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Resumo

Neste trabalho faremos uma investigação no campo das perturbações gra-

vitacionais e propagação de ondas em geometrias de buracos negros com

campos elétricos ou magnéticos. Usando uma geometria tipo Ernst-Melvin

de um buraco negro massivo em um Universo com campo magnético no

eixo z, calculamos os modos quasi-normais de propagação de um campo

escalar, demonstrando que este se comporta como um campo escalar com

massa 2|m|B em uma geometria de Schwarzschild, para pequenos valores

do campo magnético B (correspondendo m ao número azimutal do esférico

harmônico). Ainda com esta geometria, calculamos a contribuição de ondas

escalares para a entropia do buraco negro em termos dos cut offs ultravio-

leta e infravermelho. Com uma solução do tipo Reissner-Nordström em 4

dimensões, investigamos as posśıveis correspondências entre os modos quasi-

normais e as propriedades termodinâmicas deste buraco negro, atestando o

resultado de que a conjectura Hod modificada por Maggiore é válida em

tal solução. Também, com uma geometria de Reissner-Nordström-de Sitter

D-dimensional, obtivemos os modos quasi-normais de vibração para dois po-

tenciais diferentes, estabelecendo a ausência de modos instáveis para uma

grande gama de parâmetros deste buraco negro.
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Abstract

In this work we make an incursion into the branch of gravitational pertur-

bations and field propagation around known-geometries of black holes with

electromagnetic fields. Using an Ernst-Melvin type of geometry in a massive

black hole immersed on a magnetic Universe, we calculate the quasi-normal

modes of the propagating field, showing the equivalence of this problem with

that of a massive scalar field (for which the mass is 2|m|B, m being the azhi-

mutal number, and B the magnetic field) propagating around a Schwarzschild

geometry. We also compute the contribution of the scalar field to the entropy

of the black hole in terms of the infrared and ultraviolet cut offs. Using a

Reissner-Nordström-like solution in 4 dimensions, we investigate the possi-

ble correspondence between quasi-normal modes and the thermodynamical

properties of this black hole, atesting the validity of the modified Hod con-

jecture as proposed by Maggiore. Finally, for a Reissner-Nordström-de Sitter

D-dimensional solution, we obtain the quasi-normal modes for two diferent

potentials, establishing the absence of unstable modes for a large range of

values for the black hole parameters.
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Caṕıtulo 1

Introdução

Buracos negros são objetos de estudo da astronomia e da f́ısica teórica há um

tempo considerável. A primeira “pré-aparição” do conceito de buraco negro

no contexto da relatividade geral surgiu em 1916 quando Karl Schwarzschild

resolveu as equações de campo de Einstein usando de simetria esférica para

obter a descrição gravitacional de um sistema gravitacional com massa1. Em-

bora o próprio Schwarzschild não tenha vislumbrado que a solução - nomeada

solução de Schwarzschild postumamente em seu crédito - poderia represen-

tar um espaço-tempo que sob certas circunstâncias aprisione até mesmo a

luz, algumas décadas mais tarde tal interpretação passou a ser cogitada pela

astronomia.

A existência de um objeto de porte astronômico condensado em um espaço

extremamente pequeno, que gerasse um campo de atração tão intenso a ponto

1Há que se citar contudo que pelo menos um século antes, Laplace considerou em seus
cálculos sobre mecânica celeste um objeto astrof́ısico cuja densidade seria tão alta, que
até mesmo a luz seria aprisionadade em seu campo gravitacional. Em tal situação, o
limite entre objetos ligados ou não (gravitacionalmente) é quando a energia mecânica é
nula, E = 0. Com isto, podemos obter, “classicamente” (sem relatividade geral) o raio
de Schwarzschild, que corresponde à tomar a velocidade da luz na expressão da energia
cinética,

E = T + P =
mc2

2
− GMm

r
= 0. (1.1)

O ponto r = 2GM/c2 corresponde neste caso, à região esférica limite: se houvesse uma
massa M aprisionada nesta esfera, classicamente, nem mesmo a luz escaparia gravitacio-
nalmente do potencial.
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de aprisionar a luz e ainda que não resistisse à sua própria força gravitacional

foi, em realidade, preterida pelo próprio Einstein alguns anos mais tarde

depois do aparecimento da solução de Schwarzschild.

Embora em seu ińıcio, a existência de buracos negros como objetos as-

tronômicos de nosso Universo tenha sido rejeitada, há nos dias de hoje um

grande número de evidências observacionais que atestam de maneira indireta

a presença destes objetos em regiões distintas do cosmos.

Uma evidência experimental robusta para a existência de buracos negros

seria a medida de ondas gravitacionais em grandes laboratórios como LIGO

[1] ou VIRGO [2], ou ainda o detector de ondas gravitacionais Schenberg

[3]. Ainda que a evidência de sinais de ondas gravitacionais não constituam

uma prova definitiva à existência de tais objetos, uma vez que o espectro

gravitacional deles é diferente de outros objetos como estrelas, a observação

do sinal gravitacional pode ser, em tese, diferenciado de maneira a atribuir

uma evidência robusta a mais para a existência de tais objetos.

Uma vez atestada a existência dos buracos negros, mesmo que indireta-

mente através da medida de ondas gravitacionais, há, concomitantemente,

na f́ısica teórica, uma extensa literatura de perturbações gravitacionais já

consolidada. Um dos trabalhos pioneiros testando a estabilidade da primeira

solução de buracos negros publicado em 1955 deve-se a Regge e Wheeler [4].

Neste trabalho, os autores analisam o efeito que pequenas perturbações na

geometria de Schwarzschild podem gerar em termos dinâmicos à sua métrica,

terminando por concluir que o buraco negro é estável2. O artigo é de funda-

mental importância por ter sido o primeiro a introduzir uma decomposição do

tensor perturbação gravitacional, de acordo com a simetria do espaço-tempo

esfericamente simétrico. Depois de uma decomposição genérica o suficiente

em harmônicos esféricos tensoriais que respeitassem certas simetrias, os au-

tores consideram ainda as simetrias de Killing do espaço-tempo, chegando a

demonstrar que a equação de perturbação gravitacional poderia ser colocada

2Cabe notar porém que à época o que era chamado “buraco negro” de Schwarzschild,
referia-se ao horizonte de eventos deste buraco negro (“a esfera de Schwarzschild”). Foi só
mais tarde, com o surgimento do diagrama de Kruskal que a questão da continuidade para
além da esfera do horizonte de eventos foi resolvida, embora os cálculos feitos por Regge e
Wheeler à respeito da estabilidade do horizonte de eventos de Schwarzschild sejam válidos.

7



em um formato relativamente simples análogo ao de uma equação de onda,

− ∂2

∂t2
χ+

∂2

∂x2
χ+ V (x)χ = 0, (1.2)

sendo x uma coordenada espacial, t uma coordenada temporal e V (x) o

potencial gravitacional. O formato de V (x) depende essencialmente do tipo

de simetria usado para a decomposição do tensor perturbação gravitacional.

Além de perturbações gravitacionais de diversas geometrias cuja equação

de perturbação é como (1.2), também campos de part́ıculas de spins diferentes

seguem a mesma equação, com pequenas variações apenas no potencial V (x),

tais como os campos escalar e eletromagnético. Embora a propagação de um

campo de part́ıculas em uma dada geometria não possa ser entendida do

ponto de vista f́ısico como um teste fidedigno para a estabilidade da dada

geometria, a análise das equações de propagação de tais tipos de campo

pode prover um preâmbulo sobre a estabilidade do espaço-tempo: uma vez

que os modos de vibração resultantes de tais equações sejam estáveis (i.

e. nulos no infinito espacial e quadrado-integráveis), pode-se demonstrar

que isto corresponderia à estabilidade de pequenas perturbações no próprio

espaço-tempo.

Neste sentido, podemos usar a equação do campo escalar, por exemplo,

para testar a presença de modos estáveis para uma dada geometria. Fisica-

mente isto corresponderia a uma perturbação (pequena) da geometria, cuja

resposta emerge como um campo que decai como uma senóide amortecida

com o tempo.

O sinal da onda gerada, seja pela propagação de um campo em uma geo-

metria fixa, seja por uma pequena perturbação gravitacional em um espaço-

tempo “estável”3 pode ser entendido como a resposta da geometria à pro-

pagação do campo, ou à perturbação, e, sendo expresso em termos de ondas

amortecidas, formam um conjunto nomeado “modos quasi-normais” [5].

Os modos quasi-normais representam um grupo de vibrações para uma

3O conceito de estabilidade do espaço-tempo tanto à propagação de campos quanto à
perturbação está relacionado com a ausência de modos de vibração que não possuam uma
das duas caracteŕısticas supracitadas, e. g. modos que ao invés de decaimento, expressem
um crescimento exponencial.
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dada solução de buracos negros que não formam um conjunto completo, no

sentido de que o grupo de todas as frequências amortecidas podem formar

uma soma que se aproxima da auto-função da equação de onda em determi-

nadas regiões do espaço,

χ ∼
N
∑

n=1

ane
−(ω

(n)
I

+iω
(n)
R

)tf(ωn, x), (1.3)

mas não representa uma auto-função para todo o domı́nio da coordenada tem-

poral, como as auto-funções de sistemas dinâmicos oscilantes de mecânica.

Assim como os modos de vibração de uma corda são ordenados de acordo

com o harmônico de vibração n, de maneira que quanto maior n, maior é

a frequência de vibração da corda, também as vibrações em sistemas gra-

vitacionais com “quasi-soluções” (soluções localizadas em um determinado

intervalo de tempo) podem ser ordenados, mas em relação ao parâmetro de

decaimento do modo, ωI , de maneira que quanto maior n, maior o valor de

ωI , ou seja, maior o amortecimento.

No próximo caṕıtulo deste trabalho faremos uma investigação dos modos

quasi-normais de buracos negros com campo magnético no eixo z. Trata-se

de uma geometria de buraco negro com massa imerso em um Universo com

um campo magnético de fundo. Fisicamente tal situação tem importância

pelo fato de que, em geral, buracos negros sem rotação (ou com pequena

rotação) têm ao seu redor discos de matéria que geram um campo magnético

perpendicular à esfera de Schwarzschild. A diferença entre uma solução de

Ernst que representa um buraco negro de Schwazschild com campo magnético

e uma situação realista é o comportamento do espaço-tempo no infinito:

em tal solução, o campo magnético tem a mesma intensidade no infinito e

próximo ao horizonte. Desta maneira, por uma questão de aproximação com

a situação f́ısica, é de maior interesse desconsiderar que o espaço tenha um

campo magnético assintótico, e, considerar que a geometria assintótica seja

a de Schwarzschild.

Na segunda parte do caṕıtulo dois, focamos o estudo da contribuição do

campo escalar para a entropia do buraco negro com campo magnético, usando
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do modelo Brick-Wall como proposto na década de 80 por ’t Hooft. O cálculo

demonstra uma contribuição não nula para as divergências infra-vermelha e

ultra-violeta geradas pelo campo eletromagnético em relação a entropia do

campo escalar. O ponto de cut off em tal caso deixa de ser um invariante

(interpretado como uma renormalização da constante gravitacional Newto-

niana) e traz uma contribuição do campo proporcional à sua magnitude.

Instabilidades gravitacionais em soluções das equações de Einstein com

dadas simetrias estão associadas em muitas geometrias com a presença de

modos para os quais ωI < 0, ou, equivalentemente, para os quais a exponen-

cial cresce ao invés de decair [6, 7, 8, 9].

Além da relação com a estabilidade geométrica de uma dada solução, os

modos quasi-normais estão, em certo sentido, relacionados com as proprie-

dades termodinâmicas de buracos negros.

O estudo da termodinâmica dos buracos negros teve seu ińıcio e peŕıodo

mais fértil na década de 70 com os trabalhos publicados por Hawking e

Bekenstein [10, 11]. Dois notáveis resultados emergentes de tais trabalhos

são a criação de pares de part́ıculas nas proximidades do horizonte de eventos

de buracos negros e posterior evaporação destes, e a associação da entropia

do buraco negro com a área de seu horizonte de eventos,

S =
AH
4
. (1.4)

A criação de pares part́ıcula/anti-part́ıcula na borda do horizonte de bura-

cos negros, sugerida inicialmente por Hawking, e nomeada homonimamente

radiação Hawking pode ser entendida do ponto de vista de um observador

externo ao buraco negro, para o qual part́ıculas que seguem algumas das

geodésicas internas ao horizonte de eventos possuem energia negativa, o que

possibilita a interpretação de que o buraco negro irradia em sua direção.

Além da entropia atribúıda ao buraco negro proporcional à área de seu

horizonte de eventos, também atribúımos uma capacidade térmica C ao bu-

raco negro, C = T ∂S
∂T

, que, dependendo dos parâmetros da solução pode ser

ou negativa ou positiva. A transição entre estes ramos de valores é dada por
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uma “mudança de fase de segunda ordem”.

O terceiro caṕıtulo deste trabalho é dedicado, entre outros cálculos à

análise da relação entre esta transição de fase de segunda ordem para o bu-

raco negro de Reissner-Nordström. Investigamos uma posśıvel associação en-

tre curvas descont́ınuas nas oscilações quasi-normais e a capacidade térmica

deste buraco negro. O fato de que em buracos negros cuja capacidade ca-

loŕıfica não tenha uma transição de segunda ordem (e. g. o buraco negro

de Schwarzschild) e, concomitantemente de, os modos quasi-normais terem

frequência natural ω0 =
√

ω2
R + ω2

I crescente, conforme a variação de seus

parâmetros, pode ser o indicativo de que tais oscilações estejam conectadas

com propriedades termodinâmicas do buraco negro de alguma maneira ainda

não descrita. Na segunda parte do terceiro caṕıtulo deste trabalho investiga-

mos esta posśıvel conexão usando como teste a solução com carga e massa,

para a qual existe uma transição de segunda ordem a 87% do valor máximo

de carga permitido para este buraco negro.

Também neste caṕıtulo investigamos a posśıvel reinterpretação das frequências

quasi-normais em comparação com um sistema mecânico simples tal como o

oscilador harmônico com atrito, proposta recente para uma reinterpretação

da conjectura Hod de quantização da área do buraco negro. Com esta rein-

terpretação, pode-se expressar uma resposta coerente a algumas das antigas

cŕıticas da conjectura. Nas primeiras seções, investigamos o espaçamento

entre os modos quasi-normais de Reissner-Nordström para sugerir uma res-

posta sobre se a proposta é válida pra outros buracos negros que não apenas

o de Schwarzschild.

No último caṕıtulo deste trabalho investigamos as vibrações quasi-normais

de um buraco negro de Reissner-Nordström em 5 dimensões com constante

cosmológica positiva. Apesar da existência de modos instáveis para tal geo-

metria em quando o número de dimensões for maior do que 6, com um po-

tencial escalar, verificamos que todas as frequências calculadas representam

pequenas oscilações em torno da métrica, que decaem com o tempo de ma-

neira exponencial em 5 dimensões. Com o uso de dois potenciais diferentes, a

saber, vetorial e tensorial, ambos gravitacionais, advindos da decomposição

equivalente do tensor perturbação gravitacional, calculamos as frequências
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quasi-normais para uma diferente gama de valores dos parâmetros envolvi-

dos na solução, M , Q e Λ.

O comportamento oscilatório de tais buracos negros depende destes parâmetros,

ou, equivalentemente, da posição de cada horizonte considerado. De ma-

neira geral, quanto “maior” a distância entre os horizontes de eventos e cos-

mológico (medida no sistema de coordenadas radial), maior é a amplitude

de frequências quasi-normais posśıveis, para um dado valor da constante cos-

mológica.

Outro fator de influência nas frequências é o valor do momento angular

das ondas incidentes no potencial. Tal influência, para geometrias esferica-

mente simétricas, aparece no potencial com coeficiente l(l +D − 3), sendo l

o número azimutal de “momento angular” e D a dimensão do espaço-tempo.

No geral quanto maior o valor do momento angular, maior o valor da parte

real do modo, variando a parte imaginária de um fator muito menor.

Nos próximos caṕıtulos, procurou-se em cada ocasião introduzir o assunto

com a teoria já desenvolvida em literatura espećıfica de cada caso, de maneira

a fazer deste trabalho auto-consistente.
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Caṕıtulo 2

Buracos Negros com Campos

Magnéticos

Buracos negros magnéticos são objetos de estudo da relatividade geral com

destacado interesse em astrof́ısica. Sabemos hoje que, em geral, uma solução

exata das equações de Einstein para um buraco negro em 4 dimensões não

pode representar todas as situações reais observadas pela astronomia. Bura-

cos negros, via de regra, estão envolvidos em nuvens de poeira, que modificam

o espaço-tempo ao seu redor, produzindo uma contribuição não nula à geo-

metria. Entretanto, esta contribuição não tem a mesma ordem de grandeza

da massa do buraco negro. Por exemplo, para buracos negros astrof́ısicos,

a contribuição do campo magnético gerado pela nuvem de poeira é da or-

dem de 10−4 vezes a massa do buraco negro. Um valor semelhante pode ser

acrescido devido às forças de maré desta nuvem.

O intuito deste trabalho é estudar tais tipos de objetos magnéticos, em

que modificamos a geometria de uma solução conhecida da relatividade geral

por meios como perturbações lineares da métrica, ou via transformações em

seus coeficientes, para as quais a nova métrica represente uma nova solução

das equações de Einstein.

Um exemplo de tal tipo de solução, é aquela obtida por Ernst [13] em

1976, em que se faz uma “rotação” nos potenciais que geram as equações

de Einstein, obtendo-se uma nova solução com campo magnético, que não
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é assintóticamente plana. Começaremos o estudo desta solução, através dos

trabalhos de Ernst e de Harrison [14], na próxima seção.

Em uma etapa futura, planejamos a investigação dos trabalhos de Pres-

ton e Poisson [15] que propõem uma nova solução, em primeira ordem nas

equações de Einstein, com campo magnético e forças de maré, iniciada tomando-

se a métrica de Schwarzschild e adicionando a ela uma pequena perturbação.

2.1 Transformações de Harrison: novas soluções

a partir de antigas

Em 1968 Harrison propôs, através de uma série de transformações nos co-

eficientes das equações de Einstein de uma dada métrica, uma maneira, de

gerar novas soluções a partir de soluções já conhecidas. Daremos a seguir

uma descrição básica do processo, necessário, por exemplo para a dedução

da métrica de Ernst, um dos focos deste trabalho. De ińıcio, tomemos um

elemento de linha dado por

ds2 = −ǫ[e2U (dxk + afαdx
α)2 + a2e−2Uγαβdx

αdxβ], (2.1)

em que ǫ é o sinal do elemento gkk, a e U são funções genéricas. Nesta

notação, ı́ndices gregos podem assumir 3 valores (0,1 e 2), e latinos 4 (0,1,2

e 3), e k é um ı́ndice espećıfico de uma coordenada que representa um vetor

de Killing da métrica: Lg∂k = 0. Nas definições acima, γ é a 3-métrica, cuja

conexão designaremos por Σ e cujo tensor de Ricci será designado por P .

Nestas condições, o tensor de Ricci pode ser diretamente calculado com

suas componentes dadas por

Rkk = a−2[e−2U∆2(U) + e8Uγαβγγδf(αγ)f(βδ)] (2.2)

Rkα = afαRkk + a−1e4Uγδγ(f(δα),γ + 4f(δα)U,γ) (2.3)

Rαβ = 2af[αRkβ] − a2fαfβRkk + Pαβ − 2U,αU,β

+γαβ∆2(U) − 2e4Uγγδf(αγ)f(βδ), (2.4)
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em que utilizamos a notação de simetria para parêntesis e antisimetria para

colchetes, e definimos ainda ∆2(A) = γαβA;αβ. Levando-se em conta agora o

conteúdo de matéria que colocaremos no espaço-tempo, tomemos as equações

de Maxwell sem fontes, e nas quais o tensor de Maxwell não depende de xk,

[
√−gF kα],α = 0 (2.5)

[
√−gF βα],α = 0 (2.6)

Fαk,β + Fkβ,α = 0 (2.7)

εαβγFαβ,γ = 0. (2.8)

Uma posśıvel solução para as equações (2.6) e (2.7) é dada em termos de

potenciais A e B,

F αβ =
εαβγA,γ√−g (2.9)

Fkα = B,α (2.10)

que substitúıdos em (2.5) e (2.8) fornecem

∆2(A) − 2∆1(U,A) +
e2Uεαβγf(αβ)A,γ√−γ = 0, (2.11)

∆2(B) − 2∆1(U,B) − e2Uεαβγf(αβ)B,γ√−γ = 0, (2.12)

com ∆1(A,B) = γαβA,αB,β. Depois de computar devidamente o tensor mo-

mento energia em termos das quantidades A e B e dos coeficientes da métrica,

podemos escrever as equações de Einstein como

∆2(U) − e4Uγαβγγδf(αγ)f(βδ) + ǫe−2U [∆1(A) + ∆1(B)] = 0, (2.13)

γδγ(f(δα);γ + 4f(δα)) −
4ǫεβγδγαβA,δB,γ

e4U
√−γ = 0, (2.14)

Pαβ − 2U,αU,β + e4Uγγδ(γαβγ
ωηf(γω)f(δη) − 2f(αγ)fβδ)

−2ǫe−2U (A,αA,β +B,αB,β) = 0. (2.15)

(∆1(A) ≡ ∆1(A,A)). Agora, introduzimos um vetor axial z e o potencial φ
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como

2f[αβ] = εαβγγ
γδzδ

√
−γ (2.16)

φ,α = e4Uzα − 2ǫ(BA,α −AB,α). (2.17)

Redefinimos os potenciais do tensor energia-momento A e B em termos de

novos potenciais R e θ,

A = Rcosθ (2.18)

B = Rsenθ, (2.19)

Com este preâmbulo podemos escrever seis equações de Einstein, a partir das

quais trabalharemos na geração de novas soluções, a saber,

zα = e−4U(φ,α − 2ǫR2θ,α) (2.20)

∆2(φ) − 4∆1(U, φ) + 4ǫR2∆1(U, φ)

+2Re−2U [2R2∆1(R, θ) − ǫ∆1(φ,R)] = 0 (2.21)

∆2(R) −R∆1(θ) − 2∆1(U,R)

−Re−2U [∆1(φ, θ) − 2ǫR2∆1(θ)] = 0 (2.22)

R∆2(θ) + 2∆1(R, θ) − 2R∆1(U, θ)

−e−2U [∆1(φ,R) − 2ǫR2∆1(R, θ)] = 0 (2.23)

2∆2(U) + 2ǫe−2U [∆1(R) +R2∆1(θ)]

+e−4U [∆1(φ) − 4ǫR2∆1(φ, θ) + 4R4∆1(θ)] = 0 (2.24)

4U,αU,β + 4ǫe−2U(R,αR,β +R2θ,αθ,β)

−2Pαβ + e−4U(φ,α − 2ǫR2θ,α)(φ,β − 2ǫR2θ,β). (2.25)

Para estas equações, o vácuo pode ser representado como, por exemplo

A = B = 0 ou R = 0.1 Depois de listadas as equações de Einstein, po-

demos supor uma nova solução em termos da antiga, apenas trocando as

funções da métrica por outras equivalentes (por exemplo, a por ā, U por

Ū), mantendo-se a “métrica” tridimensional γ. As soluções das equações de

1O tensor energia-momento com relação aos potenciais A e B e aos coeficientes da
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Einstein continuam, neste caso, como em (2.20-2.25). De modo semelhante,

fazemos esta troca para os potenciais A e B do tensor energia-momento (ou

R e θ). O último passo é supor que estas funções com barra são funções das

variáveis sem barra que não são constantes. Não é dif́ıcil mostrar, neste caso,

que o parâmentro ∆1 de uma função com barra é linear. Por exemplo, sendo

R̄ = f(φ, θ), temos ∆1(R̄) =
[

∂R̄
∂φ

]2

∆1(φ)+2∂R̄
∂θ

∂R̄
∂φ

∆1(θ, φ)+
[

∂R̄
∂θ

]2

∆1(θ). O

procedimento para se resolver as novas equações de Einstein é achar equações

em ∆1 e tornar o operador que o precede igual a zero.

