ACAT 2011

IOP Publishing

Journal of Physics: Conference Series 368 (2012) 012019 doi:10.1088/1742-6596/368/1/012019

PROOF on the Cloud for ALICE using PoD and OpenNebula

D Berzano'?, S Bagnasco’, R Brunetti’, S Lusso’

' Dip. di Fisica Sperimentale — Univ. di Torino— Via P. Giuria 1, 10125 Torino—Italy
?Istituto Nazionale di Fisica Nucleare— Via P. Giuria 1, 10125 Torino—Italy

E-mail: dario.berzano@to.infn.it

Abstract. In order to optimize the use and management of computing centres,
their conversion to cloud facilities is becoming increasingly popular. In a
medium to large cloud facility, many different virtual clusters may concur for
the same resources: unused resources can be freed either by turning off idle
virtual machines, or by lowering resources assigned to a virtual machine at
runtime. PROOF, a ROOT-based parallel and interactive analysis framework,
is officially endorsed in the computing model of the ALICE experiment as
complementary to the Grid, and it has become very popular over the last three
years. The locality of PROOF-based analysis facilities forces system
administrators to scavenge resources, yet the chaotic nature of user analysis
tasks deems them unstable and inconstantly used, making PROOF a typical
use-case for HPC cloud computing. Currently, PoD dynamically and easily
provides a PROOF-enabled cluster by submitting agents to a job scheduler.
Unfortunately, a Tier-2 does not comfortably share the same queue between
interactive and batch jobs, due to the very large average time to completion of
the latter: an elastic cloud approach would enable interactive virtual machines
to temporarily subtract resources to the batch ones, without a noticeable impact
on them. In this work we describe our setup of a dynamic PROOF-based cloud
analysis facility based on PoD and OpenNebula, orchestrated by a simple and
lightweight control daemon that makes virtualization transparent for the user.

1. PROOF-based analysis facilities and the ALICE Experiment

PROOF (Parallel ROOT facility) [1] is a framework that enables ROOT [1] to perform parallel and
interactive data processing in “embarrassingly parallel” use cases, such as typical HEP event-based
activities. Events are processed in parallel by independent ROOT sessions (the workers) on multiple
machines; results are collected and merged afterwards by a master session.

PROOF enables computing resources to be used interactively: all the requested PROOF resources
are ideally available almost immediately. Workers can also be added or removed at runtime, and in
case a worker crashes the job would proceed on the others.

A conventional static PROOF installation requires the xproofd daemon to listen for incoming
connections on one machine: upon connection it will communicate to static xproofd daemons on the
other machines to provide the user with workers.
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Since the time required to complete the analysis of a single event depends on the available
computing power and the complexity of the event itself, events are not evenly distributed to the
workers; instead, the workers ask for new events when they are finished analyzing. This pull
architecture, called the dynamic packetizer [2], leads to a uniform completion time.

A typical use case for a PROOF-based analysis facility in HEP is the optimization of user analysis:
interactivity enables the physicist to immediately re-run the analysis after each small change in the
code and cut parameters.

Those analyses run usually for a few minutes; moreover, since the tasks are run interactively by the
user, there is a demand for PROOF resources only during working hours. Such discontinuous
occupancy means that local PROOF resources may be largely underused.

PROOF is also available on larger scale deployments, where analyses on bigger samples or even
full simulations or reconstructions can be run interactively.

Such facilities are normally used by a larger number of users, and fast network connectivity attracts
non-local users. However, having a single static PROOF master process accepting connections for all
the users is an approach that does not scale very well and can undermine the stability of the whole
system.

At this point it should be clear that static PROOF deployments pose some issues when resources
are either underused or heavily loaded: a dynamic PROOF deployment would rather make unused
resources available for some other task in the first case, and would absorb peak loads in the latter.

