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Preface

This thesis is the tangible result of my years as a PhD student at the Institute for

Theoretical Physics of the University of Amsterdam. During this period I have, in

cooperation with my co-authors, published three papers on the pure spinor formal-

ism, which have already been mentioned in this preliminary part. While the content

of these papers forms an important part of this work, the latter also contains an in-

troduction into all the ingredients that are necessary to fully appreciate the results

of the papers. In writing this introduction I only have assumed that the reader is

familiar with quantum field theory and general relativity, so in particular knowledge

of string theory is not absolutely necessary, although readers who have read some

textbook material on perturbative string theory will find this thesis easier to read.

Argueably the best one line description of the first chapter is: “the shortest path

from quantum field theory and general relativity to the pure spinor formalism”.

In this chapter perturbative string theory is introduced along with its motivations.

I have done this in a way that puts emphasis on the parts that are relevant for

the pure spinor formalism, which is the most recent string theory formalism. This

formalism is introduced in chapter two, where I will demonstrate that the pure

spinor formalism distinguishes itself from the two other string theory formalisms

(RNS and Green-Schwarz) by the fact that important symmetries of the theory

(Lorentz invariance and supersymmetry) are manifest. This has a simplifying effect

on amplitude computations and indeed the pure spinor formalism has proved to be

more powerful than the other two formalisms. The next chapter contains details of

the arguments used in chapter two and sets the stage for the derivations in the next

two chapters.

The last couple of chapters before the conclusion is based on my three papers,

which all deal with fundamental issues of the pure spinor formalism. The first

provided a first principles derivation for the amplitude prescription of the pure spinor

formalism. The other two papers contain the proof of an important property that any

quantum theory must have, which involves unphysical states. These are states that

one includes in the theory at an intermediary stage in order to preserve important

symmetries, but should not be part of the physical spectrum of the theory. Thus

xi



Preface

in the end the theory should be such that if one scatters a number of physical

states, unphysical states will not be produced, in other words unphysical states must

decouple. The proof of this decoupling in the case of the pure spinor formalism is the

subject of the fifth chapter. More precisely this chapter contains the proof for one

of the two versions of the pure spinor formalism, the so-called minimal formalism.

Decoupling of unphysical states in the other version is trivial to prove and will

therefore not be discussed at length.

Joost Hoogeveen

Amsterdam, Netherlands

June 2010
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Chapter 1

String theory

1.1 Motivations for supersymmetric string theory

High energy physics describes the most fundamental processes that occur in nature.

These comprise the interaction of elementary particles, which include for instance

electrons, protons and neutrinos. The theoretical description of these processes be-

gan in the beginning of the twentieth century when, among others, Bohr, Heisenberg

and Schrödinger wrote down the laws and principles of quantum mechanics. These

could explain the surprising outcome of the double slit experiment and the peculiar

nature of the hydrogen spectrum. In the succeeding decades much more was learnt

about elementary particle physics, in particular how to combine quantum mechanics

with the theory of relativity as developed by Einstein in the early 1900’s. The re-

placement of all individual particles by a much smaller number of fields, one for each

kind of particle, lied at the heart of the progress in relativistic quantum mechanics,

which goes under the name of quantum field theory. The introduction of fields allows

for the creation and annihilation of particles that any relativistic theory necessarily

contains, since kinetic energy is exchangeable with mass, as expressed by Einstein’s

famous formula E = mc2. Around 1970 all the work on quantum field theory culmi-

nated in a realistic model that describes interactions of elementary particles with a

stunning accuracy, the standard model1. This model provides theoretical explana-

tions and predictions for the behaviour of elementary particles under the influence

of three of the four (known) forces of nature: electromagnetism, the weak (nuclear)

force and the strong (nuclear) force. It accounts for all observed particles, which is

non trivial from a theoretic viewpoint because if the number of fields of some kind

is different from a certain number, the theory would not be unitary, i.e. it predicts

1An excellent reference for quantum field theory is [1]. This book contains the details of the

field theory arguments used in this section.

1



Chapter 1 - String theory

negative probabilities. It also predicts the existence of one particle that has not

been unobserved (yet), the Higgs boson. This fact and other experimental data put

strong constraints on the allowed values of its mass. If the Higgs boson exists in

nature its mass must lie in the range

115 GeVc−2 < mH < 500 GeVc−2. (1.1)

The failure to detect the Higgs boson in particle accelerators to date gives the lower

bound. A Higgs mass higher than the upper bound would have resulted in non

standard model physics at measurable scales. If one assumes the standard model

describes nature all the way up to the Planck scale,

MP =

(

GN
~c

)− 1
2

∼ 1019 GeVc−2, (1.2)

the upper bound on the Higgs mass drops to approximately 180 GeVc−2. As will

become apparent in the next paragraph it is interesting to note how the physical

value of the Higgs mass is obtained in the standard model. One starts with a bare

mass, m0
H , and then adds quantum corrections to it:

m2
H = (m0

H)2 + δm2
H . (1.3)

The quantum correction, δm2
H , can be expanded in powers of the cut off of the

theory. This is the scale up to which one assumes the theory is valid.

δm2
H = c1Λ

2 + c2m
2
H log

Λ

mH
+ · · · . (1.4)

The first term in this expansion comes completely from the diagram in figure 1.1.

H

HH

Figure 1.1: Higgs mass renormalisation diagram

In spite of its success the standard model is not a complete theory, the most

serious problems are listed below.

• The standard model does not include gravity. This is not a problem for describ-

ing earth based particle accelerator experiments like the LHC because gravity

is very weak compared to the other three forces. The lack of a theory of quan-

tum gravity does, however, make for instance the description of the universe

2



Chapter 1 - String theory

just after (and perhaps before) the big bang impossible. Other motivations to

develop such a theory include the desire for a microscopic description of black

holes and the search for dark, i.e. non standard model, matter candidates. The

existence of dark matter can be inferred from cosmological observations on the

expansion of the universe. These observations give an estimate for the total

mass in the universe. The standard model particles can only account for four

percent of the total mass. Hence there is much more to our universe than the

standard model.

• The standard model is one element of an 18 parameter family of theories. The

value of these parameters must be obtained from experiment. There is no

physical principle to determine them.

• When the underlying mass scale of a theory is of a completely different order

than the masses measured in experiments a theory is said to have a hierarchy

problem. This is considered unnatural by many, because the quantum correc-

tions to the bare mass values are of the order of the fundamental parameters

(cf. (1.4)), which implies that the bare mass m0
H has to be “fine-tuned” with

the utmost precision to give the observed physical mass. The standard model

is an example of a such a theory. There are two choices for the fundamental

mass scale. The first one is the Planck mass, which is the only mass that can

be constructed out of constants of nature. Furthermore it is the scale at which

gravity starts to play a role. The second choice is the grand unification mass,

which is the scale where the three coupling constants of the standard model

(roughly) meet:

MGUT ∼ 1016 GeVc−2. (1.5)

Clearly both these scales are of completely different order than the Higgs mass,

mH .

The hierarchy problem can also be posed as the lack of an explanation for

the fact that gravity is so weak compared to the other three forces. More

explicitly why do standard model particles carry electric charge of order one

and gravitational charges of order 10−19, in dimensionless units.

These three problems have various resolutions, a number of which will be discussed

in this chapter.

The introduction of a new symmetry to the theory, supersymmetry, is a par-

tial resolution to the hierarchy problem. This is a symmetry that relates bosons to

fermions, in particular every standard model particle has a superpartner in a super-

symmetric theory. To see the effect on δm2
H first note that a supersymmetric theory

has much more (Lorentz) scalars because all the fermions have superpartners. One

can show that the Λ2 term coming from the diagram in figure 1.1, with the Higgs in

3



Chapter 1 - String theory

the loop replaced by an arbitrary scalar cancels exactly against a Λ2 term coming

from the diagram in figure 1.2, where the fermion running in the loop is the super-

partner of the boson that replaces H in the loop in figure 1.1. The leading order

HH

F

Figure 1.2: Higgs mass renormalisation diagram, F = fermion

correction goes like mtlog Λ
mt

, where mt is the mass of the heaviest particle. This

solves the naturalness part of the hierarchy problem, there is no need for fine tuning

anymore. The huge gap between the Planck scale and the mass scale of elementary

particles is, however, still unexplained. Nonetheless supersymmetry can be used as

a guidance principle in the search for a more complete theory of nature.

The most obvious (and naive) way to construct a theory of all four forces follows

the same recipe that was used to build the standard model. This means start with

the classical Lagrangian and quantise it. The action that describes gravity at the

classical level is the Einstein-Hilbert action:

SEH =
c3

16πGN

∫

d4x
√−gR, (1.6)

where gµν is the spacetime metric, R is its Ricci scalar and

g ≡ det(gµν). (1.7)

Quantising the above action (plus terms that couple gravity to standard model

fields) leads to infinities that cannot be handled in a sensible way, in other words

the Einstein-Hilbert action is non renormalisable. An easy check for non renor-

malisability of an interaction term is provided by calculating the mass dimension

of the coupling constant. If this dimension is negative the interaction term is non

renormalisable. As an example consider φ4 theory:
∫

d4x
(

∂µφ∂
µφ+m2φ2 + λφ4

)

. (1.8)

The mass dimension of φ can be inferred from either of the first two terms:

[φ] =
1

2
(−[d4x] − [m2]) =

1

2
(4 − 2) = 1. (1.9)

This leads to [λ] = 0, hence φ4 theory is (at least superficially) renormalisable. To

determine the mass dimension of GN note that [gµν ] = 0 as follows from

ds2 = gµνdx
µdxν . (1.10)

4



Chapter 1 - String theory

Since the Ricci scalar contains two spacetime derivatives and a number of gµν ’s, its

mass dimension is 2. This implies

[GN ] = −2. (1.11)

This is the dimension a coupling constant in a φ6 term would have, which we know

leads to a non renormalisable theory. An example of a divergent Feynman diagram

that cannot be dealt with in case of a coupling constant with negative mass dimension

is depicted in figure 1.3. The Feyman rules dictate to integrate over the position

Figure 1.3: Graviton loop

of the vertices of the above diagram. The divergence comes from the region when

the four vertices are very close to each other. Within the confines of quantum field

theory it is very hard to remove this divergence in a Lorentz invariant way. One of

the basic ideas of string theory is to smear out this interaction over a larger region.

The mere fact that an interaction term is non renormalisable does not rule it

out as part of a realistic model. It could be that the divergence is an artifact of

perturbation theory and that all physical quantities are finite when the exact theory

is considered. Technically speaking such a theory would have a non trivial UV fixed

point. Note, however, that finding such a point would not solve all the problems of

the standard model mentioned above.

Before introducing string theory there is one more ingredient of quantum field

theory that needs to be mentioned. It is a very elegant and powerful method,

developed by Feynman, to describe and predict the scattering of elementary particles.

In the case of an elementary particle he proposed that if its position at some time t0
is given by x0, it could evolve to any other position x1 at time t1. The probability

of this process can be calculated by assigning a weight to all paths with the given

initial and final data, even very non-classical ones. As an example of such a path one

can think of a path that goes to the sun and back, with the initial and final position

within the same room. The probability of the particle evolving from x0 to x1 is given

by the sum, or integral, of the weights of all possible paths. The very non-classical

paths have very small weights so that they hardly contribute. This is a key concept

5



Chapter 1 - String theory

in the standard model and quantum field theory in general. Its great importance

to theoretical physics is also demonstrated by the pivotal role that Feynman’s path

integral plays in string theory, a point that will be discussed in detail in due course.

In string theory elementary particles are no longer thought of as point particles

but as strings. More explicitly as one dimensional objects that can either be open

or closed. Different excitations of the string correspond to different particles. To

describe the evolution of strings the path integral method is used:

P (xi(ti, σ) → xf (tf , σ)) =

∫

DpW (p), (1.12)

where P is for probability and σ is a variable that parametrises the string. The

integration variable p denotes an arbitrary path, which is a two dimensional surface

in spacetime, the worldsheet. This worldsheet is parametrised by two worldsheet

coordinates σ1 and σ2. Its embedding in spacetime is given by Xµ(σ1, σ2). W is

the weight that needs to be specified. Feynman specified this weight as eiS/~ for

some action S, so that all weights have the same magnitude and only differ by their

phases. Contributions of highly non-classical paths are suppressed by interference.

To compute the probability of two initial states to interact and produce two final

states, Feynman’s path integral principle tells you to sum over all possible paths

that connect the four states. This path integral splits up in different terms, the

diagrams. Figure 1.4 shows this process in string theory. Note that each diagram

P  =

+ higher genera

+

Figure 1.4: Scattering in closed string theory

depicts a sum over all embeddings with a particular genus (the number of handles).

It is not possible to call one point on the worldsheet in figure 1.4 the interaction

point. This is what is meant by smearing out the interaction. Also note this is an

interaction in closed string theory, which will be described first. Thereafter open

strings will be discussed briefly.

6



Chapter 1 - String theory

1.2 Bosonic string theory

The easiest choice one can make for the weight is the exponential of the area of the

worldsheet of the string. In general the area of a surface is calculated by

A =

∫

Σg

d2σ
√

−dethab, (1.13)

where hab is the metric on the surface, denoted by Σg where g is the genus. The

torus has genus one for instance. If the surface is embedded in space time this h is

the induced metric and the weight W becomes

W (X(σ)) = e
i
~
SNG(X), (1.14)

where SNG is the Nambu Goto action2 which reads

SNG(X) =
1

2πα′

∫

d2σ(−det[∂aX
µ∂bXµ])

1
2 . (1.15)

The constant α′ has the dimensions of a length squared and it is interpreted as

the square of the string length. The square root in the Nambu Goto action makes

computation based on it cumbersome. Such a situation is often encountered in

theoretical physics. The way forward is introducing extra degrees of freedom and

(gauge) symmetries at the same time. In this case this results in the Polyakov action:

SP =
1

2πα′

∫

d2σ
√
ggabηµν∂aX

µ∂bX
ν, (1.16)

The field gab constitutes three extra degrees of freedom and it has the interpretation

of worldsheet metric. The first gauge symmetry is two dimensional diffeomorphism

invariance:

σa → (σ′)a(σ), (1.17)

which induces transformations on g and X :

δXµ = va∂aX
µ, δgab = −∇(avb), (1.18)

where v(σ) is a parameter of infinitesimal diffeomorphisms. The second symmetry

is Weyl invariance:

gab → e2ω(σ)gab. (1.19)

Together these are three gauge invariances, equal to the number of introduced de-

grees of freedom. Furthermore one can show the two actions are classically equivalent

by examining the field equations.

2From this point onwards natural units will be used, i.e. c = ~ = 1

7



Chapter 1 - String theory

The path integral based on the Polyakov action is given by

P =

∫

DXDgeiSP . (1.20)

One can show by performing a Wick rotation (cf. [2]) that the above path integral

is equal to
∫

DXDge−SP , (1.21)

where the integration is over Euclidean worldsheet metrics g and over all embed-

dings X in target space. In this form without the i in the exponent the functional

integrations tend to be better behaved.

The integrations in (1.20) are over function spaces, the space of all embeddings

Xµ(σ) and all worldsheet metrics gab(σ). Since these are not ordinary integrals it

needs to be specified how these integrals are evaluated. As an example consider
∫

DXe−SP =

∫

DXe 1
2πα′

R

d2σ
√
gXµ∇2Xµ , (1.22)

where compared to (1.20) the integration over the worldsheet metric is omitted. The

space of all functions Xµ is spanned by the eigenstates of the operator ∇2, which

are denoted by XI(σ):

Xµ(σ) =
∑

I

xµIXI(σ). (1.23)

The eigenstates satisfy

∇2XI = −λ2
IXI ,

∫

d2σ
√
gXIXJ = δIJ . (1.24)

Integrating over all possible fields Xµ(σ) is the same as integrating over all possible

coefficients xµI . Therefore the functional measure DX can be replaced by an infinite

product of ordinary integration measures:

DX =
∏

I,µ

dxµI . (1.25)

The integral in (1.22) can now be evaluated as

∫

DXe−SP =

∫

∏

I,µ

dxµI e
− 1

2πα′

P

I 6=0 λ
2
Ix

2
I =

∏

I 6=0

(

2π2α′

λ2
I

)
d
2
∫

dxµ0 =

det′
( −∇2

2π2α′

)− d
2
∫

dxµ0 , (1.26)

where the prime on the determinant denotes the omission of the zero mode. This

mode is annihilated by ∇2 and therefore there is no Gaussian for xµ0 . The notion of a

8



Chapter 1 - String theory

functional determinant, such as the determinant in (1.26), can be made more precise

[3], however it often suffices to include them in the overall factor. The integration

over the zero modes gives the volume of spacetime in this case. However in a typical

string theory computations there is an insertion eik·x0 , so that the zeromode integral

gives δd(k). It will become clear in due course that k denotes the sum of the momenta

of the external particles.

Quantisation of gauge invariant actions

The path integral in theories with gauge invariance typically diverges badly. This

is easily seen by splitting the measure of the path integral up in variables that

parametrise gauge transformations and those that parametrise the physical compo-

nents of the fields:

Z =

∫

Dφe−S =

∫

DφgaugeDφphyse−S =

(∫

Dφgauge
)∫

Dφphyse−S = ∞.

(1.27)

The proper definition of the path integral in gauge theories is

Z =

∫

1

V ol G
Dφe−S[φ]. (1.28)

This can be made more precise by using a method developed by Faddeev and Popov.

The first step is writing 1 in a very special way:

1 = ∆FP (φ)

∫

DζDτδ(φζ − φ̂(τ)), (1.29)

where ζ parametrises a single gauge orbit and τ parametrises the space of gauge

orbits, as depicted in figure 1.5. The integral in (1.29) is nonvanishing because there

is always a choice for ζ and τ such that φζ = φ̂(τ). Since the integral in (1.29) is

non-vanishing it makes sense to regard (1.29) as the definition of ∆FP (φ). It will be

explicitly computed in a number of cases below. Inserting the 1 into Z gives

Z =

∫

1

V ol G
DφDζDτ∆FP (φ)δ(φζ − φ̂(τ))e−S[φ] = (1.30)

∫

1

V ol G
DζDφζDτ∆FP (φ)δ(φζ − φ̂(τ))e−S[φζ ].

In the second line the measure for the classical fields Dφ has been replaced by Dφζ .
This gauge invariance of the measure often holds, but should in principle be checked

when one is applying the BRST quantisation procedure. Gauge invariance of the

classical action was used to replace φ by φζ in the action. Furthermore the Faddeev

Popov determinant is gauge invariant. In order to see this one has to show the value

9



Chapter 1 - String theory

of the integral in (1.29) does not change when φ is replaced by a gauge transformed

version φζ1 :
(

∆FP (φζ1 )
)−1

=

∫

DζDτδ((φζ1 )ζ − φ̂(τ)) = (1.31)

∫

Dζ2Dτδ(φζ2 − φ̂(τ)) = (∆FP (φ))
−1

where ζ2 = ζ ◦ ζ1 and in the second equality one has to use that integrating over

all ζ2 is the same as integrating over all ζ. Perhaps an easier way to understand

the gauge invariance of the Faddeev Popov determinant is from figure 1.5. The

determinant only depends on the behaviour of the field at the intersection point of

the gauge orbit and the gauge slice, since the delta function vanishes away from that

point. The gauge transformation will move φ up or down a gauge orbit, but it will

Gauge orbits

Gauge slice

Field space

Figure 1.5: Field space decomposes into gauge equivalent directions (vertical) and non-

equivalent directions (horizontal). The delta function in (1.29) will only have support at the

intersection of the gauge slice with the gauge orbit that contains φ. Therefore the Faddeev

Popov determinant only depends on the gauge orbit, not on the field φ itself. More precisely

the Faddeev Popov determinant only depends on the derivatives of φ at the intersection point

along the gauge slice and the gauge orbit.

not change the intersection point. Using the gauge invariance of the Faddeev Popov

10
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determinant leads to

Z =

∫

1

V ol G
DζDφζDτ∆FP (φζ)δ(φζ − φ̂(τ))e−S[φζ ] =

∫

DφDτ∆FP (φ)δ(φ − φ̂(τ))e−S[φ], (1.32)

where φζ was relabelled φ and after this modification there is no ζ dependence left

hence the Dζ integration cancels against the volume factor in the denominator. As

a final step one can perform an integration over the classical fields to remove the

delta function:

Z =

∫

Dτ∆FP (φ̂(τ))e−S[φ̂(τ)]. (1.33)

Both the delta function and the Faddeev Popov determinant in (1.32) can be

written as functional integrals. The delta function can be rewritten as
∫

DBe−Sgf , Sgf =

∫

ddxBA(φA − φ̂A(τ)), (1.34)

where A runs over the fields that play a role in the gauge fixing. After making this

restriction the number of moduli will be finite in all cases to be discussed in this

thesis. The inverse of the Faddeev Popov determinant is given by

∆−1
FP (φ) =

∫

dτDζδ(φζ − φ̂(τ)) =

∫

dτDζδ(φ0 + ζa
δφ

δζa
− φ0 − τk

∂φ̂

∂τk
), (1.35)

where φ0 is the value of the classical fields at the intersection point of the gauge

slice and the relevant gauge orbit. The truncation of the Taylor series is not an

approximation. In order to see this consider the case that the classical field space is

two dimensional, with one gauge direction and one modulus direction, as depicted in

figure 1.5. The intersection point φ0, the gauge transformed field φζ and the gauge

orbit φ̂(τ) can be written more explicitly as

φ0 = (φ1
0, φ

2
0), φζ = (f(ζ), 0) + (φ1

0, φ
2
0), φ̂(τ) = (0, g(τ)) + (φ1

0, φ
2
0). (1.36)

In this example the delta function becomes

δ(2)(φζ − φ̂(τ)) = δ(f(ζ))δ(g(τ)) = δ(ζ − ζ0)δ(τ − τ0)
1

f ′(ζ0)

1

g′(τ0)
, (1.37)

where ζ0 is the gauge parameter such that φζ0 = φ0. This equation must have a

unique solution otherwise the gauge fixing condition was erroneous. Similarly τ0 is

defined by φ̂(τ0) = φ0. The RHS of (1.37) can be rewritten as

δ((ζ − ζ0)f
′(ζ0))δ((τ − τ0)g

′(τ0)) = δ(2)(ζa
∂φ

∂ζa
− τk

∂φ̂

∂τk
) (1.38)

11
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After this short intermezzo let us return to the Faddeev Popov determinant:

∆−1
FP (φ) =

∫

dτDζδ(ζa δφ
δζa

− τk
∂φ̂

∂τk
) =

∫

dτDζDβeβA(ζa δφA

δζa −τk ∂φ̂A

∂τk ), (1.39)

where βA has the same statistics as φA. Now one has to replace the fields in the

path integral measure by fields of opposite statistics (βA → bA, ζ
a → ca, τ → ξ) to

obtain an expression for ∆FP :

∆FP (φ(τ)) =

∫

DbADcadξe−SF P , (1.40)

where

SFP =

∫

ddxbA(x)

[

δφζA(x)

δζa
(ζ0)c

a(x) − ∂φ̂A(x; τ)

∂τκ
(τ0)ξ

κ(x)

]

. (1.41)

The total amplitude is now given by

Z =

∫

DφDbDcDBdτdξe−SP −Sgf−SF P , (1.42)

where SP is the Polyakov action, but can be any gauge invariant action. The fields

bA and ca are the Faddeev Popov ghosts and BA is an auxiliary field since it only

appears algebraically. Furthermore bA and BA are tensor densities so that Sgf and

SFP are coordinate invariant. One would expect the indices A and a to run over the

same values, but this need not be true as will be demonstrated below in the case of

the Polyakov action.

As first realised by Becchi, Stora and Rouet (BRS) and independently by Tyutin

(T) the new action is no longer invariant under the gauge transformations of SP ,

but it is invariant under the BRST symmetry given by3

δBφ = ǫcaδaφ, (1.43)

δBc
a = ǫfabcc

bcc, (1.44)

δBbA = ǫBA, (1.45)

δBBA = 0, (1.46)

δBτ
k = ǫξk, (1.47)

δBξ
k = 0, (1.48)

where ǫ is a fermionic parameter, δa are the generators of gauge transformations of

SP and fabc are the structure constants of these transformations:

[δa, δb] = f cabδc. (1.49)

3When this symmetry was discovered, the gauge fixing condition did not involve moduli. There-

fore the τ and ξ transformations were not part of their analysis.

12
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By Noether’s procedure one can extract a BRST charge, Q, from the above trans-

formations. By applying the transformations twice the reader can check this charge

is nilpotent:

Q2 = 0. (1.50)

With the help of the BRST operator the action in equation (1.42) can be written

in a more illuminating form:

S = SP + Q
[

bA(φA − φ̂A)
]

, (1.51)

where the quantity in the square brackets is called the gauge fixing fermion. One

can see that BRST quantisation amounts to multiplying Z by a factor of the form

1 +QΩ, restricting the φ integrals to moduli space and introducing the integrations

over the ghosts and auxiliary fields. The above form of Z is appealing since one can

always add a Q exact piece to the action without changing any physical scattering

processes. At a superficial level this is the idea behind BRST quantisation, one adds

a Q exact piece to the action such that the functional integral gives a finite result.

The spectrum of the theory is defined as the cohomology of Q. This means all

states that are Q closed and states that differ by a Q exact state are physically

equivalent:

Q|α〉 = 0, |α〉 ∼ |α〉 + Q|β〉. (1.52)

One can show the first condition, together with the property (1.51), is necessary

for physical amplitudes to be independent of the gauge choice and since 〈γ|α〉 =

〈γ|α〉 + 〈γ|Q|β〉 for any physical state, |γ〉, |α〉 and |α〉 + Q|β〉 represent the same

state.

The BRST transformations as given in (1.43)-(1.48) only give rise to a symmetry

when the structure constants in (1.49) are really constants, i.e. they do not depend

on the fields and hence they are inert under the BRST transformations. Furthermore

the gauge algebra (1.49) must close, i.e. there cannot be any terms proportional to

the equations of motion in the RHS of (1.49) for the the BRST transformations

to be a symmetry. There exists a generalisation of BRST quantisation, developed

by Batalin and Vilkovisky (BV) [4], which can also handle gauge theories with non

constant “structure constants” and/or open gauge algebras, however the gauge fixing

condition cannot involve a moduli space. In a follow up paper [5] the same authors

have shown how to quantise gauge theories with linearly dependent gauge generators.

This second paper opened up the possibility to apply BV quantisation to theories

with a moduli space, like string theory. The case of the bosonic string has been

worked out in [6]. The fact that (1.42) leads to a consistent quantum theory can

also be derived by applying BV quantisation.

13
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1.2.1 BRST quantisation of Polyakov action

The gauge fixing condition should fix all invariances. The way gauge fixing works

out depends on whether the worldsheet has the topology of a sphere, a torus or a

higher genus surface. On the sphere every metric is Weyl equivalent to the round

metric:

∀g∃ω(σ) : e2ω(σ)gab(σ) = ĝab(σ), (1.53)

where ĝab is the round metric. In coordinates that cover the entire sphere except

the north pole it is given by

ˆds2 = e2ω0(σ
1,σ2)[dσ12

+ dσ22
], (1.54)

with

e2ω0 =
4

1 + (σ1)2 + (σ2)2
. (1.55)

Furthermore, since e2ω1g = e2ω2g if and only if w1 = ω2, there exists a unique ω that

transforms a given metric to the round metric. This fixes all the Weyl invariance.

In order to fix the coordinate invariance expressing the metric in ones favourite

coordinates seems to do the job. One has to check however whether there are

diff × Weyl transformations that leave the metric -expressed in certain coordinates-

invariant. Of course gabdσ
adσb is invariant under all coordinate transformations, but

the question is whether there are coordinate transformations that leave gab(σ
1, σ2)

invariant up to a Weyl transformation, since this would mean writing down the

metric in certain coordinates does not fix all the diff × Weyl invariance. In complex

coordinates,

z = σ1 + iσ2, z̄ = σ1 − iσ2, (1.56)

the metric reads

ds2 = 2gzz̄dzdz̄, (1.57)

where

gzz̄ =
1

2
eω(z,z̄). (1.58)

The coordinate transformations on the metric become

δgzz̄ = (∂zv
z + ∂z̄v

z̄)gzz̄ = (∇ · v)gzz̄, (1.59)

δgzz = ∂zv
z̄gzz̄, (1.60)

δgz̄z̄ = ∂z̄v
zgzz̄. (1.61)

The variation of gzz̄ is a Weyl transformation for any v. The variations of gzz and

gz̄z̄ should vanish, which implies

∂zv
z̄ = 0, ∂z̄v

z = 0. (1.62)
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Each equation has three independent globally defined solutions on the sphere:

vz = c1 + c2z + c3z
2, vz̄ = d1 + d2z̄ + d3z̄

2. (1.63)

Note that poles in z are not allowed because they give an infinity at z = 0. Orders

above two are not allowed because they give an infinity at the north pole, z = ∞.

These six independent vector fields represent six invariances of the metric up to

Weyl (or conformal) transformations. Hence they are called conformal killing vectors

(CKVs). Together they form the conformal killing group (CKG). This is the group

of residual gauge invariance, after gab has been fixed. This residual invariance will

be fixed in a different way, which is discussed after the paragraph on the external

string states.

On the torus it is no longer true that every metric is Weyl equivalent to a given

one. In this case there does exist a one (complex) parameter family of metrics such

that every metric is Weyl equivalent to (exactly) one metric in this family. This

family of metrics is the aforementioned moduli space of metrics on the torus. Hence

the functional integral over the metric contains integration over physical modes, in

contrast to the sphere. Furthermore there is residual gauge invariance on the torus.

The CKG is two dimensional and the CKVs are given by the constant functions:

vz = c, vz̄ = d. (1.64)

A systematic way of analysing the CKG for surfaces of arbitrary genus is writing

0 = δgαβ in a fancy way:

0 = δgab = −2(P1v)ab + (2δω −∇ · v)gab, (1.65)

where Pn takes symmetric traceless rank n tensors into a symmetric traceless rank

(n+ 1) tensors. They are defined by

(Pn(T n))a1···an+1 = ∇(a1
(T n)a2···an+1) −

n

n+ 1
g(a1a2

∇b(T n)ba3···an+1). (1.66)

By taking the trace of (1.65) one finds 2δω − ∇ · v = 0 which determines δω. The

restriction on v is

(P1v)ab = 0. (1.67)

The number of CKVs, κ, is equal to dimension of the kernel of P1. The actual

values will be given together with the dimension of the moduli space after the next

paragraph.

In order to figure out the number of moduli one looks at the number of indepen-

dent metric variations that are orthogonal to all the ones in (1.65):

0 = (δ′g, δg) ≡
∫

d2σ
√
gδ′gab[−2(P1v)

ab + (2δω −∇ · v)gab]. (1.68)
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The inner product denoted by (·, ·) is defined by

(T, T ′) =

∫

d2σ
√
gT · T ′, (1.69)

where T and T ′ are tensors of equal rank and the dot denotes contraction of all

indices. Equation (1.68) is equivalent to the following two equations

δ′gabg
ab = 0, (δ′g, P1v) = 0. (1.70)

The first equation implies all variations orthogonal to diff × Weyl transformations

are traceless. The second equation can be rewritten with the help of the transpose

of Pn, which is defined by

(PTn (T n+1))a1···an
= ∇b(T n+1)ba1···an

. (1.71)

and satisfies

(T, PnT
′) = (PTn T, T

′). (1.72)

The second condition on δ′gab can now be written as

0 = (PT1 δ
′g, v) ∀v ⇒ PT1 δ

′g = 0. (1.73)

Hence the number of moduli, µ, is equal to the dimension of the kernel of PT1 . One

can prove µ vanishes on surfaces with genus two and higher [2]. The Riemann-Roch

theorem for closed oriented surfaces, also proved in [2], states

dim kerPn − dim kerPTn = (2n+ 1)(2 − 2g). (1.74)

For the special case that n = 1 this gives

κ− µ = 6 − 6g. (1.75)

Together with the results for the torus and the sphere this leads to the table 1.1.

g κ µ

0 6 0

1 2 2

≥ 2 0 6g − 6

Table 1.1: Dimensions of the CKG and the moduli space

The path integral for the genus g term is given by

Zg =

∫

dµτ
1

CKG
DXDbDcdξe

−1
2πα′

R

Σg
d2σ

√
ĝ(τ)ĝαβ(τ)∂αX

µ∂βXµ−SF P [ĝ(τ),b,c,ξ]
,

(1.76)

16



Chapter 1 - String theory

where τ parametrises moduli space. This path integral still depends on the initial

and final conditions which specify the states. The BRST procedure guarantees Z

is independent of the gauge fixing condition if initial and final states are physical

(i.e. annihilated by the BRST operator). It is interesting to note that there is a

certain ĝ that gives rise to the genus zero diagram in figure 1.4. It is also possible

to choose ĝ to be the round metric, which simplifies computations. With this new

choice the genus zero diagram is depicted in figure 1.6. The string profile of the

Figure 1.6: Tree level string diagram with local vertex operators

asymptotic states has been mapped to points. In order to understand why these are

really points and not finitely sized holes consider one of the half infinite cylinders in

figure 1.4. This will be mapped to a patch of the sphere that contains a puncture.

The transformation on the metric that took figure 1.4 into figure 1.6 is a Weyl (or

conformal) transformation on the metric. There exists a conformal transformation

from the cylinder to the complex plane (the patch on the sphere) and this transfor-

mation takes the circle at the end of the cylinder to the origin of the complex plane.

Hence in this gauge string states correspond to local operators. The explicit form of

these operators will be discussed in due course.

Let us go back to arbitrary genus. It is tempting to write

Zg =

∫

dµτ
1

CKG
DXDbDcdξV1(σ

1) · · ·VN (σN )e−SP [ĝ(τ),X]−SFP [ĝ(τ),b,c,ξ], (1.77)

where

SP [ĝ(τ), X ] =
1

2πα′

∫

Σg

d2σ
√

ĝ(τ)ĝab(τ)∂aX
µ∂bXµ

The functional integration over X is no longer constraint by boundary conditions

and Vi(σ
i) are the vertex operators and the label i represents the kind of particle

and its momentum. They are inserted at arbitrary positions σi on the worldsheet.

However, like in every gauge theory only gauge invariant objects are of physical

interest and Vi(σ
i) is not invariant under coordinate transformations. Therefore a
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better choice for the vertex operators is
∫

d2σ
√
gVi(σ). (1.78)

This results in

Zg =

∫

dµτ
1

CKG
DXDbDcdξdNσi

√

ĝ(σ1)V1(σ
1) · · ·

√

ĝ(σN )VN (σN )e−SP−SF P .

(1.79)

Since the σi’s appear as integration variables in the path integral they can be in-

terpreted as quantum mechanical degrees of freedom. It is these constant fields one

can use to fix the residual gauge invariance consisting of the CKG, which only plays

a role on the sphere and the torus. More explicitly the gauge fixing action that fixes

the entire gauge group including the CKG is given by

Sgf =

κ/2
∑

i=1

Bai (σ
i
a − σ̂ia) +

∫

d2σBab(gab − ĝab(τ)). (1.80)

After integrating out the auxiliary field B the path integral becomes

Zg =

∫

dµτDXDbDcdN−κ/2σi
κ/2
∏

i=1

√

ĝ(σ̂i)Vi(σ̂
i)

N
∏

i=κ/2+1

√

ĝ(σi)Vi(σ
i)e−SP −SF P .

(1.81)

The Faddeev Popov action can be evaluated as

SFP =

∫

ddxbA(x)

[

∂φ̂A

∂ζa
ca(x) +

∂φ̂A

∂τk
ξk(x)

]

= (1.82)

(b, P̂1c) + (b, ξk∂kĝ) + biac
a(σ̂i) +

∫

Σg

d2σbabĝ
ab(∇̂ · c− cω)

After plugging this into Z a number of fields appears algebraically in the action: cω,

the trace of bab, b
i
a and ξk. These can be integrated out:

Zg =

∫

dµτDXDbabDcadN−κ/2σi
κ/2
∏

i=1

√

ĝ(σ̂i)ǫabc
a(σ̂i)cb(σ̂i)Vi(σ̂

i)

N
∏

j=κ/2+1

√

ĝ(σj)Vj(σ
j)

µ
∏

k=1

(b, ∂kĝ)e
−1

2πα′

R

d2σ
√
ĝĝab∂aX

µ∂bXµ−(b,P̂1c), (1.83)

where bab is traceless. In all gauges of the form ĝ = eωground and complex coordinates

the action reads

Scg =
1

2πα′

∫

d2z∂zX
µ∂z̄Xµ + bzz∂z̄c

z + bz̄z̄∂zc
z̄. (1.84)
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Equation (1.83) is the main formula in the bosonic string theory defined by the

Polyakov action. This is where all computations start. In [6] the same formula was

obtained using BV quantisation.

The BRST operator is classically nilpotent by construction. The word classically

means that the transformations in (1.43) are nilpotent. In general this does not

imply Q is also nilpotent quantum mechanically. This means Q2 vanishes inside

(all) correlators:
∫

DφQ2O1 · · ·One
−S = 0. (1.85)

A very useful tool to examine the behaviour of operators inside a path integral is the

operator product expansion (OPE). This is the statement that when two operators,

say O1 and O2, inside a path integral are close to each other (no other operator is

closer to either one than they are to each other) their product can be approximated

to arbitrary accuracy by a sum of local operators:

φi(z, z̄)φj(z′, z̄′) =
∑

k

cijk(z, z̄, z
′, z̄′)φk(z′, z̄′). (1.86)

As an example of this construction consider the free boson action:

S =
1

2πα′

∫

d2z∂X∂̄X. (1.87)

In order to derive the OPE forX(z, z̄)X(z′, z̄′) consider the following total functional

derivative

0 =

∫

DX ∂

∂X(z, z̄)

(

X(z′, z̄′)O1(w1, w̄1) · · · On(wn, w̄n)e−S
)

, (1.88)

where z and z′ are close to each other and the operators O are inserted at points

away from z and z′. By evaluating the RHS of (1.88) one obtains

0 =

∫

DX(δ2(z−z′, z̄−z̄′)+ 1

πα′ ∂z∂z̄X(z, z̄)X(z′, z̄′))O1(w1, w̄1) · · · On(wn, w̄n)e−S

(1.89)

One can conclude that inside correlators

∂z∂z̄X(z, z̄)X(z′, z̄′) = πα′δ2(z − z′, z̄ − z̄′). (1.90)

To be able to write this as a sum of local operators one needs to define the normal

ordered product:

: X(z, z̄)X(z′, z̄′) :≡ X(z, z̄)X(z′, z̄′) +
α′

2
ln|z − z′|2. (1.91)

Note this normal ordered product satisfies

∂z∂z̄ : X(z, z̄)X(z′, z̄′) := 0. (1.92)
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Thus in normal ordered products the operators can be brought to the same point

without encountering divergences. The XX OPE can now be written as

X(z, z̄)X(z′, z̄′) = −α
′

2
ln|z − z′|2+ : X(z, z̄)X(z′, z̄′) := (1.93)

−α
′

2
ln|z − z′|2+ : XX(z′, z̄′) : +

∞
∑

i=1

1

i!

[

(z − z′)i : X∂iX(z′, z̄′) : +(z̄ − z̄′)i : X∂̄iX(z′, z̄′) :
]

.

An OPE is usually denoted as

X(z, z̄)X(z′, z̄′) ∼ α′

2
ln|z − z′|2, (1.94)

where the ∼ means is equal to up to terms that are finite when z → z′. In the sequel

it will become clear that the poles in the OPE often contain enough information to

do computations. The OPE for the Faddeev Popov ghosts can be obtained similarly:

b(z)c(w) ∼ 1

z − w
, b(z)b(w) ∼ 0, c(z)c(w) ∼ 0 (1.95)

b̃(z)c̃(w) ∼ 1

z − w
, b̃(z)b̃(w) ∼ 0, c̃(z)c̃(w) ∼ 0, (1.96)

where b ≡ bzz, c ≡ cz , b̃ ≡ bz̄z̄, c̃ ≡ cz̄ and since the equation of motion for b is ∂̄b = 0,

b(z, z̄) is denoted as b(z). (Note this does not mean the path integral is only over

holomorphic b’s.)

In order to compute Q2 inside the path integral and the cohomology of Q it

is useful to note the action in (1.84) is invariant under all holomorphic coordinate

transformations:

z → f(z). (1.97)

These transformations are known as conformal transformations and the Noether

charges associated to them are the Virasoro generators, which are given by:

Ln =
1

2πi

∫

dzzn+1T (z), L̃n =
1

2πi

∫

dz̄z̄n+1T̃ (z̄) (1.98)

where T ≡ Tzz and T̃ (z̄) ≡ Tz̄z̄ are the only two nonvanishing components of the

stress energy tensor (i.e. the Noether current for translations). In a Weyl invari-

ant theory the stress energy is traceless, therefore Tzz̄ = Tz̄z = 0. Their explicit

expressions are given by

T (z) ≡ Tmzz(z) + T gzz(z), T̃ (z̄) ≡ Tmz̄z̄(z̄) + T gz̄z̄(z̄), (1.99)

Tmzz = − 1

α′ : ∂Xµ∂Xµ :, Tmz̄z̄ = − 1

α′ : ∂̄Xµ∂̄Xµ :, (1.100)
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T gzz =: (∂b)c : −2∂(: bc :), T gz̄z̄ =: (∂̄b̃)c̃ : −2∂̄(: b̃c̃ :). (1.101)

All continuous symmetries imply the existence of Ward identities. For an arbitrary

symmetry of the two dimensional action generated by a current (j, j̃) the Ward

identity reads [2]
∮

∂R

(jdz − j̃dz̄)O(z0, z̄0) =
2π

ǫ
δO(z0, z̄0), (1.102)

where ǫ is the parameter of the transformation and R is some small region in the

two dimensional spacetime. In this thesis all symmetries are such that j and j̃ are

conserved separately, i.e. j is holomorphic and j̃ is antiholomorphic. In these cases

(1.102) becomes

Resz→z0j(z)O(z0, z̄0) + Resz̄→z̄0 j̃(z̄)O(z, z̄0) =
1

iǫ
∂O(z0, z̄0). (1.103)

This form of the Ward identity can be used to determine part of the form of the

OPE of T, T̃ with an arbitrary operator. By considering scale transformations and

translations one finds:

T (z)O(w, w̄) ∼ · · · + 1

(z − w)2
hO(w, w̄) +

1

z − w
∂O(w, w̄), (1.104)

T̃ (z̄)O(w, w̄) ∼ · · · + 1

(z̄ − w̄)2
h̃O(w, w̄) +

1

z̄ − w̄
∂̄O(w, w̄), (1.105)

where (h, h̃) is called the conformal weight of O. A scale transformation is given by:

O′(ζz, ζ̄z̄) = ζ−hζ̄−h̃O(z, z̄). (1.106)

As an example cz has conformal weight (-1,0) and bzz has weight (2,0). There is one

further symmetry of (1.83) that comes in handy which is ghost number conservation.

Its current is given by

jbc = − : bc :, j̃b̃c̃ = − : b̃c̃ :, (1.107)

so that c has (holomorphic) ghost number 1 and b has (holomorphic) ghost number

-1.

