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Abstract
We present an efficient and robust protocol for quantum-enhanced sensing using a single qubit in
the topological waveguide system. Our method relies on the topological-paired bound states,
which are localized near the qubit and can be effectively regarded as a two-level system. Through
the lens of Bayesian inference theory, we show that the sensitivity can reach the Heisenberg limit
across a large field range. Inheriting from the topological robustness of the waveguide, our sensing
protocol is robust against local perturbations. Besides, our sensing protocol utilizes a product state
as the initial state, which can be easily prepared in experiments. We expect this approach would
pave the way toward robust topological quantum sensors based on near-term quantum platforms
such as superconducting qubits and Rydberg arrays.

1. Introduction

Quantum sensing (QS) exploits quantum advantages for increasing the sensitivity of estimating certain
physical parameters, and represents a key technology in both fundamental science and concrete applications
[1]. The sensitivity of QS can surpass the shot-noise limit of classical sensors and even reach the Heisenberg
limit, which is imposed by quantum mechanics [2, 3]. Proposed applications of QS include magnetometry
[4, 5], electrometry [6, 7], gravitational wave detection [8, 9], and dark matter detection [10].

Considerable efforts have been made to achieve quantum-enhanced sensing, most focusing on highly
entangled Greenberger–Horne–Zeilinger [2, 3, 11] or N00N [12–14] states, spin-squeezed states [15, 16],
and ground states of many-body systems at the critical point [17–21]. Although these states have their
advantages, they suffer from several challenges, such as preparation and manipulation in experiments
[22–25]. Therefore, it is urgent to propose other kinds of quantum sensing protocols, which are easy to
implement in experiments, to enhance quantum metrology [26–28]. One particular interesting protocol is
sensing with a single qubit [29–38], and it has been realized in a variety of experimental platforms, including
nitrogen-vacancy center [29–32], rare-earth electron [36] and nuclear [37] spin qubit, photonic [33] and
superconducting [35] qubit.

In this work, we introduce and characterize a novel protocol for sensing with a single qubit, which is
inspired by the topological waveguide quantum electrodynamics (QED) [39–54]. The setup is shown in
figure 1(a), where a quantum emitter (QE) is coupled to topological baths. The key role of quantum sensing
for this setup is the two topological-paired bound states (BSs), which are localized around the QE when the
QE’s transition frequency lies deep in the middle band gap [55–57]. Inspired by this picture, we then
systematically investigate the properties of a two-level QE coupled to a topological Su-Schrieffer-Heeger
(SSH) waveguide. We find that when two BSs appear, the result of projective measurement on the QE can
indeed be utilized for achieving quantum-enhanced sensitivity, and reach the Heisenberg limit with
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Figure 1. (a) Schematic illustration of quantum sensing with topological-paired bound states. The SSH chain is characterized by
having alternating hopping amplitudes J(1± δ) between sublattices A and B. A two-level QE with transition frequency∆ couples
to sublattice A at the leftmost site with a coupling strength g. The initial state of the system is a product state |ψ0⟩= |1⟩⊗ |vac⟩,
i.e. the QE and the SSH chain lie in the excited state |1⟩ and the vacuum state |vac⟩, respectively. After a sensing time, the state of
the QE is measured, and the outcome µ= {0,1} is used to estimate the unknown parameter x through Bayesian inference theory.
Here, the parameter x can be the coupling strength g or the dimerization parameter δ. (b) Energy bands and BSs’ properties.
When QE’s frequency is tuned to lie in the middle band gap with width 4|δ|, two exponentially localized BSs appear, whose
energies and wavefunction amplitudes are shown by squares and bars, respectively. Here, we choose the transition frequency
∆= 0, the coupling strength g= 0.1J, the dimerization parameter δ= 0.2, and the system size N= 41.

coherence time as a quantum resource [58]. Furthermore, this Heisenberg limit can be extracted based on the
Bayes parameter estimation. More importantly, we note that the sensitivity can be maintained across a large
range of parameters rather than the critical point. And inheriting from the bath’s topological properties, our
sensing protocol is robust to disorders of the bath, fluctuations of parameters, and other imperfections.

