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About Me
Sam Posen

Current Roles at Fermilab:
• Senior Scientist
• Interim Associate Lab Director in charge of the Applied Physics and 

Superconducting Technology Directorate (APS-TD)
– Org of ~280 people: SRF, magnets, cryogenics, machine shop

• Focus Area co-Leader for Physics and Sensing in SQMS Quantum 
Center

PhD at Cornell Physics Dept 2014 under Matthias Liepe: 
Understanding and Overcoming Limitation Mechanisms in Nb3Sn 
Superconducting RF Cavities
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1. Superconducting RF (SRF) Cavities
2. SRF for Accelerators at Fermilab

3. SRF for Detectors at Fermilab
4. Summary



Superconducting Radiofrequency Cavities

5/6/24 Sam Posen4

~1 m

RF power injected at resonant frequency

Particle 
beam 
enters

Higher 
energy 
beam 
exits

------------------------------ CFermilab 



• RF – compared to DC, RF allows extremely high electric field gradients and avoids 
ground issues (e.g. giant insulators)

• Superconductors – unlike copper cavities, SC cavities allow for high gradients 
with high duty factors (e.g. copper may need very short pulses to avoid melting)

Why SRF Cavities for Accelerators?
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Colliders
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The Large Electron-Positron Collider (LEP)

The Large Hadron Collider (LHC)
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Nuclear Physics
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Images from ATLAS (ANL), FRIB 
(Michigan State University), 
CEBAF (Jefferson National 
Laboratory, Virginia), 
Brookhaven National 
Laboratory, New York)
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Photon Sources
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Images from LCLS-II and the European XFEL
youtu.be/t7jUZwhZdd0
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Neutron Sources
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Images from Spallation Neutron Source, Oak Ridge National Laboratory and European Spallation Source

SANS Instrument 

EUROPEAN 
SPALLATION 
SOURCE 
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Neutrino Physics

5/6/24 Sam Posen10 Images from LBNF/DUNE and PIP-II Collaborations
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SRF cavities are the most efficient engineered 
oscillators

105

106

107
108

109

Q-factor

Best pendulum clock

Quartz clock, High-Q Copper RF/MW cavity

1011
1012

Optical whispering-gallery resonator 
Yang et al, Nat Photon (2018)

1010 Crystalline optical resonator 
Grudinin et al, Phys Rev A (2006)

Devoret & Schoelkopf, Science (2013) 
Best superconducting qubits

1014Chou et al, Science (2010) 
Al-Mg atomic clock

Galileo’s pendulum
<100

Q ≡ 2ı
energy stored

energy loss per cycle
!X

Niobium superconducting RF cavities 
Romanenko et al, Appl Phys Lett (2014)

Slide by V Ngampruetikorn

Copper cavities

( - ] 



5/6/24 Sam Posen12

1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab – Present

3. SRF for Detectors at Fermilab
4. Summary



• X-ray free electron laser at SLAC based on SRF with 1 million pulses 
per second – previous copper linac had just 120 pulses per second

• Leverages new advances in high Q SRF technology 
• Fermilab scope included design, assembly, and test of cryomodules, 

together with partners
• Successful production meeting ambitious specifications

LCLS-II
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• Nitrogen doping – add nitrogen 
interstitials to niobium to increase 
efficiency by a factor of ~3

• Flux expulsion – cooling of cavity with 
spatial thermal gradient to expel ambient 
magnetic fields that can otherwise 
degrade efficiency

• Flux depinning – thermal treatment to 
reduce tendency of niobium bulk material 
to trap flux

Key Enabling SRF Technologies Developed at Fermilab
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Superconductor Science and Technology 

Nitrogen and argon doping of niobium for superconducting 
radio frequency cavities: a pathway to highly efficient 
accelerating structures 
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Crucial Role of Surface Layer
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RF fields

Helium cooling

RF 
currents
~1 μm

Niobium 
~3 mm

RF fields

Image from linearcollider.org

<0.1% of 
thickness

Final treatment is crucial to performance
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Nitrogen Doping Treatment

