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Resumo

Neste trabalho faremos uma investigacao no campo das perturbagoes gra-
vitacionais e propagacao de ondas em geometrias de buracos negros com
campos elétricos ou magnéticos. Usando uma geometria tipo Ernst-Melvin
de um buraco negro massivo em um Universo com campo magnético no
eixo z, calculamos os modos quasi-normais de propagacao de um campo
escalar, demonstrando que este se comporta como um campo escalar com
massa 2|m|B em uma geometria de Schwarzschild, para pequenos valores
do campo magnético B (correspondendo m ao ntimero azimutal do esférico
harménico). Ainda com esta geometria, calculamos a contribuigao de ondas
escalares para a entropia do buraco negro em termos dos cut offs ultravio-
leta e infravermelho. Com uma solu¢ao do tipo Reissner-Nordstrom em 4
dimensoes, investigamos as possiveis correspondéncias entre os modos quasi-
normais e as propriedades termodinamicas deste buraco negro, atestando o
resultado de que a conjectura Hod modificada por Maggiore é valida em
tal solugao. Também, com uma geometria de Reissner-Nordstrém-de Sitter
D-dimensional, obtivemos os modos quasi-normais de vibracao para dois po-
tenciais diferentes, estabelecendo a auséncia de modos instaveis para uma

grande gama de parametros deste buraco negro.



Abstract

In this work we make an incursion into the branch of gravitational pertur-
bations and field propagation around known-geometries of black holes with
electromagnetic fields. Using an Ernst-Melvin type of geometry in a massive
black hole immersed on a magnetic Universe, we calculate the quasi-normal
modes of the propagating field, showing the equivalence of this problem with
that of a massive scalar field (for which the mass is 2|m|B, m being the azhi-
mutal number, and B the magnetic field) propagating around a Schwarzschild
geometry. We also compute the contribution of the scalar field to the entropy
of the black hole in terms of the infrared and ultraviolet cut offs. Using a
Reissner-Nordstrom-like solution in 4 dimensions, we investigate the possi-
ble correspondence between quasi-normal modes and the thermodynamical
properties of this black hole, atesting the validity of the modified Hod con-
jecture as proposed by Maggiore. Finally, for a Reissner-Nordstrom-de Sitter
D-dimensional solution, we obtain the quasi-normal modes for two diferent
potentials, establishing the absence of unstable modes for a large range of

values for the black hole parameters.
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Capitulo 1
Introducao

Buracos negros sao objetos de estudo da astronomia e da fisica tedrica ha um
tempo consideravel. A primeira “pré-apari¢ao” do conceito de buraco negro
no contexto da relatividade geral surgiu em 1916 quando Karl Schwarzschild
resolveu as equacoes de campo de Einstein usando de simetria esférica para
obter a descricao gravitacional de um sistema gravitacional com massa'. Em-
bora o préprio Schwarzschild nao tenha vislumbrado que a solu¢ao - nomeada
solucao de Schwarzschild postumamente em seu crédito - poderia represen-
tar um espaco-tempo que sob certas circunstancias aprisione até mesmo a
luz, algumas décadas mais tarde tal interpretagao passou a ser cogitada pela
astronomia.

A existéncia de um objeto de porte astronémico condensado em um espaco

extremamente pequeno, que gerasse um campo de atragao tao intenso a ponto

'H4 que se citar contudo que pelo menos um século antes, Laplace considerou em seus
calculos sobre mecéanica celeste um objeto astrofisico cuja densidade seria tao alta, que
até mesmo a luz seria aprisionadade em seu campo gravitacional. Em tal situacado, o
limite entre objetos ligados ou nao (gravitacionalmente) é quando a energia mecénica é
nula, £ = 0. Com isto, podemos obter, “classicamente” (sem relatividade geral) o raio
de Schwarzschild, que corresponde a tomar a velocidade da luz na expressao da energia
cinética,

2
E=T+P=%—GMm:O. (1.1)

r

O ponto r = 2GM/c? corresponde neste caso, i regido esférica limite: se houvesse uma
massa M aprisionada nesta esfera, classicamente, nem mesmo a luz escaparia gravitacio-
nalmente do potencial.



de aprisionar a luz e ainda que nao resistisse a sua prépria forca gravitacional
foi, em realidade, preterida pelo préprio Einstein alguns anos mais tarde
depois do aparecimento da solucao de Schwarzschild.

Embora em seu inicio, a existéncia de buracos negros como objetos as-
tronomicos de nosso Universo tenha sido rejeitada, ha nos dias de hoje um
grande nimero de evidéncias observacionais que atestam de maneira indireta
a presenca destes objetos em regioes distintas do cosmos.

Uma evidéncia experimental robusta para a existéncia de buracos negros
seria a medida de ondas gravitacionais em grandes laboratorios como LIGO
[1] ou VIRGO [2], ou ainda o detector de ondas gravitacionais Schenberg
[3]. Ainda que a evidéncia de sinais de ondas gravitacionais nao constituam
uma prova definitiva a existéncia de tais objetos, uma vez que o espectro
gravitacional deles é diferente de outros objetos como estrelas, a observacao
do sinal gravitacional pode ser, em tese, diferenciado de maneira a atribuir
uma evidéncia robusta a mais para a existéncia de tais objetos.

Uma vez atestada a existéncia dos buracos negros, mesmo que indireta-
mente através da medida de ondas gravitacionais, ha, concomitantemente,
na fisica tedrica, uma extensa literatura de perturbacgoes gravitacionais ja
consolidada. Um dos trabalhos pioneiros testando a estabilidade da primeira
solugao de buracos negros publicado em 1955 deve-se a Regge e Wheeler [4].

Neste trabalho, os autores analisam o efeito que pequenas perturbagoes na
geometria de Schwarzschild podem gerar em termos dinamicos a sua métrica,
terminando por concluir que o buraco negro é estavel®>. O artigo é de funda-
mental importancia por ter sido o primeiro a introduzir uma decomposicao do
tensor perturbacao gravitacional, de acordo com a simetria do espago-tempo
esfericamente simétrico. Depois de uma decomposicao genérica o suficiente
em harmonicos esféricos tensoriais que respeitassem certas simetrias, os au-
tores consideram ainda as simetrias de Killing do espago-tempo, chegando a

demonstrar que a equacgao de perturbacao gravitacional poderia ser colocada

2Cabe notar porém que & época o que era chamado “buraco negro” de Schwarzschild,
referia-se ao horizonte de eventos deste buraco negro (“a esfera de Schwarzschild”). Foi sé
mais tarde, com o surgimento do diagrama de Kruskal que a questao da continuidade para
além da esfera do horizonte de eventos foi resolvida, embora os calculos feitos por Regge e
Wheeler a respeito da estabilidade do horizonte de eventos de Schwarzschild sejam validos.



em um formato relativamente simples andlogo ao de uma equacao de onda,

82 2

—@X + @X +V(z)x =0, (1.2)

sendo x uma coordenada espacial, ¢ uma coordenada temporal e V(x) o
potencial gravitacional. O formato de V' (z) depende essencialmente do tipo
de simetria usado para a decomposicao do tensor perturbagao gravitacional.

Além de perturbacoes gravitacionais de diversas geometrias cuja equagao
de perturbagao é como (1.2), também campos de particulas de spins diferentes
seguem a mesma equagao, com pequenas variagoes apenas no potencial V' (z),
tais como os campos escalar e eletromagnético. Embora a propagagao de um
campo de particulas em uma dada geometria nao possa ser entendida do
ponto de vista fisico como um teste fidedigno para a estabilidade da dada
geometria, a andalise das equacoes de propagacao de tais tipos de campo
pode prover um preambulo sobre a estabilidade do espaco-tempo: uma vez
que os modos de vibragao resultantes de tais equacOes sejam estaveis (i.
e. nulos no infinito espacial e quadrado-integraveis), pode-se demonstrar
que isto corresponderia a estabilidade de pequenas perturbagoes no proprio
espaco-tempo.

Neste sentido, podemos usar a equacao do campo escalar, por exemplo,
para testar a presenca de modos estaveis para uma dada geometria. Fisica-
mente isto corresponderia a uma perturbagao (pequena) da geometria, cuja
resposta emerge como um campo que decai como uma sendide amortecida
com o tempo.

O sinal da onda gerada, seja pela propagacao de um campo em uma geo-
metria fixa, seja por uma pequena perturbacao gravitacional em um espago-
tempo “estdvel”® pode ser entendido como a resposta da geometria & pro-
pagacao do campo, ou a perturbagao, e, sendo expresso em termos de ondas
amortecidas, formam um conjunto nomeado “modos quasi-normais” [5].

Os modos quasi-normais representam um grupo de vibracgoes para uma

30 conceito de estabilidade do espaco-tempo tanto & propagacdo de campos quanto a
perturbacao estd relacionado com a auséncia de modos de vibragao que nao possuam uma
das duas caracteristicas supracitadas, e. g. modos que ao invés de decaimento, expressem
um crescimento exponencial.



dada solucao de buracos negros que nao formam um conjunto completo, no
sentido de que o grupo de todas as frequéncias amortecidas podem formar
uma soma que se aproxima da auto-funcao da equacao de onda em determi-

nadas regioes do espago,

N
() 44, (™)
X ~ Zane_(wf Fr I f (W, 1), (1.3)
n=1

mas nao representa uma auto-fungao para todo o dominio da coordenada tem-
poral, como as auto-funcoes de sistemas dinamicos oscilantes de mecénica.

Assim como os modos de vibragao de uma corda sao ordenados de acordo
com o harmonico de vibracao n, de maneira que quanto maior n, maior é
a frequéncia de vibracao da corda, também as vibracoes em sistemas gra-
vitacionais com “quasi-solugoes” (solugoes localizadas em um determinado
intervalo de tempo) podem ser ordenados, mas em relagdo ao parametro de
decaimento do modo, w;, de maneira que quanto maior n, maior o valor de
wr, ou seja, maior o amortecimento.

No préximo capitulo deste trabalho faremos uma investigacao dos modos
quasi-normais de buracos negros com campo magnético no eixo z. Trata-se
de uma geometria de buraco negro com massa imerso em um Universo com
um campo magnético de fundo. Fisicamente tal situacao tem importancia
pelo fato de que, em geral, buracos negros sem rotagdo (ou com pequena
rotagao) tém ao seu redor discos de matéria que geram um campo magnético
perpendicular a esfera de Schwarzschild. A diferenga entre uma solugao de
Ernst que representa um buraco negro de Schwazschild com campo magnético
e uma situagao realista é o comportamento do espago-tempo no infinito:
em tal solucao, o campo magnético tem a mesma intensidade no infinito e
proximo ao horizonte. Desta maneira, por uma questao de aproximagao com
a situagao fisica, ¢ de maior interesse desconsiderar que o espaco tenha um
campo magnético assintotico, e, considerar que a geometria assintotica seja
a de Schwarzschild.

Na segunda parte do capitulo dois, focamos o estudo da contribuicao do

campo escalar para a entropia do buraco negro com campo magnético, usando



do modelo Brick-Wall como proposto na década de 80 por 't Hooft. O célculo
demonstra uma contribui¢ao nao nula para as divergéncias infra-vermelha e
ultra-violeta geradas pelo campo eletromagnético em relacao a entropia do
campo escalar. O ponto de cut off em tal caso deixa de ser um invariante
(interpretado como uma renormalizacao da constante gravitacional Newto-

niana) e traz uma contribui¢do do campo proporcional & sua magnitude.

Instabilidades gravitacionais em solucoes das equacoes de Einstein com
dadas simetrias estao associadas em muitas geometrias com a presenca de
modos para os quais wy < 0, ou, equivalentemente, para os quais a exponen-
cial cresce ao invés de decair [6, 7, 8, 9].

Além da relacao com a estabilidade geométrica de uma dada solucao, os
modos quasi-normais estao, em certo sentido, relacionados com as proprie-
dades termodinamicas de buracos negros.

O estudo da termodinamica dos buracos negros teve seu inicio e periodo
mais fértil na década de 70 com os trabalhos publicados por Hawking e
Bekenstein [10, 11]. Dois notéveis resultados emergentes de tais trabalhos
sao a criacao de pares de particulas nas proximidades do horizonte de eventos
de buracos negros e posterior evaporacao destes, e a associacao da entropia

do buraco negro com a area de seu horizonte de eventos,
S=—. (1.4)

A criacao de pares particula/anti-particula na borda do horizonte de bura-
cos negros, sugerida inicialmente por Hawking, e nomeada homonimamente
radiagao Hawking pode ser entendida do ponto de vista de um observador
externo ao buraco negro, para o qual particulas que seguem algumas das
geodésicas internas ao horizonte de eventos possuem energia negativa, o que
possibilita a interpretacao de que o buraco negro irradia em sua direcao.
Além da entropia atribuida ao buraco negro proporcional a area de seu
horizonte de eventos, também atribuimos uma capacidade térmica C' ao bu-
raco negro, C' =T %, que, dependendo dos parametros da solugao pode ser

ou negativa ou positiva. A transicao entre estes ramos de valores é dada por

10



uma “mudanca de fase de segunda ordem”.

O terceiro capitulo deste trabalho é dedicado, entre outros célculos a
andlise da relacao entre esta transicao de fase de segunda ordem para o bu-
raco negro de Reissner-Nordstrom. Investigamos uma possivel associacao en-
tre curvas descontinuas nas oscilagoes quasi-normais e a capacidade térmica
deste buraco negro. O fato de que em buracos negros cuja capacidade ca-
lorifica nao tenha uma transicao de segunda ordem (e. g. o buraco negro
de Schwarzschild) e, concomitantemente de, os modos quasi-normais terem
frequéncia natural wy = \/w% + w? crescente, conforme a variagdo de seus
parametros, pode ser o indicativo de que tais oscilagoes estejam conectadas
com propriedades termodinamicas do buraco negro de alguma maneira ainda
nao descrita. Na segunda parte do terceiro capitulo deste trabalho investiga-
mos esta possivel conexao usando como teste a solucao com carga e massa,
para a qual existe uma transicao de segunda ordem a 87% do valor méximo
de carga permitido para este buraco negro.

Também neste capitulo investigamos a possivel reinterpretacao das frequéncias
quasi-normais em comparag¢ao com um sistema mecanico simples tal como o
oscilador harmonico com atrito, proposta recente para uma reinterpretacao
da conjectura Hod de quantizacao da area do buraco negro. Com esta rein-
terpretacao, pode-se expressar uma resposta coerente a algumas das antigas
criticas da conjectura. Nas primeiras secoes, investigamos o espagamento
entre os modos quasi-normais de Reissner-Nordstrém para sugerir uma res-
posta sobre se a proposta é vélida pra outros buracos negros que nao apenas
o de Schwarzschild.

No ultimo capitulo deste trabalho investigamos as vibracoes quasi-normais
de um buraco negro de Reissner-Nordstrom em 5 dimensoes com constante
cosmoldgica positiva. Apesar da existéncia de modos instaveis para tal geo-
metria em quando o ntimero de dimensoes for maior do que 6, com um po-
tencial escalar, verificamos que todas as frequéncias calculadas representam
pequenas oscilacoes em torno da métrica, que decaem com o tempo de ma-
neira exponencial em 5 dimensoes. Com o uso de dois potenciais diferentes, a
saber, vetorial e tensorial, ambos gravitacionais, advindos da decomposicao

equivalente do tensor perturbacao gravitacional, calculamos as frequéncias

11



quasi-normais para uma diferente gama de valores dos parametros envolvi-
dos na solugao, M, @ e A.

O comportamento oscilatorio de tais buracos negros depende destes parametros,
ou, equivalentemente, da posicao de cada horizonte considerado. De ma-
neira geral, quanto “maior” a distancia entre os horizontes de eventos e cos-
molégico (medida no sistema de coordenadas radial), maior é a amplitude
de frequéncias quasi-normais possiveis, para um dado valor da constante cos-
moldgica.

Outro fator de influéncia nas frequéncias é o valor do momento angular
das ondas incidentes no potencial. Tal influéncia, para geometrias esferica-
mente simétricas, aparece no potencial com coeficiente (I + D — 3), sendo [
o nimero azimutal de “momento angular” e D a dimensao do espago-tempo.
No geral quanto maior o valor do momento angular, maior o valor da parte
real do modo, variando a parte imaginaria de um fator muito menor.

Nos préximos capitulos, procurou-se em cada ocasiao introduzir o assunto
com a teoria ja desenvolvida em literatura especifica de cada caso, de maneira

a fazer deste trabalho auto-consistente.
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Capitulo 2

Buracos Negros com Campos

Magnéticos

Buracos negros magnéticos sao objetos de estudo da relatividade geral com
destacado interesse em astrofisica. Sabemos hoje que, em geral, uma solucao
exata das equacoes de Einstein para um buraco negro em 4 dimensoes nao
pode representar todas as situagoes reais observadas pela astronomia. Bura-
cos negros, via de regra, estao envolvidos em nuvens de poeira, que modificam
0 espaco-tempo ao seu redor, produzindo uma contribuicao nao nula a geo-
metria. Entretanto, esta contribuicao nao tem a mesma ordem de grandeza
da massa do buraco negro. Por exemplo, para buracos negros astrofisicos,
a contribuicao do campo magnético gerado pela nuvem de poeira é da or-
dem de 10~* vezes a massa do buraco negro. Um valor semelhante pode ser
acrescido devido as forcas de maré desta nuvem.

O intuito deste trabalho é estudar tais tipos de objetos magnéticos, em
que modificamos a geometria de uma solucao conhecida da relatividade geral
por meios como perturbacoes lineares da métrica, ou via transformagoes em
seus coeficientes, para as quais a nova métrica represente uma nova solugao
das equacoes de Einstein.

Um exemplo de tal tipo de solugao, é aquela obtida por Ernst [13] em
1976, em que se faz uma “rotacao” nos potenciais que geram as equagoes

de Einstein, obtendo-se uma nova solu¢ao com campo magnético, que nao

13



¢ assintéticamente plana. Comegaremos o estudo desta solugao, através dos
trabalhos de Ernst e de Harrison [14], na préxima segao.

Em uma etapa futura, planejamos a investigacao dos trabalhos de Pres-
ton e Poisson [15] que propéem uma nova solu¢ao, em primeira ordem nas
equacoes de Einstein, com campo magnético e forcas de maré, iniciada tomando-

se a métrica de Schwarzschild e adicionando a ela uma pequena perturbagao.