Tomemos como exemplo o caso de Schwarzschild. No elemento de linha

(2.1), supomos que xk = t. Neste caso, temos necessariamente que fα = 0,

e ǫe2U = 1 − 2M
r

. Como ǫ é apenas o sinal de gtt, sua escolha é arbitrária.

Ainda, podemos escolher a = 1 e γαβ = e2Udiag[e−2U , r2, r2 sin2 θ]. Como a

solução tem tensor momento-energia nulo, os potenciais A = B = 0, o que

nos leva a R = 0 pelas equações (2.18-2.19). Ainda, a escolha de θ neste caso

se torna arbitrária, e podemos tomar θ = 0 sem perda de generalidade. Como

z está definido em termos de f (2.16) e esta variável é nula, temos também

que z = 0, do que segue imediatamente, por (2.20), que φ = 0. Assim, no

caso de Schwarzschild todas os “coeficientes” das equações de Einstein são

nulos, exceto U .

Uma nova solução seria gerada, tomando outros coeficientes nas equações

de Einstein, com a métrica orginal: φ̄, R̄, θ̄, Ū .

A estratégia é (como descrito acima) igualar ∆1(Ū) =
[

∂Ū
∂U

]2

∆1(U) em

todas as funções com barra nas equações dadas. Para obter as expressões de

∆2, tomamos as equações originais: ∆2(F ) = 0 para qualquer função F da

métrica é escrito como segue,

Tkk =
ǫe2U

8πa2
[∆1(A) + ∆1(B)]

Tkα = afαTkk +
ǫεβγδγαβA,δB,γ

4πa
√−γ

Tαβ = afαTkβ + afβTkα − a2fαfβTkk

+
ǫe−2U

8π
{2(A,αA,β + B,αB,β) − γαβ [∆1(A) + ∆1(B)]}.
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métrica ou do tensor energia-momento (e de fato esta relação é identicamente

nula para qualquer coeficiente, exceto U , pois estes coeficientes são nulos).

Assim, também teremos ∆2(F̄ ) = 0. Levando em consideração ainda, que

∆1(Ū , φ̄) = ∂Ū
∂U

∂φ̄
∂U

∆1(U), com relações semelhantes para as demais funções

∆1, podemos escrever a segunda equação modificada de Einstein como

{

−4
∂Ū

∂U

∂φ̄

∂U
+ 4ǭR̄2∂Ū

∂U

∂θ̄

∂U

+ 2R̄e−2Ū

[

2R̄2∂R̄

∂U

∂θ̄

∂U
− ǭ

∂φ̄

∂U

∂R̄

∂U

]}

∆1(U) = 0. (2.26)

Podemos obter outras 4 equações não-triviais de (2.21-2.25). Assim, se

o número de funções sem barra não constantes é n, teremos 5n(n + 1)/2

equações não triviais.

Através destas transformações, podemos deduzir teoremas de geração de

novas soluções a partir de antigas. Abordaremos aqui um destes teoremas, a

partir de uma solução de vácuo.

Tomemos, de ińıcio uma métrica com U = R = 0, portanto com tensor

energia-momento nulo. As equações de Einstein para o potencial φ quando

redefinido em termos de um novo potencial φ̄ = ψ nesta métrica são dadas

por

∆1(ψ) = ∆2(ψ) = 0, 2Pαβ = ψ,αψ,β , (2.27)

1 = 4

[

dU

dψ

]2

+ 4ǫe−2U

[

(

dR

dψ

)2

+

(

R
dθ

dψ

)2
]

+ e−4U

[

dφ

dψ
− 2ǫR2 dθ

dψ

]2

.(2.28)

Com isto podemos enunciar um teorema genérico, como segue.

Seja um espaço-tempo com um vetor de Killing ∂k definido por

ds2 = −ǫ[(dxk + fαdx
α)2 + γαβdx

αdxβ] (2.29)

com fα definido pelo potencial ψ,

f(α,β) = 2εαβγγ
γδψ,δ

√
−γ. (2.30)
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Então existe uma solução generalizada envolvendo campos eletromagnéticos

dada por

ds2 = −ǫ[e2U (dxk + f̄αdx
α)2 + a2e−2Uγαβdx

αdxβ], (2.31)

em que f̄ se relaciona com o novo potencial ψ̄ da mesma maneira que em

(2.30) e ψ̄ é dado por

∂βψ̄ = ±e−2U
[√

1 − 4U2
ψ − 2ǫe−2U(R2

ψ +R2θ2
ψ)
]

∂βψ (2.32)

(a função ψ como ı́ndice denota diferenciação com respeito a esta variável).

Tal teorema advem diretamente da solução de (2.28) em φ. Com este

teorema enunciado, partiremos a seguir para a obtenção de métricas com

campos magnéticos, a partir de Universos de vácuo.

2.2 Campos Magnéticos: Os Universos de Mel-

vin e Ernst

Tomemos agora uma métrica no seguinte formato,

ds2 = f−1[e2γ(dz2 + dρ2) + ρ2dφ2] − f(dt− ωdφ)2 (2.33)

As equações de Einstein para as grandezas f e ω podem ser deduzidas a

partir de um lagrangeano [16],

2£ = ρf−2∇f.∇f + ρ−1f 2∇ω.∇ω (2.34)

(sendo o produto escalar em 4 dimensões) através de equações de Euler-

Lagrange, e são escritas como

f∇2f = ∇f.∇f − ρ−2f 4∇ω.∇ω, (2.35)

∇.(ρ−2f 2∇ω) = 0. (2.36)
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Com alguma álgebra chegaremos a um potencial ε cuja equação sintetiza

(2.35-2.36). Tomemos uma função φ que não depende do ângulo azimutal φ̂.

Então, vale a identidade ∇.(ρ−1φ̂×∇φ) = 0. Levando-se em conta (2.36) no

formato ∇.(ρ−1ρ−1f 2∇ω) = 0, temos

ρ−1f 2∇ω = φ̂×∇φ, (2.37)

que relaciona nossa função com o coeficiente ω. Multiplicando por φ̂, obtemos

f−2∇φ = ρ−1φ̂×∇ω, e imediatamente

∇.(f−2∇φ) = 0 (2.38)

Agora, levando em consideração (φ̂ × ∇ω)2 = (∇ω)2, podemos lançar mão

do potencial ε, definido como

ε = f + iφ, (2.39)

com o que as equações de Einstein podem ser resumidas a

(ε+ ε∗)∇2ε = 2∇ε.∇ε (2.40)

Um procedimento semelhante é aplicado ao incluirmos um potencial Aµ =

(At, 0, 0, Aφ) no invariante (2.34) a partir do qual escrevemos as equações de

Einstein [17]. Neste caso, devemos adicionar ao lagrangeano em (2.35 a parte

correspondente ao potencial vetor,

£̃ = 4ρf−1At(∇At)2 − 4ρ−1f(∇Aφ − ω∇At)2, (2.41)

que representa a mesma solução das equações de Einstein, mas agora com

um tensor energia-momento não nulo (potencial vetor como definido acima).

Levando-se em conta uma outra função definida por φ̂×Σ = ρ−1f(∇Aφ−
ω∇At), e o novo potencial Φ = At + iΣ, podemos redefinir ε por ε = (f −
|Φ|2) + iφ, com o que obteremos ao invés de uma equação de Einstein para
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um único potencial ε duas equações dadas por

(ε+ ε∗ + |Φ|2)∇2ε = 2(∇ε+ 2Φ∗∇Φ).∇ε
(ε+ ε∗ + |Φ|2)∇2Φ = 2(∇ε+ 2Φ∗∇Φ).∇Φ (2.42)

sendo Φ um potencial adicional advindo da inclusão de Aµ no tensor energia-

momento (ou equivalentemente no lagrangeano).

Podemos usar agora estes dois potenciais para obter, usando uma trans-

formação de Harrison, como definido na seção anterior, a partir de uma

métrica conhecida, uma outra solução com campos eletromagnéticos. Tome-

mos por exemplo, um elemento de linha similar ao usado nas equações (2.42)

enunciadas acima sobre transformações de Harrison,

ds2 = f−1[−2P−2dχdχ∗ + ρ2dT 2] − f(dφ− ωdT 2). (2.43)

O Universo de Minkowski por exemplo, em coordenadas ciĺındricas tem

métrica

ds2 = dz2 + dρ2 − dT 2 + ρ2dφ2, (2.44)

cuja comparação com (2.43) nos dá f = −ρ2, ω = 0, P = ρ−1 e dχ =

2−1/2(dz + idρ). Por se tratar de uma solução de vácuo, o potencial Aµ é

nulo, também o sendo - identicamente nula - uma das equações de Einstein

pois Φ = 0. O potencial ε de outra maneira será real e é dado necessariamente

por ε = −ρ2.

Tomando uma transformação de Harrison [14],

ε = δε (2.45)

Φ = δ(Φ −Bε/2), (2.46)

com δ = (1 +BΦ − B2ε/4)−1, as variáveis ω e f ficam

f = |δ|2f (2.47)

∇ω = |δ|2∇ω + ρf−1(δ∗∇δ − δ∇δ∗). (2.48)
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Aqui, B representa um campo magnético atuando na direção z [18]. Com

a métrica de Minkowski como em (2.44), as funções f̄ e ω̄ com barra nos

fornecem a métrica

ds2 = Λ2[dz2 + dρ2 − dT 2] + Λ−2ρ2dφ2 (2.49)

(Λ = 1 +B2r2sen2θ) que é uma métrica de espaço-tempo plano com campo

magnético de fundo na direção z, obtida pela primeira vez por Melvin e

Thorne [19].

Para obtermos a métrica de Ernst, tomemos o elemento de linha de

Schwarzschild em coordenadas esféricas,

ds2 = −
(

1 − 2M

r

)

dt2 +
dr2

1 − 2M
r

+ r2dθ2 + r2sen2θdφ2, (2.50)

que, quando comparado com (2.43) no dá

f = −r2sen2θ, ω = 0, ρ =
√
r2 − 2Mrsenθ. (2.51)

P−1 = r2senθ, dχ =
1√
2

[

dr√
r2 − 2Mr

+ idθ

]

. (2.52)

Após calcularmos as funções transformadas, obtemos um elemento de linha

como

ds2 = Λ2

[

dr2

1 − 2M/r
+ r2dθ2 −

(

1 − 2M

r

)

dt2
]

+ Λ−2r2sen2θdφ2. (2.53)

Esta solução, obtida por Ernst em 1976, representa uma modificação da

solução de Schwarzschild incluindo um campo magnético na direção z, e

ficou conhecida na literatura como solução de Ernst. Nosso guia de estudos é

o cálculo de quantidades significativas desta solução: os modos quasi-normais

e a contribuição do campo escalar para a entropia do buraco negro.
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2.3 Campos Escalares na Métrica de Ernst:

os Modos Quasi-normais

Tomemos uma métrica como em (2.53), definindo £ = B2r2sen2θ.

Um estudo sobre esta geometria foi feito em [20], onde se verificou a

possibilidade de tal buraco negro servir como lente gravitacional. Apesar

da presença de um campo magnético, o horizonte de eventos situa-se ainda

em r = 2M e a superf́ıcie gravitacional no horizonte também é dada por

α = (4M)−1. O objetivo, aqui, é o estudo da equação de Klein-Gordon,

2Φ =
1√−g∂µ[

√
−ggµν∂νΦ] = 0, (2.54)

na geometria proposta. Antes de expandi-la, notamos que

√−g = Λ2r2 sin θ = Λ2√−gSchwarzschild, (2.55)

gµν = diag

{

Λ−2

[

(

1 − 2M

r

)−1

,−
(

1 − 2M

r

)

,−r−2,− Λ4

r2 sin2 θ

]}

.

(2.56)

Expandindo esta equação, obtemos,

gtt∂ttΦ + grr∂rrΦ +
∂r(g

rrΛ2r2)∂rΦ

Λ2r2
+ P (θ, φ)Φ = 0 (2.57)

com Φ = Φ(t, r, θ, φ). Aqui P representa a parte angular do polinômio, dada

por

P (θ, φ)Φ =
gθθ∂θ(sin θ)∂θΦ

sin θ
+ gθθ∂θθΦ + gφφ∂φφΦ. (2.58)

Ao desenvolvermos a parte angular da equação chegamos a

1

Λ2

{[

− cos θ

r2 sin θ
− ∂θ
r2

]

∂θΦ − Λ4

r2 sin2 θ
∂φφΦ

}

= PΦ. (2.59)

Pela equação de Laplace em 4 dimensões e em coordenadas esféricas, temos
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que

1

Λ2

{[

− cos θ

r2 sin θ
− ∂θ
r2

]

∂θΦ − 1

r2 sin2 θ
∂φφΦ

}

=
l(l + 1)

Λ2
Φ, (2.60)

de maneira que a idéia é somar e subtrair uma unidade na expressão com Λ4.

Observando que

Λ4 − 1 = 4£ + 6£2 + 4£3 + £4, (2.61)

e tomando a expressão acima em primeira ordem em £, conseguimos para a

parte angular da equação de Klein-Gordon, a expressão

1

Λ2

{[

− cos θ

r2 sin θ
− ∂θ
r2

]

∂θΦ − Λ4

r2 sin2 θ
∂φφΦ

}

≃ [l(l + 1) + 4m2r2B2]Φ

r2Λ2
.

(2.62)

A justificativa para desprezar termos em ordem maior que B2r2 é de que,

os campos magnéticos, mesmo que bastante intensos, não chegam nunca

próximos à ordem da grandeza da massa do buraco negro. Devemos notar

ainda que na equação acima, tomamos como expressão angular para o campo,

Φ(φ) = e−imφ, (2.63)

visto que ∂φ é um vetor de Killing da geometria. A separação de variáveis

agora é usual, seguindo o mesmo esquema de Schwarzschild, por isto ela não

será feita aqui. Ao substituirmos o campo Φ por χ
r
, trocarmos a coordenada r,

pela coordenada tartaruga grrdr∗ = dr e supondo uma dependência temporal

do tipo e−iωt para o campo, chegamos à equação de onda como,

[

d2

dr2
∗

+ ω2 − V (r∗)

]

χ(r∗) = 0, (2.64)

com o potencial escalar V (r) dado por

V (r∗) = grrSch

[

l(l + 1)

r2
+

2M

r3
+ 4B2m2

]

, (2.65)
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[grrSch = 1 − 2M
r

]. Este potecial efetivo obtido para a geometria de Ernst

corresponde ao potencial da geometria de Schwarzschild para a propagação

de um campo escalar massivo com massa µ = 2mB.

Para analisar o potencial da equação sem aproximações (e obter os modos

quasi-normais), devemos usar outras condições de contorno que não as de

onda plana (p. ex. C. C. de Dirichlet). Isto porque ao incluirmos todos

os termos de campos magnéticos, o potencial diverge no infinito. Entretanto

como citado na introdução desta seção, é suficiente para determinar os modos,

estabelecer o comportamento no horizonte de eventos do buraco negro.

A questão das condições de contorno, tomadas para os modos quasi-

normais, de ondas planas nos infinitos espaciais, precisa neste caso ser anali-

sada de maneira diferente. Para um buraco negro não assintoticamente plano,

não é simples a definição de tais tipos de condições de contorno. Como ci-

tado no parágrafo anterior, podemos eventualmente, em espaços Anti-de Sit-

ter, usar condições de contorno de Dirichlet. Contudo, ainda em casos não

assintoticamente planos, a contribuição mais importante da perturbação da

métrica é dada pela região próxima ao horizonte [21]. Além disto, a con-

tribição da região próxima ao horizonte é determinada, principalmente, pelo

formato do potencial efetivo nas proximidades de seu pico. Desta maneira,

não é preciso delimitar de que maneira o campo decai quando em regiões

assintóticas, para efeito do cálculo das frequências é suficiente, com o uso

do método WKB, que suponhamos que assintóticamente temos uma geo-

metria de Schwarzschild, nos atendo aqui, para a influência do campo, ao

comportamento no horizonte.

Da mesma maneira como o potencial é obtido para a métrica de Ernst,

podemos analisar o caso da propagação do campo escalar em um espaço-

tempo com campo magnético de fundo e um campo escalar dilatônico [22].

A métrica neste caso tem a forma

ds2 = Λ
2

1+a2

[

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2dθ2

]

− r2 sin2 θ

Λ
2

1+a2

dφ2,

(2.66)
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com

Λ = 1 + (1 + a2)B2r2 sin2 θ, (2.67)

sendo a um fator constante que relaciona o dilaton e o campo magnético

como

φ

ln Λ
= − a

1 + a2
. (2.68)

O potencial obtido ao aplicarmos a mesma aproximação para campos magnéticos

pequenos em relação à massa do buraco negro é exatamente (2.65). Isto mos-

tra que a influência do dilaton não pode ser detectada para o termo dominante

de campo magnético, visto que o fator a não aparece no potecial: o campo

escalar não interage com o dilaton.

Outro caso interessante a ser estudado, é o buraco negro de Ernst D-

dimensional, isto é um buraco negro de Schwarzschild em D dimensões [23]

imerso em um campo magnético [24]. O elemento de linha desta situação é

escrito como

ds2 = Λ
2

D−3 [−F (r)dt2 + {F (r)}−1dr2 + r2dθ2 + r2 cos2 θdΩ2
D−4] + Λ−2r2 sin2 θdΦ2,

(2.69)

com dΩ2
D−4 o elemento de linha da (D − 4)-esfera,

dΩ2
D−4 = dΨ2

1 +
D−5
∑

a=1

dΨ2
a+1

a
∏

b=1

sin2 Ψb, (2.70)

em que a função F (r) é o “grr” da geometria D-dimensional de Schwarzschild,

F (r) = 1 − 16πM(D − 2)−1

rD−3ΩD−2

(2.71)
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e Λ o termo de campo magnético,

Λ = 1 +
D − 3

2D − 4
B2r2 sin2 θ. (2.72)

O determinante da métrica é dado por

√
−g = Λ

2
D−3 rD−2 sin θ cosD−4 θ sinD−5 Ψ1 sinD−6 Ψ2 · · · sin ΨD−5 (2.73)

e a equação para o campo escalar torna-se

gtt∂ttΦ + β∂r(g
rr
Sch∂rΦ) +

β(D − 2)grrSch∂rΦ

r
+ P (θ, φ,Ψ1, · · · ,ΨD−4)Φ = 0,

(2.74)

em que β ≡ Λ− 2
D−3 , e gµνSch refere-se a métrica de Schwarzschild em D di-

mensões. Começando o estudo pela parte radial, que denominaremos “H”,

temos

Λ
2

D−3H(r, t) ≡ gttSch∂ttΦ +
∂r(r

D−2grrSch∂rΦ)

rD−2
=

gttSch∂ttΦ + grrSch∂rrΦ +

[

∂rg
rr
Sch +

(D − 2)grrSch
r

]

∂rΦ. (2.75)

O próximo passo é decompor o campo em suas componentes para uma se-

paração de variáveis tomando-se

Φ(r, t, θ, φ, · · · ,ΨD−4) = R̄(r)T (t)Θ(θ)ϕ(φ) · · ·ψD−4(ΨD−4). (2.76)

Substituimos R̄(r) → R(r)
r

e trocamos r pela sua coordenada tartaruga, dr∗ =

grrdr. Fazendo isto, dividindo o termo H pelo campo Φ e supondo T (t) =

e−iωt obtemos,

Λ
2

D−3H(r, t)

Φ
= gttSchω

2 − gttSch
R(r)

∂2R

∂r2
∗
−
(

D − 2

r

)[

∂rg
rr
Sch

2
− (D − 4)

[grrSch]
−14r

]

.(2.77)

Isto completa a parte radial-temporal da equação. Voltando agora para a
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parte angular,

P (θ, φ,Ψ1, · · · ,ΨD−4)Φ =
∂θ(sin θ cosD−4 θ∂θΦ)

βr2 sin θ cosD−4 θ
+
βD−3∂φφΦ

r2 sin2 θ

+
∂Ψ1(sin

D−5 Ψ1∂Ψ1Φ)

βr2 cos2 θ sinD−5 Ψ1

+
∂Ψ2(sin

D−6 Ψ2∂Ψ2Φ)

βr2 cos2 θ sin2 Ψ1 sinD−6 Ψ2

+ · · ·+ ∂ΨD−5
(sin ΨD−5∂ΨD−5

Φ)

βr2 cos2 θ sin2 Ψ1 sin2 Ψ2 · · · sin2 ΨD−6 sin ΨD−5

+
∂ΨD−4ΨD−4

Φ)

βr2 cos2 θ sin2 Ψ1 sin2 Ψ2 · · · sin2 ΨD−5

. (2.78)

Para o caso de Schwarzschild em D dimensões, a única diferença está no

segundo termo da primeira linha em que teŕıamos β−1 ao invés de βD−3. Em

tal situação a parte angular se resolve como

P̃ (θ, φ,Ψ1, · · · ,ΨD−4)Φ =
∂θ(sin θ cosD−4 θ∂θΦ)

βr2 sin θ cosD−4 θ
+

∂φφΦ

βr2 sin2 θ

+
∂Ψ1(sin

D−5 Ψ1∂Ψ1Φ)

βr2 cos2 θ sinD−5 Ψ1

+
∂Ψ2(sin

D−6 Ψ2∂Ψ2Φ)

βr2 cos2 θ sin2 Ψ1 sinD−6 Ψ2

+ · · ·+ ∂ΨD−5
(sin ΨD−5∂ΨD−5

Φ)

βr2 cos2 θ sin2 Ψ1 sin2 Ψ2 · · · sin2 ΨD−6 sin ΨD−5

+
∂ΨD−4ΨD−4

Φ)

βr2 cos2 θ sin2 Ψ1 sin2 Ψ2 · · · sin2 ΨD−5

= − l(l +D − 3)Φ

βr2
. (2.79)

Podemos então achar uma relação entre as duas equações, dada por

β(P − P̃ ) = (βD−2 − 1)
∂φφΦ

r2 sin2 θ
, (2.80)

ou seja,

P (θ, φ,Ψ1, · · · ,ΨD−4) =

(

βD−2 − 1

β

)

∂φφΦ

r2 sin2 θ
− l(l +D − 3)Φ

βr2
. (2.81)

Lembrando que βD−2 = Λ
2D−4
D−3 , e novamente tomando a aproximação de

campos fracos, temos que

βD−2 − 1 ≃ B2r2 sin2 θ, (2.82)
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de maneira que a parte angular da equação se torna,

P (θ, φ,Ψ1, · · · ,ΨD−4)

Φ(t, r, θ, φ,Ψ1, · · · ,ΨD−4)
= − 1

β

[

m2B2 +
l(l +D − 3)

r2

]

. (2.83)

Juntando as equações (2.77) e (2.83), temos

0 = β
P (θ, φ,Ψ1, · · · ,ΨD−4)

Φ(t, r, θ, φ,Ψ1, · · · ,ΨD−4)
+

Λ
2

D−3H(r, t)

Φ(t, r, θ, φ,Ψ1, · · · ,ΨD−4)
=

gttSchω
2 − gttSch

R(r)

∂2R

∂r2
∗
−
(

D − 2

r

)[

∂rg
rr
Sch

2
− (D − 4)

[grrSch]
−14r

]

−
[

m2B2 +
l(l +D − 3)

r2

]

.