17

N2

Nb

Slides adapted from M. Martinello
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Magnetic Flux Expulsion
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Ambient magnetic field 
during cooldown

R&D in 
Vertical 

Test Implementation 
in LCLS-II 

Cryodmodule

• Meissner Effect – well below Tc, niobium tends to 
expel applied magnetic flux

• However, flux can become trapped in 
superconductor during cooldown

• Only recently has R&D made it possible to reliably 
achieve strong expulsion during cooldown

Animation M. Hassan 

Animation by S. Posen and M. Hassan 
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Measuring Flux Expulsion in Vertical Dewar Test
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Magnetic
field coils

(tens of mG 
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Temperature
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Flux Expulsion 
Comsol simulation

Flux Trapping 
Comsol simulation

Flux 
Expulsion 
Measurement

Flux 
Trapping 
Measurement

Fluxgate 
magnetometer

Fluxgate 
magnetometer

BSC/BNC ~ 1.7 BSC/BNC ~ 1

Field lines bend 
around wall

Field lines go 
through wall
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§ LCLS-II was the first large-scale SRF CM production for Fermilab
§ Fermilab designed, built, tested, and delivered 20 cryomodules

– (17) 1.3 GHz cryomodules: average energy gain/CM = 158 MV (spec 128 
MV), average Q0 = 3x1010 (spec 2.7x1010)

– (3) 3.9 GHz cryomodules: average energy gain/CM = 46.5 MV (spec 41 
MV), average Q0 = 3.45x109 (spec 1.5x109)

§ LCLS-II-HE: ~14 more CMs from FNAL (plus more from JLab), 
new R&D was critical to achieve even more challenging 
specifications

§ Production has been going well, 8 FNAL cryomodules qualified and 
delivered to date

§ LCLS-II-HE was enabled by the success of high Q for LCLS-II: 
only 1 cryoplant is needed for operations so the second is 
available for the high energy upgrade

LCLS-II-HE
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LCLS-II cryomodule at CMTF
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PIP-II superconducting CW linac
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§ PIP-II linac is technically complex, state of the art superconducting RF accelerator
Elliptical 
HB650

2.1 MeV 10 MeV
32 MeV

177 MeV

516 MeV
833 MeV

Room Temperature

Superconducting

H- ion 
source

RFQ

Half Wave

Single Spoke 
SSR1

Single Spoke 
SSR2

Elliptical 
LB650

Cryoplant

.fYYYY\_ 

~ ~ 

rm1lab 



SRF Innovations Applied to PIP-II
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Bare Cavity• PIP-II LB650 cryomodules will use the 
mid-T bake, a simple process to improve 
Q developed at Fermilab that has been 
widely adopted by SRF community

• Impurity diffusion using native oxide as 
opposed to added nitrogen

After mid-T baking
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• Cleanroom robotics used to install RF 
power couplers for PIP-II SSR2 cavities

• Precise alignment and smooth movement 
of heavy coupler

• Cavity qualified in cold test after assembly
• Benefits vs conventional methods:
– Improved ergonomics, reduced risk of 

particulate contamination
– Milestone step towards cleanroom 

automation of certain steps to reduce costs, 
reduce risk, increase throughput

SRF Innovations Applied to PIP-II

5/6/24 Sam Posen | Budget Briefing April 202424

Video sped up 5x

------------------------------CFermilab 



• Fermilab is leading US HL-LHC Accelerator 
Upgrade Project (AUP)

• Includes production of 10 crab cavities which will 
rotate the bunches to allow for more collisions per 
unit time at interaction regions

• Prototyping was successful and production has 
started

HL-LHC Accelerator Upgrade Project (AUP)

5/6/24 Sam Posen25
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1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab – Future

3. SRF for Detectors at Fermilab
4. Summary



• Next big collider under study at CERN
• Highest energies require substantial RF 

to make up for synchrotron radiation
• FCC-ee involves stages over years, and 

later stages involve many 800 MHz 
cryomodules ~150 CMs overall

• High Q advances can be greatly 
impactful for power costs and 
sustainability

FCC-ee
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F. Valchkova FCC 
Week 2023
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• Great opportunity for US 
involvement in SRF for FCC-ee