2. Quantum sensing protocol

2.1. Model
The system that we consider is shown in figure 1(a): A two-level QE interacts with a SSH chain that is
characterized by having alternating hopping amplitudes J± = J(1± δ) between two interspersed sublattices
A and B. The QE couples to sublattice A at the leftmost site with a coupling strength g, and the transition
frequency between the excited state |1⟩ and the ground state |0⟩ is∆. The total Hamiltonian of the system
reads Ĥ= ĤE + Ĥs + ĤI with [40]

ĤE =∆σ̂+σ̂− , (1a)

Ĥs =−
N−1∑
n=1

Jn
(
â†nân+1 +H.c.

)
, (1b)

ĤI = g
(
â†1σ̂− + â1σ̂+

)
. (1c)

Here, N is the system size, Jn = J− (J+) for n odd (even), and â†n (ân) is the creation (annihilation)
operator for a bosonic mode at the nth site of the lattice. σ̂− = (σ̂+)

†
= |0⟩⟨1| are the usual pseudospin

ladder operators of the QE.
The Hamiltonian ĤS in equation (1b) describes the topological SSH chain. Assuming periodic boundary

conditions, ĤS can be rewritten as ĤS =
∑

k f(k)â
†
k b̂k +H.c. in the momentum space. Here,

f(k) =−(J− + J+e−ik), âk (b̂k) are the Fourier components of â†n for odd (even) n. Then the Hamiltonian can
be easily diagonalized, which leads to two bands with energy ω±(k) =±J

√
2(1+ δ2)+ 2(1− δ2)cos(k) and

the band gap is thus 4|δ|J. Moreover, both bands can be characterized by a topological winding numberW ,
such thatW ̸= 0 corresponds to a nontrivial insulator [59].

For open boundary conditions, due to bulk-edge correspondence [59] and Lieb theorem [60], the
dimerized SSH chain always has a zero energy mode (ZEM) for ∀δ ̸= 0 if N is odd. Specifically, this ZEM will
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localize at the left (right) boundary if δ > 0 (δ < 0). However, for even N, no ZEM exists if δ < 0 while two
localized ZEMs will respectively appear at each end of the SSH chain if δ > 0. More interestingly, we here find
that the system described by equation (1) gives rise to two localized BSs under conditions: I) the SSH bath
chain has a ZEM localized near the QE and II) the QE’s frequency is tuned to lie in the middle band gap of
the bath dispersion, as shown in figure 1(b). This result can be first qualitatively understood based on the
degenerate perturbation theory. If we set the frequency∆= 0 and the coupling strength g= 0, there are two
degenerate zero energy states, i.e. |Φ0⟩= |0⟩⊗ |ϕ0⟩ and |Φ1⟩= |1⟩⊗ |ϕ0⟩, where |ϕ0⟩ denotes the ZEM of the
SSH chain. Then we tune on a small coupling strength g≪ J, with zeroth order approximation, these two
eigenstates are corrected to be |ΦB,±⟩= 1√

2
(|Φ0⟩± |Φ1⟩), and can thus be qualitatively viewed as the BSs.

In fact, we can exactly solve the Schrödinger equation to obtain these BSs. Without loss of generality, we
consider the resonance case∆= 0 and the SSH chain with an odd number of sites and δ > 0 such that a
ZEM exists at the leftmost site (see appendix B for the case of evenN). With Siegert boundary conditions, the
two BSs |ΦB,±⟩ can be analytically obtained by solving a series of coupling equations (see appendix A for
details). For these two BSs |ΦB,±⟩, the corresponding eigenenergies are EB,± =±EB and the overlaps with the
state that the QE is excited are b± = ⟨ΦB,±|(|1⟩⊗ |vac⟩) =∓b. Here, |vac⟩ denotes the vacuum state of the
SSH chain [40],

EB = g

√
1+

J2−
g2 − J2+

, (2a)

b=
1√

1+ 1
g2(1−q2)

[
E2B +

(
g2−E2B
J−

)2] , (2b)

with q= J−J+/
(
g2 − J2+

)
, and we have assumed |g|< 2J|δ| such that the QE’s frequency lies in the middle

band gap (see appendix A for details). In figure 1(b), we plot the wavefunction amplitudes of the two BSs and
their corresponding energies. We see that these two BSs are exponentially localized at the left boundary and
have opposite energies, which are the key to our quantum-enhanced sensing protocol as described below.

