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An increasing number of communication and computational schemes with quantum advantages have recently been proposed,
which implies that quantum technology has fertile application prospects. However, demonstrating these schemes
experimentally continues to be a central challenge because of the difficulty in preparing high-dimensional states or highly
entangled states. In this study, we introduce and analyze a quantum coupon collector protocol by employing coherent states
and simple linear optical elements, which was successfully demonstrated using realistic experimental equipment. We showed
that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical
limit of the coupon collector problem. We also discuss the potential values and expansions of the quantum coupon collector
by constructing a quantum blind box game. The information transmitted by the proposed game also broke the classical limit.
These results strongly prove the advantages of quantum mechanics in machine learning and communication complexity.

1. Introduction

The “second quantum revolution” is aimed at exploring the
superiority of quantum resources over classical resources in
terms of communication, computation, and artificial intelli-
gence. To demonstrate that this goal is feasible in practice, a
series of schemes with quantum advantages were experi-
mentally implemented. These schemes included improving
on the security of communication [1-12], enhancing com-
putational power for specific tasks [13-25], and reducing
the necessary resources used to complete specific communi-
cation tasks [26-31]. In addition, machine learning can
extract useful knowledge from data, which can then have a
significant impact on productivity, technology, and the
economy [32]. This has led to an increasing interest in the
question of quantum machine learning [33]: Can we
improve machine learning by using quantum resources?
Owing to the unique entanglement properties of quantum
states, quantum models may be able to produce atypical pat-
terns that cannot be effectively produced by classical models
or effectively reduce training time. Therefore, some studies

have made bold attempts. For example, in Ref. [34], a quan-
tum autoencoder that can successfully denoise specific quan-
tum states subjected to specific noises was developed.
Reference [35] described a quantum neural network that
can accurately recognize quantum states associated with a
one-dimensional symmetry-protected topological phase.
Moreover, there are several other excellent studies [36-41].

On the other hand, most of these attempts are heuristic
and have not theoretically proven that quantum machine
learning exhibits a better performance or shorter training
time than classical machine learning. The training time of
a model includes the time complexity of the learning algo-
rithm. If the algorithm takes a constant amount of time for
processing each sample, the concern for the time complexity
translates into a concern of the sample complexity. Probably
approximately correct (PAC) learning theory [42, 43] pro-
vides the minimum number of samples necessary for a
learning algorithm to complete a learning task. Researching
quantum machine learning using this theory can therefore
lay a positive theoretical foundation for exploring quantum
advantages in machine learning.
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For the first time, Ref. [44] described the use of PAC
learning theory to rigorously prove that quantum technol-
ogy can provide a learning algorithm with quantum advan-
tage for machine learning. The method applied clever
quantum measurements to the learning task known as the
“coupon collector problem” [45]. Specifically, Ref. [44] gives
a surprising result: for the coupon collector problem, the
sample complexity of the quantum learning algorithm does
not change with changes in the search space of the algo-
rithm. This result is impossible in classical machine learning
[42]. However, the experimental demonstration of this algo-
rithm [44] requires high-dimensional states that are difficult
to prepare. Even if these states are decomposed into a tensor
product of qubits, these qubits must be highly entangled [26,
46, 47]. These requirements are far beyond the scope of cur-
rent technology. More seriously, the algorithm requires a
specific projective measurements, which is difficult to imple-
ment in experiment.

In this work, we experimentally demonstrate the quan-
tum coupon collector algorithm by proposing a coherent-
state quantum coupon collector protocol. Our protocol
avoids the abovementioned difficulties. To do this, our pro-
tocol not only maintains the important properties of the
original one but also introduces new conceptual tools that
can be implemented using only linear optics operations
and single-photon detectors. Even without a quantum com-
puter, these tools enable us to demonstrate the quantum
advantages in machine learning at the current technological
level. Moreover, the coupon collector problem can be
considered as a communication task. Similar to quantum
fingerprinting [27, 28], our protocol also experimentally
demonstrates the advantages of quantum mechanics in the
context of communication complexity. These results, in
addition to their fundamental interest [48-50], will further
inspire new designs of communication systems, large-scale
integration circuit designs, and data structures [51], thus
paving the way for other communication or computational
tasks that rely on similar principles.

