz generators for the A, w sector and they act to the right.
They should not be thought of as containing (zero) modes of the A or w worldsheet
fields. The N merely multiply every index on a A or w they hit by a two form
gamma matrix. Up to now only contractions between N™" and the explicit A’s have
been considered, but if two or more N"'"’s contract with each other in Bl(lN)lkn
gets a term of the form Cl-(fv,,),il)m, with [ +m < k + n, where the poles in z; — z; are
included in the unspecified function f.

The last step of our argument is showing all terms with derivatives on the delta
fv)lkn To see this
note that if a derivative acts on §(N?) one of the N™" must provide this zero

mode, otherwise the integral vanishes. This step just reduces the number of N""’s
N)
1"'il>m

one

functions can also be written as a sum of terms of the form CZ-(

in BZ(IN) that must be contracted, so in fact it becomes of the form Cl-( where

U, T
k+n— lk —m is the number derivatives acting on the delta functions. Since the zero
mode measures [dA] and [dN] are Lorentz invariant one can pull the A" out of these
integrals. This concludes the main part of the argument that a one-loop amplitude
can be written as a sum of terms proportional to Ig,...,,.

One still needs to consider the second term in B(u, w). This was not included
in the above discussion because it contains ON™"(v). This does not change the
argument much, after the OPE’s this part of the amplitude will also have the form
of Cl(lN)l where the effect of the v derivative and the integral over v are included
in f.

To see AY) can be written as a sum of terms proportional to Igllm 5,, one can
use the above reasoning with a slight adjustment. This consists of replacing A% (y)
by A%(z1) in (5.57) and adding an «; index to f. The only effect this has is the
replacement of some F(z;,y) by F(z1,z2;) in (5.61), apart from the fact oy and
are not contracted anymore.

ks

Four point function

The one-loop four-point function with an unphysical state in the formulation without
an integral over B vanishes. This should come as a surprise after the result of the
previous section, where it was shown that the Qg variation of the PCOs does not
vanish. The vanishing of the amplitude is instead achieved after the integral over
the d zero modes has been performed.
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Chapter 5 - Decoupling of unphysical states

The one-loop four-point amplitude is an example of an amplitude in which only
the zero modes contribute (cf. [22]). It turns out only three terms have enough
factors of d, and N™" to give a non-vanishing answer. This will become clear in
equation (5.64) below. Thus one can immediately replace all the fields in (5.41) by
their zero modes:

4
BW = / [dA|[dN]d"0dd " 0QsQ [ [ Uibpr (AB2d) - - - (AB'°d)(Ad) (5.63)
1=2

§(B'N) -+ 6(BN)S(J) Aoy (eT) 577 5 0705

For the d integration to be non-vanishing there must be a total of sixteen d zero
modes, therefore the only terms of bg: that contribute are the ones with four d’s
and there are only three such terms:

bpllat =~z (2P d) (Bd)a(Bd)a' (BN) (5.64)

1
— 12PN, (Bd) o (Bd)s(Bd), 6" (BN)

8 mn

il NN (B (Bd)o(Bd) (Bd)sd" (BN),

where the invariant tensors ¢; and ¢4 can be read off from (2.39)-(2.42) and (3.139)-
(3.148). Note the N integration will only be non-vanishing if the fourth vertex
operator provides an N™" zero mode. Moreover there are no terms in the b ghost
with three d’s and no derivatives on §(BN). Such terms could have contributed here.
The three terms above turn out to all be proportional to (for By, = (5[1a(5§],B“b =
B = 0)

d"dsdyds0' (N'2). (5.65)

For the first term this follows from direct computation using the gamma matrices
as listed in section 3.2.4. Actually, one could have predicted the fact that three of
the four d,’s are d,’s and one is a d®, by looking at the M charge of the full
term. 0'(N'?) has M charge two and since 73, (dy™"Pd)(Bd)o (Bd)sd'(BN) has
M charge zero, the d part must have M charge minus two. The only way four d’s
can give M charge minus two is when three of them are a d, (M charge —%) and
the fourth is a d*® (M charge 1).

The second term can be reduced as follows:
(e N™d, (Bd)o(Bd)(Bd), " (BN) = (5.66)

deras lealag 12adal€a3a4 12bdbé€a5a6 12cd66/(N12),

2
where the M charge conservation property of invariant tensors was used together

with (Bd), = 0. After observing that (¢1)apa,.-as 1S an SU(5) invariant tensor that

(01)12 ay---asg

121



Chapter 5 - Decoupling of unphysical states

is antisymmetric in the middle three pairs of indices (ajaq, azas, asag) and there is
only one invariant tensor with these symmetries [40], namely (€apa; as[as€as]asasaras +
5 perms), one finds that the second term in the b ghost is proportional to

(€1)123435450705 A°7 " d3dads 8’ (N'?) = d'?dgdysds 6’ (N'?). (5.67)

The same logic can be applied to the third term although this case is slightly simpler.
a, 3,7,6 has to be +,ab,cd, ef and since (Bd); = d'? one automatically gets this
factor.

The third integrated vertex operator must provide an N'2 zero mode. It then
follows that B™) is proportional to Ig,...5,,. This integral can be written as a sum
over k just as in (5.48). In this sum the & = 0,1,2,6 terms vanish because of the
A integration and the k = 4,5 terms vanish due to the d integration (note that bpz:
contains three d,’s and Yy, Y5 contain at least three d,’s). The k = 3 term is given
by

EERYo A 1 abajazc a3a4as5a
(bBl)|d4(13)a1---a552--ﬂ11(}/B)lll 8 = §d12d3d4d5 <€ baiaz dCDlgabEd 3444546 ) 4

(5.68)

1 .
6abu,l azcedea3a4fdcdeIZabdedas ag + 56abu,1 agcedea3a4f€gha5 agj dcdfdeIQabdeghd+

1
/[d/\] )\__,_ AP /\lh az )‘as as /\as ag A51 0203 (ET)651162(23311 =

1
— @ dydadse™ > dedg Disay / [ANA" N N Ao 5250 (€1) 312205, +

—d12d3d4d56aba1azcdcd.fD12ab /[d}\]Aﬁl )\alazA'fA5152§3 (ET)651162(23311 = 07

where the following identity was used
Dizaead®! = 66 Diza, — 61°65 Dapea — 0166] Dear (5.69)

and the integral vanishes because €T is traceless.

Thus, for the four-point one-loop amplitudes with a Qg exact state the terms that
do not vanish after the A\, N integral now vanish because they contain a square of
fermionic quantity, namely d,d, (no sum). Decoupling of unphysical states in higher
point function is much more tedious to check since the nonzero mode integrations
are non-trivial and the lack of manifest Lorentz invariance.

5.2.2 Including B integration

At tree level decoupling of unphysical states was restored after integrating over the
constant spinors C. In this section manifest Lorentz invariance for one-loop ampli-
tudes is restored by including the B integration. Whether this leads to decoupling
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of unphysical is the subject of this section. Similar to the tree-level case one can
show that all amplitudes are proportional to a certain invariant tensor (at tree level
this was (e7")) and amplitudes with Qg exact states are proportional to the trace of
this invariant tensor. However, at one loop the trace of this tensor does not vanish.

Following the same steps as in the previous subsection (section 5.3 contains
details of these steps), one can show that all amplitudes can be written as a sum of
terms proportional to the following zero mode integral

Xgll'v'v'vﬁallllmlm'"mmnm = /[dB] [dC] [d)‘] [dN])\al RPN (5.70)
Bl B Ch OB S(CTA) - 8(CHMN)S(BYN) - S(BYON)S(J).

Proportional here means in the sense of tensor multiplication: in the terms that
appear after contractions, the tensor X is multiplied by gamma matrices. Evaluating
the integrals in (5.70) is much easier than one might have anticipated, because X
must be an invariant tensor, that is symmetric and gamma matrix traceless in the
a’s, antisymmetric in the 8’s and antisymmetric in both m; < n; and m;n; < m;n;.
To find out how many independent invariant tensors with these properties exist, one
has to compute the number of scalars in the relevant tensor product, which is one
(see also section 3.2.3). The relevant invariant tensor has already appeared in the
one-loop prescription in chapter 2:

(eTR)G: o = (1) SR R ) e (5.71)

1--+Brimany--mionio

where the double brackets denote gamma matrix traceless, cf. section 3.5. Lorentz
invariance has completely fixed X, there is no freedom remaining.

Starting from a correlator with an unphysical state and integrating Qs by parts,
it will hit a 0 from a PCO (where the total derivative in moduli space obtained when
Qs acts on b is again suppressed, this derivative does not play a role here). This
means all amplitudes with an unphysical state can be written as a sum of terms
proportional to the trace of (eT'R):

/ [dB][dC[dA][dN]A®? - - X BL - B0 NRCY CF - CBL
5(C'A)---6(CHMN)S(B'N) -+ 8(BYN)S(J) = (€TR) 5% i eomromies (5:72)

There are two independent invariant tensors with indices and symmetries of the
trace of (¢T'R), so one expects a non-vanishing trace. Indeed, it is proved in section
5.2.3 that this trace does not vanish, which provides another proof for the fact that
the PCO is not Qg closed. The non-vanishing of the trace implies the proof of
decoupling of unphysical states at tree level does not generalise to one loop and one
needs a new argument. Such a new argument is presented in section 5.4, where it is
shown that unphysical states decouple to all loop order.
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Comparison to non-minimal formalism

In this subsection a brief comparison with the non-minimal formalism [25] is made.
In this case all insertions are Qg closed and decoupling of unphysical states follows
straightforwardly.

In the non-minimal formalism the PCOs are replaced by

N = e~ OA10+ 3 N N7 4 3 S Ay ™ d+- T T+ 5 SAd) (5.73)
This is invariant under Qg:
—mn L — 1 - -
QsN = (A\r — Ar + N"m§)\7mnd — Nm”§/\'ymnd + J(Ad) — J(A))N =0. (5.74)

Thus, all problematic terms of the minimal formalism are manifestly absent here
and Qg exact states decouple. In other words, these amplitudes vanish because two
equal terms are subtracted.

