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About Me

Sam Posen

Current Roles at Fermilab:
. Senior Scientist
. Interim Associate Lab Director in charge of the Applied Physics and
Superconducting Technology Directorate (APS-TD)
—  Org of ~280 people: SRF, magnets, cryogenics, machine shop
. Focus Area co-Leader for Physics and Sensing in SQMS Quantum
Center

PhD at Cornell Physics Dept 2014 under Matthias Liepe:
Understanding and Overcoming Limitation Mechanisms in Nb;Sn
Superconducting RF Cavities
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1. Superconducting RF (SRF) Cavities
2. SRF for Accelerators at Fermilab
3. SRF for Detectors at Fermilab
4. Summary



Superconducting Radiofrequency Cavities

‘ RF power injected at resonant frequency
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Why SRF Cavities for Accelerators?

 RF — compared to DC, RF allows extremely high electric field gradients and avoids
ground issues (e.g. giant insulators)

« Superconductors — unlike copper cavities, SC cavities allow for high gradients
with high duty factors (e.g. copper may need very short pulses to avoid melting)

by Wogy W WLW LW
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Colliders
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Nuclear Physics Argonne° .geff/egon Lab @g DRODICIAVEN,

NATIONAL LABORATORY FRIB

FRIB Driver Accelerator Layout

add experimental hall (12 GeV)

and beamline ™ o

upgrade
magnets and powel
supplies

add 5 cryomodules NV
7 upgrade 1
77 central hellum /=7
liquifier (77
Wb

Images from ATLAS (ANL), FRIB
(Michigan State University),
CEBAF (Jefferson National
Laboratory, Virginia),
Brookhaven National

Laboratory, New York) # Fermilab

add 5 cryomodules
add arc

lower pass beam
energies still available
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Neutron Sources
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Neutrino Physics
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SRF cavities are the most efficient engineered
oscillators

: 1014
Chou et al, Science (2010)

Al-Mg atomic clock

Niobium superconducting RF cavities Q-factor

12
Romanenko et al, Appl Phys Lett (2014) 10

1010 Crystalline optical resonator
Grudinin et al, Phys Rev A (2006)
Devoret & Schoelkopf, Science (2013)

9
Best superconducting qubits 10

Optical whispering-gallery resonator

COpper CaVitieS Yang et al, Nat Photon (2018)

107

106
Quartz clock, High-Q Copper RF/MW cavity

Best pendulum clock

energy stored
Galileo’s pendulum Q=27
/100_ energy loss per cycle
< Slide by V Ngampruetikorn




1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab — Present
3. SRF for Detectors at Fermilab

4. Summary



LCLS-II

X-ray free electron laser at SLAC based on SRF with 1 million pulses
per second — previous copper linac had just 120 pulses per second

Leverages new advances in high Q SRF technology

Fermilab scope included design, assembly, and test of cryomodules, | J "'jf"“ """""""""""""
together with partners

Successful production meeting ambitious specifications

A LcLs-n ‘
f| Accelerator

s i

SN LS
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Fermilab - LCLS-II'Cryomodule Assembly

——

] milab

5/6/24 samPosen  Builds on designs, efforts, and facilities from ILC development



Key Enabling SRF Technologies Developed at Fermilab

15

Nitrogen doping — add nitrogen
interstitials to niobium to increase
efficiency by a factor of ~3

Flux expulsion — cooling of cavity with
spatial thermal gradient to expel ambient
magnetic fields that can otherwise
degrade efficiency

Flux depinning — thermal treatment to
reduce tendency of niobium bulk material
to trap flux

5/6/24 Sam Posen

Superconductor Science and Technology

FAST TRACK COMMUNICATION
Nitrogen and argon doping of niobium for superconducting
radio frequency cavities: a pathway to highly efficient
accelerating structures
A Grassellino!, A Romanenko', D Sergatskov', O Melnychuk’, Y Trenikhina?, A Crawford', A Rowe’,
M Wong', T Khabiboulline’ and F Barkov'
Published 22 August 2013 - @ 2013 IOP Publishing Ltd