2. Results

2.1. Coherent-State Quantum Coupon Collector Protocol. To
clearly describe our protocol, we briefly introduce the cou-
pon collector problem [45]. This problem can be abstracted
as learning exactly an unknown set S. Specifically, this set S is
limited to a subset of the set [n] = {1, ---, n}, where the size
k(k < n) of set S is known. To learn the set S, several copies
of S are given, and only one element is allowed to be
extracted from each copy. The task is to determine the min-
imum number of copies required to learn S exactly.

Because the elements in S are independent of each other,
the best strategy for learning S is to randomly extract one of
these elements in each copy. Under this strategy, if i(i < k)
distinct elements have been obtained, the expected number
of copies needed to learn the (i + 1)th element is k/(k — 7).
Therefore, the expected number of copies needed to learn
S is Zf:ol k/(k—i) ~k1n k. Continuing based on this, Ref.
[45] shows that ®(k log,k) copies are necessary and suffi-
cient for learning S with a high probability.
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However, if these copies are quantum copies in the form

of |S) == (1/v/k)Y jes]i)> the number of copies required can be
further reduced. This is because we can perform more quan-
tum operations on |S) before measuring them on the com-
putational basis. In other words, by using quantum copies
|S), the strategy for learning S is no longer limited to random
sampling. Reference [44] shows that when the number of
missing elements m = n — k is very small, the number of cop-
ies of |S) used to learn S is reduced to @ (k log,(m +1)). The
method first performs a 2-outcome projective measurement
with operators |[n])([n]| and I - |[n]){[n]| on copies of |S),
where |[n]) == (1/y/n) Y ¢ [i). After the measurement, the

second outcome |y) = \/m/n|S) —\/k/n|S) is obtained with
probability m/n, where S is the set of missing elements,
and |S) == (1/y/m)Y;5]i). Then, |y) is measured on the com-
putational basis to obtain the missing elements. This method
transforms |S) into |y) and then infers the elements in |S) by
learning the elements in |S) from |y). Because |S) has fewer
elements, this method reduces the number of copies
required to learn S.

However, difficulties arise when we attempt to demon-
strate this method experimentally. This is because it is diffi-
cult to experimentally construct a single k-dimensional
quantum state [52-54]. Even if this state is decomposed into
a tensor product of qubits, these qubits must be highly
entangled [26, 46, 47]. This is also not feasible using current
technology. More seriously, the operators |[n]){[n]| and I —
[A])([n]| in this method are difficult to implement in
experiments.

Therefore, we introduce an alternative scheme, which is
defined as the “coherent-state quantum coupon collector
protocol.” This scheme maintains the main idea of the orig-
inal one, which is to learn S by measuring the missing ele-
ments. In addition, this scheme uses a sequence of coherent
states to implement copies of |S). Coherent states are easy
to prepare and can be transformed using simple linear opti-
cal elements. Therefore, this scheme is particularly attrac-
tive from a practical point of view.

In our scheme, copies of |S) are implemented using a time
sequence of n weak coherent optical pulses

1

@ 8)= & |(-1)a), (1)

where a is a complex number and |(—1)’a), is a coherent state
with amplitude « at the ith time mode, where j = 0 for i € S and
j =1 otherwise. The phases of these coherent pulses depend on
S, but their intensities are the same. Thus, the state |, S) has
the mean photon number y = n|a|’. Note that |S) is given by
projecting the state |, S) == ® ;.5|a); into the single-photon
subspace. The total intensity k|a|* of |& S) represents the
number of copies of |S). However, our scheme uses |«, S)
instead of |a, S). In other words, when i ¢ S, our scheme sends
state |—a); instead of a vacuum state. This method can
improve the efficiency of detecting missing elements, but it
also causes the number of copies by our scheme to be slightly
different from those of a scheme using |a, S). Specifically, the
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Ficure 1: (a) Coherent-state quantum coupon collector protocol. Alice and Bob generate pulses |a, S) and |a, [1]) according to S and [#],
respectively. The pulses travel along their respective routes to interfere at the beam splitter (BS) and are then detected by a single-photon
detector Dy. After the experiment, Bob learns the elements in set S according to the results of Dy. (b) Efficiency E, correct probability

P(1,n—1), and success probability P,,

C

versus different mean photon numbers per pulse. We draw the numerical results under »n =

4000, k=n-1, p;=10"%, v=0.99998, and # = 68%. (c) The required samples for the classical and quantum protocols versus the size

of the set [n] with p;=107%, v=0.99998, and 7 = 68%.

number of copies by our scheme are at most O(n|a|*). For
comparison, the number of copies by a scheme using |a, S)
is at most O(k|a|*). However, as we will see later, this subtle
difference can be ignored, and using |, S) greatly improves
the efficiency of detecting missing elements.