(2.84)

Finalmente, a equação de propagação do campo é a mesma que em (2.64),

mas o potencial é dado neste caso por

V (r) = F (r)

[

l(l +D − 3)

r2
+
dF (r)

dr

D − 2

2r
+B2m2

+
F (r)(D − 4)(D − 2)

4r2

]

. (2.85)

A presença da massa do campo escalar cria um efeito de diminuir o amorte-

cimento dos modos, isto é, diminuir a parte imaginária destes. Na tabela I,

seguem os resultados numéricos obtidos para os modos.

Pelos dados da tabela, podemos notar que enquanto a parte imaginária

Im(ω) descresce, a parte real Re(ω) cresce, quando aumentamos o campo.

Isto quer dizer que o buraco negro tem um “fator de qualidade” melhor na

presença de um campo magnético, visto que a razão Q ∼ Re(ω)
Im(ω)

aumenta.

Nas figuras (2.3) e (2.3) podemos ver respectivamente a evolução do

campo para um valor de B, e o fator de qualidade variando-se o valor do

campo.

Finalmente, devemos notar que mesmo sendo o campo magnético um fator

que torna o buraco negro um melhor “oscilador”, este efeito é pequeno: o

termo de massa do campo, 4m2B2 é bastante menor do que o termo centŕıfugo

l(l + 1)r−2.
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Tabela 2.1: Modos quasi-normais para Buracos Negros de Ernst com dife-
rentes valores de campos magnéticos B e M = 1.

B ℓ = 1, m = 1 ℓ = 2, m = 1
0.005 0.292981 - 0.097633 i 0.484433 - 0.096488 i
0.025 0.294054 - 0.096988 i 0.486804 - 0.095675 i
0.050 0.297416 - 0.094957 i 0.490764 - 0.094312 i
0.075 0.303040 - 0.091521 i 0.496327 - 0.092389 i
0.100 0.321199 - 0.080040 i 0.496327 - 0.092389 i
0.125 0.333777 - 0.071658 i 0.503512 - 0.089891 i
0.150 0.348640 - 0.061174 i 0.512346 - 0.086795 i
0.175 0.365606 - 0.048285 i 0.522862 - 0.083070 i
0.200 0.384366 - 0.032754 i 0.535100 - 0.078676 i
0.225 0.404542 - 0.014468 i 0.549107 - 0.073554 i
0.250 0.483675 - 0.0096748 i 0.564937 - 0.067625 i

Figura 2.1: Evolução da perturbação para B = 0.05, M = 1, m = 1,l = 1.
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Figura 2.2: Re(ω)
Im(ω)

em função do campo magnético B: M = 1, m = 1,l = 1.
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2.4 A Entropia do Buraco Negro de Ernst:

contribuição com Campo Escalar

Um desenvolvimento bastante interessante a respeito da estrutura quântica

que um buraco negro pode ter foi dado por ’t Hooft em um artigo em 1985

[25]. Neste artigo, o autor calcula a entropia de um campo escalar livre em

uma geometria tipo Schwarzschild e chega a mostrar que esta depende de

2 cutoffs impostos ao cálculo: um infravermelho, que não é mais do que as

flutuações de vácuo do espaço-tempo, e outro ultravioleta, que representa

uma caracteŕıstica do horizonte. De fato, ’t Hooft demonstra que este último

corte no ultravioleta, é fisicamente necessário: mais de 1/5 da ”massa total

do espaço-tempo” estaria concentrada na parte de fora do buraco negro sem

o corte. Não apenas isto, mas este cutoff é uma propriedade unicamente do

horizonte de eventos, independendo da massa do buraco negro [26].

Nosso interesse aqui é calcular a contribuição do campo escalar para

a entropia de buracos negros com um campo magnético de fundo. Para
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isto, começaremos investigando a métrica de Ernst dada por (2.53), sendo

que o potencial vetor que gera o campo magnético é dado por Aµdx
µ =

−Br2sen2θ
2Λ

dφ.

As propriedades termodinâmicas desta solução correspondem exatamente

às mesmas propriedades da solução de Schwarzschild [27]. Por exemplo, a

temperatura Hawking do buraco negro é dada por TH = (4πrh)
−1. Para

calcular a contribuição do campo escalar à geometria, podemos usar, de uma

maneira direta a equação de propagação do campo, e calcular o número de

modos radiais, que é proporcional à função de energia livre. Isto é facilmente

fact́ıvel quando a equação escalar for separável em parte angular e parte

radial-temporal. Entretanto, a geometria de Ernst permite tal separação

apenas de uma maneira aproximada [28], e a aproximação de campo fraco

não é boa o suficiente para este cálculo, visto que são necessárias muitas

expansões em B pequeno.

Uma maneira precisa de obter a energia livre é calcular, diretamente, via

espaço de fase, o número de estados dispońıvel. Tal cálculo é dado por

Γ =

∫

dn~x

∫

dn~p (2.86)

em que n é o número de dimensões tipo espaço. Para obter tal relação

no espaço-tempo de Ernst necessitamos primeiramente das definições dos

momenta, pi. Com este intuito podemos lançar mão do método WKB, no

qual utilizamos uma expressão para o campo escalar dada por

Ψ(r, t, θ, φ) ∼ e−iEt+iS(r,θ,φ), (2.87)

em que as expressões para os momenta são escritas como,

p(r,θ,φ) = ∂(r,θ,φ)S. (2.88)

Ao usarmos a equação do campo escalar, conseguimos uma expressão para o

momentum pr dada por

p2
r = (∂rS)2 = grr(−gttE2 − gφφp2

φ − gθθp2
θ − µ2), (2.89)

32



com µ representando a massa deste campo. Substituindo (2.89) na relação

(2.86), obteremos

Γ =

∫

dφdθdr

∫

dpφdpθ

√

grr(−gttE2 − gφφp2
φ − gθθp2

θ − µ2). (2.90)

Os limites de integração para os momenta são tais que exaurem, na inte-

gral, todas as possibilidades de soma sempre mantendo o integrando real e

positivo. Para as coordenadas angulares, devemos somar sobre a extensão

padrão, ou seja, φ entre 0 e 2π e θ entre 0 e π. Finalmente, na coordenada

radial, usamos a proposta de ’t Hooft supondo dois cutoffs, um ultravioleta

e outro infravermelho. Impomos assim, que o campo é zero fora dos limites

estipulados,

Ψ = 0 se r ≤ rh + ǫ ou r ≥ L(∞). (2.91)

Levando em consideração estas afirmações, podemos substitui-las em (2.90),

com o que obtemos

Γ(E, µ,B, rh, L, ǫ) =

∫ 2π

0

dφ

∫ π

0

dθ

∫ L

rh+ǫ

dr

∫ pmáx
φ

0

dpφ

∫ pmáx
θ

0

dpθ ∗

∗
√

grr(−gttE2 − gφφp2
φ − gθθp2

θ − µ2). (2.92)

Neste caso, como afirmado acima, o valor máximo de pθ é dado pelo máximo

valor que esta variável pode tomar no integrando sem deixá-lo negativo ou

imaginário: pmáx
θ =

√

−gttE2−gφφp2
φ
−µ2

gθθ ≡ a. Assim, a equação (2.92) fica

sendo

Γ(E, µ,B, rh, L, ǫ) =

∫ 2π

0

dφ

∫ π

0

dθ

∫ L

rh+ǫ

dr

∫ pmáx
φ

0

dpφ ∗

∗
[

pθ
2

√

a2 − p2
θ +

a2

2
arcsen

pθ
a

]

∣

∣

∣

∣

∣

pmáx
θ

≡a

0

=

√

grrgθθ
∫ 2π

0

dφ

∫ π

0

dθ

∫ L

rh+ǫ

dr

∫ pmáx
φ

0

dpφ
π(−gttE2 − gφφp2

φ − µ2)

4gθθ
. (2.93)
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Tendo em vista que o valor máximo de pφ é dado por pmáx
φ =

√

−gttE2−µ2

gφφ ,

a integral nesta variável nos dá

Γ(E, µ,B, rh, L, ǫ) =

∫ 2π

0

dφ

∫ π

0

dθ

∫ L

rh+ǫ

dr
2π
√

grrgθθg
φφ

4.3gθθ[gφφ]3/2
(−gttE2 − µ2)3/2.(2.94)

Para saber a relação entre a fórmula acima e a energia livre do campo

escalar, devemos investigar a função partição, que é escrita como

Z = e−βF =
∑

N

e−βEN , (2.95)

em que EN e a energia de cada estado quântico a ser somado. Para bósons,

temos

∞
∑

n=0

e−βnE =
1

1 − e−βE
, (2.96)

de maneira que a função de energia livre se torna

F =
1

β

∑

nr

ln(1 − e−βE) ≃ 1

β

∫

dnr ln(1 − e−βE) =

1

β

∫

{d[nr ln(1 − e−βE)] − nrd[ln(1 − e−βE)]} = −
∫

nr
eβE − 1

dE (2.97)

Na última integral, salientamos que
∫

d[nr ln(1 − e−βE)] = 0, visto que para

os limites nr = 0 e E → ∞ tal contribuição se anula. Aqui nr representa o

número de modos radiais, que é o mesmo que Γ exceto por uma constante

multiplicativa, Γ = π3nr. Desta maneira, a energia livre do campo escalar

fica

F = − 1

6π2

∫ L

rh+ǫ

dr

∫ π

0

dθ

∫ 2π

0

dφ

∫ ∞

µ
√−gtt

√−g(−g−1
tt E

2 − µ2)3/2

√−gtt(eβE − 1)
dE. (2.98)

No regime de aproximação em que a massa do campo escalar é pequena e o

cutoff L é grande, expressos por µ2 ≪ rh
ǫβ2 e L≫ rh, podemos escrever (2.98)
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como

F = − 1

6π2

∫ L

rh+ǫ

dr

∫ π

0

dθ

∫ 2π

0

dφ

∫ ∞

0

√−gg−2
tt E

3

(eβE − 1)
dE. (2.99)

A relação entre a energia livre e a entropia do campo escalar é dada por S =

β2∂βF , de maneira que, ao levarmos em conta a integral
∫∞
0

E3

eβE−1
dE = π4

15β4 ,

obtemos para a entropia do campo escalar a relação

S =
1

1440πr3
h

∫

d3~x g−2
tt

√−g =
1

720r3
h

∫ L

rh+ǫ

dr

∫ π

0

dθg−2
tt

√−g. (2.100)

A primeira parte da relação acima é bastante geral: de fato podemos cal-

cular a contribuição da entropia do campo escalar para uma grande classe

de espaços-tempo em 4 dimensões, pelo método WKB, usando esta relação.

Basta para isto que a geometria tenha elemento de linha diagonal, e que seja

estacionária (o que advém da restrição em (2.87)). Neste caso, fica claro

a necessidade do cutoff no ultravioleta: g
−(n>1)
tt é uma função que diverge

conforme nos aproximamos do horizonte de eventos.

Estamos interessados em calcular a contribuição do campo magnético na

entropia do campo escalar. Procedemos então usando a relação acima com

a métrica de Ernst dada por (2.53). Após a substituição dos coeficientes da

métrica, resolvendo as integrais angulares, obtemos

S = − 1

720r3
h

∫ L

rh+ǫ

r4

(r − rh)2(1 +B2r2)



1 +
arctg

√

B2r2

1+B2r2

Br
√

1 +B2r2



 dr. (2.101)

Esta integral é bastante complexa de se resolver, contudo, podemos fazer

aproximações que nos forneçam o resultado aproximado: para as proximida-

des do horizonte de eventos, expandimos o integrando em torno de r = rh

(o primeiro termo da série, que é a maior contribuição à integral é obtido

simplesmente substituindo r = rh exceto na função r − rh),

Sǫ =
(1 +B2r2

h)
−1

720ǫ



rh +
arctg

√

B2r2
h

1+B2r2
h

B
√

1 + B2r2
h



 . (2.102)
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Esta relação é válida para qualquer valor de B. Para compararmos este

resultado com o obtido com ´t Hooft, tomemos o limite em que este campo

é pequeno, caso em que a relação acima pode ser escrita como

Sǫ ≃
rh

360ǫ

[

1 − 4

3
B2r2

h +
8

5
B4r4

h −O(B6r6
h)

]

. (2.103)

Este é exatamente o resultado para Schwarzschild quando B = 0.

Para obtermos o limite ultravioleta, a partir de (2.101), podemos expandir

em termos de r → ∞. Neste caso, contudo, não há sentido em tomar a apro-

ximação de B → 0, para tentar recobrar o comportamento de Schwarzschild:

há uma ambigüidade no integrando quando fazemos isto, a saber, funções

do tipo B2r2. Não há sentido em expandir tais funções para B = 0 quando

r → ∞. Se, entretanto, assumimos que na expansão r → ∞, o comporta-

mento de B é tal que B → 1
r
, recobramos o limite de Schwarzschild. Isto fica

claro já pelos coeficientes da métrica de Ernst: com tal aproximação para B,

(2.53) é exatamente a geometria de Schwarzschild.

Seguiremos com o cálculo a partir de (2.101), para a expansão no limite

r → ∞. Com tal artif́ıcio, desprezando termos 1
r2

ou maiores, obtemos como

contribuição da entropia no limite infravermelho,

SL ≃ − 1

720r3
h

[

1

B2
L+

2rh
B2

lnL+O

(

1

L

)]

. (2.104)

Para o resultado acima, vale a afirmação de há poucos parágrafos: no limite

em que B → 1
L
, recuperamos o caráter de Schwarzschild. Neste sentido, o

campo magnético age como um regularizador, diminuindo a divergência na

contagem dos modos do espaço-tempo. Nota-se também que não faz sentido

o limite B → 0, pela ambigüidade de que falamos acima.

Há a possibilidade ainda de calcularmos o limite de campo magnético

baixo, com outro procedimento: expandimos (2.101) nas imediações de B →
0. Neste caso, entretanto, o nosso cutoff infravermelho deve ser tal que BL <

A, ou não faria sentido tal expansão (A um parâmetro genérico). Isto equivale

à suposição de que nem o cutoff nem o campo magnético tomam valores 0

ou ∞. Fisicamente isto pode ser justificável para o estudo, por exemplo,

36



de mini-buracos negros, com campos magnéticos unidirecionais grandes em

relação à massa do buraco negro, mas pequenos em relação ao cutoff. Nesta

situação, a contribuição total para a entropia do campo escalar é dada por

SB ≃ − L3

1080r3
h

− r5
h

180

[

2L5

15
+
L4

3
+

2L3

15

]

B2 +O(LnB4) +

rh
360ǫ

[

1 − 4

3
r2
hB

2

]

+O(r4
hB

4). (2.105)

Isto encerra o cálculo para o buraco negro de Ernst. Apontamos que a

contribuição do campo escalar que se propaga em tal geometria não pode ser

colocada em termos de uma renormalização da constante de Newton, como

sugeriram Susskind e Uglum [29], ou mesmo, como pode ser visualizado,

de uma maneira a reinterpretar a constante newtoniana [30]. Tal fato era

esperado, já que a métrica de Ernst não é assintoticamente plana, ou seja,

não obtemos a gravitação newtoniana com r → ∞.

A interpretação desta contribuição em termos de cutoffs ainda está em

discussão.

Seguiremos na mesma linha de pensamento trabalhando agora em duas

generalizações dos cálculos acima: o caso do buraco negro de Ernst com um

campo dilatônico [31] e o caso em D dimensões [24].

2.4.1 O buraco negro dilatônico

A geometria de Ernst com um campo dilatônico de fundo é dada por [22]

ds2 = Λ
2

1+a2

[

(

1 − rh
r

)

dt2 −
(

1 − rh
r

)−1

dr2 − r2dθ2

]

− r2sen2θ

Λ
2

1+a2

dφ2,

(2.106)

em que Λ = 1 + (1 + a2)B2r2 sin2 θ, e o dilaton se acopla com o campo

magnético pela relação

− a

1 + a2
=

φ

ln Λ
. (2.107)
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Podemos partir de (2.100), e desenvolver a integral com os coeficientes da

métrica acima,

S =
1

720r3
h

∫ L

rh+ǫ

dr

∫ π

0

dθ
senθ

[1 + (1 + a2)B2r2sen2θ]
2

1+a2

r4

(r − rh)2
, (2.108)

cuja integral em θ resulta em

S =
1

360r3
h

∫ L

rh+ǫ

dr
2F1

[

1
2
, 2

1+a2
, 3

2
, (1+a2)B2r2

1+(1+a2)B2r2

]

[1 + (1 + a2)B2r2]
2

1+a2

r4

(r − rh)2
. (2.109)

Aqui novamente a integral não pode ser resolvida analiticamente, e recor-

remos a aproximações: expandimos em séries de Taylor para regiões nas

proximidades do horizonte. A contribuição para r grande não pôde ser ob-

tida ainda, já que a expansão para r → ∞ não é convergente. Para as

proximidades do horizonte, temos

S =
rh

360ǫ

2F1

[

1
2
, 2

1+a2
, 3

2
,

(1+a2)B2r2
h

1+(1+a2)B2r2
h

]

[1 + (1 + a2)B2r2
h]

2
1+a2

(2.110)

Também, da mesma maneira como sugerimos no caso de Ernst, podemos

obter aproximadamente a contribuição para B muito pequeno. A entropia

neste caso é dada por

Sdil =
L3

1080
− 1 + a

1 + a2

[

r2
hL

3 +
rhL

4

2
+
L5

5

]

B2

270

+
rh

360ǫ

{

1 +

[

2

3
− 2(1 + a2)

]

B2r2
h

}

. (2.111)

Esta relação é bastante parecida com (2.105), e de fato, para a = 0, ela se

torna (2.105), como esperado: no limite em que o campo dilatônico é nulo,

recobramos a geometria de Ernst e, neste sentido, a contribuição do campo

escalar à entropia deve ser a mesma. As propriedades neste caso, são as

mesmas como explicado no caso anterior. Seguiremos com a última etapa do

trabalho, o campo escalar em uma geometria de Ernst em D dimensões.
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2.4.2 O caso D-dimensional

Um buraco negro de Ernst em D dimensões tem o elemento de linha dado

por [24]

ds2 = Λ
2

D−3 [−fdt2 + f−2dr2 + r2cos2θdΩ2
D−4 + r2dθ2] + Λ−2r2sen2θdφ2

(2.112)

em que Λ é o termo com campo magnético dado por

Λ = 1 +
D − 3

2D − 4
B2r2sen2θ, (2.113)

dΩ2
D−4 =

∑D−4
j=1

∏j−1
i=1 sin2 ΨidΨ

2
j é a (D−4)-esfera e f a função de Schwarzs-

child em D dimensões escrita como f = 1 −
(

rh
r

)D−3
, com rh o raio do

horizonte de eventos definido por rh =
[

16πM
(D−2)ΩD−2

]
1

D−3

. As propriedades ter-

modinâmicas deste buraco negro são as mesmas daquelas do buraco negro de

Schwarzschild em D dimensões.