As can be derived from (1.43) the BRST operator is given by

Q = Q+ Q̃, (1.108)

Q =

∫

dzc(z)Tm(z) +
1

2
: c(z)T g(z) : +a∂2c(z), (1.109)

Q̃ =

∫

dz̄c̃(z̄)T̃m(z̄) +
1

2
: c̃(z̄)T̃ g(z̄) : +a∂̄2c̃(z̄), (1.110)

The constant a is yet to be determined. Its value has no effect on the Noether charge

Q since it multiplies a total derivative. To compute Q2 it is convenient to write

Q =

∫

dzjB(z). (1.111)
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Inside the path integral one has to use OPEs to evaluate Q2:

Q2 =

∫

dzdwjB(z)jB(w) =

∫

dzdw

∞
∑

i=−∞
Oi(w)(z − w)i =

∫

dzO−1(z). (1.112)

Hence a sufficient condition for quantum mechanic nilpotency of the BRST charge

is vanishing of the single pole in the jB(z)jB(w) OPE. This term can be calcu-

lated in a computation that requires some careful bookkeeping of minus signs and

anticommuting variables:

jB(z)jB(w)| 1
z−w

=
1

z − w

[

(−3

2
+ a)∂c∂2c(w) + (

d

12
− a− 2

3
)c∂3c(w)

]

, (1.113)

where d is the number of X fields, in other words the dimension of spacetime. The

solution to Q2 = 0 is given by

a =
3

2
, d = 26. (1.114)

The second constraint has huge physical implications, it says the string theory de-

fined by the Polyakov action is only a sensible quantum theory in 26 spacetime

dimensions. Obviously this cannot describe nature. More physical string theories

will be discussed in due course.

Closed string spectrum

Although the Polyakov string is not a realistic model it is still interesting to study

its spectrum, because the lessons learnt from this exercise carry over to the more

realistic string models. As follows from the main formula of Polyakov string theory,

(1.83), vertex operators can be either integrated, U , or unintegrated, V :

V (z, z̄) = c(z)c̃(z̄)V m(z, z̄), U =

∫

d2zVm(z, z̄), (1.115)

where Vm only contains matter fields. Naively one would say V m can be an arbitrary

function of X(z, z̄) before imposing QV = 0. However, for a well defined quantum

theory it is necessary that all operators have single valued OPEs among each other.

If one includes X(z, z̄) in the spectrum of allowed operators, this rule is violated

because the XX OPE is not single valued (cf. (1.94)). A good set of operators is

given by

:

(

∏

i

∂aiXmi(z)

)





∏

j

∂̄bjXnj(z̄)



 eik·X(z,z̄) :, (1.116)

where the argument of ∂kX is given as z because the equation of motion implies

∂kX is holomorphic, ∂̄∂X = 0. The weights of these operators are given by

hai =
α′k2

4
+
∑

i

ai, h̃bj =
α′k2

4
+
∑

j

bj. (1.117)
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The BRST procedure guarantees that

Q

∫

V m = 0 ⇔ Q(cV m) = 0. (1.118)

So determining either the integrated or unintegrated cohomology is enough to obtain

the spectrum. The physical state condition implies vanishing of the conformal weight

of the vertex operator. The OPE of the BRST current with a vertex operator is

given by:

jB(z)c(w)V m(w, w̄) ∼ (1.119)

c(z)c(w)

( ∞
∑

i=3

1

(z − w)i
Oi(w, w̄) +

1

(z − w)2
hV m(w, w̄) +

1

z − w
∂Vm(w, w̄)

)

− 1

z − w
(∂c)c(w)V m(w, w̄),

For certain operators Oi, that depend on Vm and whose precise forms are irrelevant

for the argument. The vanishing of the single pole in this OPE indeed implies

vanishing of the conformal weight:

0 = jB(z)c(w)V m(w)| 1
z−w

= (1.120)

1

z − w

[

(h− 1)(∂c)c(w)V m(w) +
∞
∑

k=2

1

k!
(∂kc)c(w)Ok+1(w, w̄)

]

⇒ h− 1 = 0.

Incidentally one can conclude that cV m is only BRST closed if all Ok vanish, i.e. the

OPE of the stress energy tensor and V m does not have poles order three or higher.

Similarly

h̃− 1 = 0. (1.121)

Note (h− 1, h̃− 1) is the conformal weight of the total vertex operator cc̃V m.

The quantity k in the vertex operators has the interpretation of physical space-

time momentum as can be inferred by constructing a Noether charge associated to

spacetime translation invariance of the Polyakov action. The mass of the state is

therefore given by mass2 = −k2. The constraint on the conformal weight can be

transformed into a mass formula:

mass2 = −k2 = − 4

α′ +
∑

i

ai = − 4

α′ +
∑

j

bi (1.122)

Incidentally the above formula contains a level matching condition, i.e. the holomor-

phic weight must be equal to the antiholomorphic weight. The mass spectrum is

discrete and bounded from below. The first two mass levels are described below.
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• mass2 = − 4
α′ There is only one Q closed vertex operator at this mass level:

V (z, z̄) = c(z)c̃(z̄)eik·X(z,z̄). (1.123)

Furthermore it cannot be written as V = QΩ for the following reason. By

ghost number conservation the ghost number of Ω must be 0. The conformal

weight of Ω must vanish too, because Q does not change the weight. This

narrows the space of possible Ω’s down to operators of the form

Ω = (bc)n(b̃c̃)ñV m, (1.124)

where the weight of the matter part must be (−n,−ñ). After some algebra

one can deduce that none of these operators satisfies QΩ = V .

From the spacetime point of view this is a Lorentz scalar (i.e. a spin zero

particle). Since it has negative mass squared it is also a tachyon and this

causes uncontrollable divergences when one considers scattering amplitudes.

The tachyon is an artifact of Polyakov string theory and the more sophisticated

models, to be described in due course, do not contain a tachyonic mode.

• mass2 = 0 The BRST closed vertex operators at this mass level are given by

c(z)c̃(z̄)emn∂X
m(z)∂̄Xn(z̄)eik·X(z,z̄), (1.125)

subject to the constraints

k2 = 0, kmemn = knemn = 0. (1.126)

The exact states are given by

(Q+ Q̃)(fmc(z)∂X
m(z) + f̃nc̃(z̄)∂̄X

n(z̄))eik·X(z,z̄) = (1.127)

c(z)c̃(z̄)(kmf̃n + fmkn)∂Xm(z)∂̄Xn(z̄)eik·X(z,z̄), k2 = 0, f · k = f̃ · k = 0,

where the conditions on k, f and f̃ are crucially used in the equality. Hence

on top of the constraint the polarisation emn also has a gauge invariance:

emn ∼= emn + kmf̃n + fmkn, f · k = f̃ · k = 0. (1.128)

In conclusion the massless excitations form a rank two Lorentz tensor and

the physical excitations are the transversal ones. Within this rank two tensor

there are three parts that never mix under Lorentz transformations, so all

observers would agree that it is possible to divide the massless spectrum into

three groups. The decomposition is given by

emn → e(mn) − 1

26
ηmnepp ⊕ e[mn] ⊕ emm. (1.129)
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One recognises a symmetric traceless tensor which is interpreted as the gravi-

ton. This is natural because the constraints and gauge invariances on e(mn)

are precisely those that one finds by plugging gmn = ηmn + e(mn) in the Ein-

stein Hilbert action. The antisymmetric part are the physical excitations of

an antisymmetric rank two tensor. In flat space its action is given by

∫

ddx∂[mBnp]∂
[mBnp]. (1.130)

The massless scalar is called the dilaton.

This concludes the discussion on the closed string spectrum. The states with positive

mass2 are not of direct interest because their mass is of the order of the Planck

scale. The logical next step would be to compute some scattering amplitudes but

a number of features of the Polyakov string is very unphysical, e.g. 26 dimensions,

the tachyon, no fermions. These will be dealt with first and amplitude computation

will be discussed in more physical theories.

P  = +

+ higher loops

Figure 1.7: Scattering of open strings

1.2.2 Open strings

The open string analog of figure 1.4 is depicted in figure 1.7. Due to the presence

of a worldsheet boundary the open string Polyakov action does not have as much

gauge invariance as its closed string analog. More explicitly the parameter of the

gauge transformations in (1.18) is restricted by a boundary condition:

nav
a(σ) = 0, σ ∈ ∂Σ, (1.131)

where nα is the normal vector to boundary ∂Σ. The above condition on vα carries

over to the BRST ghost cα. The Weyl (or conformal) invariance is unchanged. This

can be exploited to map the tree diagram in figure 1.7 to the disk as shown in figure

1.8, where the vertex operators are inserted at points on the boundary.
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Figure 1.8: Scattering of open strings; the four crosses represent vertex operators

In turn the disk can be mapped by a conformal transformation to the upper half

of the complex plane. On the upperhalf plane the boundary condition on cα implies

c(z, z̄) = c̃(z, z̄), Imz = 0. (1.132)

It is very useful to combine these two fields, one holomorphic and one antiholomor-

phic with both only defined on the upperhalf plane, into one holomorphic field that

is defined on the whole complex plane:

c(z, z̄) ≡ c̃(z̄, z), Imz < 0. (1.133)

There is a similar boundary condition on the b ghost. This results from the fact that

the variation of an action on a manifold with a boundary also contains boundary

terms. In case of the Faddeev Popov action (1.82) this becomes

∫

∂Σ

dsnababδc
b. (1.134)

This has to vanish and therefore

natbb
ab = 0, (1.135)

where ta is a tangent vector to the boundary. On the upperhalf plane the above

condition reads

b(z, z̄) = b̃(z, z̄), Imz = 0. (1.136)

So that

b(z, z̄) ≡ b̃(z̄, z), Imz < 0. (1.137)

combines the two b ghosts into one holomorphic one. The stress energy tensor on a

surface with a boundary also satisfies a boundary condition:

tanbTab = 0. (1.138)
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In order to see this first note since the translation invariance is partially broken,

only Tabt
b is a conserved current anymore. Equation (1.138) is then the statement

the conserved current cannot flow out of the manifold. The stress energy tensor can

now be treated in the same way as b:

T (z, z̄) ≡ T̃ (z̄, z), Imz < 0. (1.139)

With this definition the holomorphic object T encapsulates all information of the

stress energy tensor. Also note that this doubling trick can also be applied to the

BRST current since it (only) contains fields discussed just above.

The BRST operator of open string theory, which is the sum of an open holomor-

phic and an open antiholomorphic contour integral in the upperhalf plane, can be

written as a closed holomorphic integral in the complex plane (cf. figure 1.9):

Q = Q+ Q̃ =

∫

dzjB(z) +

∫

dz̄j̃B(z̄) =

∮

dzjB(z). (1.140)

The spectrum of open string theory can be obtained by studying the cohomology

∫

dz
∫

dz̄
∮

dz

+ =

Figure 1.9: Contour integrals

of the BRST operator, which is very much like half of the closed string discussion.

A good set of (boundary) operators is given by

...(∂y)
kXm(y)eik·X(y)

..., (1.141)

where y parametrises the boundary and
...O(y)

... denotes boundary normal ordering.

Its explicit form is not needed in this thesis but can be derived by going through the

steps leading to (1.94) for manifolds with a boundary. The mass levels of the open

string are given by

(mass)2 =
−1 + k

α′ . (1.142)

The first two mass levels are described below.

• mass2 = − 1
α′ This is a tachyon, its vertex operator is given by

V (y) = c(y)
...eik·X(y)

.... (1.143)
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• mass2 = 0 The massless states constitute the physical excitations of a photon:

V (y) = emc(y)
...(∂y)X

m(y)eik·X(y)
..., kme

m = 0, em ∼= em + km. (1.144)

For completeness the main formula of open string theory is specified below:

Z =

∫

d
µ
2 τDXDbDcdN−3yi

3
∏

i=1

√

ĝ(ŷi)c(ŷi)Vi(ŷ
i)

N
∏

j=4

√

ĝ(yj)Vj(y
j)

µ
2
∏

k=1

(b, ∂kĝ)e
−1

2πα′

R

Σ
d2σ

√
ĝĝab∂aX

µ∂bXµ−(b,P̂1c). (1.145)

1.2.3 Curved backgrounds

As discussed above the Polyakov only defines a consistent quantum theory in 26

dimensions. Moreover string theory has been defined above as the infinite sum of

diagrams as in figure 1.4, but there is no small parameter associated to them such

that the higher loops become negligible when the parameter is small enough. This

section introduces a generalisation of the worldsheet action that resolves these issues.

The choice for the Polyakov action, (1.16), for the weight in the path integral was

based on simplicity. This is not a very good principle. A better strategy is writing

down the most general worldsheet action for the embedding coordinates X with at

most two worldsheet derivatives:

Sσ =
1

4πα′

∫

d2σ
√
g
[

(

gαβGµν(X) + ǫαβBµν(X)
)

∂αX
µ∂βX

ν + α′R(2)Φ(X)
]

.

(1.146)

The field Gµν is symmetric and has the interpretation of the background spacetime

metric. This is the vacuum metric about which quantum modes can get excited.

The field Bµν is antisymmetric, it will become clear this field is intimately related

with the antisymmetric modes in the massless closed string spectrum. The last term

contains a spacetime scalar which is the background value of the dilaton. The α′

has to be included for the spacetime dimensions to work out.

A priori one can try to compute amplitudes for arbitrary choices of the back-

ground fields. For example the Polyakov action was defined by Gµν = ηµν , Bµν =

0,Φ = 0. Already for this choice anomaly cancellation (i.e. quantum nilpotency of

the BRST operator) imposed restrictions on the dimension of spacetime. After a

short discussion on the dilaton it will be shown that anomaly cancellation of the

theory defined by Sσ implies very natural equations on the background fields. The

lack of a small parameter problem can be resolved by looking at a background with

a constant dilaton:

Φ(X) = Φ0. (1.147)
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For a constant dilaton every diagram in the string loop expansion (figure 1.4) gets

multiplied by a factor

e−SΦ0 , SΦ0 =
1

4π

∫

Σg

d2σ
√
gR(2)Φ0 (1.148)

This is a topological invariant, i.e. it only depends on quantities like the genus and

the number of boundary components of the worldsheet but not on the metric. The

integral can be evaluated as

e−SΦ0 = (gs)
2−2g−b, gs = e−Φ0 , (1.149)

where g is the genus of the worldsheet and b the number of boundary components,

e.g. (g, b) = (0, 2) is the cylinder. When gs is small it is now possible to approximate

the amplitude by the first few diagrams.

In the discussion of the vertex operators, overall normalisations were not in-

cluded. These might appear to be free parameters of the theory. It turns out

however that all the normalisation factors are related to each other and the string

coupling g if one imposes constraints that follow from unitarity of the S matrix. In

this thesis these normalisations will be suppressed.

The massless spectrum of the Polyakov string theory contained the physical (i.e.

transverse) excitations of a graviton and a photon. The condition k · e = 0 and the

gauge invariance e ∼= e + k were consequences of the fact that the Weyl symmetry

was a quantum symmetry. The first two terms in the generalised action in (1.146)

are classically invariant under Weyl transformations. In other words the trace of

the stress energy tensor vanishes if the equations of motion are used. The third

term is only invariant under rigid Weyl transformation. However, it is still possible

to find background fields such that correlators are Weyl invariant. For arbitrary

background fields the Weyl anomaly is given by

δW

∫

DφO1 · · ·ONe
−Sσ(g) =

∫

d2σ
√
gδω(σ)

∫

DφT aa (σ)O1 · · · ONe
−Sσ , (1.150)

where

T aa = − 1

2α′β
G
µνg

ab∂aX
µ∂bX

ν − i

2α′ β
B
µνǫ

ab∂aX
µ∂bX

ν − 1

2
βΦR(2). (1.151)

The explicit expressions for the β functions can be obtained by expanding the back-

ground fields about a background. The details of the computations can be found in

[2]. The answer is given by

βGmn = α′R(d)
mn + 2α′∇m∇nΦ − α′

4
HmprH

pr
n +O(α′2), (1.152)

βBmn = −α
′

2
∇pHpmn + α′∇pΦHpmn +O(α′2), (1.153)

βΦ =
D − 26

6
− α′

2
∇2Φ + α′∇pΦ∇pΦ − α′

24
HmnpH

mnp + O(α′2), (1.154)
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where Hmnp is the three form field strength of the two form gauge field Bmn defined

by

Hmnp = ∂[mBnp] (1.155)

Note that H is invariant under gauge transformations Bmn → Bmn+∂[mζn]. Quan-

tum Weyl invariance now translates to

βGmn = βBmn = βφ = 0. (1.156)

The vanishing of βGmn is precisely Einsteins equations for the metric in the presence of

sources, in the form of a two form gauge field and a scalar, the dilaton. The vanishing

of βBmn gives the field equation for the two form gauge field and the last β function

is the equation of motion of a scalar coupled to gravity and a two form gauge field.

In conclusion string theory in curved backgrounds only leads to a sensible theory if

the background satisfies the classical field equations (1.152)-(1.154).

The action (1.146) paves the way for more realistic string theories. One can for

instance choose Gmn to be the metric of a space of the form M4 ×M22, i.e. four

dimensional Minkowski space times a 22 dimensional compact space. When this

space is chosen to be T 22, i.e. the internal space is a torus, the closed string spectrum

contains a tachyon withmass2 ∼ −α′

R , where R is the radius of the torus. The vertex

operators of the massless states are given by

∂Xm∂̄Xneik·X ,
(

∂Xm∂̄X i + ∂X i∂̄Xm
)

eik·X , (1.157)

(

∂Xm∂̄X i − ∂X i∂̄Xm
)

eik·X , ∂X i∂̄Xjeik·X , m, n = 0, 1, 2, 3, i, j = 4, . . . , 25.

Note the above operators are subject to modding out by BRST exact states. The

physical excitations of the first vertex operator contains the (4d) spacetime graviton,

antisymmetric tensor and dilaton. The second one contains 22 spacetime vectors,

which are standard Kaluza Klein modes that come about when dimensionally re-

ducing. The second line contains the Kaluza Klein vectors from the antisymmetric

tensor and 222 scalars, which can be thought of as moduli (or flat directions) of the

metric and the antisymmetric tensor. The next mass level is at mass2 ∼ α′

R . Hence

if the radius of the torus is small these states will be very massive and unobservable

by experiments at typical particle accelerator energies.

The above proposal for the internal manifold is a step in the right direction, be-

cause one finds a four dimensional spectrum. However, the existence of huge number

of massless scalars is worrisome, because these are not observed in nature. One needs

to look for more sophisticated choices of the internal manifold. This direction will

not be pursued in this thesis. Instead a string theory will be constructed whose

spectrum on the one hand does not have a tachyon and on the other hand includes

fermions.
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1.3 RNS formalism and its limitations

One way of introducing fermions into the theory is making it supersymmetric. As

mentioned in the beginning of this chapter there are physical reasons to look for

supersymmetric theories. Furthermore the inclusion of extra symmetries provides

a powerful tool to do computations. A spacetime supersymmetric string theory,

which goes by the name of RNS, is defined by the worldsheet action obtained by

covariantising the Polyakov action under N = 1 worldsheet supersymmetry [7, 8]:

SRNS =
1

2πα′

∫

d2σ
√
g[

1

2
gab∂aX

m∂bXm +
1

2
iψmγa∇aψm+ (1.158)

1

2
i(χaγ

bγaψm)(∂bX
m − 1

4
iχbψ

m)],

where worldsheet fermion indices are suppressed. The fields Xm are the usual space-

time coordinates and ψm are their 2d supersymmetric partners. Moreover ψm are

Majorana spinors, so that these fields have two real components each in two dimen-

sions. The field gab is the worldsheet metric and χa is the worldsheet gravitino.

Spacetime supersymmetry is present but not manifest from the worldsheet point

of view. Quantisation of the RNS string works in a similar fashion to the bosonic

string. In particular there will be a BRST operator. In the RNS formalism, however,

this operator is only nilpotent in ten spacetime dimensions. Therefore in the sequel

of this thesis spacetime will be assumed to be ten dimensional.

Symmetries and gauge fixing

The above action is invariant under diffeomorphisms and local 2d N = 1 supersym-

metry, the latter is given by

δgab = 2iǫγ(aχb), (1.159)

δχa = 2∇aǫ, (1.160)

δXm = iǫψm, (1.161)

δψm = γa(∂aX
m − 1

2
iχaψ

m)ǫ. (1.162)

Moreover (1.158) is invariant under Weyl and super Weyl transformations [9]:

Xm → Xm, gab → e2ωgab, ψm → eωψm, χa → e−ωχa + γaλ, (1.163)

where λ is the parameter of the super Weyl transformations.

The presence of worldsheet fermions makes quantisation much more complicated.

In particular the moduli space is no longer an ordinary finite dimensional manifold,

but also includes anticommuting variables. In other words moduli space becomes

a supermanifold. Furthermore there will be ghosts for the local supersymmetry.
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The particular form of the insertions containing these new fields is hard to derive.

Therefore quantisation of the RNS string on the sphere, where there is no moduli

space, is discussed first.

1.3.1 Tree-level

On the sphere the gauge invariances can be fixed by

gab = ĝab = e2ω0δab, χa = χ̂a = γaλ0. (1.164)

The gauge fixed action will not depend on ω0 and λ0. A convenient choice is to set

them both to zero. In this gauge, the superconformal gauge, the worldsheet action

reads

SXψ =

∫

d2z
(

∂Xm∂̄Xm + ψm∂̄ψ
m + ψ̃m∂ψ̃

m
)

, (1.165)

where ψm and ψ̃m are the two components of the 2d spinor. In closed string theory

the X coordinates are periodic. In the z coordinate, the one defined on the whole

complex plane, this condition can be expressed as the statement that Xm(zeiα) is

periodic in α, with period 2π. Note, however, the action is also well defined for

antiperiodic boundary conditions on Xm, i.e. Xm(zeiα) is antiperiodic in α. This

can lead to unitary string theories, but this direction will not be pursued in this

thesis. On the other hand antiperiodic boundary conditions on the fermion will turn

out to be of vital importance. The two possible boundary conditions have a name:

Neveu− Schwarz : ψm(e2πiz) = +ψm(z), (1.166)

Ramond : ψm(e2πiz) = −ψm(z). (1.167)

Together with the boundary conditions for the antiholomorphic side this leads to four

sectors: (NS,NS), (NS,R), (R,NS) and (R,R). From (1.167) one sees that the ψ part

of a Ramond sector vertex operator is double valued. Such a function can pictorially

be represented by the end of a branchcut, cf. figure 1.10. This figure also shows that

the number of R states must be even, otherwise the branchcuts have nowhere to go.

In a later paragraph the R sector will be related to spacetime fermions. The number

of these fields must also always be even in scattering amplitudes.

Ghost action

The ghost action for the RNS string contains an extra pair of ghost fields that

are related to the local supersymmetry. Since the parameter of this symmetry is

fermionic, the ghost fields are bosonic and they are denoted β, γ. To write down the

action for these new ghost fields, it is useful to note the operators Pn and PTn can
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Figure 1.10: Tree level four point function with two (R,NS) sector states (left) and two

(NS,NS) sector states (right)

also be defined on fields of half integer spin, i.e. spinors. For details see [3]. The

supersymmetry transformation of the gravitino (1.160) can be written as

δχa = (P 1/2ǫ)a. (1.168)

When the statistics of the fermionic parameter ǫ is flipped, it becomes the Faddeev-

Popov ghost γ. The other ghost field, β, has indices such that it can be contracted

with χa, i.e. it has spin 3
2 . This leads to the following ghost action:

Sβγ =

∫

d2σ
√
gβa(P

1/2γ)a + · · · , (1.169)

where the ellipsis contains the gravitino. In superconformal gauge this ghost action

can be written as

Sβγc.g. =

∫

d2z
(

β∂̄γ + β̃∂γ̃
)

, (1.170)

where β and β̃ have conformal weights (3
2 , 0) and (0, 3

2 ) respectively, γ and γ̃ have

weights (− 1
2 , 0) and (0,− 1

2 ) respectively.

As in the bosonic string the gauge condition (1.164) does not completely fix

all invariances. The CKVs encountered in section 1.2 remain for the RNS string.

In addition there are super conformal Killing vectors (SCKVs), which represent

the residual local supersymmetry. Some vertex operators will contain a factor of

δ(γ). (cf. the bosonic string where the Faddeev Popov ghosts are fermionic, hence

δ(c) = c.) Quantising the worldsheet action of the RNS formalism at an arbitrary

genus, which includes finding the precise form of these insertions, is a formidable

task due to the complicated nature of the (super)moduli spaces, cf. [3]. On the

sphere, however, matters simplify and this case is described below.

Charge conservation in βγ systems

One can use the charge conservation anomaly to deduce correlators are only non

vanishing if the ghost number has a certain value, depending on the conformal
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weight of the ghosts. Explicitly, consider the action:
∫

d2zβ∂̄γ, (1.171)

where β and γ are conjugate fields of weight λ and 1 − λ respectively. They can be

either bosonic (ǫ = −1) or fermionic (ǫ = +1). This paragraph is partly based on

[8]. The OPEs are given by

γ(z)β(w) ∼ 1

z − w
, β(z)γ(w) ∼ ǫ

z − w
. (1.172)

The action is invariant under translations, it also possesses a U(1) symmetry called

ghost number. The generators are given by:

T (z) = −λβ∂γ(z) + (1 − λ)(∂β)γ(z), j(z) = −βγ(z), (1.173)

where coincident operators are understood to be normal ordered. This convention

of suppressing the colons will also be used in the sequel of this thesis. The OPE of

these two operators reads

T (z)j(w) ∼ ǫ(1 − 2λ)

(z − w)3
+ j(w)

1

(z − w)2
+ ∂j(w)

1

z − w
. (1.174)

In order to show only operators of a certain ghost number are non vanishing consider

〈NgO〉, (1.175)

where the number operator is given by:

Ng =

∮

dz

2πi
j(z) (1.176)

and O is an arbitrary operator of ghost number QO, i.e. [Ng,O] = QOO. The

correlator (1.175) can be evaluated in two ways, either by pulling the contour off of

the back of the sphere or by shrinking it in the z patch passing through all insertions.

The latter gives

QO〈O〉. (1.177)

To evaluate the former one needs to rewrite Ng in the u patch. The transformation

can be derived from T j OPE with the help of the Ward identity (1.102) (where

O = −βγ and j(z) = v(z)T (z)):

1

ǫ
δj = −v∂j − j∂v + ǫ

2λ− 1

2
∂2v. (1.178)

Note j denotes the ghost number current. The finite form of the above transforma-

tion is given by

(∂zu)ju(u) = jz(z) + ǫ
2λ− 1

2

∂2
zu

∂zu
. (1.179)
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Using this result one can rewrite Ng in the u patch:
∮

dz

2πi
j(z) =

∮

1

2πi

du

u2
[ju(u)u

2 − ǫ(2λ− 1)u] = −ǫ(2λ− 1) +

∮

du

2πi
ju(u) (1.180)

and since there are no insertions inside the contour anymore the contour integral

vanishes, hence

〈
∮

dz

2πi
j(z)O〉 = −ǫ(2λ− 1)〈O〉 (1.181)

In conclusion, if −QO 6= ǫ(2λ− 1) then 〈O〉 = 0.

This agrees with the results of the bosonic string, because ǫ(2λ−1) is minus three

in that case. Hence only operators with ghost number three are non vanishing. All

tree level amplitudes have this property. For the bosonic ghosts of the RNS string

the above argument implies the total charge of the γ insertions must be minus

two. Note this can be achieved by two δ(γ)’s because [Ng, δ(γ)] = −δ(γ). Since

δ(γ) is not written as a proper function of worldsheet fields it is difficult to perform

computations. In the next paragraph δ(γ) will be given in terms of a smooth function

of fields of a different worldsheet CFT. The precise map between the two CFTs will

be given. Furthermore this mapping allows for writing down the double valued

vertex operator, needed for the R sector states.

Bosonisation

Bosonisation is a map from a given CFT to another CFT that respects all OPEs.

In case of the CFT formed by two of the ten holomorphic fields ψm(z), say ψ1 and

ψ2, the OPEs between the the ψ’s themselves can be given as

ψ(z)ψ̄(w) ∼ 1

z − w
, ψ(z)ψ(w) ∼ 0, ψ̄(z)ψ̄(w) ∼ 0, (1.182)

where

ψ(z) =
1√
2
(ψ1(z) + iψ2(z)), ψ̄(z) =

1√
2
(ψ1(z) − iψ2(z)). (1.183)

The second, equivalent, CFT consists of the holomorphic part of a boson, i.e. it

satisfies the OPE:

H(z)H(w) ∼ −ln(z − w). (1.184)

The map between the two CFTs is given by

ψ(z) ∼= eiH(z), ψ̄(z) ∼= e−iH(z). (1.185)

The form of the number current and the stress energy tensor in the H CFT can be

obtained via the OPEs:

eiH(z)e−iH(w) =
1

z − w
+ i∂H(w) + ∂H∂H(w)(z − w) +O((z − w)2), (1.186)

ψ(z)ψ̄(w) =
1

z − w
+ ψψ̄(w) − ψ∂ψ̄(w)(z − w) +O((z − w)2), (1.187)
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where one recognises the number currents in the O(1) terms and the stress energy

tensors in the next ones. Note eiH(z) is single valued since H(z) is single valued. An

obvious realisation of a double valued operator constructed from H(z) is given by

eisH(z), s ∈ Z +
1

2
. (1.188)

Indeed the ψ part of the R state vertex operators has the above form. In the actual

case there are five ψψ̄ pairs, so there will be five copies of H , which are labelled by

p = 1, . . . , 5: Hp. By carefully studying the commutation relations of the R sector

vertex operators, one can discover the need for cocycles [10]. These are exponentials

of the zero modes of H . However these cocycles only affect relative signs of certain

amplitudes and one can often ignore them. The weight of eilH(z) can be obtained

from its OPE with the stress energy tensor. The answer is h = 1
2 l

2.

An explicit form of δ(γ) can be found be performing a similar mapping for the

bosonic βγ CFT with λ = 3
2 . The equivalent CFT consists of the chiral bosons:

φ(z)φ(w) ∼ −ln(z − w), χ(z)χ(w) ∼ ln(z − w). (1.189)

The mapping is given by

β ∼= e−φ+χ∂χ, γ ∼= eφ−χ. (1.190)

The number current and the stress energy tensor read

βγ ∼= ∂φ, T ∼= −1

2
∂φ∂φ+

1

2
∂χ∂χ− ∂2φ+

1

2
∂2χ. (1.191)

The operator δ(γ) should have ghost number minus one and obey the OPE

δ(γ)(z)γ(w) = O(z − w). (1.192)

These two conditions have a solution:

δ(γ) ∼= e−φ. (1.193)

This concludes the discussion on bosonisation. The results of this paragraph will be

used when the vertex operators are constructed.

Spectrum

The spectrum of physical states is as usual given by the cohomology of the BRST

operator:

Q =
1

2πi

∮

(

dzjB − dz̄j̃B
)

. (1.194)
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The BRST current is, up to total derivatives, given by

jB = cTmat + γGmat +
1

2
(cTgh + γGgh) (1.195)

where Tmat is the stress energy tensor of the matter sector which now includes a

term containing ψ’s, Tgh is the stress energy tensor of the ghost fields, which can

be read off from (1.173). The current associated to worldsheet supersymmetry is

denoted G, this also splits up in a matter and a ghost part. They are given by

Tmat = − 1

α′ ∂X
µ∂Xµ−

1

2
ψm∂ψm, Tgh = −2b∂c−(∂b)c−3

2
β∂γ− 1

2
(∂β)γ, (1.196)

Gmat(z) = i

√

2

α′ψ
m∂Xm(z), Ggh(z) = (∂β)c(z) +

3

2
β∂c(z) − 2bγ(z). (1.197)

The spectrum is worked out in [2]. Let us start by looking at only the holomorphic

part of the vertex operator and start with the NS sector, which is characterised by

the singlevaluedness of the ψ and βγ sector vertex operators. Similar to the bosonic

string the mass spectrum is discrete and bounded from below. The first two levels

are given below.

• mass2 = − 1
2α′ The (holomorphic part of the) Q closed operator at this mass

level is given by

VT = c(z)e−φ(z)eik·X(z,z̄), k2 = − 1

2α′ . (1.198)

Note e−φ comprises the βγ part of the vertex operator and it is indeed single-

valued. This is a tachyon. However in the RNS formalism there is a consistent

way of removing this mode from the spectrum, which is described below.

• mass2 = 0 The BRST closed vertex operators at this mass level are given by

VNS = eµc(z)ǫ
−φ(z)ψµ(z)eik·X(z z̄), k2 = 0, k · e = 0, e ∼= e+ k. (1.199)

Hence the physical content is a massless vector. In open string theory this

would be a photon. In closed string theory this could be part of the graviton,

that is when the antiholomorphic side is also a massless vector.

These are all the NS sector states with non positive mass squared. In the Ramond

sector all physical states have non negative mass squared. Recall that the ψ part of

Ramond sector states is doublevalued. The massless states are given below.

• mass2 = 0 The BRST closed vertex operators are given by

VR =
∑

sp=± 1
2

usc(z)e
−φ(z)eispH

p

, k2 = 0, kµΓµ
s,s′us′ = 0, (1.200)
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where s = (s1, s2, s3, s4, s5) and as indicated under the sum all sp are either

1/2 or −1/2 so that s takes 32 values. Both the ψ and the βγ part are indeed

doublevalued, since they involve square roots of holomorphic operators. The

polarisation spinor, us, has 32 components to start with. This is a Dirac

spinor, which is a reducible representation that consists of two 16 component

Weyl spinors of opposite chirality4. The physical state condition removes eight

components of each Weyl spinor. In conclusion the spectrum consists of the

physical modes of two Weyl spinors with opposite chirality.

A consistent string theory cannot contain all of the above states. An important

consistency condition is that the OPEs of all vertex operators do not contain branch

cuts. Furthermore tachyons cannot be present in any physical theory. Luckily these

two conditions are compatible. A consistent string theory is obtained by removing

the tachyon from the NS sector and one of the two Weyl spinors from the Ramond

sector. For closed string theory this basically leaves two possibilities. Either the

chirality of the Weyl spinor on the holomorphic side has the same chirality as the

Weyl spinor on the antiholomorphic side or the opposite. The former is called type

IIB string theory, the latter type IIA and the projection is known as the GSO

projection. The spectrum of the two theories is summarised in table 1.2. The

physical states are obtained by applying the appropriate field equation, e.g. for a

p-form field strength this is km1f
m1···mp

(p) = 0.

IIB IIA

NS-NS φ,B[mn], h(mn) (traceless) φ,B[mn], h(mn) (traceless)

NS-R (λ1)
α, (ψ1)αm (γαβm (ψ1)

m
β = 0) (λ1)α, (ψ1)

αm (γmαβ(ψ1)
β
m = 0)

R-NS (λ2)
α, (ψ2)αm (γαβm (ψ2)

m
β = 0) (λ2)

α, (ψ2)αm (γαβm (ψ2)
m
β = 0)

R-R fm(1), f
[m1m2m3]
(3) , f

[m1m2m3m4m5]
(5) f

[m1m2]
(2) , f

[m1m2m3m4]
(4)

Table 1.2: The spectrum of type IIA and type IIB string theory. Note the position of the

Weyl spinor index, α, indicates the chirality.

Amplitude prescription

A tree level scattering amplitude in the RNS formalism is given by

Z =

∫

DϕO1 · · ·ONe
−SRNS−Sbc−Sβγ−Sg.f.g,χ−S(S)CKV , (1.201)

where Sg.f.g,χ is the gauge fixing action that sets the metric to the round one and

the gravitino to zero. The action S(S)CKV is needed to fix the residual (bosonic

and fermionic) gauge invariances. It will be discussed after a short exposition of the

4Details about this statement can be found in section 3.2

38



Chapter 1 - String theory

vertex operators. The case that all external excitations are in the NS sector is dealt

with first. As in the bosonic string the vertex operators should be invariant under

the symmetries of the action, in particular under the N = 1 supersymmetry. The

general form of a vertex operator (after fixing the metric and the gravitino), written

as an integral over two (bosonic) dimensional superspace, is given by
∫

d2zdθdθ̄(V (z) + θU(z))(Ṽ (z̄) + θ̄Ũ(z̄))eik·X(z,z̄). (1.202)

The two superfield components are related by a supersymmetry transformation

U(w) =

∫

dz

2πi
G(z)V (w), (1.203)

where the supersymmetry current is given by

G(z) = Gmat(z) +Ggh(z), (1.204)

The residual gauge invariance includes the super conformal Killing vectors. Re-

call that the bosonic residual invariance could be eliminated by fixing three (bosonic)

coordinates. Similarly the fermionic residual gauge invariance can be removed by

fixing two fermionic coordinates. The number two follows from the fact that P 1
2

has

two zero modes on the sphere [3]. Hence the action S(S)CKV is given by

S(S)CKV =

3
∑

i=1

Bia(σ
a
i − σ̂ai ) +

2
∑

j=1

Cjsθ
s
j , (1.205)

where s is a 2d spinor index. The second term fixes the residual supersymmetry.

The measure Dϕ in (1.201) includes all fields, in particular it contains a factor

d2σ1 · · · d2σNd
2θ1 · · · d2θN . After the functional integrations, that set the metric

and the gravitino to their fixed values, have been performed, the remaining action

is a CFT and has a holomorphic and an antiholomorphic sector. After integrating

out the auxiliary field Cja and the θj ’s, one sees that there are two V ’s and N − 2

U ’s in the amplitude prescription.

The functional integral (1.201) can be processed by integrating out the auxil-

iary fields. This will impose the gauge conditions and hence will put the action in

conformal gauge. Moreover it will introduce ghost insertions multiplying the vertex

operators and finally it will remove integrations over (both bosonic and fermionic)

worldsheet coordinates. The open string N -NS states tree level function is given by

A(N) = 〈cV−1
1 (y1)cV−1

2 (y2)cV0
3 (y3)

∫

dy4V0
4 (y4) · · ·

∫

dyNV0
N(yN )〉 + (V1 ↔ V2),

(1.206)

V−1(y) = e−φV (y), V0(y) = U(y). (1.207)

Note the superscripts denote the βγ charge. A number of comments about this

formula are in order:

39



Chapter 1 - String theory

• The three c insertions come from the Faddeev-Popov action (cf. (1.82)) in

exactly the same fashion as in the bosonic string. Recall that this c is actually

a δ(c). In the RNS string there are also two factors of δ(γ), which come from

the bosonic discrete ghosts. After bosonization these become e−φ.

• Since both VNS and cV−1 are in BRST cohomology at k2 = 0 they must be

equal. Hence

VNS = cV−1. (1.208)

• The explicit form of the integrated vertex operators is obtained from (1.203).

• There exists an infinite tower of guises of the vertex operators, each with

different βγ charge, · · · ,V−1,V0,V1, · · · . One can go from one to the next by

using the so-called picture changing operator, X [8]:

X · Vn(y) = Vn+1(y). (1.209)

So in fact the vertex operators in section 1.3.1 do not comprise a complete

list. However one can prove that as long as the total βγ charge is equal to

minus two, the amplitude is independent of the pictures of the individual vertex

operators. So the omitted vertex operators represent states that were listed in

section 1.3.1.

• To be able to compute amplitudes involving Ramond states note that VR can

be written as

VR = cV− 1
2 . (1.210)

This allows for the construction of an infinite tower vertex operators with half

integer picture for the R states via (1.209). An arbitrary amplitude involving

both NS and R states is given by

A(N) = 〈cV i11 (y1)cV i22 (y2)cV i33 (y3)

∫

dy4V i44 (y4) · · ·
∫

dyNV iNN (yN )〉 + (1 ↔ 2),

(1.211)

where the pictures i1, · · · , iN ∈ 1
2Z. When the k-th picture, ik, is half integer

valued the k-th state is a Ramond state. In order to find a nonzero answer

one has to ensure that the total picture, i.e. the sum of all ik’s, is equal to -2.

• In [3] it was shown the amplitude prescription is independent of the gauge

choice. Note this was not guaranteed due to the ad hoc way of introducing the

R state vertex operators.
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1.3.2 Higher genus and limitations of RNS

At higher genus the gauge fixing condition for the metric is the same as in the

bosonic string. The fixing of the local worldsheet supersymmetry deserves some

more explanation. In the same manner as there were two different ways to put

the spinor field ψm on the infinite leg representing an external state, there are 22g

topologically distinct ways to put a spinor field on a worldsheet of genus g. This

number is obtained by noting one has a choice for every non trivial cycle:

χα(e2πiz) = ±χα(z). (1.212)

Local diffeomorphisms or local worldsheet supersymmetry can never change the spin

structure of the gravitino field. Therefore one can only gauge fix a given gravitino

to another one with the same spin structure, as depicted in figure 1.11. This results

in a sum over spin structures in the amplitude prescription.

Gauge orbits

Gauge slice

Figure 1.11: Gravitino space consists of a number of disconnected components. This case

would be gravitino space for a genus one surface, a torus.

Schematically the higher loop amplitude prescription is given by

S(1; · · · ;n) =
∑

χ,γ

eλχ
∫

χ,γ

dnbtdnf ν

〈

nb
∏

j=1

Bj

nf
∏

a=1

δ(Ba)
n
∏

i=1

Vi

〉

, (1.213)

where the sum is over topologies χ and spin structures γ, nb is the number of

bosonic moduli and nf is the number of fermionic moduli, Bj is some fermionic

object containing the BRST ghosts b and β and the Beltrami differentials. The
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ghosts b and β are contained in the bosonic object Ba, in addition these depend on

the supersymmetric analog of the Beltrami differentials. The precise form of these

insertions at two loops and higher is hard to derive. There have been numerous

attempts to write them down based on educated guesswork (see introduction of [11]

and references therein), but the authors of [3] showed the prescriptions in all of these

proposals were not independent of the gauge choice. The same authors derived the

insertions from a first principles derivation in a series of papers [12, 13, 14, 15],

conveniently summarised in [11]. This shows the importance of a first principles

derivation and incidentally provides motivation for the first principles derivation of

the pure spinor formalism in chapter 4.

In conclusion the two main problems of the RNS formalism in a flat background

are:

1. In order to compute a string diagram of genus g one needs to perform 22g

integrations due to the sum over spin structures. This is a consequence of the

presence of worldsheet spinors.

2. The insertions in higher loop diagrams are rather complicated, also in large

part due to the presence of worldsheet spinors.

The pure spinor formalism, which will be introduced in the next chapters does not

have worldsheet spinors. Hence the above issues do not play a role in the pure

spinor formalism. The presence of worldsheet spinors causes one more problem.

The total amplitude is the sum over genera, therefore it is important to know the

relative factors between the diagrams. The precise value of these factors also plays an

important role in checking a conjectured symmetry of string theory, S-duality [10].

It is, however, difficult to compute the overall coefficient of string diagrams. These

coefficients include functional determinants (cf. (1.26)). Note that the eigenstates

of the kinetic operators, for example ∇2, depend on the genus of the surface and

hence the determinant of ∇2 also depends on the genus. One also needs to compute

functional determinants for the kinetic operators of the worldsheet spinors, which

involves bosonisation. For the four point function the overall coefficient has been

computed in the RNS formalism in [16]. The two-loop four-point [17] has only

been determined up to an overall factor due to unknown factors in the bosonisation

formulae of [18]. However in [16] the normalisation of the two-loop amplitude has

been obtained by the indirect method of factorisation to lower-loop amplitudes.