Science an d Volume 26, Number 10
Citation A Grassellino et al 2013 Supercond. Sci. Technol. 26 102001
DOI 10.1088/0953-2048/26/10/102001

RESEARCH ARTICLE | DECEMBER 10 2014

Ultra-high quality factors in superconducting niobium
cavities in ambient magnetic fields up to 190 mG

A. Romanenko; A. Grassellino; A. C. Crawford © ; D. A. Sergatskov; O. Melnychuk

") Check for updates

Applied Physics Letters

Appl. Phys. Lett. 105, 234103 (2014)
https://doi.org/10.1063/1.4903808

RESEARCH ARTICLE | JUNE 03 2016
Efficient expulsion of magnetic flux in superconducting
radiofrequency cavities for high Q applications

S. Posen; M. Checchin; A. C. Crawford © ; A. Grassellino; M. Martinello; O. S. Melnychuk; A. Romanenko;
D. A. Sergatskov © ; Y. Trenikhina

M) Check for updates.
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Crucial Role of Surface Layer

Yy Niys o W W ‘s (AT .-
! | .! h. .I “»ilﬁm" llldu ; “ Imua . “ '\ r

Image from linearcollider.org

—

<0.1% of
RF fields thickness

\

RF
currents
~1 um

Helium C00|in8 —_—
Final treatment is crucial to performance
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RF fields

16 5/6/24 Sam Posen



Nitrogen Doping Treatment

17

N

—C4

800C 800_(32';'2 800C T
UHV,3 —» P= —> UHV,6 > . —» 5umEP
hours lom2 minutes gealind S
minutes
Y. Trenikhina et Al, Proc. of SRF 2015 i 20@800C
- - i with 25 mTorr N,
. o 107 : Sample 3
| —sme 3N,
i ——H7

1019

inal Rl

1
10 15 20 25 30 35 40 45 50—

N O

depth [pum]
N \

m Y. Trenikhina et al, Proc. of SRF 2015 0.1 pm
W Sam Posen e

QMUEd yuUpLed Jruiii v, ividi LUTNeNno

ANON

|e1IsIau| N

2% Fermilab



Magnetic Flux Expulsion

Animation by S. Posen and M. Hassan

* Meissner Effect — well below T, niobium tends to
expel applied magnetic flux

« However, flux can become trapped in
superconductor during cooldown

* Only recently has R&D made it possible to reliably
achieve strong expulsion during cooldown

Animation by S. Posen and M. Hassan

R&D in
Vertical
Test

Implementation
in LCLS-II
Cryodmodule
2& Fermilab

Ambient magnetic field
during cooldown
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Measuring Flux Expulsion in Vertical Dewar Test

Magnetic
field coils
(tens of MG
Fluxgate applied field)
magnetometers
(3 around cell Temperature
of cavity) Sensors
(Top, middle,

bottom of cell)

£= Fermilab
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LCLS-II-HE
bl | L

= LCLS-II was the first large-scale SRF CM production for Fermilab LCLS-11 cryomodule at CMTF) -

= Fermilab designed, built, tested, and delivered 20 cryomodules

— (17) 1.3 GHz cryomodules: average energy gain/CM = 158 MV (spec 128 ’
MV), average Q, = 3x10'° (spec 2.7x10'°)

— (3) 3.9 GHz cryomodules: average energy gain/CM = 46.5 MV (spec 41
MV), average Q, = 3.45x10° (spec 1.5x10°)

= LCLS-II-HE: ~14 more CMs from FNAL (plus more from JLab),
new R&D was critical to achieve even more challenging
speC|f|cat|ons

delivered to date

= LCLS-II-HE was enabled by the success of high Q for LCLS-II:
only 1 cryoplant is needed for operations so the second is
available for the high energy upgrade

2= Fermilab
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PIP-ll superconducting CW linac PIP-ll A =
p g N{ATE —
= PIP-Il linac is technically complex, state of the art superconducting RF accelerator N
L Elliptical
~ Cryoplant Eg‘g;':al HB650
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Single Spoke SSR2 >‘ | 7
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Half Wave

