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Abstract: In 1974, Stephen Hawking made the groundbreaking discovery that black holes emit
thermal radiation, characterized by a specific temperature now known as the Hawking temperature.
While his original derivation is intricate, retrieving the exact expressions for black hole temperature
and entropy in a simpler, more intuitive way without losing the core physical principles behind
Hawking’s assumptions is possible. This is obtained by employing the Heisenberg Uncertainty
Principle, which is known to be connected to thenvacuum fluctuation. This exercise allows us to
easily perform more complex calculations involving the effects of quantum gravity. This work aims to
answer the following question: Is it possible to reconcile Prigogine’s second law of thermodynamics
for open systems and the second law of black hole dynamics with Hawking radiation? Due to
quantum gravity effects, the Heisenberg Uncertainty Principle has been extended to the Generalized
Uncertainty Principle (GUP) and successively to the Extended Uncertainty Principle (EUP). The
expression for the EUP parameter is obtained by conjecturing that Prigogine’s second law of ther-
modynamics and the second law of black holes are not violated by the Hawking thermal radiation
mechanism. The modified expression for the entropy of a Schwarzschild black hole is also derived.

Keywords: Hawking radiation mechanism; vacuum fluctuations; physics of black holes

PACS: 04.70.Dy; 04.70.Bw; 04.70.-s; 42.50.Lc

1. Introduction

Hawking radiation, proposed by physicist Stephen Hawking, is a phenomenon pre-
dicted by quantum mechanics that describes black holes’ gradual loss of mass and energy.
In the past, it was very difficult to accept that black holes had a temperature because they
would then have to emit radiation, which went against the definition of a black hole. In 1974,
S. Hawking theoretically discovered that a static black hole located in a vacuum must emit
from its horizon in all directions a type of thermal radiation known as Hawking radia-
tion [1,2]. According to Hawking’s mechanism, radiation occurs near the event horizon of
a black hole and it arises from the steady conversion of quantum vacuum fluctuations into
pairs of particles, one of which escapes at infinity while the other is trapped inside the black
hole horizon. In Hawking’s most famous book, A Brief History of Time [3,4], he makes the
analogy that space is filled with particle–antiparticle pairs and that one member can escape,
carrying positive energy, while the other falls in, with negative energy. Since these pairs of
particles are present outside the black hole, the flow of positive energy particles appears as
radiation while the flow of negative energy particles reduces its mass, leading to black hole
decay. There are, however, two main issues to address: one of a pedagogical nature (i) and
the other of a fundamental nature (ii).

(i) Hawking’s original derivation of black hole radiation involves complex mathe-
matics due to the need to handle quantum fields in curved spacetime and solve intricate
equations. Simplifying and intuitively explaining these concepts helps in making the ideas
more accessible and comprehensible. Such approaches can provide a clearer understanding
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of the fundamental physics behind Hawking radiation and black hole thermodynamics
without requiring advanced mathematical tools. Additionally, an intuitive approach can
highlight the physical principles behind Hawking radiation-such as vacuum fluctuations
and particle creation near the event horizon-without becoming lost in technical details.
This helps in grasping why and how black holes emit radiation.

(ii) At first glance, the Hawking radiation process seems to contradict both Prigogine’s
second law of thermodynamics for open systems [5–8] and the second law of black hole
dynamics [9]. Prigogine’s second law for open systems states that “during the evolution,
the entropy production of the system is always positive”. The second law of black hole
dynamics states that “in any classical process involving black holes, the total area of
the event horizon of the black hole cannot decrease”. So, in the standard picture, since
Hawking radiation causes a black hole to lose mass over time, Prigogine’s law and the
second law of black holes are violated. The generalized second law (GSL) of black holes
incorporates the entropy of both the black hole and the surrounding radiation, ensuring
the total entropy (black hole entropy plus radiation entropy) never decreases (see, for
instance, [10]). However, this all seems like a gimmick, since a black hole that emits energy
is an open system and must still satisfy Prigogine’s law.

This work deals with above issues (i) and (ii). More specifically, the standard Hawking
radiation mechanism will be revisited through the Generalized Uncertainty Principle
(GUP) [11–13] or the Extended Uncertainty Principle (EUP) [14,15]. The GUP is a theoretical
framework in quantum mechanics that extends the Heisenberg Uncertainty Principle by
incorporating the effects of quantum gravity. The GUP modifies this principle by including
terms that account for gravitational effects, particularly those that become significant at
extremely small (Planck-scale) distances. These modifications suggest that, at such scales,
the uncertainties in position and momentum are influenced not just by quantum mechanical
factors, but also by gravitational effects. The GUP suggests the existence of a minimal
measurable length, typically in the order of the Planck length. This contrasts with the
standard quantum mechanics view, where smaller and smaller distances could, in theory,
be probed with higher momentum. The GUP has implications for black hole physics,
particularly for the end stages of black hole evaporation. It suggests modifications to the
Hawking radiation process and could imply that black holes do not evaporate completely
but leave behind a Planck-sized remnant (ref. also to the works [16,17]). The EUP addresses
the possibility of both positive and negative values of the so-called EUP deformation
parameter while still maintaining a minimum length scale. This flexibility in the EUP
deformation parameter is significant because it broadens the range of possible physical
interpretations and applications of the uncertainty principle in quantum gravity scenarios.
We shall see that, contrary to the GUP, the possibility of a negative EUP parameter opens
up the opportunity to set the Hawking temperature to zero. This adjustment can address
the conflicts between Prigogine’s second law of thermodynamics and the second law of
black hole mechanics. Indeed, by choosing a negative EUP parameter value such that
the Hawking temperature becomes zero, the black hole ceases to radiate. However, even
when the Hawking temperature is set to zero by adjusting the EUP parameter, the black
hole’s entropy does not vanish because entropy is primarily tied to the geometry of the
black hole (its horizon area), not directly to the temperature. The entropy represents the
number of hidden microstates or the information content of the black hole, which remains
finite as long as the black hole has a non-zero mass and horizon area. This stabilization
implies that the black hole’s mass and entropy would no longer decrease, thereby aligning
with both the area theorem (second law of black hole mechanics) and Prigogine’s law of
non-negative entropy production in open systems. This leads also to the situation where
black hole entropy continues to increase despite no radiation. The increase in entropy
without radiation suggests that the black hole is still evolving in some way, even if it is not
losing mass through radiation.