2.2. Sensing precision bounds
To achieve high discrimination of the coupling strength g or the dimerization parameter δ, we monitor the
dynamics of the topological waveguide QED system. Through the quantum dynamics, the information of g
and δ are transferred to the excitation population of QE which can be subsequently read out (see figure 1(a)
for a pictorial illustration). To be specific, we consider the unitary evolution |ψ(t)⟩= exp(−iĤt) |ψ(0)⟩
starting from an excited QE |ψ(0)⟩= |1⟩⊗ |vac⟩, an initial state that can be easily prepared in experiments
[41]. Then the survival amplitude of the initial state in the evolving state is S(t) = ⟨ψ(0)|ψ(t)⟩.

The sensing precision for estimating an unknown parameter x is limited by the celebrated Cramér-Rao
bound, i.e. the variance Var(xest)⩾ 1/Fx, where xest is an estimator of x and Fx is Fisher information [61, 62].
Here, we estimate the coupling strength g or the dimerization parameter δ by measuring the occupation
probability of the QE. The probability of finding the QE in the excited state is P1(t) = |S(t)|2. Therefore, the
corresponding sensing bound is given by the classical Fisher information
Fx(t) = [∂P1(t)/∂x]2/(P1(t)[1− P1(t)]) [63], where x= g, δ. As shown in figure 2, the numerical results for
Fg(t) and Fδ(t) are plotted as green dots and purple squares, respectively. Except for periodic dips, we see that
both of them have parabolic envelopes, implying the Heisenberg scaling. In the following, we will see that
these properties of the Fisher information can be well characterized with reasonable approximation.

We first consider the spectrum decomposition of the Hamiltonian Ĥ=
∑

lEl |Φl⟩⟨Φl|, from which we
have the survival amplitude S(t) =

∑
l |Cl|2 exp(−iElt), where Cl = ⟨Φl|ψ(0)⟩. Except for the two BSs |ΦB,±⟩,

the rest of the eigenstates of Ĥ are extended bulk states, whose overlaps with the initial state can be safely
neglected. Therefore, the survival amplitude S(t) can be well approximated by

S̃(t) =
∑
α=±

|⟨ΦB,α|ψ (0)⟩|2e−iEB,αt = 2b2 cos(EBt) . (3)

The probability P1(t) = |S(t)|2 can thus be precisely approximated by P̃1(t) = |S̃(t)|2 = 4b4 cos2(EBt) (see the
right inset of figure 2(a)). Substituting P1(t) by P̃1(t) and keeping only the quadratic time dependent term,
Fx(t) can be approximated by

F̃x (t) = 4

(
∂EB
∂x

)2

A(t) t2 . (4)
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Figure 2. Classical Fisher information (a) Fg(t) and (b) Fδ(t) are plotted as green dots and purple squares, which can be precisely

approximated by F̃g(t) and F̃δ(t) (gray lines), respectively. In the right inset of (a), QE’s excited state occupation probability P1(t)

is shown by red triangles, which can be well approximated by P̃1(t) (gray line). The right inset of (b) shows the factor A(t)
appeared in equation (4), which has periodical dips. Here, we choose the transition frequency∆= 0, the coupling strength
g= 0.1J, the dimerization parameter δ= 0.2, and the system size N= 201. Besides, the left insets of (a) and (b) show Fg(t)
(g= 0.1J) and Fδ(t) (δ= 0.2) as functions of t for different δ and g, respectively.

Here, the factor A(t) = 4b4 sin2(Ebt)/[1− 4b4 cos2(Ebt)], which is periodically time-dependent as illustrated
in the right inset of figure 2(b). Note that these approximations Fx(t)≈ F̃x(t) are extremely accurate as
shown in figure 2. Besides, both Fg(t) and Fδ(t) are modulated by the periodical time factor A(t), which gives
rise to the occurrence of periodical dips as exhibited in figures 2(a) and (b). However, since this Fisher
information has the time-dependent factor t2, we will show in the following that our sensing protocol can
achieve the Heisenberg limit with coherence time as quantum resource [58]. Note that although the above
approximation is extremely accurate, the system size should be chosen as N∼ Jt such that the Heisenberg
limit can be achieved (see appendix C for details). Finally, we see that the dynamics of our topological
waveguide QED system can be intuitively understood as Rabi oscillations of the two topological-paired BSs,
singling out topological robustness as the key property of our sensing protocol.