There is yet another problem with the RNS formalism, which is related to string

theory in a curved background. Within RNS it is hard to generalise (1.146) to back-

grounds that involve nonzero RR fields, since the vertex operators for the RR states

involve spin half fields. Furthermore the fact that states are represented by an infi-

nite tower of vertex operators related by picture changing complicates the problem.

In the pure spinor formalism a generalisation has been written down in [19], which
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might not come as a surprise since the pure spinor formalism is manifestly spacetime

supersymmetric. This thesis deals with string theory in flat backgrounds, therefore

this point will not be elaborated on. Nonetheless it is an important motivation to

study the pure spinor formalism.
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Chapter 2

Pure spinor formalism

This chapter introduces the pure spinor formalism in a flat background. The world-

sheet action is an educated guess originally written down by Berkovits. His starting

point was not an analog of the Polyakov action, i.e. an action with 2d diff × Weyl

invariance, instead he directly wrote down an analog of the worldsheet action in

conformal gauge. This means that the action must have a conformal symmetry, zero

central charge and a nilpotent fermionic operator that is used to define the spectrum,

similar to the way a BRST operator defines a spectrum. Berkovits’ proposal satisfies

these conditions and on top of that it exhibits manifest spacetime supersymmetry

and the worldsheet fields are free. This chapter will discuss the explicit form of the

action and some of its properties. Also the prescription for computing scattering

amplitudes is provided. This chapter does not contain any explicit computations

using this prescription. A good exposition of computations can be found in [20],

section 5.1.2 of this thesis also contains some computations.

A number of years after the pure spinor formalism was introduced, Berkovits pre-

sented a different but similar formalism. To distinguish the two, the original one was

renamed to minimal pure spinor formalism and the modification, the non-minimal

pure spinor formalism. The latter was introduced to get rid of some awkward fea-

tures of the former which will be discussed in due course. Both formalisms are

described below. The most recent loop computations, which are also the more com-

plicated ones, have only been performed in the non-minimal formalism, cf. section

2.3 for a precise overview.

This chapter utilises a lot of basic (mathematical) techniques that may or may

not be familiar to the reader. In any case these techniques are explained in detail in

the next chapter, which can serve either as a necessary addition for a reader new to

the subject or as a useful reference for an expert.
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2.1 Minimal pure spinor formalism

The worldsheet action in the minimal pure spinor formalism for the left movers in

conformal gauge and flat target space is given by

S =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λ
α

)

, (2.1)

with m = 0, . . . , 9 and α = 1, . . . , 16. The fields pα and wα have conformal weight

one and are Weyl spinors, θα and λα have conformal weight zero and are Weyl spinor

of opposite chirality. In addition λα is a pure spinor, i.e. it satisfies

λαγmαβλ
β = 0, (2.2)

where γmαβ are the ten dimensional Pauli matrices, which are defined in section 3.2.

The decomposition of a Weyl spinor under the SU(5) subgroup, 16 → 1 ⊕ 1̄0 ⊕ 5,

which is used intensively throughout this work, is also discussed there. Since the

worldsheet action consists of two βγ systems quantisation seems straightforward,

but λα is a pure spinor and therefore the λw part is actually a curved βγ system

[21]. To deal with this we work on a patch in pure spinor space that is defined by

λ+ 6= 0. On this patch the pure spinor condition expresses λa in terms of λab and

λ+, with a, b = 1, . . . , 5. The solution is (in SU(5) covariant components)

λa =
1

8

1

λ+
ǫabcdeλbcλde. (2.3)

A constraint on fields in the action induces a gauge invariance on the conjugate

fields. In this case the gauge transformations are given by

δwα = Λmγ
m
αβλ

β . (2.4)

In the original papers, e.g. [22], this gauge invariance is dealt with by only using

gauge invariant quantities. This means wα can only appear in the Lorentz current

Nmn, the ghost number current J and the stress energy tensor T(λw):

Nmn =
1

2
wα(γmn)αβλ

β , J = wαλ
α, T(λw) = wα∂λ

α. (2.5)

Since the λw part of the action is not free due to the pure spinor constraint it is

not obvious what the OPE between w and λ will be. One way to proceed is by

properly fixing the gauge invariance of (2.4). By making the gauge choice wa = 0

and employing BRST methods, one can replace
∫

d2zwα∂̄λ
α by the free action,

∫

d2z(ω+∂̄λ
+ +

1

2
ωab∂̄λab). (2.6)

The details can be found in section 3.3.2. One might have expected BRST ghosts

associated to the gauge fixing of wα. It turns out these can be integrated out. As a
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check of the validity of this procedure the OPE of the Lorentz currents (Nmn|wa=0)

should give rise to the Lorentz algebra. Using (2.6) one finds

Nmn(z)λα(w) ∼ 1

z − w

1

2
(γmnλ)α, J(z)λα(w) ∼ 1

z − w
λα, (2.7)

Nmn(z)Npq(w) ∼ −3

(z − w)2
(ηn[pηq]m) +

1

z − w
(ηn[pN q]m − ηm[pN q]n),

J(z)J(w) ∼ −4

(z − w)2
, J(z)Nmn(w) ∼ regular,

Nmn(z)T (w) ∼ 1

(z − w)2
Nmn(w), J(z)T (w) ∼ −8

(z − w)3
+

1

(z − w)2
J(w).

The explicit computations can be found in appendix 3.3 and it should be noted

there are subtleties regarding the double poles in the OPE. There is freedom to add

conserved currents to the Lorentz currents without changing the single poles, which

must have the above form for Lorentz currents. However if one demands that Nmn

is a primary field with Lorentz level −3, the above OPE’s follow unambiguously.

One wants the level of the Lorentz current to be −3, since this implies that the level

of the total non X sector is 4 − 3 = 1 which coincides with the level of the RNS

ψψ Lorentz current. The factor of −8 of the triple pole in the JT OPE implies at

tree level only correlators with total J charge −8 will be nonzero (cf. (1.181)). The

OPE’s for the matter variables can be straightforwardly derived from (2.1):

xm(z)xn(w) ∼ −ηmnlog|z − w|2, pα(z)θβ(w) ∼ δαβ
1

z − w
. (2.8)

The action (2.1) is invariant under a nilpotent fermionic symmetry generated by1

QS =

∮

dzλαdα, (2.9)

where

dα = pα − 1

2
γmαβθ

β∂xm − 1

8
γmαβγm γδθ

βθγ∂θδ. (2.10)

The transformations it generates are given by

δxm = λγmθ, δθα = λα, δλα = 0, δdα = −Πm(γmλ)α, δwα = dα, (2.11)

where Πm = ∂xm+ 1
2θγ

m∂θ is the supersymmetric momentum and again we restrict

to the left movers (so in particular, the full transformation for xm contains a similar

additive term with right moving fields).

It seems very natural to consider QS as a BRST operator that showed up after

fixing a worldsheet symmetry, in particular diffeomorphism invariance. However to

1The unconventional subscript S is used to distinguish this operator from another nilpotent

fermionic operator which will appear in chapter 4.
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date nobody has succeeded in substantiating this conjecture, although the authors

of [23] describe how it is possible to obtain the pure spinor formalism as a twisted

version of a gauge fixed string theory with diffeomorphism invariance. In chapter 4

the worldsheet action in conformal gauge will be derived by gauge fixing a worldsheet

action with diffeomorphism symmetry. However the 2d coordinate invariant action

is already invariant under QS , the gauge fixing of the diffeomorphisms gives rise to

a second nilpotent fermionic operator. This is a different point of view where QS is

not a BRST operator of fixing 2d coordinate invariance.

The main motivation to introduce the pure spinor formalism is its manifest su-

persymmetry. This symmetry is generated by

qα =

∮

dz(pα +
1

2
γmαβθ

β∂xm +
1

24
γmαβ(γm)γδθ

βθγθδ). (2.12)

2.1.1 Spectrum

Physical states are defined as element of the cohomology of QS with Jλw charge one

and conformal weight zero. In theories derived from a worldsheet diffeomorphism

invariant action, the conformal weight constraint follows from the condition that

physical states must be annihilated by the BRST operator. In the case of the pure

spinor action the operator QS does not impose a constraint on the conformal weight

and it has to be included by hand. In chapter 4 the origin of conformal weight

constraint is explained from first principles in the case of the pure spinor formalism.

The reason to look at ghost number one states is more subtle. At least one can say

that the cohomology at this Jλw charge yields the super-Maxwell multiplet (for the

open string).

Hence elements of the physical spectrum satisfy:

QSV (z) = 0, V (z) ∼ V (z) +QSΩ(z). (2.13)

Let us focus on the massless spectrum. The most general vertex operator (before

imposing the above conditions) at Jλw charge one with conformal dimension zero

and k2 = 0 is given by

V (z) = eik·X(z,z̄)λα(z)Aα(θ(z)). (2.14)

A number of comments are in order

• For the X sector one uses the standard operators (1.116) and note that the

weight is only non positive when no derivatives on X are present.

• The weight of the p, θ and w, λ sector is only non positive when V only contains

λ and θ.
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• The total weight of V in the massless case can only be zero if it only consists

of weight zero fields. This determines the form of (2.14) completely.

• Since there are no negative weight fields, there is no tachyon present in the

spectrum. There is an infinite tower of massive states, but these will not be

considered in this thesis.

After using the gauge invariance to set a number of components to zero the

solution to (2.13) is given by [24]

V = λαAα(x, θ), (2.15)

where

Aα(x, θ) = eik·x(
1

2
am(γmθ)α − 1

3
(ξγmθ)(γ

mθ)α + · · · ), (2.16)

where am and ξα are the polarisations and km is the momentum. They satisfy

k2 = kmam = km(γmξ)α = 0, there is a residual gauge invariance am → am + kmω

and the ellipsis contains products of km with am or ξα. The operator V (z) can be

used as unintegrated vertex operator.

The integrated vertex operators can again be obtained by an educated guess

based on comparison with the bosonic string and/or the RNS string. In those

theories the integrated vertex operator satisfies

QSU(z) = ∂V (z) (2.17)

This equation also has a solution in the pure spinor formalism, which is given by

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαW
α(x, θ) +

1

2
NmnFmn(x, θ), (2.18)

with

Am =
1

8
Dαγ

αβ
m Aβ , (2.19)

W β =
1

10
γαβm (DαA

m − ∂mAα), (2.20)

Fmn =
1

8
Dα(γmn)

α
βW

β , (2.21)

where Dα = ∂
∂θα + 1

2θ
βγmαβ∂m.

2.1.2 Tree-level prescription

Originally the amplitude prescription in the pure spinor formalism was motivated

by analogy to the bosonic string. The guiding principles are given by

• There are three unintegrated vertex operators and N − 3 integrated ones to

deal with the CKG.
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• The total Jλw charge must equal the charge anomaly (2.7).

The N point open string tree-level amplitude prescription presented in [22] satisfies

the above guiding principles.

A = 〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·
∫

dzNUN (zN )YC1(y1) · · ·YC11(y11)〉 =

∫

[D10x][D16d][D16θ][D11λ][D11w]V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·
∫

dzNU(zN)

YC1(y1) · · ·YC11(y11)e
−S , (2.22)

where [Dφ] denotes functional integration over the field φ. The functional integration

over xm have been studied in detail and the same correlation functions appear in

the RNS formalism. This factor will be ignored when it is not relevant to the

computation.

YC are the picture changing operators (PCOs):

YC(y) = Cαθ
α(y)δ(Cβλ

β(y)), (2.23)

where Cα is a constant spinor. The presence of the PCOs in the amplitude prescrip-

tion is explained from first principles in chapter 4. In short, they come from fixing

a gauge invariance due to the zero modes of the weight zero fields, λα, θα. Note

the weight one fields do not have zero modes2 at tree level. At higher loops there

will also be PCOs for these fields. Since the PCOs are introduced as a gauge fixing

term, amplitudes should be independent of the constant tensors Cα. The name pic-

ture changing operator was also given to an operator in the RNS formalism (1.209).

These operators change the (bosonic) ghost number of the vertex operators. The

λ,w sector can be seen as a ghost sector since it is not part of the ten dimensional

superspace and they have the “wrong” spin-statistics relation. Since YC change the

Jλw charge by one, these operators were also named picture changing operators.

The functional integral (2.22) is evaluated by first using the OPE’s of (2.7)

and (2.8). Note that this operation reduces the total conformal dimension of the

worldsheet fields involved in the OPE. For example in the p, θ OPE, the conformal

weight of pβ(z)θ
α(w) is one and the conformal weight of δαβ is zero. Thus in the end

the correlator only contains worldsheet fields of weight zero. This can be evaluated by

replacing the fields by their zero modes and performing the zero mode integrations.

The justification for this step is given in section 4.6.

After integrating out the nonzero modes the amplitude reduces to

A =

∫

[dλ]d16θλαλβλγfαβγ(θ)(C
1θ)δ(C1λ) · · · (C11θ)δ(C11λ), (2.24)

2This can be inferred from the Riemann Roch theorem (1.74) and the fact that weight zero

fields have precisely one zero mode at any genus.
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where fαβγ depends on all the polarisations and momenta. Note the functional

integration of xm is omitted here as will be done in all computations in this thesis.

A priori fαβγ also depends on z1, z2, z3. Of course we expect the final result to be

independent of these coordinates. Also note all the fields are zero modes including

those in the measure. [dλ] is the unique Lorentz invariant measure of +8 ghost

number on the space of pure spinors (cf. section 3.4). It is given by

[dλ]λαλβλγ = dλα1 ∧ · · · ∧ dλα11(ǫT )αβγα1···α11
, (2.25)

where

(ǫT )αβγα1···α11
= ǫα1···α16γ

αα12
m γβα13

n γγα14
p (γmnp)α15α16 . (2.26)

Note no gamma trace is subtracted. This tensor is already gamma matrix traceless

as explained in section 3.4.

Lorentz invariance

The PCOs contain constant spinors. Therefore the prescription is not manifestly

Lorentz invariant and one has to check Lorentz invariance by hand. The Lorentz

variation of one PCO is given by:

MmnYC =
1

2
(Cγmnθ)δ(Cλ) +

1

2
(Cθ)(Cγmnλ)δ′(Cλ) = QS[

1

2
(Cγmnθ)(Cθ)∂δ(Cλ)].

(2.27)

The last equality shows that the Lorentz variation of the PCO is QS exact. This

decouples if all other insertions are QS closed and 〈QSK〉 vanishes for all K. The

second condition is satisfied because after integrating out the non-zero modes 〈QSX〉
reduces to

∫

[dλ]d16θλαλβλγDαfβγ(θ)C
1θδ(C1λ) · · ·C11θδ(C11λ) = 0, (2.28)

because
∫

d16θDαg(θ) = 0 for any function g. The first condition is more subtle.

The vertex operators are QS closed, due to the physical state condition (2.13). In

order to see whether the PCOs are closed consider

QSYC = Cαλ
αδ(Cβλ

β). (2.29)

This seems to be zero, but there are subtleties due to the presence of factors of λ in

the denominator form the measure (2.25). A detailed exposition of these subtleties

can be found in chapter 5.

It is possible to restore manifest Lorentz invariance by integrating over all possible

choices for C. This guarantees the prescription is Lorentz invariant. However it does

not guarantee that QS exact states will decouple. After including the C integral

(2.24) becomes

A =

∫

[dC][dλ]d16θλαλβλγfαβγ(θ)(C
1θ)δ(C1λ) · · · (C11θ)δ(C11λ). (2.30)
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2.1.3 One and higher-loop prescription

Let us start with giving the one-loop amplitude prescription. Compared to a tree-

level function a one-loop function exhibits three new features:

• PCOs for the weight one worldsheet fields p, w,

• zero mode integrals over p, w,

• a composite b ghost constructed out of the worldsheet fields from (2.1).

The first two points are direct consequences of the presence of a zero mode of weight

one fields on the torus. The new PCOs are given in terms of the gauge invariant

quantities Nmn and J :

ZB(z) =
1

2
Bmnλ(z)γ

mnd(z)δ(BmnN
mn(z)), ZJ(z) = λα(z)dα(z)δ(J(z)). (2.31)

Note that the picture raising3 operators, ZB and ZJ , are QS-closed without sub-

tleties:

QSZB =
1

4
Bmnλγ

mndBm′n′λγm
′n′

dδ′(BpqN
pq) =

1

4
(Bmnλγ

mnd)2δ′(BpqN
pq) = 0.

(2.32)

This vanishes because it contains the square of a fermionic quantity. Let us also

record the Lorentz variation of ZB,

MmnZB = QS [2ηp[mδn]
r BpqN

qrδ(BN)], (2.33)

which is QS exact.

All string theory amplitude prescriptions at one loop contain a b ghost which

satisfies

{QS, b(z)} = T (z). (2.34)

In the RNS formalism this field appears as one of the two reparametrisation Faddeev

Popov ghosts and note that at one loop there should be one (holomorphic) b ghost

insertion to absorb the zero mode (cf. table 1.1). In the bosonic string amplitude

prescription, which the pure spinor amplitude prescription is analogous to, this b

insertion enters through (b, ∂τg), where the brackets have been defined in (1.69) and

τ is the modulus of a genus one surface. While the full derivation of the form of this

insertion will be given in chapter 4, it is possible to show this insertion in consistent

with BRST invariance, since its variation equals a total derivative in moduli space

which vanishes upon integrating over the moduli:

QS(b, ∂τg)e
−S = (T, ∂τg)e

−S =
∂S

∂gab

∂gab
∂τ

e−S = − ∂

∂τ
e−S . (2.35)

3These are called raising operators because they have +1 Jλw charge, hence they raise the

picture in the language of (1.209).
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The derivative of the metric with respect to the modulus is called a Beltrami differ-

ential, µ, and on higher genus surfaces the Beltrami differential has an index that

runs over the number of moduli, µk.

In the pure spinor formalism, however, the b ghost is constructed out of the

worldsheet fields from (2.1) as explained from first principles in chapter 4. It is not

possible to solve equation (2.34) in the minimal pure spinor formalism, because of

ghost number (J charge) conservation combined with gauge invariance of objects

containing wα. The former implies b must have ghost number minus one and since

there are no gauge invariant quantities with negative ghost number the latter rules

out any solution. A resolution to this problem is combining the (composite) b field

with a PCO, ZB, such that

{QS, b̃B(u, z)} = T (u)ZB(z). (2.36)

This equation ensures the QS variation of the b ghost vanishes after integrating over

moduli space. The solution is given by

b̃B(u, z) = bB(u) + T (u)

∫ z

u

dvBpq∂N
pq(v)δ(BN(v)). (2.37)

The local b ghost, bB(u), is a composite operator, constructed out of the worldsheet

fields:

bB(z) = bB0(z)δ(BN(z))+bB1(z)δ
′(BN(z))+bB2(z)δ

′′(BN(z))+bB3(z)δ
′′′(BN(z)),

(2.38)

where the primes denote derivatives, BN ≡ BmnN
mn and

bB0 =
1

2
GγmndBmn − 1

2
Hαβ(γpγmn)αβΠpBmn + (2.39)

1

2
Kαβγ(γpγmn)βγ(γp∂θ)αBmn +

1

2
Sαβγ(γpγmn)βγ(γ

p∂λ)αBmn,

bB1 =
1

4
Hαβ(Bd)α(Bd)β + (2.40)

1

4
Kαβγ(γpγmn)βγ(Bd)αΠpBmn +

1

4
Kαβγ(γpγmn)α[β(Bd)γ]ΠpBmn +

1

4
Lαβγδ[((γpγmn)γδ(Bd)[α(γp∂θ)β] − (γpγmn)β[γ(Bd)δ](γp∂θ)α)Bmn −

((γsγrq)α[β(γ
pγmn)γ]δ + (γsγrq)αδ(γ

pγmn)βγ)ΠpBmnΠsBqr],

bB2 = −1

8
Kαβγ(Bd)α(Bd)β(Bd)γ −

1

8
Lαβγδ((γpγmn)γδ(Bd)β(Bd)α + (2.41)

(γpγmn)β[γ(Bd)δ](Bd)α +
1

2
(γpγmn)α[δ(Bd)γ(Bd)β])ΠpBmn,

bB3 = − 1

16
Lαβγδ(Bd)α(Bd)β(Bd)γ(Bd)δ, (2.42)

where (Bd)α ≡ Bmn(γ
mnd)α and G,H,K,L are given in appendix 3.6.
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The one-loop amplitude prescription in the minimal pure spinor formalism is

given by

A(N) =

∫

d2τ〈|
∫

d2uµ(u)b̃B1(u, z1)

10
∏

P=2

ZBP (zP )ZJ (z11)

11
∏

I=1

YCI
(y)|2 (2.43)

V1(t1)
N
∏

T=2

∫

d2tTUT (tT )〉,

where µ(u) is the zz component of the Beltrami differential.

Above one loop there are no conformal killing vectors anymore, so that there

is no unintegrated vertex operator. The number of metric moduli at genus g is

given by 6g− 6 (cf. table 1.1) and all conformal weight one fields have g zero modes

each. This leads to the multiloop amplitude prescription of the minimal pure spinor

formalism:

A(N) =

∫

d2τ1 · · · d2τ3g−3〈|
3g−3
∏

P=1

∫

d2uPµP (uP )b̃BP
(uP , zP ) (2.44)

10g
∏

P=3g−2

ZBP
(zP )

g
∏

R=1

ZJ(vR)

11
∏

I=1

YCI
(yI)|2

N
∏

T=1

∫

d2tTUT (tT )〉.

As described in [22], the amplitudes (2.43) and (2.44) are evaluated by first

using the OPE’s to remove all fields of nonzero weight. After this step all fields

have weight zero. This can be evaluated by replacing the fields by their zero modes

and performing the zero mode integrations. Therefore one needs to know how to

integrate over the zero modes. For the d, θ, x variables this is standard, so only the

integration over λ,N,B,C is discussed.

A typical integral one encounters is given by [22]:

A =

∫

[dλ][dB][dC]

g
∏

R=1

[dNR]f(λ,NR, JR, C,B), (2.45)

where [dN ] is the zero mode measure for (each zero mode of) Nmn (cf. section 3.4.2).

It must have Jλw charge -8, since the JT OPE in (2.7) implies only correlators with

a total Jλw charge of 8 − 8g can be non vanishing at g loops [8]. It is given by

[dN ]λα1 · · ·λα8 = dNm1n1 ∧ · · · ∧Nm10n10 ∧ dJRα1···α8
m1n1···m10n10

, (2.46)

with

Rα1···α8
m1n1···m10n10

≡ (2.47)

γ((α1α2
m1n1m2m3m4

γα3α4
m5n5n2m6m7

γα5α6
m8n8n3n6m9

γα7α8))
m10n10n4n7n9

+ permutations.
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The permutations make R antisymmetric under exchange in both mi ↔ ni and

mini ↔ mjnj and the double brackets denote subtraction of the gamma trace. The

zero mode integral (2.45) is only nonzero if the function f depends on (λ,N, J, C,B)

as

f(λ,N, J, C,B) = (2.48)

h(λ,N, J, C,B)

g
∏

R=1

∂MRδ(J)
10
∏

P=1

g
∏

R=1

∂LP,Rδ(BPNR)
11
∏

I=1

∂KIδ(CIλ),

where the polynomial h assumes the form

(λ)8g−8+
P11

I=1(KI+1)

g
∏

R=1

(JR)MR(NR)
P10

P=1 LP,R

10
∏

P=1

(BP )LP,R+1

11
∏

I=1

(CI)KI+1.

(2.49)

The integration over the zero modes of the pure spinor variables and the constant

tensors is defined in [22] as

A(N) = c

11
∏

I=1

(
∂

∂λδ
∂

∂CIδ
)KI

10
∏

P=1

g
∏

R=1

(
∂

∂BPpq

∂

∂Npq
R

)LP,R

g
∏

R=1

(
∂

∂JR
)MR (2.50)

∂

∂C1
β1

· · · ∂

∂C11
β11

∂

∂λα1
· · · ∂

∂λα3
(ǫT )α1···α3

β1···β11

[

Rα4···α11
m1n1···m10n10

∂

∂λα4
· · · ∂

∂λα11

∂

∂B1
m1n1

· · · ∂

∂B10
m10n10

]g

h(λ,NR, JR, C,B),

for some proportionality constant c.

2.1.4 Decoupling of QS exact states and PCO positions

The amplitude prescriptions, (2.22) and (2.43), put the PCOs at arbitrary points

on the worldsheet. Of course the final result cannot depend on these positions,

since they do not contain any physical significance. To study the dependence on the

insertions point one looks at the worldsheet derivatives of the PCOs:

∂YC(y) = QS [(C∂θ(y))(Cθ(y))δ′(Cλ(y))], (2.51)

∂ZB(z) = QS [−Bpq∂Npq(z)δ(BN(z))], ∂ZJ(z) = QS [−∂J(z)δ(J(z))]. (2.52)

These are QS exact, like the Lorentz variation of the PCOs. Hence the amplitude

is only guaranteed to be independent of these insertions points if QS exact states

decouple. Due to the subtleties with QS closedness of YC this is non-trivial. In

chapter 5 the problem is completely solved and a proof of decoupling of QS exact

states is given, hence also proving Lorentz invariance and independence of PCO

positions.
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2.2 Non-minimal pure spinor formalism

The minimal pure spinor formalism has the desired property of manifest spacetime

supersymmetry. However, manifest Lorentz invariance is not present, due to the

appearance of the constant spinors/tensors C and B. Furthermore the b ghost

equation (2.34) could not be solved. These two problems are resolved in the non-

minimal pure spinor formalism.

The non-minimal version of the formalism [25] (see [26] for a review) amounts

to introducing a set of non-minimal variables, the complex conjugate λ̄α of λα, a

fermionic constrained spinor rβ satisfying

λ̄αγ
αβ
m λ̄β = 0, λ̄αγ

αβ
m rβ = 0 (2.53)

and their conjugate momenta, w̄α and sa. Analogous to the minimal formalism these

conditions induce a gauge invariance:

δw̄α = Λ̄m(γmλ̄)
α − φm(γmr)

α, δsα = φm(γmλ̄)α. (2.54)

This implies w̄α and sα can only appear in the gauge invariant quantities

N̄mn =
1

2
(λ̄γmnw̄ − sγmnr), J̄ = λ̄w̄ − sr, Tλ̄w̄ = w̄α∂λ̄α − sα∂rα, (2.55)

Smn =
1

2
sγmnλ̄, S = sλ̄.

The action (2.1) is modified by the addition of the term Snm:

S → S + Snm, Snm =

∫

d2z
(

−w̄α∂̄λ̄α + sα∂̄rα
)

(2.56)

and the generator QS by

QS → QS +

∮

dzw̄αrα. (2.57)

This acts on the non-minimal variables as follows

δλ̄α = rα, δrα = 0, δsα = w̄α, δw̄α = 0. (2.58)

These transformation rules imply that the cohomology is independent of the non-

minimal variables. In other words the vertex operators can always be chosen such

that they do not include these variables. A more natural point of view, which will

be adopted in chapter 4, is to consider the non-minimal variables as fields that

appear in the BRST treatment of gauge freedom due to shifts of the zero modes

of the worldsheet fields. This also explains why vertex operators do not depend on

the non-minimal fields and why only the zero modes of these fields appear in the

path integral. Furthermore the OPE’s given in section 2.1 still comprise a complete
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list, since the new fields do not have non zero modes. The tree-level amplitude

prescription is given by

A = 〈V1(z1)V2(z2)V3(z3)

N
∏

i=4

∫

dziUi(zi)e
−(λ(y)λ̄(y)+r(y)θ(y))〉. (2.59)

Compared to the minimal case the PCOs have been replaced by

N (y) ≡ e({QS ,−λ̄(y)θ(y)}) = e−(λ(y)λ̄(y)+r(y)θ(y)). (2.60)

Originally this factor was postulated by Berkovits, but it can also be derived from

first principles. This will be done in chapter 4. Unlike the PCOs N is QS closed

without subtleties:

QSe
−(λλ̄+rθ) = QS [−(λλ̄+ rθ)]e−(λλ̄+rθ) = −(λr − rλ)e−(λλ̄+rθ) = 0. (2.61)

Furthermore amplitude will not depend on the insertion point y since y only appears

in a QS exact term. More precisely N can be written as 1 + QSΩ for some Ω and

all y dependence is in that Ω.

After performing the OPE’s between the vertex operators, which results in ex-

actly the same function fαβγ as the minimal manipulations, all fields can be replaced

by their zero modes:

A =

∫

d16θfαβγ(θ)

∫

[dλ][dλ̄][dr]λαλβλγe−(λλ̄+rθ), (2.62)

where [dλ̄] and [dr] are Lorentz invariant measures:

[dλ̄]λ̄αλ̄β λ̄γ = (ǫT )α1···α11

αβγ dλ̄α1 · · · dλ̄α11 (2.63)

and

[dr] = (ǫT )αβγα1···α11
λ̄αλ̄β λ̄γ

∂

∂rα1

· · · ∂

∂rα11

. (2.64)

The invariant tensor (ǫT ) with indices in the opposite positions compared to (2.26)

is defined by

(ǫT )α1···α11

αβγ = ǫα1···α16γmαα12
γnβα13

γpγα14
(γmnp)α15α16 . (2.65)

We know
∫

[dλ][dλ̄][dr]λαλβλγe−(λλ̄+rθ) must be a Lorentz tensor with three

spinor indices and it must also contain eleven θ’s, because the r integration requires

eleven r’s to be non vanishing and all the terms with eleven r’s also contain eleven

θ’s. There is only one invariant tensor, up to scaling, with these symmetries which

is (ǫT ):
∫

d16θfαβγ(θ)(ǫT )αβγβ1···β11
θβ1 · · · θβ11 . (2.66)
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At higher loops two new issues arise, (1) appearance of the b ghost which is a

composite field constructed from the worldsheet fields, including the non-minimal

variables, (2) the weight one fields have zero modes. To deal with the second issue,

N will also include zero modes of weight one fields. For the one-loop case weight

one fields have one zero mode, this results in4

N (y) = e−(λ(y)λ̄(y)+r(y)θ(y)+1
2N

0
mnN̄

mn
0 + 1

4S
0
mn

R

A
dzλγmnd+J0J̄0+S

R

A
dzλd). (2.67)

This is invariant under QS :

QSN (y) = (λr(y)−λr(y)+N̄mn 1

2
λγmnd−N̄mn1

2
λγmnd+ J̄(λd)− J̄(λd))N (y) = 0.

(2.68)

The non-minimal b ghost satisfies

{QS , bnm(z)} = Tnm(z) ≡ Tmin(z) + Tλ̄w̄(z). (2.69)

This equation can be solved in the non-minimal formalism and its solution is given

by

bnm = sα∂λ̄α +
λ̄α(2Πm(γmd)

α −Nmn(γ
mn∂θ)α − J∂θα − 1

4∂
2θα)

4λλ̄
(2.70)

(λ̄γmnpr)(dγmnpd+ 24NmnΠp)

192(λλ̄)2
− (rγmnpr)(λ̄γ

md)Nnp

16(λλ̄)3
+

(rγmnpr)(λ̄γ
pqrr)NmnNqr

128(λλ̄)4
.

The one-loop amplitude prescription in the non-minimal pure spinor formalism

is given by

A(N) = 〈V1(z1)

N
∏

i=2

∫

dziUi(zi)

∫

dwµ(w)bnm(w)N (y)〉, (2.71)

where N is given is (2.67). After integrating out the non zero modes by using the

OPE’s a typical one-loop amplitude in the non-minimal formalism becomes

A(N) =

∫

d16dd16θ

∫

[dλ][dλ̄][dN ][dN̄ ][ds][dr]f(λ, λ̄, θ)N 0, (2.72)

where the Lorentz invariant measures are defined by

[dN̄ ]λ̄α1 · · · λ̄α8 = Rm1n1···m10n10
α1···α8

dN̄m1n1 · · · dN̄m10n10dJ̄ (2.73)

and

[ds] = Rα1···α8
m1n1···m10n10

λ̄α1 · · · λ̄α8

∂

∂Sm1n1

· · · ∂

∂Sm10n10

∂

∂S
. (2.74)

4The zero mode of a holomorphic field φ(z) is given by: φ0 ≡
R

A
dzφ(z). A is the non-trivial

A-cycle that satisfies
R

A
ω(z) = 1, where w(z) is the holomorphic one-form on the torus.
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Note bnm has poles in λλ̄ which can cause the zero mode integrals over λ and

λ̄ to diverge. At one loop this will not cause any problems because the measure

[dλ][dλ̄][dN ][dN̄ ][dr][ds] goes like (λ)11(λ̄)11 and the b field like λ̄/(λλ̄)4 when λ→ 0.

At three loops and higher the number of b fields is high enough to cause divergences.

They have originally been regularised in [27] and more recently in [28], but this

method has not been applied to actual computations. (See however [29] where this

regularisation method is reviewed and applied to the one-loop four-point amplitude

with four integrated vertex operators. This requires a modification of the amplitude

prescription that will not be discussed in this thesis.)

2.3 Results from the pure spinor formalism

In this chapter two new string theory formalisms have been introduced. Although

it is not been proved rigorously, there is a lot of evidence that the minimal pure

spinor formalism, the non-minimal pure spinor formalism and the RNS formalism

are equivalent to each other.

Let us start with the equivalence between RNS and the minimal pure spinor

formalism. The spectra of these two were shown to coincide in5 [24]. The most

direct approach to show equivalence is to compare the amplitude computations. In

[30] the equivalence was proved for N -point massless tree-level amplitudes with four

or fewer Ramond states. For massless four-point one-loop amplitudes the amplitudes

were shown to be identical in [31]. The four-point massless two-loop amplitude has

been computed in the pure spinor formalism in [32]. This computation includes all

possible choices (Neveu-Schwarz or Ramond) of the external states. The analogous

computation in the RNS formalism is extremely complicated due to the sum over

spin structures (cf. (1.213)) and is only successfully performed in the case of four NS

states [17]. For this choice of external states the pure spinor result agrees with the

RNS result. In conclusion one can say that the pure spinor formalism agrees with

all known results of the RNS formalism. On top of this the pure spinor formalism

produces more results, especially involving RR states, due to its manifest spacetime

supersymmetry. All pure spinor computations referred to in this paragraph were

performed in the manifestly Lorentz invariant version of the minimal formalism. This

means including integrals over the constant tensors/spinors C and B (cf. (2.30)).

Equivalence of the minimal and non-minimal at tree-level is not difficult to show

when one utilises the manifestly Lorentz invariant version of the minimal formalism.

5This reference shows coincidence of the spectrum of the minimal pure spinor formalism and

the spectrum of the Green-Schwarz superstring, yet another superstring formalism. However as

explained in [10] the GS string is equivalent to the RNS string.
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The λ and C integrals in (2.30) can be evaluated by Lorentz invariance:

∫

[dC][dλ]λαλβλγC1
α1

· · ·C11
α11
δ(C1λ) · · · δ(C11λ) = (ǫT )αβγα1···α11

. (2.75)

Using this result (2.30) becomes

A =

∫

d16θfαβγ(θ)(ǫT )αβγα1···α11
θα1 · · · θα11 , (2.76)

which coincides with the non-minimal result (2.66). At higher loops there does not

exist such a general proof, but in [33] the non-minimal one- and two-loop four-point

functions are shown to coincide with their minimal counterparts. The most recent

computation, the five-point one-loop amplitude, has only been computed in the non-

minimal formalism [34]. In chapter 4 formal equivalence between the minimal and

and non-minimal formalism will be proved by providing a first principles derivation

from the same starting point for both minimal and non-minimal.

The power of the pure spinor formalism is not only illustrated by the fact that

the complexity of all the amplitudes mentioned in the previous paragraph does not

depend on the number of external fermions (unlike RNS). In addition there exists a

number of non-renormalisation theorems that have been proved in the pure spinor

formalism and not in RNS. Four theorems are listed below in chronological order.

It is also indicated which formalism is used in the reference.

• The p-loop four graviton function vanishes above one loop [22] (minimal). In

other words the R4 term in the low energy effective action does not receive

perturbative corrections above one loop. This is a consequence of a conjectured

selfduality of type IIB string theory, S-duality. In the RNS formalism the

conjecture was verified only at two loops after much effort [11].

• The massless N -point multiloop (g ≥ 2) function vanishes whenever N < 4

[22] (minimal). This result is the main ingredient of the proof of perturba-

tive finiteness of string theory. As explained in [22] the only other possible

obstruction to proving perturbative finiteness is the existence of unphysical

divergences in the interior of moduli space. Such divergences are not expected

in the pure spinor formalism. Within the RNS formalism there are no results

beyond two loops.

• In [35] (non-minimal) two more conjectures based on string dualities are pre-

sented and subsequently proved. The first theorem states that when 0 < n <

12, ∂nR4 terms do not receive perturbative corrections above n/2 loops. The

second theorem states that when n ≤ 8, perturbative corrections to ∂nR4

terms in the IIA and IIB effective actions coincide.
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• The analysis of the previous reference was extended to the open string in [36]

(non-minimal). In this case it has been shown that the so-called double trace

term, ∂2t8(trF
2)2, does not receive corrections above two loops, whereas no

such restriction holds for the single trace term, ∂2t8(trF
4).

Furthermore the (non-minimal) pure spinor formalism has also caught up and

overtaken the RNS formalism in the area of overall coefficients. The normalisation

of the one-loop four-point in the non-minimal pure spinor formalism was computed

in [37]. The tree-level and two-loop computations were performed in [38]. This refer-

ence also shows that the results from the pure spinor formalism are in agreement with

predictions from S-duality. Moreover the results are consistent with factorisation.
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Chapter 3

Basic techniques

This chapter contains the mathematical details of a lot of the arguments used in

the previous chapter. The starting point will be the definition of a representation

and all results will follow without the need for any further prerequisites1. Important

results in this chapter include

• The Wick rotated Lorentz group, SO(10), has an SU(5) subgroup.

• A pure spinor has eleven independent components in ten dimensions.

• There exist unique Lorentz invariant measures for the zero modes of λα and

Nmn.

• Proof of equation (2.75).

Furthermore this chapter contains results on representation theory and invariant

tensors that will be useful in due course.

3.1 Invariant tensors

Before the definition of an invariant tensor is given it is necessary to recall how the

vector and spinor representations of SO(N) are defined.

Definition A representation of SO(N) consists of an d dimensional vector space

and a map

f : SO(N) × C
d → C

d, (3.1)

f(A, v) = g(A)v, (3.2)

1Section 3.2.3 is an exception where knowledge of Dynkin labels is assumed. These are peda-

gogically introduced in [39].
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where g(A) is a linear map from Cd to itself for every A ∈ SO(N). In addition g

must satisfy

g(AB)v = g(A)g(B)v, g(e)v = v, (3.3)

where e is the unit element of SO(10).

The fundamental representation is given by d = N and g is the identity map

(g(A) = A). In physics notation, which is used throughout this thesis, this repre-

sentation would be denoted as

va → Aabv
b, (3.4)

or even shorter

v → Av. (3.5)

In order to see this is a representation note both sides of (3.3) reduce to ABv. A

second representation of SO(N) is given by

va → vb(A
−1)ba or v → (A−1T )v. (3.6)

This also satisfies the defining condition for representations because

A−1T (B−1T v) = (A−1TB−1T )v = (AB)−1T v. (3.7)

In fact this can be generalised to construct a second representation from any given

one. One just replaces v → g(A)v by

v → (g(A))−1T v. (3.8)

This is called the conjugate representation. Note the position of the indices on the

conjugate representation is opposite to the original representation. This is very

convenient because together with the rule that indices can only be summed over

if one is up and one is down, tensors transform as indicated by their free indices.

In particular combinations without free indices are invariant. For example for an

arbitrary representation and its conjugate

wav
a → wb((g(A)−1)bag(A)acv

c = wbδ
b
cv
c = wav

a. (3.9)

The first equality is a consequence of (3.3) with B = A−1.

An invariant tensor is a tensor that transforms into itself under all elements of

the group. For example δab is an invariant tensor for any representation. Note the

range, that a and b run over, depends on the (dimension of the) representation. Its

transformation is given by

δab → g(A)acδ
c
d((g(A)−1)db = δab . (3.10)

For SO(N) δab is also an invariant tensor where a, b denote the vector representation,

hence they run from 1 to N . This tensor is invariant because

δab → AacA
b
dδ
cd = (AAT )ab = δab. (3.11)
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The last equality follows from the definition of SO(N). For an arbitrary representa-

tion of SO(N) of dimension d with the property det(g(A)) = 1 ∀A ∈ SO(N), ǫa1···ad

is an invariant tensor:

ǫa1···ad → (g(A))a1

b1
· · · (g(A))ad

bd
ǫb1···bd = (detg(A))ǫa1···ad . (3.12)

Since the fundamental representation falls in this class, ǫm1···mN is an invariant

tensor. Invariant tensors can be used to construct invariants from tensors. Objects

that consist of (covariant) tensors and invariant tensors transform according to their

free indices. In particular combinations without free indices are invariant. For

example,

vawbδ
ab → vcwd(B

−1)ca(B
−1)dbδ

ab = vcwdδ
cd, (3.13)

where (3.11) with A = B−1 was used in the last equality.

For the purposes of this thesis two representations, v an w, are defined to be

equivalent if they have the same dimension and w can be contracted with invariant

tensors such that the resulting index structure exactly matches the indices of v. For

example the vector representation of SO(N) is equivalent to its conjugate because

δabwb has the same index structure as va and therefore transforms as a fundamental

vector.

A representation is reducible if the matrix g(A) is blockdiagonal for all A ∈
SO(N). In addition the same blocks must appear for all A’s and the number of

blocks must be two or greater.

The complex conjugate of a representation, g(A), is given by g∗(A). One can

check this always defines a representation if g(A) did. If a representation is equivalent

to its complex conjugate it is real. For SU(N) the conjugate of the fundamental

representation is equivalent to the complex conjugate because A−1T = A∗.

3.2 Clifford algebra and pure spinors

The Clifford algebra in ten dimensions with Euclidian signature is given by

{Γm,Γn}ab = 2δmnδ
a
b , m, n = 0, · · · , 9 a, b = 1, · · · , 32. (3.14)

These Γm’s can be used to construct a representation of the Lorentz algebra and

by exponentiating also of the Lorentz group. The objects, Σmn = 1
4 [Γm,Γn], satisfy

the Lorentz algebra.

Definition Let

(Jmn)pq = δp[mδn]
q , (3.15)

then Apq = (e
1
2ωmn(Jmn))pq ∈ SO(10) and each element of SO(10) is covered by an

ω. The spinor representation is defined by

g(A(ω))
a
b = (e−

1
2ωmn(Σmn))

a
b. (3.16)
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With this definition (Γm)
a
b is an invariant tensor. Note that the notation implies

that one has to transform the b index as a conjugate spinor. Let us show this by

considering infinitesimal transformations:

(Γm)
a
b → (δmn +

1

2
ωpq(J

pq)mn)(δ
a
c − 1

2
ωpq(Σ

pq)ac)(Γ
n)
c
d(δ

d
b +

1

2
ωpq(Σ

pq)
d
b). (3.17)

With spinor indices suppressed and only keeping terms to first order (plus one second

order term) in ω this becomes

Γm → Γm + (1 − 1

2
ωpqΣ

pq)Γm(1 +
1

2
ωpqΣ

pq) − (1 − 1

2
ωpqJ

pq)mnΓ
n. (3.18)

By using the definition of Σ and J the second and third term can be shown to be

equal. This proves (Γm)
a
b is an invariant tensor.