2.1 Transformacoes de Harrison: novas solucoes

a partir de antigas

Em 1968 Harrison propos, através de uma série de transformagoes nos co-
eficientes das equacoes de Einstein de uma dada métrica, uma maneira, de
gerar novas solugoes a partir de solugoes ja conhecidas. Daremos a seguir
uma descrigao basica do processo, necessario, por exemplo para a deducao
da métrica de Ernst, um dos focos deste trabalho. De inicio, tomemos um

elemento de linha dado por

d32 = —€[€2U (dl‘k + afad:ca)z —+ a2€_2U7a6dxad'rﬁ]7 (21)

em que € é o sinal do elemento gir, a e U sao fungoes genéricas. Nesta
notacao, indices gregos podem assumir 3 valores (0,1 e 2), e latinos 4 (0,1,2
e 3), e k é um indice especifico de uma coordenada que representa um vetor
de Killing da métrica: L,0, = 0. Nas defini¢oes acima, vy é a 3-métrica, cuja
conexao designaremos por X e cujo tensor de Ricci serd designado por P.
Nestas condigoes, o tensor de Ricci pode ser diretamente calculado com

suas componentes dadas por

Ry = a”*[e77 Ay(U) + €*9%%9° fiar) fiso)] (2.2)
Ryo = afo Ry + a_164U’}/57(f(5a)ﬁ +4f650)U ) (2.3)

Rus = 2afiaRig — a* fafaRix + Pap — 2UUp
Va2 (U) = 2697 flan) fi59), (2.4)

14



em que utilizamos a notagao de simetria para paréntesis e antisimetria para
colchetes, e definimos ainda Ay(A) = v*PA.,5. Levando-se em conta agora o
contetido de matéria que colocaremos no espago-tempo, tomemos as equacoes

de Maxwell sem fontes, e nas quais o tensor de Maxwell ndo depende de z*,

[V=gF"]a=0 (2.5)
[V=gF"0 =0 (2.6)
Fokp+ Fipa =0 (2.7)
e Fop., =0. (2.8)

Uma possivel solucdo para as equagoes (2.6) e (2.7) é dada em termos de

potenciais A e B,

e A

FP = = 2.9
e 29
=B,

Fra (2.10)

que substituidos em (2.5) e (2.8) fornecem

€2U€aﬁ’y o A
Ax(A) — 2A,(U, A) + Vf_;ﬁ’ 2 =, (2.11)

ergamf(aﬁ)Bﬁ o

Ve — 0, (2.12)

Ay (B) —2A,(U, B) —

com A;(A, B) = vy**A ,B 3. Depois de computar devidamente o tensor mo-
mento energia em termos das quantidades A e B e dos coeficientes da métrica,

podemos escrever as equacoes de Einstein como

Ay (U) — 64U7aﬁ775f(m)f(55) + 66_2U[A1(A) + A(B)] =0, (2.13)

4eePr,3A 5B
& af41 6D ~
Y Fy(f(éoc);-y + 4f(6a)) 64U\/—’y = 0, (214)

Popg —2UaU g + €Y (Yap V" fiv) Fiom) — 2f (o) £35)
—2ce Y (A,As+B,Bg)=0.  (2.15)

(A1(A) = Ay(A, A)). Agora, introduzimos um vetor axial z e o potencial ¢
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2f[aﬁ} = Eaﬁ’y’y’yazé V=7 (216)
o= ez, — 2¢(BA, — AB,). (2.17)

Redefinimos os potenciais do tensor energia-momento A e B em termos de

novos potenciais R e 0,

A = Rcosf (2.18)
B = Rsen#, (2.19)

Com este preambulo podemos escrever seis equacoes de Einstein, a partir das

quais trabalharemos na geracao de novas solucgoes, a saber,

Zo = ¢ W (p o —2eR?*0,) (2.20)
Ns(¢) — 40, (U, ¢) + 4eR*A (U, ¢)
+2Re Y 2R*AL (R, 0) — €A1 (o, R)] = 0 (2.21)
Az(R) — RA(0) — 2A,(U, R)
—Re Y [A1(¢,0) —2¢R*A1(0)] =0 (2.22)

RA5(0) +2A1(R,0) — 2RA, (U, 0)
—e2Y[AL (¢, R) — 2¢R*A(R,0)] =0 (2.23)
20, (U) + 2ee 2Y[AL(R) + R*A, ()]

+e VAL (¢) — 4eR*A1(9,0) + 4R*A1(0)] = 0 (2.24)
AU LU g+ dee V(R R + R0 4,0 5)
—2P.5+ e W (p o —2¢R%0,,) (05 — 2RO ). (2.25)

Para estas equagoes, o vacuo pode ser representado como, por exemplo
A =B =0o0ouR = 0! Depois de listadas as equacoes de Einstein, po-
demos supor uma nova solucao em termos da antiga, apenas trocando as
fungoes da métrica por outras equivalentes (por exemplo, a por a, U por

U), mantendo-se a “métrica” tridimensional . As solugoes das equagoes de

1O tensor energia-momento com relacdo aos potenciais A e B e aos coeficientes da
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Einstein continuam, neste caso, como em (2.20-2.25). De modo semelhante,
fazemos esta troca para os potenciais A e B do tensor energia-momento (ou
R e 0). O ltimo passo é supor que estas fungdes com barra sao fungoes das
variaveis sem barra que nao sao constantes. Nao é dificil mostrar, neste caso,
que o paramentro A; de uma fungao com barra é linear. Por exemplo, sendo
R = (6.0). temos Ay(R) = [22]" A, (6) + 220280, (0.6) + [ 2] A1 (0). O
procedimento para se resolver as novas equacoes de Einstein é achar equacoes
em A; e tornar o operador que o precede igual a zero.

Tomemos como exemplo o caso de Schwarzschild. No elemento de linha
(2.1), supomos que x¥ = t. Neste caso, temos necessariamente que f, = 0,

ee?V =1 — % Como € é apenas o sinal de g4, sua escolha é arbitraria.

[e=2 2, r%sin? §]. Como a

Ainda, podemos escolher a = 1 e 7,5 = €*Ydiag
solucao tem tensor momento-energia nulo, os potenciais A = B = 0, o que
nos leva a R = 0 pelas equagoes (2.18-2.19). Ainda, a escolha de 6 neste caso
se torna arbitraria, e podemos tomar # = 0 sem perda de generalidade. Como
z estd definido em termos de f (2.16) e esta variavel é nula, temos também
que z = 0, do que segue imediatamente, por (2.20), que ¢ = 0. Assim, no
caso de Schwarzschild todas os “coeficientes” das equacoes de Einstein sao
nulos, exceto U.

Uma nova solucao seria gerada, tomando outros coeficientes nas equagoes
de Einstein, com a métrica orginal: ¢, R,0,U.

oU

todas as func¢oes com barra nas equacgoes dadas. Para obter as expressoes de

_ 72
A estratégia é (como descrito acima) igualar A,(U) = [8—[]} A;(U) em

Ay, tomamos as equagoes originais: Ay(F') = 0 para qualquer fungao F' da

métrica € escrito como segue,

662U

Te = g— [A1(A) + Ai(B)]
€eP7%y,5A 5B
71& - ocj1 2 ’ &
k afoThr + Tray=y
Top = afaTrs+ afsTha — 0 fafsTer
6672U
tr {2(AaAp+ BaBg) — vap[A1(A) + Ar(B)]}-

17



métrica ou do tensor energia-momento (e de fato esta relacao é identicamente
nula para qualquer coeficiente, exceto U, pois estes coeficientes sdo nulos).
Assim, também teremos A,(F) = 0. Levando em consideracio ainda, que
AU, ¢) = g—gg—gAI(U ), com relagoes semelhantes para as demais fungoes
A1, podemos escrever a segunda equacao modificada de Einstein como

ou o¢  __,0U 90
_ o[ -,0R00 _0¢ OR
+ 2Re™ % [232@@ — 6£ @} } A(U) =0. (2.26)

Podemos obter outras 4 equagoes nao-triviais de (2.21-2.25). Assim, se
o nimero de fungdes sem barra nao constantes é n, teremos bn(n + 1)/2
equacoes nao triviais.

Através destas transformagoes, podemos deduzir teoremas de geracao de
novas solucoes a partir de antigas. Abordaremos aqui um destes teoremas, a
partir de uma solugao de vacuo.

Tomemos, de inicio uma métrica com U = R = 0, portanto com tensor
energia-momento nulo. As equacoes de Einstein para o potencial ¢ quando
redefinido em termos de um novo potencial ¢ = 1 nesta métrica sdo dadas

por

A (¢) = Ag()) =0, 2P.s = thothg,  (2.27)
_[au7? o | (dR\? doN?*| . [do Ak
1=4 [—} + 4ee <@) + <R@) +e [@ — 2¢R @} (2.28)

dip
Com isto podemos enunciar um teorema genérico, como segue.

Seja um espago-tempo com um vetor de Killing 0 definido por
ds? = —e[(da® + fodz®)? + yopdar®dz”] (2.29)
com f, definido pelo potencial 1,

fap) = 22057 V6V =7 (2.30)
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Entao existe uma solugao generalizada envolvendo campos eletromagnéticos

dada por
ds® = —e[e®V (da" + fodx®)? + a*e™ 2V, pdr*da), (2.31)

em que f se relaciona com o novo potencial ¢/ da mesma maneira que em
(2.30) e 1 é dado por

Oph = e~ [\/1 — 4Ui — 266‘2U(R§, + Rzﬁi) Op (2.32)

(a fungao v como indice denota diferenciagdo com respeito a esta varidvel).
Tal teorema advem diretamente da solugao de (2.28) em ¢. Com este
teorema enunciado, partiremos a seguir para a obtencao de métricas com

campos magnéticos, a partir de Universos de vacuo.

2.2 Campos Magnéticos: Os Universos de Mel-

vin e Ernst

Tomemos agora uma métrica no seguinte formato,
ds® = fe*(d2* + dp?) + p*de®] — f(dt — wde)? (2.33)

As equacoes de Einstein para as grandezas f e w podem ser deduzidas a

partir de um lagrangeano [16],
2L =pf2VINf+p  fPVw.Vw (2.34)

(sendo o produto escalar em 4 dimensoes) através de equacoes de Euler-

Lagrange, e sao escritas como

fVif = VfVf—p2fiVw.Vuw, (2.35)
V.(p2f’Vw) = 0. (2.36)
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Com alguma &lgebra chegaremos a um potencial € cuja equagao sintetiza
(2.35-2.36). Tomemos uma fungdo ¢ que nao depende do angulo azimutal QAS
Entao, vale a identidade V.(p~*¢ x V) = 0. Levando-se em conta (2.36) no
formato V.(p~p~ ! f>Vw) = 0, temos

p fPVw = ¢ x Vo, (2.37)

que relaciona nossa fungao com o coeficiente w. Multiplicando por 95, obtemos
f2Vo = p‘lquS x Vw, e imediatamente

V.(f?Ve) =0 (2.38)

Agora, levando em consideracio (¢ X Vw)? = (Vw)?, podemos lancar mao

do potencial ¢, definido como
e = f+ig, (2.39)
com o que as equagoes de Einstein podem ser resumidas a
(e +*)V?e = 2Ve. Ve (2.40)

Um procedimento semelhante é aplicado ao incluirmos um potencial A, =
(A, 0,0, Ay) no invariante (2.34) a partir do qual escrevemos as equagoes de
Einstein [17]. Neste caso, devemos adicionar ao lagrangeano em (2.35 a parte

correspondente ao potencial vetor,
£=AdpfrA(VA)? —4p L f(VA, —wVA)?, (2.41)

que representa a mesma solucao das equacoes de Einstein, mas agora com
um tensor energia-momento nao nulo (potencial vetor como definido acima).

Levando-se em conta uma outra funcao definida por PXY = p L f(VA,—
wVA;), e o novo potencial & = A, + i3, podemos redefinir € por ¢ = (f —

|®|?) + i¢, com o que obteremos ao invés de uma equacio de Einstein para
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um unico potencial € duas equagoes dadas por

(e +e*+ @} V2% = 2(Ve+20*VD).Ve
(e +e" + |2V = 2(Ve+20°VD).VD (2.42)

sendo ¢ um potencial adicional advindo da inclusao de A, no tensor energia-
momento (ou equivalentemente no lagrangeano).

Podemos usar agora estes dois potenciais para obter, usando uma trans-
formacao de Harrison, como definido na secao anterior, a partir de uma
métrica conhecida, uma outra solugao com campos eletromagnéticos. Tome-
mos por exemplo, um elemento de linha similar ao usado nas equagoes (2.42)

enunciadas acima sobre transformacoes de Harrison,
ds* = [ =2P 2dxdx* + p*dT?) — f(d¢ — wdT?). (2.43)

O Universo de Minkowski por exemplo, em coordenadas cilindricas tem

métrica
ds? = dz? + dp? — dT? + p*d¢?, (2.44)

cuja comparagao com (2.43) nos da f = —p?, w =0, P = pledy =
271/2(dz + idp). Por se tratar de uma solucdo de vacuo, o potencial A, é
nulo, também o sendo - identicamente nula - uma das equacoes de Einstein

pois ® = 0. O potencial € de outra maneira sera real e é dado necessariamente

por € = —p?.

Tomando uma transformacao de Harrison [14],

g = J¢ (2.45)
§(® — Be/2), (2.46)

|
|

com § = (1 4+ B® — B%¢/4)7!, as varidveis @ e f ficam

o= oPf (2.47)
Ve = [6]°Vw+ pf H(5*VE — 5V67). (2.48)
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Aqui, B representa um campo magnético atuando na diregao z [18]. Com
a métrica de Minkowski como em (2.44), as funcoes f e @ com barra nos

fornecem a métrica
ds®> = N*[d2* + dp* — dT?] + A2 p*d¢? (2.49)

(A =1+ B%*r?sen?) que é uma métrica de espago-tempo plano com campo
magnético de fundo na diregdo z, obtida pela primeira vez por Melvin e
Thorne [19].

Para obtermos a métrica de Ernst, tomemos o elemento de linha de

Schwarzschild em coordenadas esféricas,

” 20
T

2M 2
ds? = — (1 — —) dt? + . dr + r2dh* + r’sen?0d¢?, (2.50)

que, quando comparado com (2.43) no da

f= —7‘28672,29, w =0, p=Vr2—2Mrsend. (251)

1 dr
Pt = r?send, dy = — [7 + id@} . 2.52

X V2 | Vr2=2Mr ( )

Apoés calcularmos as fungoes transformadas, obtemos um elemento de linha

CcOo1mo

dr?

ds? = A2 | — 2
° 1—2M/r

2M
+ r2do* — (1 — —) dtz} + A 2r2sen®0de*. (2.53)
r
Esta solucao, obtida por Ernst em 1976, representa uma modificacao da
solugao de Schwarzschild incluindo um campo magnético na diregao z, e
ficou conhecida na literatura como solucao de Ernst. Nosso guia de estudos é
o calculo de quantidades significativas desta solucao: os modos quasi-normais

e a contribui¢ao do campo escalar para a entropia do buraco negro.
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2.3 Campos Escalares na Métrica de Ernst:

os Modos Quasi-normais

Tomemos uma métrica como em (2.53), definindo £ = B?r?sen?.

Um estudo sobre esta geometria foi feito em [20], onde se verificou a
possibilidade de tal buraco negro servir como lente gravitacional. Apesar
da presenca de um campo magnético, o horizonte de eventos situa-se ainda
em r = 2M e a superficie gravitacional no horizonte também é dada por

a = (4M)~'. O objetivo, aqui, é o estudo da equagao de Klein-Gordon,

1
-9

oo OulvV/—99"0,®] = 0, (2.54)

ﬁ

na geometria proposta. Antes de expandi-la, notamos que

vV—g = A27"2 sinf = A2 V —YSchwarzschild, (255>

oM\ ! oM A4
9" = diag {A‘Z <1 - —) = (1 - —) e
r r r2sin” 0

Expandindo esta equacao, obtemos,

O.(g"" A?r?)0, @

gttattq) + g”&rq) + A2T2

+P(0,$)® =0 (2.57)

com & = ®(t,r,0,¢). Aqui P representa a parte angular do polinomio, dada
por
. g%ag(sil’l 9)8@@

P(0, ) = 7 + " 09p® + g%?0p®. (2.58)
1

Ao desenvolvermos a parte angular da equagao chegamos a

4
1 {[ _cosd 89} Dy d — Aiawcp} = P9. (2.59)

A2 r2sinf  r? r2sin’ 6

Pela equacao de Laplace em 4 dimensoes e em coordenadas esféricas, temos
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que

! H cosf @] 9 — — 9 @} WD e o)

A2 || 72sinf 12 r2sin20 %? A2

de maneira que a idéia é somar e subtrair uma unidade na expressao com A%,

Observando que
A =1 =4L+6L2 +4L3 + £4 (2.61)

e tomando a expressao acima em primeira ordem em £, conseguimos para a

parte angular da equacao de Klein-Gordon, a expressao

4 2,2 32
1{{ cos 86]&;(1)— A a¢¢®}:[l(l+1)+4mr3]<l>'

A2 r2sin® 0 r2A\2

r2sinf  r?

(2.62)

A justificativa para desprezar termos em ordem maior que B?*r? é de que,
os campos magnéticos, mesmo que bastante intensos, nao chegam nunca
proximos a ordem da grandeza da massa do buraco negro. Devemos notar

ainda que na equagao acima, tomamos como expressao angular para o campo,
D(p) = e, (2.63)

visto que J4 é um vetor de Killing da geometria. A separacao de varidveis
agora € usual, seguindo o mesmo esquema de Schwarzschild, por isto ela nao
serd feita aqui. Ao substituirmos o campo ® por X, trocarmos a coordenada r,

pela coordenada tartaruga ¢""dr, = dr e supondo uma dependéncia temporal

do tipo e~™* para o campo, chegamos a equacao de onda como,
d2
[d_rf +w? — V(r*)} x(ry) =0, (2.64)

com o potencial escalar V(r) dado por

CTi+1) oM
V(T*):gSch|:<T2 >+

2,2
4B } , (2.65)

24



1 - %] Este potecial efetivo obtido para a geometria de Ernst

(95, =
corresponde ao potencial da geometria de Schwarzschild para a propagacao

de um campo escalar massivo com massa = 2mB.

Para analisar o potencial da equagao sem aproximagoes (e obter os modos
quasi-normais), devemos usar outras condigbes de contorno que nao as de
onda plana (p. ex. C. C. de Dirichlet). Isto porque ao incluirmos todos
os termos de campos magnéticos, o potencial diverge no infinito. Entretanto
como citado na introducao desta secao, é suficiente para determinar os modos,
estabelecer o comportamento no horizonte de eventos do buraco negro.

A questao das condig¢oes de contorno, tomadas para os modos quasi-
normais, de ondas planas nos infinitos espaciais, precisa neste caso ser anali-
sada de maneira diferente. Para um buraco negro nao assintoticamente plano,
nao ¢é simples a definicao de tais tipos de condic¢oes de contorno. Como ci-
tado no paragrafo anterior, podemos eventualmente, em espacos Anti-de Sit-
ter, usar condigoes de contorno de Dirichlet. Contudo, ainda em casos nao
assintoticamente planos, a contribuicao mais importante da perturbacao da
métrica é dada pela regiao préxima ao horizonte [21]. Além disto, a con-
tribicao da regiao proxima ao horizonte é determinada, principalmente, pelo
formato do potencial efetivo nas proximidades de seu pico. Desta maneira,
nao ¢ preciso delimitar de que maneira o campo decai quando em regioes
assintoticas, para efeito do calculo das frequéncias é suficiente, com o uso
do método WKB, que suponhamos que assintéticamente temos uma geo-
metria de Schwarzschild, nos atendo aqui, para a influéncia do campo, ao
comportamento no horizonte.

Da mesma maneira como o potencial é obtido para a métrica de Ernst,
podemos analisar o caso da propagacao do campo escalar em um espaco-
tempo com campo magnético de fundo e um campo escalar dilatonico [22].

A métrica neste caso tem a forma

-1 2 2
ds? = Aive? (1 = %) dt? — (1 = ﬂ) ar? —p2q6?| = TS e

2
r r A1+a2

(2.66)
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com
A =1+ (1+a*)B*?*sin4, (2.67)

sendo a um fator constante que relaciona o dilaton e o campo magnético

CcOo1mo

) a

WA Tra (2.68)

O potencial obtido ao aplicarmos a mesma aproximacao para campos magnéticos
pequenos em relagdo a massa do buraco negro é exatamente (2.65). Isto mos-
tra que a influéncia do dilaton nao pode ser detectada para o termo dominante
de campo magnético, visto que o fator a nao aparece no potecial: o campo
escalar nao interage com o dilaton.