• Collaborative R&D is underway 
with CERN, including high Q 
treatment studies on prototype 
800 MHz cavities

• Cryomodule design studies are 
starting as well

FCC-ee

5/9/24 Sam Posen28

Segmented cryomodule concept with 800 MHz cavities

Concept of jacketed cavity5-cell cavity with testing fixtures
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• To deliver more proton power to Fermilab’s neutrino experiment LBNF/DUNE, plan 
to reduce the cycle time of the Main Injector ring from 1.3 s to 0.7 s

• Requires faster ramping magnets and more RF power
• Now performing conceptual R&D for widely tunable SRF cavity – a few SRF 

cavities could achieve similar voltage to ~20 normal conducting cavities
• Starting collaboration with Cornell

Widely Tunable SRF Cavity

5/6/24 Sam Posen29

ACE-MIRT tunable SRF cavity concept

SpinQuest 
Fbled-Tatget 
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itstBHm 
FltClllty 

Irradiation Test 
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High-Energy 
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Long Baseline Neutrino: 
NOvA 

Muon Campus: 
g-2 (completes this year), 
Mu2e (commissioning) __ 
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The Path to a Muon Collider
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• Potential large SRF installations in muon 
collider scheme include driver, early 
stages of accelerator (recirculating linear 
accelerator)

• Pioneering work at Cornell studies effects 
of magnetic fields near large low 
frequency elliptical cavities

Images from Science Magazine, Don Hartill

Proton source 

@ µ• ~ 

c · 
Muon source Ionization cooling 

channels 

~ 
Low-energy rapid 
cycling synchotron 

r- High-energy rapid 
,/ cycling synchotron 

Collider ring 
(~10-km circumference) 

® ___,, 

Particle detector 
1 km 

----------~ O Fermilab 



• Compact SRF accelerators using Nb3Sn – 
applications in wastewater treatment, isotope 
production, cargo scanning, electron 
microscopy and more

• Electron Ion Collider (BNL)

• xLight – partnership with industry to develop 
SRF ERLs for semiconductor lithography

Other SRF Accelerators Under Development

5/6/24 Sam Posen31

https://news.fnal.gov/2024/04/new-collaboration-sheds-bright-light-on-advancing-semiconductor-production-in-the-u-s/

2 x 2 W cryocooler

Coupler (PIP-II style)

20 kW SSA

Cryostat with magnetic 
and thermal shields

Thermionic 
gun
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• Nb3Sn has substantially higher Tc than 
Nb (18 K vs 9 K)

• High Q0 at relatively high temp.
– Potential for high Q0 > 1010 in ~4.5 K 

operation in liquid helium

– Potential for replacing cryoplant with 
cryocoolers

– Even eliminating liquid helium via 
conduction cooling

• Impacts for high duty factor applications, 
especially small and medium-scale

• Predicted potential for maximum fields 
higher than Nb

Nb3Sn SRF Coatings
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SEM images of Nb3Sn film coated on Nb: 
a) surface, b) cross section

1010 

~ 108 
0 a 

106 

104 
0 

, R,es = 9.5 nn , 
-----·----~----·-----------~---

• Nb3Sn Data 

- Nb3Sn BCS Theory 

- Nb BCS Theory 

5 10 
T [K] 

15 

' T = 18 K 
C I 

20 ~rmilab 



Travelling Wave SRF for future accelerators

12/13/23 | APS-TD All-Hands Meeting: 2023 Wrap-Up | Sergey Belomestnykh33

Standing Wave 
in 9-cell structure

Traveling Wave 
in 16-cell structure  

Traveling Wave (TW) SRF cavity development
§ Why TW? → > 20% increase in acceleration per 

cryomodule
§ Still a lot to do before this technology can be 

applied to accelerators.
§ 3-cell prototype cavity currently undergoing 

experimental studies

3D model of proof-of-principle cavity
Cavity on high pressure rinse stand

I I 
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New furnace for advanced SRF materials and treatment