Estamos procurando, de ińıcio, como o fizemos na seção anterior, a ener-

gia livre de Helmholtz, com o que poderemos calcular a entropia do campo

escalar. Com tal objetivo, partimos novamente de (2.86), mas generalizando

tal expressão para D dimensões. Temos

Γ =

∫ D−3
∏

i=1

dΨidφdrdpΨi
dpφ

√

√

√

√grr(−gttE2 − gφφp2
φ −

D−3
∑

j=1

gΨiΨip2
Ψi

).(2.114)

Para obter uma fórmula geral a partir da integral no espaço dos momenta,

partiremos de (2.94) como ińıcio, primeiro tratando o caso 5-dimensional

depois o fazendo para os demais, até 8 dimensões. Tal repetição embora

pareça desnecessária, não o é de fato, pois devemos achar o termo geral de

duas séries alternantes, para o que o número mı́nimo de termos é 4, como
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ficará claro mais adiante. Desta maneira tomemos

Γ5 =

∫

d4~r

∫ pmáx
Ψ1

0

dpΨ1

[π

2

]

[

1

2

] [

1 − 1

3

]
√

g

gttgΨ1Ψ1

(−gttE2 − gΨ1Ψ1p2
Ψ1

− µ2)3/2,

(2.115)

que integrada na última coordenada de momentum fica

Γ5 =

∫

d4~r
[π

2

]

[

1

2

] [

1 − 1

3

]

[π

2

]

[

3

8

]√

g

gtt
(−gttE2 − µ2)2. (2.116)

Chamaremos α5 os coeficientes numéricos em frente a integral, ou seja,

α5 =
[

π
2

] [

1
2

] [

1 − 1
3

] [

π
2

] [

3
8

]

= π2

32
. Seguimos usando este cálculo acima, para

o caso 6-dimensional, que é semelhante. A função de estados em 6 dimensões,

a partir da fórmula citada é dada por

Γ6 =

∫

d5~r

∫ pmáx
Ψ2

0

dpΨ2α5

√

g

gttgΨ2Ψ2
(−gttE2 − gΨ2Ψ2p2

Ψ2
− µ2)2, (2.117)

cuja integração nos fornece

Γ6 =

∫

d5~r α5

[

1 − 2

3
+

1

5

]
√

g

gtt
(−gttE2 − µ2)5/2. (2.118)

Novamente, chamemos α6 =
[

π
2

] [

1
2

] [

1 − 1
3

] [

π
2

] [

3
8

] [

1 − 2
3

+ 1
5

]

= π2

60
.

Em 7 dimensões temos

Γ7 =

∫

d6~r

∫ pmáx
Ψ3

0

dpΨ3α6

√

g

gttgΨ3Ψ3
(−gttE2 − gΨ3Ψ3p2

Ψ3
− µ2)5/2, (2.119)

ou,

Γ7 =

∫

d6~r α6

[π

2

]

[

15

48

]
√

g

gtt
(−gttE2 − µ2)3, (2.120)

em que redefinimos α7 = α6

[

π
2

] [

15
48

]

. Finalmente, em 8 dimensões, a função
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de estados fica

Γ8 =

∫

d7~r

∫ pmáx
Ψ4

0

dpΨ4α7

√

g

gttgΨ4Ψ4
(−gttE2 − gΨ4Ψ4p2

Ψ4
− µ2)3, (2.121)

ou seja,

Γ8 =

∫

d7~r α7

[

1 − 3

3
+

3

5
− 1

7

]
√

g

gtt
(−gttE2 − µ2)7/2. (2.122)

Tendo formulado a função Γ para 4 dimensões diferentes, estamos agora em

posição de obter uma fórmula geral para ela. Pelos desenvolvimentos acima,

podemos demonstrar que

Γ(D) =

∫

dD−1~r αD

√

g

gtt
(−gttE2 − µ2)

D−1
2 , (2.123)

em que αD é uma constante de integrações sucessivas, que pode ser repre-

sentada pelas duas séries entre chaves,

αD =

{

[π

2

]f(D)
D−2
∏

a=1

[

(2ga − 1)!!

(2ga)!!

]s(a)
}







D−1
∏

b=0

[

b+1
∑

c=1

(i)c−1 + (−i)c−1

2c

(

f(c)

k(b)

)

]s(b)






,

(2.124)

com

f(y) =
y − 2 + |sen(yπ/2)|

2
, (2.125)

ga =
a + |sen(aπ/2)|

2
, (2.126)

s(x) =
1 + (−1)x+1

2
(2.127)

k(b) =
b− 1 + |cos(bπ/2)|

2
. (2.128)

Esta fórmula é válida para um grande número de espaços-tempo em D di-

mensões: todos para os quais a equação de Klein-Gordon, bem como o

método WKB é válido, ou seja, para as geometrias estacionárias e com
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Tabela 2.2: Valores de αD em função de D.
D 4 5 6 7 8 9 10 11

αD
π
6

π2

32
π2

60
π3

384
π3

840
π4

6144
π4

15120
π5

122880

métrica diagonal.

Os valores da constante α em função da dimensão do espaço-tempo podem

ser vistos na tabela 2.1. Levando-se em consideração o limite em que a massa

do campo é pequena, a energia livre de Helmholtz e a entropia podem ser

escritas como

F = αDδD

∫

dD−1~r
√
gg

−D/2
tt (2.129)

S = −βαDδD
∫

dD−1~r
√
gg

−D/2
tt , (2.130)

em que definimos

δD =

∫ ∞

0

ED−1

eβE − 1
dE, δD = DδD. (2.131)

As equações (2.129) e (2.130) são novamente bastante gerais: para os mesmos

tipo de espaços-tempo em D dimensões como citados acima, podemos utilizá-

las para obter a energia livre de Helmholtz ou a Entropia do campo escalar.

Dando prosseguimento ao cálculo, voltamo-nos agora para o caso em 5

dimensões. A entropia pode, de acordo com as relações acima ser escrita

como

S5 = −5βα5δ5

∫ π

0

dφ

∫ 2π

0

dΨ1

∫ L

rh+ǫ

∫ π/2

0

sin θ cos θ

[1 + a2 sin2 θ]3/2
dθ ∗

∗ r8

(r2 − r2
h)

5/2
dr, (2.132)

com a = Br/
√

3. As integrais em Ψ1 e Φ são triviais e a integral em θ pode

ser resolvida com uma substituição simples, x = senθ. Neste caso, obtemos

S5 =
45ζ(5)

32r4
h

∫ L

rh+ǫ

r6

B2
√

(r2 − r2
h)

5

[

1 − 1
√

1 +B2r2/3

]

dr. (2.133)
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Novamente podemos fazer as expansões para as regiões próxima ao horizonte

e assintótica. Com isto (2.133) fica

S5 =
45ζ(5)

32rhB2

{

r2
h

3(2rhǫ)3/2

[

1 − 1

(1 +B2r2
h/3)1/2

]

+

1

3(2rhǫ)1/2)

[

5

2
− 1 − 14(1 +B2r2

h/3)−1

6(1 +B2r2
h/3)1/2

]}

−

45ζ(5)

32B2r4
h

[

L2

2
+
Br2

h(21 + 5B2r2
h)√

3(3 +B2r2
h)

2
L

]

. (2.134)

Para 6 dimensões, a expressão de que devemos partir é,

S6 = − 4π3

315(4rh)5

∫ π

0

dφ

∫ π

0

senΨ1dΨ1

∫ 2π

0

dΨ2 ∗

∗
∫ L

rh+ǫ

∫ π/2

0

senθcos2θ

[1 + α2sen2θ]7/3
dθ

r13

(r3 − r3
h)

3
dr, (2.135)

com α = 3B2r2

8
. Integrando nas partes angulares obtemos

S6 = − 1

105(4rh)5

∫ L

rh+ǫ

1

α2(1 + α2)

r13

(r3 − r3
h)

3
∗

∗







2α2 − 1 +
2F1

[

1
2
, 1

3
, 3

2
, α2

1+α2

]

(1 + α2)2/3







dr, (2.136)

e com os mesmos artif́ıcios usados até aqui, a expressão acima tem as maiores

contribuições dada pela expressão

S6 = − 27π5

2240r5
h

{

L3

B2
− 12L

B4
+

8π1/331/6

Γ(1/3)Γ(7/6)B14/3
L1/3 +

9r3
h

B2
lnL+

r3
h





(9B2r2
h − 12)

[B2r2
h(8 + 3B2r2

h)]
+

24 2F1

[

1
2
, 1

3
, 3

2
,

3B2r2
h

8+3B2r2
h

]

[B2r2
h(8 + 3B2r2

h)
4/3]





[

r2
h

48ǫ2
+

5rh
54ǫ

− 5 ln ǫ

27

]}

.

(2.137)

Finalmente, calculamos a contribuição do campo para um caso em 10 di-
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mensões. A integral de partida é

S10 =
80 ∗ 79π4σ(9)

3(4πrh)9

∫ π

0

dφ

∫ π

0

sen5Ψ1dΨ1

∫ π

0

sen4Ψ2dΨ2 ∗

∗
∫ π

0

sen3Ψ3dΨ3

∫ π

0

sen2Ψ4dΨ4

∫ π

0

senΨ5dΨ5 ∗

∗
∫ 2π

0

dΨ6

∫ L

rh+ǫ

∫ π/2

0

senθcos6θ

[1 + χ2sen2θ]8/7
dθ

r43

(r7 − r7
h)

5
dr, (2.138)

com χ2 = 7B2r2

16
. Novamente, a parte angular nos fornece

S10 ∼
79π9

211 ∗ 35 ∗ 112 ∗ 19r9
h

∫ ∞

rh+ǫ

4√
7Bχ6

dχ ∗

∗
{

−735 − 1400χ2 − 627χ4 + 735(1 + χ2)
13/7
2 F1

[

1

2
,
1

7
,
3

2
,

χ2

1 + χ2

]}

,

(2.139)

que, com as expansões sugeridas acima resulta em

S10 ∼
3, 8

r9
h

{

1, 14

B2
L7 +

24, 1B−16/7

Γ(1/7)Γ(19/14)
L47/7 +

3, 1B−4

Γ(1/7)Γ(13/7)
L5

+T (L33/7, L3, L19/7, · · · ) + 10−3r3
h

[

r4
h

ǫ4
− 8r3

h

ǫ3
+

81r2
h

ǫ2
− 1080rh

ǫ

]

+
2, 31B2r2

h + 0, 452B4r4
h + 2, 77{1 + (1 +B2r2

h)
2
2F1[

1
2
, 1

7
, 3

2
,

7B2r2
h

16+7B2r2
h

]}
B6











.

(2.140)

O comportamento das divergências aqui é bastante geral: tanto no caso

do buraco negro dilatônico quanto nos de Ernst, as divergências da região

ultravioleta dependem do fator de cutoff como

S ∼ 1

ǫ
D−2

2

. (2.141)

Neste sentido, temos os mesmos resultados como os de Schwarzschild. En-

tretanto, embora não diretamente no fator de cutoff ǫ, a entropia tem uma

44



contribuição não-trivial do campo magnético, como pode ser visto em (2.103),

o mesmo sendo verdade para os casos dilatônico e D-dimensional.

Para a região do infravermelho, tudo o que se pode supor, é que recupera-

mos o comportamento de Schwarzschild com a condição de que B → 1
L
, pois

como afirmamos acima, o limite B → 0 é amb́ıguo, uma vez que tomamos a

expansão r → ∞ para resolver as integrais.

A maior divergência tem a forma

SL ∼ LD−3

B2
, (2.142)

e as demais divergências como

SL(div) ∼
La

Bb
, (2.143)

com a + b = D − 1, em que b ≥ 2, exceto por divergências de escala lo-

gaŕıtmica. Neste sentido, podemos afirmar que o campo magnético atua

como um campo regularizador da divergência na região do infravermelho,

como também o afirmamos para o caso 4-dimensional, pois a divergência di-

minui de um fator LD−1, como seria o caso dos espaços-tempo de Minkowski

ou de Schwarzschild, para LD−3.
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Caṕıtulo 3

Modos Quasi-Normais e

Termodinâmica em Buracos

Negros

Um interessante ramo do estudo de perturbações em buracos negros, é a

posśıvel conexão entre a perturbação de uma dada geometria - ou ainda a

propagação de um campo teste - e as propriedades termodinâmicas desta

geometria [35]. Neste âmbito, uma questão de importância relevante a ser

colocada é se a área do horizonte de eventos possui um quantum determinado,

e ainda se esta determinação está de alguma maneira associada ao espectro

perturbativo das equações de propagação de campos teste na geometria.

A questão acerca de um determinado quantum para a área do horizonte

de eventos tem seu trabalho pioneiro na década de 70, quando Bekenstein

observa que a área de buracos negros não extremos se comporta como um in-

variante adiabático. Tendo em vista o prinćıpio de Ehrenfest isto corresponde

à discretização da área do buraco negro.

Embora alguns anos antes, Christodoulou [36] tivesse demonstrado que

a assimilação de uma part́ıcula neutra pontual pelo buraco negro era um

processo reverśıvel (e portanto com uma posśıvel variação para área arbitra-

riamente baixa, δA → 0), se levarmos em conta que a referida part́ıcula não

é pontual e tem um raio mı́nimo r e uma massa m, o quantum de área será
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δA = 8πmr, e para uma part́ıcula relativ́ıstica (r ≥ ~/m), δA = 8πl2P , com

l2P = ~ [37].

Contudo, um outro limite é obtido se levamos em conta o buraco negro

de Reissner-Nordström, com part́ıculas carregadas se propagando ao redor

de sua geometria. Supondo que estas part́ıculas tenham raio, massa e carga

definidos, neste caso, o quantum de área na geometria de Reissner-Nordström

seria dado por δA = 4l2P [38].

Nos dois casos (part́ıculas carregadas ou sem carga), há um processo

impedindo que o quantum de área seja arbitrariamente pequeno. Para o

processo de captura de uma part́ıcula sem carga em um buraco negro de

Schwarzchild, devemos considerar que a part́ıcula tem um raio mı́nimo em

conformidade com o prinćıpio da incerteza de Heisenberg, para que haja

um quantum de área fundamental. No segundo processo, para assegurar a

existência de um quantum mı́nimo de área, é preciso levar em consideração

o processo de “emissão de carga tipo Schwinger”. O campo elétrico cŕıtico

para a produção de pares deve ser maior do que o campo nas imediações do

horizonte, levando a δAmin = 4l2P .

3.1 A Conjectura Hod

Tendo em conta estes resultados, um significativo insight foi dado há pouco

mais de uma década quando Hod publicou um trabalho relacionando os mo-

dos quasi-normais da geometria de Schwarzschild com a termodinâmica do

respectivo buraco negro. O quantum de área proposto inicialmente por Hod,

baseado nos resultados descritos acima foi expresso como

δA = kl2P , (3.1)

com k uma constante numérica a ser determinada.

A idéia original reside no fato singular de que o espectro quasi-normal da

solução de Schwarzschild é peculiar no regime assintótico: a parte real destas

frequências converge para um valor fixo, a partir de um valor de n (número de

sobretom) suficientemente grande. De fato, o espectro assintótico dos modos
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quasi-normais do buraco negro de Schwarzschild é dado por [34]

Mωn = M(ω{R}
n + ω{I}

n ) =
ln 3

8π
− i

4
(n+ 1/2) +O(

√
n−1). (3.2)

A correspondência proposta, nomeada posterirmente como conjectura de

Hod, é resultante da idéia de que ω
{R}
n poderia representar o quantum de

energia do buraco negro para transições de fase em altas energias, ou, em

outras palavras, de um buraco negro não-excitado para um buraco negro que

emitiria em altos valores de n. Desta maneira, podeŕıamos ter uma quan-

tização da área do buraco negro, como se segue. A área do horizonte de

eventos, A = 16πM2 tem um “quantum” de

δA = 32πMδM = 32πM~ωRn = 4 ln 3l2P , (3.3)

em que lP é o comprimento de Planck também escrito em unidades conveni-

entes (G = 1) como lP =
√

~.

Este resultado é compat́ıvel com a proposta de quantização da área e

a relação termodinâmica, S = A/4~, o que pode ser demonstrado como se

segue. Temos que o número de estados g(n) acesśıveis a uma dada geometria,

é inteiro e se relaciona com a entropia como S = ln g(n), de maneira que

g = eA/4~ [39]. Assim, necessariamente a quantização da área precisa ter

o formato A = 4n~ lnC, com C constante, de maneira que g permaneça

inteiro.

Em sua conjectura, Hod propõe que esta constante seja C = 3, tendo uma

interpretação estat́ıstica (dada no último parágrafo) e que se compatibiliza

com o prinćıpio da correspondência de Bohr, de que frequências de transições

em números quânticos grandes devem ser compat́ıveis com frequências de os-

cilação clássicas (o que pode ser observado através da comparação do espectro

quasi-normal assintótico com a proposta do quantum de área em (3.3)).

A conjectura contudo apresenta algumas dificuldades. Primeiro, o es-

pectro assintótico dos modos quasi-normais é naturalmente diferente, para

diferentes buracos negros. Entretanto para que esta continue válida espe-

ramos que no limite em que estes buracos negros se aproximem da solução
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de Schwarzschild, também recuperemos o espectro assintótico deste buraco

negro. Para o buraco negro de Kerr, no entanto, temos que ωR tende a zero

conforme a rotação também se aproxima de zero com a proporção ωR ∝ a3

[40]. Desta maneira se a um buraco negro de Schwarzschild acrescentamos

uma quantidade infinitesimal de rotação, o espectro assintótico é diferente,

invalidando a conjectura: o quantum de área pode se tornar arbitrariamente

pequeno nestas condições. Uma situação similar se aplica ao buraco negro

de Reissner-Nordström.

Um outro aspecto problemático da conjectura é a relação de Motl-Neitzke

para os modos assintóticos do buraco negro com carga [41],

e8πMω = −1 − 2 cosπj (3.4)

com j o spin da perturbação. Neste caso, para as perturbações gravitacional

e escalar, temos ωR = T−1
H , o que não é verdade pra perturbações vetori-

ais e de spin semi-inteiro (para as quais ωR = 0). Desta maneira, o valor

assintótico de ωR depende do tipo de perturbação analisada (ou do campo

que se propaga), e não das propriedades intŕınsicas do buraco negro, o que

dificulta a interpretacão de ωR como quantum de área.

Tais problemas bem como outros relacionados com a interpretação do

spectro quasi-normal foram conceitualmente resolvidos em um trabalho pu-

blicado há dois anos, que será descrito na próxima seção.

3.2 A Conjectura Hod Modificada

Como citado na seção anterior, a conjectura de Hod possui alguns problemas

conceituais. Um outro problema fundamental relacionado a ela, é o fato de a

conjectura ser baseada, de um ponto de vista conceitual, em uma transição

do buraco negro de um estado com valor alto de n para o estado fundamental

apenas (isto pelo ponto de vista de que um quantum de área corresponde à

emissão de um modo em altas energias, com energia ωR). Uma transição de

um estado assintótico n para um também estado assintótico n′ não é contem-

plado pela conjectura. Para uma transição n→ n′, ω
(n)−(n′)
R ∝ O(1/n1/2), de
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Figura 3.1: Parte real dos modos quasi-normais de Schwarzschild para l = 2
e l = 3.
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maneira que o quantum de área pode se tornar arbitrariamente pequeno.

Tal questão foi solucionada com a proposta de Maggiore de uma modi-

ficação na interpretação das grandezas f́ısicas no espectro quasi-normal do

buraco negro de Schwarzschild. Antes de falarmos propriamente da solução

proposta por Maggiore [40], falaremos da f́ısica envolvendo os modos de per-

turbação do buraco negro.

O espectro da perturbação gravitacional da geometria de Schwarzschild

[42] segue na figura 3.2.

O modo dominante no processo de emissão do buraco negro é o primeiro,

pois é aquele com menor parte imaginária. Todos os demais modos tem

parte imaginária crescente (com taxa de crescimento constante) de acordo
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com a progressão do número de overtone. Do ponto de vista astrof́ısico

e observacional, os primeiros overtones são os mais importantes por terem

menor fator de atenuação ωI , e neste sentido, terem maior possibilidade

de serem observados em detectores e antenas gravitacionais [43, 44]. Os

modos assintóticos por sua vez, (alto valor de n), respondem por uma posśıvel

conexão entre a oscilação da geometria e a termodinâmica do buraco negro,

e por isso o interesse em calculá-los.

No gráfico 3.2, podemos observar o comportamento dos modos quasi-

normais para dois valores diferentes de momento angular, l = 2 e l = 3.

Em ambos os casos, e também para outros valores de l [34], a parte real

inicialmente diminui até um dado modo nc e aumenta novamente a partir de

nc aproximando-se do valor assintótico ω∞ = TH ln 3.

Comparado com sistemas clássicos tais como uma vareta vibrante tal tipo

de resposta do buraco negro a perturbações em sua geometria é bastante pe-

culiar. Isto porque em sistemas clássicos, o modo com menor amortecimento

é em geral o modo com o menor valor de ωR, e tipicamente ω aumenta com

o aumento de n tanto em sua parte imaginária quanto real. De maneira

diversa, na figura, até n = nc, o valor de ωR diminui, e ainda, a partir de nc

este valor aumenta até atingir um ponto de saturação em TH ln 3. Em um

sistema macroscópico normal, ωR e ωI aumentam indiscriminadamente com

o aumento de n. Entretanto quando ωR torna-se expressivamente grande,

o comprimento de onda da oscilação associado, λ = 2πω−1
R torna-se expres-

sivamente pequeno, e quando alcança o valor de distâncias de estruturas

atômicas, a perturbação se dissipa como efeito de agitação termal da rede

[40].

Em uma tentativa de explicação semi-clássica, a figura 3.2 deixa ainda

questões sem esclarecimento. Em sistemas quânticos (em geral), os modos

com energia maior (~ωn→grande
R ) decaem mais rapidamente, pois a largura de

decaimento em uma expansão em multi-polos é proporcional a ωR, compor-

tamento contrário ao da figura 3.2, para qual (em uma interpretação semi-

clássica) a probabilidade de decaimento de um modo diminui com o aumento

de n até o valor de nc.