Furthermore, in the left inset of figure 2(a), we also show Fg(t) for different parameters δ. We find that
larger δ can achieve higher Fisher information since the corresponding BSs are more localized, thus resulting
in more susceptibility to the variation of the coupling strength g. However, this convenience comes at the cost
that more frequent occurrence of the dips. A similar phenomenon can be found for Fδ(t) dependent on the
parameter g, as illustrated in the left inset of figure 2(b). These results give the guiding principle for choosing
appropriate δ and g to sense g and δ, respectively.

2.3. Bayesian parameter estimation
Here, we adopt Bayesian parameter estimators to saturate the Cramér–Rao bound [62, 64, 65], such that the
sensing precision can indeed achieve the Heisenberg limit mentioned before. The theory of estimation is
based on the Bayes rule P(x|D) = P(D|x)P(x)/P(D). Here, the posterior P(x|D) is the conditional probability
of the parameter x, given the observed data D. The prior P(x) is the marginal probability of x accounting for
the initial information about x. The prior is updated to the posterior through the likelihood P(D|x), which
imprints the measurement results. The denominator P(D) is the marginal probability of D accounting for a
normalization factor such that

´
dxP(x|D) = 1.

For our problem, we repeat the earlier mentioned preparation, evolution, and measurement procedure
M times. The probability of findingm outcomes at the excited state of the QE follows the binomial
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Figure 3. Bayesian parameter estimation for (a) the coupling strength g and (b) the dimerization parameter δ. (a1) and (b1),
posterior distributions after three different evolution times for sensing g= 0.1J and δ= 0.2 with uniform priors g ∈ [0, 0.2J] and
δ ∈ [0,0.4], respectively. The Gaussians centered at the true value become narrower by increasing the evolution time. (a2) and
(b2), average of∆g2 and∆δ2 (green solid lines) as functions of t for sensing g= 0.1J and δ= 0.2, respectively. Both can achieve
the Heisenberg limit (HL) indicated by the gray dashed lines. In (a2), the purple dots and red squares show the averaged∆g2 for
disorder strengthW = 0.1 andW = 0.2, respectively. (a3) and (b3), average of∆g2 and∆δ2 as functions of g and δ for three
evolution time, respectively. Here, we choose the transition frequency∆= 0, the system size N= 201, and for estimating g (δ),
we have fixed δ= 0.2 (g= 0.1J). In all plots, the posterior is obtained by repeating the sensing procedure forM= 104 times, and
each data point is averaged over Nsamples = 104 samples.

distribution and can be viewed as the likelihood

P(D|x) =
(
M

m

)
Pm
1 (t) [1− P1 (t)]

M−m
. (5)

Assuming the prior P(x) is a uniform distribution within some interval that we believe the unknown
parameter x belongs to, the posterior is then P(x|D)∝ P(D|x). AsM becomes large, P(x|D) converges to a
Gaussian centered at the true value of the unknown parameter x and with a width proportional to the square
root of inverse Fisher information [66]. To quantify the uncertainty of estimation as well as the bias in the
estimation, we adopt the average squared relative error

∆x2 =
σ2
x + |⟨x⟩− x|2

|x|2
, (6)

where σ2
x and ⟨x⟩ are the variance and the average of x with respect to the posterior P(x|D), respectively. Note

that∆x reduces to the inverse of the signal-to-noise ratio if the estimation is unbiased.
Figure 3 shows our numerical results for estimating the coupling strength g and the dimerization