As we discussed previously, our scheme maintains the
important characteristics of the original one; that is, the time
bin i of state |-a); in |a, S) is found through complementary
measurements, and the elements in S are derived from these
time bins. To do this, a local state |, [1]) is prepared and
sent to a 50:50 beam splitter (BS) to interfere with |a, S)
(Figure 1(a)), where

n

| [n]) = ® |at);. (2)

The interference result is recorded by a single-photon
detector Dy,. If the detector Dy clicks at the ith time bin, then
we consider the pulse of the ith time bin in |a, S) to be |-a)..
Thus, all time bins containing |-«) in |, S) can be learned

exactly from the outcomes of the detector Dy. Without loss
of generality, let Alice be a coupon maker and Bob be a cou-
pon collector. Bob’s task is to learn all elements in S from the
state |a, S) prepared by Alice. The detailed steps are
described as follows:

(1) Alice selects k elements from set [n] as set S and

selects an appropriate value |a|> as the intensity of
each pulse

(2) Alice encodes the pulses |a, S) according to S and the
intensity |a|*; if i € S, Alice prepares a coherent pulse
|, at the ith time bin and sends it to Bob; otherwise,
Alice sends |-a); to Bob

(3) Alice announces the value of ||, the elements of [n],
and the size k of S

(4) Bob encodes the pulses |a, [1]) according to [n] and

intensity |«|*: Bob prepares a coherent pulse |a) for
all time bins
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(5) Bob uses a 50:50 beam splitter and two single-
photon detectors to perform interference measure-
ments on the pulses |«, S) and |a, [1])

(6) Bob records whether the detector Dy clicks or not
at each time bin, and then learns S exactly based
on the outcomes of the detector D and the size
k of the set S

At each time bin i, the output state after the BS is
(1) + Da)v2)p, ;@ |(((-1) = De)V2)p,
D, is unnecessary in this work, it is not drawn in
Figure 1(a). It is easy to verify that in the ideal case, the value
of j determines whether the pulses output by the BS go to D,
or Dy, thus helping Bob to learn the state |a, S).

However, even under ideal conditions, the proposed
scheme has an intrinsic failure probability. This is because
a coherent pulse may collapse to a vacuum state after being
measured and thus cannot be detected by detector Dy. Spe-
cifically, when Alice sends the coherent pulse |a);, Dy will
never click. Therefore, Bob can always obtain the correct
results. However, when Alice sends a coherent pulse |-a),,
¢ 2laf?

Because

the detector Dy has a nonclick probability of P, =
(the detection efficiency is assumed to be 100% in the 1deal
case). Note that if Alice sends a vacuum state when i ¢S,

then the nonclick probability of Dy is increased to e(laf12),
This is why when i ¢ S, our scheme sends |-a), instead of a
vacuum state. Only when detector Dy detects all |—a), sent
by Alice can we infer the elements in S. Therefore, the success
probability of our scheme without experimental imperfections
is P(m) = (1-P,,)", where m is the number of missing ele-
ments of S. Note that although the use of the coherent-state
sequence |a, S) for implementing copies of |S) is easier to dem-
onstrate experimentally, it also introduces an intrinsic failure
probability. Fortunately, as we will see later, this failure prob-
ability is negligible compared to the failure probability intro-
duced by experimental imperfections.

To demonstrate the quantum advantage of our scheme
experimentally, we need to eliminate the influence of the
failure probability as much as possible. On the one hand,
we can reduce the failure probability by increasing the mean
photon number per coherent pulse. On the other hand, we
can calculate the required number of copies based on the
expectation of 100% success. However, these methods increase
the number of copies required. Therefore, the selection of an
appropriate mean photon number is particularly important.

2.2. Protocol in the Presence of Experimental Imperfections.
So far, we have only discussed the success probability of
our protocol under ideal conditions. However, owing to
experimental imperfections, the success probability formula
of our protocol must be modified. We consider imperfect
experimental models characterized by three parameters: the
combined effects of limited detector efficiency and channel
loss #, dark count rate p,; of the single-photon detector,
and the limited visibility v of the interferometer.