The Clifford algebra has a solution in which the 32 by 32 components Γ matrices

are off diagonal:

Γm =

(

0 γmαβ

γmαβ 0

)

, (3.19)

where α, β = 1, · · · , 16. The notation suggests that there is a sixteen dimensional

representation. Moreover it suggests that the two γ’s are invariant tensors with

respect to this new representation. To see this first of all note the Clifford algebra

now reduces to

γ(mαβγ
n)
βγ = 2δmnδαγ . (3.20)

In particular (γm)αβ is the inverse of (γm)αβ . The Lorentz generators Σ become

Σmn =
1

4

(

(γ[mγn])αβ 0

0 (γ[mγn]) βα

)

. (3.21)

This implies the representation of the Lorentz group is reducible. An explicit solution

to (3.20) is given in the next section after some explanation about how representa-

tions decompose under subgroups. From this explicit solution one can see the two

representations are irreducible. The two blocks are the Weyl representation and its

conjugate. The 32 dimensional spinor is called a Dirac spinor. To see (γm)αβ is

an invariant tensor, note since Σ satisfies the Lorentz algebra so does 1
4 (γ[mγn])αβ .

These are the Lorentz generators in the Weyl representation. By a similar argument

as for the Γ’s one sees γ is an invariant tensor.

3.2.1 The SU(N) subgroup of SO(2N)

This section is devoted to showing SO(2N) has an SU(N) subgroup. In addition it

will be demonstrated how representations of SO(2N) decompose into representations
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of SU(N). Part of this analysis is based on [39]. To start define for any SO(2N)

vector v:

va =
1

2
(v2a − iv2a+1), va =

1

2
(v2a + iv2a+1), a = 1, . . . , N. (3.22)

The Clifford algebra can now be written as

{Γa,Γb} = δba, (3.23)

with all other anticommutators zero. The SU(N) subalgebra of SO(2N) consists of

the generators,

Ta = Γj T̃a
j

kΓ
k, a = 1, . . . , N2 − 1, j, k = 1, . . . , N, (3.24)

where T̃a
j

k are Gell-Mann matrix elements for SU(N), i.e. they satisfy [T̃a, T̃b] =

f c
ab T̃c. By virtue of the Clifford algebra one can show the Ta also satisfy the SU(N)

algebra:

[Ta, Tb] = [ΓjΓ
kT̃a

j

k,ΓlΓ
mT̃b

l

m] = (3.25)

T̃a
j

kT̃b
l

m(Γj{Γk,Γl}Γm − ΓjΓl{Γk,Γm} + {Γj,Γl}ΓmΓk − Γl{Γj,Γm}Γk) =

Γj([T̃a, T̃b])
j
kΓk = f c

ab (T̃c)
j
kΓjΓ

k = f c
ab Tc.

Moreover the Ta form a subalgebra of SO(2N) since

ΓjΓ
k =

1

2
{Γj,Γk} +

1

2
[Γj ,Γ

k] (3.26)

=
1

2
δkj −

i

2
Σ2j,2k +

1

2
Σ2j+1,2k − 1

2
Σ2j,2k+1 − i

2
Σ2j+1,2k+1.

The δkj does not contribute to Ta because T̃a is traceless.

The SO(2N) algebra is given by

[Mmn,Mpq] = −(δm[pM q]n − δn[pM q]m), m, n, p, q = 1, · · · , 2N. (3.27)

One can also give this algebra with the components of the generators labelled by the

indices from (3.22):

[Mab,Mcd] = −1

2
δ
[a
[cM

b]
d], a, b, c, d = 1, · · · , N, (3.28)

[Ma
b,M

c
d] =

1

2
(δadM

c
b − δcbM

a
d), (3.29)

[Ma
b,M

cd] =
1

2
δ
[c
b M

d]a, [Ma
b,Mcd] = −1

2
δa[cMd]b, (3.30)

[Mab,M cd] = [Mab,Mcd] = 0. (3.31)
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These equalities can be proved by using (3.22), Ma
b = −M a

b and noting

(δ2N )ab =
1

4
((δ2N )2a,2b − i(δ2N )2a+1,2b + i(δ2N )2a,2b+1 + (δ2N )2a+1,2b+1)

=
1

2
(δN )ab ≡ 1

2
δab , (3.32)

(δ2N )ab =
1

4
((δ2N )2a,2b − i(δ2N )2a+1,2b − i(δ2N )2a,2b+1 − (δ2N )2a+1,2b+1)

= 0, (3.33)

where δk is the k dimensional Kronecker delta. From (3.29) one sees the SO(2N) al-

gebra has an N2 dimensional subalgebra. This subalgebra contains a U(1) generated

by M ≡Ma
a and the other N2 − 1 generators2,

(MS)ab ≡Ma
b −

1

5
δabM

c
c, (3.34)

are traceless and generate an SU(N):

[(MS)ab, (MS)cd] = [Ma
b −

1

5
δabM

e
e,M

c
d −

1

5
δcdM

f
f ] = (3.35)

−1

2
(δadM

c
b −

1

5
δadδ

c
bM

e
e − δcbM

a
d −

1

5
δcbδ

a
dM

f
f ) = −1

2
(δad(MS)cb − δcb(MS)ad).

The U(1) charges of the generators are given by

[M,Mab] = −Mab, [M,Ma
b] = 0, [M,Mab] = Mab. (3.36)

This concludes the proof of the existence of the SU(5) subgroup. The next step is

to examine how SO(10) representations behave under SU(5) transformations.

Every representation of SO(2N) can be decomposed into representations of

SU(N). This means the vector space, that the tensors live in, can be written as a di-

rect sum of subspaces and the subgroup does not mix the elements of the subspaces.

The vector representation of SO(2N) for example decomposes into the vector of

SU(N) and its conjugate, which for SU(N) is equivalent to the complex conjugate.

The subspace of C2N that is invariant under SU(N) is V = {v|va = 0; v ∈ C2N}.
The variation of an SO(2N) vector by an element of the SU(5) subgroup is

vm → (eω
b
aM

a
b)mnv

n = (A(ω)v)m, (3.37)

where ωaa = 0. If v ∈ V , (A(ω)v) is also an element of V . To show this one needs

to prove (A(ω)v)c = 0:

(A(ω)v)a = 2(eω
d
cM

c
d)abv

b + 2(eω
d
cM

c
d)abvb = 0. (3.38)

2The subscript S on M has no relation with the subscript on the nilpotent fermionic operators

QS .
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The first term is zero because va = 0. The second term because

(M c
d)ab = 0. (3.39)

This follows from (3.15), (3.22) and (3.33). The other components are

(A(ω)v)a = (eω
d
cM

c
d) ba vb = va − vbω

b
a +O(ω2). (3.40)

For a vector with va = 0 we get

(A(ω)v)a = 0, (3.41)

(A(ω)v)a = (eω
d
cM

c
d)abv

b = va + ωabv
b +O(ω2). (3.42)

From (3.40) and (3.42) one sees the two representations are each others conjugate.

Since there are only two N dimensional representations of SU(N), namely the vector

and its conjugate which is equivalent to the complex conjugate of the vector, one

can conclude

2N → N⊕ N̄. (3.43)

As shown above SO(10) has a sixteen dimensional spinor representation. This

also decomposes under the SU(5) subgroup. To find the precise decomposition note

that any representation of the Clifford algebra is also a representation of SO(10).

Since the Clifford algebra in the form of (3.23) is just a set of raising and lowering

operators, representations are easily constructed by choosing a vacuum |0〉 that

satisfies

Γa|0〉 = 0. (3.44)

32 states are created by acting with Γa:

e− = |0〉, ea1···ak = Γa1 · · ·Γak |0〉, k = 1, .., 5. (3.45)

Note that all e’s are antisymmetric in their indices, so that there is indeed a total

of 32 basis vectors. This representation is the Dirac spinor. These basis vectors can

also be labelled with downstairs SU(5) indices

e+ = e−, ebcde = ǫabcdee
a, ecde =

1

2
ǫabcdee

ab, (3.46)

ede =
1

6
ǫabcdee

abc, ee =
1

24
ǫabcdee

abcd, e− =
1

120
ǫabcdee

abcde = e+.

A generic spinor can be written as

ξ = ξ+e+ + ξae
a +

1

2
ξabe

ab +
1

2
ξabeab + ξaea + ξ−e−. (3.47)

The M charges of the states are given by

Me− = −5

4
e−, Mea1···ak = −1

4
(5 − 2k)ea1···ak . (3.48)
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This can also be interpreted as M charges of the components

Mξ+ = −5

4
ξ+, Mξa1···ak

= −1

4
(5 − 2k)ξa1···ak

. (3.49)

Because the difference of the number of Γa’s and Γa’s is always even in the SO(10)

generators, all SO(10) transformations will change the M charge by an integer. This

shows the reducibility of the Dirac spinor into two Weyl spinors. Incidentally we

can read off the decomposition under the SU(5) subgroup:

16 → 1− 5
4
⊕ 1̄0− 1

4
⊕ 5 3

4
λα → λ+, λa1a2 , λ

a, (3.50)

16′ → 1 5
4
⊕ 10 1

4
⊕ 5̄− 3

4
wα → w+, w

a1a2 , wa. (3.51)

where the subscripts are the U(1) charges. For completeness the decomposition of

the vector and the antisymmetric rank two tensor of SO(10) are also specified:

10 → 5− 1
2
⊕ 5̄ 1

2
vm → va, va, (3.52)

45 → 10 ⊕ 240 ⊕ 10−1 ⊕ 1̄01 Mmn →Ma
a, (MS)ab,M

ab,Mab. (3.53)

3.2.2 Charge conservation and tensor products

In order to solve the pure spinor constraint (2.2) one needs an explicit representation

of the gamma matrices. The M charge conservation property of invariant tensors

proves a large number of components of invariant tensors is zero, which is very

useful if one is doing computations by using the explicit expressions of the tensors,

in particular gamma matrices. An invariant tensor Tαβγδ satisfies

0 = MTαβγδ = (Mu(α) +Mu(β) +Md(γ) +Md(δ))Tαβγδ , (3.54)

where Mu(+) = − 5
4 ,M

u(a1a2) = − 1
4 ,M

u(a) = 3
4 , Md(+) = 5

4 ,M
d(a1a2) =

1
4 ,M

d(a) = − 3
4 . The u is for up and the d for down. This refers to the posi-

tion of the Weyl index not the SU(5) indices. So if the M charges of the indices

of a components do not sum up to zero the component vanishes. In this case one

can for instance conclude T+
b1b2,c,d

= 0, because the M charge of the components

is − 1
4 (5 + 1 + 3 + 3) 6= 0.

In this thesis questions of the following type often arise: how many independent

invariant tensors Tmδ(αβγ) exist? The upper index δ denotes the Weyl representation,

the lower indices stand for the conjugate Weyl representation and m is the ten

dimensional vector. To answer this question first of all note that the space of all

tensors with the index structure and symmetries of T forms a representation of

SO(10). The question how many independent invariant tensors exist in that space

now translates to what the dimension of the invariant subspace is. This number

can be obtained by computing the number of scalars in the relevant tensor product.
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This is one of the features of the computer algebra program LiE [40]. For the case

of T one computes

10⊗ 16⊗ Sym316′ = 1⊕ 45⊕ 45⊕ 45⊕ · · · , (3.55)

where the ellipsis denotes higher dimensional irreducible representations. The above

decomposition shows that the space of invariant tensors with the symmetries of T

is one dimensional. Based on this result we can for example conclude

γm(αβδ
δ
γ) ∝ γn(αβγ

m
γ)ǫγ

ǫδ
n . (3.56)

In order to find the constant of proportionality, computing a single component on

both sides suffices. Alternatively one can contract both sides with a suitable invariant

tensor.

3.2.3 Dynkin labels and gamma matrix traceless tensors

Throughout this work irreducible representations are denoted by their dimensions.

This is slightly ambiguous. A more precise label is the Dynkin label of the highest

weight state of the representation [39].

10 ↔ (1, 0, 0, 0, 0), 16 ↔ (0, 0, 0, 1, 0), 16′ ↔ (0, 0, 0, 0, 1), 45 ↔ (0, 1, 0, 0, 0).

(3.57)

There is one further irreducible representation of interest, which is given by sym-

metric and gamma matrix traceless tensors:

T ((α1···αn)) ↔ (0, 0, 0, n, 0) ↔ Gamn16, (3.58)

where the Dynkin labels are specified. These representations are discussed in more

detail in [41]. There are three gamma matrix traceless tensors that are of particular

interest:

(T1)
((α1α2α3))
[β1···β11]

, (T2)
((α1···α8))
[[m1n1],··· ,[m10n10]], (T3)

((α1···α11))
[β1···β11][[m1n1],··· ,[m10n10]]. (3.59)

The first one has already appeared in chapter 2, the other two will play a role in

one-loop computations. For the three tensors above the computer algebra program

LiE can be used to conclude there is only one independent invariant tensor. Note

this is consistent with the arguments in [33], where it is argued that a tensor which is

symmetric and gamma matrix traceless, let us say in some indices αi, is completely

specified by the components where the α’s are all +. In order to see this implies

there is only one independent invariant tensor of the form of T1 note that for an

invariant tensor the components

(X1)
+++
β1···β11

(3.60)
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are only nonvanishing if

β1 · · ·β11 = +, 12, 13, · · · , 45, (3.61)

which follows from the charge conservation property of invariant tensors. By anti-

symmetry of the β’s there is only one independent component in (3.60). If one now

uses the argument from [33] the entire invariant tensor is completely specified by a

single component, therefore the space of invariant tensors of the form of T1 is one

dimensional. The above argument applies equally well to T2 and T3.

3.2.4 Explicit expression for gamma matrices

A solution to the Clifford algebra for the ten dimensional Pauli matrices (3.20) is

given by

(γk)αβ =





0 0 δkb
0 −ǫka1a2b1b2 0

δka 0 0



 , (γk)αβ =







0 0 0

0 0 δ
[a1

k δ
a2]
b

0 δ
[b1
k δ

b2]
a 0






,

(3.62)

(γk)αβ =







0 0 0

0 0 δk[a1
δba2]

0 δk[b1δ
a
b2]

0






, (γk)

αβ =





0 0 δbk
0 −ǫka1a2b1b2 0

δak 0 0



 ,

(3.63)

where all Latin indices are SU(5) vector indices. The top left corner of the matrices

is the +,+ component, top middle is the +, b1b2 component and top right is the +, b

component etc. Note these matrices are skew diagonal, this is a consequence of the

charge conservation property of invariant tensors.

In chapter 5 not only the gamma matrices itself will be important, but also their

antisymmetrised products. In particular the three form gamma matrices. Their

explicit expression is given by:

(γk1k2k3)
αβ =

1

6
(γ[k1γk2γk3])

αβ =





0 ǫk1k2k3b1b2 0

−ǫk1k2k3a1a2 0 0

0 0 0



 (3.64)

(γk1k2k3)
αβ =

1

6
((γk1γ[k2γk3])

αβ − (γ[k2γ
k1γk3])

αβ + (γ[k2γk3]γ
k1)αβ) =

1

2







0 0 −δk1[k2
δbk3]

0 δk1[a1
ǫa2]k2k3b1b2 − δk1[b1

ǫb2]k2k3a1a2
0

δ
[k1
k2
δ
a]
k3

0 0






, (3.65)

(γk1k2k3)
αβ =

1

6
((γ[k1γk2]γk3)

αβ − (γ[k1γk3γ
k2])αβ + (γk3γ

[k1γk2])αβ) =
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





0 0 0

0 0 δk1[a1
δk2a2]

δbk3 + 1
2δ
b
[a1
δ
[k1
a2]δ

k2]
k3

0 −δk1[b1
δk2b2]δ

a
k3

− 1
2δ
a
[b1
δ
[k1
b2] δ

k2]
k3

0






, (3.66)

(γk1k2k3)αβ =
1

6
(γ[k1γk2γk3])αβ =





0 0 0

0 0 0

0 0 −ǫk1k2k3ab



 . (3.67)

3.2.5 Pure spinors

A pure spinor is a Weyl spinor that satisfies

λαγmαβλ
β = 0. (3.68)

After plugging in the explicit expression for the gamma matrices this becomes

2λ+λa − 1

4
ǫabcdeλbcλde = 0, (3.69)

2λbλab = 0. (3.70)

These equations are solved by

λa =
1

8

1

λ+
ǫabcdeλbcλde. (3.71)

This is clearly a solution to the first equation. For the second equation one makes

use of the fact that a six component SU(5) tensor vanishes when antisymmetrised

over all indices:

0 = λ[ab1λb2b3λb4b5] = 6λa[b1λb2b3λb4b5]. (3.72)

The result (3.71) shows that a pure spinor has eleven independent components. A

number of great significance in the pure spinor formalism, since it plays a crucial

role in the vanishing of the central charge of the pure spinor formalism action in

conformal gauge (2.1).

3.3 Pure spinor Lorentz generators

The goal of this section is deriving the Lorentz generator OPE’s as given in (2.7).

This can be achieved by breaking manifest SO(10) invariance to manifest SU(5)

invariance. As a warm up exercise the Lorentz currents for an unconstrained Weyl

spinor are studied. Incidentally the results obtained in this exercise apply to the

Lorentz generators of the p, θ sector of the worldsheet action (2.1). The Lorentz

generators of an unconstrained bosonic spinor ξα and its conjugate variable yβ are

given by

Mmn =
1

2
yα(γmn)αβξ

β , γmn =
1

2
(γmγn − γnγm). (3.73)
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In this subsection these components are given in terms of the SU(5) components of

ξ and y. The SU(5) components of (3.73) are given by

Mkl =
1

4
yα(γ[k)

αβ(γl])βδξ
δ,

Mk
l =

1

4

(

yα(γk)αβ(γl)βδξ
δ − yα(γl)

αβ(γk)βδξ
δ
)

, (3.74)

Mkl =
1

4
yα(γ[k)αβ(γl])βδξ

δ.

In order to write these Lorentz generators in terms of the SU(5) components of y

and ξ one uses the explicit expressions of the gamma matrices (3.62) and (3.63).

Mkl = −1

2
y−ξkl −

1

4
yabǫabcklξ

c,

Mkl =
1

2
yklξ+ +

1

4
yaǫ

abcklξbc,

Mk
l = −1

4
δkl ξ

+y− − 1

4

1

2
δkl y

abξab +
1

2
yakξal +

1

4
yaξ

aδkl −
1

2
ykξ

l,

M = Mk
k = −5

4
y−ξ+ − 1

4

1

2
yabξab +

3

4
yaξ

a, (3.75)

(MS)kl = Mk
l −

1

5
δklM

= − 1

10
δkl y

abξab +
1

2
yakξal +

1

10
yaξ

aδkl −
1

2
ylξ

k.

The current J can also be written in terms of the SU(5) components of its con-

stituents:

J = yαξ
α = y−ξ+ +

1

2
yabξab + yaξ

a. (3.76)

3.3.1 Lorentz current OPE’s with unconstrained spinors

For unconstrained spinors there is no need to break to SU(5) in order to derive the

OPE of the Lorentz currents. It can be derived by the SO(10) covariant OPE of the

bosonic spinors ξα and yβ :

yα(z)ξβ(w) ∼ δβα
1

z − w
. (3.77)

The OPE of the pure spinor Lorentz current with itself is given by

Mm1m2(z)Mn1n2(w) ∼ 1

4

1

z − w
(−yα(z)γm1m2α

βγ
n1n2β

γξ
γ(w)+ (3.78)

yα(w)γn1n2α
βγ

m1m2β
γξ
γ(z)) + −1

4

Tr(γm1m2γn1n2)

(z − w)2
.
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The following two identities can be used

[
1

2
γm1m2 ,

1

2
γn1n2 ] =

1

2
(ηn1[m2γm1]n2 − ηn2[m2γm1]n1), (3.79)

Tr(γm1m2γn1n2) = −16ηm1[n1ηn2]m2 . (3.80)

The MM OPE now reduces to

Mm1m2(z)Mn1n2(w) ∼ −(ηn1[m2Mm1]n2 − ηn2[m2Mm1]n1)

z − w
(3.81)

−4
ηm1n2ηm2n1 − ηm1n1ηm2n2

(z − w)2
.

One can read off the algebra of the Lorentz charges from the single pole in the OPE

[Mm1m2 ,Mn1n2 ] = −(ηn1[m2Mm1]n2 − ηn2[m2Mm1]n1). (3.82)

In case the worldsheet fields are fermionic, the OPE remains the same:

pα(z)θβ(w) ∼ δβα
1

z − w
. (3.83)

The Lorentz generator for the fermionic variables has a minus sign:

Mmn = −pγmnθ. (3.84)

This sign is necessary to reproduce the commutation relation (3.82). As a conse-

quence the sign in the double pole in the OPE changes from -4 to +4. This coefficient

is called the level. One would like the Lorentz current of the combined p, θ and λ,w

sector to have level one, since this is the level of the ψ sector in the RNS formalism.

This implies the N(λw) generators must have level −3. The next two subsections

contain an explanation how such currents can be obtained from the pure spinor

action after gauge fixing.

3.3.2 Gauge fixing wα invariance

As mentioned before λw part of the pure spinor action 2.1 has a gauge invariance.

To deal with this one can start by relaxing the pure spinor condition on λα and

introducing a Lagrange multiplier lm to impose it in the path integral. The (w, λ)

part of the action (2.1) thus now reads

S(w,λ) =

∫

d2z
(

wα∂̄λ
α + lm(λγmλ)

)

. (3.85)

where λα is now an unconstrained bosonic Weyl spinor. This action has a gauge

invariance3,

δwα = Λa(γaλ)α, δla =
1

2
∂̄Λa. (3.86)

3There is also a gauge invariance associated with la, but since the constraint from which this

is derived is completely solved by the la constraint, the la gauge invariance will not be present

anymore after gauge fixing the la invariance.
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This gauge transformation has rank five, so one can gauge fix it by requiring

wa = 0. (3.87)

Following the steps of BRST quantisation (and expressing the gamma matrices in

the U(5) basis) one finds that corresponding ghost action is given by

∫

d2z
(

C̄b(γa)
b
βλ

βCa + waπa
)

=

∫

d2z
(

C̄aλ
+Ca + waπa

)

, (3.88)

where C̄b, C
a, πa are the corresponding antighost, ghost and auxiliary fields. In-

tegrating them out sets wa = 0 and inserts the factor (λ+)5 in the path integral

measure. Furthermore, integrating out la leads to the delta function δ(2λaλ
+ +

1
4ǫabcdeλ

bcλde) which can be used to integrate out λa (so we are left with the eleven

independent components λ+, λab) and also results in the insertion (λ+)−5 in the path

integral measure, which cancels the factor (λ+)5 from the ghosts. Finally integrat-

ing out la sets λγmλ to zero and hence removes la from the action. Therefore la is

pure gauge and since it does not appear in the action anymore, BRST quantisation

amounts to removing the measure factor associated to λa from the path integral

measure. The end result is that the action (3.85) becomes the free action

∫

d2z(w+∂̄λ
+ +

1

2
wab∂̄λ

ab), (3.89)

with all factors coming from eliminating the 5 and gauge fixing the gauge invariance

canceling out.

The gauge fixed action (3.89) is no longer invariant under QS =
∮

dzλαdα, but

it is invariant under Q̂S defined by

Q̂Swα = dα − da
λ+

(γaλ)α. (3.90)

On all other fields Q̂S acts the same as QS . Note the second term in (3.90) is a

gauge transformation with Λa = da

λ+ ,Λ
a = 0. This implies that when acting on

gauge invariant quantities QS = Q̂S . Moreover Q̂Swa = 0. So that for instance

Q̂SN
mn|wa=0 = QSN

mn =
1

2
λγmnd. (3.91)

Q̂S also satisfies

Q̂2
S = 0, (3.92)

on all fields including w, unlike QS .
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3.3.3 Currents containing pure spinors

As argued before one would like to find Lorentz currents constructed from the fields

in the gauge fixed action (3.89) that (by definition) satisfy the Lorentz algebra and

have level minus three. Let us start by looking what one gets by just imposing the

gauge condition (3.87) on the Lorentz generators of (3.75):

Nkl = −1

2
w−λkl −

1

4

wabλklλab
λ+

+
1

2

wabλkaλlb
λ+

, (3.93)

Nkl =
1

2
wklλ+, (3.94)

N = −5

4
w−λ+ − 1

4

1

2
wabλab, (3.95)

(NS)kl =
1

2
(−1

5
δkl w

abλab + wakλal). (3.96)

The number current in the gauge wa = 0 becomes

J = w−λ+ +
1

2
wabλab. (3.97)

One might expect that imposing wa = 0 in all (gauge invariant) operators de-

pending on wα does not break Lorentz covariance. For the OPE’s of N and J with

λ Lorentz covariance is indeed not lost, as will be shown below. The NN OPE is

not Lorentz covariant anymore after imposing the gauge condition. The single pole

is the same as in (3.81), the level of the OPE, however, depends on which SU(5)

components one chooses. This spoils Lorentz invariance, but it can be cured as

demonstrated below.

The OPE of J and Nmn with λ are given by

J(z)λα(w) ∼ 1

z − w
λα(w), Nmn(z)λα(w) ∼ 1

z − w

1

2
γmnαβλ

β(w). (3.98)

In order to check these OPE’s we set wa = 0 and use the free field OPE’s

w−(z)λ+(w) ∼ 1

z − w
, wab(z)λcd(w) ∼ 1

z − w
δ[ac δ

b]
d . (3.99)

Let us start with J :

J(z)λ+(w) = w−λ+(z)λ+(w) ∼ 1

z − w
λ+(w) (3.100)

and similarly for λab. λ
a is more involved. By using

w−(z)
1

λ+
(w) ∼ 1

z − w

−1

(λ+)2(w)
, (3.101)
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one can reproduce the Lorentz invariant answer:

J(z)λa(w) = (w−λ+ +
1

2
wabλab)(z)

ǫabcdeλbcλde
8λ+

(w) ∼ 1

z − w

1

8λ+
ǫabcdeλbcλde(w).

(3.102)

Let us continue with the trace of Nmn. In terms of unconstrained spinors it is given

by

N = −5

2
λ+w− − 1

2

1

2
wabλ

ab +
3

2
waλa. (3.103)

From here one can see that the expected charge of λa is 3
2 . The OPE of N with λ+

or λab trivially reproduces the Lorentz invariant result, the OPE of N with λa is

N(z)λa(w) = (−5

2
λ+w− − 1

2

1

2
wabλ

ab)(z)
ǫabcdeλbcλde

8λ+
(w) ∼ (3.104)

1

z − w

(5
2 − 1

2 − 1
2 )ǫabcdeλbcλde

8λ+
(w).

All other components of the Nλ OPE can be checked along the same lines.

The NmnNpq OPE is a different story. The single pole always leads to the

correct Lorentz algebra, but the coefficient of the double pole depends on which

SU(5) components we choose to take. For instance

N(z)N(w) ∼ −35

16

1

(z − w)2
= −7

4
ηklη

l
k

1

(z − w)2
(3.105)

N12(z)N12(w) ∼ 1

4

1

(z − w)2
+

1

z − w

1

2
(N1

1(w) +N2
2(w)) = (3.106)

−1
1

(z − w)2
(−η1

1η
2
2) +

1

z − w

1

2
(N1

1(w) +N2
2(w)).

The first OPE would imply a Lorentz current level of − 7
4 and the second one −1.

It will be shown below that it is possible to deform the currents in equations (3.93)-

(3.96) by conserved quantities such that the level of the NmnNpq OPE is minus

three [42]. There is not only a freedom to add conserved quantities to Nmn, also

J and the stress energy tensor Tλw are subject to this freedom. However now that

the Lorentz current is completely fixed by the level -3 constraint, the form of the

deformation of the number current J is unique determined by demanding that the

OPE of J and N does not contain any poles (2.7). Similarly by demanding that

the Lorentz currents are primary field the (pure spinor part of) the stress energy

tensor is completely determined. If one now computes the JT OPE, a Jλw number

anomaly value of minus eight follows. This cannot be adjusted.

The deformations are most easily given after bosonization of λ and w, which is

given by

λ+ ∼= eχ−φ, w− ∼= e−χ+φ∂χ, λ+w− ∼= ∂φ, (3.107)
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where φ, χ are chiral bosons satisfying

φ(z)φ(0) ∼ −lnz, χ(z)χ(0) ∼ lnz. (3.108)

Now define

s = χ− φ, 2t = φ+ χ↔ φ =
1

2
(2t− s), χ =

1

2
(s+ 2t) (3.109)

The OPE’s for these new variables are

s(z)s(0) ∼ regular, t(z)t(0) ∼ regular t(z)s(0) ∼ lnz. (3.110)

The original worldsheet fields λ and w can be expressed in terms of s, t as

λ+ ∼= es, w− ∼= 1

2
e−s(∂s+ 2∂t), λ+w− ∼= 1

2
(2∂t− ∂s). (3.111)

The Lorentz currents of (3.93)-(3.96) in bosonised form are given by4

N = −5

8
(2∂t− ∂s) − 1

8
wabλab, (3.113)

Nab =
1

2
eswab, (3.114)

(NS)ab =
1

2
(wacλbc −

1

5
δabw

cdλcd), (3.115)

Nab = e−s[−1

2
(
1

2
∂sλab + ∂tλab) −

1

4
wcdλabλcd +

1

2
wcdλacλbd]. (3.116)

The deformations one should add to (3.93)-(3.96) to make the NN OPE Lorentz

invariant are given by [42]:

∆N = −5

8
∂s, (3.117)

∆Nab = 0, (3.118)

∆(NS)ab = 0, (3.119)

∆Nab = e−s(−3

4
∂sλab + ∂λab) = ∂(e−sλab) −

1

4
(∂e−s)λab. (3.120)

Note that the field equations imply the ∂̄ operator annihilates these deformations.

Hence the deformed charges are still conserved. Furthermore the deformations do

not modify the Nλ OPE, which is manifest in the s, t variables.

4In [42] the Lorentz currents, denoted (NB)mn here, have a different normalisation. The relation

with ours is given by

N = −

√
5

2
NB, Nab =

1

2
(NB)ab, (NS)a

b =
1

2
(NB

S )a
b, Nab =

1

2
(NB)ab. (3.112)
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3.4 Lorentz invariant measures

The Lorentz invariant measures for both the weight zero field, λα, and the weight

one field, Nmn, are discussed below. Both these measures were first introduced in

[22] and the λ zero mode measure is also discussed in [43].

3.4.1 Measure for the zero modes of λ

From the Jλw number anomaly in the JT OPE (2.7) one can deduce a tree level

correlator can only be nonzero if the Jλw charge of the insertions is -8 (cf. section

1.3.1). Since there are no w (or Nmn) zero modes at tree level, the measure for the

λ zero modes must have ghost number +8. In addition the measure must be Lorentz

invariant. This results in

[dλ]λαλβλγ = Xαβγ
β1···β11

dλβ1 ∧ · · · ∧ dλβ11 (3.121)

for some invariant tensor X . The number of independent invariant (3, 11) tensors

with spinor indices that are symmetric in the upper indices and antisymmetric in

lower ones is one [40]. In other words there is only one possibility for X which is

(ǫT ), cf. (2.26). Because the LHS of (3.121) is zero when contracted with γmαβ , the

RHS should vanish too. It does because there are no scalars in 10⊗16⊗Asym1116′.

Thus

γmαβ(ǫT )αβγβ1···β11
= 0. (3.122)

In equation (3.121) one is free to choose αβγ. Different choices lead to different

guises of the measure. In [21] it was shown all these are related to each other by a

coordinate transformation in pure spinor space. A choice for αβγ that results in a

convenient form of the measure is αβγ = + + +. This gives [dλ] as

[dλ] =
dλ+ ∧ dλ12 ∧ · · · ∧ dλ45

(λ+)3
. (3.123)

The charge conservation property was used to conclude that (ǫT )+++
β1···β11

is only

nonzero if β1, · · · , β11 = +, b1b2, b3b4, · · · , b19b20. In the form (3.123) one explicitly

sees factors of λ+ in the denominator. These are the reason that the QS variation

of the PCO for λ, which is of the form λδ(λ), does not vanish inside correlators as

discussed in chapter 5.

3.4.2 Measure for the zero modes of Nmn

The Jλw number anomaly and Lorentz invariance imply the measure for the zero

modes of N must be of the form

[dN ]λα1 · · ·λα8 = Xα1···α8
m1n1···m10n10

dNm1n1 ∧ · · · ∧ dNm10n10 ∧ dJ. (3.124)
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There exists only one independent invariant tensor of this kind (cf. 3.2.3) and since

(2.47) is an example:

[dN ]λα1 · · ·λα8 = Rα1···α8
m1n1···m10n10

dNm1n1 ∧ · · · ∧ dNm10n10 ∧ dJ. (3.125)

A more explicit form of [dN ] is obtained by choosing all α’s equal to +. The relevant

gamma matrix components are

γ++
a1···a5

= ǫa1···a5 , γa1···a5
++ = ǫa1···a5 , (3.126)

all other components of γ++
mnpqr vanish. Using these one sees [dN ] can be written

out as

[dN ]λ+8
= ǫa1b1a2a3a4ǫa5b5b2a6a7ǫa8b8b3b6a9ǫa10b10b4b7b9dN

a1b1 ∧ · · · ∧ dNa10b10 ∧ dJ =

dN12 ∧ · · · ∧ dN45 ∧ dJ = λ+11
d10wabdw+ ⇒ [dN ] = (λ+)3dw+d

10wab, (3.127)

where the gauge condition wa = 0 is imposed in the first equality of the second line.

3.5 Gamma matrix traceless projectors

In general the space of symmetric tensors forms an invariant subspace in tensor

spaces that are direct products of a certain representation. For example the tensor

space ⊗k16 is given by the tensors Tα1···αk . The subspace of symmetric tensors is

given by T (α1···αk). Since invariant subspaces are linear subspaces one can define

a projection onto this subspace. In the case the space of symmetric tensors the

projector is given by

P
α′

1···α′
k

α1···αk
= δ

(α′
1

α1 · · · δα
′
k)

αk . (3.128)

Note P satisfies P 2 = 0 and P is surjective. In the pure spinor formalism one is often

interested in projections on the subspace of symmetric and gamma matrix traceless

tensors, since the bilinear λαλβ has these properties. A tensor Tα1···αk is gamma

matrix traceless when it satisfies

Tα1···αkγmαiαj
= 0 1 ≤ i, j ≤ k (3.129)

for all choices of i and j. Note this condition also defines a linear subspace. Also

note that the above condition is preserved by Lorentz transformations. This is

a consequence of the fact that γmαβ is an invariant tensor. Hence gamma matrix

traceless tensor form an invariant linear subspace in the space of all tensors Tα1···αk .

The explicit form of the projectors onto gamma matrix traceless tensors for arbitrary

k will be specified in this section. The projection on symmetric tensors is already

given in (3.128), therefore one only needs the projection of symmetric tensors onto

gamma matrix traceless tensors.
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Let us start with the case of three indices. Note that the required projector is an

invariant tensor with three symmetrised upper spinor indices and three symmetrised

lower spinor indices. The SO(10) invariant tensors of the form T
(αβγ)
(α′β′γ′) form a vector

space which is two dimensional as can be computed by counting the number of scalars

in Sym316⊗ Sym316′ [40]. A basis of this vector space is given by

{

δ
(α
α′ δ

β
β′δ

γ)
γ′ , γ

(αβ
m γm(α′β′δ

γ)
γ′)

}

. (3.130)

Thus an arbitrary invariant tensor is given by

c1δ
(α
α′ δ

β
β′δ

γ)
γ′ + c2γ

(αβ
m γm(α′β′δ

γ)
γ′). (3.131)

One can determine the coefficients up to an overall normalisation by imposing van-

ishing of the gamma trace:

0 = c1γ
m
αβδ

(α
α′ δ

β
β′δ

γ)
γ′ + c2γ

m
αβγ

(αβ
n γn(α′β′δ

γ)
γ′) (3.132)

= (c1 + 40c2)δ
γ
(α′γ

m
β′γ′),

where the following identity was used (cf. (3.56))

γγαn γmα(α′γnβ′γ′) = 2δγ(α′γ
m
β′γ′). (3.133)

One could have anticipated ending up with one equation for c1, c2 because 10⊗16⊗
Sym316′ contains one scalar. In conclusion the projector is given by

Pαβγα′β′γ′ = δ
((α
α′ δ

β
β′δ

γ))
γ′ ≡ δ

(α
α′ δ

β
β′δ

γ)
γ′ − 1

40
γ(αβ
m γm(α′β′δ

γ)
γ′) (3.134)

In summary the number of scalars in Sym316⊗ Sym316′ determined the number of

degrees of freedom (ci) and the number of scalars in 10⊗ 16⊗ Sym316′ determined

the number of relations between them.

3.5.1 Arbitrary rank

The tensor in equation (3.134) is unique because the number of scalars in Gam316⊗
(16′)3 is one (cf. (3.58) for the meaning of Gam). In fact there is one scalar in

Gamn16⊗(16′)n for any n. In order to write an explicit expression for δ
((α1

β1
· · · δαn))

βn

for any n one looks for a basis of rank (n, n) invariant tensors that are symmetric in

both their upper and lower indices. For even n the number of scalars in Symn16⊗
Symn16′ is n

2 +1. For odd n the number of scalars in Symn16⊗Symn16′ is n−1
2 +1.

Since odd n is of more relevance to this work the basis for odd n is explicitly given.

The n−1
2 + 1 basis elements are given by

T1 = δ
(α1

β1
· · · δαn)

βn
, T2 = γ(α1α2

m γm(β1β2
δα3

β3
· · · δαn)

βn) (3.135)
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up to

Tk+1 = γ(α1α2
m1

γm1

(β1β2
· · ·γαn−2αn−1

mk
γmk

βn−2βn−1
δ
αn)
βn) (3.136)

where k = n−1
2 . In order to see these tensors are independent compute the following

components:

T+···+
+···+ , T

a1+···+
b1+···+ , · · · , T a1···ak+···+

b1···bk+···+ . (3.137)

One can conclude

δ
((α1

β1
· · · δαn))

βn
= c1T1 + · · · + ckTk, (3.138)

for some coefficients ci, which can be explicitly computed as was done for the n = 3

case. Note the above is for odd n. Even n works very much in the same way, the

only difference is the last δ in all the T ’s. If one removes this, the T ’s form a basis

for the even case.

3.6 Chain of operators for b ghost

This section is only for reference purposes. It does not contain any results or deriva-

tions. The following chain of operators plays an important role in the b ghost:

QSG
α = λαT, (3.139)

QSH
αβ = λαGβ + g((αβ)), (3.140)

QSK
αβγ = λαHβγ + h

((αβ))γ
1 + h

α((βγ))
2 , (3.141)

QSL
αβγδ = λαKβγδ + k

((αβ))γδ
1 + k

α((βγ))δ
2 + k

αβ((γδ))
3 , (3.142)

0 = λαLβγδρ + l
((αβ))γδρ
1 + l

α((βγ))δρ
2 + l

αβ((γδ))ρ
3 + l

αβγ((δρ))
4 . (3.143)

The last equation implies there exists an Sαβγ such that

Lαβγδ = λαSβγδ + s
((αβ))γδ
1 + s

α((βγ))δ
2 + s

αβ((γδ))
3 . (3.144)
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The text below is essentially a summary of section 3 of [44]. The primary fields of

weight two that solve the above equations are given by

Gα =
1

2
Πm(γmd)

α − 1

4
Nmn(γ

mn∂θ)α − 1

4
J∂θα +

7

2
∂2θ, (3.145)

Hαβ =
1

16
γαβm (NmnΠn − 1

2
JΠm + 2∂Πm) (3.146)

+
1

96
γαβγmnp(

1

4
dγmnpd+ 6NmnΠc),

Kαβγ = − 1

48
γαβm (γnd)

γNmn − 1

192
γαβmnp(γ

md)γNnp (3.147)

+
1

192
γβγm

[

(γnd)
αNmn +

3

2
(γmd)αJ − 6(γm∂d)α

]

− 1

192
γβγmnp(γ

md)αNnp,

L[αβγδ] = − 1

3072
(γmnp)

[αβ(γmqr)γδ]NnpNqr. (3.148)

NB1: Only the antisymmetric part of Lαβγδ is given because in [44] the full Lαβγδ

is not given in terms of gauge invariant objects. An explicit expression is known

within the Y formalism [44, 45, 46] and it is also proved all Y dependence from

Lαβγδ disappears when contracted with Zαβγδ. In [22] Lαβγδ is given as

Lαβγδ = c4
αβγδ
mnpqN

mnNpq+c5
αβγδ
mn JNmn+c6

αβγδJJ+c7
αβγδ
mn Nmn+c8

αβγδJ, (3.149)

with unknown coefficients.

NB2: the coefficients of the total derivative terms depend on the normal ordering

prescription and the ones above are only consistent with the prescription of [44].
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BRST quantisation of the

pure spinor superstring

As mentioned throughout chapter 2 there are several unexplained aspects of the pure

spinor formalism. These include

• the origin of the picture changing operators,

• the conformal weight constraint on the vertex operators,

• the b ghost equation (2.34),

• the relation between integrated and unintegrated vertex operators (2.17).

In a theory derived from first principles, for example the bosonic string, the above

aspects all follow from one starting point, namely

Z =

∫

DgDX 1

V olG
e−SP . (4.1)

In addition to providing an explanation for the above aspects a first principles deriva-

tion of the pure spinor formalism could also help in the search of a simplified version.

Furthermore in chapter 2 it was advertised that one can replace all fields by their

zero modes in a correlator that only contains weight zero fields. This will also be

proved in this chapter.

In this chapter a first principles derivation is provided. There have been many

works in the past involving modifications and/or extensions of the pure spinor for-

malism with the same aim, see for example [47, 48, 49, 50, 23, 51, 52, 53]. The

approach of this chapter is different and is guided by topological string construc-

tions. Instead of searching for a model with a local symmetry which after gauge
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fixing would lead to the pure spinor formalism with QS and the pure spinors emerg-

ing as a BRST operator and ghost fields, the pure spinors λ will be considered as

“matter” fields as well and the worldsheet theory as a sigma model with a nilpotent

symmetry QS and target space the ten-dimensional superspace times the pure spinor

space. To construct a string theory this theory will be coupled to two-dimensional

gravity in a way that preserves the fermionic symmetry QS and then BRST quantise

the resulting theory in a conventional fashion.