parameter δ. In figure 3(a1), we plot the posterior as a function of g for different evolution times when the
true value is g= 0.1J, where we have assumed a uniform prior g ∈ [0, 0.2J] and fixed the dimerization
parameter as δ= 0.2. We see that the Gaussian shapes centered at the true value become narrower by
increasing the evolution time, indicating enhancement of the sensing precision. On the other hand, since the
period of Rabi oscillations, some other Gaussian shapes can appear away from the true value. This ambiguity,
however, can be solved by comparing measurements with slightly different evolution times. Our sensing
protocol can indeed achieve the Heisenberg limit as shown in figure 3(a2), where the average squared relative
error∆g2 ∼ t−2 except for some peaks. We have checked that these peaks result from the dips in the
corresponding Fisher information, and can be easily avoided by choosing other evolution times. To further
show the generality of our sensing protocol, in figure 3(a3), we plot∆g2 over a broad range of g for different
evolution times. As evidenced by the results, increasing coherence time can significantly enhance the sensing
precision across a wide range of g, except for those regions around the peaks, which again result from the
dips in the corresponding Fisher information as we have checked. Similar results can be found in
figures 3(b1)–(b3) for estimating the dimerization parameter δ, where we have fixed the coupling strength as
g= 0.1J.

Another remarkable property of our sensing protocol is the robustness to disorder. Here, we consider the
earlier mentioned resonance condition∆= 0, which has been widely used in the topological waveguide
QED system [40]. Under this condition, our model Hamiltonian Ĥ has chiral symmetry ĈĤĈ=−Ĥ with
Ĉ= |1⟩⟨1|+

∑N
n=1(−1)nâ†nân. Inheriting from this, the BSs are robust to disorder and so it is when sensing
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Figure 4. Average squared relative errors of Bayesian parameter estimation for (a) the coupling strength g and (b) the
dimerization parameter δ. Here, for sensing g= 0.1J (δ= 0.2), we have fixed δ= 0.2 (g= 0.1J). The system size and the
transition frequency are chosen as N= 201 and∆= 0, respectively. For both panels, the posterior is obtained by repeating the
sensing procedure forM= 104 times, and each data point is averaged over 102 samples. Besides, we also show the standard
quantum limit (SQL) using the black dashed line and Heisenberg limit (HL) using the black solid line in both panels.

the coupling strength g. To illustrate it, we study the effect of off-diagonal disorder, which appears in the
hopping amplitudes between sublattices A and B. In this case, the bath’s Hamiltonian becomes
HS →HS + J

∑
n(wnâ†nân+1 +H.c.), where we take the disorder wn from a uniform distribution within the

range [−W/2,W/2]. As shown in figure 3(a2), the disorder diminishes and broadens the peaks of∆g2. Other
than that, it barely affects the precision in estimating g within a considerable range of disorder strength. In
addition, the dephasing effect has also been considered, and the quantum-enhanced sensitivity can also be
achieved even when the dephasing rate is up to 5%J, which indicates that our sensing protocol is robust
against such dephasing noise [67].

2.4. Experimental realization
We have shown that our sensing protocol can achieve the Heisenberg limit with coherence time as a quantum
resource. However, the dephasing effect is inevitable in real experiments and may degrade the sensing
precision. We here consider that the quantum dynamics of our system undergo a dephasing process for the
QE with a constant rate γ, governed by the master equation

ρ̇(t) = − i
[
Ĥ,ρ(t)

]
+ γ

[
|1⟩⟨1|ρ(t) |1⟩⟨1| − 1

2
{|1⟩⟨1| ,ρ(t)}

]
, (7)

where Ĥ is the system’s Hamiltonin (see equation (1)) and ρ is the system’s density matrix. Now the
probability of finding the QE in the excited state is P1(t) = Tr(ρ(t) |1⟩⟨1|), and from which we can estimate
the coupling strength g and the dimerization parameter δ with the Bayesian method as mentioned earlier.
Our numerical results are shown in figure 4, and we see that as the dephasing rate γ increases, the sensing
precisions for both g and δ become worse. However, the quantum-enhanced sensitivity can still be achieved
till the dephasing rate is up to γ ∼ 8%J.

In experiments, the dephasing rate is usually much smaller than the coupling strength J, which can be
achieved by using superconducting qubits [41] and Rydberg arrays [68]. In superconducting qubits [41],
photonic lattice sites are physically realized as LC resonators. There the intracell and intercell coupling
capacitances exclusively connect adjacent resonators, thereby strictly enforcing nearest-neighbor interactions.
The quantum emitter is implemented through a superconducting transmon qubit integrated into this
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architecture. With their experimental parameters, the corresponding parameters in the SSH model to be
J∼ 2π × 356MHz and γ ∼ 2π × 0.25MHz∼ 0.07%J that is much smaller than the strength we considered.
In Rydberg arrays [68], the lattice sites are realized as Rydberg atoms and the hopping mechanism originates
from dipolar exchange interactions. The corresponding parameters in the SSH model to be J∼ 2π × 1MHz
and γ ∼ 2π × 1KHz∼ 0.1%J that is still smaller than the strength we considered. Therefore, our sensing
protocol is robust against such dephasing noise and it can be safely implemented in these platforms.