Outro caso interessante a ser estudado, é o buraco negro de Ernst D-
dimensional, isto é um buraco negro de Schwarzschild em D dimensoes [23]
imerso em um campo magnético [24]. O elemento de linha desta situagao é

escrito como

2

ds® = AD=3[—F(r)dt* + {F(r)} 'dr? 4+ r2d6* + r* cos® 0dQ3,_,] + A~ ?r? sin® 0dd?,

(2.69)
com dQ%_, o elemento de linha da (D — 4)-esfera,
D—-5 a
A,y =d¥+ ) dvy,, [[sin® ¥, (2.70)
a=1 b=1

em que a fungao F'(r) é o “g""” da geometria D-dimensional de Schwarzschild,

167 M (D — 2)~!

F(r)y=1
(r) rD=3Q0p o

(2.71)
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e A o termo de campo magnético,

D -3

A=1
3D -1

B*r?sin’ 6. (2.72)
O determinante da métrica é dado por
V—g= ADPZErP=2in § cosP 4§ sinP 5 Uy sin? 0 Wy sinWp_ 5 (2.73)

e a equagao para o campo escalar torna-se

B0 =200

§"0u® + 30, (95,0, P) .

(97 ¢a \Illa e >\I]D—4)® = Oa
(2.74)

em que 3 = A_DL%, e gl refere-se a métrica de Schwarzschild em D di-
mensoes. Comecando o estudo pela parte radial, que denominaremos “H”,
temos

O, (r?" 2940, 0r ®)

- _ it _
AD73H(7’7 t) = gschatt(b _'_ ',"D_2 —

(D = 2)g5en
T

92104 ® + gy 0, ® + | 0rgiy, + 0, P. (2.75)
O préximo passo é decompor o campo em suas componentes para uma se-

paragao de variaveis tomando-se

O(r,t,0,¢,--- ,Up_4) = R(r)T(t)O(0)p(¢) - ¥p-a(Yp-4). (2.76)

R(r)

T

Substituimos R(r) —

grrdr. Fazendo isto, dividindo o termo H pelo campo ® e supondo T'(t) =

e trocamos r pela sua coordenada tartaruga, dr, =

e~ obtemos,
ATSH(rt) o, o gh, PR (D—2\ [d9%, (D—4)
S S 7 _ JSc — fo5ch 2.

) Isent? R(r) Or2 ( r ) { 2 [g5en] 147 270

Isto completa a parte radial-temporal da equagao. Voltando agora para a
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parte angular,

Op(sin 0 cosP=100,®)  BP305P
Br2sin @ cosP—40 r2sin? 6
a\pl (Sil’lD_5 \Iflﬁxpl (I)) n 8\1;2 (SiIlD_6 \1128\1,2@[))

Br2cos? 0sin? > Wy Br2cos? fsin® ¥, sin? ¢ U,
T a\pD75 (Sin \IID_58\1,D75<I>)
Br2 cos? 0sin® Uy sin? Uy - - -sin? Up_g sin ¥p_5
+ a\I/D—4‘I/D74®)
Br2cos? §sin? Uy sin? Uy - - -sin® Up_5 -

P(ea ¢7 \1117 e 7‘;[]D—4)q) =

(2.78)

Para o caso de Schwarzschild em D dimensoes, a tnica diferenga esta no
segundo termo da primeira linha em que terfamos 57! ao invés de 3P~3. Em

tal situagao a parte angular se resolve como

O (sin 6 cosP =4 00, D) Dy P
[Br? sin 6 cosP—* 60 [r2 sin’ 0
Oy, (sin? > W10y, ®) Oy, (sin? =% W,0y, )
Br2cos?@sin? ¥y Br2cos? Osin? U, sin? =0 v,
Ov, . (sinVp_50y, .P)

P(07¢7 \Illa e 7\IID—4)(I) =

ot Br2 cos? §sin® Uy sin? Uy - - -sin? Up_gsin Up_5
N Ovp_yup,P) _ _l(l+D—3)<I> (2.79)
Br2 cos? @ sin® Uy sin® Uy - - -sin® ¥p_g Or? . '
Podemos entao achar uma relacao entre as duas equagoes, dada por
. O P
BP—P) = (B2 = 1), (2.80)
r2sin“ 6
ou seja,
6D_2 —1 &M)(I) l(l + D — 3)(13
PO.G. Uy - Uy ) = — (281
( 7¢7 1 s £ D 4) ( 6 7’2 Sin2 9 ﬂ?”z ( )

2D—4 . ~
Lembrando que P2 = AD-3, e novamente tomando a aproximacao de

campos fracos, temos que

BP=2 — 1 ~ B%?sin?0, (2.82)
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de maneira que a parte angular da equacgao se torna,

P(97¢7\I]17"'7\PD—4) _ 1 2 »2 l(l_'_D—?))
@(t,’r‘,@, O, Uq, - ,\I]D_4) - 16} |im B”+ r2 . (283)

Juntando as equagoes (2.77) e (2.83), temos

P(evgbalpla"' ,\I/D_4) A%H(T,t)

0= 6(2[)(1‘,77*707 ¢7 \Illv' t 7\I]D—4) - (I)(T,,’/‘,@, ¢7 \I]h' T 7\I]D—4) a

tt 2 rr
v o o O°R D -2\ 0,95,  (D—4) s o  L(l+D=3)

- - - —m2B2 4+ T
Jsent R(r) or? ( r 2 g5, ~tar mET 72

(2.84)

Finalmente, a equacao de propagagao do campo é a mesma que em (2.64),

mas o potencial é dado neste caso por

WﬂzFW{W+g_$+dgoD;2+Wm2
+F&xD;ixD_2). (2.85)

A presenca da massa do campo escalar cria um efeito de diminuir o amorte-
cimento dos modos, isto é, diminuir a parte imaginaria destes. Na tabela I,

seguem os resultados numéricos obtidos para os modos.

Pelos dados da tabela, podemos notar que enquanto a parte imaginaria
Im(w) descresce, a parte real Re(w) cresce, quando aumentamos o campo.

Isto quer dizer que o buraco negro tem um “fator de qualidade” melhor na
Re(w)
Im(w)
Nas figuras (2.3) e (2.3) podemos ver respectivamente a evolugao do

aumenta.

presenca de um campo magnético, visto que a razao ) ~

campo para um valor de B, e o fator de qualidade variando-se o valor do
campo.

Finalmente, devemos notar que mesmo sendo o campo magnético um fator
que torna o buraco negro um melhor “oscilador”, este efeito é pequeno: o
termo de massa do campo, 4m?B? ¢ bastante menor do que o termo centrifugo
I(1+ 1)r=2
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Tabela 2.1: Modos quasi-normais para Buracos Negros de Ernst com dife-

rentes valores de campos magnéticos B e M = 1.

B

(=1, m=1

(=2 m=1

0.005
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

0.292981 - 0.097633 i
0.294054 - 0.096988 i
0.297416 - 0.094957 i
0.303040 - 0.091521 i
0.321199 - 0.080040 i
0.333777 - 0.071658 i
0.348640 - 0.061174 i
0.365606 - 0.048285 i
0.384366 - 0.032754 i
0.404542 - 0.014468 1
0.483675 - 0.0096748 1

0.484433 - 0.096488 i
0.486804 - 0.095675 i
0.490764 - 0.094312 i
0.496327 - 0.092389 i
0.496327 - 0.092389 i
0.503512 - 0.089891 i
0.512346 - 0.086795 i
0.522862 - 0.083070 i
0.535100 - 0.078676 i
0.549107 - 0.073554 i
0.564937 - 0.067625 i

Figura 2.1: Evolugao da perturbacao para B =0.05, M =1, m =1, =1.
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2.4 A Entropia do Buraco Negro de Ernst:

contribuicao com Campo Escalar

Um desenvolvimento bastante interessante a respeito da estrutura quantica
que um buraco negro pode ter foi dado por 't Hooft em um artigo em 1985
[25]. Neste artigo, o autor calcula a entropia de um campo escalar livre em
uma geometria tipo Schwarzschild e chega a mostrar que esta depende de
2 cutoffs impostos ao célculo: um infravermelho, que nao ¢ mais do que as
flutuagoes de vacuo do espaco-tempo, e outro ultravioleta, que representa
uma caracteristica do horizonte. De fato, 't Hooft demonstra que este tltimo
corte no ultravioleta, é fisicamente necessario: mais de 1/5 da "massa total
do espago-tempo” estaria concentrada na parte de fora do buraco negro sem
o corte. Nao apenas isto, mas este cutoff é uma propriedade unicamente do
horizonte de eventos, independendo da massa do buraco negro [26].

Nosso interesse aqui é calcular a contribuicao do campo escalar para

a entropia de buracos negros com um campo magnético de fundo. Para
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isto, comegaremos investigando a métrica de Ernst dada por (2.53), sendo

que o potencial vetor que gera o campo magnético é dado por A,dx* =
__ Br2sen?g d¢
2A :

As propriedades termodinamicas desta solucao correspondem exatamente

as mesmas propriedades da solu¢do de Schwarzschild [27]. Por exemplo, a

temperatura Hawking do buraco negro é dada por Ty = (47ry,) L.

Para
calcular a contribuicao do campo escalar a geometria, podemos usar, de uma
maneira direta a equagao de propagacao do campo, e calcular o niimero de
modos radiais, que é proporcional a funcao de energia livre. Isto é facilmente
factivel quando a equacao escalar for separdavel em parte angular e parte
radial-temporal. Entretanto, a geometria de Ernst permite tal separacao
apenas de uma maneira aproximada [28], e a aproximagao de campo fraco
nao é boa o suficiente para este calculo, visto que sao necessarias muitas
expansoes em B pequeno.

Uma maneira precisa de obter a energia livre é calcular, diretamente, via

espaco de fase, o nimero de estados disponivel. Tal calculo é dado por

r= / d"z / ap (2.86)

em que n é o nimero de dimensoes tipo espaco. Para obter tal relacao
no espago-tempo de Ernst necessitamos primeiramente das definigoes dos
momenta, p;. Com este intuito podemos lancar mao do método WKB, no

qual utilizamos uma expressao para o campo escalar dada por
U(r,t,0,p) ~ e EHST00) (2.87)
em que as expressoes para os momenta sao escritas como,
P(r0.6) = Or,0,6)5- (2.88)

Ao usarmos a equagao do campo escalar, conseguimos uma expressao para o

momentum p, dada por
p; = (0,5) = grr(—g"E® — g°*p}, — ¢"pj — 11°), (2.89)
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com f representando a massa deste campo. Substituindo (2.89) na relacao
(2.86), obteremos

I'= /dqﬁd@dr / dpd)dpg\/gw(—gtth — g‘M’pi — g%p% — u?). (2.90)

Os limites de integracao para os momenta sao tais que exaurem, na inte-
gral, todas as possibilidades de soma sempre mantendo o integrando real e
positivo. Para as coordenadas angulares, devemos somar sobre a extensao
padrao, ou seja, ¢ entre 0 e 27 e @ entre 0 e 7. Finalmente, na coordenada
radial, usamos a proposta de 't Hooft supondo dois cutoffs, um ultravioleta
e outro infravermelho. Impomos assim, que o campo é zero fora dos limites

estipulados,
V=0 se r<mr+e ou r>L(c0). (2.91)

Levando em consideracao estas afirmagoes, podemos substitui-las em (2.90),

com o que obtemos

27r max pglax
D(E, pu, B,rp, Lye) = / dqb/ d@/ dr/ dp¢/ dpy *
’I‘h—l—e
*\/ Grr(—g" E? — g%%pZ — g"p; — 11?). (2.92)

Neste caso, como afirmado acima, o valor maximo de py é dado pelo maximo

valor que esta variavel pode tomar no integrando sem deixa-lo negativo ou
. o ; —g'tE2—g9op2 —p2 . ~
imaginario: pp** = 7 ¢ = a. Assim, a equagdo (2.92) fica

(E,p, B,rp, L) = / d(b/ dﬁ/ / dpg *
rh—i-e
bo + a—2arcsen@
V@ Pt all,
pIix _gUE? — gbep2 _ 2
\/grrg(")/ d¢/ d@/ dr/ 90y 1) (5 03)
+€

. 499

sendo
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méx __ _gttEZ_MQ
Tendo em vista que o valor maximo de p, € dado por pg™* = 4/ — e

a integral nesta variavel nos da

27 V9r:9%9%
L(E, 1, B,ry, L, €) / d¢/ d9/+ 1347 g¢¢]3/2( gt E? — 1?)*%.(2.94)
TH+E€

Para saber a relagao entre a férmula acima e a energia livre do campo

escalar, devemos investigar a funcao particao, que é escrita como
=N e, (2.95)
N

em que Fy e a energia de cada estado quantico a ser somado. Para bdsons,

temos

= 1
Z o~ BnE _ TppeTt (2.96)
n=0

de maneira que a funcao de energia livre se torna

ANt ey~ L g (1 - efE
_6;1(1 >_ﬁ/dr1<1 )
% / {dfn, (1 — e PY] — nd[in(1 — e=PF)]} = — / adE(297)

Na tltima integral, salientamos que [ d[n, In(1 — e #F)] = 0, visto que para
os limites n, = 0 e ' — oo tal contribuicao se anula. Aqui n, representa o
nimero de modos radiais, que é o mesmo que I' exceto por uma constante
multiplicativa, I' = 73n,. Desta maneira, a energia livre do campo escalar

fica

1 L T 27 o9 2\3/2
F:——z/ dr/ de/ do V=90 B = —1)7 g, (2.08)
67 Jr+e  Jo 0 Werm \/—gtt(e —-1)

No regime de aproximacao em que a massa do campo escalar é pequena e o

T}L

cutoff L é grande, expressos por p? < e L > ry,, podemos escrever (2.98)
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CcOo1mo

/w 7 ‘”’/ as @gfl aB. (2.99)

A relacao entre a energia livre e a entropia do campo escalar é dada por S =
dE =

(%05 F, de maneira que, ao levarmos em conta a integral fo /3 =

-1 1554>
obtemos para a entropia do campo escalar a relagao
1
S=—- 0o~ d0g,;*/— 2.100
144077% / T9uNTI = 50,3 /TW / 9u V=g (2:100)

A primeira parte da relacao acima é bastante geral: de fato podemos cal-
cular a contribuicao da entropia do campo escalar para uma grande classe
de espagos-tempo em 4 dimensoes, pelo método WKB, usando esta relacao.
Basta para isto que a geometria tenha elemento de linha diagonal, e que seja
estaciondria (o que advém da restricdo em (2.87)). Neste caso, fica claro

(>1) ¢ uma funcio que diverge

a necessidade do cutoff no ultravioleta: g,
conforme nos aproximamos do horizonte de eventos.

Estamos interessados em calcular a contribuicao do campo magnético na
entropia do campo escalar. Procedemos entao usando a relacao acima com
a métrica de Ernst dada por (2.53). Apdés a substituigdo dos coeficientes da

métrica, resolvendo as integrais angulares, obtemos

B2r2
1 L 4 arctgy/ vrgee

S=- 3/ i 1—0——1+BQQ dr. (2.101)
72003 Sy v (r—1a)2(1 + Br2) Brv/1+ B2

Esta integral é bastante complexa de se resolver, contudo, podemos fazer

aproximacoes que nos fornecam o resultado aproximado: para as proximida-

des do horizonte de eventos, expandimos o integrando em torno de r = ry,

(o primeiro termo da série, que é a maior contribuicao & integral é obtido

simplesmente substituindo r = 7, exceto na fungao r — ry,),
B2y 2

(1+ B?*r3)~! arctg 1+Bzhz

.
720€ SNy
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Esta relacao é valida para qualquer valor de B. Para compararmos este
resultado com o obtido com "t Hooft, tomemos o limite em que este campo
é pequeno, caso em que a relagao acima pode ser escrita como

Th 4

8
S, ~ 260c 1— §B2r§ + 53% —O(B| . (2.103)

Este é exatamente o resultado para Schwarzschild quando B = 0.

Para obtermos o limite ultravioleta, a partir de (2.101), podemos expandir
em termos de r — 0o. Neste caso, contudo, nao hé sentido em tomar a apro-
ximacao de B — 0, para tentar recobrar o comportamento de Schwarzschild:
ha uma ambigiiidade no integrando quando fazemos isto, a saber, fungoes
do tipo B?r?. Nao h4 sentido em expandir tais funcoes para B = 0 quando
r — 00. Se, entretanto, assumimos que na expansao r — 00, 0 comporta-
mento de B ¢é tal que B — %, recobramos o limite de Schwarzschild. Isto fica
claro ja pelos coeficientes da métrica de Ernst: com tal aproximacao para B,
(2.53) é exatamente a geometria de Schwarzschild.

Seguiremos com o calculo a partir de (2.101), para a expansao no limite
r — o0o. Com tal artificio, desprezando termos Tiz ou maiores, obtemos como

contribuicao da entropia no limite infravermelho,

1 [1 . 2n 1
- —rL+Ztmrtro(+)]|. 2.104
o | Bt T T <L)] (2.104)

SLZ

Para o resultado acima, vale a afirmacao de ha poucos paragrafos: no limite
1

R
campo magnético age como um regularizador, diminuindo a divergéncia na

em que B — +, recuperamos o carater de Schwarzschild. Neste sentido, o
contagem dos modos do espaco-tempo. Nota-se também que nao faz sentido
o limite B — 0, pela ambigiiidade de que falamos acima.

H& a possibilidade ainda de calcularmos o limite de campo magnético
baixo, com outro procedimento: expandimos (2.101) nas imediagoes de B —
0. Neste caso, entretanto, o nosso cutoff infravermelho deve ser tal que BL <
A, ou nao faria sentido tal expansao (A um parametro genérico). Isto equivale
a suposicao de que nem o cutoff nem o campo magnético tomam valores 0

ou oo. Fisicamente isto pode ser justificavel para o estudo, por exemplo,
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de mini-buracos negros, com campos magnéticos unidirecionais grandes em
relacao a massa do buraco negro, mas pequenos em relacao ao cutoff. Nesta

situacao, a contribuicao total para a entropia do campo escalar é dada por

L? rs 205 L4 2I3
Sp ~ — — b= L 4 B2+ O(L"B!
5= 1080, 180{15+3+15] TOWLB) +
" 4 500 44
1— 2B BY. 2.1
3606[ = }+O(rh ) (2.105)

Isto encerra o calculo para o buraco negro de Ernst. Apontamos que a
contribuicao do campo escalar que se propaga em tal geometria nao pode ser
colocada em termos de uma renormalizacao da constante de Newton, como
sugeriram Susskind e Uglum [29], ou mesmo, como pode ser visualizado,
de uma maneira a reinterpretar a constante newtoniana [30]. Tal fato era
esperado, ja que a métrica de Ernst nao é assintoticamente plana, ou seja,
nao obtemos a gravitacao newtoniana com r — oo.

A interpretagao desta contribuicao em termos de cutoffs ainda esta em
discussao.

Seguiremos na mesma linha de pensamento trabalhando agora em duas
generalizacoes dos calculos acima: o caso do buraco negro de Ernst com um

campo dilatonico [31] e o caso em D dimensdes [24].

2.4.1 O buraco negro dilatonico

A geometria de Ernst com um campo dilatonico de fundo é dada por [22]

ds? = ATra? [(1 - ii) at? — (1- T—h)_l dr? — r2d92} e e

T A T+a2

(2.106)

em que A = 1+ (1 + a?)B%*?sin?0, e o dilaton se acopla com o campo
magnético pela relagao
a ¢

_ = _7 2.1
1+a?2 InA (2.107)
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Podemos partir de (2.100), e desenvolver a integral com os coeficientes da

métrica acima,

L ™ 4
S = %/ dr/ df send ., (2.108)
720r;, Jrpre  Joo [+ (1 + a?) B2r2sen?6] e (r—ra)

cuja integral em 6 resulta em

1 2 3 (1+d*)B?*r?
1 /L 2 I [2> 1+a2’ 27 T+ (1+a2)B2r2 r
T

360r} Jore (14 (1+a2)Bx2=e  (r—m)

(2.109)

Aqui novamente a integral nao pode ser resolvida analiticamente, e recor-
remos a aproximacoes: expandimos em séries de Taylor para regioes nas
proximidades do horizonte. A contribuicao para r grande nao pode ser ob-
tida ainda, ja que a expansao para r — oo nao é convergente. Para as

proximidades do horizonte, temos

Foll_2_3 (1+a2)B%r?
rp 251 |20 T4a2? 20 14 (14a2)B2r2

= —5— (2.110)
360€ 1+ (1+ az)B%;‘;] Tha?