The manuscript is organized as follows. Before starting our analysis, in Section 2
we shall revisit the steps leading to the determination of the Hawking temperature. This
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will allow us to focus on the main assumptions adopted by Hawking for obtaining the
expression of the temperature of a black hole. In Section 3 we shall derive the exact
expressions of the Hawking temperature and entropy for a Schwarzschild black hole. To do
this task, we shall follow J. Pinochet’s arguments [18]. However, it should be stressed
that we shall follow some of his mathematical steps but we shall not adopt his physical
interpretation of the black hole radiation mechanism, remaining faithful to the original
Hawking picture of the mechanism responsible for the thermal emission. For easy reference,
Prigogine’s second law for open systems and the second law of black holes are recalled in
Section 4. The connection between these two laws is shown in Section 4.3. The method
suggested by Pinochet will allow us to deal with more complex situations without resorting
to complex mathematical methods. In particular, it will allow us to deal with, and resolve,
the conflict between Hawking radiation and the second law of black holes. This will be the
subject of Section 5. In Section 6, we determine the GUP and EUP deformation parameters
that can reconcile Hawking radiation with Prigogine’s law and Bekenstein thermodynamic
analogy. Concluding remarks can be found in Section 7.

2. The Hawking Radiation Mechanism

In 1974 [1], Stephen W. Hawking published his celebrated result stating that, if one
takes quantum theory into account, black holes are not quite black, but they emit radi-
ation consisting of photons, neutrinos, and to a lesser extent all sorts of massive parti-
cles. The Hawking radiation mechanism describes hypothetical particles and antiparticles
formed by a black hole’s boundary, and it is based on the assumption that the horizon is the
radiating surface. This radiation implies black holes have temperatures that are inversely
proportional to their mass. Below, we condense in a few bullets the main assumptions
made by Hawking to explain the mechanism of black hole radiation:

(i) The universe is filled with particle-antiparticle pairs popping in and out of existence;
(ii) These particle-antiparticle pairs exist, even in empty space, as a consequence of

quantum field theory and the Heisenberg uncertainty relations;
(iii) Generally, these pairs always find one another and re-annihilate after a very small

time interval. However, the strong gravitational field near the event horizon gives rise to
the following Hawking mechanism.

(iv) Hawking radiation arises from quantum effects near the event horizon of a black
hole. The strong gravitational field near the event horizon causes quantum vacuum
fluctuations to become real particles;

(v) This mechanism leads to a situation where one member of the pair falls in while
a real particle escapes and is emitted with positive mass/energy from just outside the
horizon itself;

(vi) The paired member that falls into the event horizon must have negative energy
that subtracts from the black hole’s total mass. The flow of particles of negative energy into
the black hole reduces its mass until it disappears completely in a final burst of radiation.

Figure 1 illustrates the Hawking radiation process.

Figure 1. The mechanism of Hawking radiation. To an outside observer, it looks as if the black hole
has radiated a particle. Indeed, to conserve energy, the energy it took to create the particle and shoot
it off to infinity must have come from the black hole. The particle that did not escape possesses a
negative energy.
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The Hawking radiation mechanism is a purely quantum effect. Hawking’s findings
are practically irrelevant for classical black holes.

Vacuum Fluctuations and Time-Energy Heisenberg’s Uncertainty Relation

Quantum Field Theory (QFT) states that a vacuum is not so empty: there are fluctua-
tions in the vacuum field that produce measurable macroscopic effects. The vacuum, even
in the absence of particles and photons, has vacuum energy (zero point energy): that is,
virtual photons and virtual particle-antiparticle pairs that are created and destroyed in very
short times, in such a way as to conserve energy and respect the Heisenberg Uncertainty
Principle. The main effects affected by “vacuum fluctuations” are the Casimir effect [19,20],
the Lamb shift [21,22], Hawking radiation [1,2], and the inhibition and acceleration of
spontaneous emission [23–25]. Vacuum fluctuations arise due to the quantum uncertainty
in energy over short time intervals, as described by the time–energy Heisenberg uncertainty
relation. Heisenberg’s Uncertainty Principle states that it is not possible to simultaneously
measure the position and the velocity of a particle with absolute precision; the same is true
for energy and time. From this principle, it follows that in a vacuum it is possible to create
a virtual boson (for example, a photon) as long as the vacuum reabsorbs it after a very
short time interval. Or it is possible to create two virtual fermions (always in the particle–
antiparticle composition) as long as they annihilate in a small time interval. The Heisenberg
Uncertainty Principle, through the energy uncertainty ∆E, permits vacuum fluctuations
where virtual particles momentarily appear. Near a black hole’s event horizon, these
fluctuations can lead to the creation of real particles via Hawking radiation. The escaping
particles are observed as radiation, while the black hole loses mass due to the infall of
particles with negative energy, leading to its gradual evaporation.