PROOF is officially part of the ALICE computing model since 2006, when the CAF (Central
Analysis Facility) was first set up at CERN [4]. In 2010 a set of guidelines for AAFs (ALICE Analysis
Facilities) [5] were adopted to provide a uniform working environment throughout all ALICE PROOF
clusters. AAF specifications cover: authentication via Grid proxy, software management via AliEn
Packman [6][7], access to local data via a distributed disk pool aggregated and served via
Scalla/xrootd [8] where pool disks are installed on the PROOF servers themselves, dataset
management and staging [9] and monitoring via web through MonALISA [10].

The virtual analysis facility we are going to discuss is compliant to most of the AAF guidelines.

2. The tools: PROOF on Demand and OpenNebula
2.1. PROOF-on-Demand
PROOF on Demand (PoD) [11] is a set of tools that enables PROOF to be instantiated dynamically on
an existing batch farm, making no particular assumptions on the underlying batch system. There are
plugins for a wide range of resource management systems. Another independent plugin, pod-ssh, does
not even need a batch system and uses standard passwordless SSH to access the worker nodes.

Its components act as wrappers around PROOF; the most important are:

* pod-server—launched only once by the user, it sets up the PROOF master and monitors the
status of the PROOF cluster; it also terminates the cluster automatically in case of inactivity;

* pod-agent—it prepares the environment for PROOF and controls a single PROOF worker
throughout its whole lifecycle, firing it up and cleaning up temporary files in the end; it is
meant to be deployed by a batch system via pod-submit;

* pod-submit—queues the specified number of pod-agent jobs to the batch system, requesting
for a certain number of PROOF workers: each pod-agent, once deployed, will communicate
with the corresponding pod-server.

As soon as the first worker becomes available the user can start using PROOF; further workers will
join the facility as soon as they are ready, or can be added to it at a later time.

Since each user has a different PROOF master, PoD helps addressing the scalability issues of a
large PROOF deployment.

2.2. OpenNebula
OpenNebula [12] is an open source laaS (Infrastructure as a Service) framework to set up,
administrate and monitor public and private clouds. OpenNebula takes care of the setup and
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provisioning of the virtual resources, including storage areas and network connectivity. All of these
virtual resources, and the virtual machines themselves, are described inside specific templates.

We favored OpenNebula over similar tools because it is widely used and almost every functionality
is implemented via Bash or Ruby scripts, making it easy to add missing functionalities or to tailor the
existing ones around our use case. OpenNebula refers to these scripts as MADs (Middleware Access
Drivers): there exist MADs for transferring images, monitoring, handling the authentication and
supporting different virtualization methods.

As of v3.0, the supported hypervisors [13] are Xen [14], KVM [15] and VMWare [16], all of them
implementing basic deployment functionalities such as suspension, migration and even live migration.
An interface to Amazon EC2 [17] is also available, as well as OCCI APIs for public cloud setups.
Different hypervisors or cloud interfaces can be used together to set up a hybrid cloud.

Virtual machine images are registered inside a non-hierarchical repository: the transfer manager
MAD is responsible of transferring the images from the image repository to the hypervisor (cloning)
and vice-versa (saving). Transfer managers supplied by default with OpenNebula include: the NFS
transfer manager, for images on a filesystem shared between all the hypervisors; the LVM transfer
manager, to run VM images written on LVM partitions instead of plain image files; the SSH transfer
manager, to transfer the images using scp.

OpenNebula also features a web interface called Sunstone [18] that supports custom plugins.

3. PROOF on Demand and OpenNebula interplay

A prototype of a private cloud based on OpenNebula is being set up in the computing centre of INFN-
Torino, a WLCG Tier-2 centre. The cloud runs a dynamic PROOF cluster based on PoD that uses a
dedicated batch system whose worker nodes are virtual machines created and destroyed dynamically
using the mechanisms supplied by OpenNebula.

There are many advantages in using a batch system over using pod-ssh. First of all, pod-ssh
connects to machines that are already up and running, while through pod-submit we could place the
pod-agents in a queue and the batch system will deploy them in order when the machines are up.

Secondly, the batch system knows the structure of the cluster and maintains a register of what is
currently running on it, making tasks wait in a queue until the resources to run them become
available —pod-ssh does not feature any queue and would be likely to overload the nodes.

