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Fig. 1. Prepare-and-measure version of underwater continuous variable quantum key distribution scheme based on imperfect meas-

urement basis choice. RNG, random number generator; AM, amplitude modulator; PM, phase modulator; MBC, measurement basis

choice; Ty, the transmittance of seawater channel; & , the excess noise of seawater channel.
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Fig. 2. Schematic diagram of the entanglement-based model of underwater continuous variable quantum key distribution scheme

based on imperfect basis choice (QM, quantum memory).
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Fig. 3. Principle of balanced homodyne detector. LO, local
oscillator; PM, phase modulator; BS, beam splitter; PD(y),
photodetector.
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Fig. 4. Relationship between the asymptotic secret key rate
of the proposed scheme and the transmission distance un-

der different parameters p .
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Fig. 5. Relationship between the asymptotic secret key rate

of the proposed scheme and the reconciliation efficiency un-

der different parameters .
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Fig. 6. Relationship between the asymptotic secret key rate
of the proposed scheme and the parameter p under differ-
ent seawater depths h .
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Fig. 7. Performance comparison between the proposed

scheme and the underwater CV-QKD scheme based on BL

model under imperfect measurement basis choice.
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Fig. 8. Relationship between the composable secret key rate
of the proposed scheme and the number of exchanged sig-
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Fig. 9. Composable secret key rate comparison between the
proposed scheme and the underwater CV-QKD scheme
based on BL model under imperfect measurement basis

choice.
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Underwater continuous variable quantum key distribution
scheme based on imperfect measurement basis choice”
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Abstract

Measurement basis choice is an essential step in the underwater continuous variable quantum key
distribution system based on homodyne detection. However, in practice, finite bandwidth of analog-to-digital
converter on the receiver’s side is limited, which can result in defects in the measurement basis choice. That is,
the receiver cannot accurately modulate the corresponding phase angle on the phase modulator for measurement
basis choice to implement homodyne detection. The imperfect measurement basis choice will introduce extra
excess noise, which affects the security of underwater continuous variable quantum key distribution scheme. To
solve this problem, we propose an underwater continuous variable quantum key distribution scheme based on
imperfect measurement basis choice, and analyze the influence of imperfect measurement basis choice on the
performance of underwater continuous variable quantum key distribution system in detail. The research results
indicate that the extra excess noise introduced by imperfect measurement basis choice can reduce the secret key
rate and maximum transmission distance of the underwater Gaussian modulated quantum key distribution, thus
reducing the security of the system. In order to achieve reliable underwater continuous variable quantum key
distribution, we quantitatively analyze the extra excess noise introduced by choosing the imperfect
measurement basis and obtain its security limit. Besides, we also consider the influence of different seawater
depths on the security limit of the proposed scheme, effectively solving the security risks caused by the
imperfect measurement basis choice. Furthermore, for the proposed scheme, we consider not only its asymptotic
security case but also its composable security case, and the performance curves obtained in the latter are tighter
than that achieved in the former. The proposed scheme aims to promote the practical process of underwater
continuous variable quantum key distribution system and provide theoretical guidance for accurately evaluating

the water channel parameters in underwater communication of global quantum communication networks.

Keywords: imperfect measurement basis choice, continuous variable quantum key distribution, seawater

channel, seawater depth
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