Também, da mesma maneira como sugerimos no caso de Ernst, podemos

obter aproximadamente a contribuicdo para B muito pequeno. A entropia

neste caso é dada por

¥ 14al,., ml* L[*] B
P A ZZ
Sl = 1080 T 11 2 {T" LR T
2
+3g’6€ {1+ {g —2(1+a2)] Bzr,%}. (2.111)

Esta relacao é bastante parecida com (2.105), e de fato, para a = 0, ela se
torna (2.105), como esperado: no limite em que o campo dilaténico é nulo,
recobramos a geometria de Ernst e, neste sentido, a contribuicao do campo
escalar a entropia deve ser a mesma. As propriedades neste caso, sao as
mesmas como explicado no caso anterior. Seguiremos com a tltima etapa do

trabalho, o campo escalar em uma geometria de Ernst em D dimensoes.
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2.4.2 O caso D-dimensional

Um buraco negro de Ernst em D dimensoes tem o elemento de linha dado

por [24]

ds? = Aps [—fdt* + f2dr® + r?cos*0dQF,_, + r2d0%] + A~ *r?sen®0dp?
(2.112)

em que A é o termo com campo magnético dado por

2D -4

A=1+ B*r?sen’0, (2.113)

s, , = Z]D:_f [T—, sin? W,;dU? é a (D —4)-esfera e f a funcao de Schwarzs-

child em D dimensoes escrita como f = 1 — (%)D_g, com 7, o raio do
1
horizonte de eventos definido por r, = [%] "~ As propriedades ter-

modinamicas deste buraco negro sao as mesmas daquelas do buraco negro de
Schwarzschild em D dimensoes.

Estamos procurando, de inicio, como o fizemos na se¢ao anterior, a ener-
gia livre de Helmholtz, com o que poderemos calcular a entropia do campo
escalar. Com tal objetivo, partimos novamente de (2.86), mas generalizando

tal expressao para D dimensoes. Temos

D-3 D-3

= / H AV;dpdrdpy,dpg , | grr(—g" E? — %97 — Z g¥ivipy ). (2.114)

i=1 j=1

Para obter uma férmula geral a partir da integral no espaco dos momenta,
partiremos de (2.94) como inicio, primeiro tratando o caso 5-dimensional
depois o fazendo para os demais, até 8 dimensoes. Tal repeticao embora
pareca desnecessaria, nao o é de fato, pois devemos achar o termo geral de

duas séries alternantes, para o que o nimero minimo de termos é 4, como
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ficard claro mais adiante. Desta maneira tomemos
r d*v " d 212 1_1 g CGME? ViV 2
5 = r p\Ifl 3 ( g g qul !
9t g, v,

que integrada na ultima coordenada de momentum fica

fe QL LB B e

Chamaremos a5 os coeficientes numéricos em frente a integral, ou seja,

2 . , .
a5 = [g} [%] [1 — %] [g} [%] = %5 Seguimos usando este cdlculo acima, para
o caso 6-dimensional, que é semelhante. A funcao de estados em 6 dimensoes,

a partir da féormula citada é dada por

p$ax
e = /d“/ dpwcis | %%( gl E? — gV ey, — p?)?, (2.117)

cuja integragao nos fornece

2 1
Ig = /d% s {1 -3+ g} T (—g"E? — 2y, (2.118)

Novamente, chamemos ag = [Z] [L][1 -] [Z] 3] [1 -2+ 1] ==
Em 7 dimensoes temos

max

p\pg
7 = /dr/ dp\pgam/g gﬂ,g%( g"E? — g% Vpg, — p?)*?, (2.119)
tt

ou,

_ 6= A 9 w2 2\3
F7—/d7’a6[2} [48} gtt( g ES — pt)”, (2.120)

em que redefinimos a7 = ap [g} [i—g}. Finalmente, em 8 dimensoes, a funcao
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de estados fica

max

L [Py g
I's = /d77’ / dpy, a7 gV (—g"E? — g‘I’A“I"‘p?I,4 — )3, (2.121)
0

ou seja,

3 3 1 g
Tg= [ dFar|[1—S+=—2| /2 (—g"E*— > 2.122
8 / 7"047[ 3+5 7} gtt<g ) ( )
Tendo formulado a funcao I' para 4 dimensoes diferentes, estamos agora em
posicao de obter uma férmula geral para ela. Pelos desenvolvimentos acima,

podemos demonstrar que

I'(D) = /dD—lfaD i(—gttE2 — A (2.123)

em que ap € uma constante de integracoes sucessivas, que pode ser repre-

sentada pelas duas séries entre chaves,

com

y =2+ [sen(ym/2)|

fly) = 5 : (2.125)

o = a+ ‘867;(a71’/2)|’ (2.126)
s(x) = ﬁ (2.127)
k() — b—1+ |020$(b7r/2)|. (2.125)

Esta férmula é valida para um grande nimero de espacos-tempo em D di-
mensoes: todos para os quais a equacao de Klein-Gordon, bem como o

método WKB ¢ valido, ou seja, para as geometrias estacionarias e com
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Tabela 2.2: Valores de ap em fungao de D.

D456 | 7/|8 9 10 11
an |z |22 = | = | = | = i
D] 6|3 |60 | 384 | 840 | 6144 | 75120 | 122880

métrica diagonal.

Os valores da constante o em fun¢ao da dimensao do espago-tempo podem
ser vistos na tabela 2.1. Levando-se em consideracao o limite em que a massa
do campo é pequena, a energia livre de Helmholtz e a entropia podem ser

escritas como

F= aDcSD/dD—lf\/gg;D/z (2.129)
5 = ~Gapdy [ a"7yag"" (2.130)
em que definimos
00 ED—l o
§p = /0 5 —IE. 5p = Dép. (2.131)

As equagoes (2.129) e (2.130) sao novamente bastante gerais: para os mesmos
tipo de espagos-tempo em D dimensoes como citados acima, podemos utiliza-
las para obter a energia livre de Helmholtz ou a Entropia do campo escalar.

Dando prosseguimento ao célculo, voltamo-nos agora para o caso em 5
dimensoes. A entropia pode, de acordo com as relagoes acima ser escrita

CcOo1mo

T 2m L ™2 ginfcos®
Sy = —5 1) d dW do
; . /0 ¢/0 ' /m+s /0 [1+ a?sin® 6]3/2 *

7“8

com a = Br/+/3. As integrais em ¥, e ® sdo triviais e a integral em 6 pode

ser resolvida com uma substituicao simples, x = senfl. Neste caso, obtemos

45¢(5) /L 7 1
S5 = 1—— | dr. 2.133
> 321 Jrpse B2/(r2 = 12)° V14 B?r2/3 ( )
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Novamente podemos fazer as expansoes para as regioes préxima ao horizonte

e assintética. Com isto (2.133) fica

o _ 15¢(5) rh
° T 32r, B2 | 32rhe)?? |1 (14 B2 2 /3 e

1 5 1-14(1+B%}/

32rm ) |27 7 6(1+ B2 2/3 1/2
45¢(5) [L_2 Br2(21 + 5B%2

3282 |2 \/3(3+ B2

r L} (2.134)

Para 6 dimensoes, a expressao de que devemos partir é,

47'('3 27
= TR A5 U, dW U
S 315 @) / dqb/ senWU,d 1/ AU, *
senfcos’0 13
do d 2.135
/7:]1—1—6/ +Oé2$€n29]7/3 (7"3 — 7"2)3 T ( )

. Integrando nas partes angulares obtemos

3B2r2

com o = g

g _ 1 /L 1 rt
© T 105(4r)5 ), e a2(1 4 a2) (13 —1P)3

*
?)
2F1 % % %7 1a22
2 ta
Q20" — 1+ (1T a2 dr, (2.136)

e com os mesmos artificios usados até aqui, a expressao acima tem as maiores

contribui¢oes dada pela expressao

lL—I—

277 (L 12L 8rl/331/6 s
Sg=—red = — + L
2240r> | B2 B4 T(1/3)(7/6)B14/3 B2

1 1 3 3B2r,2L

o | (9Bx2 —12) 24,1 [§> 52 58527 } 12 Bry, 5lne
r .
" [B2r2(8 4+ 3B%r2)] | [B*2(8+3B2r2)43] | |48 ' bHde 27

(2.137)

Finalmente, calculamos a contribui¢ao do campo para um caso em 10 di-
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mensoes. A integral de partida é

9,4 m T e
5y = 20xTm0(9) / do / sen®Uydl, / sen*Wyd sy %
3(47”%)9 0 0 0
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I L ™2 senfcosSh r43
dv do d 2.1
*/0 6/%6/0 [T X2sen20]7 (77 =) (2138)

7B2r2
16

com x? = . Novamente, a parte angular nos fornece

79 7.{.9 00
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2 1 37, [ 13 X2
#q =735 = 1400x* — 627" + 735(1 + X*), " Fi | 5,250 1 :

Sio ~ dx *

+ x?
(2.139)
que, com as expansoes sugeridas acima resulta em
—16/7 -4
i~ 38 L14 . N 24,1B77 3,1B 5
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(2.140)

O comportamento das divergéncias aqui é bastante geral: tanto no caso
do buraco negro dilatonico quanto nos de Ernst, as divergéncias da regiao

ultravioleta dependem do fator de cutoff como

SR — (2.141)

Neste sentido, temos os mesmos resultados como os de Schwarzschild. En-

tretanto, embora nao diretamente no fator de cutoff €, a entropia tem uma
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contribuigao nao-trivial do campo magnético, como pode ser visto em (2.103),

o mesmo sendo verdade para os casos dilatonico e D-dimensional.

Para a regiao do infravermelho, tudo o que se pode supor, é que recupera-

mos o comportamento de Schwarzschild com a condi¢ao de que B — %, pois

como afirmamos acima, o limite B — 0 é ambiguo, uma vez que tomamos a

expansao r — oo para resolver as integrais.

A maior divergéncia tem a forma

e as demais divergéncias como

L[l

SL(d’LU) ~ ﬁ’

(2.142)

(2.143)

coma-+b=D—1, em que b > 2, exceto por divergéncias de escala lo-

garitmica. Neste sentido, podemos afirmar que o campo magnético atua

como um campo regularizador da divergéncia na regiao do infravermelho,

como também o afirmamos para o caso 4-dimensional, pois a divergéncia di-

minui de um fator L”~!, como seria o caso dos espacos-tempo de Minkowski

ou de Schwarzschild, para L?~3.
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Capitulo 3

Modos Quasi-Normais e
Termodinamica em Buracos

Negros

Um interessante ramo do estudo de perturbacoes em buracos negros, é a
possivel conexao entre a perturbacao de uma dada geometria - ou ainda a
propagacao de um campo teste - e as propriedades termodinamicas desta
geometria [35]. Neste ambito, uma questdo de importancia relevante a ser
colocada é se a area do horizonte de eventos possui um quantum determinado,
e ainda se esta determinacao esta de alguma maneira associada ao espectro
perturbativo das equacoes de propagacao de campos teste na geometria.

A questao acerca de um determinado quantum para a drea do horizonte
de eventos tem seu trabalho pioneiro na década de 70, quando Bekenstein
observa que a area de buracos negros nao extremos se comporta como um in-
variante adiabatico. Tendo em vista o principio de Ehrenfest isto corresponde
a discretizacao da area do buraco negro.

Embora alguns anos antes, Christodoulou [36] tivesse demonstrado que
a assimilacao de uma particula neutra pontual pelo buraco negro era um
processo reversivel (e portanto com uma possivel variagdo para drea arbitra-
riamente baixa, JA — 0), se levarmos em conta que a referida particula nao

é pontual e tem um raio minimo r e uma massa m, o quantum de area sera
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§A = 8mmr, e para uma particula relativistica (r > h/m), 6A = 8xl%, com
1% = h [37].

Contudo, um outro limite é obtido se levamos em conta o buraco negro
de Reissner-Nordstrom, com particulas carregadas se propagando ao redor
de sua geometria. Supondo que estas particulas tenham raio, massa e carga
definidos, neste caso, o quantum de area na geometria de Reissner-Nordstrom
seria dado por 0A = 4% [38].

Nos dois casos (particulas carregadas ou sem carga), hd um processo
impedindo que o quantum de area seja arbitrariamente pequeno. Para o
processo de captura de uma particula sem carga em um buraco negro de
Schwarzchild, devemos considerar que a particula tem um raio minimo em
conformidade com o principio da incerteza de Heisenberg, para que haja
um quantum de area fundamental. No segundo processo, para assegurar a
existéncia de um quantum minimo de area, é preciso levar em consideracao
o processo de “emissao de carga tipo Schwinger”. O campo elétrico critico
para a producao de pares deve ser maior do que o campo nas imediacoes do

horizonte, levando a 6 A, = 41%.

3.1 A Conjectura Hod

Tendo em conta estes resultados, um significativo insight foi dado ha pouco
mais de uma década quando Hod publicou um trabalho relacionando os mo-
dos quasi-normais da geometria de Schwarzschild com a termodinamica do
respectivo buraco negro. O quantum de area proposto inicialmente por Hod,

baseado nos resultados descritos acima foi expresso como
SA = ki3, (3.1)

com k£ uma constante numérica a ser determinada.

A idéia original reside no fato singular de que o espectro quasi-normal da
solugao de Schwarzschild é peculiar no regime assintotico: a parte real destas
frequéncias converge para um valor fixo, a partir de um valor de n (niimero de

sobretom) suficientemente grande. De fato, o espectro assintético dos modos
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quasi-normais do buraco negro de Schwarzschild é dado por [34]

Muw, = M(w{® + i) = 1;1—3 —i(n+1/2)+0(\/n—1). (3.2)
s

A correspondéncia proposta, nomeada posterirmente como conjectura de
Hod, é resultante da idéia de que wr{LR} poderia representar o quantum de
energia do buraco negro para transicoes de fase em altas energias, ou, em
outras palavras, de um buraco negro nao-excitado para um buraco negro que
emitiria em altos valores de n. Desta maneira, poderiamos ter uma quan-
tizagao da area do buraco negro, como se segue. A area do horizonte de

eventos, A = 167 M? tem um “quantum” de
§A =32rMSM = 32n Mhw? = 41n 33, (3.3)

em que [p é o comprimento de Planck também escrito em unidades conveni-
entes (G = 1) como Ip = V/h.

Este resultado é compativel com a proposta de quantizacao da area e
a relacdo termodinamica, S = A/4h, o que pode ser demonstrado como se
segue. Temos que o nimero de estados g(n) acessiveis a uma dada geometria,
é inteiro e se relaciona com a entropia como S = Ing(n), de maneira que
g = e/ [39]. Assim, necessariamente a quantizagdo da area precisa ter
o formato A = 4nhInC, com C' constante, de maneira que g permaneca
inteiro.

Em sua conjectura, Hod propoe que esta constante seja C' = 3, tendo uma
interpretagao estatistica (dada no ultimo pardgrafo) e que se compatibiliza
com o principio da correspondéncia de Bohr, de que frequéncias de transi¢oes
em numeros quanticos grandes devem ser compativeis com frequéncias de os-
cilagao classicas (o que pode ser observado através da comparacao do espectro
quasi-normal assintético com a proposta do quantum de drea em (3.3)).

A conjectura contudo apresenta algumas dificuldades. Primeiro, o es-
pectro assintotico dos modos quasi-normais é naturalmente diferente, para
diferentes buracos negros. Entretanto para que esta continue vélida espe-

ramos que no limite em que estes buracos negros se aproximem da solucao
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de Schwarzschild, também recuperemos o espectro assintotico deste buraco
negro. Para o buraco negro de Kerr, no entanto, temos que wg tende a zero
conforme a rotacao também se aproxima de zero com a proporcao wgr o< a®
[40]. Desta maneira se a um buraco negro de Schwarzschild acrescentamos
uma quantidade infinitesimal de rotacao, o espectro assintotico é diferente,
invalidando a conjectura: o quantum de drea pode se tornar arbitrariamente
pequeno nestas condigoes. Uma situagao similar se aplica ao buraco negro
de Reissner-Nordstrom.

Um outro aspecto problematico da conjectura é a relacao de Motl-Neitzke

para os modos assintéticos do buraco negro com carga [41],

S™MY — 1 — 2cos Ty (3.4)
com j o spin da perturbacao. Neste caso, para as perturbacoes gravitacional
e escalar, temos wrp = T,;l, o que nao ¢ verdade pra perturbacoes vetori-
ais e de spin semi-inteiro (para as quais wg = 0). Desta maneira, o valor
assintético de wg depende do tipo de perturbagao analisada (ou do campo
que se propaga), e nao das propriedades intrinsicas do buraco negro, o que
dificulta a interpretacao de wr como quantum de area.

Tais problemas bem como outros relacionados com a interpretagao do
spectro quasi-normal foram conceitualmente resolvidos em um trabalho pu-

blicado hé dois anos, que sera descrito na préxima sec¢ao.

3.2 A Conjectura Hod Modificada

Como citado na se¢ao anterior, a conjectura de Hod possui alguns problemas
conceituais. Um outro problema fundamental relacionado a ela, é o fato de a
conjectura ser baseada, de um ponto de vista conceitual, em uma transicao
do buraco negro de um estado com valor alto de n para o estado fundamental
apenas (isto pelo ponto de vista de que um quantum de area corresponde &
emissdo de um modo em altas energias, com energia wg). Uma transi¢ao de
um estado assintético n para um também estado assintético n’ nao é contem-

plado pela conjectura. Para uma transiciao n — n’, wg)_(",) o O(1/n/?), de
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Figura 3.1: Parte real dos modos quasi-normais de Schwarzschild para [ = 2
el=3.
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maneira que o quantum de area pode se tornar arbitrariamente pequeno.

Tal questao foi solucionada com a proposta de Maggiore de uma modi-
ficacao na interpretagao das grandezas fisicas no espectro quasi-normal do
buraco negro de Schwarzschild. Antes de falarmos propriamente da solugao
proposta por Maggiore [40], falaremos da fisica envolvendo os modos de per-
turbagao do buraco negro.

O espectro da perturbacao gravitacional da geometria de Schwarzschild
[42] segue na figura 3.2.

O modo dominante no processo de emissao do buraco negro é o primeiro,
pois é aquele com menor parte imaginaria. Todos os demais modos tem

parte imagindria crescente (com taxa de crescimento constante) de acordo
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com a progressao do numero de overtone. Do ponto de vista astrofisico
e observacional, os primeiros overtones sao os mais importantes por terem
menor fator de atenuacao wy, e neste sentido, terem maior possibilidade
de serem observados em detectores e antenas gravitacionais [43, 44]. Os
modos assintéticos por sua vez, (alto valor de n), respondem por uma possivel
conexao entre a oscilacao da geometria e a termodinamica do buraco negro,
e por isso o interesse em calcula-los.

No gréfico 3.2, podemos observar o comportamento dos modos quasi-
normais para dois valores diferentes de momento angular, [ = 2 e [ = 3.
Em ambos os casos, e também para outros valores de [ [34], a parte real
inicialmente diminui até um dado modo n. e aumenta novamente a partir de
n. aproximando-se do valor assintotico w., = TxH In 3.