3. A (Heuristic) Derivation of the Exact Expressions of Temperature and Entropy for a
Schwarzschild Black Hole

Stephen Hawking’s original work on Hawking radiation is mathematically complex
for several reasons. Hawking’s derivation involves applying quantum field theory in the
curved spacetime of a black hole. This requires complex calculations involving the behavior
of quantum fields in a non-flat (curved) spacetime, which is inherently complicated. Addi-
tionally, Hawking used the semi-classical approximation where the spacetime is treated
classically (using general relativity), but the fields are treated quantum mechanically. Com-
bining these two frameworks is non-trivial and requires sophisticated mathematical tools.
Hawking’s method involves decomposing the quantum fields into modes that interact with
the black hole’s event horizon. Calculating the contributions of these modes to the radiation
is mathematically intensive. The derivation involves evaluating complex integrals and
solving differential equations that describe the behavior of fields near the event horizon.
This requires advanced techniques from mathematical physics. Finally, showing that the
radiation emitted by the black hole is thermal and finding the exact temperature involves
intricate calculations related to black hole radiation and quantum statistics. So, deriving the
exact expressions for Hawking temperature and entropy more simply and intuitively is nec-
essary, as simplifying and intuitively explaining these concepts helps in making the ideas
more accessible and comprehensible. In our derivation of Hawking’s temperature, we shall
follow the arguments of J. Pinochet [18]. However, this work differs conceptually from that
of J. Pinochet. As the six points above state, we utilize quantum vacuum fluctuation. In our
derivation, according to Hawking’s assumption, the radiation does not come directly from
within the black hole but near the horizon event. If particles are subject to the uncertainty
principle, then we cannot know both the time and energy of a particle with perfect accuracy.
Hawking radiation represents a situation where the energy-time uncertainty principle plays
a crucial role in determining the characteristics of the emitted radiation. Denoting with ∆t
the uncertainty in the time of the particle, the process effectively “chooses” the emission of
particles with energy, ∆E, corresponding to the minimum value that the product of these
quantities can take [26,27]
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(∆t∆E)|min =
h̄

2
(1)

with h̄ denoting the reduced Planck constant. In our energy situation, ∆E = c∆p, with c
denoting the speed of light and ∆p the momentum uncertainty, respectively. So, the Heisen-
berg Uncertainty Principle relating the uncertainties in position ∆l and momentum ∆p
implies c∆t = ∆l. In quantum field theory, the quantum vacuum state is the quantum state
with the lowest possible energy, ∆E. Since ∆l and ∆E are inversely proportional, the min-
imum value, ∆E, compatible with Equation (1), corresponds to the maximal uncertainty
in the position of the particle ∆l|Max. Taking into account this observation, Equation (1)
leads to

∆E =
h̄c

2∆l|Max
(2)

Assuming that the black hole event horizon is spherically symmetric with a radius
equal to Schwarzschild’s radius, RS, it is easily checked that ∆l|Max corresponds to the
maximal uncertainty in the coordinate x (or y) of the particle on the event horizon. Hence,
by taking into account that:

x = RS sin θ cos φ (3)

with θ (with 0 ≤ θ ≤ π) and φ (with 0 ≤ φ ≤ 2π) denoting the spherical coordinates,
we obtain:

∆l|Max = ∆x|Max = RS| cos θ cos φ∆θ − sin θ sin φ∆φ|Max (4)

= RSπ| cos θ cos φ − 2 sin θ sin φ|Max

=
π

2
RS|3 cos(θ + φ)− cos(θ − φ)|Max = 2πRS

as the maximum indetermination is obtained for ∆θ = π, ∆φ = 2π, and at the coordinate
values (θ, φ) = (π/2, 3/2π). The concept of a maximum position uncertainty equal to the
circumference of the black hole is rooted in quantum mechanics and the nature of black
holes. When this maximum position uncertainty becomes equal to the circumference of a
black hole, the position of the particle is so uncertain that it could be anywhere inside the
event horizon of the black hole. This suggests that quantum effects are so pronounced near
the black hole that classical physics breaks down. Hence,

∆E =
h̄c

4πRS
(5)

By plugging in Equation (5) the expression for Schwarzschild’s radius, RS [9]

RS =
2GM

c2 (6)

with M denoting the mass of the black hole and G denoting the universal gravitational
constant, respectively, we obtain the Hawking expression for the black hole emitted energy:

∆E =
h̄c3

8πGM
(7)

As said, Hawking radiation is a theoretical prediction that black holes can emit radia-
tion due to quantum effects near the event horizon. This radiation has a thermal spectrum,
and its associated temperature is known as the Hawking temperature. The energy of the
particles (usually photons, but also other particles) emitted in Hawking radiation is directly
related to the Hawking temperature, TH , by the relation [28–30]:

∆E = KBTH (8)
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with KB denoting the Boltzmann constant. This equation makes sense in this scenario
because the emitted radiation is thermal, similar to black body radiation, but with Hawk-
ing temperature. So, the particles emitted by the black hole have an average energy
that is proportional to the Hawking temperature, TH , through Boltzmann’s constant, KB.
We finally obtain

TH =
h̄c3

8πKBGM
(9)

We note the subtlety implicit in Equation (9). The temperature of a classical black hole
is 0◦K. According to Hawking’s radiation mechanism, due to the quantum effect, the black
hole emits energy, ∆E, in the form of escaping matter, showing a very weak temperature,
TH , given by Equation (9). The energy that the black hole loses, ∆EBHloss

, is equal to the
negative energy of the antimatter it has captured, i.e., ∆EBHloss

= −∆E. In the absence of
work, the first law of thermodynamics reads

∆E = TH∆SBH (10)

with SBH denoting the black hole entropy. Hawking radiation propagates away from the
event horizon, and since real radiation carries energy the only place where that energy, ∆E,
can be taken from is from the mass of the black hole itself, via the classic Einstein equation,
∆E|m = c2

∆M. In this case, the mass lost by the black hole has to balance the energy of the
emitted radiation. So,

∆SBH =
8πKBG

h̄c
M∆M (11)

where Equation (9) has been taken into account. The integration yields

SBH =
4πKBG

h̄c
M2 + S0 (12)

where S0 is an arbitrary constant of integration. In physical contexts like black hole
thermodynamics, S0 typically corresponds to the minimal entropy or entropy at a particular
reference point.