Furthermore, pod-ssh needs a list of the valid PoD-enabled machines to connect to: making this list
dynamically provided and making pod-ssh wait until the machines are up would require the
reimplementation of features that are core functionalities of any batch system.

A batch system is also useful to customize the jobs distribution and to enforce policies (while no
particular limitation can be enforced via pod-ssh): for instance, we could configure the batch system to
keep jobs of different users separated on different virtual machines, or limit the maximum number of
concurrent pod-agents or the maximum walltime.

We decided to use TORQUE v2.4 [19], based on PBS and simple to configure, but any of the batch
systems supported by PoD would in principle work fine.

3.1. Farm configuration

3.1.1. Configuration of the access node. In our setup the user submits the jobs via pod-submit to a
single access node (in this case it acts as a wrapper around TORQUE’s gsub) which runs the
TORQUE server (pbs_server) and the job scheduler (pbs_sched).

Given the very simple nature of our jobs, we were able to achieve an improved response time by
configuring the schedule to reduce the default queue polling interval from 1 min to 7 s. This means
that it takes TORQUE at most 7 s to dispatch the pod-agent to a freshly connected worker node.

Also, since pod-agents are disposable, we do not care to keep track of them in the queue when they
are finished: the queue is configured to flush the agents as soon as they finish.
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3.1.2. Configuration of the virtual dynamic worker nodes. Since worker nodes for PROOF are virtual
machines, once the configuration is done on one machine the corresponding image can be cloned
several times.

The virtual worker node runs the pbs_mom daemon that controls the running jobs and
communicates with the server. Since the running worker nodes are created dynamically, the TORQUE
server should be somehow made aware of the presence of the new node in order to start assigning jobs
to it.

In our setup, virtual worker nodes add themselves automatically to the PoD queue by executing a
command on the server via SSH right after the bootstrap: a private key is used for passwordless
authentication, and for security reasons connections made with that key are limited to execute only one
command, chosen to be the gmgr command that adds the node to the PoD queue.

This pull architecture is easier, less error-prone and quicker than adding nodes separately: in fact, if
a node can successfully add itself to the queue it means that network connectivity works properly, and
we avoid the cases where a virtual machine deployment fails, leaving a dangling node in “offline”
state in the TORQUE nodes list.

Our operating system of choice for the virtual machines is CentOS 5.7, binary compatible with
upstream RHEL releases, so that we can run precompiled ALICE software. The cloud environment
currently runs on KVM hypervisors.

When running PROOF, the version of ROOT and AliRoot to use for the session is chosen upon
connection: since this user decision happens way after virtual machine’s boot, we cannot deploy a
virtual machine self-containing only the requested software version; on the other side, a VM with all
the ALICE software versions (tens of GB) would be both difficult to maintain and very clumsy to
deploy.

ALICE software packages, as defined by AAF specifics, are exacty the same as the packages for
the Grid worker nodes, so we just mount a shared ALICE Grid software area exported using the
Lustre™ distributed filesystem [20], without the need for a software manager specific to PROOF.

In order to make the virtual machine image as small as possible, both the swap space and an empty
scratch filesystem are created by OpenNebula upon the virtual machine deployment directly on the
disks of the target hypervisor.

3.1.3. A physical PROOF cluster with a virtual elastic extension. It is worth noting that the
configuration of the virtual worker nodes, apart from some configuration items specific to the
virtualization (such as the dynamically-created disk partitions), is a perfectly valid configuration also
for a physical machine. A virtual PROOF worker node and a physical one are, from the point of view
of the batch system, nothing more than job slots, so we can actually use the batch system to deploy
PROOF workers on a physical analysis facility with an elastic extension made out of virtual machines.

In this hybrid case the batch system can be, for instance, configured to favor physical over virtual
worker nodes for performance reasons, a distinction that would not be possible to accomplish easily
using pod-ssh.

3.14. Sharing virtual resources with other virtual clusters dynamically. The most important aspect of
our PoD over OpenNebula cluster is the deployment swiftness: since interactive resources must be
made available in a reasonably short amount of time, every configuration option has been tailored to
gain precious seconds.