3. Conclusion

We have devised a versatile and robust protocol for quantum sensing with the topological waveguide QED
system, which can achieve the Heisenberg limit precision across a large range of parameters. Through
analytical investigation, we show the key to our protocol is the two paired BSs that inherit the topological
robustness of the bath. Our sensing protocol thus paves the way for the development of topological quantum
sensors, which are expected to be robust against local perturbations. Besides, the single-qubit-based schemes
just demand simple projective measurement, thus may soon lead to experimental demonstrations of our
protocol. Candidate near-term quantum platforms include superconducting qubits [41] and Rydberg arrays
[68]. Both of them have been utilized to realize the topological SSH chain, and our sensing protocol can be
easily implemented in these platforms for their flexible controllability.
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Appendix A. Analytical solutions for the bound states

In the following, we give analytical solutions for the BSs, which will appear when a ZEM of the SSH chain
exists. The wave function of the BSs can be parameterized as

|ΦB⟩=

(
b̃ σ̂+ +

N∑
n=1

cna
†
n

)
(|0⟩⊗ |vac⟩) . (S1)

b̃ and cn are real coefficients. |vac⟩ denotes the vacuum state of the SSH chain. Without loss of generality, we
assume 0< δ < 1 and N is odd, such that a ZEM is localized at the left boundary. To obtain analytical
solutions for the BSs, we adopt the Siegert boundary conditions with outgoing waves in the form [69, 70]

(
cn
cn+1

)
= exp

(
ik
n+ 1

2

)(
d1
d2

)
, foroddn , (S2)

where the wave number k is a complex number for the BSs. Solving the Schrödinger equation
Ĥ |ΦB⟩= ẼB |ΦB⟩ with eigenvalue ẼB and eigenstate |ΦB⟩ yields a series of coupled equations as follows

gd1 =
(
ẼB −∆

)
b̃e−ik , (S3a)

g b̃=
(
ẼBd1 + J−d2

)
eik , (S3b)

ẼB d2 =−
(
J− + J+e

ik
)
d1 , (S3c)

ẼB d1 =−
(
J− + J+e

−ik
)
d2 . (S3d)
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Figure S1. (a) Energy bands, topological-paired BSs, and ZEM. The inset shows wave function amplitudes of the BSs (top and
bottom) and the ZEM (middle), respectively. Here, we choose the parameters N= 40, δ= 0.2 and g= 0.1J. (b) Average squared
relative errors of Bayesian parameter estimation for the coupling strength g and the dimerization parameter δ. For sensing
g= 0.1J (δ= 0.2), we have fixed δ= 0.2 (g= 0.1J). The system size and the transition frequency are chosen as N= 200 and
∆= 0, respectively. For both panels, the posterior is obtained by repeating the sensing procedure forM= 104 times, and each
data point is averaged over 102 samples. The grey dashed lines indicate the Heisenberg limit (HL).

Together with the normalization condition b̃2 +
∑N

n=1 c
2
n = 1 for the eigenstate |ΦB⟩ and the resonance

condition∆= 0, we have

ẼB =±g

√
1+

J2−
g2 − J2+

, (S4a)

b̃=∓

√√√√√1+
1

g2 (1− q2)

Ẽ2B +
(
g2 − Ẽ2B
J−

)2
 , (S4b)

d1 =
1

qg
ẼBb̃ , (S4c)

d2 =
1

qg

g2 − Ẽ2B
J−

b̃ , (S4d)

eik = q , (S4e)

where q= J−J+/
(
g2 − J2+

)
, and we have assumed that the system size N is large enough and |g|< 2J|δ|. By

substituting equation (S4) into equation (S2) and then equation (S1), we obtain the analytical solutions of
the wave functions |ΦB⟩ for the two BSs. Besides, these two BSs are exponentially localized at the left
boundary because of |q|< 1.

