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GENERAL FORMULAE OF LUMTINOSITY FOR VARIOUS TYPES OF
COLLIDING BEAM MACHINES

Toshio SUZUKI

National Laboratorw for Figh Energy Physics
Oho~michi, Tsukuba-gun, Ibaraki-ken, 300-32, Japan

Abstract

Summarized are the formulae of luminosity for proton-protom,electron-
positron and electron-proton colliding beam wmachines. Both coasting and
bunched proton beams are considered. The expressions are derived from
the first principle. These formulae will be useful for the design of an

intersecting storage accelerator such as TRISTAN.



81, Introduction

Luminosity is an important parameter characteri 21ng the performance

>e of a colllding heam machine. A genéral relatlon between the event Tate [T

authors. In
2)

de51gning a’co plex 1ntersect1ng storage accelerator such as TRISTAN
which aims at various types of cpll}d;ng beam experiments, it seems ap-
propriate to'compile the formulae‘scattered in various articles. The

formulae are derived from the first PT Tin i le., A similar work was dome

. 3) ) . . . .
by Rugglero whose startlng equation, however, is an approximation as

pointed out in this note.

§2. General Expression for Luminosity

2
The number of events per unit time and per upit volume E%E% observed

R . . 1,4) .
in an aribitrary frame of reference is expressed™’ ) in the form

i > > .2
al _ T 342 __(lev.?)
arav ~ ™12 V1 - vy - 2 ’ @
c
where
g :+ total cross section
ny,0y ¢ densities of particles 1 and 2
31,32 ¢t velocizy vectors of particles 1 and 2
c : velocity of light
dV : volume element of the interaction region

(the region where the two beams overlap).

The derivation of eq. (1) is shown in the appendix. Since we are interested
- -
in 2 relatlvlstlc case, we put lvl| Ivzl = ¢ and define the angle between

Vl and vz to be a cressing angle 2¢. Then

dZN ~
Teav = Onynyp * 2c c052¢ . (2)

The luminosity £ is defined as

dN _
E_O’C’ (3)



and is obtained by the volume integral of eq.(2).

) We use the coordinate system as shown in Flg 1. The rectangular

i coordinate systems (%1, Yi» zi) (i=1,2) are used ‘for -the two beams. zi
denotes the direction of motiom, x; denotes the horlzontal axis and‘yi,
denotes the vertical axis. The origin O denotes the interaction point. -
We assume horizontal crossing in this note, but the formulae for vertical
créssing cén be obtained by interchanging the variébles x and y., We
define a common coordinate system (x,y,z) which Is connected to (Xis Yis

z4) through the relation

X cosd — z sind

“xp =
Y1 =59
z1 = x s'nd + z cosd
{4)
and X3 = -X cos$ - z sing
Y2 =5

29 = X sind - z cos¢ .
For unbucched coasting beams, the demsity ny 1is expressed as
niy = )\ifi (xis Fi» zi) s 53

where A; is the line density of the beam and fj denotes a distribution

function normalized such that
'rfi (Xi, Yis Zi) dxidyi =1.

For bunched beams, n; is expressed as
n; = N, €5 (%3, y45 23, t) (6)

where N; is the number of particles in a bunch and { is a distribution

function normalized such that

,S.fi (Xi> ¥4» 2i> t) dxj dy; dz3 =1 .



With these distribution functioas, the luminosity is expressed in
the following way according to the types of collisions. .

1) coasting beam + coastingbbeam -

a[: = 1132 }12p cog2d ffl(xl,yi,zljfz(xj,yz{éz)dxdydz, ' 7

_2) bunched beam + bunched beam

‘,c,‘= NyNj« 2cBE c0§2¢ ffl(xl,yl,zl,t)f2(Xz,yzgzzst}dXdeZdt, (8)
3) vbunched beam + coasting beam

;C,'= lez-Zch cosz¢ ffl(xl,yl,zl,t)f2(xz,yZ,zz)dxdydzdt, (9)

where Bf denotes the number of collisions per umit time~(actua11y,k3 is
the number of bunches and f is the revolution frequency). Tﬁe 1imi£s‘of
integral depend on the geometry and are usually taken from -~ to +wo. The
overlap integrals will be evaluated in the followings for va;ioué types

of collisions.