A tentativa de explicação sugerida em [40] é de comparar o buraco negro
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com um oscilador harmônico amortecido, sujeito a uma força ’tipo delta de

Dirac’,

Ẍ + γ0Ẋ + ω2
0X = f(t) = δ(t). (3.5)

Para tal sistema, as soluções são do tipo eω±t, com ω± = ±
√

ω2
0 − γ4

0/4 +

iγ0/2. Desta maneira com as identificações ωI = γ0/2 e ωR =
√

ω2
0 − γ2

0/4,

conseguimos o comportamento de oscilação do tipo e−ωI t[asen(ωRt)+bcos(ωRt)].

Neste caso, a frequência de oscilação dada por ω0 pode ser aproximada por

ωR para n pequeno, uma vez que ωR ≫ ωI . Contudo, distintamente, ω0 ∼ ωI

para n grande, uma vez que

ω2
0 = ω2

R + ω2
I , (3.6)

e ωI ≫ ωR para n grande. Com a reinterpretação do espectro tendo ω0 como

frequência de oscilação do buraco negro, os problemas descritos acima tanto

em ńıvel clássico como semi-clássico são resolvidos. Os espectros para l = 2

e l = 3 seguem na figura 3.2.

De acordo com esta figura, o modo com o menor valor de n é também

o com a menor frequência ω0. Também, a frequência aumenta monotonica-

mente com o aumento de n, como esperado. Ainda, uma atribuição sugestiva

pode ser feita, em comparação com a relatividade restrira, se nomearmos

~ω
{n}
0 =

√

m2
0 + p2

n, do que m0 = TH ln 3 e pn = 2πTH(n + 1/2). No caso, a

expressão para pn é grandemente intrigante, uma vez que representa a mesma

expressão para a quantização de uma part́ıcula e um ćırculo de comprimento

L = ~T−1
H [40, 45]. O espaçamento equidistante entre os diferentes ńıveis de

pn é o exato esperado da descrição de um horizonte como uma membrana

[45].

Finalmente, a quantização da área pode ser facilmente obtida, conside-

rando que a energia envolvida advem de uma transição de fase em altas

energias, do gênero n→ n− 1. Neste caso temos que ω0 ∼ ωI , do que

δM = ~[ω
{n}
0 − ω

{n−1}
0 ] = ~(4M)−1. (3.7)
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Figura 3.2: Modos quasi-normais de Schwarzschild para l = 2, 3 em termos
de ω0.
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Neste caso, a quantização da área fica

δA = 32πMδM = 8π~ = 8πl2P , (3.8)

que é o resultado original proposto por Bekenstein na década de 70! Mesmo

para transições a baixos valores de n, por exemplo de n = 2 até n = 1,

temos um quantum de área sempre da ordem de δA = C8πl2P , com C uma

constante variando de 0 a 1, que em tal caso vale 0.2. O resultado de (3.8),

não depende do spin do campo propagado na geometria como no caso da

conjectura de Hod, de acordo com a relação de Motl-Neitzke, e os limites

n → ∞ e Q, a → 0, evitando o problema também acima citado de invalidar

a conjectura pela adição de pequenas quantidades de carga ou momento

angular ao buraco negro.

A última questão ’proposta’ na conjectura de Hod e que não pode ser

equalizada pela modificação posterior, é a de que a quantização deve ter

um formato δA/~ = 4 ln k, para que a contagem de microestados dada por

g(N) = eNδA seja um número inteiro1 . Entretanto, na aproximação semi-

clássica N é um número bastante grande, o que faz com que g seja ainda

maior, invalidando portanto a possibilidade de se conseguir uma precisão na

última casa de medida, para g, de uma unidade. Além disto, o quantum de

área δA é o mesmo independendo do valor de n, o que é conceitualmente

injustificado, uma vez que a aproximação tomada, é válida apenas para altos

valores de n e portanto de N .

A fórmula da entropia com a constante que Bekenstein obteve para o

quantum de área fica

S = 2πN, (3.9)

que é compat́ıvel com [46]. Do mesmo modo, em [41], tal propriedade é usada,

para o cálculo dos modos quasi-normais, de maneira que tal propriedade

(peridiocidade do tempo euclideano) parece estar relacionada não apenas à

derivação da temperatura do buraco negro, bem como à quantização da área

1A grandeza N aqui, não deve ser confundida com n, sendo o fator de proporção entre
a área de um buraco negro, e o quantum de área, N = A/δA.
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deste.

3.3 Testando a conjectura com Buracos Ne-

gros de Reissner-Nordström

Ante a modificação proposta por Maggiore da conjectura de Hod, que motiva

uma interpretação f́ısica mais coerente dos modos quasi-normais enquanto

comportamento oscilatório, uma pergunta que pode ser colocada é se esta

conjectura se mantém, para buracos negros de Reissner-Nordström [48].

Para o cálculo destas oscilações (perturbação gravitacional em Reissner-

Nordström), usamos o ferramental desenvolvido na próxima seção (nos ate-

remos aqui, a discutir os resultados).

Temos que a área do horizonte de eventos do buraco negro é dada por

A = 4πr2
+ e sendo o raio do horizonte r+ = M [1 +

√

1 −Q2/M2], teremos

que o quantum de área para este buraco negro será dado por

δA =
8πr+

√

M2 −Q2

[(

2M − Q2

r+

)

δM −QδQ

]

, (3.10)

que, em termos de uma função z definida como z = Q/M fica

δA = 8πM
1 +

√
1 − z2

√
1 − z2

[(

2 − z2

1 +
√

1 − z2

)

δM − zδQ

]

≡M [f(z)δM + g(z)δQ]

(3.11)

Aqui estamos considerando a variação na área do buraco negro, através

de uma emissão gravitacional que carregue para o infinito apenas energia.

Portanto é razoável supor que, δQ = 0. Neste caso, a expressão mandatória

no processo de quantização é Mf(z)δM . Contudo, para buracos negros cuja

carga não se aproxime do valor extremo (z = 1), f(z) ∼ 32π pode ser

tido como uma boa aproximação. Por exexemplo, se Q tomar 60% do valor

máximo, ou z = 0.6, o erro na expressão acima é da ordem de 1%. Para Q

próximo a 80% do valor máximo, o erro é de 6,5%, o que torna viável esta

aproximação, contanto que não nos aproximemos de Q = Qmax = M . Neste
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Figura 3.3: ω0 como função de Q, para a série l = 4 e n = 28 até n = 33.

caso, o quantum de área é o mesmo que pra Schwarzschild (3.8), dado por

δARN ∼ 32πMδM. (3.12)

Sendo δM a quantidade de energia ejetada no processo, δM = ~δω0, e

portanto, se δω0 = 1
4M

, teremos o mesmo quantum de área que no caso de

Schwarzschild, δA = 8πl2P . O trabalho portanto é o de verificar se δω0 =
1
2

(em todos os cálculos do resto deste caṕıtulo, a menos que M apareça

explicitamente, adotamos M = 1/2).

Para o largo espectro quasi-normal calculado, desde l = 2 até l = 6, tal

proposição foi confirmada exceto por pequenas oscilações em determinadas

regiões dos gráficos de ω0 x Q.

Um gráfico t́ıpico de ω0, para diferentes valores de n, e l = 4 pode ser visto

na figura (3.3). Embora não seja percept́ıvel pela figura, há uma pequena

’diferença de fase’, entre os gráficos de ω0 para diferentes valores de n. O
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Figura 3.4: δω0 como função de Q, para a série l = 4 de n = 28 até n = 33.

correspondente gráfico de δω0 x Q é dado em (3.4).

Outra comparação também é feita no caso de l = 3 nos gráficos (3.5,3.6).

Em ambos os casos (e também para os demais valores de l), há uma

diferença de fase entre o gráfico de ω0 para um dado n e seu consecutivo

n − 1. A pergunta fundamental é se este comportamento é robusto, ou

advem do fato de que n ainda não é suficientemente grande para que possa

expressar o comportamento assintótico adequado2.

Entretanto, se dermos um zoom na figura (3.4), é posśıvel perceber que a

largura desta diferença de fase diminui, à medida em que avançamos no valor

de n (figura 3.9): para n = 28, 29 (primeiro pico, da direita para a esquerda)

o pico é mais largo do que para n = 32, 33 (último pico).

A questão remanescente é se os picos de diferença de fase diminuem,

quando vamos a um n suficientemente alto, ou continuam a crescer. Tal

2Pela limitação do método em si, n’s grandes, muito maiores do que 100, em geral são
posśıveis apenas de se calcular até z ∼ 0.2
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Figura 3.5: ω0 para l = 3 e n =
18, 19 na perturbação gravitacional.
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Figura 3.6: δω0 para l = 3 e n =
18, 19 na perturbação gravitacional.
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Figura 3.7: δω0 para l = 3 e n =
200 − 202 na perturbação gravitaci-
onal.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.25  0.255  0.26  0.265  0.27  0.275  0.28  0.285  0.29  0.295  0.3

δw
0

Q

Figura 3.8: Zoom do gráfico ao lado.

questão pode ser resolvida, observando-se os gráficos com n = 200 e l = 3

das figuras (3.7) e (3.8). Não apenas os picos diminuem em largura com o

aumento de n, como também, diminuem em altura, para um n grande.

Desta maneira, os resultados calculados sustentam a conjectura de Hod

como modificada por Maggiore, para os buracos negros de Reissner-Nordström

com cargas não próximas do valor extremo, Q ∼M .

O teste para tais valores de Q, contudo não pode ser feito, uma vez que

o método de Leaver (descrito nas próximas seções), perde precisão em tal

regime, uma vez que a expansão para o cálculo é feito através da variável
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u = r−r+
r−r− , que tende a 1, quando Q ∼M , pois neste caso r− → r+.

3.4 Perturbações em Reissner-Nordström

Outro aspecto da relação entre buracos negros e termodinâmica de buracos

negros é uma proposta recente que associa uma mudança de fase de segunda

ordem no buraco negro com carga e a termodinâmica [49, 47]. Nesta seção

focaremos na perturbação gravitacional e na propagação de um campo de

Dirac na geometria de Reissner-Nordström .

Tal geometria representa um buraco negro (ou a parte exterior a uma

estrela) com massa e carga (portanto Tµν 6= 0), esfericamente simétrico em 4

dimensões, com elemento de linha dado por

ds2 = −
[

1 − 2M

r
+
Q2

r2

]−1

dt2 +

[

1 − 2M

r
+
Q2

r2

]

dr2 + r2dθ2 + r2sen2θdφ2

(3.13)

em que Q representa a carga e M a massa do buraco negro, como percebi-

das por um observador externo. Uma dedução razoável de tal elemento de

linha pode ser encontrada em [50] (ou [51]), e não a daremos neste traba-

59



lho. Também a estrutura conforma do espaço-tempo, bem como o estudo de

geodésicas pode ser encontrado em [51].

3.4.1 Perturbação Gravitacional

Estamos interessados aqui inicialmente no cálculo de uma perturbação gra-

vitacional h na geometria g, escrito como

gpertµν = gµν + hµν , (3.14)

em que gpert representa a métrica original. Os trabalhos originais a respeito

de perturbação gravitacional remetem a Regge e Wheeler na década de 50 [4],

em um artigo no qual se calcula a perturbação da geometria de Schwarzschild,

demonstrando que o horizonte é estável a perturbações em primeira ordem

(i. e., tais perturbações permanecem pequenas com a evolução temporal).

Em geral o tensor h é escrito levando-se em consideração as simetrias

da métrica em questão. Por exemplo, para a geometria de Schwarzschild

é posśıvel em um gauge espećıfico [4] termos apenas dois termos não nulos

(e seus correspondetens simétricos), que dependem essencialmente de (r, t),

tornando as equações mais simples de serem integradas3.

Na geometria com massa e carga (Reissner-Nordström), as perturbações

gravitacional e eletromagnética se acoplam, visto que em ordem zero na

equação de Einstein, Tmateria é nulo, e apenas temos Teletromagnetico 6= 0. Além

das equações de Einstein, temos as equações de Mawell, formando um total

de 14 equações [52, 53],

Gµν = 8π(Tµν + Eµν), (3.15)

∇µ[
√−gF µν ] − 4π

√−gJµ = 0. (3.16)

E representando o tensor energia-momento eletromagnético e T este tensor

para a matéria (que em ordem zero é nulo). A perturbação introduzida via

h como em (3.14), afeta também o tensor de Maxwell, de maneira que as

3Embora, não sem uma perda intuitiva da interpretação do sistema de coordenadas
[15].
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equações de perturbação são escritas como

δGµν = 8π(Tµν + δEµν) (3.17)

δ[∇ν(
√−gF µν)] − 4π

√−gJµ = 0, (3.18)

uma vez que J também é nulo em ordem zero (ausência de correntes na

solução estática).

Há dois tipos básicos de perturbação, como na métrica de Schwarzschild:

com paridade par (polar) ou ı́mpar (axial), quanto à transformação de h

com relação a sua decomposição em harmônicos esféricos tensoriais. Tanto

a perturbação em g quanto em F se dividem em duas partes nomeadas de

multipolos magnéticos e elétricos, que associamos conceitualmente aos dois

graus de liberdade do gráviton em 4 dimensões [54]. Ainda cada uma destas

perturbações é composta de dois graus de liberdades diferentes expressos em

seu potencial, responsáveis pelos dois tipos f́ısicos de perturbação introduzi-

dos no cálculo: eletromagnético e gravitacional. No buraco negro com carga,

estas duas perturbações estão acopladas, o que não ocorre em Schwarzschild.

Uma derivação passo a passo das perturbações gravitacional e eletro-

magnética, tanto com paridade polar quanto axial pode ser encontrada em

[51] (ou em [52, 53]). Dada a extensão de tais cálculos já bem conhecidos

na literatura, nos limitaremos aqui a tomar a equação (axial) em sua forma

final,

[

d2

dr2
∗

+ ω2 − V (r)

]

Ψ(r) = 0 (3.19)

em que r∗ representa a coordenada tartaruga, calculada como

dr∗ = g11dr → r∗ = r +
r2
+ ln(r − r+) − r2

− ln(r − r−)

r+ − r−
(3.20)

com r± = [1±
√

1 − 4Q2]/2 representanto os horizontes de eventos (externo)

e de Cauchy (interno). Ainda, ω é a frequência advinda de uma dependência
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temporal do tipo ψ = e−iωt e V (r) o potencial axial escrito como

V (r) =
g11

r4
[l(l + 1)r2 − Γr + 4Q2], (3.21)

com 2Γ = 3±
√

9 + 16Q2(l − 1)(l + 2). Os sinais + e - acontecem por serem

duas as perturbações tratadas, gravitacional e eletromagnética. No limite

em que Q é nulo, e recuperamos a geometria de Schwarzschild, a equação

(3.18) é a perturbação axial gravitacional se tomamos o sinal positivo em

Γ, e a equação de perturbação eletromagnética axial, ao tomarmos o sinal

negativo.

A paridade polar de perturbação é descrita por uma equação cuja função

do campo, Φ(r) acopla com a função de paridade axial,

[(l − 1)l(l + 1)(l + 2) + 2iωΓ]Φ(r) − 2Γ
dΨ(r)

dr∗

−
[

(l − 1)l(l + 1)(l + 2) +
2Γ2g11

(l − 1)(l + 2)r2 + Γr

]

Ψ(r) = 0 (3.22)

Estamos interessados aqui no espectro quasi-normal da equação, o que

representa resolver (3.18) com condições de contorno espećıficas de ondas

planas nos infinitos espaciais,

lim
r∗→±∞

Ψ(r) ∝ e∓iωr∗ (3.23)

Há diversas maneiras de se fazer a integração numérica deste problema,

utilizando-se de diferentes métodos dispońıveis na literatura. Um método

bastante utilizado pra tal efeito é o método WKB [55], similar ao utilizado

em mecânica quântica básica. O problema da aproximação WKB é o fato de

esta perder precisão para altos valores do número de overtone n, ainda que

a tomemos até sexta ordem4 [56]. Uma correção para tal problema pode se

encontrada em [58].

Outro possibilidade para o cálculo é a utilização do método de Leaver

4De fato, o método WKB mantem-se uma boa aproximação para os modos quasi-
normais até n ∼ l [57]. Quando n ≥ l, devemos empregar o método da integral no espaço
de fases [58].
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(Frobenius), publicado originalmente na década de 80 [59, 60]. Faremos uso

aqui deste método, pela relativa facilidade em se calcular modos com altos

valores de n.

3.4.2 O método de Leaver (Frobenius) - frações parci-

ais

Inicialmente, vamos expandir a função Ψ em termos de um somatório de uma

variável convenientemente escolhida [60], u = r−r+
r−r− ,

Ψ(r) =
r+(r+ − r−)iω+1ub

r(r+ − r−)2iω+1eiω(r+2r+)

∞
∑

n=0

anu
n (3.24)

em que b(r+ − r−) = −iωr2
+. Os limites da equação (3.22) quando usados no

Ansatz acima resultam em

lim
r∗→−∞

Ψ(r) = [e−iωr+(r+ − r−)
iωr2

−

r+−r− ](r − r+)b, (3.25)

lim
r∗→+∞

Ψ(r) = [r+e
−2iωr+(r+ − r−)−2iω−1

∞
∑

n=0

an]e
iωr∗ , (3.26)

do que devemos ter que
∑

an converge (para que possamos usar este ansatz).

E com tal expansão para Ψ, substitúıda na equação de onda, obtemos uma

relação de recorrência com 3 equações definidas a seguir,

0 = α0a1 + β0a0 (3.27)

0 = α1a2 + β1a1 + γ1a0 (3.28)

0 = αnan+1 + βnan + γnan−1 + δnan−2. (3.29)
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em que os coeficientes α, β, γ e δ são escritos em termos de M,Q,Γ, n e ω

como

αn = [n2 + 2(b+ 1)n+ 2b+ 1]r+ (3.30)

βn = (−2 + r−)n2 + [−2 − 2b(2 − r−) + 4iωr2
+ + 6r−]n+ [Γ + 2ω2r3

+

+4iωr2
+(1 + b) − 2b2(2 − r−1

+ ) − r+l(l + 1) − (3 − 2b)r−] (3.31)

γn = (1 + r−)n2 + [−2iωr+(1 + 2r−) + 2b(1 + r−) − 10r−]n +

−iωr+[2 − 12r− + (−iω + 2b)(1 + 2r−)] − 1 − Γ − 2b(1 + 3r−)

+b2[16 + 8r− − (15 − 38r− + 26r2
−)r−3

+ ] + (l2 + l + 13)r− (3.32)

δn = [−n2 + 2(3 + iω − b)n− (9 − 4iωb− 6b+ 6iω)]r− (3.33)

em que escolheremos por conveniência a0 = 1. Para resolver estas equações e

encontrar os modos quasi-normais, faremos inicialmente uma digressão para o

problema semelhante de Schwarzschild [59], ou seja, no limite em que Q = 0.

Em tal situação, δn = 0 e teremos uma relação de recorrência envolvendo

apenas três coeficientes genéricos α, β e γ, além de apenas duas equações, a

saber (3.27) e (3.29) uma vez que (3.27) é como (3.28) com δ = 0 e n→ n−1.

No caso de Schwarzschild, a equação de onda é escrita como

r(r − 2M)
∂2ψ

∂r2
+
∂ψ

∂r
−
[

− ω2r3

r − 2M
+ l(l + 1) − 2M(1 − s2)

r

]

ψ = 0.(3.34)

As condições de contorno neste caso são expressas sob a forma

lim
r→2M

→ (r − 2M)−iω, lim
r→∞

→ riωeiωr. (3.35)

e o Ansatz para a solução em ψ é o mesmo tomado pra Reissner-Nordström,

com Q = 0, ou seja,

ψ = (r − 2M)−iωr2iωeiω(r−2M)

∞
∑

n=0

an

[

r − 2M

r

]n

. (3.36)

Com estas colocações, o problema em Schwarzchild torna-se extremamente

similar ao de Reissner-Nordström, exceto que temos uma equação de re-
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corrência a mais (bem como um termo extra) neste caso. A relação para o

limite assintótico de an é dada por [60]

lim
n→∞

an+1

an
∼ 1 −

√

−iω
n

+
−2iω − 3/4

n
+ T (n−3/2), (3.37)

e a série pode ser resolvida em termos de uma fração parcial, escrita como

an+1

an
= − γn+1

βn+1 − αn+1γn+2

βn+2−
αn+2γn+3
βn+3−...

(3.38)

que usualmente é representada como

an+1

an
= − γn+1

βn+1−
αn+1γn+2

βn+2−
αn+2γn+3

βn+3−
... (3.39)

Com algumas manipulações algébricas, obtemos a forma final que pode ser

iterada indefinidamente, fazendo-se uso da expressão (3.37) para o final da

série,

[

βn −
αn−1γn
βn−1−

αn−2γn−1

βn−2−
...− α0γ1

β0

]

=

[

αnγn+1

βn+1−
αn+1γn+2

βn+2−
αn+2γn+3

βn+3−
...

]

.(3.40)

Para usar estes artif́ıcios no caso de Reissner-Nordström, precisamos reduzir

as relações de recorrência a duas equações, como no caso de Schwarzschild.

Uma maneira simples de conseguir este efeito é redefinir os coeficientes α, β, γ

e δ de maneira que

0 = α′
0a1 + β ′

0a0 (3.41)

0 = α′
nan+1 + β ′

nan + γ′nan−1. (3.42)
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A redefinição proposta é dada por

δ′n = 0 (3.43)

α′
n = αn (3.44)

β ′
n = βn −

α′
n−1δn
γ′n−1

(3.45)

γ′n = γn −
β ′
n−1δn
γ′n−1

. (3.46)

para n ≥ 2, e por

α′
n = αn, β ′

n = βn, γ′n = γn (3.47)

para n = 0, 1.

Temos agora todo o ferramental necessário para a obtenção dos mo-

dos quasi-normais gravitacionais de acordo com o método de Leaver. Nas

próximas subseções analisaremos as perturbações de Dirac e escalar.