Comparado com sistemas classicos tais como uma vareta vibrante tal tipo
de resposta do buraco negro a perturbacoes em sua geometria é bastante pe-
culiar. Isto porque em sistemas classicos, o modo com menor amortecimento
é em geral o modo com o menor valor de wg, e tipicamente w aumenta com
o aumento de n tanto em sua parte imagindria quanto real. De maneira
diversa, na figura, até n = n., o valor de wg diminui, e ainda, a partir de n,..
este valor aumenta até atingir um ponto de saturacao em Ty In3. Em um
sistema macroscépico normal, wr e wy aumentam indiscriminadamente com
o aumento de n. Entretanto quando wg torna-se expressivamente grande,
o comprimento de onda da oscilagao associado, A = 27Tw§1 torna-se expres-
sivamente pequeno, e quando alcanca o valor de distancias de estruturas
atomicas, a perturbacao se dissipa como efeito de agitacao termal da rede
[40].

Em uma tentativa de explicacao semi-classica, a figura 3.2 deixa ainda
questoes sem esclarecimento. Em sistemas quéanticos (em geral), os modos
com energia maior (hw;‘;gmnde) decaem mais rapidamente, pois a largura de
decaimento em uma expansao em multi-polos é proporcional a wg, compor-
tamento contrario ao da figura 3.2, para qual (em uma interpretacdo semi-
cléssica) a probabilidade de decaimento de um modo diminui com o aumento
de n até o valor de n..

A tentativa de explicacao sugerida em [40] é de comparar o buraco negro
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com um oscilador harmonico amortecido, sujeito a uma forca ’tipo delta de

Dirac’,
X 4+ 70X 4+ wiX = f(t) = 6(¢). (3.5)

Para tal sistema, as solugdes sao do tipo e¥*') com wi = ++/wi —3/4 +
i70/2. Desta maneira com as identificagoes w; = /2 e wg = /Wi — V2/4,
conseguimos o comportamento de oscilagao do tipo e”“[asen(wgt)+bcos(wgt)].
Neste caso, a frequéncia de oscilagao dada por wy pode ser aproximada por
Wg para n pequeno, uma vez que wg > wr. Contudo, distintamente, wy ~ w;

para n grande, uma vez que

Wi = wh + w?, (3.6)
e wy; > wpg para n grande. Com a reinterpretacao do espectro tendo wy como
frequéncia de oscilagao do buraco negro, os problemas descritos acima tanto
em nivel classico como semi-classico sao resolvidos. Os espectros para [ = 2
e | = 3 seguem na figura 3.2.

De acordo com esta figura, o modo com o menor valor de n é também
o com a menor frequéncia wy. Também, a frequéncia aumenta monotonica-
mente com o aumento de n, como esperado. Ainda, uma atribuicao sugestiva
pode ser feita, em comparagao com a relatividade restrira, se nomearmos
hwo{"} = /m2 +p2, do que mg = TyIn3 e p, = 2Ty (n + 1/2). No caso, a
expressao para p, ¢ grandemente intrigante, uma vez que representa a mesma
expressao para a quantizacao de uma particula e um circulo de comprimento
L=hnT gl [40, 45]. O espacamento equidistante entre os diferentes niveis de
pn € 0 exato esperado da descricao de um horizonte como uma membrana
[45].

Finalmente, a quantizacao da area pode ser facilmente obtida, conside-
rando que a energia envolvida advem de uma transicao de fase em altas

energias dO énero n — n — 1. Neste caso temos que wg ~ w dO ue
; 0 I,

SM = hlwi™ — wi"™Y) = n(ad) . (3.7)
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Figura 3.2: Modos quasi-normais de Schwarzschild para [ = 2,3 em termos
de wy.
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Neste caso, a quantizacao da area fica
§A = 32rMSM = 8th = 8nl3, (3.8)

que é o resultado original proposto por Bekenstein na década de 70! Mesmo
para transicoes a baixos valores de n, por exemplo de n = 2 até n = 1,
temos um quantum de drea sempre da ordem de A = C8xl%, com C uma
constante variando de 0 a 1, que em tal caso vale 0.2. O resultado de (3.8),
nao depende do spin do campo propagado na geometria como no caso da
conjectura de Hod, de acordo com a relacao de Motl-Neitzke, e os limites
n — oo e Q,a — 0, evitando o problema também acima citado de invalidar
a conjectura pela adicao de pequenas quantidades de carga ou momento
angular ao buraco negro.

A 1ltima questao 'proposta’ na conjectura de Hod e que nao pode ser
equalizada pela modificacao posterior, é a de que a quantizacao deve ter
um formato 0A/h = 41Ink, para que a contagem de microestados dada por

g(N) = €M% seja um ntimero inteiro!

. Entretanto, na aproximacao semi-
classica N é um numero bastante grande, o que faz com que g seja ainda
maior, invalidando portanto a possibilidade de se conseguir uma precisao na
ultima casa de medida, para g, de uma unidade. Além disto, o quantum de
area 0A é o mesmo independendo do valor de n, o que é conceitualmente
injustificado, uma vez que a aproximacao tomada, é valida apenas para altos
valores de n e portanto de N.

A férmula da entropia com a constante que Bekenstein obteve para o

quantum de area fica
S =27N, (3.9)

que é compativel com [46]. Do mesmo modo, em [41], tal propriedade é usada,
para o calculo dos modos quasi-normais, de maneira que tal propriedade
(peridiocidade do tempo euclideano) parece estar relacionada nao apenas a

derivagao da temperatura do buraco negro, bem como a quantizagao da area

LA grandeza N aqui, ndo deve ser confundida com n, sendo o fator de proporcio entre
a area de um buraco negro, e o quantum de drea, N = A/JA.
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deste.

3.3 Testando a conjectura com Buracos Ne-

gros de Reissner-Nordstrom

Ante a modificagao proposta por Maggiore da conjectura de Hod, que motiva
uma interpretacao fisica mais coerente dos modos quasi-normais enquanto
comportamento oscilatéorio, uma pergunta que pode ser colocada é se esta
conjectura se mantém, para buracos negros de Reissner-Nordstrom [48].

Para o calculo destas oscilages (perturbagao gravitacional em Reissner-
Nordstrém), usamos o ferramental desenvolvido na préxima se¢ao (nos ate-
remos aqui, a discutir os resultados).

Temos que a area do horizonte de eventos do buraco negro é dada por
A = 4nr? e sendo o raio do horizonte r; = M[1 + /1 — Q?/M?], teremos

que o quantum de area para este buraco negro serd dado por

8Ty Q?
0A = \/ﬁ {<2M — E) oM — Q(SQ} , (3.10)

que, em termos de uma fungao z definida como z = Q)/M fica

R e

2
z

0A =8t M )/

1— 22 {( 14++v1—22

Aqui estamos considerando a variacao na area do buraco negro, através
de uma emissao gravitacional que carregue para o infinito apenas energia.
Portanto é razoavel supor que, 6¢) = 0. Neste caso, a expressao mandatoria
no processo de quantizagao é M f(z)0M. Contudo, para buracos negros cuja
carga nao se aproxime do valor extremo (z = 1), f(z) ~ 327 pode ser
tido como uma boa aproximacao. Por exexemplo, se Q tomar 60% do valor
maximo, ou z = 0.6, o erro na expressao acima é da ordem de 1%. Para @
préximo a 80% do valor méximo, o erro é de 6,5%, o que torna vidvel esta

aproximacao, contanto que nao nos aproximemos de () = Q,q. = M. Neste

95

) oM — zéQ] = M[f(2)0M + g(2)0Q)]

(3.11)
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Figura 3.3: wg como funcao de @), para a série [ =4 e n = 28 até n = 33.

caso, o quantum de area é o mesmo que pra Schwarzschild (3.8), dado por

Sendo 0M a quantidade de energia ejetada no processo, 0M = hdwy, e

portanto, se dwy = teremos o mesmo quantum de area que no caso de

1
aM>
Schwarzschild, dA = 8xl%. O trabalho portanto é o de verificar se dwy =

1 (em todos os célculos do resto deste capitulo, a menos que M apareca

2
explicitamente, adotamos M = 1/2).

Para o largo espectro quasi-normal calculado, desde [ = 2 até [ = 6, tal
proposicao foi confirmada exceto por pequenas oscilacoes em determinadas
regioes dos graficos de wy x Q.

Um gréfico tipico de wq, para diferentes valores de n, e [ = 4 pode ser visto
na figura (3.3). Embora nao seja perceptivel pela figura, hd uma pequena

"diferenca de fase’, entre os gréficos de wy para diferentes valores de n. O
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Figura 3.4: dwy como funcao de @), para a série [ =4 de n = 28 até n = 33.

correspondente grafico de dwy x @ é dado em (3.4).

Outra comparagao também é feita no caso de [ = 3 nos graficos (3.5,3.6).

Em ambos os casos (e também para os demais valores de [), hd uma
diferenca de fase entre o grafico de wy para um dado n e seu consecutivo
n — 1. A pergunta fundamental é se este comportamento é robusto, ou
advem do fato de que n ainda nao é suficientemente grande para que possa
expressar o comportamento assintético adequado?.

Entretanto, se dermos um zoom na figura (3.4), é possivel perceber que a
largura desta diferenca de fase diminui, a medida em que avangamos no valor
de n (figura 3.9): para n = 28,29 (primeiro pico, da direita para a esquerda)
0 pico é mais largo do que para n = 32,33 (dltimo pico).

A questao remanescente é se os picos de diferenca de fase diminuem,

quando vamos a um n suficientemente alto, ou continuam a crescer. Tal

2Pela limitacdo do método em si, n’s grandes, muito maiores do que 100, em geral sdo
possiveis apenas de se calcular até z ~ 0.2
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200 — 202 na perturbacao gravitaci- Figura 3.8: Zoom do grafico ao lado.
onal.

questao pode ser resolvida, observando-se os graficos com n = 200el = 3
das figuras (3.7) e (3.8). Nao apenas os picos diminuem em largura com o
aumento de n, como também, diminuem em altura, para um n grande.

Desta maneira, os resultados calculados sustentam a conjectura de Hod
como modificada por Maggiore, para os buracos negros de Reissner-Nordstrém
com cargas nao préximas do valor extremo, () ~ M.

O teste para tais valores de (), contudo nao pode ser feito, uma vez que
o método de Leaver (descrito nas préximas segoes), perde precisao em tal

regime, uma vez que a expansao para o calculo é feito através da varidvel
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u= que tende a 1, quando () ~ M, pois neste caso r_ — r,.

3.4 Perturbacoes em Reissner-Nordstrom

Outro aspecto da relagao entre buracos negros e termodinamica de buracos
negros ¢ uma proposta recente que associa uma mudanca de fase de segunda
ordem no buraco negro com carga e a termodinamica [49, 47]. Nesta segao
focaremos na perturbacao gravitacional e na propagacao de um campo de
Dirac na geometria de Reissner-Nordstrom .

Tal geometria representa um buraco negro (ou a parte exterior a uma
estrela) com massa e carga (portanto 7}, # 0), esfericamente simétrico em 4

dimensoes, com elemento de linha dado por
oM Q] oM Q?
ds® = — [1 - — 4+ Q—] dt? + [1 - —+ Q—z} dr® + r?d6* 4 r*sen*0d¢*
r r r
(3.13)

em que () representa a carga e M a massa do buraco negro, como percebi-
das por um observador externo. Uma deducao razoavel de tal elemento de

linha pode ser encontrada em [50] (ou [51]), e nao a daremos neste traba-
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lho. Também a estrutura conforma do espaco-tempo, bem como o estudo de

geodésicas pode ser encontrado em [51].

3.4.1 Perturbacao Gravitacional

Estamos interessados aqui inicialmente no calculo de uma perturbacao gra-

vitacional h na geometria g, escrito como

pert

guy = g/JJ/ + h’/.l,lu (314)

em que gP°"* representa a métrica original. Os trabalhos originais a respeito
de perturbagao gravitacional remetem a Regge e Wheeler na década de 50 [4],
em um artigo no qual se calcula a perturbacao da geometria de Schwarzschild,
demonstrando que o horizonte é estavel a perturbagdes em primeira ordem
(i. e., tais perturbagoes permanecem pequenas com a evolugao temporal).

Em geral o tensor h ¢é escrito levando-se em consideracao as simetrias
da métrica em questao. Por exemplo, para a geometria de Schwarzschild
é possivel em um gauge especifico [4] termos apenas dois termos ndo nulos
(e seus correspondetens simétricos), que dependem essencialmente de (r,t),
tornando as equacoes mais simples de serem integradas®.

Na geometria com massa e carga (Reissner-Nordstrom), as perturbagoes
gravitacional e eletromagnética se acoplam, visto que em ordem zero na
equacao de Einstein, T,qteriq € nulo, e apenas temos Tiictromagnetico 7 0. Além
das equacoes de Einstein, temos as equacoes de Mawell, formando um total
de 14 equagdes [52, 53],

G =81(Tw + Eu), (3.15)
VulvV—=gF"] —4dmy/—gJ" = 0. (3.16)
E representando o tensor energia-momento eletromagnético e T' este tensor

para a matéria (que em ordem zero é nulo). A perturbacao introduzida via

h como em (3.14), afeta também o tensor de Maxwell, de maneira que as

3Embora, ndo sem uma perda intuitiva da interpretacio do sistema de coordenadas
[15].
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equacoes de perturbacao sao escritas como

G = 87(Tyy + 0E,u) (3.17)
[V, (V=gF")] — dmy/=gJ" = 0, (3.18)

uma vez que J também ¢é nulo em ordem zero (auséncia de correntes na
solugao estética).

H4 dois tipos béasicos de perturbacao, como na métrica de Schwarzschild:
com paridade par (polar) ou impar (axial), quanto a transformagao de h
com relacao a sua decomposicao em harmoénicos esféricos tensoriais. Tanto
a perturbacao em g quanto em F' se dividem em duas partes nomeadas de
multipolos magnéticos e elétricos, que associamos conceitualmente aos dois
graus de liberdade do graviton em 4 dimensoes [54]. Ainda cada uma destas
perturbagoes é composta de dois graus de liberdades diferentes expressos em
seu potencial, responsaveis pelos dois tipos fisicos de perturbacao introduzi-
dos no célculo: eletromagnético e gravitacional. No buraco negro com carga,
estas duas perturbagoes estao acopladas, o que nao ocorre em Schwarzschild.

Uma derivacao passo a passo das perturbacoes gravitacional e eletro-
magnética, tanto com paridade polar quanto axial pode ser encontrada em
[51] (ou em [52, 53]). Dada a extensao de tais célculos ja bem conhecidos
na literatura, nos limitaremos aqui a tomar a equacao (axial) em sua forma

final,

{j—; +w?— V(m] U(r)=0 (3.19)

em que r, representa a coordenada tartaruga, calculada como

2n(r —ry) —r2 In(r — r_
dro=gndr —  ro=r+= ar ) —r-Inlr = r-) (3.20)
ry —Tr—

com ry = [1+4/1 — 4Q?]/2 representanto os horizontes de eventos (externo)

e de Cauchy (interno). Ainda, w é a frequéncia advinda de uma dependéncia
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temporal do tipo ¥ = e~ e V(r) o potencial axial escrito como

Vir) = g" [[(1+ 1)r? — Tr + 4Q7, (3.21)

r4

com 2I' = 3+ /9 + 16Q2(l — 1)(I + 2). Os sinais + e - acontecem por serem
duas as perturbacoes tratadas, gravitacional e eletromagnética. No limite
em que () é nulo, e recuperamos a geometria de Schwarzschild, a equacao
(3.18) é a perturbacdo axial gravitacional se tomamos o sinal positivo em
I', e a equacao de perturbacao eletromagnética axial, ao tomarmos o sinal
negativo.

A paridade polar de perturbacao é descrita por uma equacao cuja funcao
do campo, ®(r) acopla com a func¢ao de paridade axial,

d¥(r)

(1= 1)1+ 1)1 +2) + 2iT]@(r) - 20—
2% U(r)=0  (3.22)

— =D+ +2)+ D,

Estamos interessados aqui no espectro quasi-normal da equagao, o que
representa resolver (3.18) com condi¢oes de contorno especificas de ondas
planas nos infinitos espaciais,

i () oc e (3.23)

H& diversas maneiras de se fazer a integracao numérica deste problema,
utilizando-se de diferentes métodos disponiveis na literatura. Um método
bastante utilizado pra tal efeito é o método WKB [55], similar ao utilizado
em mecanica quantica basica. O problema da aproximacao WKB é o fato de
esta perder precisao para altos valores do niimero de overtone n, ainda que
a tomemos até sexta ordem* [56]. Uma corregao para tal problema pode se
encontrada em [58].

Outro possibilidade para o calculo é a utilizagao do método de Leaver

4De fato, o método WKB mantem-se uma boa aproximacio para os modos quasi-
normais até n ~ [ [57]. Quando n > [, devemos empregar o método da integral no espago
de fases [58].
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(Frobenius), publicado originalmente na década de 80 [59, 60]. Faremos uso
aqui deste método, pela relativa facilidade em se calcular modos com altos

valores de n.

3.4.2 O método de Leaver (Frobenius) - fragoes parci-
ais

Inicialmente, vamos expandir a funcao ¥ em termos de um somatério de uma

varidvel convenientemente escolhida [60], u = =+,
B 7"+(7’+ —r zw-‘rl b
\Ij(r) o 7’(7"+ —r_ )22w+1€2w r42ry) Z anu (324)
em que b(ry —r_) = —iwr?. Os limites da equagao (3.22) quando usados no
Ansatz acima resultam em
iwr%
lim U(r) = [e™*(ry —r_)="](r—ry)", (3.25)
li U — —2iwry —2iw—1 " zwr* 3.26
i W) = e S ader, (320

n=0

do que devemos ter que ) a,, converge (para que possamos usar este ansatz).
E com tal expansao para V¥, substituida na equacao de onda, obtemos uma

relagao de recorréncia com 3 equagoes definidas a seguir,

0 = Qo + /60&0 (327)
0 = 1G9 + 61&1 + Y1Qo (328)
0 = A Qpy1 + ﬁnan + Ynln-1 + 6nan—2- (329>
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em que os coeficientes o, 3,7 e d sao escritos em termos de M, Q,I',n e w

CcOo1mo

an = [P +2(b+ 1)n+2b+ 1]ry (3.30)
Bn = (=247 )n*+[=2—2b(2 —r_) + diwr? + 6r_n + [[ + 2w°r2
+iwr? (140) — 20*(2 —r") —rl(I4+ 1) — (3—2b)r_]  (3.31)
Yo = (T+7r_)n® 4 [~2iwr (1 +2r ) +2b(1 +7_) — 10r_]n +
—iwry[2 = 12r_ + (—iw +2b)(1+2r_)] — 1 =T — 2b(1 + 3r_)
+0%[16 + 87— — (15— 38r_ + 2602 )r ] + (P + 1+ 13)r_  (3.32)
6 = [-n*+2(3 +iw—b)n — (9 — 4iwb — 6b + Giw)]r_ (3.33)

em que escolheremos por conveniéncia ag = 1. Para resolver estas equacoes e
encontrar os modos quasi-normais, faremos inicialmente uma digressao para o
problema semelhante de Schwarzschild [59], ou seja, no limite em que ¢ = 0.
Em tal situagao, 9, = 0 e teremos uma relacao de recorréncia envolvendo
apenas trés coeficientes genéricos «, 3 e v, além de apenas duas equagoes, a
saber (3.27) e (3.29) uma vez que (3.27) é como (3.28) comd =0en — n—1.