83. Collision between Coasting Beams

A collision betwren coasting proton beams is a typical example of
;his case. We first consider a case where there is no low-f insertion and
the variation of beam sizes along the zj axis is negligible. Then, the

distriburion functions fi's in eq.(7) is independent of zj and the lumi-

_nosity is expressed as

aC:= 2cAiAy °°SZQ§;1(X1’Y1) £9(xg, y9) dxdydz.

By use of eq.(4), we change the variables of integration from {(x,z) to

(x1,%2). Then

AAC

1*2
L - tand JE1(FisY) £2(xp,y) dxjdxpdy.



We introduce a new {(vertical) distribution funetion ¢; according to

R E A CTRO P - B
Then, we cbtain - N
P 1
‘hefftan¢
where o . ) ‘ , [@l))
‘ s )
B = J‘G]_.(y_) 9, (v)dy.

eff

This formula can be applied to CERN-ISR. The luminosity is influenced
only by the vertical particle distribution and the effeciive height horf
is equal to the actual beam height if a uniform rectangular distribution
is assumed for the two beams. TFor Gaussian beams, heff:=2956y, where oy
is the root-mean—-square beam height.- ” _

We now consider a case where the variation of bea@ sizes along the
z{—axis is not negligible and the crossing angle is small (p<<l). We
assume that the particle distribution is Gaussian both in betatron oscil-

lations and momentum spread. Then, the ros beam siz: g3 (23) is éxpressed

as
- 2 .
203y = 5. iy 4 %2 ey
01" (z3) = 034 (1+sz)+xpi (p) s (11)
1

where # denotes the value at the interaction point and Bj and Xpi are
the betatron amplitude function and the off-energy Jispersion fumctiom.
OIS denotes the beam size due only to betatron oscillation. Since, we
assume a small crossing angle, 0; is a function of z,i.e. we cam put
zi=z. The derivatives of B and kp with respect to z are assumed to be

zero at the interaction poimt. The distribution function is expressed as

2
__1 5 vi 1
B3 (x45Y4524) = 505 o ~ exp -—3 5 1. Q2)
xiyi 20Xl 2Uvi



Inserting eq.(12) into eq.(7), we obtain

: . 2 2
05 A.l)‘z.cl_coszq; I 1- . R [ . ’xl L. xz
= 5 0.0 .0 .0, °XP.t7 T
.. - ' 3
e %1%%2%51%2 "°§1 2“3:2
2 ‘2
i Y
i et 1 dzdyd=z. 13)
205, 28 ,
vl v2

Integrati‘an‘ove‘r % and y yields for a smail crossing angle

e, % N 95242
L = ! exp [- 228 14, 14
T3 J(GZ +02 )(02 +<52 ) 02 +02
2L L T2yl Ty2 xl  Tx2
Here, we assumed that the two beams are separated at z = % %’ by bénding

magnets. Otherwise, % is taken to be infinity.
Montagues) considered a case where the distribution in momentum is
rectangular and that in betatrom oscillations is Gaussian. This assumption

may be more realistic for KF stacked beams. His result is as follows.

)
s ’ 2
£ 2 %1 * e
- 2
: 7

1 X
7 2 L2 T lea e,
\] 01+ % 1™ 1%p2 " 2

[G(Ax + By) - G(Axy - By) - G(Axy + Byp) + G(ix; - Bp)idz ,

X

e —pt
A IR RN
‘/2 (le + 0};2)




X, . - X --xp'zl.\t-‘2

01 2
B2 = a _ - )
GG
Xl' = AP]. . 4

H;re, AP; is a half Awi‘&th of thé‘m§m;ent‘um spread‘,-ég- of the i-th beaﬁl,
'x01' and Xg, are the displac}ementsvo‘rf‘;the ceﬁtrai ‘orbits and equal to
¢z and —¢z in the straighf inte}raéti&n region in Fig.1l. The function
e Visr.yrgiven by 7 - 7
G(u) = u exf (u) + — v : (16)
T

where the error function erf(u) is defined as

Another parameter charécterizing the interaction region is a length
lint of the region where the two beams overlap.’ We assume three standard -

deviations for the beam éizes and the length is determined by solving the

equation ;
* I Zi T % A
= —_ £p
] 1 ;
: ’ 2
= * 23 L ¥ b . X
xp =30, 3+ = L) ( ) . : v
\ BXZ