• Black Holes and Generalized Second Law (GSL) of Thermodynamics

Expression (9) shows that a black hole loses mass through evaporation. This seems in
disagreement with the law of thermodynamics expressed as the total entropy of an isolated
system always increases. We soon realize that this disagreement is only apparent. Indeed,
after simple calculations, we have that the total entropy change of the isolated system,
composed of the black hole plus reservoir (i.e., the rest of universe) reads [10]

∆STot. =
KB

720
ln

Mi

M f
> 0 (13)

with Mi and M f denoting the original mass and the final mass of the black hole, respectively.
Since the initial mass, Mi, is greater than the final mass, M f , the result is a positive quantity
showing an increase in entropy.

4. Prigogine’s Second Law of Thermodynamics and the Second Law of Black
Hole Dynamics

According to Hawking in [4], since the average temperature of the universe is about
2.7◦K, most black holes absorb more energy than they emit and will not begin to evaporate
for some time until the universe has expanded and cooled below their temperature. So,
the expression for the total entropy (13) is valid only when the black hole is at thermody-
namic equilibrium with the universe. It is not applicable during the transition phase in
which the black hole and the universe tend to reach thermodynamic equilibrium. However,
we know that a body with a temperature above absolute zero will emit radiation by Planck’s
law. As said, during the transitional phase Equation (13) does not apply, and this is a big
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limitation of the demonstrations shown above. Briefly, what needs to be demonstrated is
that a radiating black hole in non-equilibrium conditions satisfies Prigogine’s second law
of thermodynamics. This is the subject of the next section.

4.1. Prigogine’s Second Law of Thermodynamics for Open Systems

The verification that the entropy of matter outside the black hole plus the entropy of
the black hole never decreases does not satisfactorily answer the question about the validity
of the second law of black hole thermodynamics. Indeed, some important questions remain
open. The first reaction is that having demonstrated that the total entropy of an isolated
system (in this case the black hole plus external environment) is always increasing sounds
a sort of escamotage rather than a convincing demonstration. This is because for open
systems, as is the case of radiating black holes, the correct formulation of the second law of
thermodynamics is expressed by Ilya Prigogine’s law. In 1971, Prigogine proposed to split
the total differential of entropy of an open system into two components [5,8]:

dS = diS + deS (14)

with diS denoting the entropy production produced inside the system, and deS being the
outflow or inflow of entropy into the system from the outside, respectively. The sign of
deS depends on the situation, whereas diS is always a non-negative quantity. Notice that
Equation (14) can describe an open system in which the total entropy decreases (i.e., dS < 0)
when deS < 0 and |deS| > diS. In general, Equation (14) does not contain indications of the
factors on which the sign and quantity of deS depend, whereas the sign of diS is known.
Prigogine proved the following inequality:

diS ≥ 0 (15)

Notice that Equations (14) and (15) generalize Boltzmann’s law as for isolated systems
and we have deS = 0, so dS ≥ 0, i.e., the entropy of isolated systems can never decrease.

4.2. The Second Law of Black Hole Dynamics

Hawking’s original work refers to Schwarzschild’s black holes, and his expressions
for the temperature and entropy of the black hole refer to this type of black hole. These
expressions change significantly in the case of Kerr–Newman black holes. Of course, we
cannot pretend to obtain the expressions for the temperature and entropy of Kerr–Newman
black holes by the Pinochet method. However, it is necessary to show that the results
that we shall obtain for Schwarzschild’s black holes are coherent and consistent with the
fundamental expressions that hold for the general case of Kerr–Newman black holes. There
is another point to be stressed. We shall see that, to complete our calculations, we need to
determine the minimum limit of the M/Mir ratio that a black hole can reach. We anticipate
that, in the case of Schwarzschild black holes, the mass of the black hole coincides exactly
with its irreducible mass. So, it is not possible to obtain this information by investigating
a pure Schwarzschild black hole. We shall see that this ratio can be obtained only if the
complete mass/energy formula for Kerr-Newman black holes is taken into account. So,
this and the next subsection are devoted to recalling, albeit very briefly, the crux of Kerr–
Newman geometry and the thermodynamic analogy proposed by Bekenstein–Wheeler.

In [31,32] it is shown that the mass–energy formula of a Kerr–Newmann black hole of
mass M can be expressed in terms of the irreducible mass, mir, as well as a function of the
charge, Q, and of the angular momentum, L1

M2 =

(

mir +
Q2

4mir

)2

+
L2

4m2
ir

(16)
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The black hole exists if
L2

4m4
ir

+
Q4

16m4
ir

≤ 1 (17)

The surface area of the event horizon, A, is also related to the irreducible mass accord-
ing to the equation [31]

A = 16πm2
ir (18)

The fact that the irreducible mass monotonically increases implies that the black hole
event horizon surface also monotonically increases, as shown by Hawking [32]. In the
Bekenstein–Hawking definition, the entropy of the black hole, SBH , is proportional to the
event horizon’s area, A, according to the formula [33]:

SBH =
KB A

4πl2
P

=
KBc3 A

4πGh̄
(19)

with lP denoting Planck’s length (lP = (h̄G/c3)1/2). The second law of black hole dynamics
states [9]: “No black-hole transformation can ever reduce its surface of the event horizon
or, equivalently, its irreducible mass”. In other words:

dA ≥ 0 or, equivalently, dmir ≥ 0 (20)