No caso de Schwarzschild, a equacao de onda é escrita como

T(T—QM)W—I—E —r_2M+l(l+1)—

Py oy w?r3 2M(1T— s?) b= 0.(3.34)

As condigoes de contorno neste caso sao expressas sob a forma

lim — (r —2M)™", lim — 7re™". (3.35)

r—2M r—00

e 0 Ansatz para a solucao em v é o mesmo tomado pra Reissner-Nordstrom,

com @ = 0, ou seja,

o 2 i - —2M1"
¢ — (,,,, . QM)—zw,r,2zwezw(r—2M) Z a, |"f’ :| .

n=0

(3.36)

r

Com estas colocacoes, o problema em Schwarzchild torna-se extremamente

similar ao de Reissner-Nordstrom, exceto que temos uma equacao de re-
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corréncia a mais (bem como um termo extra) neste caso. A relagao para o

limite assintdtico de a,, é dada por [60]

. i —2iw— 3/4
lima+1~1— Zu)_l_ iw—3/ T
n—0oo  (y, n n

(n=%/?), (3.37)

e a série pode ser resolvida em termos de uma fracao parcial, escrita como

- An+41Yn42 ‘
Qp, ﬁn+1 T B Cni2ints
2T g s

que usualmente é representada como

an+1 Yn+1 COnt1Vn+2 Onp2Ynt3
= - (3.39)
Gp, /6n+1_ ﬁn—i—Z_ /Gn+3_

Com algumas manipulacoes algébricas, obtemos a forma final que pode ser
iterada indefinidamente, fazendo-se uso da expressao (3.37) para o final da

série,

an— nan— n— « an n an n an n
8, — 1Y 20n-1 071]:[ Tntl Angln+2 Hnt2Tn43 (3.40)

ﬁn—l_ ﬁn—2_ /60 ﬁn-ﬁ-l_ ﬁn+2_ /Gn+3_

Para usar estes artificios no caso de Reissner-Nordstrom, precisamos reduzir
as relagoes de recorréncia a duas equagoes, como no caso de Schwarzschild.
Uma maneira simples de conseguir este efeito é redefinir os coeficientes «, 3,y

e 0 de maneira que

0 = agar + Byao (3.41)
0 = alani1+ BLan + Y001 (3.42)
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A redefinicao proposta é dada por

5; =0 (3.43)
a, = an (3.44)
' O‘;—lan
O = bo—— (3.45)
fyn—l
/
)
/ n—1%n
V-1
para n > 2, e por
O{:’L = Olp, 6; = ﬂna W;L = Tn (347)

para n =0,1.
Temos agora todo o ferramental necessario para a obtencao dos mo-
dos quasi-normais gravitacionais de acordo com o método de Leaver. Nas

proximas subsegoes analisaremos as perturbacoes de Dirac e escalar.

3.4.3 Propagacao dos Campos de Spin meio e Escalar

na geometria de Reissner-Nordstrom

A equagao do campo de spin 1/2 tem um par de equagoes em termos do

formalismo de Newman-Penrose escrito como [51]

o5 ViPA +inQ%cp = 0 (3.48)
o\ yViQr +iuPcp = 0, (3.49)
em que jv/2 é a massa da particula, P,Q um par de espinores que repre-

sentam a funcao de onda e ¢ sao as matrizes de Pauli dadas em termos da

tétrada de Newman-Penrose,

Ufw:—[ " ] (3.50)
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Escrevendo em termos dos coeficientes de spin, e das componentes dos espi-

nores, P = (F}, F»), Q = (—G2, G1), obtemos o grupo de equagdes

(D4+e—pFi+ (0" +m—a)F, = iuG;
A+p=—v)FR+@+8-1)F = inGy

(D4e"=p" )G = (0+7" —a)G1 = ipuk

(A4 =G — (8 + 5" — 79)Ga = iuF). (3.51)

As equagoes acima sao bastante genéricas e valem para um grande ntimero de
diferentes espagos-tempo (por exemplo Kerr e Kerr-Newman). Vamos parti-
cularizar para o caso de Reissner-Nordstrom ao escrevermos os coeficientes
de spin em termos do sistema de coordenadas esférico e da solucao como es-
crita no comego da secao (3.13). Em tal caso, os coeficientes de spin usados

nas equagoes de campo assumem as expressoes [51]

k = o=A=v=c=m1=7=0,
1 5 cotgll
— -, = o = 5
P r V8r
r?2 —2Mr + Q? Mr — Q?
i 7:7

#eo= 273 ’ 2r3

(3.52)

Para as tétradas, quando projetadas no sistema de referéncias esférico temos

que

_7”2 — 2MT+Q2]D)T

272 0

(5 = ’]’TL:—7 5:m: LO

rv2 7’\/§

em que os operadores genéricos D, I sao escritos como

(3.53)

iwr?
r?2 —2Mr + Q?’
L, = 0+ ncotgl + mcosech, LI = 05 + ncotgh — mcosech. (3.54)

Dn = 87,, —I— DL — D:/,
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Para obter uma equacao de propagacao do campo, finalmente, faremos duas
mudancas de varidaveis de maneira que estas 4 equagoes sejam separaveis
e representem particulas de spin 1/2 e -1/2. Notadamente, redefinimos as

fungoes F' e G,

(F1>F27G17G2) = (fl/rﬁf2a91a92/r)> (355)
(fi, fo,91,92) = (R_S_,R,S.,R.S ,R_S,). (3.56)

com o que as equagoes (3.51) ficam como

1
S DyR_+ —=R.LijSy = 0,
0 \/5 +i1 /204
hSyD! Ry —V2R L] ,S- = 0,
S, DoR. — ——RiLiS, = 0,
+o \/5 +i1 /204
hS-D! R, +V2R LI ,9, = o0 (3.57)

sendo h = r2—2Mr+Q?, e tendo tomado p = 0 (ou seja, para particulas niao
massivas). As designagoes + e - nas fungoes de onda representam particulas
de spin positivo e negativo no limite cléssico, ou seja quando g — Narinkowski-

As equagoes acima podem ser separadas sem muito trabalho em parte

angular, e parte radial,

D} Dy — A)R_,
DohD} ,, — AR,
JL1/2L1/2 + %),
LyjLd , + A%)S-, (3.58)

o o o O

(
(
(
(
e que feito o devido uso dos operadores D resulta, para a parte radial,

ha_2+ﬁ£_|_ Qf_ @—G—QT
PR = L S TS

h8_2 + %g +
or? 2 Or

—A2}R_ = 0,(3.59)

—A2}R+ = 0,(3.60)



com A2 =X —1, X2 = (j+1/2)(j +1/2) e 55 = | + 1/2. Estas equagoes
quando integradas usando-se o método de Leaver - desenvolvido na tltima
secao - nos dao, com uma precisao alta, os modos quasi-normais.

A propagacao do campo escalar, segue a equacao de Kelin-Gordon, que
ja especificamos no capitulo anterior ao trabalhar com a métrica de Ernst.
A geometria é dada por g, = diag(—a,a™t,r* r*sen?d), com a = h/r?, de

maneira que o desenvolvimento de ﬁ@u[\/—ggw&,@] =0 leva a

Ay S LR R R T (3.61)
_ J— w — — T) = U. .
or? or h

Com efeito, uma andlise das equacoes de propagacao dos campos de diferentes
spins, como apresentamos aqui, podem reduzida-las a uma tunica equacao

mestra, a saber

U=0. (3.62)

0 .0 r h
-~ Nh— 20 . 2 7 4 _P2
[h8r2+(s+ )har—l-w h—l—zws(r 2h+ 7“)

em que s representa o spin do campo propagado e P = L(L+1) —s(s+1).°
Desta maneira, o ansatz para resolver esta equagao com o método de Leaver

também é genérico e dado por

r—r_

U — 7‘(7” _ 7”+)_s/2_b(7‘ - T_)—l—s/2+2iw+b, eiw(r—r,) Z a, {T - T-i-] ’ (363)

n=0

b_ = br? /r?). As relacoes de recorréncia ficam exatamente iguais as de
+
(3.27-3.29), exceto pelo fato de que 6 = 0. Os coeficientes usados para o

calculo da fracao parcial e por conseguinte dos modos quasi-normais sao

5Por uma questdo de convencdo usamos diferentes termos para a parte angular da
equagao de um campo de spin meio ou inteiro. Isto porque, para spin meio, o valor do
momento angular pode variar de acordo com j = +1/2,4+3/2,+5/2, ..., e para spin zero,
a variagao é [ =0,+1,+2, ...

6Respeitando a convencao adotada, L = [ para spin nulo, e L = j para spin semi-inteiro.
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dados, em termos dos spins por

a, = n*+(Co+ 1)n+ Cy, (3.64)
Bn = —2n°+ (C1+2)n+Cs, (3.65)
Yo = n° 4 (Cy—3)n+Cy— Cy, (3.66)

com as constantes C’s determinadas por

Co = 1—s—iw—iwkK, C1 = —4+42iw(2+b) + 2iwK,
Cy = s+3—-3iw—iwK, Ci=s—1+2iw(iw—s—3/2)— (2w+i)wkK,
C3 = W (@+20—4r ry)—s—1+iw(2+b) — P+ wK (2w +1), (3.67)

(K =242,

T4—T_

Com tais artificios, ja estaremos aptos a iterar a equacao das fragoes

parciais, que tem a mesma forma que (3.40), e obter os modos quasi-normais.
Na préxima secao, motivaremos o cédlculo do espectro quasi-normal para
valores altos de n, através da proposicao de uma relagao entre termodinamica

e modos-quasi-normais.

3.5 Mudanca de Fase de Segunda Ordem em

Buracos Negros e Modos Quasi-normais

A mudanca de fase de segunda ordem em buracos negros foi investigada pri-
meiramente em [61], e estd relacionada ao fato de que a capacidade térmica
associada a buracos negros pode ser negativa, dependendo de seus parametros,
ou positiva. Por exemplo, para Schwarzschild temos que S = 47 M? T =
(87M)~", levando a uma capacidade térmica negativa C' = T95 = —8M?,
fato este bastante curioso que prenuncia uma termodinamica nao usual.

Em uma métrica bastante genérica, com constante cosmologica, carga,
massa e momento angular, a entropia pode ser calculada como,

rh—l—a

/w/ggg‘% dfdo = T A (3.68)
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e a temperatura como

kn Al lra =yl

T, = 2 =
"Tor T Ax(1 4 Aa®)(r2 + a?)

(3.69)

sendo 7; os demais horizontes da geometria. Tal relacao ¢ dependente da
gravidade superficial no horizonte, que também pode ser calculada para ou-
tros horizontes com a expressao acima, apenas mudando-se 1, para o valor

de r neste horizonte. A capacidade térmica do buraco negro é dada por

271']{527’h

(1+ Aa2) 22

C =

, (3.70)

A7a7Q

sendo ky a gravidade superficial do segundo horizonte (dos quatro possivel

em ordem crescente em r), dada por

A
2(r2 + a?)(1 + Aa?)

1—Aa®  a®+ Q?
+ @ .

ko =
2 A A’T’Q

[3r§ — Ty (3.71)
O fato peculiar desta expressao para C' é que o denominador pode, com
a escolha adequada dos parametros do buraco negro, ter valor nulo. Tal
descontinuidade da funcao C representa uma transicao de fase de segunda
ordem [62]. Para o buraco negro de Reissner-Nordstrom em especifico, a =

A =0 e temos que

AMTS® 2w/ M? — Q?[—2M?* 4+ Q* — 2M \/M? — Q?)?
TQY — 41253 2M® — 3MQ2 + 2(M2 — Q2)3/2 ,
(3.72)

C1RN =

que diverge para

V3
Este é ponto em que a capacidade térmica torna-se singular, e muda de si-
nal de positiva para negativa, associado portanto a uma mudanca de fase

de segunda ordem. A proposicao inicial é de que os modos quasi-normais
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Figura 3.10: Campo de Dirac com
j = 1/2, n = 2. Gréfico 'w’, apa-
recimento do comportamento osci-
latorio.

Figura 3.11: Campo de Dirac com
j =3/2,n=05. Grafico 'w’ apareci-
mento do comportamento oscilatorio

carreguem algum tipo de informacao termodinamica associado a essa des-
continuidade [49], uma vez que C‘l%’? diverge, da mesma maneira que C', para
determinados valores de [,n e Q).

As curvas dos modos quasi-normais para a geometria de Reissner-Nordstrom
do tipo (wr x wr), (wr x Q) e (wr x Q)7 tém um formato bastante peculiar.
Os gréficos do tipo (wg x wy) tomam a forma de espiral, para altos valores
de n e baixos de [ [43, 44], e os demais um formato oscilatério como uma
funcao da carga.

A caracteristica peculiar aqui observada é a de que quando o comporta-
mento do grafico w comega a exibir o formato espiral, teremos D= jﬁ —
Crn — 00, para as perturbagoes de spin meio e escalares [49], para os pri-
meiros valores de [.

A proposta é a de verificar se tal comportamento se mantem para valores
diferentes de [, o que tornaria a 'conjectura’ robusta, e mais especificamente
obter o mesmo comportamente para perturbagoes gravitacionais, o que seria
uma indicacao forte de que de fato os modos quasi-normais carregam alguma
propriedade termodinamica ainda nao elucidada, uma vez que, fisicamente,

h& mais sentido falar em perturbacoes gravitacionais do que em propagacao

TA tais gréficos designaremos por simplicidade como w, R e I, respectivamente, daqui
por diante.
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de campos testes em dadas geometrias®.
Para as perturbagoes de spin meio e escalar, obtivemos resultados que
confirmam a conjectura como proposta em [49]. Os graficos das figuras (3.10-

3.15), confirmam o comportamento apontado acima.
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Figura 3.12: Campo de Dirac com Figura 3.13: Campo de Dirac com
j =1/2, n = 2. Grafico 'R’, apa- j = 3/2, n = 5. Grafico 'R’, apa-
recimento de um pico relacionado a recimento de um pico relacionado a
transicao de fase. transicao de fase.
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Figura 3.14: Campo de Dirac com Figura 3.15: Campo de Dirac com
j=1/2,n=2. Gréfico 'I'. j=1/2,n=2. Gréfico 'I'.

A condicao de que o grafico w adquira um formato espiral depende do

valor de momento angular considerado. Quanto maior [ (ou mesmo j), maior

8Pois por certo estes campos perturbam a ada geometria também.
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é o valor de n para o qual w tem este formato. Nomeamos n. o valor de n, a

partir do qual, para um dado [, o grafico w toma um formato espiral. Entao,

pelos resultados obtidos (e em acordo com [49]), para a perturbacao de spin
1/2,n.=2,5paral=0,10uj=1/23/2.

Tn=sl2 ——

=103 ——

Re(w)
Re(w)

0.41 L .
0 005 01 0.

I I I I I I I I I I I I I I
15 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05

Q Q
Figura 3.16: Modos quasi-normais, Figura 3.17: Modos quasi-normais,
perturbagao gravitacional. perturbacgao gravitacional.
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Figura 3.18: Modos quasi-normais, Figura 3.19: Modos quasi-normais,
perturbacgao gravitacional. perturbacgao gravitacional.

Em todos os gréaficos para n > n., o comportamento espiral se acentua,

e ainda quanto maior n, mais proximo w estara de uma espiral conceéntrica,
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Tabela 3.1: Valores de 4 para diferentes momentos angulares.

l 2 3 4 5 6
Ne b} 10 15 22 31
Qo | 0.436 | 0.407 | 0.397 | 0.383 | 0.368

como o esperado por [41]. Também a oscilagdo dos gréaficos R e I torna-se
mais acentuada conforme o valor de n aumenta.

O comportamento evidenciado é a proposta de que exatamente no ponto
de transicaode fase, ();¢, os modos quasi-normais sofrem uma descontinuidade
semelhante em D. Tal evidencia se sustem para perturbacoes calculadas em
outros valores de [, e ainda para a propagacao do campo escalar.

A perturbagao gravitacional, contudo, nao evidencia tal efeito, e ao contrario,
denota este fato como sendo apenas uma possivel coincidéncia numérica uma
vez que os graficos nao apresentam um corpontamento robusto, como o su-
gerido em [49].

Os resultados sao qualitativamente semelhantes aos da propagacao de
campos na geometria: os graficos w oscilam em formato espiral, e os graficos
I e R oscilam em fungao da carga, para valores altos de n. Entretanto o
ponto em que esta oscilagao comega a acontecer é diferente para os diferentes
valores de [ e n. na perturbacao gravitacional, e mais imporante, nao coincide
com @;r. Os plots para a perturbacao gravitacional, com diferentes valores
de [, seguem nas figuras (3.16-3.23).

Destes graficos, podemos inferir que o ponto em que D diverge nao coin-
cide com o ponto em que C' diverge, ou seja, wr(max)|g, tem Qq # Q.
Também ao plotarmos D em funcao da carga, este grafico tem um formato
essencialmente diferente do grafico C' x (), como acontece para o campo de
spin meio quando para um dado [, n = n..

Os valores de (g4, para os quais wg atinge o maximo sao listados na tabela
3.1.
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Figura 3.22: Modos quasi-normais, Figura 3.23: Modos quasi-normais,
perturbacao gravitacional. perturbacao gravitacional.
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Tabela 3.2: Valores de 4 para diferentes momentos angulares.

l 2 3 4 5 6 7 8 9
Qo | 0.4891 | 0.4860 | 0.4841 | 0.4828 | 0.4819 | 0.4812 | 0.4807 | 0.4802
l 10 11 12 13 14 15 16 17
Qo | 0.4799 | 0.4796 | 0.4794 | 0.4792 | 0.4790 | 0.4788 | 0.4787 | 0.4787

3.5.1 O Comportamento de wj

Embora os resultados da perturbagao gravitacional nao confirmem a con-
jectura de que os modos quasi-normais levam alguma informagao da ter-
modinamica de buracos negros, relacionados a mudanca de fase de segunda
ordem para estas geometrias, um comportamente peculiar emerge quando in-
vestigamos os graficos do tipo wy x Q,° em que wy é a frequéncia relacionada
com a quantizacao da area da segao 3.2.

Para tais tipos de grafico, o pico de wy acontece préximo a ) ~ 0.48
sempre que [ = n (nomearemos o ponto em que wy atinge seu valor maximo de
Q = Qo). Isto desconfigura uma possivel relacao com a transi¢ao de segunda
ordem, visto que tal valor esta 10.5% distante de Q¢s, entretanto revela um
comportamento interessante: sempre que investigamos [ = n, para valores
cada vez maiores de [, obteremos que 57% diverge quando Qg — 0.4787. Uma

tabela com os primeiros valores de [ é escrita em 3.2.

Quanto maior o valor de [, mais préximo o valor do primeiro pico na
funcao wy fica de Qg = 0.4787.

Outro grupo de graficos que segue este comportamento ¢é a série [ = n—1.
Quanto maior o valor de [, mais préximo o valor do primeiro pico em RI se
aproxima de (), de maneira que o ponto )y parece se tratar de um 'ponto
de acumulagao’ para estas duas séries. Tal comportamento acontece também
para a série [ = n — 2, embora se perca precisao, para se saber com certeza
o valor do primeiro pico, (), com 4 casa apés a virgula, o que impossibilita

o estudo da série [ = n — 3. Um plot genérico de | = n para o grafico RI

9Nomearemos tais graficos de graficos RI
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segue na figura (3.24): quanto maior o valor de [, maior a proximidade do

pico com o valor de acumulacao Q).

;O
Figura 3.24:
Qo = 0.4787.
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Capitulo 4

Modos Quasi-Normais em

Buracos Negros Cosmoldgicos

Temos visto nos tltimos anos um crescente interesse pelo estudo de buracos
negros com constante cosmoldgica e sua associacao com a conjectura AdS-
CFT. A analise de perturbacoes em tais tipos de buracos negros é, de maneira
geral, bastante similar ao de buracos negros sem constante cosmolégica. No-
tadamente, embora o espago-tempo nao seja assintéticamente o de Minkowski
(sendo portanto nao-trivial, por exemplo, definicoes como a de energia de
particulas medidas por observadores externos ao horizonte de eventos), exis-
tem equacoes de perturbacao destas métricas com simetria esférica, visto que,
o espaco-tempo pode ser escrito em uma variedade V2 x SP=2.