5/6/24 Sam Posen34

CVD/ALD furnace

§ Will be used to study new SRF materials, new ‘capping’ layers, 
multi-layered structures, novel heat treatments

§ 2 configurations to achieve up to 1400℃
§ 150 kW induction heating, two independent vacuum volumes, 

base pressure < 10"# Torr, capacity for large cavities Up to 400℃ (ALD) Up to 1400℃

Pit (FNAL) 

Gas shed 
(FNAL) 

Reactor 
(SMI) 

Transformer 
(FNAL) 

I 
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1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab
3. SRF for Detectors at Fermilab

4. Summary



36

A rich ecosystem, multi-institutional and multidisciplinary collaboration leveraging investments 
at DOE national labs, academia, industry and several other federal and international entities

A DOE National Quantum Information Science Research Center

  28  Partner Institutions

>450 Collaborators
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Theorists and experimentalists working closely. Experts 
in HEP, materials, SRF, sensing, QIS, RF engineering.

SQMS Physics and Sensing Team
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Looking for < 10!"# W signal over wide range of frequencies.
Haloscope Searches for Dark Matter

5/6/2438
Boutan, "A piezoelectrically tuned RF-cavity search for dark matter axions" (2017)

Sam Posen
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Nb3Sn SRF for Quantum (part of SQMS Quantum Center)

5/6/2439

• Haloscope: dark matter axion conversion to microwave photon in magnetic field
• Cavity frequency must match axion mass to be sensitive to it
• Sensitivity improves with higher magnetic field, higher cavity Q0

Multi-Tesla 
Magnetic field

Dark 
Matter 
Axion

Sam Posen



Current State of the Art Axion Searches

5/6/2440

• Operating haloscopes like ADMX use normal 
conducting cavities (typically copper)

• They have reached desired exclusion limit for a small 
range of masses, but a very wide mass range remains

• Scan rate scales as dν/dt ∝ B4V2Q/2Tsys 
– B (magnetic field), V (cavity volume), Q (cavity quality 

factor), Tsys (system noise temperature)
• Q improvement is promising path to improving rate of 

scanning substantially

https://arxiv.org/pdf/1405.3685.pdf & https://indico.cern.ch/event/606690/contributions/ 
2655459/attachments/1498473/2332791/Axion_Overview_TAUP_2017_Final.pdf 

• Nb3Sn is well suited due to its 
very high upper critical field, 
~30 T (for comparison: Nb ~0.4 
T, NbTi ~15 T)

Copper cavity
8 T magnet

Dilution fridge

From ADMX

Sam Posen

https://arxiv.org/pdf/1405.3685.pdf
https://indico.cern.ch/event/606690/contributions/2655459/attachments/1498473/2332791/Axion_Overview_TAUP_2017_Final.pdf
https://indico.cern.ch/event/606690/contributions/2655459/attachments/1498473/2332791/Axion_Overview_TAUP_2017_Final.pdf


Evaluation of Nb3Sn for Haloscopes

5/6/2441

• First evaluation of Nb3Sn SRF cavity 
in vortex state – test on 3.9 GHz 
cavity that was originally coated for 
accelerator cavity studies

• Use existing test stand typically 
used to evaluate magnet wires at 
multi-telsa fields

• In parallel, fabricating cavity with 
improved geometry for operating in 
magnetic fields

Up to 
~6 T at 
4.4 K

Nb3Sn-
coated 
cavity

Sam Posen



• Quality factor of 5x105 in 6 T 
field at 4.2 K – substantial 
improvement over copper

• Exciting for speeding up axion 
dark matter search

High Q Nb3Sn SRF Cavity in Multi-Tesla Field

5/6/2442

Nb3Sn coated on Nb

Assembled cavity

Electropolishing Nb Cavity
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Posen et al., “Measurement of high quality factor superconducting cavities in tesla-
scale magnetic fields for dark matter searches” Phys. Rev. Applied 20, 034004 (2023)Sam Posen



Light-Shining-through-Wall searches

Graham et al., Phys Rev D90, 075017 (2014)
Romanenko et al., Phys. Rev. Lett. 130, 261801 (2023)
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Receiver cavity,
in the low field regime