4.1 Coupling to 2d gravity

To construct a string theory the pure spinor worldsheet action will be coupled to

two-dimensional gravity in a way that preserves the QS symmetry. Subsequently

this system will be quantised using BRST methods. Since this model has zero central

charge, one should couple it to topological gravity1. This approach is thus similar to

the construction of topological string theories, see [54] for a review. In that context

one starts from a supersymmetric sigma model which upon topological twisting yields

a topological sigma model. In this procedure one of the supersymmetry charges is

identified with the BRST operator of the sigma model. The corresponding operator

in the case at hand is the nilpotent operator QS . Note that the pure spinor sigma

model has been obtained by twisting an N = 2 model in [23].

The first step in this procedure is thus to relax the conformal gauge in the action

(2.1) (or (2.56) for the non-minimal version). The part that involves the xm is

standard2,

SX =

∫

d2σ(
1

4

√
ggab∂ax

m∂bxm) (4.2)

The rest of the action (2.1) (or (2.56) for the non-minimal version) is a sum of first

order actions involving a field of dimension one and a field of dimension zero (with

an overall sign that depends on whether the fields are bosonic or fermionic). The

covariantisation of all these terms is the same, so it suffices to discuss one of them,

say

S(p,θ) =

∫

d2zpα∂̄θ
α . (4.3)

The fields of dimension one are vectors on the worldsheet, so pα is more accurately

labeled as paα. However, only the z-component participates in (4.3), as one can

conclude by looking at the conformal weight of the various objects in (4.3). Similarly,

only the z̄ component of the right-moving momentum p̃aα participates in the action.

1By definition topological gravity does not change the central charge of the conformal field

theory obtained after gauge fixing
2The worldsheet has a Euclidean signature and the conventions are the same as in chapter 1,

i. e. z = σ1 + iσ2, the flat metric is gzz̄ = 1/2 etc.
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To account for this, one can introduce projection operators

P (±)b
a =

1

2
(δa

b ∓ iJa
b) , (4.4)

where Ja
b is the complex structure of the worldsheet, i.e. it satisfies

Ja
bJb

c = −δca, ∇cJa
b = 0. (4.5)

In terms of the worldsheet volume form and the worldsheet metric, it is given by

Ja
b = −ǫacgcb, with ǫab =

√
gǫ̂ab and ǫ̂01 = 1, and holomorphic and anti-holomorphic

functions on the worldsheet are defined by Ja
b∂bf = i∂af and Ja

b∂bf̃ = −i∂af̃ ,

respectively. Using (4.5) one shows that

P (±)b
a P

(±)c
b = P (±)c

a P (±)b
a P

(∓)c
b = 0. (4.6)

Notice also that

gabP
(±)c
b = gcbP

(∓)a
b . (4.7)

One can obtain vectors with only z-component by multiplying by P
(+)b
a and vectors

with only z̄-component by multiplying by P
(−)b
a :

p̂a = P (+)b
a pb, ˆ̃pa = P (−)b

a p̃b . (4.8)

In other words, the only nonzero component of P
(+)b
a is P

(+)z
z = 1 and the only

nonzero component of P
(−)b
a is P

(−)z̄
z̄ = 1. More generally, these projection operators

can be used to covariantise any tensor given in conformal gauge. The action (4.3)

can then be covariantised as

S(p,θ) =

∫

d2σ
√
ggabp̂aα∂bθ

α . (4.9)

In summary the action of the minimal model coupled to gravity is given by

Sσ =

∫

d2σ
√
ggab

(

1

4
∂ax

m∂bxm + p̂aα∂bθ
α − ŵaα∂bλ

α

)

(4.10)

with an obvious addition for the case of the non-minimal model. The stress energy

tensor for the model can be obtained by varying w.r.t. the worldsheet metric,

Tab =
2√
g

δSσ
δgab

=
1

2
(∂axm∂bx

m − 1

2
gabg

cd∂cxm∂dx
m) (4.11)

+ (p(a|α|∂b)θ
α − 1

2
gabg

cdpcα∂dθ
α) + T

(λw)
ab

The contribution of the pure spinor part (and the non-minimal variables) is the

same as the one for the (p, θ) part with p→ w and θ → λ and an overall minus sign
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(with similar replacements for the non-minimal fields). This stress energy tensor is

(manifestly) traceless and covariantly conserved, reflecting the fact that the action

is invariant under diffeomorphisms and Weyl transforms,

δgab = Lǫ(σ)gab + 2φ(σ)gab (4.12)

δΦ = −ǫa∂aΦ
δPa = −ǫa∂aP + ∂aǫ

bPb

where ǫa(σ), φ(σ) are diffeomorphism and Weyl gauge parameters, Lǫ is the Lie

derivative (cf. (1.65)), Φ = {xm, θα, λα, . . .} collectively denotes all worldsheet scalars

and Pa = {paα, waα, . . .} collectively denotes all worldsheet vectors.

The stress energy tensor (4.11) can be rewritten as

Tab = P (+)c
a P

(+)d
b TBcd + P (−)c

a pcα

(

P
(−)d
b ∂dθ

α
)

+ · · · (4.13)

where the ellipsis indicate the contribution from the pure spinor and non-minimal

variables, which will be suppressed from now on since they are similar to the (p, θ)

contribution. The anti-holomorphic contribution of xm is also suppressed. The

first term in (4.13) is the covariantisation of the stress energy tensor appearing in

Berkovits’ work,

TBab =
1

2
∂axm∂bx

m + paα∂bθ
α + · · · (4.14)

while the second term is proportional to the θα field equation. This additional term

can be removed by modifying the transformation rule of paα in (4.12).

4.1.1 Topological gravity and QS invariance

If one was to quantise the model just described one would find that it is anomalous,

since the diffeomorphism ghosts would contribute c = −26 and the original sigma

model had c = 0. This problem is avoided by extending the QS symmetry to act

on the worldsheet metric, so that the 2d gravity is topological. With this aim, the

following transformation rule is introduced,

δSgab = P (−)c
a P

(−)d
b ψcd ≡ ψ̂ab, δSψ̂cd = 0. (4.15)

where ψab is a new field that has only one holomorphic component, ψz̄z̄(z). (To

extend this discussion to the anti-holomorphic sector one would also need to turn

on ψ̃zz(z̄), i.e. the full transformation is δSgab = P
(−)c
a P

(−)d
b ψcd + P

(+)c
a P

(+)d
b ψ̃cd).

Since the metric now transforms, the action is not invariant anymore and its QS
variation yields,

δSSσ = −1

2

∫

d2σ
√
g T abδSgab = −1

2

∫

d2σ
√
ggacgbdTBabψ̂cd, (4.16)
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where again only the holomorphic sector is discussed, and the second equality makes

use of the fact that due to the projector operators the second term in (4.13) does

not contribute. To construct an invariant action one now has to add a new term to

the action,

Sσ → S = Sσ +
1

2

∫

d2σ
√
ggacgbdGabψ̂cd (4.17)

The new action is invariant under the condition there exists a Gab transforming as

δSGab = TBab. (4.18)

Note that because ψ̂ab has only one fermionic component, the variation of the explicit

worldsheet metrics in the new term does not contribute. Including both sectors one

finds that for the discussion to go through Gab must be traceless. In conformal gauge

and complex coordinates the (holomorphic part of) equation (4.18) becomes

TB(z) = {QS, G(z)}. (4.19)

The G currents generate a fermionic symmetry of the action in conformal gauge.

In the language of [54] equation (4.19) defines the pure spinor action in conformal

gauge to be a topological conformal theory.

Equation (4.18) for Gab is the equation for a composite “b-field”, cf. (2.34).

Such a composite field has been constructed in conformal gauge in the non-minimal

formalism. In the minimal case it was more difficult to solve equation (4.18). A

detailed account of its solution will be given in section 4.4. Once the conformal

gauge solution to (4.18) has been found, it can be covariantised to obtain a QS ,

diffeomorphism and Weyl invariant action.

4.2 Adding vertex operators

The vertex operators should be invariant under the symmetries of the theory, in this

case: diffeomorphisms, Weyl transformations, QS transformations and the trans-

formations generated by Gab. In order to preserve the QS symmetry the vertex

operators depend3, in addition to the worldsheet coordinate σai , on its QS partner

ζai ,

δSσ
a
i = ζai , δSζ

a
i = 0 , (4.20)

or in complex coordinates,

δSzi = ζi, δS z̄i = ζ̄i, δSζi = 0, δS ζ̄i = 0 . (4.21)

3It is not possible to choose δSσ
a
i = 0, since the ζ’s are needed to fix the residual gauge invariance

of the symmetry generated by Gab.
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Since ζi is a fermionic variable the ith vertex operator Vi has the expansion (in

complex basis)

Vi[ϕ](zi, ζi) = V
(0)
i [ϕ](zi) + ζiV

(1)
i [ϕ](zi) , (4.22)

where only the holomorphic part of the vertex operator is given. The symmetry

generated by QS poses further constraints on the vertex operators:

δS (Vi[ϕ](zi, ζi)) = 0 . (4.23)

The QS transformation can act either on worldsheet fields ϕ or on the positions zi
and we obtain

δSVi[ϕ](zi, ζi) = (δSV
(0)
i )(zi) + ζi

(

∂V
(0)
i (zi) − (δSV

(1)
i )(zi)

)

(4.24)

which implies

δSV
(0)
i = 0, δSV

(1)
i = ∂V

(0)
i , (4.25)

where now QS acts only on the fields. The equality is exactly the relation between

integrated and unintegrated vertex operators in the pure spinor formalism postulated

in (2.17). Moreover from (4.25) one finds that the integrated vertex operator

Ui =

∫

dzV
(1)
i (4.26)

is QS invariant.

The second transformation in (4.25) can be rewritten in a form that is useful to

determine how G acts on the superfield components

δSV
(1)
i = δS{G, V (0)

i }. (4.27)

The partial derivative in (4.25) is generated by T and this can be replaced by a

G transformation followed by a QS transformation. The G transformations of the

components are given by

{G, V (0)
i } = V

(1)
i , [G, V

(1)
i ] = 0. (4.28)

Hence in order to construct a vertex operator invariant under the G symmetry one

has to integrate over ζ:
∫

dζiVi[ϕ](zi, ζi). (4.29)

Finally invariance under diffeomorphisms is achieved in the same way as in the

bosonic string (cf. (1.78)), namely by integrating over the worldsheet coordinate zi.
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4.3 BRST quantisation

The action S in equation (4.17) constructed in the previous section is invariant under

diffeomorphisms and local Weyl transformations. This theory can be quantised

using the BRST methods developed in chapter 1. Recall that BRST quantisation

amounts to adding a term QVΨ to the action, where Ψ is the gauge fixing fermion

and QV is the BRST operator (cf. (1.51)). However in the case at hand there is a

second nilpotent fermionic symmetry, generated by QS . In order to preserve both

symmetries the gauge fixing term is of the following type

S → S + δV δSΨ. (4.30)

In fact the order of the symmetries does not matter, since as shown in [54] QV and

QS anticommute:

{QV , QS} = 0. (4.31)

A proper gauge fixing condition for the group of diffeomorphism and Weyl trans-

formation has been discussed at length in section 1.2.1 and the QS variation in

(4.30) ensures that the G symmetry is also gauge fixed. The gauge fixing fermion

has two terms in general, one that involves the metric (L1) and one that involves

vertex operators positions (L2). The latter is only necessary on the sphere and on

the torus, since only in those cases L1 leaves residual gauge invariance, which can

be fixed by imposing a condition on the vertex operator positions. The two gauge

fixing terms are given by

L1 = δV δS(β̃ab[gab − ĝab(τ)]), L2 = δV δS





κ/2
∑

ĵ=1

βĵa(σ
a
ĵ
− σ̂a

ĵ
)



 , (4.32)

where κ is the number of conformal killing vectors, ĝ is the reference metric and

σ̂ are some chosen worldsheet positions. The β’s are bosonic fields which can be

concluded from the fact that the L’s must be bosonic. Furthermore β̃ab is a tensor

density such that L1 is coordinate invariant. The object βĵa does not depend on the

worldsheet coordinates, it is similar to the Bia’s from gauge fixing the residual gauge

invariance in the bosonic string (cf.(1.80)), the only difference is the statistics.

The next step is performing the QS and QV transformations in the gauge fixing

terms (4.32). To this end it is useful to have an overview of the transformations.

The diffeomorphism and Weyl ghosts, ca and Cω have QS partners,

δSc
a = γa, δSCω = γω , (4.33)

which are bosonic BRST ghosts for the fermionic symmetry generated by G. Note

that due to the nilpotency of both charges and the fact that they anticommute, the

fields will appear in quartets. These quartets are given in figure 4.1.
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τk

τ̂k

ξk

ξ̂k

S S S

S SS S

S

S S

V V

VV V

-V -V

-V-V -V

β̃ab

b̃ab

−pab

−Bab

σai ca(σi)

ζai −γa(σi)

gab

ψab

Lcgab + 2Cωgab

Lcψ̂ab − Lγgab
−2γωgab + 2Cωψ̂ab

βĵa

bĵa

−pĵa

−Bĵa

Figure 4.1: QV and QS transformations on moduli, auxiliary/b ghost field, worldsheet

coordinates, constant auxiliary/b ghost fields and the metric.

Using the transformations in figure 4.1 one can process the gauge fixing terms in

(4.32). Let us start with L1:

L1 = δV (b̃ab[gab − ĝab(τ)] + β̃ab[ψ̂ab − τ̂k∂kĝab(τ)] (4.34)

= Bab[gab − ĝab(τ)] − b̃ab[2Cωgab + Lcgab − ξk∂kĝab(τ)] − pab[ψ̂ab − τ̂k∂kĝab(τ)]

+β̃ab[Lcψ̂ab + 2Cωψ̂ab − Lγgab − 2γωgab + ξ̂k∂kĝab(τ) − τ̂kξl∂k∂lĝab(τ)] ,

where ∂kĝab(τ) = ∂ĝab(τ)/∂τ
k is a derivative of the reference metric w.r.t. the moduli

and ψ̂ab is defined in (4.15). This gauge fixing action contains the usual gauge fixing

terms for the metric and the ghost actions for b̃, c and β̃, γ. The gauge fixing term

for the residual gauge invariance can also be processed:

L2 = δV





κ/2
∑

ĵ=1

bĵa(σ
a
ĵ
− σ̂a

ĵ
) + βĵaζ

a
ĵ



 (4.35)

=

κ/2
∑

ĵ=1

Bĵa(σ
a
ĵ
− σ̂a

ĵ
) − bĵac

a(σĵ) − pĵaζ
a
ĵ

+ βĵaγ
a(σĵ) .

At this point all gauge symmetries have been treated, except the ones associated

with zero modes of the original fields X, p, θ, w, λ. These will be discussed in the

next section.

To summarise, a general scattering amplitude is given by

Z =

∫

dµσdµ

N
∏

i=1

Vi[ϕ](σi, ζi) exp (−S − L1 − L2) , (4.36)
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where S,L1 and L2 are given in (4.17),(4.34) and (4.35), dµσ is the measure factor

associated with X, p, θ, w, λ (and non-minimal variables) that will be discussed in

the next section and dµ is the measure that follows from the analysis of this section,

i.e.

dµ =

N
∏

i

d2σi
√

g(σi)d
2ζi

µ
∏

k=1

dτkdξkdτ̂kdξ̂k
κ/2
∏

ĵ=1

dbĵadp
ĵ
adβ

ĵ
adB

ĵ
a

× DψabDgabDcaDγaDCωDγωDpabDβ̃abDBabDb̃ab (4.37)

The first line contains the integration over all constant “fields” while the fields in

the second line are functionally integrated over. The integration over most of these

variables can be done exactly.

As in previous sections only the holomorphic sector is discussed. Firstly, inte-

grating over Bab and gab sets the worldsheet metric equal to the reference metric ĝab
in all expressions. Integrating over Bĵa, p

ĵ
a, leads to delta functions δ(zĵ − ẑĵ)δ(ζĵ)

which can be used to integrate over zĵ , ζĵ . So κ/2 insertions will involve V
(0)

ĵ
(ẑĵ)

while the remaining (N − κ/2) vertex operators will involve V
(1)
i (zi) and will be

integrated. Furthermore integrating out bĵ, βĵ leads to the insertion c(ẑĵ)δ(γ(ẑĵ)).

Note that the V
(0)

ĵ
and V

(1)
i do not depend on the ghost fields4, so the path

integral factorises into a part that only depends on the ghosts and the rest. One

might anticipate that the ghost contributions will cancel each other since ca, Cω and

the γa, γω are related by the QS symmetry. So to simplify the presentation the

ghosts are set to zero. The complete computation including the ghosts is given in

section 4.5. The scattering amplitudes thus take the form

〈V1 · · ·Vn〉 =

∫

dµσe
−Sσdµ̃e−S̃

κ/2
∏

ĵ=1

V
(0)

ĵ
(ẑĵ)

N
∏

i=κ/2+1

∫

dziV
(1)
i (zi), (4.38)

where

dµ̃e−S̃ =

µ
∏

k=1

dτkdτ̂kDψabDpab exp

(∫

d2σ(
√

ĝ
1

2
Gabψ̂ab + pab[ψ̂ab − τ̂k∂kĝab(τ)])

)

(4.39)

Integrating out pab gives a delta function that sets ψ̂ab = τ̂k∂kĝab(τ). Finally inte-

grating out τ̂k leads to (6g − 6) (of which (3g − 3) are holomorphic) insertions of

Gab,

〈V1 · · ·Vn〉 =

∫

dµσe
−Sσ

∏

k

dτk(G, ∂kĝ)

κ/2
∏

ĵ=1

V
(0)

ĵ
(ẑĵ)

N
∏

i=κ/2+1

∫

dziV
(1)
i (zi) (4.40)

4The ghost fields are consistently denoted as c/γ and lowercase b/β. In this case there are two

b/β ghosts and four c/γ ghosts.
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where (G, ∂k ĝ) =
∫

Σ
d2σ

√
ĝGab∂kĝab.

4.3.1 Summary

Let us summarise the results so far. The starting point was a theory with a fermionic

nilpotent symmetry QS and zero central charge. This theory was coupled to topolog-

ical gravity in a way that preserves the QS symmetry. Quantising this system using

BRST methods leads to the formula (4.40) for the scattering amplitudes. In this

formula the position of κ/2 of the vertex operators V
(0)
i is fixed while the remain-

ing ones, V
(1)
i , are integrated. These vertex operators satisfy (in the holomorphic

sector),

δSV
(0)
i = 0, δSV

(1)
i = ∂V

(0)
i . (4.41)

Furthermore, one needs (6g − 6) insertions ((3g − 3) holomorphic ones) of the field

Gab defined by

δSGab = Tab (4.42)

where Tab is the stress energy tensor of the worldsheet theory. This composite field

is the analogue of the b ghost in the scattering prescription of bosonic string theory.

One may have anticipated these results based on the scattering amplitude prescrip-

tion for the bosonic string and studies of topological strings. Indeed this is precisely

the prescription used in the literature. The novelty here is its derivation from a first

principles BRST quantisation. Notice that these results hold irrespectively of what

the original sigma model is.

4.4 Pure spinor measure

Let us now return to the pure spinor sigma model. Two aspects deserve further

attention. The first is finding an explicit form of the current Gab. The second is

determining whether the sigma model path integral measure dµσ contains gauge

directions, i.e. whether evaluating the functional integral would lead to divergences.

Let us start with the second one.

It turns out that there are gauge directions in dµσ and they are given by the zero

modes of the sigma model (or matter) fields. The zero modes are gauge directions

because by definition a zero mode is annihilated by the kinetic operator in the action

and therefore zero modes do not appear in the action. For fermionic zero modes

this does not present a problem; the vertex operators can provide the appropriate

number of fermionic zero modes so that the final expressions are non-vanishing.

Non-compact bosonic zero modes however are a problem, even in the presence of

vertex operators. The action Sσ does not contain a convergence factor because of the

zero mode gauge invariance. This can be remedied by gauge fixing the bosonic zero
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mode gauge invariances, as is discussed in this section. Due to the QS invariance,

part of the invariance related to the fermionic zero modes is also fixed.

On a genus g surface, a worldsheet scalar Φ has one zero mode Φ0 and a world-

sheet vector P has g zero modes, P0(z) =
∑g

I=1 P
IωI(z), where ωI(z) are the g

holomorphic Abelian differentials of first kind5 satisfying
∫

AI
dzωJ = δIJ and the

contour integral is around the g non-trivial A-cycles of a genus g surface. Note

that Φ0 and P I are constants. In the minimal pure spinor formalism there are ten

zero modes xm0 , sixteen zero modes θα0 and eleven zero modes λα0 from the world-

sheet scalars and 16g zero modes dIα, I = 1, . . . g, and 11g zero modes wIα from the

worldsheet vectors. Of these xm0 , λ
α
0 and wIα are bosonic. The treatment of the

zero modes of xm is standard and will not be discussed here. Furthermore wα,

which transforms under the gauge transformation (2.4), will be traded for the gauge

invariant variables,

Nmn =
1

2
wα(γmn)

α
βλ

β , J = wαλ
α, (4.43)

where Nmn is the (contribution of the pure spinors to the) Lorentz current and

J is the ghost generator. As discussed in [27], the pure spinor condition implies

enough relations between Nmn and J so that one can express the eleven independent

components of wα in terms of J and ten component of Nmn. In what follows the

11g zero modes of Nmn, J will be denoted by N I
mn, J

I .

The zero mode gauge invariances cause divergences in the functional integral.

Hence one can apply BRST quantisation to obtain a finite result. The BRST trans-

formations corresponding to the zero mode gauge invariance are given by

δV λ
α
0 = cα, δV θ

α
0 = γα, δV d

I
α = γIα, δVw

I
α = cIα, (4.44)

where cα, cIα are constant fermionic ghosts and γα, γIα are constant bosonic ghosts.

The transformations for λα0 , w
I
α require some explanation, since λα satisfy a quadratic

constraint and wα has a gauge invariance. These zero modes are most easily de-

scribed in U(5) variables since the system in terms of λ+, λab, w+, wab is uncon-

strained and has no gauge invariance (see section 3.3.2). The BRST transformation

is then given by shifting these variables by their zero modes. Reversing the steps

in section 3.3.2 one may express cα in terms of the eleven zero modes of λ+, λab

and cIα in terms of the 11g zero modes of w+, wab. The arbitrariness due to the

gauge invariance (2.4) is then eliminated by passing to the gauge invariant variables

N I
mn, J

I .

To maintain QS invariance one must further require

δSγ
α = cα, δSc

I
α = γIα. (4.45)

5In the language of section 4.6, which contains a detailed account of what a zero mode really is,

this Abelian differential is a realisation of G0κ.
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To gauge fix the bosonic invariances one needs constant fermionic and bosonic ghost

fields, bα, b̃α each containing eleven independent components, b̃mnI , bmnI , each con-

taining 10g independent components and b̃I , bI , each containing g components and

corresponding auxiliary fields. The QV and QS transformations of these fields are

given in figure 4.2.

bα

b̃α

πα

π̃α

S S S SS S

V VV

-V -V-V

bmnI

b̃mnI

πmnI

π̃mnI

bI πI

b̃I π̃I

Figure 4.2: QV and QS transformations of the auxiliary and b ghost fields that play a

role in gauge fixing zero mode invariances.

The gauge fixing of the zero mode gauge invariances can be performed by intro-

ducing the following gauge fixing Lagrangian:

L3 = δV δS

(

bαθ
α
0 +

g
∑

I=1

(bmnIN I
mn + bIJI)

)

(4.46)

= δV

(

−bαλα0 + b̃αθ
α
0 +

g
∑

I=1

(
1

2
bmnI(dIγmnλ0) + b̃mnIN I

mn + bI(dIλ0) + b̃I(wIλ0))

)

= −παλα0 − π̃αθ
α
0 +

g
∑

I=1

(

πmnI
1

2
dIγmnλ0 − π̃mnIN I

mn + πIdIαλ
α
0 − π̃IJI

)

+bαc
α + b̃αγ

α +

g
∑

I=1

(

1

2
bmnI(γIγmnλ0 − dIγmnc) −

1

2
b̃mnI(cIγmnλ0 − wIγmnc)

+bI(γIλ0 − dIc) − b̃I(cIλ0 − wIc)

)

.

Integrating over bα and b̃α leads to delta functions for cα and γα, which can be

used to integrate out cα, γα. This sets cα and γα to zero, in particular four of the

eight terms in the sum in the last two lines of (4.46) disappear. Both the bosonic

variables bmnI , bI , γIα and the fermionic variables b̃mnI , b̃I , cIα only appear in the sum

in the last lines of (4.46). Integration over these six variables leads to a factor of

one, because the integration over the bosonic variables leads to a factor that is the

inverse of the integral over the fermionic variables. More explicitly

∫

[dbI ][dγI ]e
P

I b
IγIλ0 =

(
∫

[db̃I ][dcI ]e
P

I b̃
IcIλ0

)−1

, (4.47)
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where the integration over bmnI is suppressed to avoid cluttering of the equation.

So the zero mode measure now becomes

[dµσ]z.m. = [d16θ0][d
11π̃][d11λ0][d

11π]

g
∏

I=1

[d11πI ][d
11π̃I ][d

11NI ]× (4.48)

exp

(

−παλα0 − π̃αθ
α
0 +

g
∑

I=1

(

πmnI
1

2
dIγmnλ0 − π̃mnIN I

mn + πIdIαλ
α
0 − π̃IJI

)

)

,

where [d11λ0] and
∏

I [d
11NI ] are the Lorentz invariant zero mode integration mea-

sures discussed in section 3.4, whose explicit form is not needed here. The auxiliary

fields π seem to have to many components. For instance πα has sixteen components

whereas only eleven are needed to gauge fix the zero modes of λ. Similarly πmn has

45 components while only ten are needed for the gauge fixing. This paradox can

be resolved by realising that the exponent in (4.48) is invariant under a number of

symmetries that render the “unwanted” components of π pure gauge. The symmetry

for πα is similar to the gauge invariance for wα (cf. (2.4)):

δπα = fm(γmλ)α. (4.49)

This can be used to remove five components of πa and since π̃α = QSπα this prop-

agates to π̃α. The symmetry for the higher loop auxiliary fields is given by

δπImn = (λγ[m)αf
Iα
n] , δπI = −(λγnf In) (4.50)

δπ̃Imn = (λγ[m)αf̃
Iα
n] , δπ̃I = −(λγnf̃ In) (4.51)

This symmetry can be used to eliminate 35 out of the 45 components of each πImn
and π̃Imn, which is as expected since the number of BRST auxiliary fields should be

equal to the number of gauge fixing conditions.

The next step is actually integrating out π, π̃, πI , π̃I . This can be done in multiple

ways, one leads to the minimal formalism and another to the non-minimal formalism.

4.4.1 Minimal formulation

The fields πα and π̃α have eleven independent components each. One way to

parametrise them is to write

πα = piC
i
α, π̃α = p̃iC

i
α, i = 1, . . . , 11 (4.52)

where pi, p̃i are the independent components and Cαi is a constant matrix of rank

eleven. Then [d11π][d11π̃] =
∏

i dpidp̃i and integrating over pi yields
∏

i δ(C
i
αλ

α
0 ),

while integrating over p̃i yields
∏

iC
i
αθ

α
0 . Putting it differently, one may have started

with ghosts and auxiliary fields bi, b̃i, pi, p̃i and gauge fixing condition Ciαλ
α
0 = 0,
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for the invariance due to the eleven zero modes of λα and gauge fixing condition

Ciαθ
α
0 = 0 for the invariance due to eleven of the sixteen zero modes of θ. Note

that the insertions can be combined into eleven insertions of the picture lowering

operator

YC = Cαθ
α
0 δ(Cαλ

α
0 ). (4.53)

Similarly, one may parametrise the 10g independent components of πmnI and of

π̃mnI as

πmnI = pjIBmnjI , π̃mnI = p̃jIBmnjI , j = 1, . . . , 10 (4.54)

where pjI , p̃jI are the 10g independent components and BmnjI are constants. Inte-

grating over pjI , p̃jI and πI , π̃I leads to the insertions

g
∏

I=1



(dIαλ
α
0 )δ(JI)

10
∏

j=1

1

2
BmnIj (dIγmnλ0)δ(B

mn
Ij N

I
mn)



 =

g
∏

R=1

ZJ(zR)

10g
∏

P=1

ZBP
(wP ),

(4.55)

where the insertions have been reassembled in terms of the picture raising operators,

ZB =
1

2
BmnIdIγmnλ0δ(B

mnIN I
mn), ZJ = (λα0 d

I
α)δ(JI), (4.56)

inserted at positions zR, wR. These insertions correspond to gauge fixing conditions

BmnIj N
I
mn = 0, JI = 0, for the gauge invariance due to the 11g wα zero modes

and BmnIj (dIγmnλ0) = 0, dIαλ
α
0 = 0 for the gauge invariance due to 11g of the 16g

zero modes of dα. Note that the constants Ciα, B
mn
Ij enter through a gauge fixing

term and there is a formal argument, presented below (1.51), that says physical

predictions do not depend on the gauge fixing term and therefore not on B and

C. However decoupling of QS exact states in the pure spinor formalism is a non

trivial subject which is discussed in the next chapter. The precise statements about

Lorentz invariance and dependence on B and C are specified there.

What is left is to discuss Gab. By definition, Gab should satisfy (now in complex

coordinates and dropping the indices)

δSG = T, T =
1

2
ΠmΠm + dα∂θ

α − wα∂λ
α. (4.57)

Since δS is nilpotent, this equation defines a cohomology class [G], i.e. solutions G

up to δS exact terms. A solution of (4.57) is given by [55]

G0 =
CαG

α

Cαλα
, Gα =

1

2
Πm(γmd)

α − 1

4
Nmn(γ

mn∂θ)α − 1

4
J∂θα − 1

4
∂2θα, (4.58)

for a constant spinor Cα. This expression also appeared in [23] as a twisted world-

sheet supersymmetry current. This solution is however not acceptable because it
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contains a factor of (Cαλ
α)−1. Allowing such operators renders the QS cohomology

trivial. Indeed, consider the field ξ

ξ =
Cαθ

α

Cαλα
, δSξ = 1. (4.59)

Then any closed operator V is also exact since

δSV = 0 ⇒ V = δS(ξV ). (4.60)

A related issue is that the positions of the poles of G0 are also the positions of the

zeros of the path integral insertions thus making the expressions ill-defined.

One might hope to arrive at well-defined expression by finding a different rep-

resentative of the cohomology class [G] such that the poles in the new G cancel

against zeros in other path integration insertions. Indeed, such a representative G1

exists and it is given by G1 = bB/ZB, where ZB is the picture raising operator in

(4.56) and bB is the picture-raised b ghost originally constructed in [22] by solving

the equation,

δSbB = ZBT. (4.61)

It was shown in [56] that G1 is in the same cohomology class as G0 and the poles of

G1 indeed cancel against zeros coming from the picture raising operators.

After the BRST quantisation the end result is that a multi-loop amplitude in the

minimal pure spinor formalism should include 3g− 3 insertions of bB, 10g− (3g− 3)

insertions of ZB, g insertions of ZJ and eleven insertions of YC . This is precisely the

prescription proposed in chapter 2.

4.4.2 Non-minimal formulation

Let us now return to (4.48) and recall that πα and π̃α are QS partners, δSπα = π̃α,

see figure 4.2, and each has eleven independent components. These are precisely the

properties of the non-minimal variables λ̄α and rα, see section 2, so one may identify

πα = λ̄0
α, π̃α = r0α (4.62)

where λ̄0
α, r

0
α are the zero modes of λ̄α and rα. (Actually since the non-minimal

variables are cohomologically trivial their nonzero modes do not contribute to any

observable and one may only keep their zero modes). Recall also that the non-

minimal sector has a gauge invariance similar to (2.4) (whose explicit form is not

needed here) and the following combinations are gauge invariant [25]:

N̄mn =
1

2
(w̄γmnλ̄− sγmnr), J̄ = w̄αλ̄α − sαrα, (4.63)

Smn =
1

2
sγmnλ̄, S = sαλ̄α.
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The canonical momenta w̄α and sα have 11g zero modes each which, as in the

discussion of the minimal variables, can be traded for 10g zero modes of N̄ I
mn and

SImn and g zero modes of J̄I and SI . Using the QS transformations in (2.58) one

finds

δSS
I
mn = N̄ I

mn, δSS
I = J̄I . (4.64)

Thus the fields N̄ I
mn, S

I
mn, S

I , J̄I have the same degrees of the freedom and the same

QS transformations as πmnI , π̃mnI , πI , π̃I . Therefore it is natural to identify them,

πmnI = N̄mnI , π̃mnI = SImn, πI = SI , π̃I = J̄I . (4.65)

With these identifications the exponential factor in (4.48) is precisely the regulari-

sation factor N of equation (2.67) (up to inconsequential numerical factors).

It remains to discuss Gab. This field was constructed in [25] (with an elegant

interpretation of the construction in terms of Čech cohomology given in [27])

GB =
λ̄αG

α

(λ̄λ)
+
λ̄αrβH

[αβ]

(λ̄λ)2
− λ̄αrβrγK

[αβγ]

(λ̄λ)3
− λ̄αrβrγrδL

[αβγδ]

(λ̄λ)4
, (4.66)

where Gα is given in (4.58) and Hαβ,Kαβγ , Lαβγδ are specified in section 3.6. Note

also that this field is cohomologically equivalent to G0 [44]. Hence after a careful

treatment of the zero mode invariances and finding the solution for G in the non-

minimal formalism, the functional integral derived from first principles (4.40) reduces

to the amplitude prescription advocated in section 2.2.

Notice that GB field has poles as λ̄λ → 0 so one might wonder whether this

prescription suffers from the same problems as the one using G0. Indeed, there is

a non-minimal version of the argument around (4.59)-(4.60). The corresponding

non-minimal ξ field is [25]

ξnm =
λ̄αθ

α

λ̄βλβ + rβθβ
(4.67)

This diverges as (λ̄λ)−11 so one must ensure that no operators which diverge with

this rate are allowed. A related issue is that the path integral with the insertions

just discussed will diverge if the insertions diverge as fast as (λ̄λ)−11. As discussed

in [25, 27] this can only happen for genus g > 2 (since the pure spinor measure

converges as (λ̄λ)11 and GB diverges as (λ̄λ)−3). One way to deal with this issue

is look for a different representative G(B,ǫ) of the QS cohomology class of [G] which

is less singular than GB as λ̄λ→ 0. A construction of such a G(B,ǫ) is presented in

[27]. Using this G(B,ǫ) field one then arrives at a prescription that in principle works

to all orders. See also [29] for more recent work.

This solves the problem in principle. The actual construction of G(B,ǫ) however is

very complicated. Given that the issues with singularities are related to the λ̄λ→ 0

limit, a different approach would be to modify the gauge fixing condition for the
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pure spinor zero modes such that they are fixed to a nonzero value. It would be

interesting to investigate if such gauge fixing can be implemented and whether it

would lead to a simpler scattering amplitude prescription. Moreover chapter 5 will

provide further motivation to look for a different gauge fixing condition.

4.5 Ghost contribution

There remains one loose end that needs to be tied up. In equation (4.38) the ghost

fields were set to zero without sound motivation. This is provided in this section.

Without setting the ghost fields to zero (4.38) is given by

〈V1 · · ·Vn〉 =

∫

dµσe
−Sσdµghe

−Sghdµ̃e−S̃
κ/2
∏

ĵ=1

V
(0)

ĵ
(ẑĵ)

N
∏

i=κ/2+1

∫

dziV
(1)
i (zi),

(4.68)

where dµ̃e−S̃ is given in (4.39),

dµgh = Dβ̃abDb̃abDcaDγaDCωDγωDξkDξ̂k
κ
∏

ĵ=1

ca(σ̂ĵ)δ(γ
a(σ̂ĵ) (4.69)

and

Sgh =

∫

Σ

(

2γωβ̃
abĝab(τ) − 2Cω(b̃abĝab(τ) − β̃abψ̂ab) (4.70)

+b̃ab[∇̂acb + ∇̂bca] + β̃ab[∇̂aγb + ∇̂bγa] + b̃abξk∂kĝab(τ)

−ψ̂ab[∂c(β̃abcc) − 2β̃c(b∂cc
a)] − β̃ab[ξ̂k∂kĝab(τ) − τ̂kξl∂k∂lĝab(τ)]

)

,

where ∇̂a is the covariant derivative associated with ĝab. The goal is to show that

the “BRST factor” in (4.68), let us call it XBRST , can be manipulated to give the

result of section 4.3:

XBRST =

∫

dµghe
−Sghdµ̃e−S̃ =

6g−6
∏

k=1

dτk(G, ∂k ĝ(τ)). (4.71)

The first step is integrating out γω and β(τ) ≡ ĝab(τ)β̃
ab. This sets the trace

of β̃ab equal to zero. The traceless part of β̃ab will be denoted by βab. Integrating

out ξ̂k introduces (6g − 6) insertions of the βab zero modes, while integrating over

pab, ψab and τ̂k leads to insertions of the zero mode of G,

(G̃, ∂kĝ) ≡
∫

Σ

d2σ
(

∂c(β
abcc) − 2βc(b∂cc

a) + 2βabCω +
√

ĝGab + βabξl∂l

)

∂kĝab(τ).

(4.72)
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After these integrations one is left with

XBRST =

∫

dµβγdµ̃ghe
−S̃gh , (4.73)

where

S̃gh =

∫

d2σ
(

βab(∇̂aγb + ∇̂bγa) + b̃ab(2Cω ĝab + ∇̂acb + ∇̂bca) + b̃abξk∂kĝab(τ)
)

(4.74)

and

dµβγ = [dβab][dγa]

6g−6
∏

k=1

δ((β, ∂k ĝ))

κ
∏

ĵ=1

δ(γa(σ̂ĵ)) (4.75)

dµ̃gh = [db̃ab][dca][dCω ]

6g−6
∏

k=1

dτk(G̃, ∂kĝ(τ))

κ
∏

ĵ=1

ca(σ̂ĵ) (4.76)

The βγ system is now a standard CFT with a U(1) charge conservation and the

path integral measure contains all appropriate zero mode insertions. It follows that

the β-dependent part of (4.72) drops out of (4.73) since it is charged w.r.t. the βγ

U(1). Integrating out Cω sets the trace of b̃ab to zero; the traceless part will denoted

by bab, and integrating out ξk leads to (6g−6) insertions of the bab zero modes. The

BRST factor is now given by

XBRST =

∫

dµτdµβγdµbce
−

R

d2σ(βab(∇̂aγb+∇̂bγa)+bab(∇̂acb+∇̂bca)), (4.77)

with dµβγ as in (4.75) and

dµbc = [dbab][dca]

6g−6
∏

k=1

(b, ∂kĝ(τ))

κ
∏

ĵ

ca(σ̂ĵ), dµτ =

6g−6
∏

k=1

dτk(G, ∂k ĝ(τ)). (4.78)

It is now manifest that the integration over (bab, ca) cancels against the integration

over (βab, γa) and after integrating out b, c, β, γ one finds:

XBRST =

6g−6
∏

k=1

dτk(G, ∂kĝ(τ)). (4.79)

4.6 Replacing worldsheet fields by zero modes

In chapter 2 the amplitude prescription for the pure spinor formalism was presented.

In order to evaluate the correlators it was stated that one should first remove all

fields of nonzero conformal weight by using the OPE’s and thereafter replace the
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remaining fields, which all have weight zero, by their zero modes. The first principles

derivation of this chapter has set the stage for justifying that step.

First it is useful to clarify what a zero mode really is. In general a zero mode is

an eigenstate of some (differential) operator. In the case of βγ systems it is not clear

from the action in conformal gauge, i.e. for a special choice of coordinates, what this

operator is, since such an action is only defined on one coordinate patch. Consider

the pθ action, which is a fermionic βγ system. Its action in conformal gauge is given

by

S(pθ) =

∫

d2zpα∂̄θ
α
, (4.80)

where the weights of p and θ are one and zero respectively. In order to write this

action in a coordinate free form, one uses the differential operators P0 and PT0 defined

in (1.66). The action (4.80) can now be written in either of the two following forms

S(pθ) = (p̂α, P0θ
α) = (PT0 p̂α, θ

α), (4.81)

where (p̂α)a = P
(+)b
a (pα)b and P

(+)b
a is a projection operator defined in (4.4), not to

be confused with the differential operator Pn, it depends on the complex structure

of the worldsheet and in conformal gauge its only nonzero component is P
(+)z
z = 1.

The operators Pn and PTn do not have eigenstates because they change the rank of

the tensors they act on, therefore zero modes cannot be eigenstates of one of these

operators. Operators that can be diagonalised are PTn Pn and PnP
T
n :

PnP
T
n F

a1···an+1

J (σ) = v′
2
JF

a1···an+1

J (σ), PTn PnG
a1···an

K (σ) = v2
KG

a1···an

K (σ), (4.82)

where FJ and GK are symmetric traceless tensors of respectively rank n+ 1 and n.

Any traceless symmetric worldsheet field can be expanded in a basis of eigenfunctions

of PTn Pn for some n. In addition it can expanded in eigenfunctions of Pn+1P
T
n+1.

This basis can be chosen to be orthonormal with respect to (1.69):

(FJ , FJ′ ) = δJJ′ , (GK , GK′) = δKK′ . (4.83)

p̂α and θα can be expanded as

p̂aα(σ) =
∑

J

(pα)J F̂
a
J (σ), θα(σ) =

∑

K

θαKGK(σ). (4.84)

There is a one to one correspondence between the nonzero modes of PTn Pn and

PnP
T
n . The number of zero modes can differ. This follows from

(PnP
T
n )PnGJ (σ) = Pn(PTn Pn)GJ (σ) = (v′)2JPnGJ (σ). (4.85)

Thus PnGJ is an eigenfunction of (PnP
T
n ). Along the same lines it follows that PTn FJ

is an eigenfunction of (PTn Pn). This shows a one to one correspondence between the
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modes that satisfy PnGJ 6= 0 and PTn FJ 6= 0, these are precisely the nonzero modes.

These can be separated in positive (J,K > 0) and negative modes (J,K < 0). The

zero modes are denoted as F0j , G0k where j = 1, · · · , µ and k = 1, · · · , κ. The values

of µ and κ depend on both the genus of the worldsheet and the value of n. Canonical

quantisation amounts to imposing the commutation relations

[FJ , GK ] = δJ,−K , [FJ , FJ′ ] = [GK , GK′ ] = 0. (4.86)

A vacuum can be defined by

FJ |0〉 = GK |0〉 = 0, J,K > 0. (4.87)

Consider a number of βγ systems of weight one, which is the relevant one for

the pure spinor formalism. In the Hilbert space language a correlator, that only

contains weight zero fields,

A = 〈γ1(z1) · · ·γN (zN )〉, (4.88)

can be expanded as

A = 〈0|γ1(z1) · · · γN (zN)|0〉 = 〈0|
κ
∑

j=1

(γ1
0)jG0j(z1) · · ·

κ
∑

j′=1

(γN0 )j′G0j′(zN )|0〉,

(4.89)

because the positive modes vanish against the vacuum on the right and the nega-

tive ones against the vacuum on the left. Also note there are only non vanishing

(anti)commutators between a positive γ mode and a negative β mode or vice versa,

so one can (anti)commute all γ modes through each other. This justifies replacing

the fields in a correlator by their zero modes if all these fields are of weight zero.
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Decoupling of unphysical

states

Any theory whose spectrum is defined as the cohomology of a certain nilpotent

fermionic operator must have the property that all amplitudes with an exact state

vanish. Otherwise two operators representing the same physical state give rise to

different scattering amplitudes and there is no way to prefer either of the two answers.