By replacing |a, S) with |,/7a, S), we can eliminate the
effect of # without changing the form of the success proba-
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bility formula. However, p, and v will cause Dy to click at
incorrect time bins with a nonzero probability; thus, the suc-
cess probability formula must be modified. In this case,
when Alice sends a pulse |«),, the probability that detector
Dy, clicks is given by

p - (1 3 e—2(1—")|0t\2’1) + Py (3)

and when Alice sends a pulse |-«
detector Dy clicks is

P,a=<1—

Because Dy may click when Alice sends |«); and may not
click when Alice sends |-a); the number of clicks of the
detector D may be different from the size k of S. In this case,
Bob can determine that the experimental results are not
available and must be discarded. Therefore, Alice and Bob
need to repeat multiple experiments to obtain usable exper-
imental data. Here, we define a new efficiency E = M/N to
measure the ratio of the number M of available experimental
results of the total number N of experiments, which can be
calculated by the following formula:

);» the probability that the

CH61) +p, "

E= ZDmtka i (5)

where D™ =C! P! (1-P_,)"" represents the sum of the
probabilities of all possible cases where Dy, detects i out of
m coherent states |~a) sent by Alice, and Dk = Cinf
pri(1 - Pa)kfm” represents the sum of the probabilities of
all possible cases where Dy, detects m — i out of k coherent
states |a) sent by Alice.

In addition, even if Bob obtains usable experimental
results, Dy has a probability of clicking at the wrong time
bin, thus making him misjudge the elements in S. This
requires us to define the correct probability P(m, k) =P™,

(1 - P,)*/E when the experimental results are available. Thus,
the success probability is modified to Py, = E x P(m, k). Based
on the expectation of 100% success, the number of quantum
samples required to complete the task is

n|af*
P

Suc

R= (6)

Without loss of generality, we choose a special set S; to
verify the quantum advantage of our protocol, where §; =
{1,2,-j=1,j+1,---,n} and size k;:=[S;| =n— 1. There-
fore, the correct probability can be simplified as

P—oc(l _Prx)nil

P(l,n-1)=
pop{" Y+ p !

o= (7)

Based on the above formulae, we present the numerical
simulation in Figures 1(b) and 1(c). The simulation results
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also guide our experimental demonstration. Figure 1(b) shows
that a higher intensity results in a higher correct probability
P(1,n—1). This is because Dy can more easily detect a higher
intensity |—a); sent by Alice. In contrast, as the visibility v of
the interferometer is not perfect, higher intensity also
increases the probability of Dy clicking when Alice sends |at),
. These two factors lead to the experimental efficiency E and
success probability P, increasing first and then decreasing
with an increase in light intensity. P, directly affects the
number of quantum samples required to complete the task.
Therefore, we must choose an appropriate light intensity to
achieve a balanced trade-off between improving the correct
probability and reducing quantum resources.

Figure 1(c) shows a comparison between the resources
required by our protocol and the size of the set [n] with
the correct probability P(1,n—1)=90%. To highlight our
quantum advantage, we also draw the classical limit of the
required samples for comparison. The cost of our protocol
is lower than the classical limit when # < 29,000. When n
< 20,000, the samples required by our protocol are less than
half of those required by the classical protocols.

Note that the objective of this article was to construct a
specific computational task for experimentally demonstrating
quantum advantages in the context of machine learning and
communication complexity. Therefore, to simplify the imple-
mentation of our protocol, we do not consider the case in
which Alice sends incorrect coherent pulses to Bob. In fact,
this case belongs to a more complex communication task
and is beyond the scope of this article.

3. Experimental Setup and Results

We used linear optics components and single-photon
detectors to present a proof-of-principle experimental
demonstration of the coherent-state quantum coupon col-
lector protocol (Figure 2(a)). First, the continuous-wave
light with a wavelength of 1550.12nm emitted by a laser
source was carefully modulated into optical pulses at a
repetition rate of 312.5 MHz by using an intensity modula-
tor (IM). To make the modulated waveform as perfect as
possible, the modulated light was monitored by a single-
photon detector instead of an oscilloscope during the
modulation phase. Then, the modulated optical pulses
were attenuated to the desired level by a variable optical
attenuator (VOA) and separated by a 50:50 BS into two
identical pulse sequences |a,[n]), and |a,[n]);. These
two pulse sequences travel clockwise and counterclockwise
in the Sagnac loop. After passing through a phase modu-
lator (PM), the clockwise pulse sequence |a, [1]), is mod-
ulated to |a, S) according to the value of the coupon S. To
convert the counterclockwise sequence |a,[n]), into the
local state |a, [n]), the PM is turned off when |a, [n]),
passes through it. We used the Sagnac loop to automati-
cally stabilize the phase fluctuation of the channel to
improve interference visibility. In addition, to make the
two pulse sequences pass through the PM at different
times, one arm of the Sagnac loop was designed to be
Im longer than the other arm. The optical circulator
was used to prevent the previous optical pulses transmit-