=

177 MeV

H-ion
source

Sanford Underground
Research Facility

e — - — ermila
omT emper K , L i

2 Fermilab
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SRF Innovations Applied to PIP-II

« PIP-Il LB650 cryomodules will use the Jacketed Cavity Bare Cavity
mid-T bake, a simple process to improve . ik o
Q developed at Fermilab that has been b ¥ | = ﬁ\ M:MM '
widely adopted by SRF community o S A .j‘“, A w)l, |

« Impurity diffusion using native oxide as RN = gy ok ' -t
opposed to added nitrogen
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SRF Innovations Applied to PIP-II

e Cleanroom robotics used to install RF : PIP-II :

power couplers for PIP-1l SSR2 cavities
» Precise alignment and smooth movement
of heavy coupler

 Cavity qualified in cold test after assembly 2

» Benefits vs conventional methods:
— Improved ergonomics, reduced risk of
particulate contamination

— Milestone step towards cleanroom
automation of certain steps to reduce costs,
reduce risk, increase throughput

Video sped up 5x ]
2& Fermilab

24 5/6/24 Sam Posen | Budget Briefing April 2024



HL-LHC Accelerator Upgrade Project (AUP)

(26-450 GeV)

« Fermilab is leading US HL-LHC Accelerator = mqﬂ
Upgrade Project (AUP) WS ||| ey o
* Includes production of 10 crab cavities which will A
rotate the bunches to allow for more collisions per [ i 5=

2-Cavity Test Module

unit time at interaction regions

» Prototyping was successful and production has
started

2= Fermilab
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1. Superconducting RF Cavities
2. SREF for Accelerators at Fermilab — Future

3. SRF for Detectors at Fermilab
4. Summary



FCC-ee

* Next big collider under study at CERN

» Highest energies require substantial RF
to make up for synchrotron radiation

« FCC-ee involves stages over years, and
later stages involve many 800 MHz
cryomodules ~150 CMs overall

* High Q advances can be greatly
impactful for power costs and
sustainability

27 517124 Sam Posen

- F. Valchkova FCC
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FCC-ee

« Great opportunity for US
involvement in SRF for FCC-ee

» Collaborative R&D is underway
with CERN, including high Q
treatment studies on prototype
800 MHz cavities

« Cryomodule design studies are
starting as well

Segmented cryomodule concept with 800 MHz cavities

25 Fermilab
28 5/9/24 Sam Posen



Widely Tunable SRF Cavity

 To deliver more proton power to Fermilab’s neutrino experiment LBNF/DUNE, plan
to reduce the cycle time of the Main Injector ring from 1.3 st0 0.7 s

* Requires faster ramping magnets and more RF power

* Now performing conceptual R&D for widely tunable SRF cavity — a few SRF
cavities could achieve similar voltage to ~20 normal conducting cavities

 Starting collaboration with Cornell

Short Baseline Neutrino:
ICARUS, ANNIE, SBND

SwitchYard120:
test beam (FTBF), T !5";’,!’3’,,.,
SpinQuest Muon periments

NOvVA

Beoriments S0 Muon Campus:
% Irradiation Test g-2 (completes this year),
s

oo Area (ITA) in Linac Mu2e (commissioning) -

29 5/6/24 Sam Posen

Long Baseline Neutrino:

ACE-MIRT tunable SRF cavity concept
2& Fermilab



First 200MHz Nb-Cu cavity

The Path to a Muon Collider [ T -

H..: effect on cavity

« Potential large SRF installations in muon
collider scheme include driver, early
stages of accelerator (recirculating linear
accelerator)

* Pioneering work at Cornell studies effects =

of magnetic fields near large low B il el
; . }\ b e ‘

frequency elliptical cavities /// - R
/ Collider ring k

(~10-km circumference)

4
Ty Rl
“/9/7 — ®
+ — =
D_ | =
T Particle detector
Proton source  Muon source lonization cooling Low-energy rapid ’ 1km
channels cycling synchotron
3¢ Fermilab