For beams of identical characteristics,

XN
Lint = N o*2 - an
sin ¢ - 9 %2- cosZd
Bx

* cosZp , *2 2 0 %2 xMp .
2{30 l51112¢ + BiT {1&, (‘APP') - 90,7} + xp—f sing




84, Collision between Buncheé Beams

6)

The.- COlllSio between bunched beams was, dlscussed by Smith. mhe

two bunches are assumed to have Gau551an dlstrlbutlons in three dlmen51ous.

'ZfThen, tbe dlstrlbutlon functlon f;-is expressed as - e

2 2

B 1 l i ¥, (z. - ct) o
£; = 35,0 0 exp [——{—+ < 1_27 .o as
@mz Hylel - "xi %1 %21
" Then,. the integratioﬁ over y and t in eq.(8) yields
N T
2[2 2 2, 2
MPat % %% !Dyl )
k ' 2 cosz¢ sin Qﬁ i 1
e [ (4?52 R nh e e e
%1 ¥ %22 F’x1+°2 %1 %x2
2
Ol ~ c’22 2
(xcosd +-‘2‘———~—’2‘— z sing)“}] . - NGL:)!
a + g
x1 x2

Here, 0,5 is assumed to be constant. 5
We first consider a case where Byi >> O,5" This corresponds to an
electron-positron (OT electron—electron) collision where tha amplitude
“function at the interaction point is not too small. In this case, the
beam widths are comnsidered to be constant, and‘the integration of eq.(19)

can be performed to yield

_ £BN;Njcos® ) 1
2w . ; °
} 152 _ 2 red 2 2 2 02 .25
\Pyl + %2 \‘oxl + Oxz)cos b+ (0, + 22)51n ?
(20)
When g1 = 0y and ¢ is small, eq. (20} reduces to
= fBN.N
A 1
L= i T . (21)




Thie is a well-known expression for:electron-positron collisions?)

The. case. where, @x 2> -,
. 8y

considered for zero -

' cros '1ng angle"b Fischer

anv the result is

L ~:~-;:2» -
N N Bf -
zﬁr ’B*B* 'z ‘ 0—2
where ﬁo @ is the Hankel functlon. o e

For electrcn—proton and proton—proton coll:n.s.mns, in whlch both
beams are bunched, the bunch’ 1ength of: the- proton ‘beam may not be sm.all
"and the general expressnm (19) should be used. For a small crossing

’ angle, integratlon over x can be done to yleld

, ZBfN N :
L - . 5
’ (21r)2 Joz + 0 \/ + 0 )(c + 02 )

%2

2 o
exp [-22° ( + 71 - (23)
‘ 021 * 022 "03:1 * Uiz )

85. Collision between a-Bunched Beam and a Coasting Beam
A typical example of this case is a collision between a bunched

electron beam and a ~coasting proton beam. The distribution of a bunched

_ beam is expressed by eq. (18) and that of a coasting beam by eq. (17) Then,

the 1uminosity is° expressed as

' 2
L e g LR ESTN dxdydzdt
S G_.0 .0 .0
= 2
(21)2 0,3 x1 yl'x2'y2
x2 ‘Yz (z, - r:t:)2 xz : y2
1 i 1 2 2
s R A R R L
x1 . %3 %1 92 Y5

Sen




Int;egration o_ver-‘ t ‘yieidé

_ axdydz
m? ::1"::2Or 1° 2

i " cos QJN }\
=.Bf.=

1,1 1 91 2
EXPT -5 ('—_72 + 5= )7(xcos¢ t5T——5" ¢ Siné)
%1 %x2 o %
w*b_} ] V AT e
1 + c 2 . : : B
IR Ay = ___A___._» = . S : : - o
7" \1211’ lo‘ 21 + o‘zz B S B R ) ’
: .dnd going to the limit O 21> 022 > ®, éqs (25) and (19) are identicél.

ror a- small crossing angle, -integration over x yiélds

- 1-2 : dz - 254d -
“Z'I. - B “,f L, exp [-m 51 @63

12 . 9212 |, 2 - o, +d
'\joxl+0x2' J01+::°2 =1 %x2




where ‘the appropriate parameters are defined in §
The 1nLeract7on length is glvenQ by assumlqg

bunched beam is neglﬁglbleA in the form

x?%?(¢cds¢r%'sin¢) + 3Gi¥§,

i

3.