3.4.3 Propagação dos Campos de Spin meio e Escalar

na geometria de Reissner-Nordström

A equação do campo de spin 1/2 tem um par de equações em termos do

formalismo de Newman-Penrose escrito como [51]

σiAB∇iP
A + iµQCεCB = 0 (3.48)

σiAB∇iQ
A + iµPCεCB = 0, (3.49)

em que µ
√

2 é a massa da part́ıcula, P,Q um par de espinores que repre-

sentam a função de onda e σ são as matrizes de Pauli dadas em termos da

tétrada de Newman-Penrose,

σiAB =
1√
2

[

li mi

m̄i ni

]

. (3.50)
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Escrevendo em termos dos coeficientes de spin, e das componentes dos espi-

nores, P = (F1, F2), Q = (−G2, G1), obtemos o grupo de equações

(D + ε− ρ)F1 + (δ∗ + π − α)F2 = iµG1

(∆ + µ− γ)F2 + (δ + β − τ)F1 = iµG2

(D + ε∗ − ρ∗)G2 − (δ + π∗ − α∗)G1 = iµF2

(∆ + µ∗ − γ)G1 − (δ∗ + β∗ − τ ∗)G2 = iµF1. (3.51)

As equações acima são bastante genéricas e valem para um grande número de

diferentes espaços-tempo (por exemplo Kerr e Kerr-Newman). Vamos parti-

cularizar para o caso de Reissner-Nordström ao escrevermos os coeficientes

de spin em termos do sistema de coordenadas esférico e da solução como es-

crita no começo da seção (3.13). Em tal caso, os coeficientes de spin usados

nas equações de campo assumem as expressões [51]

κ = σ = λ = ν = ε = π = τ = 0,

ρ = −1

r
, β = α =

cotgθ√
8r

,

µ = −r
2 − 2Mr +Q2

2r3
, γ =

Mr −Q2

2r3
(3.52)

Para as tétradas, quando projetadas no sistema de referências esférico temos

que

D = l = D0, ∆ = n = −r
2 − 2Mr +Q2

2r2
D

†
0

δ = m =
L
†
0

r
√

2
, δ∗ = m̄ =

L0

r
√

2
(3.53)

em que os operadores genéricos D,L são escritos como

Dn = ∂r +
iωr2

r2 − 2Mr +Q2
, D

†
n = D

∗
n,

Ln = ∂θ + ncotgθ +mcosecθ, L
†
n = ∂θ + ncotgθ −mcosecθ. (3.54)
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Para obter uma equação de propagação do campo, finalmente, faremos duas

mudanças de variáveis de maneira que estas 4 equações sejam separáveis

e representem part́ıculas de spin 1/2 e -1/2. Notadamente, redefinimos as

funções F e G,

(F1, F2, G1, G2) = (f1/r, f2, g1, g2/r), (3.55)

(f1, f2, g1, g2) = (R−S−, R+S+, R+S−, R−S+). (3.56)

com o que as equações (3.51) ficam como

S−D0R− +
1√
2
R+L1/2S+ = 0,

hS+D
†
1/2R+ −

√
2R−L

†
1/2S− = 0,

S+D0R− − 1√
2
R+L1/2S+ = 0,

hS−D
†
1/2R+ +

√
2R−L

†
1/2S+ = 0. (3.57)

sendo h = r2−2Mr+Q2, e tendo tomado µ = 0 (ou seja, para part́ıculas não

massivas). As designações + e - nas funções de onda representam part́ıculas

de spin positivo e negativo no limite clássico, ou seja quando g → ηMinkowski.

As equações acima podem ser separadas sem muito trabalho em parte

angular, e parte radial,

0 = (hD
†
1/2D0 − λ2)R−,

0 = (D0hD
†
1/2 − λ2)R+,

0 = (L†
1/2L1/2 + λ2)S+,

0 = (L1/2L
†
1/2 + λ2)S−, (3.58)

e que feito o devido uso dos operadores D resulta, para a parte radial,

{

h
∂2

∂r2
+
ḣ

2

∂

∂r
+

[

ω2 r
4

h
− iω

(

r2ḣ

2h
+ 2r

)]

− λ2

}

R− = 0,(3.59)

{

h
∂2

∂r2
+

3ḣ

2

∂

∂r
+

[

ω2 r
4

h
− iω

(

−r
2ḣ

2h
+ 2r

)]

− Λ2

}

R+ = 0,(3.60)
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com Λ2 = λ2 − 1, λ2 = (j + 1/2)(j + 1/2) e 5j = l + 1/2. Estas equações

quando integradas usando-se o método de Leaver - desenvolvido na última

seção - nos dão, com uma precisão alta, os modos quasi-normais.

A propagação do campo escalar, segue a equação de Kelin-Gordon, que

já especificamos no caṕıtulo anterior ao trabalhar com a métrica de Ernst.

A geometria é dada por gµν = diag(−a, a−1, r2, r2sen2θ), com a = h/r2, de

maneira que o desenvolvimento de 1√−g∂µ[
√−ggµν∂νΦ] = 0 leva a

[

h
∂2

∂r2
+ ḣ

∂

∂r
+ ω2 r

4

h
− l(l + 1)

]

Ψ(r) = 0. (3.61)

Com efeito, uma análise das equações de propagação dos campos de diferentes

spins, como apresentamos aqui, podem reduzida-las a uma única equação

mestra, a saber

[

h
∂2

∂r2
+ (s+ 1)ḣ

∂

∂r
+ ω2 r

4

h
+ iωs

(

r2 ḣ

2h
+ 4r

)

− P 2

]

Ψ = 0. (3.62)

em que s representa o spin do campo propagado e P = L(L+ 1)− s(s+ 1).6

Desta maneira, o ansatz para resolver esta equação com o método de Leaver

também é genérico e dado por

Ψ = r(r − r+)−s/2−b(r − r−)−1−s/2+2iω+b−eiω(r−r−)

∞
∑

n=0

an

[

r − r+
r − r−

]n

, (3.63)

(b− = br2
−/r

2
+). As relações de recorrência ficam exatamente iguais as de

(3.27-3.29), exceto pelo fato de que δ = 0. Os coeficientes usados para o

cálculo da fração parcial e por conseguinte dos modos quasi-normais são

5Por uma questão de convenção usamos diferentes termos para a parte angular da
equação de um campo de spin meio ou inteiro. Isto porque, para spin meio, o valor do
momento angular pode variar de acordo com j = ±1/2,±3/2,±5/2, ..., e para spin zero,
a variação é l = 0,±1,±2, ...

6Respeitando a convenção adotada, L = l para spin nulo, e L = j para spin semi-inteiro.
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dados, em termos dos spins por

αn = n2 + (C0 + 1)n+ C0, (3.64)

βn = −2n2 + (C1 + 2)n+ C3, (3.65)

γn = n2 + (C2 − 3)n+ C4 − C2, (3.66)

com as constantes C’s determinadas por

C0 = 1 − s− iω − iωK, C1 = −4 + 2iω(2 + b) + 2iωK,

C2 = s+ 3 − 3iω − iωK, C4 = s− 1 + 2iω(iω − s− 3/2) − (2ω + i)ωK,

C3 = ω2(4 + 2b− 4r−r+) − s− 1 + iω(2 + b) − P + ωK(2ω + i), (3.67)

(K =
r2++r2

−

r+−r− ).

Com tais artif́ıcios, já estaremos aptos a iterar a equação das frações

parciais, que tem a mesma forma que (3.40), e obter os modos quasi-normais.

Na próxima seção, motivaremos o cálculo do espectro quasi-normal para

valores altos de n, através da proposição de uma relação entre termodinâmica

e modos-quasi-normais.

3.5 Mudança de Fase de Segunda Ordem em

Buracos Negros e Modos Quasi-normais

A mudança de fase de segunda ordem em buracos negros foi investigada pri-

meiramente em [61], e está relacionada ao fato de que a capacidade térmica

associada a buracos negros pode ser negativa, dependendo de seus parâmetros,

ou positiva. Por exemplo, para Schwarzschild temos que S = 4πM2, T =

(8πM)−1, levando a uma capacidade térmica negativa C = T ∂S
∂T

= −8M2,

fato este bastante curioso que prenuncia uma termodinâmica não usual.

Em uma métrica bastante genérica, com constante cosmológica, carga,

massa e momento angular, a entropia pode ser calculada como,

S =
1

4

∫ √
gθθgφφdθdφ = π

r2
h + a2

1 + Λa2
, (3.68)
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e a temperatura como

Th =
kh
2π

=
Λ
∏

j 6=h |rh − rj|
4π(1 + Λa2)(r2

h + a2)
(3.69)

sendo rj os demais horizontes da geometria. Tal relação é dependente da

gravidade superficial no horizonte, que também pode ser calculada para ou-

tros horizontes com a expressão acima, apenas mudando-se rh para o valor

de r neste horizonte. A capacidade térmica do buraco negro é dada por

C =
2πk2rh

(1 + Λa2)∂k2
∂rh

∣

∣

∣

∣

Λ,a,Q

, (3.70)

sendo k2 a gravidade superficial do segundo horizonte (dos quatro posśıvel

em ordem crescente em r), dada por

k2 =
Λ

2(r2
2 + a2)(1 + Λa2)

[

3r2
2 − r2

1 − Λa2

Λ
+
a2 +Q2

Λr2

]

. (3.71)

O fato peculiar desta expressão para C é que o denominador pode, com

a escolha adequada dos parâmetros do buraco negro, ter valor nulo. Tal

descontinuidade da função C representa uma transição de fase de segunda

ordem [62]. Para o buraco negro de Reissner-Nordström em espećıfico, a =

Λ = 0 e temos que

CRN =
4MTS3

πQ4 − 4T 2S3
=

2π
√

M2 −Q2[−2M2 +Q2 − 2M
√

M2 −Q2]2

2M3 − 3MQ2 + 2(M2 −Q2)3/2
,

(3.72)

que diverge para

Qtf =

√
3

2
M. (3.73)

Este é ponto em que a capacidade térmica torna-se singular, e muda de si-

nal de positiva para negativa, associado portanto a uma mudança de fase

de segunda ordem. A proposição inicial é de que os modos quasi-normais
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Figura 3.11: Campo de Dirac com
j = 3/2, n = 5. Gráfico ’ω’ apareci-
mento do comportamento oscilatório

carreguem algum tipo de informação termodinâmica associado a essa des-

continuidade [49], uma vez que dωI

dωR
diverge, da mesma maneira que C, para

determinados valores de l, n e Q.

As curvas dos modos quasi-normais para a geometria de Reissner-Nordström

do tipo (ωR x ωI), (ωR x Q) e (ωI x Q)7 têm um formato bastante peculiar.

Os gráficos do tipo (ωR x ωI) tomam a forma de espiral, para altos valores

de n e baixos de l [43, 44], e os demais um formato oscilatório como uma

função da carga.

A caracteŕıstica peculiar aqui observada é a de que quando o comporta-

mento do gráfico ω começa a exibir o formato espiral, teremos D̂ ≡ dωI

dωR
→

CRN → ∞, para as perturbações de spin meio e escalares [49], para os pri-

meiros valores de l.

A proposta é a de verificar se tal comportamento se mantem para valores

diferentes de l, o que tornaria a ’conjectura’ robusta, e mais especificamente

obter o mesmo comportamente para perturbações gravitacionais, o que seria

uma indicação forte de que de fato os modos quasi-normais carregam alguma

propriedade termodinâmica ainda não elucidada, uma vez que, fisicamente,

há mais sentido falar em perturbações gravitacionais do que em propagação

7A tais gráficos designaremos por simplicidade como ω, R e I, respectivamente, daqui
por diante.
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de campos testes em dadas geometrias8.

Para as perturbações de spin meio e escalar, obtivemos resultados que

confirmam a conjectura como proposta em [49]. Os gráficos das figuras (3.10-

3.15), confirmam o comportamento apontado acima.
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-2.54

-2.52

-2.5

-2.48

-2.46

-2.44

-2.42

-2.4

-2.38

-2.36

-2.34

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Im
(w

)

Q

n=05 l=1

Figura 3.15: Campo de Dirac com
j = 1/2, n = 2. Gráfico ’I’.

A condição de que o gráfico ω adquira um formato espiral depende do

valor de momento angular considerado. Quanto maior l (ou mesmo j), maior

8Pois por certo estes campos perturbam a ada geometria também.
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é o valor de n para o qual ω tem este formato. Nomeamos nc o valor de n, a

partir do qual, para um dado l, o gráfico ω toma um formato espiral. Então,

pelos resultados obtidos (e em acordo com [49]), para a perturbação de spin

1/2, nc = 2, 5 para l = 0, 1 ou j = 1/2, 3/2.
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Em todos os gráficos para n > nc, o comportamento espiral se acentua,

e ainda quanto maior n, mais próximo ω estará de uma espiral concêntrica,
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Tabela 3.1: Valores de Qd para diferentes momentos angulares.

l 2 3 4 5 6
nc 5 10 15 22 31
Q0 0.436 0.407 0.397 0.383 0.368

como o esperado por [41]. Também a oscilação dos gráficos R e I torna-se

mais acentuada conforme o valor de n aumenta.

O comportamento evidenciado é a proposta de que exatamente no ponto

de transiçãode fase, Qtf , os modos quasi-normais sofrem uma descontinuidade

semelhante em D̂. Tal evidencia se sustem para perturbações calculadas em

outros valores de l, e ainda para a propagação do campo escalar.

A perturbação gravitacional, contudo, não evidencia tal efeito, e ao contrário,

denota este fato como sendo apenas uma posśıvel coincidência numérica uma

vez que os gráficos não apresentam um corpontamento robusto, como o su-

gerido em [49].

Os resultados são qualitativamente semelhantes aos da propagação de

campos na geometria: os gráficos ω oscilam em formato espiral, e os gráficos

I e R oscilam em função da carga, para valores altos de n. Entretanto o

ponto em que esta oscilação começa a acontecer é diferente para os diferentes

valores de l e nc na perturbação gravitacional, e mais imporante, não coincide

com Qtf . Os plots para a perturbação gravitacional, com diferentes valores

de l, seguem nas figuras (3.16-3.23).

Destes gráficos, podemos inferir que o ponto em que D̂ diverge não coin-

cide com o ponto em que C diverge, ou seja, ωR(max)|Qd
tem Qd 6= Qtf .

Também ao plotarmos D̂ em função da carga, este gráfico tem um formato

essencialmente diferente do gráfico C x Q, como acontece para o campo de

spin meio quando para um dado l, n = nc.

Os valores de Qd, para os quais ωR atinge o máximo são listados na tabela

3.1.
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Figura 3.20: Modos quasi-normais,
perturbação gravitacional.

-4.3

-4.28

-4.26

-4.24

-4.22

-4.2

-4.18

-4.16

-4.14

-4.12

-4.1

 0.64  0.66  0.68  0.7  0.72  0.74  0.76  0.78
Im

(w
)

Re(w)

n=10 l=3

Figura 3.21: Modos quasi-normais,
perturbação gravitacional.
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Figura 3.23: Modos quasi-normais,
perturbação gravitacional.
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Tabela 3.2: Valores de Qd para diferentes momentos angulares.

l 2 3 4 5 6 7 8 9
Q0 0.4891 0.4860 0.4841 0.4828 0.4819 0.4812 0.4807 0.4802
l 10 11 12 13 14 15 16 17
Q0 0.4799 0.4796 0.4794 0.4792 0.4790 0.4788 0.4787 0.4787

3.5.1 O Comportamento de ω0

Embora os resultados da perturbação gravitacional não confirmem a con-

jectura de que os modos quasi-normais levam alguma informação da ter-

modinâmica de buracos negros, relacionados à mudança de fase de segunda

ordem para estas geometrias, um comportamente peculiar emerge quando in-

vestigamos os gráficos do tipo ω0 x Q,9 em que ω0 é a frequência relacionada

com a quantização da área da seção 3.2.

Para tais tipos de gráfico, o pico de ω0 acontece próximo a Q ∼ 0.48

sempre que l = n (nomearemos o ponto em que ω0 atinge seu valor máximo de

Q = Q0). Isto desconfigura uma posśıvel relação com a transição de segunda

ordem, visto que tal valor está 10.5% distante de Qtf , entretanto revela um

comportamento interessante: sempre que investigamos l = n, para valores

cada vez maiores de l, obteremos que dQ
dω0

diverge quando Q0 → 0.4787. Uma

tabela com os primeiros valores de l é escrita em 3.2.

Quanto maior o valor de l, mais próximo o valor do primeiro pico na

função ω0 fica de Q0 = 0.4787.

Outro grupo de gráficos que segue este comportamento é a série l = n−1.

Quanto maior o valor de l, mais próximo o valor do primeiro pico em RI se

aproxima de Q0, de maneira que o ponto Q0 parece se tratar de um ’ponto

de acumulação’ para estas duas séries. Tal comportamento acontece também

para a série l = n− 2, embora se perca precisão, para se saber com certeza

o valor do primeiro pico, Qp, com 4 casa após a v́ırgula, o que impossibilita

o estudo da série l = n − 3. Um plot genérico de l = n para o gráfico RI

9Nomearemos tais gráficos de gráficos RI
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segue na figura (3.24): quanto maior o valor de l, maior a proximidade do

pico com o valor de acumulação Q0.
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Figura 3.24: ω0 como função de Q, para a série l = n: o pico situa-se em
Q0 = 0.4787.
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Caṕıtulo 4

Modos Quasi-Normais em

Buracos Negros Cosmológicos

Temos visto nos últimos anos um crescente interesse pelo estudo de buracos

negros com constante cosmológica e sua associação com a conjectura AdS-

CFT. A análise de perturbações em tais tipos de buracos negros é, de maneira

geral, bastante similar ao de buracos negros sem constante cosmológica. No-

tadamente, embora o espaço-tempo não seja assintóticamente o de Minkowski

(sendo portanto não-trivial, por exemplo, definições como a de energia de

part́ıculas medidas por observadores externos ao horizonte de eventos), exis-

tem equações de perturbação destas métricas com simetria esférica, visto que,

o espaço-tempo pode ser escrito em uma variedade V 2 x SD−2.

Os buracos negros de de Sitter e anti-de Sitter diferem apenas pelo termo

de constante cosmológica ser negativo ou positivo, respectivamente. O ele-

mento de linha de tais tipos de objetos advem de uma métrica genérica para

buracos negros com simetria esférica dada por [63]

ds2 = gabdx
adxb + r2dΩ2

D−2. (4.1)

Aqui D é o número de dimensões do espaço-tempo e ΩD−2 a esfera-(D − 2),

cuja métrica é dada por dΩ2
D−2 = γijdz

jdzi. O tensor de curvatura de Ricci
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é dado por

Rij = (D − 3)Kγij, (4.2)

em que K é a curvatura intŕınsica da sub-variedade S. Por sua vez, os ı́ndices

a e b tem seu escopo limitado à sub-variedade bidimensional V 2.

Quando da presença de uma constante cosmológica, vale para g que

lim
r→∞

gab 6= 0, (4.3)

de maneira que o escalar de Ricci é proporcional a esta constante de acordo

com as equações de Einstein.

Neste caṕıtulo iremos trabalhar essencialmente com buracos negros defi-

nidos por um conjunto de 4 parâmetros: massa, carga, constante cosmológica

e dimensão do espaço-tempo

Cabe a ressalva de que embora não haja evidência f́ısica (experimental)

para que as equações de Einstein permaneçam as mesmas em mais do que

4 dimensões, há boas motivações teóricas para o seu estudo fornecidas pela

conjectura da correspondência AdS-CFT.

O elemento de linha da solução de buraco negro com estes 4 parâmetros

lê-se

ds2 = −
[

1 − 2M

rD−3
+

Q2

r2D−6
− Λr2

]

dt2

+

[

1 − 2M

rD−3
+

Q2

r2D−6
− Λr2

]−1

dr2 + r2dΩ2
D−2. (4.4)

Como já descrito em caṕıtulos anteriores, uma perturbação gravitacional

neste elemento de linha corresponde à adição de um tensor h em primeira

ordem quando consideramos g de ordem zero. Dada a simetria esférica do

problema, podemos decompor este tensor h em componentes escalares hab,

componentes vetoriais hia e componentes tensoriais hij. De acordo com esta

classificação, podemos escrever cada componente de h de maneira espećıfica,
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preservando com isto a simetria desejada. Temos

hai = ∇iha + h̃ai, ∇ih̃ai = 0,

hij = hLγij + hT ij, γkihT ij = 0,

hT ij = [∇i∇j − (D − 2)−1γij∇k∇k]hT + 2∇(ihTj) + h̃T ij , (4.5)

com ∇jhTj = 0 e ∇jh̃T ij = 0 e ∇ representa a derivada covariante relativa

a uma das duas sub-variedades. Com esta decomposição, podemos separar

todas as componentes de h em escalares (hab, ha, hL, hT ), vetores (h̃ai, hT i)

ou tensores (h̃T ij), (todos em relação a SD−2). Tal fenômeno ocorre pelo fato

de que γ é o único tensor não trivial em um espaço-tempo maximalmente

simétrico em S2 [66].

É posśıvel tratar a perturbação, com estas decomposições, de maneira que

tenhamos três escolhas para h bem-definidas como já mencionado. Analisa-

remos em seguida a primeira destas escolhas para h, a saber, a perturbação

tensorial. Tal perturbação não tem significação f́ısica em 4 dimensões, sendo

puramente gauge. (Em 4 dimensões, por exemplo, ao considerarmos per-

turbações em um buraco negro de Schwarzschild, não há nenhum gauge

posśıvel cujas componentes de h sejam apenas aquelas que se transformem

tensorialmente em S2. Isto que dizer que, devemos ter ou hab ou hai - ou

ambos - não nulos para que de fato haja uma perturbação).