Emitter cavity,
in the accelerator 
regime, high field

Advantage of using high Q cavities

High Q0: increases 
number of photons 

High Q0: enhances probability 
of detecting power excess 

due to dark photons

SC wall1025 SM 
photons

Necessary to match cavities 
frequency!
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• LCLS II double lever tuner to tune “transmitter” cavity
• Tuner mounted on emitter cavity and preloaded

– Stepper motor: coarse tuning with Δx=2mm or Δf=5MHz, and 𝛿x=5nm or 
𝛿f=12Hz resolution

– Piezo: fine tuning, Δx=3um or Δf=8KHz, and 𝛿x=0.05nm or 𝛿f=0.1Hz resolution

Cavity tuning

Pischalnikov et al., doi:10.18429/JACoW-SRF2019-TUP085

Stepper motor for 
coarse/slow tuning

Piezo-actuator for 
fine/fast tuning
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Dark SRF: phase 1 → results
Thermal run vs Search run

Search run conducted at 
6.2 MV/m (= 0.6 J stored energy)

Leak of thermal photon 
from receiver input line

Romanenko et al., Phys. Rev. Lett. 130, 261801 (2023)
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SRF Cavities for Dark Matter Searches

5/6/2448

SQMS → ADMX →

High Q allows for larger signal and lower noise floor.
Possibly factor 105 increase in instantaneous scan rate.

Credit: N. Du

𝑄 ≈	10"# 𝑄 ≈ 8	×10$

Compared 
to state-
of-the-art

Sam Posen



Cervantes et al., arXiv:2208.03183v3 (2022)

Deepest sensitivity: Ultrahigh Q for Dark photon DM

DPDM search with 1.3 GHz cavity with 𝑄$ ≈ 10%&.
Deepest exclusion to wavelike DPDM by an order of magnitude.
Next steps:
• Tunable DPDM search from 4-7 GHz (“low hanging fruit”)
• Implement photon counting to subvert SQL noise limit. 
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Deepest sensitivity: Ultrahigh Q for Dark photon DM

DPDM search with 1.3 GHz cavity with 𝑄$ ≈ 10%&.
Deepest exclusion to wavelike DPDM by an order of magnitude.
Next steps:
• Tunable DPDM search from 4-7 GHz (“low hanging fruit”)
• Implement photon counting to subvert SQL noise limit. 

“plunger” cavity
4-7 GHz

Cervantes et al., arXiv:2208.03183v3 (2022)
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SRF cavities for gravitational waves searches
• SQMS theorists have laid the formalism for GR-EM cavity 

interaction.
• Two types of signals: EM and mechanical.
• Current axion experiments have sensitivity to GHz Gravity 

waves [1].
• A dedicated cavity experiment, e.g. MAGO, has 

significant reach at MHz [2].
• New collaboration with INFN and DESY to revive 

MAGO

MAGO (INFN)
Berlin et al., Phys. Rev. D 105, 116011 (2022)
Berlin et al., arXiv:2303.01518v1 (2023)

Sensitivity of MAGO-like setup

Ballantini et al., Class. Quantum Grav. 20,2003, 3505–3522 (2003)
Ballantini et al., arXiv:gr-qc/0502054 (2005)
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Heterodyne Axion DM search 
• One SRF cavity, no 

applied 𝐵
• Modes TE011 and TM020 

used to search for axion 
DM → 𝑚%&'() ≈ ∆𝑓

• Enables to search for 
small masses without 
using prohibitively large 
cavities!

mode
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Berlin et al., Journal of High Energy Physics 2020.7 (2020)
Giaccone et al., arXiv:2207.11346 (2022)
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1. Superconducting RF Cavities
2. SRF for Accelerators at Fermilab

3. SRF for Detectors at Fermilab
4. Summary



• SRF cavities are enabling to HEP mission of 
Fermilab
– Accelerators to enable DUNE, future colliders
– Detectors for dark sector, gravitational waves

• SRF R&D has brough substantial performance 
improvements and enabled new applications

• Many exciting future opportunities

Summary
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