5.2.3 Non-vanishing of the trace of (¢IT'R)

In this subsection the trace Tr (eT'R) of the tensor (eT'R) is computed. To show that
this trace does not vanish it is convenient to define a tensor Y and an operator X:

Ym1"'n10 = 5‘044 o 'S‘allR?ni.-.-.-C:zllloa (575)
. o 9
X = 1/)[312 o 'wﬂle/\oﬂ o )\a3T612“ﬂ16)a1a2a3¢aﬁa (576)

where 1), is a fermionic Weyl spinor and A, is a pure spinor of opposite chirality to
M. Note that, because \, is a constrained spinor, 9/0), is only defined up to a
gauge transformation:
o _
00— = A™ (v A)®. 5.77
S = A7 () (577)
The operator X, however, is well defined, since it is gauge invariant. This follows
from

5\7q¢w[312 . 'wﬂm/_\aq . 5\a3T512...[316,a1a2a3 =0. (578)

That can be shown be noting there are no scalars in Asym®16’ ® 10 @ Gam?*16/,
where Gam means the symmetric and gamma matrix traceless tensor product. Note
one can use 5
—— g =% 5.79
o =% (5.79)
when 0/0), is part of a gauge invariant quantity, S, (9/0\.), because

o - - _
Sy —— MY\ = Sy™\ = 0, 5.80
M v (5.80)
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the last equality is a consequence of gauge invariance.

The first step of the argument is showing that Xy = 0. The second and last step
is proving this implies the trace of (¢I'R) does not vanish. Consider the following
component of XY in a Lorentz frame in which the only nonzero component of X is
A

XYalb1¢12b2"'alob1o = (/Wm‘/’)(/\%‘/’)(/\%ﬂ’)(‘/) mnpw) (581)

2(1/)7111 biazazaq ;\) (5‘7115 bsbaagar ;\) (;\Vasbs bsbgag (/\7a1o b10bab7bg /\)

A)
2(;\’7111 biazazaq )‘) (¢7a5b5b2a5a7/\) ()"Yasbsb?,baag )( Ya10b10babrby ;\)
2 (/\'Yal biazazaq )‘) ()\'Yas bsb2agar /\) (’@[1'7118 bgbzbsag ) (
2 (/\7a1 biazazaq )‘) ()"Yar bsbaagar /\) (

Ya10b10babrby /\)
Yagbgbsbsag ) (wVGm b10bab7bg /\)

+permutations|,

where the permutations make the RHS antisymmetric in a;b; < a;b;. This reduces,
up to an overall constant which is not zero®, to

o _ crees 10 ++
XYa1b1azb2'“a1ob10 =€? C5¢C1 ’ wCr ()‘+) ¢+7a1b1a2a3a47a5b5b2a6a7 (584)

: 10
’Y;_s—gsb?,ballg’ytzjbmbsz?bg + permutations = ! c5¢01 o '1/)05 (/\+) Vi (elo)ar“bm # 0.
What remains is to show the non-vanishing of this tensor implies the non-vanishing
of the trace of (¢T'R).

Xleny»»mmnm = 651.“516[(61—‘) algflasdjan ¢512 U wﬁm]Rgfl.;l.?%'lT)fzmn1oj‘a1 o ';\Otlo'
(5.85)
For the term in the square brackets one can move the a1 to (¢1') by using

0= (6T)a1azgf’1w512 T ¢516¢0¢11] = (5.86)

(GT)[Oglazginl? o 'wﬁlﬁ]wall + 11(6T)311a[§301é-3~510¢611 o 'wﬁlﬁ]'
The first line is zero because it contains an antisymmetrisation of seventeen indices

that only take sixteen values.

Xlenl”'mlonlo = ﬁ e [(GT)gt(ilﬁofagmwﬁn T ’@[Jﬁw]RglA‘l.ﬁ.lO{l“l?z%onlo ;\Oq T )‘0110'
(5.87)
Since (eTR)auﬁ(;uBumﬂh"'m10n10 is fully antisymmetric in (s - - - 811 and symmetric

and gamma matrix traceless in a1 - - - a9, one can conclude from the non-vanishing
of XY that

(1) {208 Rttt sy 7 0. (5.88)

5Constants were omitted in the following two relations:

Qym ) Ayn ) Arpdh) (P ™Peh) oc €1 S ahey -+ theg (A1), (5.82)

++ ++

++ 3
(Pyalb1aga3a4ﬁ/asb5bga6a7ﬁ{agbgb3b6a97a10b10b4b7bg + permutatlons) o (Elo)albl“‘aloblo' (583)
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5.3 No-go theorem for ()5 closed, Lorentz invari-
ant PCOs

In the previous section it was proved that the Lorentz invariant PCO was not Qg
closed. A logical next step is to give a modified prescription in which the PCO
is Qg closed. However the non-vanishing of the trace of the invariant tensor eT'R,
which played an important role in the previous section, places severe restrictions on
a Qg closed PCO. It turns out that any Lorentz invariant Qg closed PCO leads to
vanishing of all one loop amplitudes.

A Lorentz invariant Qg closed PCO is defined as an operator Y that satisfies

o Y = fa,..0, (N5 - 051
o f3,...3,,(A\) has Jy, charge —11,
o f3,...3,,(A) is a Lorentz tensor,
o QsY = 0.
The original proposal in [22] is the special case where the function f is given by®
Forogns = /[d()]c[lﬁl L O B(CIA) - 5(CT), (5.90)
This satisfies the first three conditions, but although QgsY ~ AJ(A) the fourth bullet

does not hold for (5.90).
Using the fact that f is a Lorentz tensor one finds,

JBANIA® X3 8 e (DB - B(BON)) =
€1 (ETR)gll:::gllllmml---mmmo’ (5.91)

for some ¢;. This follows from the fact that (¢I'R) is the unique Lorentz tensor with
the indicated tensor structure. Now the crucial observation is that for functions f
such that Qg¢Y = 0 the integral (5.91) must be equal to zero. Indeed, using

0=QsY = fa,...50, \)N10%2 ... P11, (5.92)
leads to
0= /[dB] [AN[AN]X®2 - X1 BL o BR L (fa g N 0P2 0P

6The C integral can be evaluated to give

forp1y = (€157 5 Aapy. (5.89)
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§(BIN)---6(BYN)§(J) = ¢1 (€T R)™ ;1 g% ...95n, (5.93)

1Bz Briming--mionio
The trace of (¢I'R) does not vanish as shown in section 5.2.3. Hence one cam
conclude that
c1 =0. (5.94)

To prove vanishing of all one-loop amplitudes the above result is not enough,
because there are also zero mode integrals with derivatives on the delta functions
and N insertions. After the nonzero mode integration is performed, an arbitrary
amplitude is reduced to a sum of zero mode integrals, all of which are of the form

ggl'“allplqr“PLqL — (5.95)

1-+B11M1Ng-M10MN107T181  TLSL

L Ly Li+L2 L
g 1 2 10
/[dB] [dN] [d/\] H NP H Bri15i1 H B"’i2 Siy H B”lﬂ Sito
j=1 i1=1 1o=L1+1 t10=L1+---+Log+1
A% ... \an fo'ﬁu (/\)Bflnlnl .. 'Bfln?mnmé(Ll)(BlN) .. .(S(Lw)(BlONv)é(J)7

where all the fields are zero modes and L = 2}30:1 Lp and 6™ (x) denotes the m-th
derivative of §(x). All zero mode integrands have to be of the form (2.48), (2.49) for
a non-vanishing answer. In order to write down the above zero mode integrand one
starts from the general functions fp,hp from chapter 2 and uses the following four
arguments.

e For each P the total number of B¥’s outside the delta functions is equal to
the number of derivatives on §(BFN) plus one. This can be inferred from
the explicit form of the b ghost, (2.38), and the Taylor expansion of the delta
functions. This is reflected in (5.95) because Lp appears in two places.

e For a nonzero answer the total number of N zero modes must equal the total
number of derivatives on the delta functions. This gives the restriction L =

S Lp.

e One might have expected derivatives on §(J) as well, but for a non-vanishing
answer there must also be enough J zero modes, so one can always reduce the
amplitude to contain only §(J).

e Compared to (2.48) the A dependence is less general. It is possible to restrict
to this class of integrands because fg,...3,, (A) is a Lorentz tensor. To see this
note the OPE’s of V and J with f do not introduce derivatives:

11

N () fo g A@)) ~ GG S Aw) ——, (5.96)
i=1
T V@)~ —11fo g () —— (597)

where the « index is in the i position.
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Note that the free indices on £ can be either contracted among each other or with
d or 0 zero modes. The integral in (5.95) can be evaluated by using the definition
of B integration in (2.50). Let us call the integrand of (5.95) g and write it as

10
g\ N, BP)y = xer oyl Bu (N, BE) T 657/(BEN) 3,6, (V). (5.98)
P=1

where h is a polynomial depending on (N, J, B) as

10
(NE T B . (5.99)
P=1

It also contains other fields (e.g. 6, d) but these are suppressed.
The integrations can be performed using (2.50):

B B
Iy — Qo
/ ABJAAN]gO\ N, T, BY) = = (TR oy (5:100)
B B e
L B0 Py __
9Bl 2BW H(aB{,’anpq) PATE ARG (AN BT =
mini mion10 p—1
B) B
(€TR)G gt
Bi---Briming 10 108‘Brlnln1 837179107110
10
o 0
[T G g h 2 AN, 1. B)
P=1 prq

This reduces to (2.50) with K; = 0 if one chooses fg,...3,, (A) as in (5.90) and uses

P11 8 a
hesah = oy pog, e (5.101)

Using the above definition the integral in (5.95) can be evaluated as

gal”'allpllh'”PLQL —
B1--Brimini---mionioris1-TLSL

Cl‘l"'l’lf)(sglp1 5211 o 5£Z;‘L 6;12]) (GTR)gll:::gllllmlnl”'mlo'ﬂl()

+symmetrisation in([rr 41, SLp_141)s -+ ["Lps SLp), [mPNP]), (5.102)

for some constant cr,,...,,,. Note the round brackets denote symmetrisation in

P11, - - ., [pracl- (5.103)

The second line above includes ten symmetrisations, one for each P. £ is symmetric
in these indices because they all appear on BY. (Note that by definition Loy = 0).
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To get some insight how to obtain (5.102) consider the case Ly = L = 1. In that
case the RHS of (5.95) is given by

o o 0 o - o
(TRt -t 55T — gNwd o951, aBm0_,  PrasiBmans = Brsonao:
p'a’ ming mignio
(5.104)

where the spinor indices on (¢T'R) are suppressed. The last nine B differentiations
are trivial resulting in:

0 0 O Nmp! gl (5.105)

eT'R
( )m n 1Mm2n2---M1ion10 aBll . aNpq aBl / o T181"miny’
1

Let us first perform the N differentiation followed by the last two B differentiations:

0 0
(ETR)’IR n’ 1man2---mionio 8B1 8B1 , BilslB}nlnl = (5'106)
miny

(GTR)m nfmong-- m10n105§1p5q 0 Wil 621]) = 5'[55(51]1 (eTR)mlnl”'mlonlo + (7‘181 = mlnl)’

which agrees with (5.102). The above computation clarifies the appearance of the
Kronecker delta’s. It is a consequence of the fact % and % appear contracted.
Pq

The symmetrisations in (5.102) follow from the product rule of differentiation.
With these preliminaries it is possible to prove that if QsY = 0 then all one-loop
amplitudes vanish:

No go theorem

QsY =0=>cp,..p,, =0, (5.107)
¢p,...D,;,, = 0 = all one loop amplitudes vanish, (5.108)

Proof of (5.107). In terms of f the condition on the LHS of (5.107) reads

0=QsY = fa,..50, (MNP0 ... 951, (5.109)
This implies
0= 821152(1123?113111.;1.11)'1"3;10"107’151"'TLI SL,y - (5110)

Lo 5$[1P1 631 ’ 6[PL 611L]) (GTR)giﬂ;llbumlnl *M10M10

+symmetrisation in([rr, ,+1,8Lp_141)y- -5 [TLpsSLps [MpPnP]),

Since the trace of (¢I'R) does not vanish, the invariant tensor Tr (eI'R) has at least
one non-vanishing component. Let us denote this index choice by hats. If one
chooses

ris; =mphp, it=Lp 14+1,---,Lp, (5111)
pigi = mphp, 1=Lp_1+1,---,Lp, (5.112)
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the tensor on the RHS of (5.110) is non-vanishing. Therefore
CLy---Lig — 0. (5113)

Proof of (5.108). As explained around (5.95) all amplitudes can be written as a sum
of terms, where all terms contain a cr,,...1,,,-

This no-go theorem can be used to prove that the Yo as defined in (2.23) are not
Qs closed. In order to see this note that computations performed in the minimal
pure spinor formalism including an integration over C' have led to non-vanishing
answers, see e.g. [22]. In fact even agreement with the RNS formalism has been
show where possible. From the no-go theorem one can conclude Y is not Qg closed:

Qs /[d()](cle) < (CMO)S(CIN) ---5(CMN) £ 0. (5.114)

This implies that the individual factors, Y, cannot be Qg closed either:

QRs(CO)6(CA) # 0. (5.115)

5.4 Proof of decoupling of unphysical states

The PCO Y is not Qg closed, hence the standard argument for decoupling of un-
physical states does not apply. However that does not mean unphysical states do
not decouple. One just has to use other arguments. A proof of decoupling of un-
physical states in the minimal pure spinor formalism including integrals over C' and
B is presented in this section. Firstly the tree-level argument is reviewed in a form
that generalises to the higher loops and it is shown that Qg exact states decouple to
all orders. Secondly a new symmetry of the insertions is exposed. This symmetry
follows from the particular form of the picture raising operators, Zp and it plays a
crucial role in the proof. Finally this symmetry is combined with arguments based
on Lorentz invariance to prove decoupling of unphysical states at every genus.

5.4.1 Tree-level amplitudes

After integrating out the nonzero modes every tree-level amplitude assumes the form

A= /[d/\] [dC]A" O ON NN fop (0, 0, k)07 - 071 Cf -+ CRL 5(CMA) -+ 6(CMN),
(5.116)
where a denotes all polarisations and k£ denotes all momenta. Note that the integra-
tion over the nonzero modes does not affect the factor of Y1 -« - Y11, This can be
justified either by writing Yo as a function of only zero modes or by inserting the
factor of (Yo)!! at z = oo on the worldsheet. The three factors of A originate from
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the three unintegrated vertex operators and the factors of 8, C and §(CA) from the
eleven picture changing operators Yo. In order to evaluate (5.116) first note that
only terms with five 8’s can contribute:

A= / [AN[ACTA SN NN ) s (ank) (5.117)

6% .07 CL o Cp 5(CTN) - 5(CHIN).

The next step is showing that the integration is a projection on the scalar in ().
To this end the tensor product (\)3(#)° is written in terms of its irreducible repre-
sentations:

AN \YPP2 ... gPre — Taﬂ’mm.“BlaTa’ﬂ/y'ﬂ{z--- 16/\0//\5,/\’7,95{2 .. ,95154_ (5.118)
(T0) V12 BTN (Ty ) oy g AT AT AT 0582 - 004

Z(Ti)aﬁvﬁw"'ﬁwqu (Ti)a’ﬁ’v’ﬁiz'”ﬁiﬁm /\O‘/)\B/ /\7/9512 - 95167
i>2

where z; are the indices representing the representation. To obtain the above ex-
pansion one first needs to compute the tensor product Gam®16 @ Asym®16. As
discussed in section 3.4.1 this contains one scalar. One also finds there is one 45 in
the tensor product, hence the second line. The sum in the last line runs over all the
other irreducible representations in the tensor product, each one has an invariant
tensor (T;) associated to it. Furthermore all the (7;)’s satisfy

TBYB12P1e (Ti)aﬁvﬁlz---ﬁwqu =0. (5.119)

This can be proved by contracting both sides of (5.118) with Tagyg,,--816- TLhe
integrations in (5.117) can be evaluated by Lorentz invariance:

</ d*°9e" _..9516> </[d/\] [ACIANNXNIC, - Clgy 5(CMA) - .5(011/\)) _

Pr-Bio (eT) By _ paByBiz-fie (5.120)

«
B1-+-B11

After using (5.119) one sees all the non-scalar terms in (5.118) are annihilated by
the integration. It is therefore a projection on the scalar as claimed. The final
expression for the amplitude becomes

A= Taﬁ’mlzmﬁwffﬁ)'yﬁlg»»»ﬁm(a” k). (5.121)
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Decoupling of Qs exact states at tree level

After integrating out the nonzero modes, the amplitude containing a Qs exact state
becomes,

/[dA]dlﬁo(QSQ(A, 0,a,k))0" - 071Ch - Cp,, 5(CHA) -+ 5(CMN),  (5.122)

for some €2, where all fields are zero modes. The above integral will be shown to
vanish for any €.

Since only the terms with five 8’s and three \’s in Qg2 contribute, let us focus on
terms in 2 with two A’s and six #’s. The upshot of the proof is that no Lorentz scalar
can be constructed from two A’s and six 0’s. Therefore there will be no scalar in
Qs(N)?(0)¢ and since the integration projects on the scalar the amplitude vanishes.
In order to make this argument precise let us write:

Qe = X*AT07 - 0% fop, .o, k) (5.123)

for some f. The next step is writing the tensor product (A)2(#)® in terms of its
irreducible representations:

Ql())z(g)e = faﬁﬁr--ﬁe (a, ]C) <Z(Ti)aﬁﬁlwﬁﬁyi (Ti)a’ﬁ’ﬁi---ﬁéyi)\a )\B 961 v 965

K2

(5.124)
In the above formula it is important to note that there are no scalars in the tensor
product of two pure spinors and six fermionic spinors. This is reflected by the fact
that y; represents (a positive number of) indices for every i. Now one can perform
the Qg transformation:

Qs 2000 = faps-ps(a, k) (5.125)

(Z(ﬁ)aﬂﬁl"'ﬂﬁyi (ﬁ)a’ﬁ’[w’ﬁévvﬂé]yqy /\a’/\ﬂ’)\’ylgﬂé .. 95é> )

%

After invoking (5.120) one finds

/[dA]dlﬁo (QsQny2(eys) 071 -+ 071 Ch -+ Cp, 5(CHA) -+ §(CHA) = (5.126)

faﬁﬁlmﬁﬁ (a, k) Z(Ti)aﬁﬁl--ﬂsyi (Ti)a,ﬂ,['}/ﬂé"'ﬁé]yiTa B ByBsl —
This vanishes because
7o' B ByBg) 0, (5.127)

which follows from the statement that there are no scalars in (A\)%()°. This concludes
the proof that (5.122) vanishes.

132



Chapter 5 - Decoupling of unphysical states

5.4.2 Higher-loop amplitudes

In order to prove decoupling of unphysical states at higher-loop amplitudes one
can take similar steps to the tree-level case. This means that one first reduces the
amplitude to a zero mode integral, which is effectively a projection onto a scalar and
then one shows there is no scalar when one started with a Qg exact state. In the
higher-loop case an additional ingredient is needed for the second step which is a
symmetry possessed by the integrand of the functional integral. This symmetry is
closely related to the transformations in (4.50).

Additional symmetry

The amplitude prescription contains products of PCOs Zp and Z;. The main ob-
servation is that

7575 = B M™"d §(Bpn N™)(Ad)5 () (5.128)

is invariant under
5an = (A'Y[m)a.fr?] (5129)

where f"® are constants. This transformation acts on the B,,,, N™" and B,,,, \Y"""d
as,

BB N™ = (e fEO0™w0) = (0" f) ), (5.130)
6Bmn(M""d) = (Mm)afi (M""d) = (X" f)(Ad). (5.131)

Since all these transformations contain either (Aw) or (Ad) and Z; contains both
d(Aw) and Ad:

§(ZpZy) = 0. (5.132)

Now recall that at genus g, 3g—3 B’s (one at genus one) enter via the b ghost. These
B’s are taken to be inert. The remaining 7g + 3 B’s (9 at genus one) are taken to
transform as in (5.129). Note that at one loop, the factor of (Z5)?Z; is placed at a
single point on the worldsheet. At two-loop order, the additional factor of (Zp)"Z;
is placed at a second point on the worldsheet. And at each additional loop order,
one places the new factor of (Z)"Z; at a g'" point on the worldsheet. With this
choice, (5.129) is an invariance of the theory for 7g+3 B’s and the amplitudes must
respect this symmetry.

One can understand the origin of this symmetry by going back to the first prin-
ciples derivation of the amplitude prescription in chapter 4. As shown there, PCO
insertions arise from gauge fixing the invariance due to pure spinor zero modes. The
auxiliary fields in the gauge fixing terms have gauge invariances (cf. (4.50)). The
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symmetry (5.129) is a remnant of these invariances. This suggests that the ampli-
tudes are also invariant under transformations of the (3g — 3) (one when g = 1)
factors of B involved in the b insertions’, but this will not be proved or used here.