Os buracos negros de de Sitter e anti-de Sitter diferem apenas pelo termo
de constante cosmoldgica ser negativo ou positivo, respectivamente. O ele-
mento de linha de tais tipos de objetos advem de uma métrica genérica para

buracos negros com simetria esférica dada por [63]
ds® = gagpdz®da’ + r2dQ3% . (4.1)

Aqui D é o ntiimero de dimensoes do espago-tempo e Qp_o a esfera-(D — 2),

cuja métrica é dada por dQ%_, = v;;dz’dz". O tensor de curvatura de Ricci
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¢é dado por
Ri; = (D — 3) K, (4.2)

em que K é a curvatura intrinsica da sub-variedade S. Por sua vez, os indices
a e b tem seu escopo limitado & sub-variedade bidimensional V2.

Quando da presenca de uma constante cosmoldgica, vale para g que

lim Gab # 07 (43)

de maneira que o escalar de Ricci é proporcional a esta constante de acordo
com as equagoes de Einstein.

Neste capitulo iremos trabalhar essencialmente com buracos negros defi-
nidos por um conjunto de 4 parametros: massa, carga, constante cosmologica
e dimensao do espago-tempo

Cabe a ressalva de que embora nao haja evidéncia fisica (experimental)
para que as equagoes de Einstein permanecam as mesmas em mais do que
4 dimensoes, ha boas motivagoes tedricas para o seu estudo fornecidas pela
conjectura da correspondéncia AdS-CFT.

O elemento de linha da solucao de buraco negro com estes 4 parametros

lé-se
2M 2
dSzZ— |i1—m+%—/x7’2 dt2
2M 2 -
+ 1— m —+ 7«26[2)—6 — AT2:| d?"z + 7"de%_2. (44)

Como ja descrito em capitulos anteriores, uma perturbagao gravitacional
neste elemento de linha corresponde a adi¢ao de um tensor h em primeira
ordem quando consideramos g de ordem zero. Dada a simetria esférica do
problema, podemos decompor este tensor A em componentes escalares hg,
componentes vetoriais h;, € componentes tensoriais h;;. De acordo com esta

classificagcao, podemos escrever cada componente de h de maneira especifica,

80



preservando com isto a simetria desejada. Temos

hai = Viha + ilaia Viilai = 0,
hij = hvig+hrij, Y hri =0,
hryy = [ViVj— (D —2)"'y;V*V]hy + 2V ihrj) + isz’j, (4.5)

com V7 hr;j =0e \vi BTz'j = 0 e V representa a derivada covariante relativa
a uma das duas sub-variedades. Com esta decomposi¢ao, podemos separar
todas as componentes de h em escalares (hgp, ha, by, hr), vetores (izm-, hr;)
ou tensores (hri;), (todos em relacio a SP~2). Tal fenomeno ocorre pelo fato
de que v é o Unico tensor nao trivial em um espago-tempo maximalmente
simétrico em S? [66].

E possivel tratar a perturbacao, com estas decomposigoes, de maneira que
tenhamos trés escolhas para h bem-definidas como ja mencionado. Analisa-
remos em seguida a primeira destas escolhas para h, a saber, a perturbacao
tensorial. Tal perturbacao nao tem significagao fisica em 4 dimensoes, sendo
puramente gauge. (Em 4 dimensoées, por exemplo, ao considerarmos per-
turbagoes em um buraco negro de Schwarzschild, nao ha nenhum gauge
possivel cujas componentes de h sejam apenas aquelas que se transformem
tensorialmente em S2. Isto que dizer que, devemos ter ou hg ou hy; - ou

ambos - nao nulos para que de fato haja uma perturbagao).

4.1 Perturbacoes Gravitacionais Tensoriais

Como a perturbacao do campo eletromagnético nao possui uma componente
tensorial [63], os campos eletromagnéticos entram nas equagoes apenas como
efeito direto na geometria de fundo. O tensor de perturbacao da métrica,
apos considerado o gauge em termos de simetrias de vetores de Killing fica

CcOo1mo

hab = 0, h(u’ = 0, h'ij = 2T2H7—;;j, (46)
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e de maneira semelhante, a perturbagao do tensor momento-energia tera

somente as componentes tensoriais:
0Ty =0, 0T, =0, 0T} =7T5. (4.7)
A equacao de perturbacao gravitacional é derivada considerando-se uma ex-

pansao nos termos da equacao de Einstein até primeira ordem,

D=20ug y_£=2D=3)

r 72

VeV, H + H = —k*T, (4.8)

em que £ é o auto-valor da equagao de Lichnerowicz, AT;; = £T;; ou,
Ahij — =V Vihij — 2Rijuh™ + 2(D — 3)hy;. No caso da simetria esférica
especificamente, temos £ = (I + D — 3), sendo [ o nimero de multipolo de

harmonico esférico. Entao, fazendo-se uma mudanca de variavel no campo
H — r® D2, (4.9)

obteremos a equacao de perturbacao em sua forma canonica,

V(r)
Gt

[vava + } d = (P22 (4.10)

com V' (r) o potencial dado por

(D —2)r

Vir)=-=3 [£—2(D_3)+ 5 f+(D—2£(D—4)f]
_ _% [£+ (D2_1iD+32) - D(D4— 22y (l;r;_zg,)zM
_ (D-2)(3D-38)

1305 Q2] (4.11)

Para escrever a equacao de perturbacao em termos de um sistema de coor-
denadas do género (r,t) - tipo espaco e tipo tempo, temos V2 = ¢*(9,0, —
I'¢,0.). Tendo em vista o elemento de linha (4.4), as tnicas conexoes nao

nulas sdo dadas por I'], = ¢""grr/2 € I'}, = —¢""gut.r/2, 0 que nos fornece
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para V2,
V2 = g"0? +0,(9""0,). (4.12)

A equacao de perturbacao neste caso se torna

ﬁ&+&@%ﬁ+vw>®zo (4.13)
Gtt

Queremos obter os modos quasi-normais de vibracao do buraco negro e para
tanto, como ja se afirmou nos capitulos anteriores, muitos sao os métodos
disponiveis. Por uma questao de simplicidade, adotaremos aqui o método de
integragao em coordenadas nulas, como descrito pela primeira vez em [67].
Para encontrar a equacao de perturbagao em coordenadas nulas, devemos
primeiramente definir tais coordenadas em termos da coordenada tartaruga,
cuja representacio é dada por gudr? + g..dr = 0. Para o buraco negro de
estudo, dr, = —g,.dr e a%* = —g”%, do que g—% = g”% (g”’%). Assim, a

equacao de perturbacao com r, fica

0?2 09 V(r)
=+ =+ d =0. 4.14
|: 8t2 83* Jit ( )
As coordenadas nulas sao definidas em termos de ¢ e de 7, como v = T’TH e
U = t‘;*, de maneira que a% = % [{% + %} e a% = % [—a—i + %}, e com isto,
obteremos a equacao perturbativa em sua forma final para a integracao com
o formato
o o0 V(r)
—4——+ d =0. 4.15
[ ou Jv Gt } (4.15)

Na préxima sub-segao, definiremos o método utilizado, como em [67].

4.1.1 Meétodo de Integracao em Coordenadas Nulas

Na ultima equacao temos representada uma perturbacao tensorial em uma
geometria de buracos negros com 4 parametros distintos. Queremos fazer a

integracao desta equagao nas coordenadas u e v. Trata-se de coordenadas

83



nulas visto que o elemento de linha contendo u e v nao tem os termos g,
e guw, OU seja, os vetores tangente a variedade 0, e J, sdo vetores nulos
designados por < 0,0, >=< 0,,0, >= 0.

A integracao em uma grade de coordenadas u e v pode ser pensada de
maneira usual ao discretizarmos os eixos em “pequenos”’ intervalos Au e
Av (o conceito de pequeno a que nos refirimos aqui estd relacionado com
o resultado a ser obtido pela integragao. Uma vez que um dado perfil de
campo ¢ obtido, podemos diminuir a escala em uma ordem de grandeza, por
exemplo, e verificar se este mesmo perfil se repete. Em caso positivo, temos
entao uma discretizacao pequena o suficiente para os propdsitos do célculo).
Neste caso, as derivadas do campo podem ser expressas como variagoes AP

da seguinte maneira

. AD_ Dy—dy
w® T AT A (4.16)
0 AD Dy — by
%q)  Au T Au (4.17)

Tal discretizagao do campo obedece a um diagrama em que u ocupa o eixo
das abcissas e v 0 eixo das ordenadas, de maneira que uma variagado no campo
® possa ser escrita como o valor deste campo no seu ponto ao norte menos o
valor do campo no ponto ao sul deste, para u, e de maneira semelhante para
v (variagdo de ® em relacao aos pontos leste e oeste).

A equacao de perturbacao pode ser escrita em termos das varidveis acima,

com a discretizagao do espago-tempo como

git 8 .

Oy = Pp + Py — Ps + Aulv (4.18)
O componente final desta prescricao para obtermos o comportamento do
campo P, que descreve uma perturbacao gravitacional tensorial nos buracos
negros Reissner-Nordstrom de Sitter (anti-de Sitter) é a condigao de contorno
utilizada ao integrarmos. Para obtermos uma figura completa de ¢ na grade
de integragao (u,v), e por consequéncia, sua evolugao temporal, precisamos

de “duas retas de condicao de contorno”, a saber, todos os valores que ®
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assume ao longo de duas retas iniciais, u = ug € v = vp, por exemplo. Em
geral, podemos evoluir um pacote de onda Gaussiano em uma das direcoes
como condi¢do inicial para o campo, e uma constante em outra dire¢ao [68],
(v —v.)?
(I)(U(],U) = exp {—T y
®(u,v9) = constante. (4.19)

(v, representa o centro deste pacote na coordenada v e ¢ 0 quao concentrado
ao redor deste centro ele estd).

Ha outros métodos de refinamento melhores para a convergéncia da equagao
(4.15), contudo, para os nossos propdsitos de calcular o primeiro overtone,
em cada valor diferente de carga, constante cosmoldgica e momento angulas,
o método como proposto representa uma convergéncia relativamente boa:
com uma grade de 10 milhoes de pontos, obtemos um resultado equivalente
ao de uma grade de 150 milhoes de pontos, o que representa a convergéncia

do método para esta primeira quantidade de pontos, ja.

4.1.2 Método Prony

Uma vez obtido o sinal quasi-normal do campo em funcao de ¢, podemos
aplicar um segundo método numeérico para a obtencao das frequéncias, de-
nominado método de Prony.

O primeiro passo para a aplicacao de tal método é a decomposicao do
campo em termos dos modos quasi-normais de vibracao como uma funcao

do tempo,
p .
O(t) ~ Y Crei! (4.20)
j=1

Supondo que a oscilagdo quasi-normal comece em um dado tempo ty e
termine em um tempo posterior, t = NAu, com N um inteiro que respeita

a condicao N > 2p — 1. Entao é certo que para o campo acima, teremos em
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cada tempo t = nh
p ‘ p
T = O(nh) = Cie =" 0y (4.21)
j=1 J=1

O método nos permite calcular z, como uma fun¢ao dos pontos do perfil z,,,
e a partir disso obter as frequéncias w;. Com o intuito de fazer isto, definimos

uma funcao polinomial A,

p

A(z) = H(z —2j) = Z ap P (4.22)

k=1 m=0

Considerando que A(z;) = 0, temos

p p p p p p

_ n—m __ n—p p—m __ n—p _
E ULy = E O, g Crzp ™" = g Cyz, E A2y = g Crzy PA(z) = 0.
m=0 m k=1 k=1 m=0 k=1

=0

(4.23)

com oy = 1. Da equacado anterior, podemos deduzir que Y7 | py_m =
—x,. Substituindo os N — p valores possiveis de n, teremos N —p + 1 >

p equacoes lineares para p coeficientes «,, indeterminados. Expandindo a

equacao para z, teremos

Tp—1 Lp—2 Zo aq Lp
Tp Tp—1 - T Qo __ Tp+1 (4‘24)
IN-1 IN-2 *°° IN-—p Qp TN
Renomeando a equagao acima como Xa = —z, podemos resolvé-la como
a=—(XTX)"'XTg, (4.25)

(devemos aplicar o operador X' na equagdo visto que a matriz X nao é
quadrada, apés o que poderemos tomar sua inversa).

Depois de calculados os coeficientes «,, na equacao acima, poderemos
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encontrar zj pelos zeros de (4.22) e através destes as frequéncias,

w; = Ll Z; (4.26)

4.2 Analise de Horizontes

Os horizontes dos buracos negros com constante cosmoldgica definidos pelo
elemento de linha (4.4) tém lugar onde a fungao radial (¢"" = f(r)) é nula. O
fato de podermos considerar os horizontes como o zero desta funcao esta co-
nectado com a simetria esférica da métrica: para elementos de linha que nao
tenham simetria esférica, f(r) = 0 ndo representa os horizontes de evento.

Além do horizonte de eventos, na presenca de carga e constante cos-
mologica espera-se a ocorréncia ainda de um segundo horizonte de eventos
interno (horizonte de Cauchy) e de um horizonte externo, devido a constante
cosmoldgica, denominado horizonte de de Sitter.

Por questoes de simplicidade, adotaremos que o horizonte de eventos tem
lugar em 7, = 1. Isto corresponde a fixar o valor da massa em termos da

carga e da constante cosmologica em

1-A4Q?

M :
2

(4.27)

uma vez que f(ry) = 0. Um caso de buracos negros extremos para esta fungao
ocorre sempre que um segundo horizonte r¢ tenha ro = 1. Isto representa
uma segunda restricao que relaciona a constante cosmolégica com a carga da
solugao. Para obter esta relagao, podemos considerar caso a caso, a partir de
D =5 dimensoes. Sendo r, = r¢ = 1, além da condicao (4.27) sobre a massa
é necessario ainda que 2 — 3A — 2M = 0. Para 6 dimensoes esta condigao
extra é dada por 3 —4A —4M = 0 e em 7 dimendes por 4 — 5A — 6M = 0.
A prescri¢ao genérica para um nimero qualquer de dimensées (maior do que
4) fica

1-2A—(D—-4)Q*=0 (4.28)
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Desta maneira, para cada solucao com uma dada constante cosmologica, ha

[1—2A
Qe = D_4 (4.29)

que representa a coalescéncia de dois horizontes em r = 1. A presenca de

um valor de carga,

modos instaveis para valores de () proximos aos valores extremos acima foi
verificado para o potencial escalar em [6, 7].

Dentre as demais raizes, para os diversos valores possiveis de A, tere-
mos sempre uma terceira raiz positiva de f(r) que representa o horizonte
cosmoldégico, rg, com as outras negativas. Para determinar ainda se o caso
extremo acima representa a coalescéncia do horizonte de Cauchy ou cos-
moldgico, é necessario saber o nimero de dimensoes do espaco-tempo. Para
D =5, por exemplo, as raizes de f(r) estao sempre em pares +a, e, além de
+1 representarem raizes duplas no caso extremo, teremos mais duas raizes
dadas por rg = i—(% — 2). Isto indica que hd uma coalizdo do horizonte
cosmoldgico com o horizonte de eventos no caso em que A < 1/3, e dos dois
horizontes de eventos, em caso contrario, A > 1/3. Para A = 1/3, os trés
horizontes estao localizados em r = 1.

E praticamente impossivel determinar os zeros da funcio f (r) analitica-
mente para um numero arbitrario de dimensoes, e sem informacgoes extras
a respeito da carga e da constante cosmoldgica, uma vez que a equacao
tem numero de raizes proporcional a dimensao do espaco-tempo. Para ana-
lisarmos a presenca de horizontes e nas préximas secoes os modos quasi-

normais, consideraremos um espaco-tempo de 5 dimensoes, com funcao ra-

dial f(r) =1— 28 4 ?—42 — Ar?. Neste caso, os horizontes sao as raizes da
equacao
—ArS 4t —2Mr? 4+ Q* =0 (4.30)

que pode ser simplificada a uma equacao de terceira ordem com a substituigao
r? = . Se uma das raizes da equacao for fixada em 1, automaticamente,

uma segunda raiz serda -1, uma vez que as raizes ocorrem em ’'duplas +a’.
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Com a substituicao de x em termos de r, podemos calcular analiticamente

as demais raizes do polinomio restante. Temos
—Ar 4t —2MP? + Q* = [-A2* + (1 = Nz — Q*(z —1)  (4.31)

e com isto, os demais horizontes ocorrerao em

\/1—A+\/A2—2A+1—4AQ2
T =

A (4.32)
1—A— /A2 —2A + 1 —4AQ2
ry = o . (4.33)

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Figura 4.1: Horizontes de um buraco Figura 4.2: Horizontes de um buraco
negro de Sitter com carga em 5 di- negro de Sitter com carga em 5 di-
mensoes e A = 0.033. mensoes e A = 0.2

Tomando dois diferentes valores de constante cosmoldgica, fazemos um
grafico das raizes nas figuras 4.1 e 4.2.

Nestas figuras é possivel perceber que, embora a situacao em que r =1 é
uma raiz dupla represente um buraco negro extremo, poderemos ter valores
maiores de (), contanto que um dos horizontes seja mantido em r = 1. Neste
caso nao ¢ mais o horizonte de eventos que se situa neste ponto, mas o de
Cauchy. Uma situagao extrema, em que os horizontes cosmoldgicos e de
eventos coalescem ao mesmo ponto r, = rg = 1 pode ser observada ainda na
figura (4.3), caso em que o horizonte de Cauchy tem rc < 1, e r = 1 passa a

representar o horizonte cosmolégico para qualquer valor de carga.
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Figura 4.3: Horizontes de um buraco negro de Sitter com carga em 5 di-
mensoes e A = 0.5. O horizonte cosmolégico passa a se situar em r, = 1, e
os horizontes de eventos estao representados pelas linhas do grafico.

Na proxima segao exploraremos os resultados obtidos para a perturbagao
gravitacional tensorial em 5 dimensoes na solucao com constante cosmologica
positiva, para o que é de fundamental importancia a analise da posicao dos

horizontes de eventos ou cosmologico.

4.3 Modos Quasi-normais com a Perturbacao

Tensorial

Através do método de integracao de coordenadas nulas e com o auxilio do
método Prony, obtemos o perfil do campo gravitacional sobre a atuagao um
potencial tensorial [64]. Para A = 0.0167, as frequéncias quasi-normais estao
listadas na tabela 4.1. Para D = 4, tanto o potencial tensorial, como o
vetorial representam configuragoes de gauge puro, sem modos dinamicos,
portanto, ja tendo sido estudados a propagacao de um campo escalar em tal
geometria [65].

H4 duas caracteristicas peculiares aos modos de vibragoes do buraco negro
em um Universo de Sitter com um termo pequeno de constante cosmolégica:
quanto maior a carga do buraco negro, menor a frequéncia e a atenuagao da

oscilacao do buraco negro. Pode-se dizer que quando a carga se aproxima
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Tabela 4.1: Modos quasi-normais para um buraco negro com A = 1/60 e
[ =2.