In chapter 2 it was shown that decoupling of unphysical states is guaranteed if all

insertions are QS closed. For the non-minimal pure spinor formalism this was easy

to show, cf. (2.61). The minimal formalism, however, contains constant spinors (Cα)

and constant tensors (Bmn) in its amplitude prescription. These constant tensors

enter the theory via the picture changing operators. It was argued in [22] that

amplitudes are independent of C and B, because the Lorentz variation of the PCOs

is QS exact.

In this chapter it will be shown by explicit computations that the amplitudes do

depend on the choice of the constant tensors and QS exact states do not decouple.

This happens already at tree level, but in this case one can show that there is

a unique Lorentz invariant operator that can replace the PCOs in the tree-level

amplitude prescription. With this replacement QS exact terms do decouple and one

can further show that this prescription is equivalent to the tree-level prescription

obtained by integrating over C [22], which correctly reproduces known tree-level

amplitudes.

Amplitudes at one loop are discussed next. The main result will be that the

PCOs, YC , are not QS closed. Furthermore a no-go theorem will be proved which

states that QS closed Lorentz covariant PCOs lead to vanishing of all one-loop

amplitudes. Hence if one wishes to replace the PCOs by QS closed ones, manifest

Lorentz invariance cannot be maintained.
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Note that QSYC 6= 0 by itself does not imply that QS exact states do not decou-

ple. It only implies that the standard argument for decoupling of unphysical states

that involves integrating QS by parts does not automatically lead to decoupling.

Hence one needs another argument. This new argument does not use integration

of QS by parts. Rather it makes use of an invariance of the path integral measure

and the fact the zero mode integrals act as projectors on a certain Lorentz scalar.

Then one can show that the integrand that results from QS exact insertions does

not contain this scalar, hence amplitudes that contain unphysical states vanish after

integration.

Even though there is a proof of decoupling of unphysical states in the formulation

with integration over C andB, the fact that the PCOs are notQS closed is somewhat

unsatisfactory. The technical origin of the problem is that the PCOs are QS closed

only in a distributional sense and it turns out that the amplitudes are singular enough

so that distributional identities do not hold. To understand why the amplitudes

are singular, let us recall that the PCOs originate from gauge fixing zero mode

invariances as discussed in chapter 4. The PCOs contain eleven delta functions of the

form δ(CIαλ
α), where CIα are the constant spinors mentioned above. It turns out that

for any choice of CI that give an irreducible set of eleven constraints, the solution

of CIαλ
α = 0 is given by λα = 0, which is the tip of the cone that represents pure

spinor space. As discussed in [21], the λα = 0 locus should be removed from the pure

spinor space. Thus this prescription corresponds to a singular gauge fixing condition

and the problems with QS closedness of the PCOs reflect that fact. Furthermore the

PCOs are not globally defined on pure spinor space. Ultimately one would like to

use globally defined, QS closed PCOs that gauge fix the zero modes of λ to a nonzero

value. Such an operator has not been found. Note however that this operator cannot

be a Lorentz scalar, due to the no-go theorem.

There is one final point that deserves to be mentioned in this introduction. As

stated in chapter 2 the most complicated loop amplitude computations have only

been performed in the non-minimal pure spinor formalism. This suggests that the

minimal loop computations are technically more involved. The analysis of this chap-

ter, in particular the previously unnoted invariance of the path integral measure,

might be used to simplify minimal loop computations.

5.1 Tree level

In the first part of this section, a number of tree-level amplitudes is computed in the

formulation without an integral over the constant spinors C. The conclusion will be

that these amplitudes are not Lorentz invariant and unphysical states do not decou-

ple. In the second part a manifestly Lorentz invariant prescription without constant

spinors is presented. As will be shown this new prescription leads to decoupling
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of unphysical states and is equivalent to the prescription with an integral over the

constant spinors C.

5.1.1 No C integration

This section presents two problems regarding the minimal amplitude prescription

(2.22) when it is evaluated using the definition of the zero mode measure (2.25) and

the usual definition of a delta function:
∫

dxδ(x)f(x) = f(0), xδ′(x) = −δ(x). (5.1)

The problems are

• A is not Lorentz invariant or equivalently A depends on the choice of C’s

• QS exact states do not decouple.

Lorentz invariance

In section 2.1.2 it was argued the PCOs are Lorentz invariant inside correlators if

they are QS closed. The QS variation is given in (2.29) and this seems to vanish but

if one chooses Cα = δ+α , the result is QSYC = λ+δ(λ+). This is not zero because

the measure contains 1
(λ+)3 . All one can use is (λ+)4δ(λ+) = 0. This problem is

made even more explicit in the computation below. It will be shown that choosing

particular C’s does not result into a Lorentz invariant answer.

Let us choose1

C1
α = δ+α , (C2)a1a2 = δ

[a1

1 δ
a2]
2 , . . . , (C11)a1a2 = δ

[a1

4 δ
a2]
5 , all other CIα = 0. (5.2)

Note CIα has rank eleven for this choice, as it should. As is discussed in section 5.5

the lack of Lorentz invariance, which is shown below, would also be found, if any

other choice was made, see footnote 9. The three-point tree-level function is given

by

A = 〈λαA1α(z1)λ
βA2β(z2)λ

γA3γ(z3)YC1(∞) · · ·YC11(∞)〉. (5.3)

The PCOs operators are inserted at infinity, since this simplifies the computation.

All OPE’s of the PCOs with the vertex operators vanish due to this choice. Therefore

one can replace all fields in (5.3) by their zero modes:

A =

∫

[dλ]d16θλαλβλγfαβγ(θ)C
1
α1
θα1 · · ·C11

α11
θα11δ(C1

α1
λα1) · · · δ(C11

α11
λα11) (5.4)

=

∫

[dλ]d16θλαλβλγfαβγ(θ)θ
+θ12 · · · θ45δ(λ+)δ(λ12) · · · δ(λ45)

1See section 3.2.1 for notational conventions.
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=

∫

dλ+ ∧ dλ12 ∧ · · · ∧ dλ45

λ+3 d16θλαλβλγfαβγ(θ)θ
+θ12 · · · θ45δ(λ+)δ(λ12) · · · δ(λ45).

The only term that contributes is the one with αβγ = +++, in all other cases there

is an integral of the form
∫

dλabλabδ(λab) (no sum). There is a subtlety with these

integrals, for instance

∫

[dλ](λ+)2λcdδ(λ
+)δ(λ12) · · · δ(λ45) =

∫

dλ+d10λab
λcd
λ+

δ(λ+)δ(λ12) · · · δ(λ45) =

∫

dλ+ 1

λ+
δ(λ+)

∫

dλcdλcdδ(λcd) = ∞0. (5.5)

Note however that (5.5) has N charge one (cf. (3.50)). Since the outcome of the

integral (maybe after some regularisation) must be a number, which does not trans-

form under N , the integral has to vanish. In other words only integrals with zero

N charge, like
∫

[dλ](λ+)3δ(λ+)δ(λ12) · · · δ(λ45) can be non-vanishing. After the

integration over the λ zero modes one is left with

A =

∫

d16θf+++θ
+θ12 · · · θ45, (5.6)

where f+++ = A1
+A

2
+A

3
+ and this can be evaluated with the help of the explicit

expressions for the gamma matrices from section 3.2.4. If one chooses the external

states to be two gauginos and one gauge boson the amplitude becomes:

A =

∫

d16θ(ξa1 θkaθ
k + ξ1kaθ

aθk)(ξb2θlbθ
l + ξ2lbθ

bθl)θca3
cθ

+θ12 · · · θ45 = ǫabcdeξ1abξ
2
cda

3
e.

(5.7)

This answer is not Lorentz invariant and different from the expected answer,

ξ1γmξ2a3
m = 2(ξ+1 ξ

a
2a

3
a + ξa1 ξ

+
2 a

3
a −

1

4
ǫabcdeξ1abξ

2
cda

3
e + ξ1abξ

a
2a

b
3 + ξa1 ξ

2
aba

b
3), (5.8)

where m is an SO(10) index and all Latin letters that come before m in the alphabet

are SU(5) indices. In conclusion this shows that tree-level amplitudes do not yield

Lorentz invariant answers when one does not integrate over C.

Dependence on CI

On top of the lack of Lorentz invariance amplitudes depend on the choice of constant

spinors C. In other words they are not invariant under CIα → CIα + δCIα. This

variation changes the Ith PCO by a QS exact quantity. However when one computes

a tree-level amplitude with the Ith PCO replaced by this QS exact quantity, it does

not vanish. Hence incidentally this computation demonstrates that not all QS exact

states decouple. In the computation below the same C’s as in (5.2) are used and
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δC11
α = δ1α, where the 1 is an SU(5) vector index. The delta only has one non-

vanishing component. This changes YC11 by

δYC11 = δC11αθ
αδ(C11λ) + C11αθ

αδC11βλ
βδ′(C11λ) (5.9)

= QS(δC11αθ
αC11βθ

βδ′(C11βλ
β)) = QS(θ1θ45δ

′(λ45)).

Under this change in CIα the tree-level three-point function changes by

δA = 〈V1(z1)V2(z2)V3(z3)YC1(∞) · · ·YC10(∞)δYC11(∞)〉 = (5.10)

〈V1(z1)V2(z2)V3(z3)QS(YC1(∞) · · ·YC10(∞))θ1(∞)θ45(∞)δ′(λ45(∞))〉

=

∫

d16θ
d11λ

(λ+)3
λαλβλγA1

αA
2
βA

3
γQS(YC1 · · ·YC10)θ

1θ45δ
′(λ45).

There is a total of four λα’s in the numerator (one hidden in QS) one of them has

to be λ45 and the other three have to be λ+ to give a non-vanishing answer. The

term that contributes comes from QS hitting θ+δ(λ+), this λ+ then cancels against

a λ+ in the denominator and the variation becomes

δA =

∫

d16θd11λA
(1
+A

2
+(A3))45θ1δ(λ+)θ12δ(λ12) · · · θ45δ(λ45) = (5.11)

∫

d16θA
(1
+A

2
+(A3))45θ1θ12 · · · θ45.

By choosing suitable polarisations it is not difficult to see this does not always vanish.

5.1.2 Including C integration

Obtaining amplitudes which are not Lorentz invariant is a serious problem and one

might ask why the tree-level amplitude computations [22, 57] in the minimal pure

spinor formalism gave Lorentz invariant answers and why QS exact states decoupled.

Both these points are explained in the first part of this section. In the second part

the tree-level amplitude prescription is reformulated in a way that does not contain

any constant spinors.

Lorentz invariance is restored by integrating over all possible choices of CIα, and

this also results in decoupling of QS exact states as will become apparent in this sec-

tion. The manifestly Lorentz invariant tree-level amplitude in the minimal formalism

is given by

A =

∫

[dC]〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·
∫

dzNUN (zN)YC1(∞) · · ·YC11(∞)〉.
(5.12)

After performing the OPE’s and replacing the fields by their zero modes this becomes

A =

∫

[dC]

∫

[dλ]d16θλαλβλγfαβγ(θ)(C
1θ)δ(C1λ) · · · (C11θ)δ(C11λ). (5.13)
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Note the eleven PCOs, YC , have been replaced by a manifestly Lorentz invariant

PCO which will be called Y :

Y ≡
∫

[dC](C1θ)δ(C1λ) · · · (C11θ)δ(C11λ). (5.14)

Now one uses
∫

[dC][dλ]λαλβλγC1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ) = (ǫT )αβγβ1···β11

. (5.15)

This is justified by Lorentz invariance, because the LHS is Lorentz invariant and the

only invariant tensor with the appropriate symmetries is2 (ǫT ), as can be verified

with [40]. Thus

A = (ǫT )αβγα1···α11

∫

d16θfαβγ(θ)θ
α1 · · · θα11 . (5.17)

The amplitude A is manifestly Lorentz invariant.

This prescription also ensures the decoupling of unphysical states. Amplitudes

with unphysical states will be denoted by B throughout this chapter, while A is used

for any amplitude, so at tree level with V1 = QSΩ,

B =

∫

[dC]〈QSΩ(z1)V2(z2)V3(z3)

N
∏

i=4

∫

dziU(zi) (5.18)

C1
α1
θα1 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ)〉.

This can be written in the following form:

B =

∫

[dC]〈λα(z2)λ
β(z3)gαβ(d, θ,N)QS(C1

α1
θα1 · · ·C11

α11
θα11)δ(C1λ) · · · δ(C11λ)〉 ∼

∫

[dC]〈λα(z2)λ
β(z3)gαβ(d, θ,N)C1

α1
λα1 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ)〉. (5.19)

where in going from the first to the second line an overall numerical factor of eleven

was omitted. Such overall inconsequential factors will be neglected throughout this

2Incidentally, the following related integral can also be computed using Lorentz invariance:
Z

[dC]dλα1 ∧ · · · ∧ dλα11C1
β1

· · ·C11
β11

δ(C1λ) · · · δ(C11λ) = (5.16)

c1δ
[α1
β1

· · · δα11]
β11

+ c2γ
[α1α2
mnp γmnp

[β1β2
δα3
β3

· · · δα11]
β11]

,

where c1 and c2 are nonzero numerical constants. This structure follows from the fact Asym11
16⊗

Asym11
16

′ contains two scalars (see section 3.2.2 for explanation about the notation and the

argument). The constants can be computed using judicious choices of the indices. For example,

the integral vanishes for the choice α1 = β1, · · · , α11 = β11 = +, 12, . . . , 35, 5, implying that one

needs a nonzero constant c2. Equation (5.16) corrects formula (3.25) of [22].
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chapter. After using the OPE’s to integrate out the nonzero modes one gets:

B =

∫

[dC]d16θ[dλ]λαλβfαβ(θ)C
1
α1
λα1C2

α2
θα2 · · ·C11

α11
θα11δ(C1λ) · · · δ(C11λ) =

∫

d16θfαβ(θ)(ǫT )αβα1
α1···α11

θα2 · · · θα11 = 0, (5.20)

where fαβ(θ) is some function of θ zero modes and (5.15) was used in the second

equality. The integral vanishes because3 126⊗Asym1016 does not contain a scalar

(see section 3.2.2 for explanation about the notation and the argument), in other

words

(ǫT )β1βγ
β1···β11

= 0. (5.21)

In this case one can also write out (ǫT ) explicitly and check that its trace contains

a contraction of an antisymmetric tensor (ǫ) and a symmetric one (γαβm ).

Lorentz invariant tree-level prescription without constant spinors

There exists a replacement for the eleven PCOs that does not contain any constant

spinors and is manifestly Lorentz covariant. The prescription that uses this replace-

ment is equivalent to the one given in [22], when the integral over C in included.

The prescription is given by

A = 〈V1(z1)V2(z2)V3(z3)

∫

dz4U4(z4) · · ·
∫

dzNUN (zN )Λαβγ(∞) (5.22)

(ǫT )αβγβ1···β11
θβ1(∞) · · · θβ11(∞)〉.

The replacement of the eleven PCOs YC is called Λαβγ(∞). After integrating out

the nonzero modes and replacing the fields by their zero modes A reduces to

A =

∫

d16θ[dλ]λαλβλγfαβγ(θ)(ǫT )δ1δ2δ3β1···β11
θβ1 · · · θβ11Λδ1δ2δ3 . (5.23)

The tensor Λαβγ is defined by

∫

[dλ]λαλβλγΛα′β′γ′ = δ
(α
α′ δ

β
β′δ

γ)
γ′ − 1

40
γ(αβ
m γm(α′β′δ

γ)
γ′) ≡ δ

((α
α′ δ

β
β′δ

γ))
γ′ , (5.24)

and is a function of the λ’s only. More accurately, all components contain eleven

delta functions or derivatives thereof. The precise form of (5.24) follows from the

fact that the integral must be an invariant tensor combined with the pure spinor

constraint. Detailed arguments are provided in section 3.5. Explicit expressions of

the components can be found by examining certain components of (5.24). In order

3Note 126 denotes a gamma matrix traceless symmetric rank two tensor (recall that λαλβ ∼
λγmnpqrλγαβ

mnpqr).
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to see what conditions (5.24) imposes on Λ+++ note that choosing αβγ = + + +

gives
∫

[dλ]λ+3
Λ+++ = 6. (5.25)

Moreover this is the only condition because for all other choices the LHS of (5.24)

is not invariant under M , the generator of a U(1) subgroup of Lorentz group (see

section 3.2.1 for the definition of M). Therefore the LHS is equal to zero. The

solution is given by

Λ+++ = 6δ(λ+)δ(λ12) · · · δ(λ45). (5.26)

It is possible to verify this object is indeed part of a representation of the Lorentz

group. In order to do so one needs to check the Lorentz algebra holds when acting

on Λ+++. First note

(NS)abΛ+++ = NabΛ+++ = 0, NΛ+++ =
15

4
Λ+++, (5.27)

Nmn denote the realisation of Lorentz generators Mmn in terms of pure spinors, see

section 3.3 for the precise expressions. The nontrivial commutation relations that

remain to be checked are

[Nab, N
cd]Λ+++ = −1

2
δ
[c
[aN

d]
b]Λ+++ = −1

5
δc[aδ

d
b]NΛ+++ = −3

4
δc[aδ

d
b]Λ+++,(5.28)

[Na
b, N

cd]Λ+++ =
1

2
δ
[c
b N

d]aΛ+++. (5.29)

Because of the symmetric form of Λ+++ it suffices to check

[N12, N
12]Λ+++ = −3

4
Λ+++, (5.30)

[N12, N
13]Λ+++ = 0, (5.31)

[N1
2, N

23]Λ+++ = −1

2
N13Λ+++. (5.32)

Let us start with the LHS of (5.30)

[N12, N
12]Λ+++ = N12N

12Λ+++ = N12

[

1

2
6λ+δ(λ+)δ′(λ12)δ(λ13) · · · δ(λ45)

]

=

3

2
(−w+λ12 −

1

2

1

λ+
wabλabλ12 +

1

λ+
wabλ1aλ2b)

[

λ+δ(λ+)δ′(λ12)δ(λ13) · · · δ(λ45)
]

=

= (0 − 9

4
+

3

2
)Λ+++ = −3

4
Λ+++, (5.33)

Note that N12 does not contain factors of (λ12)
2 (possible such factors cancel out).

This is useful when acting with N12 in this second line. In going from the second

to the last line xδ′(x) = −δ(x) was used twice. The other two commutators, (5.31)

and (5.32), follow along the same lines.
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It is instructive to compute the next two levels (distinguished by N charge) of

the components of Λαβγ . For the components on the second (N = 11
4 ) level consider

Na1a2Λ+++ = −1

2
Λa1a2

++ − 1

2
Λ a1a2

+ + − 1

2
Λ a1a2

++ = −3

2
Λa1a2

++ ⇒ (5.34)

Λa1a2
++ = −2

3
Na1a2Λ+++.

The factor of − 1
2 is consistent with Nabw+ = − 1

2w
ab. Going to the next level

(N = 7
4 )

N b1b2Λa1a2
++ = −1

2
ǫa1a2b1b2eΛe++ − 1

2
Λa1a2b1b2

+ − 1

2
Λa1a2 b1b2

+ = (5.35)

−1

2
ǫa1a2b1b2eΛe++ − Λa1a2b1b2

+.

This seems to leave freedom to define one of the two components, which would indeed

be true if Λαβγ was just a symmetric rank three tensor and nothing more. However

Λαβγ is gamma matrix traceless,

γαβm Λαβγ = 0. (5.36)

This imposes one additional condition that relates components of equal N charge

to each other. Consequently all components of Λαβγ are uniquely fixed in terms of

Λ+++. Note that this is consistent with the discussion under (3.134), where Lorentz

invariance arguments were used to come to the same conclusion.

Decoupling of QS exact states

The new insertion Λαβγ was motivated by manifest Lorentz invariance, but it also

results in a prescription in which QS exact states decouple. Indeed, the tree-level

amplitude with one QS exact state,

B = 〈QSΩ(z1)V2(z2)V3(z3)

N
∏

i=4

∫

dziU(zi)(ǫT )δ1δ2δ3β1···β11
θβ1 · · · θβ11(∞)Λδ1δ2δ3(∞)〉,

(5.37)

can be written in the following form:

B = 〈λα(z2)λ
β(z3)fαβ(θ)QS((ǫT )δ1δ2δ3β1···β11

θβ1 · · · θβ11Λδ1δ2δ3)〉 = (5.38)

〈λα(z2)λ
β(z3)fαβ(θ)(ǫT )δ1δ2δ3β1···β11

λβ1θβ2 · · · θβ11Λδ1δ2δ3〉. (5.39)

After using the OPE’s to integrate out the nonzero modes one gets:

B =

∫

d16θ[dλ]λαλβfαβ(θ)(ǫT )δ1δ2δ3β1···β11
λβ1θβ2 · · · θβ11Λδ1δ2δ3 = (5.40)

∫

d16θfαβ(θ)(ǫT )αββ1

β1···β11
θβ2 · · · θβ11 = 0.

The last line vanishes because all traces of (ǫT ) vanish (cf. (5.21)).
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5.1.3 Global issues

The computations in section 5.1.1 showed that not all QS exact states decouple.

From this result it is tempting to conclude that the PCOs are not QS closed. This

is true as will be shown in section 5.3, but one cannot conclude it just yet. For the

computations above involve integrations over the space of pure spinors, which is a

manifold that cannot be covered by one coordinate patch. Therefore the computa-

tions in section 5.1.1 can best be viewed as evidence for the need of a globally well

defined PCO. Note however that when one integrates over C, Lorentz invariance can

be used and consequently any possible ambiguity goes away. Alternatively one can

use Λ, globally defined in (5.24), which will be done in the one-loop computations

in the next section.

5.2 One loop

In this section one-loop amplitudes with one unphysical state are considered both

in the prescription with an integral over B and without. Let us first consider the

case in which there is no B integration. All amplitudes, including those with an

unphysical state, can be evaluated by first integrating out the nonzero modes. One

is then left with a certain zero mode integral. At tree level one could show that

these integrals vanish after the λ integration is performed, cf. (5.40). This section

contains the corresponding one-loop computation. The result is that the zero mode

integrals do not vanish after the λ,N integrations.

The analysis of amplitudes with an unphysical state when one includes an integral

over B is analogous to the tree-level case. After one has integrated out the nonzero

modes the zero mode integral over λ and N can be performed by Lorentz invariance.

Recall that decoupling of unphysical states at tree level followed from the vanishing of

the trace of ǫT cf. (5.40). This ǫT showed up in the λ zero mode integral (5.15). The

analogous one-loop zero mode integral can be evaluated to give the one-loop analog

of ǫT . Moreover one-loop amplitudes with an unphysical state are proportional to

the trace of this one-loop invariant tensor. However this trace does not vanish.

Therefore the question whether QS exact states decouple remains unanswered in

this section. The computation including the B integral does show that the PCOs

are not QS closed. In section 5.4 it will be shown using a different argument that

unphysical states decouple to all orders, when one integrates over B and C.

5.2.1 No B integration

A one-loop amplitude with one unphysical state is given by

B(N) = 〈QSΩ1(z1)

N
∏

i=2

∫

dziUi(zi)

∫

duµ(u)b̃B1(u,w)(λB2d)(y) · · · (λB10d)(y)
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(λd)(y)δ(B1N(y)) · · · δ(B10N(y))δ(J(y))Λδ1δ2δ3(y)(ǫT )δ1δ2δ3β1···β11
θβ1(y) · · · θβ11(y)〉,

(5.41)

where λBd = Bmnλγ
mnd. Note that the YC insertions have been replaced by the

Lorentz covariant insertion, Λαβγ , as in the tree-level computation. This is equivalent

with inserting YC and integrating over C. On the torus one cannot insert the PCOs

such that all their OPE’s would vanish. They are inserted at some arbitrary point

y. For later convenience b̃ is inserted at a different point, w.

The next step is integrating QS by parts. When QS acts on b̃ one gets a total

derivative in moduli space, as usual. If this total derivative is non-vanishing the

theory has a BRST anomaly. These total derivative terms will be suppressed below

because they are not important for our discussion. The terms that come from

QS hitting a picture raising operator, ZB, vanish since the QS variation vanishes

without subtleties, cf. (2.32). The vertex operators are also QS closed. The only

non-vanishing terms come from QS hitting a θ. This results in a λβ1 contracted

with Λαβγ(ǫT )αβγβ1···β11
, very similar to tree-level amplitudes with an unphysical state.

However the one-loop pure spinor zero mode integration also involves Nmn. As will

be shown

λβ1Λαβγ(ǫT )αβγβ1···β11
(5.42)

does not vanish after the one-loop pure spinor zero mode integrals have been per-

formed.

After integrating QS by parts the amplitude (5.41) becomes

B(N) = 〈Ω1(z1)

N
∏

i=2

∫

dziUi(zi)

∫

duµ(u)b̃B1(u,w)(λB2d)(y) · · · (λB10d)(y)(λd)(y)

(5.43)

δ(B2N(y)) · · · δ(B10N(y))δ(J(y))Λδ1δ2δ3(y)(ǫT )δ1δ2δ3β1···β11
(y)λβ1(y)θβ2(y) · · · θβ11(y)〉.

In this subsection B(N) will be evaluated without integrating over B. The particular

choice of B used here is given by

(B1)ab = δ[1a δ
2]
b , · · · , (B10)ab = δ[4a δ

5]
b , (BI)ab = (BI)ab = 0. (5.44)

The amplitude B(N) can be evaluated by first integrating out the nonzero modes

and then evaluating the zero mode integrals. The nonzero mode integration is a little

tedious since there is quite a number of Nλ OPE’s one has to consider. Therefore the

nonzero mode integration is explained in detail after the subsection on the zero mode

integrals. Once the nonzero mode integrals have been performed the amplitude B(N)

can be written as a sum of terms that are all proportional to a certain λ,N zero

mode integral, Iβ2···β11 . This integral contains (5.42). In the next section it will be

shown Iβ2···β11 does not vanish. This non-vanishing does not prove that there exists

a non-vanishing amplitude with a QS exact state, because there may be additional

cancellations when one performs the remaining integrals. It does show however that

115



Chapter 5 - Decoupling of unphysical states

the PCOs are not QS closed, i.e. (5.42) does not vanish when integrated against an

arbitrary function.

Zero mode integral

After integrating out the nonzero modes, which is discussed in detail in the next

subsection, one-loop amplitudes (5.43) can be written as a sum of terms that are

proportional to the following zero mode integral,

Iα1

β1β2···β11
≡ (5.45)

∫

[dλ][dN ]λα1 (λγ13d) · · · (λγ45d)(λd)δ(N12) · · · δ(N45)δ(J)Λαβγ(ǫT )αβγβ1···β11
.

Note that there is one unintegrated vertex operator at one loop, which explains the

presence of λα1 . The factors λγabdδ(Nab) originate from the picture raising operators

ZB and δ(N12) stems from the b ghost. If one of the states is an unphysical state,

the amplitude can be written as a sum of terms proportional to the trace of Iα1

β1···β11

which is called Iβ2···β11 :

Iβ2···β11 ≡ Iα1

α1β2···β11
= (5.46)

∫

[dλ][dN ]λβ1 (λγ13d) · · · (λγ45d)(λd)δ(N12) · · · δ(N45)δ(J)Λαβγ(ǫT )αβγβ1···β11
.

This integral is the one-loop analog of (5.40) (or (5.20)). Therefore this integral must

vanish if the PCOs are QS closed. Note that, in spite of the notation, Iα1

β1β2···β11
is

not manifestly Lorentz invariant. Whether it is Lorentz invariant remains to be seen.

Let us proceed by evaluating Iβ2···β11 .

After using expression (3.127) for [dN ] to evaluate the N integral in Iβ2···β11 one

finds

Iβ2···β11 =

∫

[dλ]
1

(λ+)8
λβ1(λγ13d) · · · (λγ45d)(λd)Λαβγ(ǫT )αβγβ1···β11

. (5.47)

In this form it becomes apparent that the problems with factors of λ+ in the denom-

inator only increase at one loop. At this point one can only surmise this. To find a

definitive answer one has to evaluate the λ integral. This can be done by expanding

the integrand by powers of λ+, using the explicit gamma matrix expression from

section 3.2.4:
1

(λ+)8
(λγ13d) · · · (λγ45d)(λd) = (5.48)

(λ+)2D12d+ +
1

2
λ+λa1a2

(

D12d
a1a2 +

1

2
ǫaba1a2cdcD12abd+

)

+

1

8
λa1a2λa3a4

(

D12ǫ
aa1a2a3a4da + ǫaba1a2cdcD12abd

a3a4+
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1

2
ǫaba1a2cǫdea3a4fdcdfD12abded+

)

+

6
∑

k=3

1

(λ+)k−2
λa1a2 · · ·λa2k−1a2k

Y a1···a2k(d),

where

D = d12 · · · d45, Da1···ak
=

∂

∂dak−1ak
· · · ∂

∂da1a2
D. (5.49)

The Y (d)’s can be expressed in terms of the d’s similar to the first three terms. Note

that the minimal number of da’s in Y a1···a2k is k − 1. This is the reason the series

stops at k = 6. The maximum number of da’s in Y a1···a2k is k. The λ integration of

(5.48) can be evaluated term by term. Iβ2···β11 then becomes

Iβ2···β11 =
6
∑

k=0

(Ik)a1···a2kβ2···β11Y
a1···a2k . (5.50)

The integrals Ik are investigated order by order in the sequel of this subsection.

For k = 0, 1, 2 one can use the definition of Λαβγ , (5.24), and the fact that the

invariant tensor (ǫT ) is traceless, (5.21), to show the λ integrals vanish:

(I0)β2···β11 =

∫

[dλ]λβ1 (λ+)2Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11
= (ǫT )++β1

β1···β11
= 0, (5.51)

(I1)a1a2β2···β11 =

∫

[dλ]λβ1λ+λa1a2Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11
= (ǫT )+β1

a1a2 β1···β11
= 0,

(I2)a1···a4β2···β11 =

∫

[dλ]λβ1λa1a2λa3a4Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11
=

(ǫT )β1

a1a2a3a4 β1···β11
= 0.

If k > 2, however, there are also factors of λ+ in the denominator. As shown in

appendix A.1 the λ integrals do not vanish anymore. For example consider the

integral I3. By M charge conservation all components of I3 vanish except when the

indices are chosen to be

β2, . . . , β11 = +, b1b2, . . . , b9b10, c1, c2, c3, c4 (5.52)

or

β2, . . . , β11 = b1b2, . . . , b13b14, c1, c2, c3.

This is explained in detail in the first part of appendix A. Let us explicitly compute

I3 for the first choice of indices. Since Sym31̄0⊗ Asym510⊗ Asym45̄ contains one

scalar, one finds

(I3)
b1b2···b9b10

a1···a6+c1c2c3c4 = (5.53)
∫

[dλ]
1

λ+
λβ1λa1a2 · · ·λa5a6Λαβγ(ǫT )αβγ b1···b10

β1+c1c2c3c4
=
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c1ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms,

where (ǫ10)
b1···b20 is antisymmetric under both b2i−1 ↔ b2i and b2i−1b2i ↔ b2j−1b2j

and (ǫ10)
12131415232425343545 = 1. The two permutations add terms to make the RHS

symmetric under a2i−1a2i ↔ a2j−1a2j . The constant c1 is computed in appendix

A.2 and is given by

c1 =
129

2
. (5.54)

The integral I4 can be computed similarly, but this computation will not be presented

here. The next integral is I5. The only choice of β2, . . . , β11 that leads to a nonzero

answer for I5 is

(I5)
b3···b12

a1···a10 12345 =

∫

[dλ]
1

(λ+)3
λβ1λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

β1 12345 =

−2

5
ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)

b1···b20ǫb14b16b18b19b20 + 14 perms. (5.55)

The details are given in appendix A.2. Finally I6 can be evaluated as:

(I6)a1···a12β2···β11 =

∫

[dλ]
1

(λ+)4
λβ1λa1a2 · · ·λa11a12Λαβγ(ǫT )αβγβ1···β11

= (5.56)

ǫb1a1a2a3a4ǫb2a5a6a7a8ǫb3a9a10a11a12(ǫT )b1b2b3+β2···β11
+ permutations = 0.

This vanished because (ǫT )b1b2b3+β2···β11
= 0 and that follows from the M charge con-

servation rule for invariant tensors. In other words it is not possible to choose

β2, . . . , β11 such that the total M charge of the components is zero (cf. equation

(3.54)). This concludes the computation of the pure spinor zero mode integrals that

appear at one loop. It has been shown that the QS variation of the PCO as given in

(5.42) does not vanish after the integration over the pure spinor sector in a typical

one-loop zero mode integral. Therefore the PCOs are not QS closed.

Nonzero mode integration

It remains to demonstrate that all one-loop amplitudes with an unphysical state can

be written as a sum of terms proportional to Iβ2···β11 . After this proof the argument

will be modified to prove that A(N) can be written as a sum of terms proportional

to Iαβ1···β11
. In general the amplitude, B(N), becomes a sum of terms of the form

B(N)
i1···ik =

∫

[Dλ][DN ][Dd][Dθ](
N
∏

i=2

∫

dzi)fm1n1···mknk
(z1, . . . , zN) (5.57)

Nm1n1(zi1) · · ·Nmknk(zik)(λγ13d)(y) · · · (λγ45d)(y)(λd)(y)λβ1 (y)Λαβγ(y)(ǫT )αβγβ1···β11

θβ2(y) · · · θβ11(y)

∫

duµ(u)b̃B1(u,w)δ(N13(y)) · · · δ(N45(y))δ(J(y))e−S ,
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where the indices in the PCOs are SU(5) indices, ij ∈ {2, . . . , N} and fm1···nk
does

not contain any λ’s or w’s. The number k indicates how many vertex operators

provide an Nmn. The functional integrals over λ and N can be evaluated by per-

forming the OPE’s to remove all fields of nonzero weight. Then one replaces the

fields by their zero modes and performs the integration over these modes. In order

to perform the OPE between Nmn and δ(BN) one has to Taylor expand δ(BN), as

discussed in [22],

δ((BN(y)) = δ(BN0ω(y) +BN̂(y)) = (5.58)

δ(BN0ω(y)) + (BN̂ (y))δ′(BN0ω(y)) +
1

2
(BN̂(y))2δ′′(BN0ω(y)) + · · · ,

where N̂ denotes N after omission of the zero mode. The holomorphic one form

ω(y) is constant on the torus:

ω(y) =
1

4π2τ2
, (5.59)

where τ2 is the imaginary part of the modulus τ . The b ghost also contains Nmn’s

which have to be taken into account if one is removing all fields of nonzero weight.

Let us start with the first term, the local b ghost, bB(u). The second term of b̃(u, y),

with the integration in it, will be dealt with later. After replacing b̃(u, y) by b(u) in

the amplitude, B(N)
i1···ik , becomes a sum over n, which counts the number of Nmn’s

the local b ghost provides, of the following objects:

B(N)
i1···ik,n =

∫

[Dλ][DN ][Dd][Dθ](
N
∏

i=2

∫

dzi)

∫

duµ(u)
3
∑

j=0

fjm1n1···mk+nnk+n
(z, u, w)

Nm1n1(zi1) · · ·Nmknk(zik)Nmk+1nk+1(w) · · ·Nmk+nnk+n(w)(λγ13d)(y) · · · (λγ45d)(y)

(λd)(y)λβ1 (y)(ǫT )αβγβ1···β11
Λαβγ(y)θ

β2(y) · · · θβ11(y)

δ(j)(N12(w))δ(N13(y)) · · · δ(N45(y))δ(J(y))e−S , (5.60)

where δ(j) denotes the jth derivative of the delta function and the sum runs from

zero to three because b does not contain δ(4)(B1N) or higher derivatives.

The product of the eleven delta functions, including the one from b, becomes a

sum of products of eleven δ(j)(BIN0) after the Taylor expansion. Let us start with

the first term in this sum, i.e. the one without N̂ ’s and no derivatives on the delta

functions. In this case the Nmjnj (zj)’s from (5.57) have OPE’s with themselves and

with the λ’s from the PCOs. Let us first concentrate on the term in which all Nmn’s

get contracted with an explicit λ. That term is given by4

C(N)
i1···ik,n =

∫

[dλ][dN ][D16d][D16θ]

[

N
∏

i=2

∫

dzi

]

∫

dufm1n1···mk+nnk+n
(z1, · · · , zN , u)

4Since the distinction between worldsheet fields and their zero modes plays a central role in the

argument, zero modes are denoted in an explicit way, unlike in other parts of this work.
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[

k
∏

l=1

F (zil , y)

]

F (w, y)nNm1n1 · · · Nmk+nnk+nλβ1

0 (λ0γ
13d(y)) · · · (λ0γ

45d(y))

(λ0d(y))(Λ0)αβγ(ǫT )αβγβ1···β11
θβ2(y) · · · θβ11(y)δ(N12

0 ) · · · δ(N45
0 )δ(J0)e

Spθ , (5.61)

where

F (z, y) = ∂zlogE(z, y) (5.62)

and E(z, y) is the holomorphic prime form, which goes like z−y when z → y [3, 18].

Nmn are abstract Lorentz generators for the λ,w sector and they act to the right.

They should not be thought of as containing (zero) modes of the λ or w worldsheet

fields. The Nmn merely multiply every index on a λ or w they hit by a two form

gamma matrix. Up to now only contractions between Nmn and the explicit λ’s have

been considered, but if two or more Nmn’s contract with each other in B(N)
i1···ik,n one

gets a term of the form C(N)
i1···il,m, with l +m < k + n, where the poles in zi − zj are

included in the unspecified function f .

The last step of our argument is showing all terms with derivatives on the delta

functions can also be written as a sum of terms of the form C(N)
i1···ik,n. To see this

note that if a derivative acts on δ(Nab) one of the Nmn must provide this zero

mode, otherwise the integral vanishes. This step just reduces the number of Nmn’s

in B(N)
i1···ik,n that must be contracted, so in fact it becomes of the form C(N)

i1···il,m where

k+n− l−m is the number derivatives acting on the delta functions. Since the zero

mode measures [dλ] and [dN ] are Lorentz invariant one can pull the N out of these

integrals. This concludes the main part of the argument that a one-loop amplitude

can be written as a sum of terms proportional to Iβ2···β11 .

One still needs to consider the second term in b̃(u,w). This was not included

in the above discussion because it contains ∂Nmn(v). This does not change the

argument much, after the OPE’s this part of the amplitude will also have the form

of C(N)
i1···ik,n where the effect of the v derivative and the integral over v are included

in f .

To see A(N) can be written as a sum of terms proportional to Iα1

β1···β11
one can

use the above reasoning with a slight adjustment. This consists of replacing λβ1(y)

by λα1(z1) in (5.57) and adding an α1 index to f . The only effect this has is the

replacement of some F (zi, y) by F (z1, zi) in (5.61), apart from the fact α1 and β1

are not contracted anymore.

Four point function

The one-loop four-point function with an unphysical state in the formulation without

an integral over B vanishes. This should come as a surprise after the result of the

previous section, where it was shown that the QS variation of the PCOs does not

vanish. The vanishing of the amplitude is instead achieved after the integral over

the d zero modes has been performed.
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The one-loop four-point amplitude is an example of an amplitude in which only

the zero modes contribute (cf. [22]). It turns out only three terms have enough

factors of dα and Nmn to give a non-vanishing answer. This will become clear in

equation (5.64) below. Thus one can immediately replace all the fields in (5.41) by

their zero modes:

B(4) =

∫

[dλ][dN ]d16dd16θQSΩ

4
∏

i=2

Uib̃B1(λB2d) · · · (λB10d)(λd) (5.63)

δ(B1N) · · · δ(B10N)δ(J)Λαβγ(ǫT )αβγβ1···β11
θβ1 · · · θβ11 .

For the d integration to be non-vanishing there must be a total of sixteen d zero

modes, therefore the only terms of bB1 that contribute are the ones with four d’s

and there are only three such terms:

(bB)|d4 = − 1

1536
γαβmnp(dγ

mnpd)(Bd)α(Bd)βδ
′(BN) (5.64)

−1

8
c1
γδαρ
mn Nmndρ(Bd)α(Bd)β(Bd)γδ

′′(BN)

− 1

16
c4
δγβα
mnpqN

mnNpq(Bd)α(Bd)β(Bd)γ(Bd)δδ
′′′(BN),

where the invariant tensors c1 and c4 can be read off from (2.39)-(2.42) and (3.139)-

(3.148). Note the N integration will only be non-vanishing if the fourth vertex

operator provides an Nmn zero mode. Moreover there are no terms in the b ghost

with three d’s and no derivatives on δ(BN). Such terms could have contributed here.

The three terms above turn out to all be proportional to (for Bab = δ1[aδ
2
b], B

a
b =

Bab = 0)

d12d3d4d5δ
′(N12). (5.65)

For the first term this follows from direct computation using the gamma matrices

as listed in section 3.2.4. Actually, one could have predicted the fact that three of

the four dα’s are da’s and one is a dab, by looking at the M charge of the full

term. δ′(N12) has M charge two and since γαβmnp(dγ
mnpd)(Bd)α(Bd)βδ

′(BN) has

M charge zero, the d part must have M charge minus two. The only way four d’s

can give M charge minus two is when three of them are a da (M charge − 3
4 ) and

the fourth is a dab (M charge 1
4 ).

The second term can be reduced as follows:

(c1)
γβαρ
mn Nmndρ(Bd)α(Bd)β(Bd)γδ

′′(BN) = (5.66)

(c1)12 a1···a8d
a7a8

1

2
ǫa1a212ada

1

2
ǫa3a412bdb

1

2
ǫa5a612cdcδ

′(N12),

where the M charge conservation property of invariant tensors was used together

with (Bd)a = 0. After observing that (c1)aba1···a8 is an SU(5) invariant tensor that
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is antisymmetric in the middle three pairs of indices (a1a2, a3a4, a5a6) and there is

only one invariant tensor with these symmetries [40], namely (ǫaba1a2[a3
ǫa4]a5a6a7a8

+

5 perms), one finds that the second term in the b ghost is proportional to

(c1)12343545a7a8d
a7a8d3d4d5δ

′(N12) = d12d3d4d5δ
′(N12). (5.67)

The same logic can be applied to the third term although this case is slightly simpler.

α, β, γ, δ has to be +, ab, cd, ef and since (Bd)+ = d12 one automatically gets this

factor.

The third integrated vertex operator must provide an N12 zero mode. It then

follows that B(4) is proportional to Iβ2···β11 . This integral can be written as a sum

over k just as in (5.48). In this sum the k = 0, 1, 2, 6 terms vanish because of the

λ integration and the k = 4, 5 terms vanish due to the d integration (note that bB1

contains three da’s and Y4, Y5 contain at least three da’s). The k = 3 term is given

by

(bB1)|d4(I3)a1···a6β2···β11(Y3)
a1···a6 =

1

32
d12d3d4d5

(

ǫaba1a2cdcD12abǫ
da3a4a5a6dd+

(5.68)

ǫaba1a2cǫdea3a4fdcdfD12abded
a5a6 +

1

2
ǫaba1a2cǫdea3a4f ǫgha5a6jdcdfdjD12abdeghd+

)

∫

[dλ]
1

λ+
λβ1λa1a2λa3a4λa5a6Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11

=

−1

4
d12d3d4d5ǫ

aba1a2cdcddD12ab

∫

[dλ]λβ1λdλa5a6Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11
+

−d12d3d4d5ǫ
aba1a2cdcdfD12ab

∫

[dλ]λβ1λa1a2λ
fΛδ1δ2δ3(ǫT )δ1δ2δ3β1···β11

= 0,

where the following identity was used

D12abcdd
ef = −δ[ec δf ]

d D12ab − δ
[e
1 δ

f ]
2 Dabcd − δ[ea δ

f ]
b Dcd12 (5.69)

and the integral vanishes because ǫT is traceless.