Appendix B. Applicability of our sensing protocol for even system size

As discussed in the main text, the number of zero energy modes (ZEMs) in a finite-size Su-Schrieffer-Heeger
(SSH) chain depends on the parity of system size N and the sign of δ. In the main text, we have discussed the
situation of odd N and positive δ. For odd N and negative δ, our sensing protocol is still applicable by
coupling the quantum emitter (QE) to the right end of the chain. Here, we numerically discuss the situation
of even N and positive δ. In this case, there are two localized ZEMs respectively appearing at each end of the
SSH chain. As shown in figure S1(a), when a QE couples to the left-most site of the SSH chain, two
topological-paired bound states (BSs) near the QE appear. Although there is a ZEM localized at the right end
of the chain, this ZEM does not affect the sensing precision since it is far away from the BSs and thus has no
effect on the dynamics of the BSs, as illustrated in figure S1(b).

Appendix C. Finite size effect

Here, we give more discussion about the requirement that the system size should be chosen as N≳ Jt.
Despite the very large overlap between the two topological-paired BSs and the initial state, the overlap
between the bulk states and the initial state cannot be completely ignored. This faintest leakage will spread
away from the QE and be rebounded by another end of the SSH chain, and then propagate back towards the
QE. The total time of this process can be reasonably assumed to be proportional to the system size N. After
this evolution time, the leakage can significantly affect the dynamics of the two-level system formed by the
two BSs. This is thus named as ‘finite size effect’. As shown in figure S2, this effect can be directly observed
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Figure S2. Classical Fisher information (a) Fg(t) and (b) Fδ(t) as a function of coherence time t for different system sizes. Here,
we choose the transition frequency∆= 0, the dimerization parameter δ= 0.2, and the coupling strength g= 0.1J.

through the classical Fisher information. We see that the Fisher information will oscillate when the evolution
time Jt is larger than the system size N. In addition, compared with Fg(t), Fδ(t) is more susceptible to the
finite size effect.
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[25] McConnell R, Zhang H, Hu J, Ćuk S and Vuletíc V 2015 Entanglement with negative Wigner function of almost 3,000 atoms
heralded by one photon Nature 519 439

[26] Ginzburg P 2016 Cavity quantum electrodynamics in application to plasmonics and metamaterials Rev. Phys. 1 120
[27] Kadochkin A S, Shishkin I I, Shalin A S and Ginzburg P 2018 Quantum sensing of motion in colloids via time-dependent Purcell

effect Laser Photonics Rev. 12 1800042
[28] Kislov D, Novitsky D, Kadochkin A, Redka D, Shalin A S and Ginzburg P 2020 Diffusion-inspired time-varying phosphorescent

decay in a nanostructured environment Phys. Rev. B 101 035420
[29] Kolkowitz S, Bleszynski Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E and Lukin M D 2012 Coherent sensing

of a mechanical resonator with a single-spin qubit Science 335 1603
[30] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D and Rugar D 2013 Nanoscale nuclear magnetic

resonance with a nitrogen-vacancy spin sensor Science 339 557
[31] Kolkowitz S et al 2015 Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit Science 347 1129
[32] Bonato C, Blok M S, Dinani H T, Berry D W, MarkhamM L, Twitchen D J and Hanson R 2016 Optimized quantum sensing with a

single electron spin using real-time adaptive measurements Nat. Nanotechnol. 11 247
[33] Clemmen S, Farsi A, Ramelow S and Gaeta A L 2016 Ramsey interference with single photons Phys. Rev. Lett. 117 223601
[34] Poggiali F, Cappellaro P and Fabbri N 2018 Optimal control for one-qubit quantum sensing Phys. Rev. X 8 021059
[35] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Entanglement-based single-shot detection of

a single magnon with a superconducting qubit Science 367 425
[36] Kornher T, Xiao D-W, Xia K, Sardi F, Zhao N, Kolesov R and Wrachtrup J 2020 Sensing individual nuclear spins with a single

rare-Earth electron spin Phys. Rev. Lett. 124 170402
[37] Jackson D M, Gangloff D A, Bodey J H, Zaporski L, Bachorz C, Clarke E, Hugues M, Le Gall C and Atatüre M 2021 Quantum

sensing of a coherent single spin excitation in a nuclear ensemble Nat. Phys. 17 585
[38] Wang G, Liu Y-X, Schloss J M, Alsid S T, Braje D A and Cappellaro P 2022 Sensing of arbitrary-frequency fields using a quantum

mixer Phys. Rev. X 12 021061
[39] Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M andWaks E 2018 A topological quantum optics interface

Science 359 666
[40] Bello M, Platero G, Cirac J I and González-Tudela A 2019 Unconventional quantum optics in topological waveguide QED Sci. Adv.