However, since we cannot afford to wait hours for some virtual resources to be freed by a certain
virtual cluster, our PoD virtual machines can be configured to grab some CPU resources from other
running virtual clusters without stopping them. This is currently supported on KVM by simply using
renice, since virtual machines are treated as ordinary Unix processes.

Squeezing resources can not be done indiscriminately: for instance, it is agreed that an ALICE
PROOF worker node can temporarily steal resources from a virtual Grid node running very long batch
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jobs from the same VO. The static prototype of the Virtual Analysis Facility we set up in Torino in
2008 [21][22] is now much easier to set up as a special use case of our OpenNebula cloud.

3.2. The load sensor

Turning the PROOF virtual machines on can be done manually by the system administrator or by the
end user, but in a production facility it is much better to automatize such tasks. Moreover, since PoD is
a well-established tool and very easy to learn, we would like to make the user completely unaware of
the underlying virtualization layer, by not changing the standard PoD workflow (pod-server followed
by pod-submit) and without patching PoD code.

The batch system can keep track of pod-agents waiting in the queue: if there are any, actions can be
taken accordingly, such as spawning new virtual machines. On the other side, the batch system
monitors the status of the nodes, so that we can turn off idle nodes, i.e. nodes that are haven’t been
executing PROOF workers for a certain amount of time.

The load sensor is a daemon (called bananad) that performs the two tasks above. It continuously
checks the queue for waiting jobs and the nodes status for idle nodes. It also removes stale “offline”
nodes hanging in the batch system for too long.

Continuously polling the status of the queue via the gstar command is a resources-consuming task,
so wherever possible TORQUE logs are opened and read in a separate thread as more lines are
appended to them. This strategy makes the daemon very lightweight.

All the bananad thresholds are configurable: the idle time before a virtual node is turned off, how
long an “offline” node is left there before being removed, and how long a job is left waiting before
asking for new virtual machines.

It is very important to point out that bananad is the only piece of software having direct access to
the cloud infrastructure, concealing it completely both to the end user and the batch system.

3.3. OpenNebula tweaks
OpenNebula is the tool of our choice because it is easily customizable through simple scripting. The
following OpenNebula configuration has been obtained only by modifying such scripts.

3.3.1. Virtual bridges: network isolation. Our OpenNebula infrastructure is not PROOF-exclusive, but
it runs a certain number of virtual clusters: different virtual machines of the same cluster running on
different hypervisors appear as being attached to the same virtual network bridge.

This can be obtained by configuring an OpenNebula hook (an event callback) executed before
starting the VM that uses ebrables [23], an iptables-like kernel space tool that operates at Ethernet
level to isolate the class of incoming and outgoing MAC addresses to a virtual machine. The hook is
executed on the hypervisor running the virtual machine, and it has been modified to allow the
specification of a list of extra authorized MAC addresses directly inside the OpenNebula VM
template. This is needed to allow all the VMs of the same cluster to communicate with a service that
resides outside the virtual bridge.

3.3.2. Quick deployment of virtual machines on LVM. In our setup, virtual machines are run on LVM
partitions for performance reasons. This increases the performances with respect to running them from
image files.

The LVM Transfer Manager MAD provided by OpenNebula has been heavily modified to
drastically improve the virtual machine deployment time.

In the default LVM module, the image is first copied as a file via scp on the hypervisor, then it is
dumped on the LVM partition using dd. To avoid this double transfer, plus the connection overhead
introduced by SSH, the image repository resides on a shared GlusterFS [24] filesystem mounted on all
hypervisors, and the image is “disk dumped” directly to the LVM partition. With this method, the
transfer time of a 4 GB virtual machine has been reduced reduced from ~200 s of the standard LVM
module (scp then dd) to the ~50 s of the modified LVM (direct dd over GlusterFS).
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Table 1. Time needed to create on the fly an ext3 and a
XFS filesystem: the results show how a XFS filesystem of
any size may be created in near-real-time. These results
were obtained on non-SDD disks.