4.1 Perturbações Gravitacionais Tensoriais

Como a perturbação do campo eletromagnético não possui uma componente

tensorial [63], os campos eletromagnéticos entram nas equações apenas como

efeito direto na geometria de fundo. O tensor de perturbação da métrica,

após considerado o gauge em termos de simetrias de vetores de Killing fica

como

hab = 0, hai = 0, hij = 2r2HTij, (4.6)
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e de maneira semelhante, a perturbação do tensor momento-energia terá

somente as componentes tensoriais:

δTab = 0, δTai = 0, δT ij = τT ij . (4.7)

A equação de perturbação gravitacional é derivada considerando-se uma ex-

pansão nos termos da equação de Einstein até primeira ordem,

∇a∇aH +
D − 2

r
∇ar∇aH − £ − 2(D − 3)

r2
H = −k2τ, (4.8)

em que £ é o auto-valor da equação de Lichnerowicz, ∆Tij = £Tij ou,

∆hij → −∇k∇khij − 2Rijklh
kl + 2(D − 3)hij. No caso da simetria esférica

especificamente, temos £ = l(l +D − 3), sendo l o número de multipolo de

harmônico esférico. Então, fazendo-se uma mudança de variável no campo

H → r(2−D)/2Φ, (4.9)

obteremos a equação de perturbação em sua forma canônica,

[

∇a∇a +
V (r)

gtt

]

Φ = −k2r(D−2)/2τ (4.10)

com V (r) o potencial dado por

V (r) = −gtt
r2

[

£ − 2(D − 3) +
(D − 2)r

2
ḟ +

(D − 2)(D − 4)

4
f

]

= −gtt
r2

[

£ +
(D2 − 14D + 32)

4
− D(D − 2)

4
Λr2 +

(D − 2)2

2rD−3
M

− (D − 2)(3D − 8)

4r2D−6
Q2

]

(4.11)

Para escrever a equação de perturbação em termos de um sistema de coor-

denadas do gênero (r, t) - tipo espaço e tipo tempo, temos ∇2 = gab(∂a∂b −
Γcab∂c). Tendo em vista o elemento de linha (4.4), as únicas conexões não

nulas são dadas por Γrrr = grrgrr,r/2 e Γrtt = −grrgtt,r/2, o que nos fornece
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para ∇2,

∇2 = gtt∂2
t + ∂r(g

rr∂r). (4.12)

A equação de perturbação neste caso se torna

[

gtt∂2
t + ∂r(g

rr∂r) +
V (r)

gtt

]

Φ = 0 (4.13)

Queremos obter os modos quasi-normais de vibração do buraco negro e para

tanto, como já se afirmou nos caṕıtulos anteriores, muitos são os métodos

dispońıveis. Por uma questão de simplicidade, adotaremos aqui o método de

integração em coordenadas nulas, como descrito pela primeira vez em [67].

Para encontrar a equação de perturbação em coordenadas nulas, devemos

primeiramente definir tais coordenadas em termos da coordenada tartaruga,

cuja representação é dada por gttdr
2
∗ + grrdr = 0. Para o buraco negro de

estudo, dr∗ = −grrdr e ∂
∂r∗

= −grr ∂
∂r

, do que ∂2

∂r2∗
= grr ∂

∂r

(

grr ∂
∂r

)

. Assim, a

equação de perturbação com r∗ fica

[

− ∂2

∂t2
+
∂2

∂2
r∗

+
V (r)

gtt

]

Φ = 0. (4.14)

As coordenadas nulas são definidas em termos de t e de r∗ como v = r∗+t
2

e

u = t−r∗
2

, de maneira que ∂
∂v

= 1
2

[

∂
∂r∗

+ ∂
∂t

]

e ∂
∂u

= 1
2

[

− ∂
∂r∗

+ ∂
∂t

]

, e com isto,

obteremos a equação perturbativa em sua forma final para a integração com

o formato

[

−4
∂

∂u

∂

∂v
+
V (r)

gtt

]

Φ = 0. (4.15)

Na próxima sub-seção, definiremos o método utilizado, como em [67].

4.1.1 Método de Integração em Coordenadas Nulas

Na última equação temos representada uma perturbação tensorial em uma

geometria de buracos negros com 4 parâmetros distintos. Queremos fazer a

integração desta equação nas coordenadas u e v. Trata-se de coordenadas

83



nulas visto que o elemento de linha contendo u e v não tem os termos guu

e gvv, ou seja, os vetores tangente à variedade ∂v e ∂u são vetores nulos

designados por < ∂u, ∂u >=< ∂v, ∂v >= 0.

A integração em uma grade de coordenadas u e v pode ser pensada de

maneira usual ao discretizarmos os eixos em “pequenos” intervalos ∆u e

∆v (o conceito de pequeno a que nos refirimos aqui está relacionado com

o resultado a ser obtido pela integração. Uma vez que um dado perfil de

campo é obtido, podemos diminuir a escala em uma ordem de grandeza, por

exemplo, e verificar se este mesmo perfil se repete. Em caso positivo, temos

então uma discretização pequena o suficiente para os propósitos do cálculo).

Neste caso, as derivadas do campo podem ser expressas como variações ∆Φ

da seguinte maneira

∂

∂v
Φ =

∆Φ

∆v
≡ ΦE − ΦW

∆v
(4.16)

∂

∂u
Φ =

∆Φ

∆u
≡ ΦN − ΦS

∆u
. (4.17)

Tal discretização do campo obedece a um diagrama em que u ocupa o eixo

das abcissas e v o eixo das ordenadas, de maneira que uma variação no campo

Φ possa ser escrita como o valor deste campo no seu ponto ao norte menos o

valor do campo no ponto ao sul deste, para u, e de maneira semelhante para

v (variação de Φ em relação aos pontos leste e oeste).

A equação de perturbação pode ser escrita em termos das variáveis acima,

com a discretização do espaço-tempo como

ΦN = ΦE + ΦW − ΦS + ∆u∆v
V (r)

gtt

ΦW + ΦE

8
. (4.18)

O componente final desta prescrição para obtermos o comportamento do

campo Φ, que descreve uma perturbação gravitacional tensorial nos buracos

negros Reissner-Nordström de Sitter (anti-de Sitter) é a condição de contorno

utilizada ao integrarmos. Para obtermos uma figura completa de Φ na grade

de integração (u, v), e por consequência, sua evolução temporal, precisamos

de “duas retas de condição de contorno”, a saber, todos os valores que Φ
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assume ao longo de duas retas iniciais, u = u0 e v = v0, por exemplo. Em

geral, podemos evoluir um pacote de onda Gaussiano em uma das direções

como condição inicial para o campo, e uma constante em outra direção [68],

Φ(u0, v) = exp

[

−(v − vc)
2

2σ2

]

,

Φ(u, v0) = constante. (4.19)

(vc representa o centro deste pacote na coordenada v e σ o quão concentrado

ao redor deste centro ele está).

Há outros métodos de refinamento melhores para a convergência da equação

(4.15), contudo, para os nossos propósitos de calcular o primeiro overtone,

em cada valor diferente de carga, constante cosmológica e momento angulas,

o método como proposto representa uma convergência relativamente boa:

com uma grade de 10 milhões de pontos, obtemos um resultado equivalente

ao de uma grade de 150 milhões de pontos, o que representa a convergência

do método para esta primeira quantidade de pontos, já.

4.1.2 Método Prony

Uma vez obtido o sinal quasi-normal do campo em função de t, podemos

aplicar um segundo método numérico para a obtenção das frequências, de-

nominado método de Prony.

O primeiro passo para a aplicação de tal método é a decomposição do

campo em termos dos modos quasi-normais de vibração como uma função

do tempo,

Φ(t) ≃
p
∑

j=1

Cje
−iωjt (4.20)

Supondo que a oscilação quasi-normal comece em um dado tempo t0 e

termine em um tempo posterior, t = N∆u, com N um inteiro que respeita

a condição N ≥ 2p− 1. Então é certo que para o campo acima, teremos em
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cada tempo t = nh

xn ≡ Φ(nh) =

p
∑

j=1

Cje
−iωjnh =

p
∑

j=1

Cjz
n
j . (4.21)

O método nos permite calcular zn como uma função dos pontos do perfil xn,

e a partir disso obter as frequências ωj. Com o intuito de fazer isto, definimos

uma função polinomial A,

A(z) =

p
∏

k=1

(z − zj) =

p
∑

m=0

αmz
p−m (4.22)

Considerando que A(zi) = 0, temos

p
∑

m=0

αmxn−m =

p
∑

m=0

αm

p
∑

k=1

Ckz
n−m
k =

p
∑

k=1

Ckz
n−p
k

p
∑

m=0

αmz
p−m
k =

p
∑

k=1

Ckz
n−p
k A(zk) = 0.

(4.23)

com α0 = 1. Da equação anterior, podemos deduzir que
∑p

m=1 αmxn−m =

−xn. Substituindo os N − p valores posśıveis de n, teremos N − p + 1 ≥
p equações lineares para p coeficientes αm indeterminados. Expandindo a

equação para x, teremos













xp−1 xp−2 · · · x0

xp xp−1 · · · x1

· · · · · · · · · · · ·
xN−1 xN−2 · · · xN−p

























α1

α2

· · ·
αp













= −













xp

xp+1

...

xN













(4.24)

Renomeando a equação acima como Xα = −x, podemos resolvê-la como

α = −(X†X)−1X†x, (4.25)

(devemos aplicar o operador X† na equação visto que a matriz X não é

quadrada, após o que poderemos tomar sua inversa).

Depois de calculados os coeficientes αm na equação acima, poderemos
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encontrar zk pelos zeros de (4.22) e através destes as frequências,

ωj =
i

∆v
ln zj (4.26)

4.2 Análise de Horizontes

Os horizontes dos buracos negros com constante cosmológica definidos pelo

elemento de linha (4.4) têm lugar onde a função radial (grr ≡ f(r)) é nula. O

fato de podermos considerar os horizontes como o zero desta função está co-

nectado com a simetria esférica da métrica: para elementos de linha que não

tenham simetria esférica, f(r) = 0 não representa os horizontes de evento.

Além do horizonte de eventos, na presença de carga e constante cos-

mológica espera-se a ocorrência ainda de um segundo horizonte de eventos

interno (horizonte de Cauchy) e de um horizonte externo, devido à constante

cosmológica, denominado horizonte de de Sitter.

Por questões de simplicidade, adotaremos que o horizonte de eventos tem

lugar em rh = 1. Isto corresponde a fixar o valor da massa em termos da

carga e da constante cosmológica em

M =
1 − Λ +Q2

2
, (4.27)

uma vez que f(rh) = 0. Um caso de buracos negros extremos para esta função

ocorre sempre que um segundo horizonte rC tenha rC = 1. Isto representa

uma segunda restrição que relaciona a constante cosmológica com a carga da

solução. Para obter esta relação, podemos considerar caso a caso, a partir de

D = 5 dimensões. Sendo rh = rC = 1, além da condição (4.27) sobre a massa

é necessário ainda que 2 − 3Λ − 2M = 0. Para 6 dimensões esta condição

extra é dada por 3 − 4Λ − 4M = 0 e em 7 dimenões por 4 − 5Λ − 6M = 0.

A prescrição genérica para um número qualquer de dimensões (maior do que

4) fica

1 − 2Λ − (D − 4)Q2 = 0 (4.28)
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Desta maneira, para cada solução com uma dada constante cosmológica, há

um valor de carga,

Qc =

√

1 − 2Λ

D − 4
(4.29)

que representa a coalescência de dois horizontes em r = 1. A presença de

modos instáveis para valores de Q próximos aos valores extremos acima foi

verificado para o potencial escalar em [6, 7].

Dentre as demais ráızes, para os diversos valores posśıveis de Λ, tere-

mos sempre uma terceira raiz positiva de f(r) que representa o horizonte

cosmológico, rS, com as outras negativas. Para determinar ainda se o caso

extremo acima representa a coalescência do horizonte de Cauchy ou cos-

mológico, é necessário saber o número de dimensões do espaço-tempo. Para

D = 5, por exemplo, as ráızes de f(r) estão sempre em pares ±a, e, além de

±1 representarem ráızes duplas no caso extremo, teremos mais duas ráızes

dadas por rS = ±( 1
Λ
− 2). Isto indica que há uma coalizão do horizonte

cosmológico com o horizonte de eventos no caso em que Λ < 1/3, e dos dois

horizontes de eventos, em caso contrário, Λ > 1/3. Para Λ = 1/3, os três

horizontes estão localizados em r = 1.

É praticamente imposśıvel determinar os zeros da função f(r) analitica-

mente para um número arbitrário de dimensões, e sem informações extras

a respeito da carga e da constante cosmológica, uma vez que a equação

tem número de ráızes proporcional à dimensão do espaço-tempo. Para ana-

lisarmos a presença de horizontes e nas próximas seções os modos quasi-

normais, consideraremos um espaço-tempo de 5 dimensões, com função ra-

dial f(r) = 1 − 2M
r2

+ Q2

r4
− Λr2. Neste caso, os horizontes são as ráızes da

equação

−Λr6 + r4 − 2Mr2 +Q2 = 0 (4.30)

que pode ser simplificada a uma equação de terceira ordem com a substituição

r2 = x. Se uma das ráızes da equação for fixada em 1, automaticamente,

uma segunda raiz será -1, uma vez que as ráızes ocorrem em ’duplas ±a’.
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Com a substituição de x em termos de r, podemos calcular analiticamente

as demais ráızes do polinômio restante. Temos

−Λr6 + r4 − 2Mr2 +Q2 = [−Λx2 + (1 − Λ)x−Q2](x− 1) (4.31)

e com isto, os demais horizontes ocorrerão em

r1 =

√

1 − Λ +
√

Λ2 − 2Λ + 1 − 4ΛQ2

2Λ
(4.32)

r2 =

√

1 − Λ −
√

Λ2 − 2Λ + 1 − 4ΛQ2

2Λ
. (4.33)

Figura 4.1: Horizontes de um buraco
negro de Sitter com carga em 5 di-
mensões e Λ = 0.033.

Figura 4.2: Horizontes de um buraco
negro de Sitter com carga em 5 di-
mensões e Λ = 0.2

Tomando dois diferentes valores de constante cosmológica, fazemos um

gráfico das ráızes nas figuras 4.1 e 4.2.

Nestas figuras é posśıvel perceber que, embora a situação em que r = 1 é

uma raiz dupla represente um buraco negro extremo, poderemos ter valores

maiores de Q, contanto que um dos horizontes seja mantido em r = 1. Neste

caso não é mais o horizonte de eventos que se situa neste ponto, mas o de

Cauchy. Uma situação extrema, em que os horizontes cosmológicos e de

eventos coalescem ao mesmo ponto rh = rS = 1 pode ser observada ainda na

figura (4.3), caso em que o horizonte de Cauchy tem rC < 1, e r = 1 passa a

representar o horizonte cosmológico para qualquer valor de carga.
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Figura 4.3: Horizontes de um buraco negro de Sitter com carga em 5 di-
mensões e Λ = 0.5. O horizonte cosmológico passa a se situar em rh = 1, e
os horizontes de eventos estão representados pelas linhas do gráfico.

Na próxima seção exploraremos os resultados obtidos para a perturbação

gravitacional tensorial em 5 dimensões na solução com constante cosmológica

positiva, para o que é de fundamental importância a análise da posição dos

horizontes de eventos ou cosmológico.

4.3 Modos Quasi-normais com a Perturbação

Tensorial

Através do método de integração de coordenadas nulas e com o aux́ılio do

método Prony, obtemos o perfil do campo gravitacional sobre a atuação um

potencial tensorial [64]. Para Λ = 0.0167, as frequências quasi-normais estão

listadas na tabela 4.1. Para D = 4, tanto o potencial tensorial, como o

vetorial representam configurações de gauge puro, sem modos dinâmicos,

portanto, já tendo sido estudados a propagação de um campo escalar em tal

geometria [65].

Há duas caracteŕısticas peculiares aos modos de vibrações do buraco negro

em um Universo de Sitter com um termo pequeno de constante cosmológica:

quanto maior a carga do buraco negro, menor a frequência e a atenuação da

oscilação do buraco negro. Pode-se dizer que quando a carga se aproxima
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Tabela 4.1: Modos quasi-normais para um buraco negro com Λ = 1/60 e
l = 2.

Q ωR ωI Q ωR ωI
0.1 1.107 0.337 0.2 1.099 0.336
0.3 1.081 0.335 0.4 1.055 0.325
0.5 1.021 0.307 0.6 0.984 0.284
0.7 0.945 0.261 0.8 0.902 0.141
0.9 0.858 0.220 1.0 1.023 0.0648
1.1 0.762 0.209 1.2 0.715 0.195
1.3 0.673 0.186 1.4 0.631 0.179
1.5 0.592 0.171 1.6 0.554 0.164
1.7 0.519 0.156 1.8 0.486 0.149
1.9 0.455 0.142 2.0 0.426 0.135
2.1 0.398 0.129 2.2 0.372 0.122
2.3 0.347 0.115 2.4 0.323 0.109
2.5 0.301 0.103 2.6 0.279 0.0963
2.7 0.259 0.0907 2.8 0.239 0.0845
2.9 0.220 0.0791 3.0 0.200 0.0738
3.1 0.180 0.0678 3.2 0.160 0.0606
3.3 0.140 0.0517 3.4 0.123 0.0413
3.5 0.108 0.0312 3.6 0.0940 0.0252
3.7 0.0603 0.0274 3.8 0.0109 0.00859
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de seu valor extremo, o que corresponde à coalizão dos horizontes de evento

e cosmológico, a frequência natural de oscilação, ω0 =
√

ω2
R + ω2

I , tende a

zero. O valor máximo de carga é dado por

Qmax =
1 − Λ

2
√

Λ
, (4.34)

o que corresponde a r1 = r2. Para o caso espećıfico em que Λ = 1/60, temos

Qmax ∼ 3, 808, de maneira que o último valor calculado expresso na tabela

é 99,8% do valor total máximo que Q pode alcançar (e por este motivo tem

ω0 ∼ 0).

Há contudo, ainda, o ponto de destaque Qc =
√

1−2Λ
D−4

, calculado na seção

anterior, que corresponde à coalizão entre os horizontes de Cauchy e de even-

tos.
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Figura 4.4: Campo gravitacional tensorial com Q = 0.1 e l = 2.

Para este ponto, na tabela acima temos QC ∼ 0.983, o que endossa ainda

o comportamento dos modos nas imediações de Q ∼ 0.9: os modos quasi-

normais deixam de ser descrescentes com o aumento da carga. Há uma
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suspeita da existência de modos instáveis para valores de Q próximos aos

valores extremos [6, 7].
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Figura 4.5: Campo gravitacional tensorial com Q = 0.98 e l = 2.

Um perfil do campo t́ıpico de perturbação gravitacional tensorial pode

ser visto na figura 4.4. Neste perfil, podemos observar o boost inicial, que

representa a influência do pacote gaussiano (condições iniciais). Após este

boost, temos a fase de oscilação quasi-normal, que no caso do perfil mostrado

na figura dura de t=20 até t=60. Esta fase tende a se tornar cada vez maior,

quanto maior a carga do buraco negro, e quanto mais próximo ele está de

um buraco negro extremo com horizonte cosmológico no mesmo ponto que o

horizonte de eventos.

Finalmente, o terceiro trecho do perfil de oscilação do campo gravitacio-

nal é a cauda, que está essencialmente ligada com a presença de um potencial

centŕıfugo, l(l+D−3). Tal fase representa o último aspecto da oscilação gra-

vitacional, e como mostrada no perfil 4.4 denota que o modo de vibração de

tal buraco negro é estável à perturbação linear em primeira ordem. No geral,

para o cômputo dos modos quasi-normais, a suposição é de que tanto esta
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cauda quanto o peŕıodo de vibração sejam “bem-comportados” em sentido

de que ambos devem decair com o tempo.

Embora da estabilidade, a cauda na figura 4.4 segue uma reta, diferen-

temente da lei de potência, válida para os casos assintóticamente planos. O

mesmo comportamento pode ser encontrado em [69, 65].

A presença de modos instáveis, cuja cauda ou a fase quasi-normal cresçam

com a evolução temporal denota que a análise da perturbação em primeira

ordem é inconclusiva, para se atestar o caráter final da geometria do espaço-

tempo embora seja uma forte indicação da instabilidade da solução [8].

A existência de modos instáveis em uma dada geometria está associada

ainda, há existência de intervalos em que o potencial gravitacional assume

valores negativos: é condição necessária (mas não suficiente), para que haja

modos que cresçam com o tempo a existência de um intervalo [a, b]ǫr, de

maneira que V (r) < 0. Este é o caso da geometria de Reissner-Nordström-de

Sitter em 5 dimensões.

Em buracos negros cujos horizontes internos coalesçam, a fase de decai-

mento tende a se prolongar ao infinito. Por exemplo, no perfil 4.5, podemos

notar a tendência de que a fase quasi-normal se prolongue por longos peŕıodos

de tempos, quanto mais próximo o buraco negro está de um buraco negro

extremo. Em todos os perfis calculados para valores de carga menores do que

a carga de um buraco negro extremo (com horizontes de evento e de Cauchy

no mesmo ponto), a caracteŕıstica peculiar é a de que a fase quasi-normal é

tanto maior quanto mais próximo da carga QC . Para este perfil temos que

ω = 0.895 + 0.132i, sendo sua carga 99,7% do valor QC .

Quando aumentamos o valor da constante cosmológica, a tendência é de

que tanto a parte real quanto a imaginária dos modos quasi-normais dimi-

nuam. Por exemplo, para Λ = 0.05 e Λ = 0.167, listamos os modos nas

tabelas 4.2 e 4.3. Para o primeiro caso, o valor máximo da carga, para o

qual o horizonte de eventos e cosmológico coalescem é Q ∼ 2.124, e para o

segundo Q = 5
2
√

6
∼ 1.021.

O comportamento geral dos modos quasi-normais para estes dois valores

de Λ é similar ao demonstrado para a tabela 4.1, uma vez que, com a apro-

ximação de Q de seu valor máximo, a frequência natural de vibração tende
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Tabela 4.2: Modos quasi-normais para um buraco negro com Λ = 0.05 e
l = 2.

Q ωR ωI Q ωR ωI
0.1 1.013 0.346 0.2 1.000 0.334
0.3 0.985 0.292 0.4 0.973 0.309
0.5 0.934 0.287 0.6 0.898 0.265
0.7 0.853 0.243 0.8 0.794 0.257
0.9 0.723 0.146 1.0 0.732 0.147
1.1 0.678 0.152 1.2 0.575 0.165
1.3 0.524 0.153 1.4 0.470 0.143
1.5 0.415 0.131 1.6 0.362 0.116
1.7 0.312 0.102 1.8 0.259 0.0892
1.9 0.202 0.0693 2.0 0.147 0.0473

Tabela 4.3: Modos quasi-normais para um buraco negro com Λ = 0.167 e
l = 2.