5 eaaw0297
[41] Kim E, Zhang X, Ferreira V S, Banker J, Iverson J K, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M and Painter O 2021

Quantum electrodynamics in a topological waveguide Phys. Rev. X 11 011015
[42] Leonforte L, Carollo A and Ciccarello F 2021 Vacancy-like dressed states in topological waveguide QED Phys. Rev. Lett.

126 063601
[43] De Bernardis D, Cian Z-P, Carusotto I, Hafezi M and Rabl P 2021 Light-Matter Interactions in Synthetic Magnetic Fields:

Landau-Photon Polaritons Phys. Rev. Lett. 126 103603
[44] Vega C, Bello M, Porras D and González-Tudela A 2021 Qubit-photon bound states in topological waveguides with long-range

hoppings Phys. Rev. A 104 053522
[45] Gong Z, Bello M, Malz D and Kunst F K 2022 Anomalous behaviors of quantum emitters in non-Hermitian baths Phys. Rev. Lett.

129 223601
[46] Cheng W, Wang Z and Liu Y-x 2022 Topology and retardation effect of a giant atom in a topological waveguide Phys. Rev. A

106 033522
[47] Bello M, Platero G and González-Tudela A 2022 Spin many-body phases in standard- and topological-waveguide QED simulators

PRX Quantum 3 010336
[48] Vega C, Porras D and González-Tudela A 2023 Topological multimode waveguide QED Phys. Rev. Res. 5 023031
[49] Bello M and Cirac J I 2023 Topological effects in two-dimensional quantum emitter systems Phys. Rev. B 107 054301
[50] Kvande C I, Hill D B and Blume D 2023 Finite Su-Schrieffer-Heeger chains coupled to a two-level emitter: Hybridization of edge

and emitter states Phys. Rev. A 108 023703
[51] Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V and Poddubny A N 2023 Waveguide quantum electrodynamics: Collective

radiance and photon-photon correlations Rev. Mod. Phys. 95 015002
[52] Joshi C, Yang F and Mirhosseini M 2023 Resonance fluorescence of a chiral artificial atom Phys. Rev. X 13 021039
[53] Anderson B M, Ma R, Owens C, Schuster D I and Simon J 2016 Engineering topological many-body materials in microwave cavity

arrays Phys. Rev. X 6 041043
[54] Tabares C, Mu noz de las Heras A, Tagliacozzo L, Porras D and González-Tudela A 2023 Variational quantum simulators based on

waveguide QED Phys. Rev. Lett. 131 073602
[55] Bykov V P 1975 Spontaneous emission from a medium with a band spectrum Sov. J. Quantum Electron. 4 861
[56] John S and Wang J 1990 Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms Phys. Rev.

Lett. 64 2418
[57] Kurizki G 1990 Two-atom resonant radiative coupling in photonic band structures Phys. Rev. A 42 2915
[58] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell MW and Pirandola S 2018 Quantum-enhanced measurements

without entanglement Rev. Mod. Phys. 90 035006
[59] Chiu C-K, Teo J C Y, Schnyder A P and Ryu S 2016 Classification of topological quantum matter with symmetries Rev. Mod. Phys.

88 035005
[60] Lieb E H 1989 Two theorems on the Hubbard model Phys. Rev. Lett. 62 1201
[61] Rao C R 1992 Information and the accuracy attainable in the estimation of statistical parameters Breakthroughs in Statistics:

Foundations and Basic Theory, ed S Kotz and N L Johnson (Springer) pp 235–47
[62] Cramér H 1999Mathematical Methods of Statistics (PMS-9) (Princeton University Press) (available at: http://www.jstor.org/stable/j.

ctt1bpm9r4)
[63] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Quantum metrology with nonclassical states of atomic

ensembles Rev. Mod. Phys. 90 035005
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