4.3. Link between the Second Law of Black Hole Dynamics and Prigogine’s Second Law
of Thermodynamics

Bekenstein noted that by differentiating Equation (16) we obtain an expression that
strongly resembles the first law of thermodynamics [34–37]:

dM =
κ

8π
dA + Ω · da + ΦdQ (21)

where

κ =
4m2

ir − Q2 − 2a2

2(4m2
ir − a2)3/2

; Ω ≡ (Q2 + 4m2
ir)

2r3
+

a; Φ ≡ Q

r+
(22)

and r+ and a are the horizon location in the Kerr–Newman geometry and the angular
momentum per unit mass, respectively [9]:

r+ = m +
√

m2 − Q2 − a2; a =
L

M
(23)

Bekenstein proposed Equation (21) as the first law of thermodynamics for a black hole
in analogy with the first law of thermodynamics. Bekenstein identified E with M and the
sum of the last two contributions in Equation (21) as the work, W, performed on the black
hole. Ω and Φ play the role of the rotational angular frequency and the electric potential
of the black hole, respectively. Additionally, Bekenstein and Wheeler identified A/(4π)
as the entropy of the black hole and κ/2 as its characteristic temperature.2 In this way,
Equation (21) takes the familiar form of the first law of thermodynamics:

dE = THdSBH − δW (24)

For an isolated Schwarzschild black hole (i.e., L = 0, Q = 0, and deSBH = 0), (24)
reduces to:

dE = THdiSBH (25)

By taking into account Equation (21), the Schwarzschild black hole entropy production
in Planck units (G = 1, c = 1, KB = 1, and h̄ = 1) reads:3

diSBH =
dmir

TH
and TH = Hawking temperature (26)
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Prigogine’s second law of thermodynamics states that diSBH ≥ 0 which, by Equation (26),
implies that, for an isolated black hole, also dmir ≥ 0. Therefore, Prigogine’s second law of
thermodynamics and the second law of black holes are intimately connected. In other words,
or an isolated black hole, violating Prigogine’s law implies violating the second law of black
hole dynamics and vice versa. Coming back to Hawking’s radiation mechanism, the following
questions arise now spontaneously:

“Does a radiating black hole, seen as an open system, satisfy the second law of
thermodynamics as formulated by I. Prigogine?” or, equivalently

“Is the variation of the event horizon area of an isolated black hole always positive?”
Up to now, we have ignored the quantum gravitational effects. To answer the above

questions, we have to take into account the so-called Extended Uncertainty Principle (EUP).
We shall see that it is possible to conciliate both Prigogine’s second law of thermodynamics
and the second law of black holes [9] with the Hawking temperature radiation mechanism.

5. EUP and Conciliation with Prigogine’s Second Law of Thermodynamics and the
Second Law of Black Hole Dynamics

5.1. GUP and Prigogine’s Second Law of Thermodynamics

The Generalized Uncertainty Principle (GUP) is a theoretical framework in quantum
mechanics that extends the Heisenberg Uncertainty Principle by incorporating the effects
of quantum gravity. The GUP is often expressed as (see, for example, [38]):

∆x∆p ≥ h̄

2

[

1 + β

(

∆p

MPc

)2
]

(27)

with ∆p and MP =
√

h̄c/G denoting the uncertainty in momentum and the Planck mass,
respectively. β is a dimensionless GUP deformation parameter that encodes the strength of
quantum gravitational effects. Equation (27) modifies both the Hawking expressions for the
temperature and the entropy of a black hole. The great advantage of the method presented
in Section 3 is that we can easily determine Hawking’s corrections for temperature and
entropy without having to resort to the sophisticated and complex calculations performed
by Hawking. By performing the same procedure illustrated in Section 3, we obtain

TH =
4πc2M

βKB

[

1 −
(

1 − β
h̄c

16π2GM2

)1/2
]

(28)

where we have taken into account that, for a black hole, the uncertainty in energy, ∆E = KBT,
is related to the uncertainty in momentum, ∆p, by the relation ∆E = c∆p, and ∆x = 2πRS.
At the first order in β, Equation (28) reads:

TH ≃ h̄c3

8πKBGM

(

1 + β
h̄c

64π2GM2

)

and (29)

SBH ≃ 4πKB

(

M

MP

)2

− β
KB

8π
ln
(

M

MP

)

+ S0

Since β has not been measured experimentally, it is often treated as a free parameter
that can be varied to explore different physical implications of the GUP [39]. For instance,
in [40], the value of the GUP parameter β is obtained by conjecturing that the GUP-
deformed black hole temperature of a Schwarzschild black hole and the modified Hawking
temperature of a quantum-corrected Schwarzschild black hole is the same. Here, we aim to
set the expression for β in such a way that both Prigogine’s second law of thermodynamics
and the second law of black holes are not violated. From Equation (29), we see that these
conditions are satisfied if

TH = 0 i.e., for β = −
(

8π
M

MP

)2

= −64π2GM2

h̄c
(30)
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However, a negative GUP parameter β leads to several counterintuitive and potentially
problematic physical consequences. For instance, a negative β could lead to calculation in-
stabilities, divergences, or singularities. These unphysical behaviors would make applying
the GUP to realistic scenarios difficult. While there have been some speculative models
exploring negative β, they often face significant challenges and are not widely accepted
within the physics community. Hence, it is generally believed that the GUP parameter
β must be positive to ensure consistency with the principles of quantum mechanics and
avoid unphysical consequences. Finally, solution (30) must be discarded.