T

hat the

w2

. (¢svn¢ - cosé

S

T2 Qszw
(tcosh + sing)™ 4'——§;~(¢s1nq - catﬁ)
= : B2
‘,, 2 Ap 2 :
. {x 5 ( 2y,
(¢cos¢ + g1 n@) + =5
By

§6. Conclusiﬂn

The formulae summarized in this note wil

feut
U‘

luminosity_of TRISTAN. Combined with the formulze of beam-beam

the optimum luminosity may alsc be obrained in = way

}

s s i0
Nishikawa,
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Appendix Derivation of eq. (1)

Mdllerl) derived eq.klfifroﬁ tﬁe requirement of Lorentz invariance.
Middelkoop and Schocha)’derived it in a more intuiltive way. We reproduce
the derivation of,ref.g).

We start from the well-known expression for the number of events per

. . dN .
unit time Ez‘observed in the laboratory frame of reference,

dN

R
qy = myly] % o x ngav, ()

where
ny: density of projectile particles
not density of target particles
2 ¥y p
vi: speed of projectile particles
g: total cross section

dV: volume of target.

We transform eq.(Al) into

aly

s l
acav ~Civilnimg - (42

Since the four—-dimensional volume dtdV is Lorentz invariant, the both
sides of eq. (A2) are Lorentz invariant.

First, eq.(A2) is transformed to a system (*) moving parallel to
¥ with a velocity Bpe (the center-of-mass system is a special system of
this kind). The Lorentz transformations of relevant quantities are

expressed as

pe = Yo(p™c + BgE*)

E

Yg{Bgp¥c + E¥) ’ (a3)

n = Yg(Bn¥= + n¥).

>
Note that n transforms as the fourth component of a four-vector (uv, icm).

Taking into eccount the relation

o

a1
El

Vl= c

-12-



eq. (A2) is expressed as

* 2
2 v -
d°N _ 4% x 1 X\ * V3 *
drav - % v - eYo(BnyT =+ )Y (Bgny -+ mp) %
at dv
* £
p.c + B.E
1 01 .
l—'—B S I (84)
oP1¢ + By
Since originaily
= v * * =
po - ,O(?Zc + BOEZ) =0 E]
it follows thet
Pyt 2 1
Bg=-Feamdyg=rrr . (45)
) Pye o
1- (-5
Ey
Then,
2
4N >k %, k%
% = Olvl - vzl n;n, - (A6)

*
dav at

Next, we consider a new laboratory sysfem in which the (¥) system
is moving perpendicular to 3; and $§ with a velecity Be. Starting from
given Ei and 32 in the new laboratory svstem, the (¥) system is obtained
by moving perpendicularly to the relative velocity vector §l - 52 with

a velocity v, = gc such that

> -+ -+ > -+ >
ViL +v, =v; and vg TV, =vy .
Then % =
Pl = PlL N P2 = 172_L
x n 1}
n1=—__l ,n*=72 (A7)
2
Y Y
E . E
‘k___]_: :\':_2
El = N E2 —
Y Y

-13-



Inserting eq. (A7} into eq.(46), we obtain

2 2

i L B L T TR TAN I
% % —
aeav ~ T E Z Ty T Y
n.n .
"2 > >
= 0= vy, - vyl
.
n.n
e LR (48)
5

-+ - > -
Since v, ,Vl - Vgl ]vl x Vzl (which is equal to twice the area of the

<40

> > >
triangie formed by s Vg and v{ - V) ),

1_ ., %3 _ . 17V 2
==0Q 9 = Q-5553)
Y c lvl - vzi c
Then, eq.(A8) is expressed as
- +> 2
a’n _ SRR el (49
qeav ~ Unlﬂz (Vl - V2) - CZ s )

3,6) -
start from

which is the desired expression eq.(l). Some authors
eq. (A6) instead of eq.(A9) and their formulae are valid only for small

crossing angles.

-14-~
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