ted back by the BS from affecting the subsequent optical
pulses. Finally, the interference results were detected using a
superconducting nanowire single-photon detector (Dy).

Our scheme combines all copies of the |S) required to
learn S into a sequence of n coherent states. Compared with
a state that consists of a single photon in n modes, the
coherent-state sequence is easier to prepare. Moreover, com-
bining all copies of |S) enhances the mean photon number of
each time mode of the coherent-state sequence, thus increas-
ing the probability of measuring each mode. These features
make our scheme easier to implement in experiments and
more effective.

Note that we can only learn S correctly if each element
i € [n] is correctly classified as S or S. Therefore, even if p,
and v have a small effect on a single pulse, it is difficult to
correctly classify all elements i€ [n] when n is very large.
This means that p,; and v limit the maximum size of [n] that
our protocol can achieve quantum advantage with a given
correct probability. However, in our experiment, because
p, can reach the order of 10~® under the current experimen-
tal conditions, the effects of the random detection events
caused by p, can be ignored. In contrast, the maximum
visibility of an interferometer v that can be achieved in a lab-
oratory is on the order of 1-107. As a result, v seriously
limits the success probability of learning S, even if the size
of [n] is relatively small. In addition, # directly affects the
number of quantum samples required to complete the task.
Therefore, v and # are the experimental parameters that
need to be improved. When the accuracy of v is improved
in the future, our protocol can also achieve quantum advan-
tage over [n] with a larger size.

To improve the success probability, we selected a BS
whose visibility in the Sagnac loop was nearly 99.9993%.
We also reduced the magnitude of the dark count probabil-
ity p; to 1078, At this magnitude, the dark count probability
hardly affects the system performance. In addition, we tried
to adjust the amplitude of the radio-frequency signal driving
the PM to achieve an accurate 7-phase shift. However, it is
almost impossible for a PM to apply a perfect -phase shift
on a specific pulse without influencing other pulses in a
period, especially as the duty cycle in this experimental dem-
onstration is on the order of 107* ~ 107>. Consequently, the
number of Dy clicks caused by the pulses |&); in a coupon
period is much higher than theoretically expected, which
means that the experimental interference visibility is lower
than that of the BS. Fortunately, during data processing,
we found that selecting certain time windows can signifi-
cantly improve the visibility for interference. However, this
approach inevitably filters out certain detection events,
thereby affecting the final success probability. By repeatedly
selecting different time windows, we achieved a better
trade-off between improving visibility and reducing detec-
tion events, thereby reducing the number of quantum sam-
ples of different coupon lengths.

The experiment was performed with different sizes of
the set [n] ranging from 2000 to 18000. For each size L,
we ran the experiment for 5s and analyzed the detection
results. The relevant experimental parameters are listed
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FIGURE 2: (a) Experimental setup for the coherent-state quantum coupon collector protocol. The optical pulses were generated by a
1550.12nm continuous-wave (CW) laser source with an intensity modulator (IM) driven by an external arbitrary waveform generator
(AWG). The frequency of the pulse sequences and the duration of a single pulse were 312.5 MHz and 900 ps, respectively. These pulses
were attenuated to the single-photon level by a variable optical attenuator (VOA) and then separated into two pulse sequences with
different propagation directions by a 50:50 beam splitter (BS). The clockwise pulse sequence was set to |, S) after passing a phase
modulator (PM) controlled by the AWG. The counterclockwise pulse sequence was used as the local state |a, [n]). Finally, these two
pulses interfered at the BS and were detected by a superconducting nanowire single-photon detector Dy. A polarisation controller (PC)
was used to modify the polarisation of the incident pulses to achieve the maximum detection efficiency. The detection events were
recorded using a time-to-digital converter (TDC). (b) Relationship between the required samples and the size of the set [n]. We compare
the classical lower bound, the samples consumed by our protocol in the practical setup with the experimental parameters listed in
Figure 2(c), and its theoretically expected values. The experimental results were in line with the theoretically expected values. For an
input size of under 14,000, our results outperformed the classical lower bound, thus demonstrating quantum advantage. (c) Experimental
parameters corresponding to our numerical simulation and experimental demonstration. Note that the channel loss # is split into
channel efficiency 7, and detector efficiency #,,,. Here, p, is dark count rate of the single-photon detector and v is the limited visibility
of the interferometer.