50 ol Sam Posen Images from Science Magazine, Don Hartill



Other SRF Accelerators Under Development

Thermionic T
- Compact SRF accelerators using Nb3Sn — o sl ot vl shits
applications in wastewater treatment, isotope ‘ :

production, cargo scanning, electron L Coupler (PIP-I style)
microscopy and more

2 x 2 W cryocooler

» Electron lon Collider (BNL)

« xLight — partnership with industry to develop
SRF ERLs for semiconductor lithography

https://news.fnal.gov/2024/04/new-collaboration-sheds-bright-light-on-advancing-semiconductor-production-in-the-u-s/

25 Fermilab
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Nb;Sn SRF Coatings

* NbsSn has substantially higher T, than
Nb (18 K vs 9 K)

» High Qq at relatively high temp.

— Potential for high Qy > 100 in ~4.5 K
operation in liquid helium

SEM images of Nb;Sn film coated on Nb:

— Potential for replacing cryoplant with .
a) surface, b) cross section

cryocoolers

— Even eliminating liquid helium via
conduction cooling

» Impacts for high duty factor applications, & 108}
especially small and medium-scale <

106 e Nb,Sn Data
' —Nb,Sn BCS Theory

» Predicted potential for maximum fields |
higher than Nb jgb oEoSThey | _
0 5 10 15 20 'rmilab

32 5/6/24 Sam Posen T [K]



Travelling Wave SRF for future accelerators

Traveling Wave (TW) SRF cavity development

= Why TW? — > 20% increase in acceleration per
cryomodule

= Still a lot to do before this technology can be
applied to accelerators.

= 3-cell prototype cavity currently undergoing InTleV:;:rft:ﬁ/:;’jre
experimental studies

3D model of proof-of-principle cavity

Cavity on high pressure rinse stand

JE H
3¢ Fermilab
33 12/13/23 | APS-TD All-Hands Meeting: 2023 Wrap-Up | Sergey Belomestnykh



New furnace for advanced SRF materials and treatment

=  Will be used to study new SRF materials, new ‘capping’ layers,
multi-layered structures, novel heat treatments

= 2 configurations to achieve up to 1400°C

= 150 kW induction heating, two independent vacuum volumes,
base pressure < 10~7 Torr, capacity for large cavities

Up to 400°C (ALD) Up to 1400°C

[T R 0
-~

CVD/ALD furnace Gas shed
(FNAL)
Transformer
(FNAL)

Mezzanine 2

Mezzanine 1
(SMI)

Reactor
(SMI)

Pit (FNAL)

2& Fermilab
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1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab

3. SRF for Detectors at Fermilab
4. Summary



- /\,»S Q M S <N 28 Partner Institutions
>450 Collaborators
A DOE National Quantum Information Science Research Center

3&Fermilab  [oithvesten  sigatti A\ AMES /1@ NIST

Research Center

"Creating Materials & Energy Solutions.

coomaporc oo mmes  Sromveactor  JOIIMAN oo X INFN Jefferson Lab
glomstons  oeaeowemnze  LGL)  NPLE  EINYu [EE
N\ 1] Temple nitar THE UNIVERSITY @T University of Colorad
< IQJTGERS Stanf ord I University  Fund b . OF ARIZONA Bouder e
o IN Al UNIVERSITY OF MINNESOTA = ) UNIVERSITY OF sttt o
I !!:AITAINAQAI.§ M Driven to Discover® - =Y UNIVERSITA DI PISA %y WATERLOO IQC Computing

A rich ecosystem, multi-institutional and multidisciplinary collaboration leveraging investments
at DOE national labs, academia, industry and several other federal and international entities



SQMS Physics and Sensing Team

2% Fermilab

Noythwgstern
University

M UNIVERSITY OF MINNESOTA

Driven to Discover®
THE UNIVERSITY
A® OF ARIZONA Lsu

JOHNS HOPKINS

UNIVERSITY

Theorists and experimentalists working closely. Experts
Stanford in HEP, materials, SRF, sensing, QIS, RF en_aineeri,n%
3¢ Fermila

37 5/6/24 Sam Posen




Haloscope Searches for Dark Matter
Looking for < 1072* W signal over wide range of frequencies.