One-loop amplitudes

After integrating out all nonzero modes, as well as the d, zero modes, every one-loop
amplitude can be written as

miny miomnioY 111

/ [AN[AN][dC][dB]d™ A .- A1 BL .. BI0  gmimiemionio(g o 1) (5.133)

090l - CF S(CTN) - 5(CMN)S(BIN) -+ 6(BON)S(J),

where all fields are zero modes and the integrand is invariant under the B transfor-
mation (5.129). As in the tree amplitude, the integration over the nonzero modes
does not affect the (Yo)!! factor since this factor can be written in terms of only
zero modes. In this expression, eleven factors of \ originate as follows: one from
the unintegrated vertex operator, one from Z; and nine from the nine factors of
Zp. In general the zero mode integral can contain additional factors of the Lorentz
currents N, higher powers of B and higher derivatives of §(BN). These addi-
tional factors can be put into the form of (5.133) by integrating by parts using
that NP9B,,,00(BN) = —5%645(BN).

One can show that the integral in (5.133) is also a projection on a scalar. To see
this first note that there is one scalar in Gam''16 ® Asym®16 @ Asym'°45. This
implies one can write

AL\ phepgl  glo = (5.134)

ming mionio

(TR e e (TR (0)°(B)'©) +

miny-mionio
DSl (ST 0)°(B)'0)"
where the notation ((7R)(A)*(0)°(B)'°) means that all indices of (T'R) have been
contracted with those of A, and B and (S;(A\)" (9)5(3)10)m denotes an object that

has x; as its only free index and which transforms in some non-scalar representation.
Similar to the tree-level case the invariant tensors S; satisfy

((RT)(S:))™ = 0. (5.135)

Note that since B is not a covariant tensor this is not the decomposition of a Lorentz
invariant object into a lot of Lorentz invariant terms like (5.118). However this does

"Recall that (3g — 3) (one when g = 1) of the Zp factors are absorbed into the b-insertions.
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not matter, the point of performing this expansion is that all the non scalar terms
vanish due to the integration. The last point follows from (5.135) and

/[d/\] [dC][dB][AN]A ---A*nBL Bl Ch - Ol (5.136)

mini mionio

§(C'A)---6(CT'N)S(B'N)---6(B'N)8(J) = (TR)F 5!

1-friming-mionio’

which is also a consequence of the fact there is only one Lorentz scalar in Gam'' 16 ®
Asym®16 © Asym'%45.

Decoupling of Qs exact states

Decoupling of unphysical states will be shown by proving that if

AL el IO pmimmaonio (g g ) (5.137)

mini mionioY 111

can be written as Qg€ where € is invariant under the B transformation then (5.133)
vanishes.

Note 2 must contain ten \’s, six #’s and ten B’s. There are two scalars in
Gam'Y16 ® Asym®16® Asym'°45. Since Gam''16 @ Asym®16 ® Asym'°45 contains
only a single scalar and Qg maps scalars to scalars, there is a basis of invariant tensors
such that one of the scalars is annihilated by Qg and the other one, call it )y, has
a nonzero variation, Qs€; # 0. This scalar is®

Q1 = (T(N?()°) (R(B)"°(N)(0)") . (5.138)

Here (R(B)*(\)7(0)!) denotes the unique scalar obtained by contracting all indices
of the objects involved. The state Qg{); is a candidate exact state that may not
decouple. The scalar €23 however is not invariant under the transformation (5.129)
for nine of the ten B’s. In fact, one can show that €2y is invariant under the transfor-
mation (5.129) for only six of the ten B’s. To see this, note that (R(B)'(X)7(6)")
can be expressed as

(A ™57 1) (A" O X Ay ) (A g) (5.130)

contracted with the 20 vector indices of (B)'°. If both indices of B, are contracted
with mq - --my5, then Qp is invariant under the transformation (5.129) for that B
since (Ay™" A (AMym )a = 0. However, if at least one index of B, is contracted
with myg - - - mag, then Q is not invariant under the transformation (5.129) for that
B. Using the definition of R G5 ' one finds there are four B’s whose indices are
contracted with myg - - - mag, so 7 is invariant under the transformation (5.129) for
six of the ten B’s.

8 Another possible candidate, (T'(\)2(6)%) (R(B)°(A)®), vanishes identically because of (5.127).
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But since the gauge parameter must be invariant under (5.129) for nine of the
ten B’s, there is no way to generate {2; as a possible gauge parameter. Thus one
can conclude that if it is Qg exact and invariant under the B transformation,

ming - m10n10(9 a, k))\al. e pl ...RB1o (5.140)

(S RANCITE miny mionio

does not contain any scalars constructed from eleven \’s, five 6’s and ten B’s. Since
the integration projects on the (single) scalar the total zero mode integral vanishes.
The precise argument is analogous to the steps in section 5.4.1.

Higher-loop amplitudes

The argument for g > 1 is exactly analogous. After integrating out all nonzero
modes, as well as the zero modes of d,, every g > 1 loop amplitude can be written
as

/dw@[d)\] [dCIA* A2 \*30% 9P Cl o L 5(CTN) -+ 6(CMN)

H ( dNI )\Oz4 .. ./\Ot{1BinI{ BlOI 5(BIIN) 5(3101N)5(J1))

mioni,
I=1

fm1n1 “3107;10(9 a, k) (5.141)

0(10(104304

where all fields are zero modes and the integrand is invariant under the B transfor-
mation (5.129). Now the factors A originate from the (7¢g + 3) factors of Zp and
the g factors of Z;. Additional factors of N, B and derivatives of 6(BN) can be
removed as in the one-loop case.

In this case the analogue of (5.136) is

/[d)\] [dCIX N2 N CYy -+ CpL 6(CTA) -+ 6(CMN), (5.142)

g
H( NNt xeh Bl B §(BYN)- (5(B“”N)(5(JI))

migniy
I=1

g 0410420430(4 0‘11
(GTR )51 Briming--migni,
where (eT'RY) is the generalisation of (5.71) involving g factors of R.
There are g candidate Qg exact states that may not decouple, which are the

analogs of (5.138) and are given by

QJ— 1:[ BI 10 ) (R(BJ)IO()\)7(9)1) H (R(BI)IO()\)S)
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where B! denotes the B’s associated with the I** zero mode. As in the one-loop
case, the term (R(B7)°(X\)7(0)') is at most invariant under six of the ten B’
transformations. But invariance under (5.129) requires invariance under seven of
the ten BY transformations.

This concludes the proof that unphysical states decouple to all orders in g.

5.5 Origin of the problems

Based on the BRST methods of chapter 4 one would expect that the PCOs are Qg
closed, since they originate from the gauge fixing term which is Qg exact. However
it has been proved in this chapter that the PCOs are not closed inside correlators.
In order to explain this paradox let us go back to the first principles derivation of
the amplitude prescription in chapter 4. Both the minimal and the non-minimal
amplitude prescriptions were obtained by first coupling the pure spinor sigma model
to topological gravity and then proceeding to BRST quantise this system. The
BRST quantisation was applied to all gauge invariances, including the zero mode
shifts of the worldsheet fields. As shown in this section the gauge fixing condition
for these zero modes implicit in Lg (cf. (4.46)) sets all the zero modes to A* = 0.
However including this point in the target space of the curved (v system that the
pure spinor sector is, leads to anomalies. More precisely Nekrasov showed that
the target space of curved (v systems is subject to certain conditions, which are
necessary for conformal invariance of the worldsheet theory [21]. These conditions
dictate that the point A* = 0 cannot be part of the target space of the pure spinor
sigma model.

Focussing on the tree level case for a moment the gauge fixing Lagrangian for
the zero mode invariances is given by (after the BRST ghosts have been integrated
out):

Ll = mo A + T 0°. (5.144)

5.5.1 Minimal formalism

To express the fact that 7, and 7, have eleven independent components they were
parametrised as

7o = prCL, Fo=prCL T=1,...11, (5.145)

where C is a matrix that must have maximal rank. Thus the gauge fixing condition
is given by
CIN* = 0. (5.146)
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The eleven constant spinors C are the ones that enter in the minimal pure spinor
prescription. Indeed, using (5.145) one finds that the path integral contains

11
/ (dpr)[dpr] exp (prCIX + prCLO%) = [[(CLO™)S(CLAY) (5.147)
I=1
which are the eleven picture changing operators Y¢.

Implicit in (5.147) there is an analytic continuation in the field variables. A Weyl
spinor in ten Euclidian dimensions cannot be real, hence A is complex and in the
minimal formulation only the holomorphic part appears. In equation (5.147) one
analytically continues A to be real and considers 7y to be purely imaginary. This
can be done if the explicit expressions appearing in the amplitude computations are
not singular. Typical integrals in the minimal formalism at tree level are of the form

/ioo [dp] /OO [dA]f(\)ePrCar” :/OO [N F(N)S(CEN) - - 5(CHN). (5.148)

where f()\) contains A but not its complex conjugate. For this expression to be
well-defined f(\) should not contain any (C?)) poles and moreover there should not
be any poles that obstruct the analytic continuation of A to real values.

At higher loops the conjugate momentum has zero modes as well and gauge fixing

this invariance leads exactly to the insertion of PCOs Zp, Z;, where the tensors By,
enter through the gauge fixing condition, as discussed in chapter 4. In addition, one
needs a composite b field satisfying (2.34). In the minimal formulation, a solution
of (2.34) is given by [55]
_AeGe
O\
where G is given in (3.139). This is however too singular to be acceptable. One
can obtain a non-singular b field by combining the b field with the PCO and solving
instead (2.36). Note that this b field now depends on the B,,, constant tensors but
not on C.

b

(5.149)

5.5.2 Non-minimal formalism

The same expression (5.144) leads to the so-called regularisation factor in (5.73).
This time one has to choose m, to be a pure spinor of opposite chirality to A<,
usually called A\,. This indeed has eleven independent components, as required.
The field 7, usually called r,, automatically follows because it is the Qg variation
of q,

o = QgAa. (5.150)

This leads to the non-minimal formalism. To see this explicitly note that the factor
e~ L3, which is given by )
L (5.151)
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is precisely A/. The additional factors Ny N™™ 4 %Smn/\*ym”d+ JJ+ %S Ad originate
from gauge fixing the zero modes of wg.

Note that A is now holomorphic and 7, = M, is considered as its complex con-
jugate variable. Typical integrals one encounters at tree level in the non-minimal
formalism are therefore

/ AN [AALf (Ve (5.152)

At higher loop order the b field enters the amplitudes. In the non-minimal
formalism, equation (2.34) has a solution that depends on both A and X. It is
however singular as A\ — 0 and this causes problems to certain amplitudes as
explained in section 2.2. Note that the b field does not depend on how the gauge
invariances due to the zero modes of w, are treated. This is similar to the b field in
(5.149) but different from b which depends on the gauge fixing of the invariance due
to zero modes of the conjugate momentum through B, .