Q ωR ωI Q ωR ωI
0.1 0.749 0.278 0.15 0.743 0.274
0.2 0.736 0.269 0.25 0.726 0.262
0.3 0.714 0.253 0.35 0.700 0.243
0.4 0.683 0.232 0.45 0.663 0.219
0.5 0.640 0.205 0.55 0.613 0.191
0.6 0.583 0.175 0.65 0.549 0.155
0.7 0.522 0.137 0.75 0.477 0.103
0.8 0.411 0.0879 0.83 0.380 0.103
0.86 0.353 0.0771 0.89 0.326 0.0706
0.92 0.291 0.0675 0.95 0.226 0.0501
0.98 0.168 0.0441 1.01 0.0997 0.00256
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a zero.

Também, nas proximidades do buraco negro extremo com dois horizontes

de eventos no mesmo ponto, este comportamento não é reproduzido, e a

frequência varia para qualquer valor de Λ. Os valores de QC quando Λ = 0.05

e Λ = 0.167 são QC ∼ 0.949 e QC ∼ 0.816. A caracteŕıstica peculiar em

relação a este tipo de buraco negro extremo é a de que, ainda que Λ varie

bruscamente, QC variará de maneira mais suave, ou seja, a influência da

constante cosmológica é mais percept́ıvel para buracos negros extremos em

que os dois horizontes a coalescerem são o cosmológico e o de eventos.
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Figura 4.6: Campo gravitacional tensorial com Q = 0.6 e l = 2.

O perfil t́ıpico do campo, tanto para Λ = 0.05, quanto para Λ = 0.167

é similar ao perfil 4.4. Para Λ = 0.05, a figura 4.7 representa o campo

gravitacional com Q = 0.6. A diferença acontece contudo na oscilação quasi-

normal, que tende a se estender por um tempo muito maior, quanto maior

o valor de Λ. O fato de a oscilação perdurar por longos peŕıodos de tempo

torna complicado a obtenção da cauda do perfil em questão. Como a precisão

máxima a que um programa em fortran pode chegar é dar ordem de 10−14,
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além do erro numérico natural feito pelo cálculo da coordenada tartaruga, é

imposśıvel ir além de certo ponto na integração numérica (sendo, portanto

extremamente complicado a obtenção das caudas para certos perfis).
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Figura 4.7: Campo gravitacional tensorial com Q = 0.6 e l = 2.

Em 4.7 é percept́ıvel o comportamento do campo quando Q ∼ Qmax:

para este perfil, Q = 2.12, o que corresponde a 99,8% do valor máximo da

carga, quando os horizontes de eventos e cosmológico estão muito próximos

um do outro: rh ∼ 2.98 e rC ∼ 3.18.

A última propriedade analisada com o potencial tensorial foi a influência

do momento angular da perturbação, l. Na tabela 4.4, estão listados as

vibrações para três diferentes valores de l.

O perfil de campos para diferentes valores de l pode ser encontrado nas

figuras 4.8 e 4.9, e um zoom destes campos em 4.10 e 4.11. A diferença

entre as frequências de modos com diferentes valores de momento angular é

notória, sendo entretanto o amortecimento bastante parecido no três casos.

Nas próximas seções, estudaremos o caso da perturbação gravitacional

vetorial, que representa dois potenciais diferentes.
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Tabela 4.4: Modos quasi-normais para um buraco negro com Λ = 0.08 e
diferentes valores de l.

Q ω (l = 2) ω (l = 3) ω (l = 4)
0.1 0.938 + 0.328i 1.480 + 0.314i 1.970 + 0.310i
0.2 0.928 + 0.319i 1.464 + 0.307i 1.949 + 0.303i
0.3 0.910 + 0.306i 1.437 + 0.294i 1.913 + 0.291i
0.4 0.885 + 0.289i 1.398 + 0.278i 1.862 + 0.274i
0.5 0.851 + 0.267i 1.347 + 0.257i 1.795 + 0.254i
0.6 0.809 + 0.244i 1.284 + 0.235i 1.712 + 0.232i
0.7 0.757 + 0.219i 1.209 + 0.212i 1.613 + 0.209i
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Figura 4.8: Campo gravitacional
com Λ ∼ 0.083 e Q = 0.5, para dois
valores de momento angular, l = 2 e
l = 3.
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Figura 4.9: Campo gravitacional
com Λ ∼ 0.083 e Q = 0.5, para dois
valores de momento angular, l = 2 e
l = 4.

4.4 Perturbação Vetorial

De maneira similar à que fizemos para a pertubação tensorial, no caso vetorial

podemos compor a perturbação da métrica e do tensor energia momento em

grupos de componentes de acordo com a simetria da variedade. Temos

δgab = 0, δgai = rfaVi, δgij = 2r2HTVij (4.35)

δTab = 0, δTai = rτaVi, δTij = τVij. (4.36)
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Figura 4.10: “Zoom” de campo gra-
vitacional com Λ ∼ 0.083 e Q = 0.5,
para dois valores de momento angu-
lar, l = 2 e l = 3.
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Figura 4.11: “Zoom” de campo gra-
vitacional com Λ ∼ 0.083 e Q = 0.5,
para dois valores de momento angu-
lar, l = 2 e l = 4.

do que, com uma redefinição de variável dada por Fa = fa + rDa(HT/kV )

emergem a + 2 equações de campo representadas por

Da[r
D−1εcbrDa(Fa/r)] = mV r

D−3εabF
b − 2rD−1εabτ

b (4.37)

kVDa(r
D−3F a) = −rD−2τ (4.38)

Da(r
D−1τa) = −mV

2kV
rD−2τ, (4.39)

com a constante mv = k2
V − (D− 3). k2

v é o autovalor da equação de Lichne-

rowicz, a menos de uma constante: (∆L−k2
V−(D−3))Vij = 0. Com uma nova

redefinição da variável F , dada por rD−3F a = εabDbΩ + 2
mV
rD−2εabDa(rτb),

obtemos uma equação no formato

rD−2Da

[

DaΩ

rD−2

]

− mV

r2
Ω = − 2

mV

rD−2εabDa(rτb), (4.40)

com a condição extra de que mV 6= 0. Os modos de perturbação gerados

por mV = 0 representam configurações de gauge puro, para as quais não há

liberdade dinâmica [63].

Para obter uma equação de variável única, o próximo passo é conside-

rarmos rotações de gauge devido ao tensor momento-energia do campo ele-
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tromagnético. Isto pode ser feito modificando-se a componente τb, acrescen-

tando um termo relativo a um potencial A, com uma prescrição semelhante

à de Regge-Wheeler [4]: τa → τa − E0

r
εabD

bA. Neste caso, com uma substi-

tuição semelhante para o campo, Ω → Ω− 2E0

mV
ArD−2, obtemos a equação de

perturbação

rD−2Da

(

1

rD−2
DaΩ

)

− mV

r2
Ω =

E0r
D−2

r2
A− 2

mV
rD−2εabDa(rτb). (4.41)

Finalmente, com uma última redefinição dos campos Ω e A,

Ψ =
QmV

(D2 − 4D + 3)M + δ
r(D−2)/2Ω +

Q

E0rD/2
A, (4.42)

com δ2 = (D2−4D+3)2M2 +2(D−2)(D−3)mVQ
2, conseguimos a equação

de campo para uma variável única com potencial, similar à da seção 4.2,

2Ψ +
V

gtt
Ψ = 0, (4.43)

sendo V o potencial dado por

V = −gtt
r2

[

k2
V +

D2 − 6D + 8

4
− (D − 2)(D − 4)

4
Λr2

+
(D − 2)(5D − 12)

4r2D−6
+

(−D2/2 + 2D − 3)M + δ

rD−3

]

(4.44)

Na próxima seção, analisaremos os resultados dos modos quasi-normais para

este potencial.

4.5 Resultados com a Perturbação Vetorial

Para a análise dos modos quasi-normais com um potencial vetorial, usamos

o mesmo método de integração em coordenadas nulas descrito no ińıcio do

caṕıtulo: transformamos a equação de onda em (4.44) com o uso de coorde-

nadas nulas para uma outra equação com o mesmo formato de (4.15). Neste

caso, podemos usar as mesmas condições de contorno (4.19), para a obtenção
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Tabela 4.5: Modos quasi-normais de uma perturbação gravitacional vetorial
para o buraco negro de Reissner-Nordström de Sitter, com Λ = 0.0167 e
l = 2.

Q ωR ωI Q ωR ωI
0.2 1.354 0.337 0.4 1.368 0.314
0.6 1.360 0.276 0.8 1.301 0.230
0.9 1.300 0.190 0.983 1.226 0.158
1.0 1.189 0.162 1.2 1.038 0.192
1.5 0.837 0.164 2.0 0.587 0.129
2.5 0.415 0.0966 3.0 0.282 0.0681
3.5 0.155 0.0340 3.8 0.0173 0.0110

dos perfis de campo e dos modos quasi-normais em toda a escala de valores

posśıveis de Λ e Q.

Os resultados da perturbação vetorial para o buraco negro de Reissner-

Nordström de Sitter com um valor pequeno para a cosmolgógica (Λ = 1/60),

estão na tabela 4.5. Diferentemente da perturbação tensorial, quando da

presença de um potencial gravitacional oriundo de uma perturbação vetorial,

a frequência de vibração da resposta de uma perturbação gravitacional é

menos senśıvel à buracos negros com diferentes valores de carga, e oscila

ligeiramente em torno do ponto ωR ∼ 1.3, para buracos negros com carga

menor do que QC , quando da coalisão dos dois horizontes de eventos.

A caracteŕıstica semelhante, contudo, é o decréscimo da atenuação dos

modos, com o aumento da carga, de maneira que quando a carga tende a seu

valor máximo (caso em que o horizonte de eventos e cosmológico coalescem),

a atenuação tende a zero. Também, após a “região” de buraco negro extremo

com os dois horizontes no mesmo ponto (ou seja, em todo o escopo Q < QC

e Q ≥ QC), a parte real de ω começa a diminuir mais rapidamente do que

para o potencial tensorial, tendendo a zero, conforme Q vai para seu valor

máximo, QS.

O perfil do campo gravitacional vetorial, com Λ = 1/60 é mostrado na fi-

gura 4.12. No gráfico, é percept́ıvel a diminuição da atenuação e da frequência
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Figura 4.12: Campo gravitacional vetorial para valores diferentes de Q, Λ =
0.0167 e l = 2.

da onda quando do aumento da carga para valores maiores do que QC . Outra

caracteŕıstica peculiar é a proximidade entre as frequências da perturbação

entre valores de carga diferentes, para os quais Q < QC , como se pode ver

nos dois primeiros perfis, para Q = 0.1 e Q = 0.8.

Na tabela 4.6 estão listados os modos quasi-normais com Λ = 0.167, para

os quais QC ∼ 0.817. Novamente, a parte real dos modos oscila ligeiramente,

quando Q << QC , e quando se aproxima deste valor tende a decrescer.

Diferentemente do caso com Λ = 0.0167, contudo, esta função continua a

oscilar ligeiramente, após Q ∼ QC , decaindo mais lentamente, conforme Q

se aproxima de seu valor máximo. A parte imaginária apresenta o mesmo

comportamento observado para as outras perturbação tanto tensoriais quanto

vetoriais.

Na figura 4.13, podemos ver diferentes perfis de campo, em função da

carga. As caracteŕısticas destes perfis são similares àquelas da figura 4.12,

exceto pelo fato de a extensão de valores válidos para a carga ser muito
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Tabela 4.6: Modos quasi-normais de uma perturbação gravitacional vetorial
para o buraco negro de Reissner-Nordström de Sitter, com Λ = 0.0167 e
l = 2.

Q ωR ωI Q ωR ωI
0.1 1.004 0.257 0.15 1.005 0.254
0.2 1.005 0.249 0.25 1.004 0.243
0.3 1.002 0.236 0.35 0.997 0.227
0.4 0.990 0.217 0.45 0.979 0.206
0.5 0.963 0.193 0.55 0.941 0.178
0.6 0.913 0.163 0.65 0.878 0.147
0.7 0.831 0.136 0.75 0.772 0.104
0.8 0.739 0.102 0.83 0.667 0.0709
0.86 0.630 0.0735 0.89 0.452 0.0512
0.92 0.475 0.0530 0.95 0.409 0.0578
0.98 0.282 0.0357 1.01 0.160 0.02247

menor, o que torna o intervalo de entre os dois buracos negros extremos

muito menor, e portanto resultando ambas as situação extremas em modos

de vibração com atenuação semelhante.

Na tabela 4.7, vemos os modos quasi-normais para diferentes valores de

momento angular l, e o comportamento de que a parte imaginária pouco

varia para diferentes valores de l é similar ao encontrado na perturbação

tensorial. A parte real aumenta ligeiramente com o aumento da carga, para

valores pequenos de carga, e a partir de um valor cŕıtico de carga, o qual

depende do valor de l, começa a decrescer novamente. A parte imaginária

por sua vez pouco varia para valores pequenos da carga.

Quando Λ = 0.083, o valor para o qual o buraco negro se torna extremo

é QC = 0.93, o que indica a ausência de modos instáveis mesmo em regiões

próximas à de buracos negros extremos.

As figuras 4.14 e 4.15 representam a perturbação do campo gravitacional

para diferentes valores de l. É posśıvel com elas visualizar a mesma ate-

nuação para os modos, ainda que l varie, contudo uma frequência diferente,

dependente de l.

Em todos os modos analisados para 5 dimensões, não foram encontra-
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Figura 4.13: Campo gravitacional vetorial para valores diferentes de Q, Λ =
0.167 e l = 2.

dos vest́ıgios de modos instáveis, como por exemplo em [6, 7], encontramos

modos instáveis para o potencial gravitacional escalar com D ≥ 7. O único

suporte para a existência de modos instáveis está em alguns modos para os

quais, depois de um longo peŕıodo de integração, aparentemente o modo volta

a crescer ao invés de decair (por exemplo 4.9 e 4.10). Tal comportamento

contudo, corresponde ao limite numérico do programa utilizado uma vez que

a precisão não ultrapassa a décima quinta casa para todos os cálculos de

integração (e. g. coordenada tartaruga, valor do potencial, valor do campo,

etc), e neste sentido não é mais do que “rúıdo”. Tal limitação é momentane-

amente inerente a estrutura do programa utilizado para o cálculo (fortran,

versão gnu), mesmo que com a maior precisão posśıvel para todas as variáveis

(precisão estendida). As caudas obtidas quando a precisão necessaria para

sua obtenção não ultrapassa 10−15, seguem uma exponencial decrescente,

como em [69].

104



Tabela 4.7: Modos quasi-normais de uma perturbação gravitacional vetorial
para o buraco negro de Reissner-Nordström de Sitter, com Λ = 0.0833 e
diferentes valores de l.

Q ω(l = 2) ω(l = 3) ω(l = 4)
0.1 1.238 + 0.316i 1.716 + 0.315i 2.181 + 0.315i
0.2 1.243 + 0.310i 1.720 + 0.309i 2.183 + 0.309i
0.3 1.248 + 0.299i 1.720 + 0.299i 2.179 + 0.298i
0.4 1.250 + 0.284i 1.712 + 0.284i 2.161 + 0.283i
0.5 1.243 + 0.265i 1.619 + 0.264i 2.125 + 0.264i
0.6 1.225 + 0.241i 1.653 + 0.241i 2.069 + 0.242i
0.7 1.191 + 0.216i 1.595 + 0.217i 1.989 + 0.218i
0.8 1.131 + 0.189i 1.512 + 0.192i 1.884 + 0.192i
0.9 1.199 + 0.136i 1.456 + 0.154i 1.769 + 0.113i
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Figura 4.14: “Zoom” de campo gra-
vitacional com Λ ∼ 0.083 e Q = 0.5,
para dois valores de momento angu-
lar, l = 2 e l = 3.
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lar, l = 2 e l = 4.

105



Caṕıtulo 5

Apontamentos Finais

Ao longo deste trabalho, debruçamo-nos sobre o estudo das frequências quasi-

normais de buracos negros com campos eletromagnéticos.

A determinação dos modos quasi-normais de buracos negros tem uma

série de interesses f́ısicos: como ferramente teórica de comparação de futuras

medidas de ondas gravitacionais em grandes laboratórios (LISA, VIRGO,

etc); como ferramente teórica para a eventual comparação com a área de ter-

modinâmica de buracos negros, e determinação de se os modos de vibração

carregam as propriedades termodinâmicas de solução, e, de que maneira isso

acontece; como teste de estabilidade do espaço-tempo, podendo denotar a

presença de modos que cresçam no domı́nio temporal, o que pode ser inter-

pretado como um forte ind́ıcio da instabilidade do espaço-tempo (um teste

robusto de uma instabilidade, contudo, pode ser arquitetado apenas com a

teoria não-linear, e não com expansões em primeira ordem. Neste sentido,

os modos quasi-normais estão limitados a dar uma resposta segura apenas

quando as vibrações são estáveis, i. e., decaem com o tempo).

Ocupamo-nos no decorrer dos três caṕıtulos anteriores com cada um des-

tes aspectos, utilizando soluções diferentes, de acordo com o estado da arte

em cada subtópico.

Utilizando o buraco negro de Melvin-Ernst (que possui dois parâmetros

em sua geometria, a massa e o campo magnético), calculamos os modos de vi-

bração correspondentes à propagação de um campo escalar em tal geometria,
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considerando o campo magnético pequeno. Tal aproximação é válida, visto

que buracos negros (astrof́ısicos) possuem, via de regra, discos de acresção

de matéria que geram uma contribuição não nula de campo magnético, que

ainda assim é muito menor do que a massa do buraco negro. Demonstramos

que a propagação de um campo escalar em tal geometria tem o mesmo po-

tencial da propagação de um campo escalar com massa em uma geometria de

Schwarzschild, com a correspondência da massa de tal campo escalar sendo

µ = 2|m|B, m o número azimutal de harmônicos esféricos e B. Além desta

equivalência, a propagação do campo escalar na geometria de Melvin-Ernst

tem a propriedade de que o buraco negro se torna um melhor oscilador (me-

lhora o fator de qualidade Q = ωR/ωI , tanto maior é o campo magnético do

espaço-tempo.

Também usando buracos negros com campo magnético de fundo, investi-

gamos a contribuição do campo escalar para a entropia da solução através do

método Brick Wall proposto por ’t Hooft em 1984. A contribuição do campo

magnético é da ordem B2, para a divergência ultravioleta, ǫ−1. No caso

de buracos negros D-dimensionais, a divergência ultra-violeta tem a mesma

forma daquela divergência para Schwarzschild, ǫ
2−D

2 , tendo a divergência ul-

travioleta, contudo um formato diferente dado por LD−3

B2 , de maneira que o

campo magnético age diminuindo tal divergência (que para Schwarzschild é

dada por LD−1).

Com uma solução de Reissner-Nordström em quatro dimensões analisa-

mos as propriedades termodinâmicas do buraco negro e a relação com seus

modos de vibração. Utilizando a proposta de Maggiore para a conjectura

Hod, de reinterpretação da constante de quantização da área do buraco ne-

gro de Schwarzschild, a partir de uma comparação com o oscilador harmônico

com atrito (o que dá um sentido semi-clássico e explica algumas cŕıticas da

antiga proposta de Hod), calculamos os modos quasi-normais em Reissner-

Nordström chegando a mostrar que o espaçamento assintótico dos modos se

aproxima da mesma quantização que para Schwarzschild.

Além da conjectura Hod modificada, testamos ainda a relação dos modos

quasi-normais com a transição de ordem de segunda fase [47], como proposta

por Jing et al [49]. No setor de perturbações gravitacionais, a equivalência
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encontrada em [49] demonstrou-se não existir, de maneira que, assim como

para a solução de Kerr tal correspondência não é válida, podemos afirmar

que se trata de uma coincidência numérica. Não se pode negar que os modos

quasi-normais carreguem as propriedades termodinâmicas relacionadas com

a transição de ordem de segunda fase, mas se esta caracteŕıstica existe ela é

mais profunda do que a proposta em [49].

Finalmente, estudamos no último caṕıtulo, a perturbação gravitacional

de um buraco negro de Reissner-Nordström-de Sitter em 5 dimensões, cu-

jos modos quasi-normais, tanto para o potencial tensorial como vetorial,

demonstraram-se estáveis, no sentido de que decaem com o tempo. O com-

portamento particular de cada frequência depende, como esperado dos parâmetros

do buraco negro, e em geral, exceto para situações extremas, varia de ma-

neira uńıvoca com a variação dos parâmetro: por exemplo, com o aumento

da carga do buraco negro, tanto ωR quanto ωI diminuem, tendendo a zero

quando de um buraco negro extremo com horizonte de eventos e cosmológico

no mesmo ponto. Além, a influência do momento angular das vibrações é

mais sentida em ωR do que em ωI : para dados pariametros M , Q e Λ, a

variação de l produz uma grande variação em ωR, mas uma pequena (ainda

menor que para o caso de Schwarzschild) variação em ωI .

Como perspectivas futuras, demarcamos algumas idéias pasśıveis de es-

tudo, em cada um dos trabalhos aqui relatados durante os anos de sua pes-

quisa:

• A investigação da propagação de campos elétricos ou da perturbação

gravitacional em um buraco negro de Schwarzschild imerso em um Uni-

verso magnético. A dificuldade em tal caso é dada pela escrita do tensor

perturbação gravitacional em respeitando as simetrias do espaço-tempo

para o caso da perturbação, e ainda, no desacoplamento das equações

de campo para o caso do campo elétrico;

• A verificação da conjectura modificada de Hod para o buraco negro

de Kerr com limites diferentes dos calculados em [70], bem como a

verificação se a presença de divergências em dωR/dωI está relacionada

com a transição de fase de segunda ordem utilizando outros buracos

108



negros como espaços-tempo de teste.

• O cálculo dos modos quasi-normais para um número maior de di-

mensões do buraco negro de Reissner-Nordström-de Sitter, e a veri-

ficação de se a instabilidade encontrada para o potencial escalar acon-

tece também para os potenciais vetorialou tensorial [6, 7]. O cálculo dos

modos para o buraco negro de RN-AdS, e a relação com a conjectura

AdS-CFT [71, 72, 73].
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