-
-
-
-
~~

38 5/6/24 Sam

Amplify

Digitize
’

Power Spectrum

B- Field

144

This axion lineshape
has been

I | exaggerated. A real

~ aXj, <——  signal would hide
TSl On O beneath the noise in
’ NJOO ~~~~~~ a single digitization.

An axion detection

requires a very cold

experiment and an
ultra low noise
receiver-chain.

Power

Axion to photon
production |
< EeB

Frequency

' Unknown axion mass i
| requires a tunable resonator |

B- Field

Boutan, "A piezoelectrically tuned RE-cavity search for dark matter axions. (2017) # Fermilab

Posen



Nb;Sn SRF for Quantum (part of SQMS Quantum Center)

« Haloscope: dark matter axion conversion to microwave photon in magnetic field
» Cavity frequency must match axion mass to be sensitive to it
 Sensitivity improves with higher magnetic field, higher cavity Qg

Multi-Tesla

Magnetic field
Dark

Matter
Axion

25 Fermilab
39 5/6/24 Sam Posen



Current State of the Art Axion Searches

* Operating haloscopes like ADMX use normal
conducting cavities (typically copper)
* They have reached desired exclusion limit for a small
range of masses, but a very wide mass range remains
- Scan rate scales as dv/dt o« B4V2Q/2Tys
— B (magnetic field), V (cavity volume), Q (cavity quality
factor), Tgys (System noise temperature)

* Q improvement is promising path to improving rate of
scanning substantially | 8 T magnet

Dilution fridge -

* Nb;Sn is well suited due to its Copper cavity

very high upper critical field, o
~30 T (for comparison: Nb ~0. 4

pling [Gp,, | (GeV')

V T

-I-’ N bTI ~ 1 5 T) 0 10® 10‘:’)@n Mas:'::(ev) 102 10° F rO m A D M X
, - - £& Fermilab
40 5/6/24 Sam Posen https:.//arxiv.org/pdf/1405.3685 pdf & https://indico.cern.ch/event/606690/contributions/


https://arxiv.org/pdf/1405.3685.pdf
https://indico.cern.ch/event/606690/contributions/2655459/attachments/1498473/2332791/Axion_Overview_TAUP_2017_Final.pdf
https://indico.cern.ch/event/606690/contributions/2655459/attachments/1498473/2332791/Axion_Overview_TAUP_2017_Final.pdf

Evaluation of Nb;Sn for Haloscopes

 First evaluation of NbsSn SRF cavity
in vortex state — test on 3.9 GHz
cavity that was originally coated for
accelerator cavity studies

» Use existing test stand typically
used to evaluate magnet wires at
multi-telsa fields

 |In parallel, fabricating cavity with
improved geometry for operating in
magnetic fields

coated
cavity

25 Fermilab
4 5/6/24 Sam Posen



High Q Nb;Sn SRF Cavity in Multi-Tesla Field

0.2

« Quality factor of 5x10°in6 T
field at 4.2 K — substantial _r = g

Improvement over copper EIctpoIishig Nb Cavity g
 Exciting for speeding up axion |
dark matter search
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Light-Shining-through-Wall searches
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Advantage of using high Q cavities

102> SM SC wall
photons — T

Emitter cavity, Receiver cavity,
in the accelerator in the low field regime
regime, high field T
A
bility
SS

2= Fermilab
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Cavity tuning
« LCLS Il double lever tuner to tune “transmitter” cavity
« Tuner mounted on emitter cavity and preloaded

— Stepper motor: coarse tuning with Ax=2mm or Af=5MHz, and §x=5nm or
6f=12Hz resolution

% — Piezo: fine tuning, Ax=3um or Af=8KHz, and §x=0.05nm or §f=0.1Hz resolution

 oreppe

Piezo-actuator for
fine/fast tuning

| Stepper motor for
) coarse/slow tuning

Pischalnikov et al., doi:10.18429/JACoW-SRF2019-TUP085 # Fermilab
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Receiver PSD (dBm)