Size ext3 XFS
20 GB 13.1s 15s
40 GB 200 s 16s

The second large improvement comes from the consideration that virtual machine images rarely
change: it is therefore a waste of time to transfer a big image several times. Each virtual machine
image is thus cached as a LVM partition, and the virtual machine instance is run on a snapshot
partition of the image cache, using the snapshot feature built into LVM. Transferring the image to the
hypervisor only happens if the image is not there yet, but further accesses only need to snapshot that
partition, an operation that only takes a negligible amount of time (< 1 s).

Running VMs on snapshots of the original cache partition, without touching it, has some
remarkable advantages. First of all, every potential damage made to a running virtual machine remains
inside the snapshot and does not propagate to the original image. Moreover, multiple virtual machines
can be run on the same hypervisor from multiple snapshots of the same LVM logical volume.

OpenNebula’s LVM module also features functions to dynamically create disposable filesystems
for the virtual machine. In particular, the swap creation module has been rewritten in order to create
the swap partition on LVM too (OpenNebula’s default module creates the swap on a file), and for the
disposable scratch area XFS has been chosen because the filesystem creation is almost immediate with
respect to some other well-established filesystems: as clearly shown in table 1 the creation of a XFS
filesystem does not depend much on its size, while the creation of an ext3 filesystem is slow
(compared to our interactive use case) and strongly dependent on the filesystem size. All of our
hypervisors use regular non-SDD SATA disks.

3.3.3. Easier updates through contextualization. Contextualization is the process of running a set of
functions to customize a general-purpose virtual machine image at boot time. By using
contextualization, instead of hardcoding some modifications inside the virtual machine, we can keep
our image repository smaller and easier to update. In the PROOF case, for instance, since all the
software is on a shared partition and not within the virtual machine, the instantiated virtual machine is
just a basic CentOS 5 installation, and all the customization is made with a contextualization script
that takes < 2 s to complete, thus not negatively affecting the boot time.

3.4. SSH authentication using grid credentials and PoD connectivity

In this setup each user needs to login to the access node in order to run the PoD server: since v3.6 PoD
features the pod-remote command, a local shell that issues remote PoD commands requiring only a
SSH connection to the access node. The connection to PROOF is also tunneled through SSH, as
depicted in figure 1, so that it is easy to configure a firewall allowing only sshd port (22/TCP) on the
access node.

In order to allow ALICE users to transparently connect to SSH using their Grid credentials (a
X.509 certificate and a private key), a two-step mechanism has been set up [25]. Authentication is
performed via HTTPS using the certificate and the key: past this step, the user obtains a temporary
authorization to connect via SSH with private key authentication by presenting his or her Grid private
key, which happens to be in the same format (PEM) recognized by SSH.
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Figure 1. PoD connectivity schema: the only port opened for outbound connectivity is the SSH
port, while both physical and virtual PROOF workers freely communicate in a private, isolated
network. The access node, running the PROOF masters, acts as an interface between the two
networks.

Certificate to Unix user mapping is performed using the ALICE LDAP user database, and home
directories are created on the fly using the PAM mkhomedir module.

This approach has been made transparent to the user, which is only prompted for a passphrase to
unlock the Grid private key.

4. Conclusions

This work shows how, using mainstream and widespread tools, it is possible to build a virtual elastic
interactive analysis facility with a wise configuration of the single tools and minimal development
effort.

Every piece has been configured by keeping in mind that interactive resources must be made
available as soon as possible: the batch system has been configured accordingly, while the cloud
infrastructure has been tweaked to avoid useless time-consuming transfers, through a fast shared
filesystem and local caching of the VM images. Once all the images have been cached, the maximum
time a user waits to obtain 40 PROOF workers, even when the resources must be shared with other
running virtual clusters, is under 1 min 30 s, perfectly acceptable for an interactive resource.

With this work we have shown that it is feasible to use an laaS tool like OpenNebula to
dynamically provide for interactive PROOF resources even on a small-sized computing facility such
as a Grid Tier-2 centre.
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