5.2. EUP and Prigogine’s Second Law of Thermodynamics

We already mentioned that in the GUP a contradiction arises when the parameter β is
negative as the GUP no longer includes a minimum length, which contradicts the model-
independent existence of the minimum length. The work of Du and Long [14], as well as
the subsequent consideration by Song-Shan Luo and Zhong-Wen Feng [15], introduces a
novel perspective on the deformation parameter in the uncertainty principle, specifically
addressing the possibility of both positive and negative values for the parameter β0, called
the Extended Uncertainty Principle (EUP) parameter, while still maintaining a minimum
length scale. This flexibility in β0 is significant because it broadens the range of possible
physical interpretations and applications of the uncertainty principle in quantum gravity
scenarios. The EUP reads:

∆x∆p ≥ h̄

2

(

1
1 ± 16β0l2

P/(∆x)2

)

(31)

with β0 denoting the deformation parameter EUP. In inequality (31), regardless of whether the
parameter β0 is positive or negative, a fixed and uniform minimum length, ∆xmin = 4

√

|β0|lP,
is maintained. Furthermore, it is easily checked that if ignoring the higher-order corrections
causes Equation (31) to reduce to Equation (27). By performing the same calculations as in
Section 3, and by taking into account that ∆E = KBT = c∆p, ∆x = 2πRs, and lP =

√
h̄G/c3,

we obtain

TH =
h̄c3

8πKBGM

1

1 ± 4β0
π2

(

lP
Rs

)2 (32)

We are interested in exploring the case of black holes with very small masses. This
leads to ignoring higher-order terms in β0 (see forthcoming Equation (35)). So, at the
leading contributions, we find4

TH =
c2M2

P

8πKB M

[

1 ∓ β0
M2

P

π2M2

]

(33)

SBH = 4πKB

(

M

MP

)2

± 8
π

KBβ0 ln
(

M

MP

)

+ S0

Notice that both equations in Equation (33) are compatible with the Generalized
Gravitational Uncertainty Principle (GGUP, as expressed in [41,42]:

∆x∆p ≥ h̄

2

(

1 + α(∆x)2 + β(∆p)2 + ξ
)

(34)

with the parameters β and ξ set to zero and α being a negative value.5 The modification
in temperature due to the EUP introduces a correction term that depends on the EUP
parameter β0 and the mass, M, of the black hole. Additionally, the entropy expression
includes a logarithmic correction term, common in quantum gravity scenarios, suggesting
a modification in the black hole’s microstates. These expressions give insight into how the
EUP affects the thermodynamic properties of black holes, particularly in the context of
quantum gravity effects near the Planck scale. By choosing a negative β0 value, such that
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the Hawking temperature becomes zero, the black hole ceases to radiate. This happens if,
and only if,

β0 =

(

π
M

MP

)2

=
π2GM2

h̄c
(35)

which is valid only for small black hole masses. With Hawking radiation effectively turned
off by β0, given by Equation (35), the entropy of the black hole stabilizes, eliminating the
decrease that would otherwise violate both Prigogine’s second law and the area theorem
(second law of black hole dynamics). This approach thus provides a novel resolution to the
apparent conflict between these two fundamental thermodynamic principles. Hence, for a
Schwarzschild black hole, due to the EUP and Prigogine’s second law of thermodynamics,
for black holes with very small masses, we have:

TH = 0◦K (36)

SBH = 4πKB

(

M

MP

)2(

1 + 2 ln
(

M

MP

))

+ S0

The entropy receives a logarithmic correction term, a common feature in many quan-
tum gravity scenarios, which becomes significant for small black hole masses.

5.3. Determination of the Constant S0

To complete our calculations, we need to determine the value of S0. In the case of the
irreducible mass, from Equation (17), a lower limit to the value of mir can be deduced by
imposing a lower limit in the value of the angular momentum from quantum mechanics
considerations [43]:

L ≥ h̄

2
(37)

From Equation (17) we have
h̄2

16m4
ir

≤ 1 (38)

So,

mir ≥
h̄1/2

2
or, in terms of G and c, mir ≥

1
2

(

h̄c

G

)1/2

=
MP

2
(39)

However, from Equation (16), we have

M2

m2
ir

≥ 1 +
h̄2

16m4
ir

(40)

By taking into account Equation (38), we obtain

M2

m2
ir

≥ 2 =⇒ M ≥
√

2mir ≥
MP√

2
(41)

The black hole does not exist for M/MP < 1/
√

2 (it is a naked singularity), and we can
set A → 0 as M/MP → 1/

√
2. Consequently, even SBH mast vanish as M/MP → 1/

√
2.

This implies
S0 = 2πKB(ln 2 − 1) (42)

To summarize, for small Schwarzschild black holes, Prigogine’s second law of thermo-
dynamics is satisfied if (and only if):

TH = 0◦K (43)

SBH = 4πKB

(

M

MP

)2(

1 + 2 ln
(

M

MP

))

+ 2πKB(ln 2 − 1)
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In summary, by the Extended Uncertainty Principle, we obtain a modification of the
standard Heisenberg Uncertainty Principle motivated by quantum gravity considerations
at very small scales. In this regime, if the deformation parameter, β0, is sufficiently negative,
the Hawking temperature could potentially be zero, leading to no radiation. For black
holes with a large mass (i.e., when M/MP ≫ 1), we may argue that the EUP (31) reads:

∆x∆p ≥ h̄

2
(44)