Thus, for the four-point one-loop amplitudes with aQS exact state the terms that

do not vanish after the λ,N integral now vanish because they contain a square of

fermionic quantity, namely dαdα (no sum). Decoupling of unphysical states in higher

point function is much more tedious to check since the nonzero mode integrations

are non-trivial and the lack of manifest Lorentz invariance.

5.2.2 Including B integration

At tree level decoupling of unphysical states was restored after integrating over the

constant spinors C. In this section manifest Lorentz invariance for one-loop ampli-

tudes is restored by including the B integration. Whether this leads to decoupling
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of unphysical is the subject of this section. Similar to the tree-level case one can

show that all amplitudes are proportional to a certain invariant tensor (at tree level

this was (ǫT )) and amplitudes with QS exact states are proportional to the trace of

this invariant tensor. However, at one loop the trace of this tensor does not vanish.

Following the same steps as in the previous subsection (section 5.3 contains

details of these steps), one can show that all amplitudes can be written as a sum of

terms proportional to the following zero mode integral

Xα1···α11

β1···β11m1n1···m10n10
≡
∫

[dB][dC][dλ][dN ]λα1 · · ·λα11 (5.70)

B1
m1n1

· · ·B10
m10n10

C1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J).

Proportional here means in the sense of tensor multiplication: in the terms that

appear after contractions, the tensorX is multiplied by gamma matrices. Evaluating

the integrals in (5.70) is much easier than one might have anticipated, because X

must be an invariant tensor, that is symmetric and gamma matrix traceless in the

α’s, antisymmetric in the β’s and antisymmetric in both mi ↔ ni andmini ↔ mjnj .

To find out how many independent invariant tensors with these properties exist, one

has to compute the number of scalars in the relevant tensor product, which is one

(see also section 3.2.3). The relevant invariant tensor has already appeared in the

one-loop prescription in chapter 2:

(ǫTR)α1···α11

β1···β11m1n1···m10n10
≡ (ǫT )

((α1α2α3

β1···β11
R
α4···α11))
m1n1···m10n10 , (5.71)

where the double brackets denote gamma matrix traceless, cf. section 3.5. Lorentz

invariance has completely fixed X , there is no freedom remaining.

Starting from a correlator with an unphysical state and integrating QS by parts,

it will hit a θ from a PCO (where the total derivative in moduli space obtained when

QS acts on b̃ is again suppressed, this derivative does not play a role here). This

means all amplitudes with an unphysical state can be written as a sum of terms

proportional to the trace of (ǫTR):
∫

[dB][dC][dλ][dN ]λα2 · · ·λα11B1
m1n1

· · ·B10
m10n10

λβ1C1
β1
C2
β2

· · ·C11
β11

δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J) = (ǫTR)α1···α11

α1β2···β11m1n1···m10n10
. (5.72)

There are two independent invariant tensors with indices and symmetries of the

trace of (ǫTR), so one expects a non-vanishing trace. Indeed, it is proved in section

5.2.3 that this trace does not vanish, which provides another proof for the fact that

the PCO is not QS closed. The non-vanishing of the trace implies the proof of

decoupling of unphysical states at tree level does not generalise to one loop and one

needs a new argument. Such a new argument is presented in section 5.4, where it is

shown that unphysical states decouple to all loop order.

123



Chapter 5 - Decoupling of unphysical states

Comparison to non-minimal formalism

In this subsection a brief comparison with the non-minimal formalism [25] is made.

In this case all insertions are QS closed and decoupling of unphysical states follows

straightforwardly.

In the non-minimal formalism the PCOs are replaced by

N = e−(λλ̄+rθ+ 1
2NmnN̄

mn+ 1
4Smnλγ

mnd+JJ̄+ 1
4Sλd). (5.73)

This is invariant under QS :

QSN = (λr − λr + N̄mn 1

2
λγmnd− N̄mn 1

2
λγmnd+ J̄(λd) − J̄(λd))N = 0. (5.74)

Thus, all problematic terms of the minimal formalism are manifestly absent here

and QS exact states decouple. In other words, these amplitudes vanish because two

equal terms are subtracted.

5.2.3 Non-vanishing of the trace of (ǫTR)

In this subsection the trace Tr (ǫTR) of the tensor (ǫTR) is computed. To show that

this trace does not vanish it is convenient to define a tensor Y and an operator X̂ :

Ym1···n10 ≡ λ̄α4 · · · λ̄α11R
α4···α11
m1···n10

, (5.75)

X̂ ≡ ψβ12 · · ·ψβ16 λ̄α1 · · · λ̄α3T
β12···β16,α1α2α3ψα

∂

∂λ̄α
, (5.76)

where ψα is a fermionic Weyl spinor and λ̄α is a pure spinor of opposite chirality to

λα. Note that, because λ̄α is a constrained spinor, ∂/∂λ̄α is only defined up to a

gauge transformation:

δ
∂

∂λ̄α
= Am(γmλ̄)

α. (5.77)

The operator X̂ , however, is well defined, since it is gauge invariant. This follows

from

λ̄γqψψβ12 · · ·ψβ16 λ̄α1 · · · λ̄α3T
β12···β16,α1α2α3 = 0. (5.78)

That can be shown be noting there are no scalars in Asym616′ ⊗ 10 ⊗ Gam416′,

where Gam means the symmetric and gamma matrix traceless tensor product. Note

one can use
∂

∂λ̄α
λ̄β = δαβ (5.79)

when ∂/∂λ̄α is part of a gauge invariant quantity, Sα(∂/∂λ̄α), because

Sα
∂

∂λ̄α
λ̄γmλ̄ = Sγmλ̄ = 0, (5.80)
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the last equality is a consequence of gauge invariance.

The first step of the argument is showing that X̂Y 6= 0. The second and last step

is proving this implies the trace of (ǫTR) does not vanish. Consider the following

component of X̂Y in a Lorentz frame in which the only nonzero component of λ̄ is

λ̄+:

X̂Ya1b1a2b2···a10b10 = (λ̄γmψ)(λ̄γnψ)(λ̄γpψ)(ψγmnpψ) (5.81)
[

2(ψγa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(ψγa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(ψγa8b8b3b6a9 λ̄)(λ̄γa10b10b4b7b9 λ̄)

2(λ̄γa1b1a2a3a4 λ̄)(λ̄γa5b5b2a6a7 λ̄)(λ̄γa8b8b3b6a9 λ̄)(ψγa10b10b4b7b9 λ̄)

+permutations
]

,

where the permutations make the RHS antisymmetric in aibi ↔ ajbj . This reduces,

up to an overall constant which is not zero5, to

X̂Ya1b1a2b2···a10b10 = ǫc1···c5ψc1 · · ·ψc5(λ̄+)10ψ+γ
++
a1b1a2a3a4

γ++
a5b5b2a6a7

(5.84)

γ++
a8b8b3b6a9

γ++
a10b10b4b7b9

+ permutations = ǫc1···c5ψc1 · · ·ψc5(λ̄+)10ψ+(ǫ10)a1···b10 6= 0.

What remains is to show the non-vanishing of this tensor implies the non-vanishing

of the trace of (ǫTR).

X̂Ym1n1···m10n10 = ǫβ1···β16 [(ǫT )
((α1α2α3

β1···β11
ψα11ψβ12 · · ·ψβ16 ]R

α4···α11))
m1n1···m10n10 λ̄α1 · · · λ̄α10 .

(5.85)

For the term in the square brackets one can move the α11 to (ǫT ) by using

0 = (ǫT )α1α2α3

[β1···β11
ψβ12 · · ·ψβ16ψα11] = (5.86)

6(ǫT )α1α2α3

[β1···β11
ψβ12 · · ·ψβ16]ψα11 + 11(ǫT )α1α2α3

α11[β1···β10
ψβ11 · · ·ψβ16].

The first line is zero because it contains an antisymmetrisation of seventeen indices

that only take sixteen values.

X̂Ym1n1···m10n10 = ǫβ1···β16 [(ǫT )
((α1α2α3

α11β1···β10
ψβ11 · · ·ψβ16 ]R

α4···α11))
m1n1···m10n10 λ̄α1 · · · λ̄α10 .

(5.87)

Since (ǫTR)α1···α11

α11β2···β11m1n1···m10n10
is fully antisymmetric in β2 · · ·β11 and symmetric

and gamma matrix traceless in α1 · · ·α10, one can conclude from the non-vanishing

of X̂Y that

(ǫT )
((α1α2α3

α11β1···β10
R
α4···α11))
m1n1···m10n10 6= 0. (5.88)

5Constants were omitted in the following two relations:

(λ̄γmψ)(λ̄γnψ)(λ̄γpψ)(ψγmnpψ) ∝ ǫc1···c5ψc1 · · ·ψc5 (λ̄+)3, (5.82)

(γ++
a1b1a2a3a4

γ++
a5b5b2a6a7

γ++
a8b8b3b6a9

γ++
a10b10b4b7b9

+ permutations) ∝ (ǫ10)a1b1···a10b10 . (5.83)
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5.3 No-go theorem for QS closed, Lorentz invari-

ant PCOs

In the previous section it was proved that the Lorentz invariant PCO was not QS
closed. A logical next step is to give a modified prescription in which the PCO

is QS closed. However the non-vanishing of the trace of the invariant tensor ǫTR,

which played an important role in the previous section, places severe restrictions on

a QS closed PCO. It turns out that any Lorentz invariant QS closed PCO leads to

vanishing of all one loop amplitudes.

A Lorentz invariant QS closed PCO is defined as an operator Y that satisfies

• Y = fβ1···β11(λ)θ
β1 · · · θβ11 ,

• fβ1···β11(λ) has Jλw charge −11,

• fβ1···β11(λ) is a Lorentz tensor,

• QSY = 0.

The original proposal in [22] is the special case where the function f is given by6

fβ1···β11 =

∫

[dC]C1
[β1

· · ·C11
β11]δ(C

1λ) · · · δ(C11λ). (5.90)

This satisfies the first three conditions, but although QSY ∼ λδ(λ) the fourth bullet

does not hold for (5.90).

Using the fact that f is a Lorentz tensor one finds,
∫

[dB][dλ][dN ]λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

fβ1···β11(λ)δ(B
1N) · · · δ(B10N)δ(J) =

c1(ǫTR)α1···α11

β1···β11m1n1···m10n10
, (5.91)

for some c1. This follows from the fact that (ǫTR) is the unique Lorentz tensor with

the indicated tensor structure. Now the crucial observation is that for functions f

such that QSY = 0 the integral (5.91) must be equal to zero. Indeed, using

0 = QSY = fβ1···β11(λ)λ
β1θβ2 · · · θβ11 . (5.92)

leads to

0 =

∫

[dB][dλ][dN ]λα2 · · ·λα11B1
m1n1

· · ·B10
m10n10

(

fβ1···β11λ
β1θβ2 · · · θβ11

)

6The C integral can be evaluated to give

fβ1···β11
= (ǫT )αβγ

β1···β11
Λαβγ . (5.89)
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δ(B1N) · · · δ(B10N)δ(J) = c1(ǫTR)α1···α11

α1β2···β11m1n1···m10n10
θβ2 · · · θβ11 . (5.93)

The trace of (ǫTR) does not vanish as shown in section 5.2.3. Hence one cam

conclude that

c1 = 0. (5.94)

To prove vanishing of all one-loop amplitudes the above result is not enough,

because there are also zero mode integrals with derivatives on the delta functions

and N insertions. After the nonzero mode integration is performed, an arbitrary

amplitude is reduced to a sum of zero mode integrals, all of which are of the form

Eα1···α11p1q1···pLqL

β1···β11m1n1···m10n10r1s1···rLsL
= (5.95)

∫

[dB][dN ][dλ]

L
∏

j=1

Npjqj

L1
∏

i1=1

B1
ri1si1

L1+L2
∏

i2=L1+1

B2
ri2si2

· · ·
L
∏

i10=L1+···+L9+1

B10
ri10si10

λα1 · · ·λα11fβ1···β11(λ)B
1
m1n1

· · ·B10
m10n10

δ(L1)(B1N) · · · δ(L10)(B10N)δ(J),

where all the fields are zero modes and L =
∑10
P=1 LP and δ(m)(x) denotes the m-th

derivative of δ(x). All zero mode integrands have to be of the form (2.48), (2.49) for

a non-vanishing answer. In order to write down the above zero mode integrand one

starts from the general functions fB, hB from chapter 2 and uses the following four

arguments.

• For each P the total number of BP ’s outside the delta functions is equal to

the number of derivatives on δ(BPN) plus one. This can be inferred from

the explicit form of the b ghost, (2.38), and the Taylor expansion of the delta

functions. This is reflected in (5.95) because LP appears in two places.

• For a nonzero answer the total number of N zero modes must equal the total

number of derivatives on the delta functions. This gives the restriction L =
∑

LP .

• One might have expected derivatives on δ(J) as well, but for a non-vanishing

answer there must also be enough J zero modes, so one can always reduce the

amplitude to contain only δ(J).

• Compared to (2.48) the λ dependence is less general. It is possible to restrict

to this class of integrands because fβ1···β11(λ) is a Lorentz tensor. To see this

note the OPE’s of N and J with f do not introduce derivatives:

Nmn(z)fβ1···β11(λ(w)) ∼
11
∑

i=1

(γmn)αβi
fβ1···α···β11(λ(w))

1

z − w
, (5.96)

J(z)fβ1···β11(λ(w)) ∼ −11fβ1···β11(λ(w))
1

z − w
, (5.97)

where the α index is in the ith position.
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Note that the free indices on E can be either contracted among each other or with

d or θ zero modes. The integral in (5.95) can be evaluated by using the definition

of B integration in (2.50). Let us call the integrand of (5.95) g and write it as

g(λ,N, J,BP ) = λα1 · · ·λα11hβ1···β11
α1···α11

(N, J,BP )
10
∏

P=1

δ(LP )(BPN)fβ1···β11(λ), (5.98)

where h is a polynomial depending on (N, J,B) as

(N)L
10
∏

P=1

(BP )LP +1. (5.99)

It also contains other fields (e.g. θ, d) but these are suppressed.

The integrations can be performed using (2.50):

∫

[dB][dλ][dN ]g(λ,N, J,BI ) ≡ ∂

∂λα1
· · · ∂

∂λα11
(ǫTR)α1···α11

β1···β11m1n1···m10n10
(5.100)

∂

∂B1
m1n1

· · · ∂

∂B10
m10n10

10
∏

P=1

(
∂

∂BPpq

∂

∂Npq
)LP λγ1 · · ·λγ11hβ1···β11

γ1···γ11 (λ,N, J,BP ) =

(ǫTR)α1···α11

β1···β11m1n1···m10n10

∂

∂B1
m1n1

· · · ∂

∂B10
m10n10

10
∏

P=1

(
∂

∂BPpq

∂

∂Npq
)LP hβ1···β11

α1···α11
(λ,N, J,BP )

This reduces to (2.50) with KI = 0 if one chooses fβ1···β11(λ) as in (5.90) and uses

hβ1···β11
α1···α11

=
∂

∂C1
β1

· · · ∂

∂C11
β11

(hB)α1···α11 . (5.101)

Using the above definition the integral in (5.95) can be evaluated as

Eα1···α11p1q1···pLqL

β1···β11m1n1···m10n10r1s1···rLsL
=

cL1···L10δ
([p1
r1 δq1]

s1 · · · δ[pL
rL
δqL])
sL

(ǫTR)α1···α11

β1···β11m1n1···m10n10

+symmetrisation in([rLP−1+1, sLP−1+1], . . . , [rLP
, sLP

], [mPnP ]), (5.102)

for some constant cL1···L10 . Note the round brackets denote symmetrisation in

[p1q1], . . . , [pLqL]. (5.103)

The second line above includes ten symmetrisations, one for each P . E is symmetric

in these indices because they all appear on BI . (Note that by definition L0 = 0).
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To get some insight how to obtain (5.102) consider the case L1 = L = 1. In that

case the RHS of (5.95) is given by

(ǫTR)m′
1n

′
1···m′

10n
′
10

∂

∂B1
p′q′

∂

∂Np′q′

∂

∂B1
m′

1n
′
1

· · · ∂

∂B10
m′

10n
′
10

NpqB1
r1s1B

1
m1n1

· · ·B10
m10n10

,

(5.104)

where the spinor indices on (ǫTR) are suppressed. The last nine B differentiations

are trivial resulting in:

(ǫTR)m′
1n

′
1m2n2···m10n10

∂

∂B1
p′q′

∂

∂Np′q′
∂

∂B1
m′

1n
′
1

NpqB1
r1s1B

1
m1n1

. (5.105)

Let us first perform the N differentiation followed by the last two B differentiations:

(ǫTR)m′
1n

′
1m2n2···m10n10

∂

∂B1
pq

∂

∂B1
m′

1n
′
1

B1
r1s1B

1
m1n1

= (5.106)

(ǫTR)m′
1n

′
1m2n2···m10n10

δ([pr1 δ
q]
s1δ

[m′
1

m1 δ
n′

1])
n1 = δ[pr1δ

q]
s1(ǫTR)m1n1···m10n10 +(r1s1 ↔ m1n1),

which agrees with (5.102). The above computation clarifies the appearance of the

Kronecker delta’s. It is a consequence of the fact ∂
∂B1

pq
and ∂

∂Npq appear contracted.

The symmetrisations in (5.102) follow from the product rule of differentiation.

With these preliminaries it is possible to prove that if QSY = 0 then all one-loop

amplitudes vanish:

No go theorem

QSY = 0 =⇒ cD1···D10 = 0, (5.107)

cD1···D10 = 0 =⇒ all one loop amplitudes vanish, (5.108)

Proof of (5.107). In terms of f the condition on the LHS of (5.107) reads

0 = QSY = fβ1···β11(λ)λ
β1θβ2 · · · θβ11 . (5.109)

This implies

0 = Eα1···α11p1q1···pLqL

α1β2···β11m1n1···m10n10r1s1···rL1sL1
= (5.110)

cL1···L10δ
([p1
r1 δq1]

s1 · · · δ[pL
rL
δqL])
sL

(ǫTR)α1···α11

α1β2···β11m1n1···m10n10

+symmetrisation in([rLP−1+1, sLP−1+1], . . . , [rLP
, sLP

], [mPnP ]),

Since the trace of (ǫTR) does not vanish, the invariant tensor Tr (ǫTR) has at least

one non-vanishing component. Let us denote this index choice by hats. If one

chooses

risi = m̂P n̂P , i = LP−1 + 1, · · · , LP , (5.111)

piqi = m̂P n̂P , i = LP−1 + 1, · · · , LP , (5.112)
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the tensor on the RHS of (5.110) is non-vanishing. Therefore

cL1···L10 = 0. (5.113)

Proof of (5.108). As explained around (5.95) all amplitudes can be written as a sum

of terms, where all terms contain a cL1···L10 .

This no-go theorem can be used to prove that the YC as defined in (2.23) are not

QS closed. In order to see this note that computations performed in the minimal

pure spinor formalism including an integration over C have led to non-vanishing

answers, see e.g. [22]. In fact even agreement with the RNS formalism has been

show where possible. From the no-go theorem one can conclude Y is not QS closed:

QS

∫

[dC](C1θ) · · · (C11θ)δ(C1λ) · · · δ(C11λ) 6= 0. (5.114)

This implies that the individual factors, YC , cannot be QS closed either:

QS(Cθ)δ(Cλ) 6= 0. (5.115)

5.4 Proof of decoupling of unphysical states

The PCO Y is not QS closed, hence the standard argument for decoupling of un-

physical states does not apply. However that does not mean unphysical states do

not decouple. One just has to use other arguments. A proof of decoupling of un-

physical states in the minimal pure spinor formalism including integrals over C and

B is presented in this section. Firstly the tree-level argument is reviewed in a form

that generalises to the higher loops and it is shown that QS exact states decouple to

all orders. Secondly a new symmetry of the insertions is exposed. This symmetry

follows from the particular form of the picture raising operators, ZB and it plays a

crucial role in the proof. Finally this symmetry is combined with arguments based

on Lorentz invariance to prove decoupling of unphysical states at every genus.

5.4.1 Tree-level amplitudes

After integrating out the nonzero modes every tree-level amplitude assumes the form

A =

∫

[dλ][dC]d16θλαλβλγfαβγ(θ, a, k)θ
β1 · · · θβ11C1

β1
· · ·C11

β11
δ(C1λ) · · · δ(C11λ),

(5.116)

where a denotes all polarisations and k denotes all momenta. Note that the integra-

tion over the nonzero modes does not affect the factor of YC1 · · ·YC11 . This can be

justified either by writing YC as a function of only zero modes or by inserting the

factor of (YC)11 at z = ∞ on the worldsheet. The three factors of λ originate from
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the three unintegrated vertex operators and the factors of θ, C and δ(Cλ) from the

eleven picture changing operators YC . In order to evaluate (5.116) first note that

only terms with five θ’s can contribute:

A =

∫

[dλ][dC]d16θλαλβλγf
(5)
αβγβ12···β16

(a, k) (5.117)

θβ1 · · · θβ16C1
β1

· · ·Cβ11δ(C
1λ) · · · δ(C11λ).

The next step is showing that the integration is a projection on the scalar in f (5).

To this end the tensor product (λ)3(θ)5 is written in terms of its irreducible repre-

sentations:

λαλβλγθβ12 · · · θβ16 = Tαβγβ12···β16Tα′β′γ′β′
12···β′

16
λα

′

λβ
′

λγ
′

θβ
′
12 · · · θβ′

16+ (5.118)

(T1)
αβγβ12···β16[mn](T1)α′β′γ′β′

12···β′
16[mn]λ

α′

λβ
′

λγ
′

θβ
′
12 · · · θβ′

16+

∑

i≥2

(Ti)
αβγβ12···β16xi(Ti)α′β′γ′β′

12···β′
16xi

λα
′

λβ
′

λγ
′

θβ
′
12 · · · θβ′

16 ,

where xi are the indices representing the representation. To obtain the above ex-

pansion one first needs to compute the tensor product Gam316 ⊗ Asym516. As

discussed in section 3.4.1 this contains one scalar. One also finds there is one 45 in

the tensor product, hence the second line. The sum in the last line runs over all the

other irreducible representations in the tensor product, each one has an invariant

tensor (Ti) associated to it. Furthermore all the (Ti)’s satisfy

Tαβγβ12···β16(Ti)αβγβ12···β16xi
= 0. (5.119)

This can be proved by contracting both sides of (5.118) with Tαβγβ12···β16 . The

integrations in (5.117) can be evaluated by Lorentz invariance:

(∫

d16θθβ1 · · · θβ16

)(∫

[dλ][dC]λαλβλγC1
β1

· · ·Cβ11δ(C
1λ) · · · δ(C11λ)

)

=

ǫβ1···β16(ǫT )αβγβ1···β11
= Tαβγβ12···β16 (5.120)

After using (5.119) one sees all the non-scalar terms in (5.118) are annihilated by

the integration. It is therefore a projection on the scalar as claimed. The final

expression for the amplitude becomes

A = Tαβγβ12···β16f
(5)
αβγβ12···β16

(a, k). (5.121)
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Decoupling of QS exact states at tree level

After integrating out the nonzero modes, the amplitude containing a QS exact state

becomes,
∫

[dλ]d16θ(QSΩ(λ, θ, a, k))θβ1 · · · θβ11C1
β1

· · ·Cβ11δ(C
1λ) · · · δ(C11λ), (5.122)

for some Ω, where all fields are zero modes. The above integral will be shown to

vanish for any Ω.

Since only the terms with five θ’s and three λ’s in QSΩ contribute, let us focus on

terms in Ω with two λ’s and six θ’s. The upshot of the proof is that no Lorentz scalar

can be constructed from two λ’s and six θ’s. Therefore there will be no scalar in

QS(λ)2(θ)6 and since the integration projects on the scalar the amplitude vanishes.

In order to make this argument precise let us write:

Ω|(λ)2(θ)6 = λαλβθβ1 · · · θβ6 f̃αββ1···β6(a, k) (5.123)

for some f̃ . The next step is writing the tensor product (λ)2(θ)6 in terms of its

irreducible representations:

Ω|(λ)2(θ)6 = f̃αββ1···β6(a, k)

(

∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′β′

1···β′
6yi
λα

′

λβ
′

θβ
′
1 · · · θβ′

6

)

.

(5.124)

In the above formula it is important to note that there are no scalars in the tensor

product of two pure spinors and six fermionic spinors. This is reflected by the fact

that yi represents (a positive number of) indices for every i. Now one can perform

the QS transformation:

QSΩ|(λ)2(θ)6 = f̃αββ1···β6(a, k) (5.125)

(

∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′[γ′β′

2···β′
6]yi

λα
′

λβ
′

λγ
′

θβ
′
2 · · · θβ′

6

)

.

After invoking (5.120) one finds
∫

[dλ]d16θ
(

QSΩ|(λ)2(θ)6
)

θβ1 · · · θβ11C1
β1

· · ·Cβ11δ(C
1λ) · · · δ(C11λ) = (5.126)

f̃αββ1···β6(a, k)
∑

i

(T̃i)
αββ1···β6yi(T̃i)α′β′[γ′β′

2···β′
6]yi

Tα
′β′[γ′β′

2···β′
6] = 0

This vanishes because

Tα
′β′[γ′β′

2···β′
6] = 0, (5.127)

which follows from the statement that there are no scalars in (λ)2(θ)6. This concludes

the proof that (5.122) vanishes.
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5.4.2 Higher-loop amplitudes

In order to prove decoupling of unphysical states at higher-loop amplitudes one

can take similar steps to the tree-level case. This means that one first reduces the

amplitude to a zero mode integral, which is effectively a projection onto a scalar and

then one shows there is no scalar when one started with a QS exact state. In the

higher-loop case an additional ingredient is needed for the second step which is a

symmetry possessed by the integrand of the functional integral. This symmetry is

closely related to the transformations in (4.50).

Additional symmetry

The amplitude prescription contains products of PCOs ZB and ZJ . The main ob-

servation is that

ZBZJ = Bmnλγ
mnd δ(BmnN

mn)(λd)δ(J) (5.128)

is invariant under

δBmn = (λγ[m)αf
α
n]. (5.129)

where fnα are constants. This transformation acts on the BmnN
mn and Bmnλγ

mnd

as,

δBmnN
mn = (λγm)αf

α
n (λγmnw) = (λγnfn)(λw), (5.130)

δBmn(λγ
mnd) = (λγm)αf

α
n (λγmnd) = (λγnfn)(λd). (5.131)

Since all these transformations contain either (λw) or (λd) and ZJ contains both

δ(λw) and λd:

δ(ZBZJ) = 0. (5.132)

Now recall that at genus g, 3g−3 B’s (one at genus one) enter via the b ghost. These

B’s are taken to be inert. The remaining 7g + 3 B’s (9 at genus one) are taken to

transform as in (5.129). Note that at one loop, the factor of (ZB)9ZJ is placed at a

single point on the worldsheet. At two-loop order, the additional factor of (ZB)7ZJ
is placed at a second point on the worldsheet. And at each additional loop order,

one places the new factor of (ZB)7ZJ at a gth point on the worldsheet. With this

choice, (5.129) is an invariance of the theory for 7g+3 B’s and the amplitudes must

respect this symmetry.

One can understand the origin of this symmetry by going back to the first prin-

ciples derivation of the amplitude prescription in chapter 4. As shown there, PCO

insertions arise from gauge fixing the invariance due to pure spinor zero modes. The

auxiliary fields in the gauge fixing terms have gauge invariances (cf. (4.50)). The
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symmetry (5.129) is a remnant of these invariances. This suggests that the ampli-

tudes are also invariant under transformations of the (3g − 3) (one when g = 1)

factors of B involved in the b insertions7, but this will not be proved or used here.

One-loop amplitudes

After integrating out all nonzero modes, as well as the dα zero modes, every one-loop

amplitude can be written as

∫

[dλ][dN ][dC][dB]d16θλα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

fm1n1···m10n10
α1···α11

(θ, a, k) (5.133)

θβ1 · · · θβ11C1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J),

where all fields are zero modes and the integrand is invariant under the B transfor-

mation (5.129). As in the tree amplitude, the integration over the nonzero modes

does not affect the (YC)11 factor since this factor can be written in terms of only

zero modes. In this expression, eleven factors of λ originate as follows: one from

the unintegrated vertex operator, one from ZJ and nine from the nine factors of

ZB. In general the zero mode integral can contain additional factors of the Lorentz

currents N , higher powers of B and higher derivatives of δ(BN). These addi-

tional factors can be put into the form of (5.133) by integrating by parts using

that NpqBmn∂δ(BN) = −δ[pmδq]n δ(BN).

One can show that the integral in (5.133) is also a projection on a scalar. To see

this first note that there is one scalar in Gam1116 ⊗ Asym516 ⊗ Asym1045. This

implies one can write

λα1 · · ·λα11θβ12 · · · θβ16B1
m1n1

· · ·B10
m10n10

= (5.134)

(TR)α1···α11β12···β16
m1n1···m10n10

(

(TR)(λ)11(θ)5(B)10
)

+

∑

i

(Si)
α1···α11β12···β16
m1n1···m10n10xi

(

Si(λ)
11(θ)5(B)10

)xi
,

where the notation
(

(TR)(λ)11(θ)5(B)10
)

means that all indices of (TR) have been

contracted with those of λ, θ and B and
(

Si(λ)
11(θ)5(B)10

)xi
denotes an object that

has xi as its only free index and which transforms in some non-scalar representation.

Similar to the tree-level case the invariant tensors Si satisfy

((RT )(Si))
xi = 0. (5.135)

Note that since B is not a covariant tensor this is not the decomposition of a Lorentz

invariant object into a lot of Lorentz invariant terms like (5.118). However this does

7Recall that (3g − 3) (one when g = 1) of the ZB factors are absorbed into the b-insertions.
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not matter, the point of performing this expansion is that all the non scalar terms

vanish due to the integration. The last point follows from (5.135) and

∫

[dλ][dC][dB][dN ]λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

C1
β1

· · ·C11
β11

(5.136)

δ(C1λ) · · · δ(C11λ)δ(B1N) · · · δ(B10N)δ(J) = (ǫTR)α1···α11

β1···β11m1n1···m10n10
,

which is also a consequence of the fact there is only one Lorentz scalar in Gam1116⊗
Asym516⊗ Asym1045.

Decoupling of QS exact states

Decoupling of unphysical states will be shown by proving that if

λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

fm1n1···m10n10
α1···α11

(θ, a, k) (5.137)

can be written as QSΩ where Ω is invariant under the B transformation then (5.133)

vanishes.

Note Ω must contain ten λ’s, six θ’s and ten B’s. There are two scalars in

Gam1016⊗Asym616⊗Asym1045. Since Gam1116⊗Asym516⊗Asym1045 contains

only a single scalar andQS maps scalars to scalars, there is a basis of invariant tensors

such that one of the scalars is annihilated by QS and the other one, call it Ω1, has

a nonzero variation, QSΩ1 6= 0. This scalar is8

Ω1 =
(

T (λ)3(θ)5
) (

R(B)10(λ)7(θ)1
)

. (5.138)

Here (R(B)10(λ)7(θ)1) denotes the unique scalar obtained by contracting all indices

of the objects involved. The state QSΩ1 is a candidate exact state that may not

decouple. The scalar Ω1 however is not invariant under the transformation (5.129)

for nine of the ten B’s. In fact, one can show that Ω1 is invariant under the transfor-

mation (5.129) for only six of the ten B’s. To see this, note that
(

R(B)10(λ)7(θ)1
)

can be expressed as

(λγm1···m5λ)(λγm6···m10λ)(λγm11···m15λ)(λγm16···m20θ) (5.139)

contracted with the 20 vector indices of (B)10. If both indices of Bpq are contracted

with m1 · · ·m15, then Ω1 is invariant under the transformation (5.129) for that B

since (λγmn1···n4λ)(λγm)α = 0. However, if at least one index of Bpq is contracted

with m16 · · ·m20, then Ω1 is not invariant under the transformation (5.129) for that

B. Using the definition of Rα1···α8
m1···m20

, one finds there are four B’s whose indices are

contracted with m16 · · ·m20, so Ω1 is invariant under the transformation (5.129) for

six of the ten B’s.

8Another possible candidate,
`

T (λ)2(θ)6
´ `

R(B)10(λ)8
´

, vanishes identically because of (5.127).
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But since the gauge parameter must be invariant under (5.129) for nine of the

ten B’s, there is no way to generate Ω1 as a possible gauge parameter. Thus one

can conclude that if it is QS exact and invariant under the B transformation,

fm1n1···m10n10
α1···α11

(θ, a, k)λα1 · · ·λα11B1
m1n1

· · ·B10
m10n10

(5.140)

does not contain any scalars constructed from eleven λ’s, five θ’s and ten B’s. Since

the integration projects on the (single) scalar the total zero mode integral vanishes.

The precise argument is analogous to the steps in section 5.4.1.

Higher-loop amplitudes

The argument for g > 1 is exactly analogous. After integrating out all nonzero

modes, as well as the zero modes of dα, every g > 1 loop amplitude can be written

as
∫

d16θ[dλ][dC]λα1λα2λα3θβ1 · · · θβ11C1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ)

g
∏

I=1

(

[dBI ][dN I ]λα
I
4 · · ·λαI

11B1I
mI

1n
I
1
· · ·B10I

mI
10n

I
10
δ(B1IN) · · · δ(B10IN)δ(JI)

)

f
m1

1n
1
1···m

g
10n

g
10

α1α1α3α1
4···α

g
8
(θ, a, k) (5.141)

where all fields are zero modes and the integrand is invariant under the B transfor-

mation (5.129). Now the factors λ originate from the (7g + 3) factors of ZB and

the g factors of ZJ . Additional factors of N , B and derivatives of δ(BN) can be

removed as in the one-loop case.

In this case the analogue of (5.136) is

∫

[dλ][dC]λα1λα2λα3C1
β1

· · ·C11
β11
δ(C1λ) · · · δ(C11λ), (5.142)

g
∏

I=1

(

[dBI ][dN I ]λα
I
4 · · ·λαI

11B1I
mI

1n
I
1
· · ·B10I

mI
10n

I
10
δ(B1IN) · · · δ(B10IN)δ(JI)

)

= (ǫTRg)
α1α2α3α

1
4···α

g
11

β1···β11m1
1n

1
1···m

g
10n

g
10

where (ǫTRg) is the generalisation of (5.71) involving g factors of R.

There are g candidate QS exact states that may not decouple, which are the

analogs of (5.138) and are given by

ΩJ =
(

T (λ)3(θ)5
)

J−1
∏

I=1

(

R(BI)10(λ)8
) (

R(BJ )10(λ)7(θ)1
)

g
∏

I=J+1

(

R(BI)10(λ)8
)

(5.143)
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where BI denotes the B’s associated with the Ith zero mode. As in the one-loop

case, the term
(

R(BJ)10(λ)7(θ)1
)

is at most invariant under six of the ten BJ

transformations. But invariance under (5.129) requires invariance under seven of

the ten BJ transformations.

This concludes the proof that unphysical states decouple to all orders in g.

5.5 Origin of the problems

Based on the BRST methods of chapter 4 one would expect that the PCOs are QS
closed, since they originate from the gauge fixing term which is QS exact. However

it has been proved in this chapter that the PCOs are not closed inside correlators.

In order to explain this paradox let us go back to the first principles derivation of

the amplitude prescription in chapter 4. Both the minimal and the non-minimal

amplitude prescriptions were obtained by first coupling the pure spinor sigma model

to topological gravity and then proceeding to BRST quantise this system. The

BRST quantisation was applied to all gauge invariances, including the zero mode

shifts of the worldsheet fields. As shown in this section the gauge fixing condition

for these zero modes implicit in L3 (cf. (4.46)) sets all the zero modes to λα = 0.

However including this point in the target space of the curved βγ system that the

pure spinor sector is, leads to anomalies. More precisely Nekrasov showed that

the target space of curved βγ systems is subject to certain conditions, which are

necessary for conformal invariance of the worldsheet theory [21]. These conditions

dictate that the point λα = 0 cannot be part of the target space of the pure spinor

sigma model.

Focussing on the tree level case for a moment the gauge fixing Lagrangian for

the zero mode invariances is given by (after the BRST ghosts have been integrated

out):

L′
3 = παλ

α + π̃αθ
α. (5.144)

5.5.1 Minimal formalism

To express the fact that πα and π̃α have eleven independent components they were

parametrised as

πα = pIC
I
α, π̃α = p̃IC

I
α, I = 1, . . . , 11, (5.145)

where CIα is a matrix that must have maximal rank. Thus the gauge fixing condition

is given by

CIαλ
a = 0. (5.146)
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The eleven constant spinors CIα are the ones that enter in the minimal pure spinor

prescription. Indeed, using (5.145) one finds that the path integral contains

∫

[dpI ][dp̃I ] exp
(

pIC
I
αλ

a + p̃IC
I
αθ

α
)

=

11
∏

I=1

(CIαθ
α)δ(CIαλ

α) (5.147)

which are the eleven picture changing operators YC .

Implicit in (5.147) there is an analytic continuation in the field variables. A Weyl

spinor in ten Euclidian dimensions cannot be real, hence λ is complex and in the

minimal formulation only the holomorphic part appears. In equation (5.147) one

analytically continues λ to be real and considers πI to be purely imaginary. This

can be done if the explicit expressions appearing in the amplitude computations are

not singular. Typical integrals in the minimal formalism at tree level are of the form
∫ i∞

−i∞
[dp]

∫ ∞

−∞
[dλ]f(λ)epIC

I
αλ

a

=

∫ ∞

−∞
[dλ]f(λ)δ(C1λ) · · · δ(C11λ). (5.148)

where f(λ) contains λ but not its complex conjugate. For this expression to be

well-defined f(λ) should not contain any (CIλ) poles and moreover there should not

be any poles that obstruct the analytic continuation of λ to real values.

At higher loops the conjugate momentum has zero modes as well and gauge fixing

this invariance leads exactly to the insertion of PCOs ZB, ZJ , where the tensors Bmn
enter through the gauge fixing condition, as discussed in chapter 4. In addition, one

needs a composite b field satisfying (2.34). In the minimal formulation, a solution

of (2.34) is given by [55]

b =
λαGα

Cαλα
(5.149)

where Gα is given in (3.139). This is however too singular to be acceptable. One

can obtain a non-singular b̃ field by combining the b field with the PCO and solving

instead (2.36). Note that this b̃ field now depends on the Bmn constant tensors but

not on Cα.

5.5.2 Non-minimal formalism

The same expression (5.144) leads to the so-called regularisation factor in (5.73).

This time one has to choose πα to be a pure spinor of opposite chirality to λα,

usually called λ̄α. This indeed has eleven independent components, as required.

The field π̃α, usually called rα, automatically follows because it is the QS variation

of πα,

rα = QSλ̄α. (5.150)

This leads to the non-minimal formalism. To see this explicitly note that the factor

e−L3 , which is given by

e−λ̄αλ
α−rαθ

α

, (5.151)
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is precisely N . The additional factorsNmnN̄
mn+ 1

4Smnλγ
mnd+JJ̄+ 1

4Sλd originate

from gauge fixing the zero modes of wα.

Note that λ is now holomorphic and πα ≡ λ̄α is considered as its complex con-

jugate variable. Typical integrals one encounters at tree level in the non-minimal

formalism are therefore
∫

[dλ][dλ̄]f(λ)e−λ̄λ. (5.152)

At higher loop order the b field enters the amplitudes. In the non-minimal

formalism, equation (2.34) has a solution that depends on both λ and λ̄. It is

however singular as λ̄λ → 0 and this causes problems to certain amplitudes as

explained in section 2.2. Note that the b field does not depend on how the gauge

invariances due to the zero modes of wα are treated. This is similar to the b field in

(5.149) but different from b̃ which depends on the gauge fixing of the invariance due

to zero modes of the conjugate momentum through Bmn.

To summarise, the minimal and non-minimal are related by field redefinitions and

an analytic continuation in field space. In particular, starting from the non-minimal

formalism one obtains the minimal formalism by taking λ̄α = CIαπ
I and analytically

continuing πI to be imaginary while at the same time analytically continuing λ to be

real. There are similar redefinitions and analytic continuations in the sector related

with the conjugate momentum. Furthermore, the non-minimal b field combined with

part of N is related to b̃. Clearly, the two formalisms would be equivalent if the

analytic continuations had not been obstructed by singularities in the amplitudes.

Finally, note that the underlying gauge choice for the invariance due to pure spinor

zero modes is the same: the gauge fixed action is the same, only the reality condition

of the fields is different.

5.5.3 Toy example

Given the formal equivalence between the minimal and non-minimal formalisms

one may wonder why the PCOs are not QS closed in the minimal formalism, but

the corresponding object in the non-minimal formalism is QS closed. This issue is

discussed here by analyzing a toy example that has almost all features of the actual

case. Consider the following integral

I =

∫

dxdpe−xp. (5.153)

To compare with the expressions in the previous subsection p corresponds to the

BRST auxiliary field and x to the pure spinor.

If one wants to evaluate the above integral, contours have to be chosen for x and

p. Choosing p = ip1 and x = x1 with p1, x1 to be real, gives

I = i

∫

dx1dp1e
ix1p1 = i

∫ ∞

−∞
dx12πδ(x1) = 2πi. (5.154)
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Another choice is to consider x complex and take p = x∗. In this case I becomes

I =

∫

dxdx∗e−xx
∗

= 2i

∫ ∞

0

rdr

∫ 2π

0

dθe−r
2

= 2πi. (5.155)

This agrees nicely with the general property of contour integrals, that one is free

to deform them as long as no poles are encountered. Note that (5.154) resembles a

zero mode integral in the minimal formalism and (5.155) a non-minimal one.

The difference between the two prescriptions is exposed by considering the inte-

gral I with a function f in the integrand.

Imin[f ] = i

∫ ∞

−∞
dx1

∫ ∞

−∞
dp2e

ix1p1f(x1) = i

∫ ∞

−∞
dx12πδ(x1)f(x1) = 2πif(0).

(5.156)

Now rotate the contour, p = x∗, so that the integral becomes

Inon−min[f ] =

∫

dxdx∗e−|x|2f(x) = 2i

∫ ∞

0

rdre−r
2

∫ 2π

0

dθf(reiθ), (5.157)

Imin is the analogue of (5.148) and Inon−min the analogue of (5.152). Imin and

Inon−min give exactly the same answer if f(x) is non singular but (5.156) is ill defined

for any choice of singular f(x) whereas (5.157) may be well defined. For example,

for the function

f(x) =
1

x
, (5.158)

(5.156) yields ∞ but (5.157) gives 0. More precisely, (5.157) is well defined for all

functions f(z) =
∑

n cnz
n, with cn = 0 for n < −1. For the n < −1 terms the θ

integral vanishes and the r integral diverges, which makes Inon−min ambiguous for

these kind of functions.