To summarise, the minimal and non-minimal are related by field redefinitions and
an analytic continuation in field space. In particular, starting from the non-minimal
formalism one obtains the minimal formalism by taking A, = CZ7! and analytically
continuing 7! to be imaginary while at the same time analytically continuing A to be
real. There are similar redefinitions and analytic continuations in the sector related
with the conjugate momentum. Furthermore, the non-minimal b field combined with
part of N is related to b. Clearly, the two formalisms would be equivalent if the
analytic continuations had not been obstructed by singularities in the amplitudes.
Finally, note that the underlying gauge choice for the invariance due to pure spinor
zero modes is the same: the gauge fixed action is the same, only the reality condition
of the fields is different.

5.5.3 Toy example

Given the formal equivalence between the minimal and non-minimal formalisms
one may wonder why the PCOs are not Qg closed in the minimal formalism, but
the corresponding object in the non-minimal formalism is Qg closed. This issue is
discussed here by analyzing a toy example that has almost all features of the actual
case. Consider the following integral

I= /dxdpe_””p. (5.153)

To compare with the expressions in the previous subsection p corresponds to the
BRST auxiliary field and x to the pure spinor.

If one wants to evaluate the above integral, contours have to be chosen for z and
p. Choosing p = ip; and x = x; with p1,x; to be real, gives

I= i/dxldplemlpl = z/ da12m6(zy) = 2mi. (5.154)

— 0o
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Another choice is to consider x complex and take p = x*. In this case I becomes

oo 27
I= /dxdx*e—”* = 21/ rdr/ dfe™"" = 2ri. (5.155)
0 0

This agrees nicely with the general property of contour integrals, that one is free
to deform them as long as no poles are encountered. Note that (5.154) resembles a
zero mode integral in the minimal formalism and (5.155) a non-minimal one.

The difference between the two prescriptions is exposed by considering the inte-
gral I with a function f in the integrand.

Imin[f] = l‘/_oo dl‘l /_OO dpgeimlplf(l'l) = ’L/_Oo d$127T5(CL'1)f({E1) = 27T2f(0)

(5.156)
Now rotate the contour, p = x*, so that the integral becomes

0 27
Tnon—min[f] :/d;vdx*e_‘””‘2f(x) :2i/0 rdre‘ﬁ/o dof(re'), (5.157)

Imin is the analogue of (5.148) and Ihon—min the analogue of (5.152). I, and
Thon—min give exactly the same answer if f(x) is non singular but (5.156) is ill defined
for any choice of singular f(z) whereas (5.157) may be well defined. For example,
for the function

fla)=—, (5.158)

(5.156) yields oo but (5.157) gives 0. More precisely, (5.157) is well defined for all
functions f(z) = 3, 2", with ¢, = 0 for n < —1. For the n < —1 terms the 6
integral vanishes and the r integral diverges, which makes I,on—min ambiguous for
these kind of functions.

A third representation is obtained by noticing that the 0 integral can be rewritten

as a contour integral

2
d
dg=—i & (5.159)
0 c z
where z = re? and the contour C is a circle of radius 7. Thus for any meromorphic

function f(z) the integral over theta is independent of r and

I[f] = 2i (/OOO rdre_r2> (—17{0 %f@)) :j{c%f(z) (5.160)

The expression (5.160) are well-defined for all meromorphic functions f(z) whereas
(5.156) and (5.157) are not.

Going back to pure spinors and working on the patch with AT = 0 one sees that
because of the factor (A\*)~2 in the measure (cf. (3.123)) the minimal formalism is
expected to have a singularity unless the integrand provides a factor of (AT)3, but
the expressions (5.157) and (5.160) are not necessarily singular.
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5.5.4 Singular gauge and possible resolution

As mentioned in the beginning of this section the gauge (5.146) leads to A* = 0
for any choice of the constant spinors C. To see this, recall that the space of pure
spinors can be covered with sixteen coordinate patches and on each patch at least
one of the components of A is nonzero. Let us call this component A and solve
the pure spinor condition as in (3.71). Then,

1 1
0=CIN* = CINT + CT% Ny + CINT = CINT + OT ), + gCie“dee)\bc)\de)\j =

1
CL(AT)2 + CTob AT gy + gcgeabchAbcAde =0. (5.161)

This system of equations however does not have a solution with AT # 0 and the
gauge is singular. To see this, first solve ten of the above equations to obtain Ay, as
a function of AT. A scaling argument implies that these functions are linear in A*.
After plugging in the relation \gp = bep AT in the eleventh equation, one finds that
AT vanishes. Thus for any choice C of maximal rank, the path integral localises at
the \* = 0 locus”, which is the point that should be excised from the pure spinor
space for the theory to be non-anomalous [21].

As discussed above, the minimal and non-minimal formalisms are related by
analytic continuation in field space. In the toy example in the previous subsection
the analytic continuation from the “minimal variables” x1,p; to the “non-minimal
variables” x,x* sets to zero certain singular contributions (functions f(z) ~ z71)
but the integral still localises at = 0. One would thus expect that the zero mode
integrals in the non-minimal formalism localise at the A* = 0 locus, as the minimal
ones do, and the problems with the A\ poles one encounters for certain amplitudes
at three loops and higher are a manifestation of this fact.

To avoid these problems one must find a way to gauge fix the zero mode invari-
ances such that the zero mode integrals do not localise at A* = 0. Let us discuss how
to achieve this in the minimal formulation. First, in order to avoid the unnecessary
analytic continuation to real A one should work with the analogue of the contour
representation of the delta function in (5.160) which is appropriate for holomorphic
A (and is less singular than (5.156) and (5.157)). In this language the choice of C’s
translates into a choice of position of poles. Secondly, one must take global issues
into account. In particular, as mentioned above, the space of pure spinors can be
covered with sixteen coordinates patches. In order to avoid landing in the singular
gauge discussed above, one should arrange such that the expression for the path
integral insertions valid in any given patch always contains at least one pole that
lies in another patch. Relevant related work can be found in [43].

9This also shows that the choice of C' in (5.2) that manifestly leads to a factor §(A*) is not
special. Any other choice of C' will also contain this factor.
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Chapter 6
Discussion and conclusion

After a general introduction to string theory the pure spinor formalism was presented
in chapter 2. Important conclusions from that chapter include

1. The pure spinor formalism possesses more computational power than its “com-
petitors”, i.e. the RNS and Green Schwarz formalisms. This is a consequence
of the explicit manifestion of both spacetime supersymmetry and Lorentz in-
variance within the pure spinor formalism.

2. The amplitude prescription is ad hoc, i.e. it has not been derived from first
principles and a number of aspect of the prescription are motivated by analogy
to other, older string theory formalisms.

3. Chapter 2 does not provide a proof for the decoupling of unphysical states in
the minimal pure spinor formalism.

First principles derivation

Point 2 was addressed in chapter 4. The first principles derivations given in that
chapter confirmed the prescriptions of chapter 2, which were advocated originally in
[22] and [25, 27]. Let us summarise the approach. The pure spinor model (i.e. the
Green-Schwarz-Siegel action plus the pure spinor variables) was considered as a
“matter” sigma model with target space ten-dimensional superspace (with embed-
ding coordinates X, 6) times the pure spinor space (with embedding coordinates \).
To construct a string theory this model was coupled to two-dimensional (topologi-
cal) gravity and subsequently quantised by adding a gauge fixing Lagrangian to the
classical action. One should contrast this approach with previous works where the
aim was to find a model with local symmetry which upon gauge fixing would lead to
the pure spinor model with @)g emerging as the BRST operator and the pure spinors

143



Chapter 6 - Discussion and conclusion

A as the corresponding ghosts. In the approach of this thesis Qg and \ are part of
the model ab initio and the justification for starting with this model is that the
cohomology of Qg gives the superstring spectrum. To maintain the Qg symmetry
and consistently quantise the model after coupling to 2d gravity, the Qg symmetry
had to be extended to act on the gravitational sector and Qg invariance requires
the existence of a (composite) field G whose Qg variation is equal to the 2d stress
energy tensor.

To quantise this system standard BRST techniques were followed, introduced
diffeomorphism ghosts, their Qg partners, associated auxiliary fields etc. It turns
out that all variables one introduces in this process can be explicitly integrated
out resulting in a prescription for the scattering amplitudes involving (as usual) a
number of unintegrated and a number of integrated vertex operators and (3g — 3)
(complex) insertions of the zero modes of G. This result holds in general for any
system with a nilpotent symmetry coupled to topological gravity.

The analysis included a BRST treatment of the gauge invariances due to zero
modes; the presence of a zero mode implies an invariance of the action under a
shift of the field by the corresponding zero mode. To gauge fix these invariances
constant ghosts and corresponding auxiliary fields were introduced. In the presence
of vertex operators some of these invariances are lifted. Nevertheless, one must still
gauge fix all (non-compact) bosonic invariances because their presence implies that
the worldsheet action does not provide the appropriate convergence factor for the
integration over them. This analysis for the bosonic zero modes of the pure spinor
sigma model led (among other things) to the introduction of constant auxiliary fields
needed to implement the gauge fixing conditions in the path integral. Depending on
the parametrisation and the reality condition of these fields one is led either to the
minimal [22] or the non-minimal [25] prescription for scattering amplitudes. In the
latter case the auxiliary fields can be identified with the non-minimal variables (more
precisely, the zero modes of the non-minimal variables, but since these variables are
cohomologically trivial their non-zero modes do not contribute to any observable).
To complete the construction one needs the explicit form of the composite “b-field”
G. Although the existence of a completely satisfactory G field is guaranteed by
the results of [27], the actual construction is very complicated. A possible avenue
towards a simpler prescription is to look for different gauge fixing conditions for the
zero modes, instead of looking for less singular representatives of [G] as has been
done so far.

Decoupling of unphysical states

Decoupling of unphysical, i.e. Qg exact, states is automatic if all insertion in the
amplitude prescription are Qg closed. In the minimal formalism however the picture
changing operators are not Qg closed, in spite of the fact that their Qg variation
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vanishes in a distributional sense: QgY ~ zd(x) with x that depends on A and N.
Moreover since A parametrises a curved space it is not clear what the meaning of
the delta functions in the picture changing operators is. These functions can only be
properly defined in a certain coordinate patch. Indeed when trying to compute tree
level amplitudes using a “naive” definition of delta functions on pure spinor space
without integrating over the constant spinors C, as was done in section 5.1, one
finds answers that are not Lorentz invariant. When the integral over C' is included
the prescription becomes manifestly Lorentz invariant. This symmetry simplifies
the evaluation of the pure spinor integrals and one needs not be specific about the
precise definition of the picture changing operators. After integrating over C all
tree-level amplitudes, which are now automatically Lorentz invariant, vanish when
one of the vertex operators is Qg exact.