in Figure 2(c). The detailed results are listed in Table 1.
Our protocol consumes fewer samples than the classic
protocol for L <16000 (Figure 2(b)). The gray area in
Figure 2(b) indicates the region in which our protocol
consumes more samples than the classical one. By choos-
ing different time windows, we set v=10.99996 for n<
6000 and v =0.99999 for n >8000. Note that these visibil-
ity levels are approximate values based on experimental
data. To achieve better experimental results, we did not

choose the time window with the most detection events,
but the window with the highest visibility. The result is
that only a fraction of the photons were detected, which
is equivalent to reducing the detection efficiency of detec-
tor Dg. Therefore, the intensities of the coherent-state
pulses were modulated much higher than theoretically
expected in this experiment. Furthermore, because the
quantum resources consumed in our protocol are propor-

tional to the intensity |a|* of each pulse in |a,S), the
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TaBLE 1: Summary of the experimental data. The input size L ranges from 2,000 to 18,000 with a step size of 2,000. For each size L, we
collected data for 5 seconds. The table shows the number of coupons sent, the number of detection events within the corresponding time
windows, the number of events in which the detector clicked only once in each coupon period, the number of events in which the
detector clicked only once and clicks at the correct time bin, the correct probability, the efficiency, the success probability, the minimum
number of classical samples required for classical protocols, and the number of quantum samples needed to obtain the correct result

utilized in our experiments.

I Total Detection Siflgle Co.rrect Correﬁt Efficiency Succe§§ Classical Quantum
coupons events clicks clicks probability probability samples samples
2000 1 781250 763766 525445 490824 93.4% 67.2% 62.8% 1.52x 10* 3.18 x 10°
4000 2 390625 366475 254409 233479 91.7% 65.1% 59.8% 3.32x10* 1.34x 10*
6000 2 260416 138071 120573 109603 90.9% 46.3% 42.1% 5.22x10* 2.85x 10*
8000 3 195312 135981 104831 94767 90.4% 53.7% 48.5% 7.19 x 10* 4.95x 10*
10000 3 156250 99214 82767 75900 91.7% 53.0% 48.6% 9.21 x 10* 6.18 x 10*
12000 4 130208 118189 79260 71477 90.1% 60.8% 54.9% 1.13x10° 8.74x 10*
14000 5 111607 96421 68674 62797 91.4% 61.5% 56.3% 1.34 % 10° 1.24x10°
16000 6 97656 92380 64554 59817 92.6% 66.1% 61.2% 1.55x 10° 1.57 x 10°
18000 7 86805 81783 57499 53706 93.4% 66.2% 61.9% 1.76 x 10° 2.04 x 10°

degree of photon dissipation directly affects the results of
the experiment. When the photon dissipation is larger, a
higher intensity is required to compensate for the photon
dissipation, thus consuming more quantum resources.
Therefore, in our experiments, we strive to improve the
channel efficiency 7, between Alice and D and the
detection efliciency #,,, to reduce the consumed quantum
resources. Reducing the voltage fluctuations of the phase
modulator and selecting a better time window can further
improve the experimental results.

3.1. Quantum Blind Box. Our protocol can not only be used
to verify quantum advantage in machine learning from the
PAC theory but can also be regarded as a communication
task to demonstrate quantum advantage in communication
complexity. To this end, we designed a specific application
scenario for our protocol, which is called a quantum blind
box game. In this game (Figure 3(a)), Alice acts as a mer-
chant, and Bob acts as a customer. Alice prepares n small
balls with different patterns and packs them in boxes to form
blind boxes. Alice then takes n — m of these boxes as a blind
box system, where m > 1, and encodes the coherent state
|ot, Sy according to the patterns of the balls in that system.
Alice then tells Bob all patterns of the balls and the num-
ber of blind boxes in the blind box system.