Dark SRF: phase 1 — results

Frequency (Hz)
Thermal run vs Search run

;07 108 10°

Search run conducted at 107
6.2 MV/m (= 0.6 J stored energy)
_151é Am‘pliﬁcation: %d]é e i
- s 10-7 [ CMB
B’ 0i=1.3x10" -
153" B
[ E [
1 L
i —— 10°- Dark SRF ;
1560 S C  Pathfinder Run ]
f=fo (Hz) | B
]0—9\\|\\\ I Coe | I | | Co |
1077 107° 107°
Leak of thermal photon
from receiver input line my (eV)
Romanenko.et.al.,-Phys..Rev. Lett..130,.261801.(2023) # Fermilab
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SRF Cavities for Dark Matter Searches

"~ Compared
~ to state-
: of-the-art

Credit: N. Du

SQMS — Q ~ 1010 ADMX — Q ~ 8 x10*

High Q allows for larger signal and lower noise floor.

Possibly factor 10° increase in instantaneous scan rate.

25 Fermilab
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Deepest sensitivity: Ultrahigh Q for Dark photon DM
T Ll E 10°

QUAX &

SQMS
‘,1 .3GHz Cavity

T 1 T 1 1 I 1 1 1
2x10® 10  Dark photon mass [eV]
Cervantes et al., arXiv:2208.03183v3 (2022)

DPDM search with 1.3 GHz cavity with Q; ~ 101°.
Deepest exclusion to wavelike DPDM by an order of magnitude.

SQMS 4-7' GHz
Cavity Projection

2= Fermilab
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Deepest sensitivity: Ultrahigh Q for Dark photon DM

107°

10710
>
_§’10‘11 é
‘€102
-% 10713 3
£ 10714 5
x sy SQMS 4-7'GH
1071 1.3GHz Cavit : -/ BNz
Bt |3 : » y Cavity Projection
iiil TR 4-7 GHz 10716 , : : — , .
AU 2x10® 10  Dark photon mass [eV]

Cervantes et al., arXiv:2208.03183v3 (2022)

DPDM search with 1.3 GHz cavity with Q; ~ 10%°.

Deepest exclusion to wavelike DPDM by an order of magnitude.
Next steps:

« Tunable DPDM search from 4-7 GHz (“low hanging fruit”)

« Implement photon counting to subvert SQL noise limit.

25 Fermilab
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SRF cavities for gravitational waves searches

51

SQMS theorists have laid the formalism for GR-EM cavity
interaction.

Two types of signals: EM and mechanical.

Current axion experiments have sensitivity to GHz Gravity
waves [1].

A dedicated cavity experiment, e.g. MAGO, has

significant reach at MHz [2]. R

New collaboration with INFN and DESY to revive 1
MAGO
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N
[=]
3
| | |
AURICA //

scanning (thermal)

SUDerradianc
e

BAW

—_LTE_(’)J\—T:) Sensitivity of MAGO-like setup

Ballantini et al., Class. Quantum Grav. 20,2003, 3505-3522 (2003)
Ballantini et al., arXiv:gr-qc/0502054 (2005)
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Berlin et al., Phys. ReV. b 505, 116011 (2022)

Berlin et al., arXiv:2303.0151 8y (2023) .«
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Heterodyne Axion DM search

One SRF cavity, no
applied B

Modes TEy; and TMy
used to search for axion
DM = maxion ~ Af

frequency = my/2x « Enables to search for
small masses without

ap .
dw

107%

1071
G - ' LAMPOST . T
T 7 7). using prohibitively large
O, 1gm & A\ ADMAX 'y
< ;| cavities!
S0 |
N
T: Berlin et al., Journal of High Energy Physics 2020.7 (2020)

Y G A Giaccone et al., arXiv:2207.11346 (2022)
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1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab
3. SRF for Detectors at Fermilab
4. Summary



Summary

« SRF cavities are enabling to HEP mission of
Fermilab

— Accelerators to enable DUNE, future colliders
— Detectors for dark sector, gravitational waves

« SRF R&D has brough substantial performance
improvements and enabled new applications

« Many exciting future opportunities
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