A third representation is obtained by noticing that the θ integral can be rewritten

as a contour integral
∫ 2π

0

dθ = −i
∮

C

dz

z
(5.159)

where z = reiθ and the contour C is a circle of radius r. Thus for any meromorphic

function f(z) the integral over theta is independent of r and

I[f ] = 2i

(∫ ∞

0

rdre−r
2

)(

−i
∮

C

dz

z
f(z)

)

=

∮

C

dz

z
f(z) (5.160)

The expression (5.160) are well-defined for all meromorphic functions f(z) whereas

(5.156) and (5.157) are not.

Going back to pure spinors and working on the patch with λ+ 6= 0 one sees that

because of the factor (λ+)−3 in the measure (cf. (3.123)) the minimal formalism is

expected to have a singularity unless the integrand provides a factor of (λ+)3, but

the expressions (5.157) and (5.160) are not necessarily singular.
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5.5.4 Singular gauge and possible resolution

As mentioned in the beginning of this section the gauge (5.146) leads to λα = 0

for any choice of the constant spinors CIα. To see this, recall that the space of pure

spinors can be covered with sixteen coordinate patches and on each patch at least

one of the components of λα is nonzero. Let us call this component λ+ and solve

the pure spinor condition as in (3.71). Then,

0 = CIαλ
α = CI+λ

+ +CI,abλab +CIaλ
a = CI+λ

+ +CI,abλab +
1

8
CIaǫ

abcdeλbcλde
1

λ+
⇒

CI+(λ+)2 + CI,abλ+λab +
1

8
CIaǫ

abcdeλbcλde = 0. (5.161)

This system of equations however does not have a solution with λ+ 6= 0 and the

gauge is singular. To see this, first solve ten of the above equations to obtain λab as

a function of λ+. A scaling argument implies that these functions are linear in λ+.

After plugging in the relation λab = babλ
+ in the eleventh equation, one finds that

λ+ vanishes. Thus for any choice CIα of maximal rank, the path integral localises at

the λα = 0 locus9, which is the point that should be excised from the pure spinor

space for the theory to be non-anomalous [21].

As discussed above, the minimal and non-minimal formalisms are related by

analytic continuation in field space. In the toy example in the previous subsection

the analytic continuation from the “minimal variables” x1, p1 to the “non-minimal

variables” x, x∗ sets to zero certain singular contributions (functions f(x) ∼ x−1)

but the integral still localises at x = 0. One would thus expect that the zero mode

integrals in the non-minimal formalism localise at the λα = 0 locus, as the minimal

ones do, and the problems with the λ̄λ poles one encounters for certain amplitudes

at three loops and higher are a manifestation of this fact.

To avoid these problems one must find a way to gauge fix the zero mode invari-

ances such that the zero mode integrals do not localise at λα = 0. Let us discuss how

to achieve this in the minimal formulation. First, in order to avoid the unnecessary

analytic continuation to real λ one should work with the analogue of the contour

representation of the delta function in (5.160) which is appropriate for holomorphic

λ (and is less singular than (5.156) and (5.157)). In this language the choice of C’s

translates into a choice of position of poles. Secondly, one must take global issues

into account. In particular, as mentioned above, the space of pure spinors can be

covered with sixteen coordinates patches. In order to avoid landing in the singular

gauge discussed above, one should arrange such that the expression for the path

integral insertions valid in any given patch always contains at least one pole that

lies in another patch. Relevant related work can be found in [43].

9This also shows that the choice of C in (5.2) that manifestly leads to a factor δ(λ+) is not

special. Any other choice of C will also contain this factor.
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Chapter 6

Discussion and conclusion

After a general introduction to string theory the pure spinor formalism was presented

in chapter 2. Important conclusions from that chapter include

1. The pure spinor formalism possesses more computational power than its “com-

petitors”, i.e. the RNS and Green Schwarz formalisms. This is a consequence

of the explicit manifestion of both spacetime supersymmetry and Lorentz in-

variance within the pure spinor formalism.

2. The amplitude prescription is ad hoc, i.e. it has not been derived from first

principles and a number of aspect of the prescription are motivated by analogy

to other, older string theory formalisms.

3. Chapter 2 does not provide a proof for the decoupling of unphysical states in

the minimal pure spinor formalism.

First principles derivation

Point 2 was addressed in chapter 4. The first principles derivations given in that

chapter confirmed the prescriptions of chapter 2, which were advocated originally in

[22] and [25, 27]. Let us summarise the approach. The pure spinor model (i.e. the

Green-Schwarz-Siegel action plus the pure spinor variables) was considered as a

“matter” sigma model with target space ten-dimensional superspace (with embed-

ding coordinates X, θ) times the pure spinor space (with embedding coordinates λ).

To construct a string theory this model was coupled to two-dimensional (topologi-

cal) gravity and subsequently quantised by adding a gauge fixing Lagrangian to the

classical action. One should contrast this approach with previous works where the

aim was to find a model with local symmetry which upon gauge fixing would lead to

the pure spinor model with QS emerging as the BRST operator and the pure spinors
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λ as the corresponding ghosts. In the approach of this thesis QS and λ are part of

the model ab initio and the justification for starting with this model is that the

cohomology of QS gives the superstring spectrum. To maintain the QS symmetry

and consistently quantise the model after coupling to 2d gravity, the QS symmetry

had to be extended to act on the gravitational sector and QS invariance requires

the existence of a (composite) field G whose QS variation is equal to the 2d stress

energy tensor.

To quantise this system standard BRST techniques were followed, introduced

diffeomorphism ghosts, their QS partners, associated auxiliary fields etc. It turns

out that all variables one introduces in this process can be explicitly integrated

out resulting in a prescription for the scattering amplitudes involving (as usual) a

number of unintegrated and a number of integrated vertex operators and (3g − 3)

(complex) insertions of the zero modes of G. This result holds in general for any

system with a nilpotent symmetry coupled to topological gravity.

The analysis included a BRST treatment of the gauge invariances due to zero

modes; the presence of a zero mode implies an invariance of the action under a

shift of the field by the corresponding zero mode. To gauge fix these invariances

constant ghosts and corresponding auxiliary fields were introduced. In the presence

of vertex operators some of these invariances are lifted. Nevertheless, one must still

gauge fix all (non-compact) bosonic invariances because their presence implies that

the worldsheet action does not provide the appropriate convergence factor for the

integration over them. This analysis for the bosonic zero modes of the pure spinor

sigma model led (among other things) to the introduction of constant auxiliary fields

needed to implement the gauge fixing conditions in the path integral. Depending on

the parametrisation and the reality condition of these fields one is led either to the

minimal [22] or the non-minimal [25] prescription for scattering amplitudes. In the

latter case the auxiliary fields can be identified with the non-minimal variables (more

precisely, the zero modes of the non-minimal variables, but since these variables are

cohomologically trivial their non-zero modes do not contribute to any observable).

To complete the construction one needs the explicit form of the composite “b-field”

G. Although the existence of a completely satisfactory G field is guaranteed by

the results of [27], the actual construction is very complicated. A possible avenue

towards a simpler prescription is to look for different gauge fixing conditions for the

zero modes, instead of looking for less singular representatives of [G] as has been

done so far.

Decoupling of unphysical states

Decoupling of unphysical, i.e. QS exact, states is automatic if all insertion in the

amplitude prescription are QS closed. In the minimal formalism however the picture

changing operators are not QS closed, in spite of the fact that their QS variation
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vanishes in a distributional sense: QSY ∼ xδ(x) with x that depends on λ and N .

Moreover since λ parametrises a curved space it is not clear what the meaning of

the delta functions in the picture changing operators is. These functions can only be

properly defined in a certain coordinate patch. Indeed when trying to compute tree

level amplitudes using a “naive” definition of delta functions on pure spinor space

without integrating over the constant spinors C, as was done in section 5.1, one

finds answers that are not Lorentz invariant. When the integral over C is included

the prescription becomes manifestly Lorentz invariant. This symmetry simplifies

the evaluation of the pure spinor integrals and one needs not be specific about the

precise definition of the picture changing operators. After integrating over C all

tree-level amplitudes, which are now automatically Lorentz invariant, vanish when

one of the vertex operators is QS exact.

Due to the lack of a global definition for the picture changing operators, it is not

possible to conclude that these operators are not QS closed from tree-level computa-

tions alone. This conclusion can be reached by considering one-loop amplitudes. In

particular the no-go theorem shows that when the complete, i.e. containing eleven

convergence factors, picture changing operator is Lorentz invariant, it cannot be QS
closed. Else all one-loop amplitudes vanish. The fact that the PCOs are not QS
closed does not imply that QS exact states do not decouple. In fact an important

result of this thesis, given in section 5.4, states that QS exact states decouple in the

minimal pure spinor formalism. This results makes use of a new symmetry of the

B tensors, which has a natural place in the first principles derivation of chapter 4.

Moreover the discovery of this symmetry might be a first step in making minimal

loop computations as efficient as their non-minimal analogs.

In the non-minimal formalism the PCOs are replaced by the regularisation factor

N . In contrast to the PCOs, N is QS closed without subtleties. In chapter 4

it was shown that both the PCOs and the regularisation factor N come from a

proper BRST treatment of fixing the gauge invariance generated by shifting the

zero modes of the worldsheet fields. The difference between the minimal and non-

minimal formalism can be understood as choosing different contours for the zero

modes integrations. As became apparent in section 5.5 the choice that leads to

the minimal formalism gives rise to divergent integrals for a larger class of possible

insertions than the non-minimal choice. Moreover the gauge condition implicit in

the current formulation of the amplitude prescriptions is singular and localises the

pure spinor zero mode integrals at the λα = 0 locus, which should be excised from

the pure spinor space for the theory to be non-anomalous. The three-loop problems

in the non-minimal formalism could very well be due to this singular gauge choice.

To avoid these problems one should reformulate the theory in a non-singular gauge.
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Appendix A

Detailed computations of Ik

This appendix contains the details of the λ integrals that appear at one loop. In

particular those that play a role in computations involving a QS exact state. A

typical integral one encounters in such an amplitude is given by

(Ik)a1···a2kβ2···β11 =

∫

[dλ]
1

(λ+)k−2
λβ1λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3(ǫT )δ1δ2δ3β1···β11
. (A.1)

By charge conservation one can conclude that at most two choices for β2 · · ·β11 lead

to a non-vanishing I ′k for any k. This follows from

0 = N(Ik)a1···a2kβ2···β11 = [(k−3)
5

4
+k(−1

4
)+N(β2 · · ·β11)](Ik)a1···a2kβ2···β11 . (A.2)

This fixes the total charge of the β indices, which implies there are only two choices.

For example for k = 3 equation (A.2) implies only the only non-vanishing compo-

nents satisfy N(β2 · · ·β11) = − 1
2 . Thus β2 · · ·β11 must consist of either seven 10

indices and three 5̄ or a +, five 10’s and four 5̄’s.

In section A.1 we first compute all integrals of the form

(I ′k)
β1

a1···a2kδ1δ2δ3
=

∫

[dλ]
1

(λ+)k−2
λβ1λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3 . (A.3)

Since Ik vanishes for k < 3 (cf. (5.51)), we are only interested in I ′k for k ≥ 3. By

a similar argument the I ′k’s are also only non-vanishing for at most two choices of

δ1δ2δ3. In the last subsection half of the non-vanishing components of I3 and all

components of I5 are computed.

A.1 Coefficients in λ integrals

For a given k at most two components of Λαβγ give non-vanishing results. One can

make three choices for β1 in I ′k, all three choices lead to an integral of the form (not
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necessarily for the same k):

(I ′′k )a1···a2kδ1δ2δ3 =

∫

[dλ]
1

(λ+)k−3
λa1a2 · · ·λa2k−1a2k

Λδ1δ2δ3 . (A.4)

After some algebra one finds the only non-vanishing components of the I ′′k ’s are:

(I ′′4 )a1···a8+d1d2 =
1

20
ǫa1a2a3a4(d1ǫd2)a5a6a7a8

+ 2 perms, (A.5)

(I ′′4 ) d1d2d3d4
a1···a8 d5

=
1

5
ǫa1a2a3a4d5δ

[d1
a5
δd2]a6

δ[d3a7
δd4]a8

+ 11 perms, (A.6)

− 1

20
ǫa1a2a3a4d5δ

[d1
a5
δd2a6

δd3a7
δd4]a8

+ 5 perms

(I ′′5 ) d3d4
a1···a10d1d2

=
1

20
ǫ(d1|a1a2a3a4|ǫd2)a5a6a7a8

δ[d3a9
δd4]a10

+ 14 perms, (A.7)

(I ′′6 )a1···a12d1d2d3 =
1

60
ǫ(d1|a1a2a3a4|ǫd2|a5a6a7a8|ǫd3)a9a10a11a12

+14 perms. (A.8)

The first step to obtain these results is finding the number of invariant tensors

with the appropriate symmetries, this is one in all cases but the second. Finding the

coefficients requires more work, this is done in subsection A.1.1. All these coefficients

are fixed by (5.24), including the overall factor. Two corollaries are

(I ′3)
b d3d4
a1···a6d1d2

= (5δb(d1ǫd2)a1a2a3a4
δ[d3a5

δd4]a6
+ δb[a5

δ
[d3
a6]
δ
d4]
(d1
ǫd2)a1a2a3a4

) + 2 perms,

(A.9)

(I ′4)
b
a1···a8d1d2d3 =

1

12
δb(d1ǫd2|a1a2a3a4|ǫd3)a5a6a7a8

+ 2 perms. (A.10)

A.1.1 Proof of equations (A.5) and (A.6)

By Lorentz invariance one can write

∫

[dλ]
1

λ+
λa1a2 · · ·λa7a8Λ+d1d2 = c3ǫa1a2a3a4(d1ǫd2)a5a6a7a8

+ 2 perms (A.11)

and
∫

[dλ]
1

λ+
λa1a2 · · ·λa7a8Λ

d1d2d3d4
d5

= c4(ǫa1a2a3a4d5δ
[d1
a5
δd2]a6

δ[d3a7
δd4]a8

+ 11 perms)+

c5(ǫa1a2a3a4d5δ
[d1
a5
δd2a6

δd3a7
δd4]a8

+ 5 perms). (A.12)

for some coefficients c3, c4, c5. They can be determined from the defining equation of

Λαβγ , (5.24). After evaluating the r.h.s. of that equation for the relevant components

one finds
∫

[dλ]λaλbλ+Λ+d1d2 = δ
(a
d1
δ
b)
d2

− 2

5
δ
(a
d1
δ
b)
d2

=
3

5
δ
(a
d1
δ
b)
d2
, (A.13)
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∫

[dλ]λaλbλ+Λd1d2d3d4 d5
=

1

5
ǫd1d2d3d4(aδ

b)
d5
, (A.14)

∫

[dλ]λa1a2λa3a4λ
aΛd1d2d3d4 d5

= (δd1[a1
δd2a2]

δd3[a3
δd4a4]

δad5 + 1 perm) (A.15)

−1

5
δd1[a1

δd2a2
δd3a3

δd4a4]
δad5 + (

1

5
δa[a1

δ
[d1
a2]
δ
d2]
d5
δ[d3a3

δd4]a4
+ 3 perms).

If one now uses equations (A.11) and (A.12) to evaluate the l.h.s. of the above

integrals the values of c3, c4, c5 are completely determined. In fact the integrals

(A.13)-(A.15) lead to more than three equations, but they include only three inde-

pendent conditions as they should. To obtain c3 one has to write out λa and λb in

(A.13) and then perform all the contractions of the two ǫ’s with the r.h.s. of (A.11):

3

5
δ
(a
d1
δ
b)
d2

=

∫

[dλ]λaλbλ+Λ+d1d2 = 12c3δ
(a
d1
δ
b)
d2

⇒ c3 =
1

20
. (A.16)

Finding c4 and c5 is more involved. The l.h.s. of (A.14) can be evaluated as

1

5
ǫd1d2d3d4(aδ

b)
d5

=

∫

[dλ]λaλbλ+Λd1d2d3d4d5 = (4c4 + 12c5)δ
(a
d5
ǫb)d1d2d3d4 . (A.17)

This gives the first equation for c4, c5. In order to completely determine them, one

has to work out the l.h.s. of (A.15):

1

8
ǫaa5a6a7a8

∫

[dλ]
1

λ+
λa1a2λa3a4λa5a6λa7a8Λ

d1d2d3d4
d5

= (A.18)

c4
8

(

(24δad5δ
[d1
a1
δd2]a2

δ[d3a3
δd4]a4

+ 1 perm) + 8ǫad1d2d3d4ǫa1a2a3a4d5+

16(δad5δ
[d1
a1
δd2]a2

δ[d3a3
δd4]a4

+ 1 perm) + (8δa[a1
δ
[d3
a2]δ

d4]
d5
δ[d1a3

δd2]a4
+ 3 perm)

)

+

c5
8

(

24δad5δ
[d1
a1
δd2a2

δd3a3
δd4]a4

+ 24ǫad1d2d3d4ǫa1a2a3a4d5 + 16δad5δ
[d1
a1
δd2a2

δd3a3
δd4]a4

+

(8δa[a1
δ
[d3
a2]
δd4d5δ

d1
a3
δd2]a4

+ 1 perm)
)

.

To be able to read off equations for the c’s one has to rewrite the invariant tensors

in terms of the ones appearing in (A.15). It turns out the space of invariant tensors

with the indices and symmetries of (A.15) is four dimensional. Hence the invariant

tensors in (A.18) can be written out on a basis that contains the three invariant

tensors that are present in (A.15) plus a fourth one, that does not lie in the span of

the first three. After using

ǫad1d2d3d4ǫa1a2a3a4d5 = δad5δ
[d1
a1
δd2a2

δd3a3
δd4]a4

+ (δa[a1
δ
[d1
a2]
δd2d5δ

d3
a3
δd4]a4

+ 1 perm), (A.19)

(A.18) becomes

(5c4δ
a
d5δ

[d1
a1
δd2]a2

δ[d3a3
δd4]a4

+ 1 perm) + (c4δ
a
[a1
δ
[d3
a2]δ

d4]
d5
δ[d1a3

δd2]a4
+ 3 perm)+ (A.20)
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(8c5 + c4)δ
a
d5δ

[d1
a1
δd2a2

δd3a3
δd4]a4

+ ((c4 + 4c5)δ
a
[a1
δ
[d3
a2]δ

d4
d5
δd1a3

δd2]a4
+ 1 perm).

Now one can read off four equations for c4, c5 by comparing to (A.15). Combined

with the equation from (A.17) this gives:

5c4 = 1, c4 + 8c5 = −1

5
, c4 =

1

5
, c4 + 4c5 = 0, 4c4 + 12c5 =

1

5
. (A.21)

These equations are solved by

c4 =
1

5
, c5 = − 1

20
. (A.22)

The coefficients in equations (A.7) and (A.8) follow in the same way.

A.2 Computing the Ik’s

The idea of this section is simple, use the explicit form of the gamma matrices

and the λ integrals (A.5)-(A.10) to evaluate Ik. In practice this involves a lot of

computation. The integrals I0, I1, I2 and I6 have already been shown to vanish in

chapter 5. By the charge conservation property there is only one choice of β2 · · ·β11

for which I5 does not vanish. For I3 and I4 there are two possibilities. Let us

explicitly compute I3 for

β2, · · · , β11 = +, c1, c2, c3, c4, b1b2, · · · , b9b10. (A.23)

The integral I3 consists of three terms, two for β1 = b1b2 and one for β1 = b1. The

first of three relevant components of ǫT is given by1

(ǫT )+d1d2 b11b12 b1b2···b9b10
+ c1c2c3c4 = (A.24)

1

16
8(ǫ10)

b1···b20ǫc1···c5γ
k1d1

b13b14
γk2d2b15b16γ

+c5
k3

(γ k3
k1k2

)b17b18b19b20 =

−1

2
8(ǫ10)

b1···b20ǫc1c2c3c4b17δ
d1
b14
δd2b16ǫb13b15b18b19b20 .

The second relevant component is given by:

(ǫT ) d5 b11b12 b1b2···b9b10
d1d2d3d4 + c1c2c3c4

= (A.25)

8
1

16
2(ǫ10)

b1···b20ǫc1···c5γk1d1d2b13b14γk2d3d4b15b16γ
k3d5
b17b18

(γk1k2k3)
c5

b19b20

+8
1

16
(ǫ10)

b1···b20ǫc1···c5γ
k1c5
d1d2

γk2d3d4b13b14γ
k3d5
b15b16

(γ k2
k1 k3

)b17b18b19b20 + (d1d2 ↔ d3d4) =

1To evaluate ǫT the following convention for ǫβ1···β16
is used, (ǫ16) b1b2···b19b20

+a1···a5
=

(ǫ5)a1···a5(ǫ10)b1···b20
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8
1

4
2(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb19d1d2b13b14ǫb20d3d4b15b16δ
d5
b18

+

8
1

4
(ǫ10)

b1···b20ǫc1c2c3c4b19ǫd1d2b13b14[b20ǫb17]d3d4b15b16δ
d5
b18

+

8
1

4

1

2
(ǫ10)

b1···b20ǫc1c2c3c4[d2ǫd1]b15b19b20b18ǫb17d3d4b13b14δ
d5
b16

+ (d1d2 ↔ d3d4).

The third relevant component is given by:

(ǫT )d1d2 b1···b10
d3d4 b+ c1c2c3c4

= (A.26)

−8
1

32
(ǫ10)

b1···b20ǫc1c2c3c4bγ
k1d1
b11b12

γk2d2b13b14
γk3d3d4b15b16(γ

k3
k1k2

)b17b18b19b20 =

8
1

4
ǫc1c2c3c4bǫd3d4b15b16b17ǫb11b13b18b19b20δ

d1
b12
δd2b14 .

In the above components a factor of eight is extracted coming from the SU(5)

decomposition (cf. (3.22)). The powers of 1
2 compensate for double counting in

expressions like xaby
ab in each line. Using the explicit form of the components of

(ǫT ) and the λ integrals, I3 can be written out as

I3 =
1

2
3

∫

[dλ]
1

λ+
λb11b12λa1a2λa3a4λa5a6Λ+d1d2(ǫT )+d1d2 b11b12 b1b2···b9b10

+ c1c2c3c4+

1

8
3

∫

[dλ]
1

λ+
λb11b12λa1a2λa3a4λa5a6Λ

d1d2d3d4
d5

(ǫT ) d5 b11b12 b1b2···b9b10
d1d2d3d4 + c1c2c3c4

+

3
1

2

∫

[dλ]
1

λ+
λbλa1a2λa3a4λa5a6Λ

d3d4
d1d2

(ǫT )d1d2 b1···b10
d3d4 b+ c1c2c3c4

=

3

40

(

ǫa1a2a3a4(d1ǫd2)a5a6b11b12 + 2 perms
)

[

−1

4
(ǫ10)

b1···b20ǫc1c2c3c4b17δ
d1
b14
δd2b16ǫb13b15b18b19b20

]

+ (A.27)

3

40

(

ǫa1a2a3a4d5δ
[d1
a5
δd2]a6

δ
[d3
b11
δ
d4]
b12

+ 11 perms
)

[

4(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb19d1d2b13b14ǫb20d3d4b15b16δ

d5
b18

+

2(ǫ10)
b1···b20ǫc1c2c3c4b19ǫd1d2b13b14[b20ǫb17]d3d4b15b16δ

d5
b18

+

(ǫ10)
b1···b20ǫc1c2c3c4[d2ǫd1]b15b19b20b18ǫb17d3d4b13b14δ

d5
b18

+ (d1d2 ↔ d3d4)
]

+

3

2

(

5δb(d1ǫd2)a1a2a3a4
δ[d3a5

δd4]a6
+ δb[a5

δ
[d3
a6]δ

d4]
(d1
ǫd2)a1a2a3a4

+ 2 perms
)

[

2ǫc1c2c3c4bǫd3d4b15b16b17ǫb11b13b18b19b20δ
d1
b12
δd2b14

]

=
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−3

5
ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms+

12

5
(ǫ10)

b1···b20ǫb11b12a3a4b18ǫc1c2c3c4b17ǫb19a1a2b13b14ǫb20a5a6b15b16 + 2 perms+

3

5
(ǫ10)

b1···b20ǫb11b12a3a4b18ǫc1c2c3c4b19ǫa1a2b13b14[b17ǫb20]a5a6b15b16 + 2 perms+

6

5
ǫa1a2a3a4b16(ǫ10)

b1···b20ǫc1c2c3c4b12ǫb11b15b18b19b20ǫb17a5a6b13b14 + 2 perms+

6

5
ǫb11b12a1a2b16(ǫ10)

b1···b20ǫc1c2c3c4[a4
ǫa3]b15b18b19b20ǫa5a6b13b14b17 + 2 perms+

60(ǫ10)
b1···b20ǫb14a1a2a3a4ǫc1c2c3c4b12ǫa5a6b15b16b17ǫb11b13b18b19b20 + 2 perms+

12ǫb14a1a2a3a4(ǫ10)
b1···b20ǫc1c2c3c4[a5

ǫa6]b12b15b16b17ǫb11b13b18b19b20 + 2 perms =
(

−3

5
(1) +

12

5
(−1

2
) +

3

5
(−1) +

6

5
(−1) +

6

5
(
27

2
) + 60(1) + 12(0)

)

ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)
b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms =

129

2
ǫa1a2a3a4b14ǫb16a5a6b11b12(ǫ10)

b1···b20ǫc1c2c3c4b17ǫb13b15b18b19b20 + 2 perms.

Since Asym510 ⊗ Sym31̄0 ⊗ Asym45̄ contains one scalar all seven tensors in the

penultimate step are proportional to each other. The constants of proportionality

are obtained by computing components.

The integral I5 is only non-vanishing if one chooses

β2, · · · , β11 = b3b4, · · · , b11b12, 1, 2, 3, 4, 5. (A.28)

This component of I5 consists of two terms, one for β1 = b1b2 and one for β1 = +:

(I5)
b3···b12

a1···a10 12345 =

∫

[dλ]
1

(λ+)2
λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

+ 12345+

1

2

∫

[dλ]
1

(λ+)3
λb1b2λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b1b2b3···b12

12345. (A.29)

The first relevant component of ǫT is given by

(ǫT )d1d2d3 b1···b12
12345 = (A.30)

−8
1

16
2(ǫ10)

b1···b20γad1b13b14
γbd2b15b16

γcd3b17b18
γ +
abcb19b20

+

− 1

16
8(ǫ10)

b1···b20 1

2
γ

(d1
a +γ

|b|d2
b13b14

γ
|c|d3)
b15b16

γabcb17b18b19b20 =

−(ǫ10)
b1···b20δa[b13δ

d1
b14]

δb[b15δ
d2
b16]δ

c
[b17

δd3b18](−1)ǫabcb19b20+

152



Appendix A - Detailed computations of Ik

−1

4
(ǫ10)

b1···b20δ(d1a δ
|b|
[b13

δd2b14]δ
|c|
[b15

δ
d3)
b16]δ

a
[b17

ǫb18]bcb19b20 .

The second relevant component is given by

(ǫT )d1d2 b3b4···b11b12
d3d4+ 12345 = (A.31)

−8
1

32
(ǫ10)

b3···b22γad3d4b13b14γ
bd1
b15b16

γcd2b17b18
γabcb19b20b21b22 =

−1

4
(ǫ10)

b3···b22(−1)ǫad3d4b13b14δ
b
[b15

δd1b16]δ
c
[b17

δd2b18]2δ
a
[b19

ǫb20]bcb21b22 ,

where again a factor of eight and powers of 1
2 have been extracted. The above two

components of (ǫT ) can be processed further to give

(ǫT )d1d2d3 b1···b12
12345 = −8

1

2
5(ǫ10)

b1···b20δd1b13δ
d2
b15
δd3b17ǫb14b16b18b19b20 (A.32)

and

(ǫT )d1d2 b3b4···b11b12
d3d4+ 12345 = 8

1

4
(ǫ10)

b1···b20ǫb17d3d4b15b16ǫb18b1b13b19b20δ
d1
b2
δd2b14 .

(A.33)

The integral I5 becomes

I5 =

∫

[dλ]
1

(λ+)3
λβ1λa1a2 · · ·λa9a10Λδ1δ2δ3(ǫT )δ1δ2δ3 b3···b12

β1 12345 = (A.34)

1

2
3

∫

[dλ]
1

(λ+)2
λa1a2 · · ·λa9a10Λ

d3d4
d1d2

(ǫT )d1d2 b3···b12
d3d4 + 12345+

1

2

∫

[dλ]
1

(λ+)3
λb1b2λa1a2 · · ·λa9a10Λd1d2d3(ǫT )d1d2d3 b1···b1212345 =

3

40
(ǫ(d1|a1a2a3a4|ǫd2)a5a6a7a8

δ[d3a9
δd4]a10

+ 14 perms)(ǫT )d1d2 b3···b12
d3d4 + 12345+

1

120
(ǫ(d1|a1a2a3a4|ǫd2|a5a6a7a8|ǫd3)a9a10b1b2 + 14 perms)(ǫT )d1d2d3 b1···b12

12345 =

3

20
(ǫd1a1a2a3a4ǫd2a5a6a7a8δ

[d3
a9
δd4]a10

+ 14 perms)(ǫT )d1d2 b3···b12
d3d4 + 12345+

1

20
(ǫd1a1a2a3a4ǫd2a5a6a7a8ǫd3a9a10b1b2 + 14 perms)(ǫT )d1d2d3 b1···b1212345 =

3

10
(ǫd1a1a2a3a4ǫd2a5a6a7a8δ

[d3
a9
δd4]a10

+ 14 perms)

[(ǫ10)
b1···b20ǫb17d3d4b15b16ǫb18b1b13b19b20δ

d1
b2
δd2b14 ]

−(ǫd1a1a2a3a4ǫd2a5a6a7a8ǫd3a9a10b1b2 + 14 perms)

[(ǫ10)
b1···b20δd1b13δ

d2
b15
δd3b17ǫb14b16b18b19b20 ] =
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3

5
ǫb2a1a2a3a4ǫb14a5a6a7a8(ǫ10)

b1···b20ǫb17a9a10b15b16ǫb18b1b13b19b20 + 14 perms

−ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)
b1···b20ǫb14b16b18b19b20 + 14 perms =

−2

5
ǫb13a1a2a3a4ǫb15a5a6a7a8ǫb17a9a10b1b2(ǫ10)

b1···b20ǫb14b16b18b19b20 + 14 perms.
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Samenvatting

Fundamenten van het pure spinor formalisme

Bij het lezen van bovenstaande titel zullen slechts enkelen een idee hebben waar dit

proefschrift over gaat. Deze samenvatting is voornamelijk gericht op het complement

van dit groepje experts. Beginnend bij begrippen als atomen, elementaire deeltjes en

zwaartekracht, zal ik toewerken naar het eigenlijke onderwerp van dit proefschrift.

Elementaire deeltjes en krachten

Het vinden van een volledige verzameling bouwstenen van de natuur is al een eeu-

wenoude zoektocht. Bij de oude Grieken leefde bijvoorbeeld het idee dat alles uit

vier elementen bestond: water, lucht, aarde en vuur. Deze zienswijze is nog meer dan

duizend jaar leidend geweest in de wereld, maar in de laatste honderden jaren zijn

de ontwikkelingen op dit gebied in een stroomversnelling geraakt. Inmiddels weten

we dat alle stoffen uit moleculen bestaan, denk bijvoorbeeld aan water oftewel H2O.

Deze afkorting staat voor één water molecuul en een druppel zuiver water bestaat

uit heel veel (circa 1023) van deze moleculen. In figuur A.1 staat linksboven een

grafische weergave van een watermolecuul. Een molecuul is echter geen elementair

deeltje omdat het opgebouwd is uit bepaalde bestanddelen, de atomen. In het geval

van water is dat één zuurstofatoom (O) en twee waterstofatomen (H). Ondanks het

feit dat de naam atoom is afgeleid van het Griekse
,
ατoµoς, wat ondeelbaar bete-

kent, bestaat een atoom uit een kern en daaromheendraaiende (negatief geladen)

elektronen, zoals uitgebeeld in figuur A.1. De kern is opgebouwd uit (positief ge-

laden) protonen en (elektrisch neutrale) neutronen en deze bestaan beide uit drie

quarks. De elektronen en quarks zijn voorbeelden van elementaire deeltjes. In de

snaartheorie is de fundamentele aanname dat alle elementaire deeltjes, waaronder

elektronen en quarks, hele kleine trillende snaartjes zijn.

Deze elementaire deeltjes kunnen met elkaar wisselwerken. Als twee elektronen

bij elkaar in de buurt gebracht worden, zullen ze elkaar afstoten, omdat ze allebei

een negatieve elektrische lading hebben. Dit verschijnsel wordt veroorzaakt door een

elektrische kracht. Een ander voorbeeld van een kracht is de magnetische kracht,
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Figuur A.1: Linksboven begint deze keten bij een molecuul, dat uit drie atomen bestaat.

Elk atoom bevat een kern met daaromheen een aantal elektronen. De kern bestaat uit

neutronen en protonen, die beide opgebouwd zijn uit drie quarks. In de snaartheorie worden

de deeltjes aan het eind van deze keten, in dit geval elektronen en quarks, beschreven door

snaren.

denk aan twee magneten die elkaar afstoten of aantrekken, of aan de naald van

een kompas. Deze twee ogenschijnlijk verschillende krachten zijn eigenlijk twee ver-

schijningsvormen van dezelfde kracht2, die we de elektromagnetische kracht noemen.

Deze kracht zorgt er dus voor dat negatief en positief geladen deeltjes elkaar aan-

trekken, wat er onder andere toe leidt dat elektronen (negatief geladen) niet uit hun

baan vliegen om de atoomkern (positief geladen). Als de elektromagnetische kracht

de enige natuurkracht zou zijn, hadden atoomkernen niet kunnen bestaan, omdat

deze opgebouwd zijn uit positief geladen (en neutrale) deeltjes, die elkaar elektro-

magnetisch afstoten. Er moet dus ook een kracht bestaan die kerndeeltjes bij elkaar

houdt. Het blijken er twee te zijn: de sterke en de zwakke kernkracht. Deze drie

krachten samen verklaren de wisselwerking van elementaire deeltjes, zoals gemeten

in deeltjesversnellers als de LHC in Genève, tot op zeer grote precisie.

De theorie die dit soort processen beschrijft, het standaardmodel, is een zoge-

naamde kwantumtheorie. Het blijkt dat op deze uiterst kleine afstandschalen andere

wetten gelden dan op menselijke schalen. Zo is het mogelijk dat bij een botsing van

2Als twee waarnemers, waarbij de één ten opzichte van de ander beweegt, naar een bepaald

proces kijken, gebeurt het soms dat de één denkt een elektrische kracht te zien en de ander een

magnetische. De begrippen elektrisch en magnetisch zijn dus afhankelijk van de waarnemer en

daarom niet van fundamentele betekenis.

162



Samenvatting

een elektron en een anti-elektron deze twee deeltjes verdwijnen en er twee andere

elementaire deeltjes (bijvoorbeeld een muon en een anti-muon) verschijnen. Boven-

dien is het zo dat dit proces een bepaalde kans heeft, die uit het standaardmodel

te bepalen is. Dit is een belangrijke eigenschap van een kwantumtheorie: er wordt

niet één uitkomst met zekerheid voorspeld, maar meerdere uitkomsten elk met een

bepaalde kans. Dit is geen zwaktebod van de theorie, de natuur zelf is degene die

bij gelijke experimenten soms de ene uitkomst geeft en soms de andere.

Zwaartekracht

Het standaardmodel is zoals vermeld een uiterst succesvolle theorie, maar er is dui-

delijk meer dan elektromagnetisme en twee kernkrachten. Deze drie krachten alleen

kunnen niet verklaren waarom de maan om de aarde draait, appels uit de boom val-

len en er alleen naar beneden geskied kan worden. Al deze verschijnselen hebben te

maken met de zwaartekracht. Deze kracht werkt altijd aantrekkend (in tegenstelling

tot de andere drie) en speelt alleen een rol als er zeer zware objecten bij betrokken

zijn. In de drie voorbeelden was dat drie keer de aarde. Dit geeft tevens een logische

verklaring voor het feit dat het standaardmodel zeer nauwkeurig is ondanks dat het

zwaartekracht negeert: de objecten hebben een uiterst kleine massa ten opzichte

van hun elektrische lading. Deze stelling kan preciezer gemaakt worden door twee

elektronen (op klassieke wijze) te beschouwen. Deze stoten elkaar elektrisch af en

trekken elkaar gravitationeel aan. Voor twee elektronen op een meter afstand van

elkaar zijn de krachten gegeven door:

Fe =
q2e

4πǫ0
= 2, 3 × 10−28N,

Fg = Gm2
e = 5, 5 × 10−71N,

waar qe de elektronlading is, em de elektronmassa en zowel ǫ0 als G zijn natuurcon-

stantes.

Dit gegeven helpt ons aan de ene kant doordat een theoretisch model voor de na-

tuurkunde van elementaire deeltjes zonder zwaartekracht volstaat om aardse experi-

menten te verklaren, aan de andere kant compliceert de zwakte van de zwaartekracht

de zoektocht naar een kwantumtheorie die deze kracht bevat. Simpelweg omdat we

geen experimenten kunnen doen met elementaire deeltjes waar de zwaartekracht een

rol speelt. Ondanks de verwaarloosbare rol van de zwaartekracht bij de controleer-

bare experimenten in de deeltjesversnellers zijn er redenen om een kwantumtheorie

van de zwaartekracht te ontwikkelen. Er zijn namelijk situaties in de natuur waar

heel veel massa zich in een zeer klein volume begeeft, bijvoorbeeld zwarte gaten of

het universum vlak na de oerknal. Om deze situaties te beschrijven is een kwantum-

theorie van zwaartekracht nodig. Daarnaast ligt het in de lijn der verwachting dat

een goed begrip van kwantumzwaartekracht tot nieuwe inzichten zal leiden over een

163



Samenvatting

scala aan problemen in de natuurkunde, waarvan één van de meest in het oog sprin-

gende over zogenaamde donkere materie gaat. Dit is materie waarvan het bestaan is

bewezen op basis van kosmologische waarnemingen over de uitdijing van het heelal,

maar het bestaat niet uit deeltjes die we kennen, d.w.z. standaardmodeldeeltjes.

Snaartheorie

Het blijkt uiterst lastig te zijn zwaartekracht in het standaardmodel in te passen.

Er is dus een radicaal andere benadering nodig om een theorie van kwantumzwaar-

tekracht op te stellen. Snaartheorie is zo een andere benadering. De fundamentele

aanname van deze nieuwe theorie is dat elementaire deeltjes geen nul dimensionale

objecten zijn (d.w.z. puntdeeltjes), maar hele kleine trillende snaartjes (d.w.z. één

dimensionale objecten). Deze snaartjes kunnen gesloten (zoals in figuur A.1) of open

zijn en het soort trilling bepaalt welk elementair deeltje het voorstelt. Op deze wijze

blijkt het mogelijk te zijn de fundamentele principes van de kwantummechanica en

de zwaartekracht te combineren. Snaartheorie is overigens niet alleen een theorie

van kwantumzwaartekracht, maar een kwantumtheorie van alle krachten.

Symmetrieën

Zoals in alle kwantumtheorieën worden de voorspellingen in de snaartheorie ook ge-

geven door aan elke mogelijke uitkomst van een experiment een bepaalde kans toe

te kennen. Voor het uitrekenen van deze kansen bestaan verschillende formalismes,

die allemaal tot hetzelfde antwoord (moeten) leiden. Veel van de berekeningen in

de snaartheorie zijn bijzonder gecompliceerd. Echter, het probleem op een slim-

me manier aan pakken kan leiden tot grote vereenvoudigingen. Een voorbeeld van

zo een manier is gebruik maken van symmetrieën, bijvoorbeeld Lorentz symmetrie.

Dit houdt in dat de theoretische voorspelling van een kans op een bepaald proces

niet mag afhangen van de snelheid van de waarnemer. Dit legt (soms sterk) beper-

kende voorwaarden op de mogelijke uitkomsten van de berekeningen. Een andere

symmetrie die een grote rol speelt in de snaartheorie is supersymmetrie.

Pure spinor formalisme

In alle snaartheorieformalismes kunnen we gebruik maken van het feit dat de ant-

woorden invariant zijn onder de Lorentz- en supertransformaties maar het komt

vaak voor dat tussenstappen niet invariant onder de symmetrieën. Het is bijvoor-

beeld mogelijk dat er meerdere termen ontstaan die niet afzonderlijk invariant zijn

onder de symmetrie, alleen de som heeft deze eigenschap. In het pure spinor for-

malisme zijn de twee genoemde symmetrieën manifest in alle tussenstappen en dit

resulteert in een aanzienlijke vereenvoudiging. Het pure spinor formalisme blijkt dan

ook krachtiger te zijn dan haar voorgangers.
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Dit proefschrift

In het eerste hoofdstuk van dit proefschrift wordt één van de oudere formalismes

(RNS) van de supersymmetrische snaartheorie gëıntroduceerd, waarbij er nadruk

ligt op punten die moeilijkheden veroorzaken en op elementen die van belang zijn

voor het pure spinor formalisme. Het eerste hoofdstuk eindigt met een uiteenzetting

van de meest pregnante problemen van het RNS formalisme. In hoofdstuk twee

geef ik een inleiding in het pure spinor formalisme en wordt het duidelijk hoe de

problemen van het RNS formalisme hier vermeden worden. In dit hoofdstuk blijkt

ook dat toen het pure spinor formalisme voor het eerst werd opgeschreven, het niet

is afgeleid uit fundamentele principes, maar op basis van analogieën en intüıtie is

bedacht. Dit heeft ertoe geleid dat bepaalde noodzakelijke eigenschappen van het

pure spinor formalisme niet bewezen waren, alhoewel ze wel vermoed werden. In

hoofdstuk vier presenteer ik een afleiding van het pure spinor formalisme vanuit

fundamentele principes. Door middel van deze afleiding is het mogelijk te laten

zien dat het pure spinor formalisme inderdaad de eerdergenoemde eigenschappen

heeft. Hoofdstuk drie introduceert het wiskundige gereedschap, dat nodig is voor

de afleiding in hoofdstuk vier. Het onderwerp van het laatste hoofdstuk voor de

conclusie is de ontkoppeling van niet-fysische toestanden. Dit zijn toestanden die

niet worden waargenomen in de natuur, maar wel worden meegenomen in de theorie

om bepaalde symmetrieën te behouden in de tussenstappen. Achteraf moet er dan

gecontroleerd worden dat het op geen enkele wijze mogelijk is, dat zo een niet-

fysische toestand geproduceerd wordt bij een botsingsproces van fysische toestanden.

Als dit inderdaad niet het geval is, spreekt men van ontkoppeling van niet-fysische

toestanden. Hoofdstuk 5 bevat het bewijs van deze eigenschap voor het pure spinor

formalisme.
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