To determine the patterns contained in the blind box sys-
tem, Bob uses the same encoding method as Alice to create a
local state |a, [n]). The merchant Alice provides the entire
measurement system, which is the same as the experimental
device shown in Figure 2(a). Bob can decide the total intensity
p of the coherent state |, S) sent by Alice, but the money he
needs to pay to Alice is equal to the quantum resources
consumed by |a, S). The required quantum resources are
O(u log,n) bits [27, 54]. Therefore, the higher the intensity
y of |a, S), the more money Bob needs to pay. Finally, Bob
judges the patterns in the blind box system based on the results
of the single-photon detector Dy. If Bob gives the correct

answer, he will be rewarded with (n —m) log,(n —m) log,n
dollars, which is the minimum expected value of the informa-
tion that needs to be transmitted to obtain the correct answer
using classic resources. Therefore, when Bob consumes fewer
quantum resources than the classical limit, he can obtain a
positive return in this transaction.

Let us consider n=100 and m € {2, 3,4} as an example
for demonstrating this game. The experimental results show
that for a given value of m, the expected quantum resources
are significantly affected by the light intensity (Figure 3(b)).
The detailed experimental results are presented in Materials
and Methods. Note that the comparison used herein is the
expected value of the quantum resources spent to obtain
the correct answer. When the light intensity is small, Bob
will not spend a large amount of resources in each game,
but it is also difficult to obtain the correct answer. To obtain
the bonus, Bob may need to play multiple games. As a
result, the expected value of the quantum resources that he
spends has increased. This is the reason why quantum
resources at a 0.5 light intensity are relatively high for m =
3 and m=4.

Figure 3(b) also shows that Bob can break the classical
limit by choosing the proper intensity for achieving a posi-
tive return. In other words, Bob successfully uses quantum
resources to design a better strategy than random extraction
in this game. This means that in the quantum blind box
game, Alice can also allow customers to design various
coding methods and measurement strategies for guessing
the blind box. The smaller the expected value of the
information required for a strategy designed by a customer,
the more he can get in return. Overall, quantum advantage
in communication complexity has been successfully
demonstrated in experiments through the quantum blind
box game. We reasonably expect that the ideas contained
in this game can be used to design communication proto-
cols with a lower amount of information needed to com-
plete specified communication tasks.
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F1GURE 3: (a) Diagram of a quantum blind box. Alice prepares several balls with different patterns ([n]). Alice then puts some of these balls
into boxes to form a blind box system (S) and encodes them into a coherent state |, S). To determine the balls contained in Alice’s blind box
system, Bob encodes all balls into a local state |a, [1]). Alice generates |a, S) and |a, [1]) in the measurement system of a quantum blind box,
and Bob adjusts their total intensity in the system. Finally, Bob uses the results of Dj to determine which balls are included in Alice’s blind
box system. (b) Experimental results of the quantum blind box game. For m, we tested different values of m with light intensities of 0.5, 2.5,
and 4.5. The Z-axis represents the expected value of the quantum resources that Bob spends to obtain the correct answer. The plane
represents the classical limit. Note that for different m, the classical limit is different. Therefore, the plane is not strictly a plane, but it
looks like a plane because the gap is too small. The quantum resources at certain light intensities do not exceed the plane, which means
that Bob can use these light intensities to break the classical limit.

TaBLE 2: Summary of notable quantum advantage demonstrations, with outlines of which fields the demonstrated quantum advantages
belong to and the methods used to demonstrate them.

Demonstrated quantum advantages Methods

Communication complexity =~ Machine learning ~Computational power
This work Yes Yes — Linear optics
Gong et al. (2021) [14] — — Yes Superconducting processor
Centrone et al. (2021) [31] Yes — — Linear optics
Zhong et al. (2020) [15] — — Yes Linear optics
Arute et al. (2019) [25] — — Yes Superconducting processor
Kumar et al. (2019) [29] Yes — — Linear optics
Arrazola et al. (2018) [30] Yes — — Linear optics
Bravyi et al. (2018) [21] — — Yes Quantum circuits
Boixo et al. (2018) [24] — — Yes Quantum circuits
Neville et al. (2017) [13] — — Yes Linear optics
Xu et al. (2015) [27] Yes — — Linear optics
Bentivegna et al. (2015) [17] — — Yes Integrated photonic circuits
Broome et al. (2013) [16] — — Yes Tunable circuit