For large black holes, where M ≫ MP emits radiation, and while the black hole’s
entropy decreases, the emitted radiation increases the total entropy of the universe. In this
regime, the process can be treated as quasi-static and near-equilibrium, and Prigogine’s
law is trivially satisfied because the variation of the entropy production of the black hole is
almost zero and the total entropy of the universe increases (see the above subsection Black
Holes and Generalized Second Law (GSL) of Thermodynamics). The black hole’s evaporation
aligns with Prigogine’s law when considering the total entropy of the system, which
approximates the classical area law. However, as the black hole’s mass approaches the
Planck mass (M≃MP), quantum fluctuations become significant, and the process is no
longer quasi-static or near-equilibrium. The evaporation process becomes more complex.
In this regime, the black hole is an open system out of equilibrium due to significant
quantum fluctuations. To reconcile Prigogine’s law with the Hawking radiation process,
one approach is to assume that the Hawking temperature is zero or negligible—thus
avoiding significant entropy production and aligning with the laws of the thermodynamics
of irreversible processes—when it reaches a mass of the order of the Planck mass. To sum
up, due to Prigogine’s second law of thermodynamics for open systems, black holes do not
evaporate completely but leave behind a Planck-sized remnant. The black hole, in this case,
could act as a stable object that does not radiate and therefore persists indefinitely. Figure 2
illustrates the above physical interpretation.

Figure 2. Black hole entropy (per unit KB) against the mass ratio M/MP. To reconcile Prigogine’s
second law of thermodynamics for open systems with Hawking radiation, the black hole does not
radiate for small masses (1/

√
2 ≤ M/MP ≤ 1). In contrast, it radiates through infinitesimal quasi-

static transformations when M/MP > 1. For masses close to the Planck mass, quantum fluctuations
are crucial and the laws of thermodynamics of irreversible processes govern the process.

5.4. Discussion

If we choose the parameter β0 in the Extended Uncertainty Principle (EUP) so that
the Hawking temperature, TH , is zero, an important question is raised: “Why does the
entropy, SBH , of the black hole not also vanish?” We already mentioned that the Hawking
temperature, TH , and the entropy, SBH , of a black hole are related by the first law of
black hole thermodynamics (10). If TH = 0, this implies that dE = 0 for any dSBH (see
Equation (10)). In other words, no energy (or mass) is radiated away by the black hole
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because the temperature is zero. Normally, for a system with TH = 0, one might expect the
entropy to be constant (i.e., dSBH = 0), which implies SBH is at a minimum, potentially zero.
However, in the case of a black hole, SBH represents the number of microstates of the black
hole, a measure of the hidden information or the event horizon’s area. The entropy, SBH , is
proportional to the event horizon’s area, not the temperature according to the Formula (20):

SBH =
KB A

4πl2
P

(45)

where A is the area of the event horizon. This entropy is a geometric property of the black
hole and is non-zero as long as the black hole has a finite horizon area. The Generalized
Uncertainty Principle (or its extended form, EUP) modifies the temperature and entropy,
but the entropy still reflects the area of the event horizon. If β0 is chosen so that TH = 0,
the black hole essentially stops radiating. However, this does not imply the event horizon
area vanishes or the microstates disappear, and hence the entropy does not go to zero.
The black hole might retain a residual entropy because it still has a finite event horizon,
even if it does not radiate. In brief, even when the Hawking temperature is set to zero
by adjusting β0, the black hole’s entropy does not vanish because entropy is primarily
tied to the geometry of the black hole (its horizon area), not directly to the temperature.
The entropy represents the number of hidden microstates or the information content of
the black hole, which remains finite as long as the black hole has a non-zero mass and
horizon area. Thus, the black hole would still possess a significant amount of entropy, even
at zero temperature.

6. Reconciliation of Hawking Radiation with Prigogine’s Law and Bekenstein–Wheeler
Black Hole Entropy

Equations (43) reconciles Hawking radiation with Prigogine’s law but not with the ex-
pression for the entropy black hole proposed by Bekenstein and Wheeler (see Equation (21)
in Section 4.3). For this to happen, the Hawking temperature must be zero (to satisfy
Prigogine’s law). At the same time, the entropy of the black hole must be identical to that
calculated by Bekenstein and Wheeler. It is easily checked that these two conditions are
satisfied simultaneously by appropriately choosing the expressions for the GUP and EUP
parameters. For this, let us consider the complete uncertainty principle (34) written in the
following form:

∆x∆p ≥ h̄

2

(

1
1 + 16β0l2

P/(∆x)2
+

β

M2
Pc2

(∆p)2

)

(46)

where ξ is set to zero and the GUP and EUP parameters (i.e., β and β0, respectively) are
positive values. We consider black holes with a small mass near Planck’s mass. So, we may
approximate forms of β and β0 that are valid for small deviations from MP. β and β0 are
therefore assumed to be constants, or at least weakly dependent on the black hole mass.
After simple algebra, we obtain:

TH =
4πc2M

βKB



1 −
(

1 −
(

1 − β0

π2
M2

P

M2

)

βch̄

16π2GM2

)1/2


 (47)

where we have taken into account that ∆x = 2πRS and ∆p = THKB/c. At the first order in
β and β0, Equation (47) reads:

TH ≃ c2M2
P

8πKB M

(

1 − β0M2
P

π2M2

)(

1 +
βM2

P

64π2M2

)

with 0 ≤ β0 ≤
(

π
M

MP

)2

(48)

and

SBH ≃ 4πKB

(

M

MP

)2

+
8KB

π

(

β0 −
β

64

)

ln
(

M

MP

)

+ S0 (49)
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β is subject to the condition SBH ≥ 0. The entropy of the black hole is greater than the
Bekenstein-Wheeler expression when β ≤ 64β0 and less than it when β ≥ 64β0. Prigogine’s
second law of thermodynamics and the Bekenstein-Wheeler thermodynamic interpretation
of the horizon black hole surface are satisfied simultaneously when the EUP and GUP
parameters reach, respectively, the following extreme values:

β0 =

(

π
M

MP

)2

and β = 64β0 =

(

8π
M

MP

)2

(50)

which are valid for small masses (close to MP). In such a situation, the result is

TH = 0◦K (51)

SBH = 2πKB

(

2
(

M

MP

)2

− 1

)

The physical interpretation of this result is the following. Strong gravity tends to damp
the Heisenberg Uncertainty Principle for small masses. As a result, when the mass of
the black hole is very small, it no longer radiates by retaining the Bekenstein–Wheeler
expression for the entropy (or horizon area). It is worth mentioning that even with zero
momentum, corresponding to a black hole’s very low temperature (according to the relation
TH = c∆p/KB), the spatial uncertainty remains equal to the black hole’s circumference.
This indicates that the particle’s position is still highly uncertain, suggesting that quantum
fluctuations are still crucial in this scenario and play a significant role. To sum up, even
in this interpretation, a black hole is a stable object that radiates partially and persists
indefinitely (see Figure 3).

Figure 3. Black hole entropy (per unit KB) against the mass ratio M/MP. Here, to reconcile simultane-
ously Prigogine’s law and Bekenstein-Wheeler black hole entropy with Hawking radiation, the black
hole does not radiate for small masses and radiates through infinitesimal quasi-static transformations
when M/MP > 1. According to this model, the expression for the entropy of the black hole always
coincides with that of Bekenstein-Wheeler.

7. Conclusions

Even the most extreme objects in the universe, like black holes, are bound by certain
rules. G. Gibbons and S. Hawking demonstrated that black hole thermodynamics extends
beyond black holes themselves, revealing that cosmological event horizons also possess en-
tropy and temperature. In 1974, Hawking further showed that, when quantum mechanics
is considered, black holes can emit light and particles through a process known as Hawking
radiation. Since quantum black holes emit energy and light, they must have a temperature,
in addition to mass, charge, and rotation. This makes them subject to the laws of thermo-
dynamics. Hawking’s mechanism hinges on quantum vacuum fluctuations, suggesting
that the radiation originates near the event horizon rather than from within the black hole
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itself. However, Hawking’s original derivation of this radiation is mathematically intricate,
involving quantum fields in curved spacetime and complex equations. From a pedagog-
ical standpoint, it is beneficial to explain these concepts more intuitively, making them
accessible without sacrificing the core physical principles underlying Hawking radiation.
This work aims to offer a clearer understanding of the fundamental physics of Hawking
radiation and black hole thermodynamics, without relying on advanced mathematical
techniques. To achieve this goal, we have rederived the exact expressions of the Hawking
temperature and entropy for a Schwarzschild black hole following the indications of J.
Pinochet in [18], with the addition, however, of new elements and physical considerations
that have allowed us to overcome the vulnerable aspects present in the original work of
J. Pinochet. The way suggested by J. Pinochet has allowed us to deal with more com-
plex situations. In particular, we have shown that it is possible to ensure consistency with
both Prigogine’s second law and black hole thermodynamics. The second law of black
holes states that, even if black holes merge or matter falls into a black hole, the total event
horizon area of the resulting black hole(s) will be greater than or equal to the sum of the
event horizon areas of the original black holes. The second law of black hole dynamics
applies classically. In quantum mechanics, Hawking radiation introduces the possibility
of black holes losing mass and thereby shrinking in area, which would appear to violate
this law. With Hawking radiation effectively turned off by the negative EUP parameter,
the entropy of the black hole stabilizes, eliminating the decrease that would otherwise
violate Prigogine’s second law. So, when gravitational quantum effects are considered,
black holes still obey the non-decreasing law, preserving the analogy with Prigogine’s
second law of thermodynamics. While the classical interpretation of dE = THdSBH sug-
gests that dSBH = 0 when TH = 0◦K, the inclusion of the EUP and quantum gravitational
effects may lead to a scenario where entropy can still increase. This reflects a more complex
interaction between the microstates of the black hole and quantum gravity, beyond what
is described by classical thermodynamics alone. So, the key idea is that the traditional
relation dE = THdSBH might not fully capture the behavior of entropy under the influence
of the EUP, particularly when TH = 0◦K. In non-equilibrium thermodynamics, especially
when considering open systems or systems influenced by quantum gravity, entropy can
increase due to other processes, such as quantum fluctuations or interactions with external
fields, even if the black hole is not radiating. We finally derived the modified entropy
for a Schwarzschild black hole, which includes a logarithmic correction term, common in
quantum gravity scenarios. In passing, we have shown that it is possible to set the EUP and
GUP deformation parameters such that Hawking radiation is turned off when the mass of
the black hole approaches Planck’s mass. In this scenario, the black hole entropy is the one
proposed by Bekenstein and Wheeler in their thermodynamic analogy. Of course, in the
current state of knowledge, the models presented above are speculative, mainly because
of the lack of experimental verification of the EUP and GUP. Thus, like many aspects of
theoretical physics, their true value will depend on the future development of quantum
gravity theories and the possible experimental or observational support for the predictions
based on the EUP and GUP.
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Notes

1 Here, they used the natural units, i.e., they set G = 1 and c = 1.
2 Recall that we are in Planck units, G = 1, c = 1, KB = 1, and h̄ = 1.
3 It is easily checked that in Kerr–Newman geometry the entropy production for an isolated black hole is, in Planck units,

diS = 4κmir
dmir
TH

.
4 Here, we consider approximate forms of β0 that are valid for small deviations from MP. So, β0 is assumed to be a constant, or at

least weakly dependent on the black hole mass.
5 We have α = −β0

(

lP

π2R2
S

)2
.
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