Due to the lack of a global definition for the picture changing operators, it is not
possible to conclude that these operators are not Qg closed from tree-level computa-
tions alone. This conclusion can be reached by considering one-loop amplitudes. In
particular the no-go theorem shows that when the complete, i.e. containing eleven
convergence factors, picture changing operator is Lorentz invariant, it cannot be Qg
closed. Else all one-loop amplitudes vanish. The fact that the PCOs are not Qg
closed does not imply that Qg exact states do not decouple. In fact an important
result of this thesis, given in section 5.4, states that Qg exact states decouple in the
minimal pure spinor formalism. This results makes use of a new symmetry of the
B tensors, which has a natural place in the first principles derivation of chapter 4.
Moreover the discovery of this symmetry might be a first step in making minimal
loop computations as efficient as their non-minimal analogs.

In the non-minimal formalism the PCOs are replaced by the regularisation factor
N. 1In contrast to the PCOs, N is Qg closed without subtleties. In chapter 4
it was shown that both the PCOs and the regularisation factor A/ come from a
proper BRST treatment of fixing the gauge invariance generated by shifting the
zero modes of the worldsheet fields. The difference between the minimal and non-
minimal formalism can be understood as choosing different contours for the zero
modes integrations. As became apparent in section 5.5 the choice that leads to
the minimal formalism gives rise to divergent integrals for a larger class of possible
insertions than the non-minimal choice. Moreover the gauge condition implicit in
the current formulation of the amplitude prescriptions is singular and localises the
pure spinor zero mode integrals at the A* = 0 locus, which should be excised from
the pure spinor space for the theory to be non-anomalous. The three-loop problems
in the non-minimal formalism could very well be due to this singular gauge choice.
To avoid these problems one should reformulate the theory in a non-singular gauge.
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Appendix A

Detailed computations of I;.

This appendix contains the details of the )\ integrals that appear at one loop. In
particular those that play a role in computations involving a Qg exact state. A
typical integral one encounters in such an amplitude is given by

1
(Ik)al”'a%ﬁz'”ﬁu = /[d/\]m/\ﬁl)‘alaz U )\a2k—1a2kA615253 (GT)551152%311 (Al)

By charge conservation one can conclude that at most two choices for 3 - - - 511 lead
to a non-vanishing I, for any k. This follows from

5 1
0= N(Ik)al“'azkﬁz"ﬂu = [(k_3)1+k(_1)+N(62 T 611)](Ik)ar“azkﬁz'“ﬁu' (AZ)
This fixes the total charge of the 3 indices, which implies there are only two choices.
For example for k& = 3 equation (A.2) implies only the only non-vanishing compo-
nents satisfy N(f2---011) = —%. Thus Bs -+ 311 must consist of either seven 10
indices and three 5 or a +, five 10’s and four 5’s.

In section A.1 we first compute all integrals of the form
7\ B1 1 B
(Ik)al---agkélégég = [d)\]m)\ )\ala2 e )\a2k71a2kA515263' (A3)

Since I, vanishes for k£ < 3 (cf. (5.51)), we are only interested in I}, for k > 3. By
a similar argument the I}’s are also only non-vanishing for at most two choices of
010203. In the last subsection half of the non-vanishing components of I3 and all
components of I5 are computed.

A.1 Coefficients in \ integrals

For a given k at most two components of Ang, give non-vanishing results. One can
make three choices for §1 in I}, all three choices lead to an integral of the form (not
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necessarily for the same k):

1
(Il/cl)al"'azk515253 = /[dA]W)\GIUQ o Nagg1a, N616265- (A4)

After some algebra one finds the only non-vanishing components of the I}/’s are:

(I{)ay-as+dids = 2106a1a2a3a4(d16d2)a5a6a7a8 + 2 perms, (A.5)

() 01 1) = Zevsananants B0 B0 5 411 perms, (A.6)
2106a1a2a3a4d5 51151 535523 53;1] + 5 perms

(Ié/)al..-alod1d2d3d4 = 2106(d1‘a1a2a3a4|6d2)a5a6a7a86 dg(sgfo + 14 perms, (A7)

(I§)ay -arsdydads = %e(dﬂalagaglﬂ|€d2|a5a5a7a8\€d3)a9a10a11a12 + 14 perms. (A.8)

The first step to obtain these results is finding the number of invariant tensors
with the appropriate symmetries, this is one in all cases but the second. Finding the
coefficients requires more work, this is done in subsection A.1.1. All these coefficients
are fixed by (5.24), including the overall factor. Two corollaries are

b dsd d
(Ié) ay--agdids 3= (56bd 6d2)a1a2a3a46 d36d4 + 5ba55z[1636(d16d2 a1a2a3a4) +2 perms,
(A.9)
1

b b
(Ié/l) ay---agdidods — E(S(dl€d2|a1a2a3a4Iedg)a5a6a7as +2 perms. (AIO)

A.1.1 Proof of equations (A.5) and (A.6)

By Lorentz invariance one can write

1
/[d/\])\_+)‘a1¢12 T )\a7a3A+d1d2 = C3€ayaza3a4(d1€d2)asasaras + 2 perms (A'll)
and

/[d)‘] At Aaras - a7asAd1d2d3d4 ds — 04(6a1a2a3a4d55a51 5d2]5 d35d4] + 11 perms)+

5

¢5(€ayazagasds 0L 0226825441 + 5 perms). (A.12)

for some coefficients c3, ¢4, ¢c5. They can be determined from the defining equation of
Aapy, (5.24). After evaluating the r.h.s. of that equation for the relevant components
one finds

/ [ANATNATA g0, = 6107 — —5d15d2 = —5d15d2 (A.13)
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/[d}\]AGAb)\+Adld2d3d4 e = %6d1d2d3d4(a5gi’ (A14)
/ [AA a0 Ay, ACAD 20— (g 502 50 50458 41 perm) (A.15)

1 1
— 20 800508, + (207, 00,100 0402647 + 3 perms).

la1“a2"as " ay4] [a1%az])"ds

If one now uses equations (A.11) and (A.12) to evaluate the Lh.s. of the above
integrals the values of cs,cq,c5 are completely determined. In fact the integrals
(A.13)-(A.15) lead to more than three equations, but they include only three inde-
pendent conditions as they should. To obtain c3 one has to write out A* and A’ in
(A.13) and then perform all the contractions of the two €’s with the r.h.s. of (A.11):

(A.16)

3 @ a a 1
5551153)2 = /[d)‘]/\ )‘b)‘+A+d1d2 = 12035&152)2 = C3 = %

Finding ¢4 and ¢5 is more involved. The Lh.s. of (A.14) can be evaluated as

1 a
selidatatileg) — / [ANACN A AD2dsds — (4o, 4 1205)50 D Didadads  (A17)

This gives the first equation for ¢4, c5. In order to completely determine them, one
has to work out the Lh.s. of (A.15):

1 1
gga%%’”as ‘/[Cl/\])\—_i_)\alag)\asa4/\asas)‘awlsAd1d2dsj;1 = (A.18)

% ((245355¢[zdll 5%]5([1(.13 5%] +1 perm) + 86ad1d2d3d46a1a2a3a4d5+

16((55}5(5%1 (552](5&?552] + 1 perm) + (807, sl 53:]5%1 52] +3 perm))-i—

[a1%as]

al a2 " a, az “az " a.

%” (245;55[d15d25dg Oqtl 4+ 24en i, i + 1605 040 60250350114

d3 sda sdy sd
(85¢, 0% 6012 502) 4 1 perm)).
To be able to read off equations for the ¢’s one has to rewrite the invariant tensors
in terms of the ones appearing in (A.15). It turns out the space of invariant tensors
with the indices and symmetries of (A.15) is four dimensional. Hence the invariant
tensors in (A.18) can be written out on a basis that contains the three invariant
tensors that are present in (A.15) plus a fourth one, that does not lie in the span of
the first three. After using

cadidadadic oy = 05,0016825%5 604 1 (52, 8111 5920036%4] 41 perm),  (A.19)

az%az%a a1 as] ds a3 as

(A.18) becomes
(5045355[‘11%3]5?335%] + 1 perm) + (¢4t 5[’1?]’53;‘]5([1‘?531 + 3 perm)+ (A.20)

ai [a1%aq
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(8cs + c4)83, 0101592682584 1 ((c4 + 4cs) 3, 8172692592 582) 4 1 perm).

a1 as] ds a3~ as

Now one can read off four equations for ¢4, c5 by comparing to (A.15). Combined
with the equation from (A.17) this gives:

1 1 1
5cy =1, C4+805:—g, cy = g, c4 +4c5 =0, 404-‘1-1205:3. (A21)

These equations are solved by

1

—55 (A.22)

1
64257 Cs =

The coefficients in equations (A.7) and (A.8) follow in the same way.

A.2 Computing the I;’s

The idea of this section is simple, use the explicit form of the gamma matrices
and the X integrals (A.5)-(A.10) to evaluate I. In practice this involves a lot of
computation. The integrals Iy, I1, Is and Is have already been shown to vanish in
chapter 5. By the charge conservation property there is only one choice of G5 - - - 311
for which I5 does not vanish. For I3 and I, there are two possibilities. Let us
explicitly compute I3 for

B2, -+, P11 = +,c1,¢2,¢3,¢4,b1b2, - - -, byb1o. (A.23)

The integral I3 consists of three terms, two for 5y = b1by and one for 3; = b;. The
first of three relevant components of €T is given by!