TaBLE 3: Experimental data of the quantum blind box. We take n =100 as an example and perform phase modulation on m places
randomly, where m € {2, 3,4}. For m € {2, 3,4}, the classical resource consumptions are 2985.3, 2948.2, and 2911.2, respectively.

m Intensity m clicks Correct clicks Correct probability Efficiency Success probability Quantum resources
2 0.5 119433 116560 97.6% 23.9% 23.3% 1425.0
2.5 407768 404469 99.2% 81.6% 80.9% 2053.3
4.5 433641 431329 99.5% 86.7% 86.2% 3465.7
3 0.5 58772 56692 96.5% 11.7% 11.3% 2929.8
2.5 392690 387474 98.7% 78.5% 77.5% 2143.3
4.5 403131 397836 98.7% 80.6% 79.5% 3757.5
4 0.5 25900 24570 94.9% 5.2% 4.9% 6760.0
2.5 353685 347275 98.2% 70.7% 69.4% 2391.4

4.5 379154 372500 98.2% 75.8% 74.5% 4013.1
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4. Discussion

Prior works have mainly demonstrated the quantum advan-
tages of improving the security of communication and
enhancing computational power for specific tasks. Although
many studies have attempted to find the superiority of quan-
tum machine learning, these studies have not theoretically
proven the quantum advantages of machine learning. In this
work, we propose a coherent-state quantum coupon collec-
tor protocol and demonstrate it experimentally by using
simple linear optical elements and coherent states. Experi-
mental results show that our protocol can effectively reduce
the number of samples required to learn coupons exactly
with up to 14000 elements on the basis of a 90% correct
probability. Combined with the arguments in Ref. [44], our
result strongly demonstrates the quantum advantages of
machine learning under current technology. To compare
with quantum advantages achieved by other studies, we
summarize them in Table 2. Note that our scheme does
not resort to immature technologies, such as complicated
entangled states or ideal single-photon sources. This makes
our scheme particularly practical, especially for exemplifying
the ability of linear optics.

In addition to the demonstration of the quantum advan-
tage of machine learning based on the PAC learning theory
for the first time, we also specifically designed a quantum
blind box game based on our protocol and experimentally
demonstrated quantum advantage in communication com-
plexity through this game. Our protocol does not save
resources exponentially like other communication tasks with
quantum advantages. Nevertheless, our protocol can still
effectively learn the missing elements in the set [n]. We hope
that the ideas contained in this game can inspire other useful
applications, such as quantum voting.

Overall, despite potential limitations, our study provides
new opportunities for the development of quantum machine
learning and quantum communication complexity. We
expect that the ability of linear optics can help us achieve
more quantum-advantaged communication and computa-
tional schemes.

5. Materials and Methods

5.1. Selection of Time Windows. As described above, the vis-
ibility v of the interferometer plays a crucial role in
determining the cost in terms of quantum resources.
Without phase modulation, v in our scheme can easily reach
over 99.999%. However, imperfections in PM often cause
extra counts in unexpected places, which leads to a decrease
in visibility.

Fortunately, we find that the visibility varies when differ-
ent time windows are chosen, which is why the simulation
shown in Figure 2(b) uses two visibilities. The choice of time
window also affects the number of detection events. In our
experiment, as visibility increased, the number of detected
events tended to decrease, which is equivalent to a decrease
in the detection efficiency. Therefore, the equivalent detec-
tion efliciencies and visibilities for different time windows
are different.

To ensure the correct probability P(m, k) > 90%, we tra-
verse different time windows to find the minimum value of
the expected value of the required quantum resources. For
the expected values displayed shown in Figure 2(b), we
adapted the corresponding experimental parameters accord-
ing to the time window.

5.2. Experimental Details of Quantum Blind Box. In the
experiment, we correlate the patterns of the balls to the posi-
tions of the pulses. The corresponding positions of the balls
that are not in the blind box system are loaded with a 7
-phase. Therefore, this game can be realized using the exper-
imental setup shown in Figure 2(a).

The system was run at a repetition rate of 10 MHz,
and each round was 5 seconds long. The duty cycle of a
pulse was approximately 5%. The dark count rate per
5ns detection gate was approximately 6 x 1077, Consider-
ing the channel loss, the detection efficiency was approxi-
mately 68%. The detailed experimental results are
presented in Table 3. The experimental apparatus was
the same as that used before.

Data Availability
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