(6T)+d1d2 b11b12+b1b2"'b9b10 _ (A24)

C1C2C3Cq

1
by---b k1dy kad2 +ecs k3 _
E8(510) 0 e Y bisbia | bisbis Vks (7]91]92 )b17b18b19b20 -

1

by-+-b di ¢d
_58(610) ! 206610263045175 'Oy

b14 b1 Eb13b15b18b19b20 -

The second relevant component is given by:

ds bi1bi2 b1b2---bgbio _
(ET)d1d2d3d4 + cicocscy (A25)

1
bl ...b20 k3d5 k}l kg Cs
8E2(610) €ci---c5 Vhididabizbia Vhadsdabisbic Vo 1b1g (7 ks )b19b20

1
by---b le5 k3dr kg _
+81_6(€10) ! 20661"'057d1d2’7/€2d3d4b13b14'7b15b016 (’ykl kg)b17b18b19b20 + (dld? A d3d4) =

b1ba---bigbao _

ITo evaluate €I’ the following convention for eg,...5,, is used, (€16)4ay a5

(€5)ay a5 (€10)P1 P20
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by-eb ds
812(610) ! 206616263641717€b19d1d2b13b146b20d3d4b15b166bf8+

—_

b1--b2o ds
81 (610) €creaezcabio€didabizbia[bao €bi7]dsdabrsbis 6b18 +

11
bi---bao
815(610) ! 601020304[112 6d1]b15b19b20b18€b17d3d4b13b146b16 (dld? = d3d4)

The third relevant component is given by:

(eT) %12 dads b bt — (A.26)

C1C2C3Cq

by---b2o kid1 2 ks _
_85(610) 66102636467b11b127b13b147k3d3d4b15b16(7k1k2 )b17b18b19b20 =

1
84€CIC2C3C4b€d3d4b15b16b17€b11b13b18b19b206

§dz

bi27b1a”

In the above components a factor of eight is extracted coming from the SU(5)
decomposition (cf. (3.22)). The powers of 3 compensate for double counting in
expressions like x4,y in each line. Using the explicit form of the components of
(eT') and the \ integrals, I3 can be written out as

1 1
B +did2 biibia biba---bobig
I3 = 53 [d)\]/\_+/\bub12)‘a1a2/\a3a4/\a5aGA+dld2 (GT) + 61620364+
L3 1N L A 100s Mar s Aagas Aagag A 2025 (eT) o b ol et
8 A\t bi1bi2 Naraz Nagas Nasag ds \¢ Jdydadgds + creacsca
3L [ AN A A s 0w Aaga Ay g, B4 (€T) 182 e =
2 At ai1a2'a3as'\asa6**ddy € dads b+ creaczes
3
40 €ayazasay(d €dz)asagbirbiz T 2 PEIMS
4 €10 "€cieacscabry b14 b166b13b15b18b19b20 .
3 ol 55l 574) 4 1
10 €arazazasdsay bi1“bi2 perms
by-b d:
[4(610) ! 20€cchc3c4b17€b19d1d2b13b146b20d3d4b15b165bfs+
by--b ds
2(€10)™ 20601620364b196d1d2b13b14[bzo€b17]d3d4b15b155b;8+
[
(610) ! 206c1c2csc4[d2edl]blobwbzobls6b17d3d4b13b146b18 (drda d3d4)}

3
b [ds d4 [ds ¢da]
S (55(d16d2 wrazanas 00200 4 60 560 € ananas + 2 Derms
2¢ € € 5 g2 | =
ci1c2c3c4b€d3dabisbiebi7€b11b13b18b19b20%, %, | —
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—§6 € (€10)rb20¢ € + 2 perms+
arazazasbiaCbigasacbi1b12\€10 ciczc3cabir€bizbisbigbigbao P

5
12

by --bag
_(610) €b11b1zazasbis €ercacscabir €bigarazbizbia Chooasashisbis T 2 perms+

5
§( )b1~“b20 + 2 +
5 €10 €b11b12azasbig€eicacscabio€arazbizbiabiz €baolasasbisbis perms
9 ( )b1~“b20 + 2 +
56111112(13(141716 €10 €creaczeabin€bi1bisbigbiobag Cbirasasbizbia perms
6

byeeob
=€biibizaiasbie (610) ! 20661626364[a4eas]blsblsblgbzo€a5¢16b13b14b17 + 2 perms+

5

by---b
60(610) ! 206514111112(13(1466102030451261151165155165176511b13b18b19b20 + 2 perms+

12€p, 401 020304 (Elo)blmb20601620304[a5eas]bmblsblabw€b11b13b18b19b20 +2 perms =
3 12, 1 3 6 6 27
— D)+ =(—)+=(-D+ =(=1)+ = (= 1)+12
< 5()+5( 2)+5( )+5( )+5(2)+60()+ (0))

by---bag .
€ajazazasbi4€bigasacbiibio (610) €cicaczeabir€bizbisbigbigbag T 2 perms =

129
by--+b2o
€ajazasasbis€bigasasbiibia (610) €cieacacabir€bizbisbigbiobao T 2 perms.

2
Since Asym®10 ® Sym>10 ® Asym?5 contains one scalar all seven tensors in the
penultimate step are proportional to each other. The constants of proportionality

are obtained by computing components.
The integral I5 is only non-vanishing if one chooses

527 e 7/811 = b3b47 e 7b11b127 17 27 37 47 D. (A28)

This component of I5 consists of two terms, one for 31 = b1by and one for 31 = +:

1
by-b 51628 by-b
(15)a1---a10 ¢ 1122345 = /[dA]WAa1a2 "'/\a9a10A616263 (eT) 1o —|—3 ' 12345+

1 1
5 /[dA]W/\blb2 /\a1a2 T /\a9a10A615263 (eT)élézég bibaba iz 12345- (A29)

The first relevant component of €7 is given by

(6T)d1d2d3 by--b12

12345 — (A-30)

1
Q. by---b2o ~ady bds cds 4
8 162(610) Pyb13b14’yb15b16Pyb17b1s’yabcb1gbzo+

_ig(elo)bl”'bzol’y (dy _|bldz _|elds) _q

16 2 a +Wb13b147b15b16’y beb17b18b19bao =

by-b d
—(610) 1 20 5)135 1

b14] 6&15 6;71125] 8, 0 ] (_ 1)€abcb19b20 +

[b17 b1
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b| 52

1
__(elo)bl b205‘(1d16%b13 bia

4
The second relevant component is given by

c d: a
] 5%1;15 51;136)] 5[b17 €b1g]bebigbao -

did bzbs---b11b
(GT) 1 2d3d4+ 304011012 19345 = (A31)

- bs---bas bd, cda a —
—832 (€10) Yadsdabizbia Vb, 5b16 Vb17b1g ) bebiobaobaibas —

1 ba--b b d d
_1(610) s (_1)6ad3d4b13b146[b15 6b116]6[cb176b128]25&1961720]1765215227
where again a factor of eight and powers of % have been extracted. The above two

components of (e1') can be processed further to give

1
(eT)d1d2d3 by b1122345 _ —855(610)b1 b205;;ill35g1255gf7€b14b15b18b19b20 (A.32)
and
1
did baba--b11b 41 od
(GT) ' 2;13d4-‘:- s 12345 — 8Z(€1O)b1 b20€b17d3d4b15b16€b1sb1b13b19b206b215b124'
(A.33)
The integral Is becomes
1 810203 bs-+-b
Is = /[d/\]m)‘ﬁl Aavas *** Aagaro Moy 6205 (eT)r% 631 T a5 = (A.34)
1 dsd did bsg---b
3/[d/\]m)\a1a2 o AagaroNagyay o €D) s Y st

N = N =

1
/[d/\]m)\bllh )‘alaz e )‘agaloAahdzds (GT)d1d2d3 b b1212345 =

3
dz sdy dida b3---bi2
E(€(d1|a1a2a3a4\edz)asasawsaz[zggaalg) + 14 perms)(eT") dsdy + 12345+
didads3 by---bi2 _
120 (6(d1\a1a2asa4\€d2\a5¢16a7as\Eds)a9a1ob1b2 +14 perms) (GT) 12345 —

3

ds gdy dida2 bz---b12
2_0(6111111@2@3@46112@5@6117118 61[1936111[]) +14 perms) (GT) dsdy + 12345+

1
dydads by--b B
_(€d1a1a2a3a46d2a5a5a7a86d3a9a10b1b2 +14 perms)(eT) Heete 1212345 -

20
3 5lds 5da]

10(6d1a1a2a3a4€d2a5a6¢17a8 ag Yaio

+ 14 perms)

b1--+bao dy gdo
[(610) €by7d3dsbisbis 6b18b1b13b19b206b2 6b14]
_(€d1a1a2a3a4 €drasasaras€dzasaiobibs 1 14 perms)

)bl"'b205d1 5112 5d3

[(610 bi13 bis b176b14b16b18b19b20] =
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3

by--+b2o
56172(11112113@461714@5@6117118 (610) €b17agaiobisbis Ebisbibisbigbao T 14 perms

by---b
—€bizarazazasChisasagaragCbizagaiobibe (610) ! 206b14b16b18b19b20 + 14 perms =
2

by--b
561)13111(12(1311461715115116@7@861717(19111051172 (610) Y€y abrgbisbiobso T 14 perms.
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Samenvatting

Fundamenten van het pure spinor formalisme

Bij het lezen van bovenstaande titel zullen slechts enkelen een idee hebben waar dit
proefschrift over gaat. Deze samenvatting is voornamelijk gericht op het complement
van dit groepje experts. Beginnend bij begrippen als atomen, elementaire deeltjes en
zwaartekracht, zal ik toewerken naar het eigenlijke onderwerp van dit proefschrift.

Elementaire deeltjes en krachten

Het vinden van een volledige verzameling bouwstenen van de natuur is al een eeu-
wenoude zoektocht. Bij de oude Grieken leefde bijvoorbeeld het idee dat alles uit
vier elementen bestond: water, lucht, aarde en vuur. Deze zienswijze is nog meer dan
duizend jaar leidend geweest in de wereld, maar in de laatste honderden jaren zijn
de ontwikkelingen op dit gebied in een stroomversnelling geraakt. Inmiddels weten
we dat alle stoffen uit moleculen bestaan, denk bijvoorbeeld aan water oftewel H5O.
Deze afkorting staat voor één water molecuul en een druppel zuiver water bestaat
uit heel veel (circa 10%%) van deze moleculen. In figuur A.1 staat linksboven een
grafische weergave van een watermolecuul. Een molecuul is echter geen elementair
deeltje omdat het opgebouwd is uit bepaalde bestanddelen, de atomen. In het geval
van water is dat één zuurstofatoom (O) en twee waterstofatomen (H). Ondanks het
feit dat de naam atoom is afgeleid van het Griekse a7Topuos, wat ondeelbaar bete-
kent, bestaat een atoom uit een kern en daaromheendraaiende (negatief geladen)
elektronen, zoals uitgebeeld in figuur A.1. De kern is opgebouwd uit (positief ge-
laden) protonen en (elektrisch neutrale) neutronen en deze bestaan beide uit drie
quarks. De elektronen en quarks zijn voorbeelden van elementaire deeltjes. In de
snaartheorie is de fundamentele aanname dat alle elementaire deeltjes, waaronder
elektronen en quarks, hele kleine trillende snaartjes zijn.

Deze elementaire deeltjes kunnen met elkaar wisselwerken. Als twee elektronen
bij elkaar in de buurt gebracht worden, zullen ze elkaar afstoten, omdat ze allebei
een negatieve elektrische lading hebben. Dit verschijnsel wordt veroorzaakt door een
elektrische kracht. Een ander voorbeeld van een kracht is de magnetische kracht,
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Figuur A.1: Linksboven begint deze keten bij een molecuul, dat uit drie atomen bestaat.

Elk atoom bevat een kern met daaromheen een aantal elektronen. De kern bestaat wuit
neutronen en protonen, die beide opgebouwd zijn uit drie quarks. In de snaartheorie worden
de deeltjes aan het eind van deze keten, in dit geval elektronen en quarks, beschreven door
snaren.

denk aan twee magneten die elkaar afstoten of aantrekken, of aan de naald van
een kompas. Deze twee ogenschijnlijk verschillende krachten zijn eigenlijk twee ver-
schijningsvormen van dezelfde kracht?, die we de elektromagnetische kracht noemen.
Deze kracht zorgt er dus voor dat negatief en positief geladen deeltjes elkaar aan-
trekken, wat er onder andere toe leidt dat elektronen (negatief geladen) niet uit hun
baan vliegen om de atoomkern (positief geladen). Als de elektromagnetische kracht
de enige natuurkracht zou zijn, hadden atoomkernen niet kunnen bestaan, omdat
deze opgebouwd zijn uit positief geladen (en neutrale) deeltjes, die elkaar elektro-
magnetisch afstoten. Er moet dus ook een kracht bestaan die kerndeeltjes bij elkaar
houdt. Het blijken er twee te zijn: de sterke en de zwakke kernkracht. Deze drie
krachten samen verklaren de wisselwerking van elementaire deeltjes, zoals gemeten
in deeltjesversnellers als de LHC in Geneve, tot op zeer grote precisie.

De theorie die dit soort processen beschrijft, het standaardmodel, is een zoge-
naamde kwantumtheorie. Het blijkt dat op deze uiterst kleine afstandschalen andere
wetten gelden dan op menselijke schalen. Zo is het mogelijk dat bij een botsing van

2Als twee waarnemers, waarbij de één ten opzichte van de ander beweegt, naar een bepaald
proces kijken, gebeurt het soms dat de één denkt een elektrische kracht te zien en de ander een
magnetische. De begrippen elektrisch en magnetisch zijn dus afhankelijk van de waarnemer en
daarom niet van fundamentele betekenis.
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een elektron en een anti-elektron deze twee deeltjes verdwijnen en er twee andere
elementaire deeltjes (bijvoorbeeld een muon en een anti-muon) verschijnen. Boven-
dien is het zo dat dit proces een bepaalde kans heeft, die uit het standaardmodel
te bepalen is. Dit is een belangrijke eigenschap van een kwantumtheorie: er wordt
niet één uitkomst met zekerheid voorspeld, maar meerdere uitkomsten elk met een
bepaalde kans. Dit is geen zwaktebod van de theorie, de natuur zelf is degene die
bij gelijke experimenten soms de ene uitkomst geeft en soms de andere.

Zwaartekracht

Het standaardmodel is zoals vermeld een uiterst succesvolle theorie, maar er is dui-
delijk meer dan elektromagnetisme en twee kernkrachten. Deze drie krachten alleen
kunnen niet verklaren waarom de maan om de aarde draait, appels uit de boom val-
len en er alleen naar beneden geskied kan worden. Al deze verschijnselen hebben te
maken met de zwaartekracht. Deze kracht werkt altijd aantrekkend (in tegenstelling
tot de andere drie) en speelt alleen een rol als er zeer zware objecten bij betrokken
zijn. In de drie voorbeelden was dat drie keer de aarde. Dit geeft tevens een logische
verklaring voor het feit dat het standaardmodel zeer nauwkeurig is ondanks dat het
zwaartekracht negeert: de objecten hebben een uiterst kleine massa ten opzichte
van hun elektrische lading. Deze stelling kan preciezer gemaakt worden door twee
elektronen (op klassieke wijze) te beschouwen. Deze stoten elkaar elektrisch af en
trekken elkaar gravitationeel aan. Voor twee elektronen op een meter afstand van
elkaar zijn de krachten gegeven door:

q2
F, = — =23x10"2N,
4meg
F, = Gm2=5,5x10""'N,

waar ¢. de elektronlading is, e,, de elektronmassa en zowel €; als G zijn natuurcon-
stantes.

Dit gegeven helpt ons aan de ene kant doordat een theoretisch model voor de na-
tuurkunde van elementaire deeltjes zonder zwaartekracht volstaat om aardse experi-
menten te verklaren, aan de andere kant compliceert de zwakte van de zwaartekracht
de zoektocht naar een kwantumtheorie die deze kracht bevat. Simpelweg omdat we
geen experimenten kunnen doen met elementaire deeltjes waar de zwaartekracht een
rol speelt. Ondanks de verwaarloosbare rol van de zwaartekracht bij de controleer-
bare experimenten in de deeltjesversnellers zijn er redenen om een kwantumtheorie
van de zwaartekracht te ontwikkelen. Er zijn namelijk situaties in de natuur waar
heel veel massa zich in een zeer klein volume begeeft, bijvoorbeeld zwarte gaten of
het universum vlak na de oerknal. Om deze situaties te beschrijven is een kwantum-
theorie van zwaartekracht nodig. Daarnaast ligt het in de lijn der verwachting dat
een goed begrip van kwantumzwaartekracht tot nieuwe inzichten zal leiden over een
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scala aan problemen in de natuurkunde, waarvan één van de meest in het oog sprin-
gende over zogenaamde donkere materie gaat. Dit is materie waarvan het bestaan is
bewezen op basis van kosmologische waarnemingen over de uitdijing van het heelal,
maar het bestaat niet uit deeltjes die we kennen, d.w.z. standaardmodeldeeltjes.

Snaartheorie

Het blijkt uiterst lastig te zijn zwaartekracht in het standaardmodel in te passen.
Er is dus een radicaal andere benadering nodig om een theorie van kwantumzwaar-
tekracht op te stellen. Snaartheorie is zo een andere benadering. De fundamentele
aanname van deze nieuwe theorie is dat elementaire deeltjes geen nul dimensionale
objecten zijn (d.w.z. puntdeeltjes), maar hele kleine trillende snaartjes (d.w.z. één
dimensionale objecten). Deze snaartjes kunnen gesloten (zoals in figuur A.1) of open
zijn en het soort trilling bepaalt welk elementair deeltje het voorstelt. Op deze wijze
blijkt het mogelijk te zijn de fundamentele principes van de kwantummechanica en
de zwaartekracht te combineren. Snaartheorie is overigens niet alleen een theorie
van kwantumzwaartekracht, maar een kwantumtheorie van alle krachten.

Symmetrieén

Zoals in alle kwantumtheorieén worden de voorspellingen in de snaartheorie ook ge-
geven door aan elke mogelijke uitkomst van een experiment een bepaalde kans toe
te kennen. Voor het uitrekenen van deze kansen bestaan verschillende formalismes,
die allemaal tot hetzelfde antwoord (moeten) leiden. Veel van de berekeningen in
de snaartheorie zijn bijzonder gecompliceerd. Echter, het probleem op een slim-
me manier aan pakken kan leiden tot grote vereenvoudigingen. Een voorbeeld van
zo een manier is gebruik maken van symmetrieén, bijvoorbeeld Lorentz symmetrie.
Dit houdt in dat de theoretische voorspelling van een kans op een bepaald proces
niet mag afhangen van de snelheid van de waarnemer. Dit legt (soms sterk) beper-
kende voorwaarden op de mogelijke uitkomsten van de berekeningen. Een andere
symmetrie die een grote rol speelt in de snaartheorie is supersymmetrie.

Pure spinor formalisme

In alle snaartheorieformalismes kunnen we gebruik maken van het feit dat de ant-
woorden invariant zijn onder de Lorentz- en supertransformaties maar het komt
vaak voor dat tussenstappen niet invariant onder de symmetrieén. Het is bijvoor-
beeld mogelijk dat er meerdere termen ontstaan die niet afzonderlijk invariant zijn
onder de symmetrie, alleen de som heeft deze eigenschap. In het pure spinor for-
malisme zijn de twee genoemde symmetrieén manifest in alle tussenstappen en dit
resulteert in een aanzienlijke vereenvoudiging. Het pure spinor formalisme blijkt dan
ook krachtiger te zijn dan haar voorgangers.
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Dit proefschrift

In het eerste hoofdstuk van dit proefschrift wordt één van de oudere formalismes
(RNS) van de supersymmetrische snaartheorie geintroduceerd, waarbij er nadruk
ligt op punten die moeilijkheden veroorzaken en op elementen die van belang zijn
voor het pure spinor formalisme. Het eerste hoofdstuk eindigt met een uiteenzetting
van de meest pregnante problemen van het RNS formalisme. In hoofdstuk twee
geef ik een inleiding in het pure spinor formalisme en wordt het duidelijk hoe de
problemen van het RNS formalisme hier vermeden worden. In dit hoofdstuk blijkt
ook dat toen het pure spinor formalisme voor het eerst werd opgeschreven, het niet
is afgeleid uit fundamentele principes, maar op basis van analogieén en intuitie is
bedacht. Dit heeft ertoe geleid dat bepaalde noodzakelijke eigenschappen van het
pure spinor formalisme niet bewezen waren, alhoewel ze wel vermoed werden. In
hoofdstuk vier presenteer ik een afleiding van het pure spinor formalisme vanuit
fundamentele principes. Door middel van deze afleiding is het mogelijk te laten
zien dat het pure spinor formalisme inderdaad de eerdergenoemde eigenschappen
heeft. Hoofdstuk drie introduceert het wiskundige gereedschap, dat nodig is voor
de afleiding in hoofdstuk vier. Het onderwerp van het laatste hoofdstuk voor de
conclusie is de ontkoppeling van niet-fysische toestanden. Dit zijn toestanden die
niet worden waargenomen in de natuur, maar wel worden meegenomen in de theorie
om bepaalde symmetrieén te behouden in de tussenstappen. Achteraf moet er dan
gecontroleerd worden dat het op geen enkele wijze mogelijk is, dat zo een niet-
fysische toestand geproduceerd wordt bij een botsingsproces van fysische toestanden.
Als dit inderdaad niet het geval is, spreekt men van ontkoppeling van niet-fysische
toestanden. Hoofdstuk 5 bevat het bewijs van deze eigenschap voor het pure spinor
formalisme.
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