Q WR Wr Q WR Wr
0.1 1.107 | 0.337 | 0.2 | 1.099 0.336
0.3 1.081 | 0.335 | 0.4 | 1.055 0.325
0.5 | 1.021 | 0.307 | 0.6 | 0.984 0.284
0.7 0.945 | 0.261 | 0.8 | 0.902 0.141
0.9 0.858 | 0.220 | 1.0 | 1.023 | 0.0648
1.1 0.762 | 0.209 | 1.2 | 0.715 0.195
1.3 0.673 | 0.186 | 1.4 | 0.631 0.179
1.5 0.592 | 0.171 | 1.6 | 0.554 0.164
1.7 0.519 | 0.156 | 1.8 | 0.486 0.149
1.9 0.455 | 0.142 | 2.0 | 0.426 0.135
2.1 ] 0.398 | 0.129 | 2.2 | 0.372 0.122
2.3 ] 0.347 | 0.115 | 2.4 | 0.323 0.109
2.5 0.301 | 0.103 | 2.6 | 0.279 | 0.0963
2.7 1 0.259 | 0.0907 | 2.8 | 0.239 | 0.0845
2.9 0.220 | 0.0791 | 3.0 | 0.200 | 0.0738
3.1 0.180 | 0.0678 | 3.2 | 0.160 | 0.0606
3.3 | 0.140 | 0.0517 | 3.4 | 0.123 | 0.0413
3.5 1 0.108 | 0.0312 | 3.6 | 0.0940 | 0.0252
3.7 1 0.0603 | 0.0274 | 3.8 | 0.0109 | 0.00859
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de seu valor extremo, o que corresponde a coalizao dos horizontes de evento
e cosmoldgico, a frequéncia natural de oscilagdo, wy = y/w% + w?, tende a
zero. O valor maximo de carga é dado por
1—A
)
2\/K

o que corresponde a 11 = ry. Para o caso especifico em que A = 1/60, temos

Qmaz = (434)

Qmaz ~ 3,808, de maneira que o ultimo valor calculado expresso na tabela

é 99,8% do valor total méximo que @) pode alcangar (e por este motivo tem

wo 0)
( . _ [1-2A ~
H4 contudo, ainda, o ponto de destaque Q. = 4/ 5=, calculado na secao
anterior, que corresponde a coalizao entre os horizontes de Cauchy e de even-
tos.
0 T . T
Campo Gravitacional com A=0,1
5 F .
210 F 4
.15 .
i _20 - -
<
25 L .
.30 4
.35 | 4
-40 | | |
0 50 100 150 200

Figura 4.4: Campo gravitacional tensorial com @) = 0.1 el = 2.

Para este ponto, na tabela acima temos Q¢ ~ 0.983, o que endossa ainda
o comportamento dos modos nas imediacoes de ) ~ 0.9: os modos quasi-

normais deixam de ser descrescentes com o aumento da carga. Ha uma
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suspeita da existéncia de modos instaveis para valores de () préximos aos

valores extremos [6, 7].
0 T T T

T T T T
Campo Gravitacional com A=0,1

In |¥|

0 50 100 150 200 250 300 350 400 450

Figura 4.5: Campo gravitacional tensorial com ) = 0.98 e [ = 2.

Um perfil do campo tipico de perturbacao gravitacional tensorial pode
ser visto na figura 4.4. Neste perfil, podemos observar o boost inicial, que
representa a influéncia do pacote gaussiano (condigoes iniciais). Apds este
boost, temos a fase de oscilagao quasi-normal, que no caso do perfil mostrado
na figura dura de t=20 até t=60. Esta fase tende a se tornar cada vez maior,
quanto maior a carga do buraco negro, e quanto mais proximo ele esta de
um buraco negro extremo com horizonte cosmologico no mesmo ponto que o
horizonte de eventos.

Finalmente, o terceiro trecho do perfil de oscilacao do campo gravitacio-
nal é a cauda, que esta essencialmente ligada com a presenca de um potencial
centrifugo, [(I+ D —3). Tal fase representa o tltimo aspecto da oscilacdo gra-
vitacional, e como mostrada no perfil 4.4 denota que o modo de vibracao de
tal buraco negro ¢ estavel a perturbacao linear em primeira ordem. No geral,

para o computo dos modos quasi-normais, a suposicao é de que tanto esta
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cauda quanto o periodo de vibracao sejam “bem-comportados” em sentido
de que ambos devem decair com o tempo.

Embora da estabilidade, a cauda na figura 4.4 segue uma reta, diferen-
temente da lei de poténcia, valida para os casos assintéticamente planos. O
mesmo comportamento pode ser encontrado em [69, 65].

A presenca de modos instaveis, cuja cauda ou a fase quasi-normal crescam
com a evolucao temporal denota que a andlise da perturbacao em primeira
ordem é inconclusiva, para se atestar o carater final da geometria do espago-
tempo embora seja uma forte indica¢do da instabilidade da solugao [8].

A existéncia de modos instaveis em uma dada geometria esta associada
ainda, ha existéncia de intervalos em que o potencial gravitacional assume
valores negativos: é condi¢ao necessaria (mas nao suficiente), para que haja
modos que crescam com o tempo a existéncia de um intervalo [a,bler, de
maneira que V(r) < 0. Este é o caso da geometria de Reissner-Nordstrom-de
Sitter em 5 dimensoes.

Em buracos negros cujos horizontes internos coalescam, a fase de decai-
mento tende a se prolongar ao infinito. Por exemplo, no perfil 4.5, podemos
notar a tendéncia de que a fase quasi-normal se prolongue por longos periodos
de tempos, quanto mais préximo o buraco negro esta de um buraco negro
extremo. Em todos os perfis calculados para valores de carga menores do que
a carga de um buraco negro extremo (com horizontes de evento e de Cauchy
no mesmo ponto), a caracteristica peculiar é a de que a fase quasi-normal é
tanto maior quanto mais préximo da carga (Qc. Para este perfil temos que
w = 0.895 + 0.1327, sendo sua carga 99,7% do valor Qc¢.

Quando aumentamos o valor da constante cosmoldgica, a tendéncia é de
que tanto a parte real quanto a imaginaria dos modos quasi-normais dimi-
nuam. Por exemplo, para A = 0.05 e A = 0.167, listamos os modos nas
tabelas 4.2 e 4.3. Para o primeiro caso, o valor maximo da carga, para o
qual o horizonte de eventos e cosmolédgico coalescem é ) ~ 2.124, e para o
segundo ) = 25% ~ 1.021.

O comportamento geral dos modos quasi-normais para estes dois valores
de A é similar ao demonstrado para a tabela 4.1, uma vez que, com a apro-

ximacgao de () de seu valor maximo, a frequéncia natural de vibracao tende
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Tabela 4.2: Modos quasi-normais para um buraco negro com A = 0.05 e

=2

Q

WR

wr

Q

WR

wr

0.1

1.013

0.346

0.2

1.000

0.334

0.3

0.985

0.292

0.4

0.973

0.309

0.5

0.934

0.287

0.6

0.898

0.265

0.7

0.853

0.243

0.8

0.794

0.257

0.9

0.723

0.146

1.0

0.732

0.147

1.1

0.678

0.152

1.2

0.575

0.165

1.3

0.524

0.153

1.4

0.470

0.143

1.5

0.415

0.131

1.6

0.362

0.116

1.7

0.312

0.102

1.8

0.259

0.0892

1.9

0.202

0.0693

2.0

0.147

0.0473

Tabela 4.3: Modos quasi-normais para um buraco negro com A = 0.167 e

=2

Q WR wr Q WR wr
0.1 | 0.749 | 0.278 | 0.15 | 0.743 0.274
0.2 | 0.736 | 0.269 | 0.25 | 0.726 0.262
0.3 [ 0.714 | 0.253 | 0.35 | 0.700 0.243
0.4 | 0.683 | 0.232 | 0.45| 0.663 0.219
0.5 [ 0.640 | 0.205 | 0.55 | 0.613 0.191
0.6 | 0.583 | 0.175 | 0.65 | 0.549 0.155
0.7 | 0522 | 0.137 | 0.75 | 0.477 0.103
0.8 | 0.411 | 0.0879 | 0.83 | 0.380 0.103
0.86 | 0.353 | 0.0771 | 0.89 | 0.326 | 0.0706
0.92 | 0.291 | 0.0675 | 0.95 | 0.226 | 0.0501
0.98 | 0.168 | 0.0441 | 1.01 | 0.0997 | 0.00256

95



a zero.

Também, nas proximidades do buraco negro extremo com dois horizontes
de eventos no mesmo ponto, este comportamento nao é reproduzido, e a
frequéncia varia para qualquer valor de A. Os valores de Q¢ quando A = 0.05
e A = 0.167 sao Q¢ ~ 0.949 e Q¢ ~ 0.816. A caracteristica peculiar em
relacao a este tipo de buraco negro extremo é a de que, ainda que A varie
bruscamente, (o variard de maneira mais suave, ou seja, a influéncia da
constante cosmoldgica é mais perceptivel para buracos negros extremos em

que os dois horizontes a coalescerem sao o cosmolégico e o de eventos.
0 T

T T
Campo Gravitacional com A=0,3 ———

In |¥|

-30

40 +

-50 | | |
0 50 100 150 200

Figura 4.6: Campo gravitacional tensorial com @) = 0.6 e [ = 2.

O perfil tipico do campo, tanto para A = 0.05, quanto para A = 0.167
é similar ao perfil 4.4. Para A = 0.05, a figura 4.7 representa o campo
gravitacional com ) = 0.6. A diferenca acontece contudo na oscilagao quasi-
normal, que tende a se estender por um tempo muito maior, quanto maior
o valor de A. O fato de a oscilagao perdurar por longos periodos de tempo
torna complicado a obtencao da cauda do perfil em questao. Como a precisao

maxima a que um programa em fortran pode chegar é dar ordem de 1074,
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além do erro numérico natural feito pelo calculo da coordenada tartaruga, é
impossivel ir além de certo ponto na integragdo numérica (sendo, portanto

extremamente complicado a obtengao das caudas para certos perfis).
0 T

T T T T
Campo Gravitacional com A=0,3 ———

-10 +

214 _

0 50 100 150 200 250 300

Figura 4.7: Campo gravitacional tensorial com @) = 0.6 e | = 2.

Em 4.7 é perceptivel o comportamento do campo quando @ ~ Qau:
para este perfil, Q = 2.12, o que corresponde a 99,8% do valor maximo da
carga, quando os horizontes de eventos e cosmoldgico estao muito proximos
um do outro: r, ~ 2.98 e ro ~ 3.18.

A ultima propriedade analisada com o potencial tensorial foi a influéncia
do momento angular da perturbagao, . Na tabela 4.4, estao listados as
vibracoes para trés diferentes valores de [.

O perfil de campos para diferentes valores de [ pode ser encontrado nas
figuras 4.8 e 4.9, e um zoom destes campos em 4.10 e 4.11. A diferenga
entre as frequéncias de modos com diferentes valores de momento angular é
notoria, sendo entretanto o amortecimento bastante parecido no trés casos.

Nas proximas secoes, estudaremos o caso da perturbacao gravitacional

vetorial, que representa dois potenciais diferentes.
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Tabela 4.4: Modos quasi-normais para um buraco negro com A = 0.08 e

diferentes valores de [.

Q

w(l=2)

w(l=3)

w(l=4)

0.1

0.938 + 0.328i

1.480 + 0.314i

1.970 + 0.3101

0.2

0.928 + 0.319i

1.464 + 0.3071

1.949 + 0.3031

0.3

0.910 + 0.3061

1.437 + 0.2941

1.913 + 0.2911

0.4

0.885 + 0.289i

1.398 + 0.2781

1.862 + 0.274i

0.5

0.851 + 0.267i

1.347 + 0.2571

1.795 + 0.254i

0.6

0.809 + 0.244i

1.284 + 0.2351

1.712 + 0.232i

0.7

0.757 + 0.219i

1.209 + 0.2121

1.613 + 0.2091

0

=2 ——
=3 ——

-10 -10

-20 -20

In|w|
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-30 -30 [
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Figura 4.9: Campo gravitacional
com A ~ 0.083 e ) = 0.5, para dois
valores de momento angular, [ = 2 e
[ =4.

Figura 4.8: Campo gravitacional
com A ~ 0.083 e Q = 0.5, para dois
valores de momento angular, [ =2 e
[ =3.

4.4 Perturbacao Vetorial

De maneira similar a que fizemos para a pertubagao tensorial, no caso vetorial
podemos compor a perturbacao da métrica e do tensor energia momento em

grupos de componentes de acordo com a simetria da variedade. Temos

(4.35)
(4.36)

5gab
5Tab =

0, 0gai = 1faVi, 59ij = 27’2HTVij
0, (STM' = T’Ta‘/i, 5,_TZJ = T‘/ij-

98



Inw|
In¥|

-10 -10
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Figura 4.10: “Zoom” de campo gra- Figura 4.11: “Zoom” de campo gra-
vitacional com A ~ 0.083 e () = 0.5, vitacional com A ~ 0.083 e () = 0.5,
para dois valores de momento angu- para dois valores de momento angu-
lar, [ =2el=3. lar, [ =2el=4.

do que, com uma redefini¢ao de varidavel dada por F, = f, + rD.(Hp/ky)

emergem a + 2 equagoes de campo representadas por

D, rP ' erD(F, /1)) = myrPPep P —2rP ey r® (4.37)
Da(rPl7%) = W2 (4.39)
2ky

com a constante m,, = ki — (D — 3). k? é o autovalor da equagao de Lichne-

rowicz, a menos de uma constante: (Ayp—kZ—(D—3))V;; = 0. Com uma nova

redefinicao da varidvel F, dada por rP?3F¢ = ¢%D,Q) + —mzv rP=2e% D, (rr),
obtemos uma equacao no formato
D) m 2
D—2 |4 D—2_ab
D, | ——| ——Q=—1r"""D,(rn), 4.40
" {TD_2:| r2 my (r7) (4.40)

com a condigao extra de que my # 0. Os modos de perturbacao gerados
por my = 0 representam configuracgoes de gauge puro, para as quais nao hé
liberdade dinamica [63].

Para obter uma equacao de varidvel tnica, o préximo passo é conside-

rarmos rotagoes de gauge devido ao tensor momento-energia do campo ele-

99



tromagnético. Isto pode ser feito modificando-se a componente 7, acrescen-

tando um termo relativo a um potencial A, com uma prescricao semelhante

a de Regge-Wheeler [4]: 7, — 7, — %eabDbA. Neste caso, com uma substi-

tuicao semelhante para o campo, €2 — ) — %ATD ~2_ obtemos a equacao de
\4

perturbagao

1 EgrP=2 2
rP2D, ( D“Q) — m—;/Q Ny P72 D, (rmy). (4.41)
r

rD-2 r2 my

Finalmente, com uma tltima redefinicao dos campos €2 e A,

@my -0 @, (4.42)

U =
(D2 —4D +3)M +§ EgrP/2="

com 0% = (D?*—4D +3)>M?+2(D —2)(D — 3)myQ?, conseguimos a equagao

de campo para uma variavel Uinica com potencial, similar a da se¢ao 4.2,

v
Oov+ —v =0, (4.43)
it

sendo V' o potencial dado por

D?*~6D+8 (D-2)(D-4)

Gut 2 2

V = —ﬁ kV 4 4 A’f’

(D—2)(5D—12) (—=D?*/2+2D —3)M +6
e (144

Na préxima segao, analisaremos os resultados dos modos quasi-normais para

este potencial.

4.5 Resultados com a Perturbacao Vetorial

Para a andlise dos modos quasi-normais com um potencial vetorial, usamos
o mesmo método de integracao em coordenadas nulas descrito no inicio do
capitulo: transformamos a equagao de onda em (4.44) com o uso de coorde-
nadas nulas para uma outra equagao com o mesmo formato de (4.15). Neste

caso, podemos usar as mesmas condigoes de contorno (4.19), para a obtengao
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Tabela 4.5: Modos quasi-normais de uma perturbacao gravitacional vetorial
para o buraco negro de Reissner-Nordstrom de Sitter, com A = 0.0167 e
[ =2.

Q WR wr Q WR wr

0.2 11354 | 0.337 0.4 1.368 | 0.314
0.6 | 1.360 | 0.276 0.8 1.301 0.230
0.9]1.300| 0.190 | 0.983 | 1.226 | 0.158
1.0 ] 1.189 | 0.162 1.2 1.038 | 0.192
1.5 1 0.837 | 0.164 2.0 0.587 | 0.129
2.510.415] 0.0966 | 3.0 0.282 | 0.0681
3.510.155 | 0.0340 | 3.8 | 0.0173 | 0.0110

dos perfis de campo e dos modos quasi-normais em toda a escala de valores
possiveis de A e Q.

Os resultados da perturbacao vetorial para o buraco negro de Reissner-
Nordstrém de Sitter com um valor pequeno para a cosmolgégica (A = 1/60),
estao na tabela 4.5. Diferentemente da perturbacao tensorial, quando da
presenca de um potencial gravitacional oriundo de uma perturbacao vetorial,
a frequéncia de vibracao da resposta de uma perturbagao gravitacional é
menos sensivel a buracos negros com diferentes valores de carga, e oscila
ligeiramente em torno do ponto wgr ~ 1.3, para buracos negros com carga
menor do que Q¢, quando da coalisao dos dois horizontes de eventos.

A caracteristica semelhante, contudo, é o decréscimo da atenuacao dos
modos, com o aumento da carga, de maneira que quando a carga tende a seu
valor maximo (caso em que o horizonte de eventos e cosmolégico coalescem),
a atenuacao tende a zero. Também, apds a “regiao” de buraco negro extremo
com os dois horizontes no mesmo ponto (ou seja, em todo o escopo @) < Q¢
e @ > Q¢), a parte real de w comega a diminuir mais rapidamente do que
para o potencial tensorial, tendendo a zero, conforme () vai para seu valor

maximo, ()g.

O perfil do campo gravitacional vetorial, com A = 1/60 é mostrado na fi-

gura 4.12. No grafico, é perceptivel a diminuicao da atenuagao e da frequéncia
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Figura 4.12: Campo gravitacional vetorial para valores diferentes de @), A =
0.0167 e [ = 2.

da onda quando do aumento da carga para valores maiores do que (). Outra
caracteristica peculiar é a proximidade entre as frequéncias da perturbacao
entre valores de carga diferentes, para os quais () < ()¢, como se pode ver
nos dois primeiros perfis, para () = 0.1 e QQ = 0.8.

Na tabela 4.6 estao listados os modos quasi-normais com A = 0.167, para
os quais Q¢ ~ 0.817. Novamente, a parte real dos modos oscila ligeiramente,
quando ) << @¢, e quando se aproxima deste valor tende a decrescer.
Diferentemente do caso com A = 0.0167, contudo, esta funcdo continua a
oscilar ligeiramente, apds () ~ (¢, decaindo mais lentamente, conforme )
se aproxima de seu valor médximo. A parte imaginaria apresenta o mesmo
comportamento observado para as outras perturbagao tanto tensoriais quanto

vetoriais.

Na figura 4.13, podemos ver diferentes perfis de campo, em funcao da
carga. As caracteristicas destes perfis sao similares aquelas da figura 4.12,

exceto pelo fato de a extensao de valores validos para a carga ser muito
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Tabela 4.6: Modos quasi-normais de uma perturbacao gravitacional vetorial
para o buraco negro de Reissner-Nordstrom de Sitter, com A = 0.0167 e
[ =2.

Q WR wr Q WR wr
0.1 | 1.004 | 0.257 | 0.15 | 1.005 | 0.254
0.2 | 1.005 | 0.249 | 0.25 | 1.004 | 0.243
0.3 | 1.002 | 0.236 | 0.35 | 0.997 | 0.227
0.4 10990 | 0.217 | 0.45]0.979 | 0.206
0.5 10963 | 0.193 | 0.55 | 0.941 | 0.178
0.6 | 0913 | 0.163 | 0.65 | 0.878 | 0.147
0.7 1 0.831 ] 0.136 | 0.75 ] 0.772 | 0.104
0.8 1 0.739 | 0.102 | 0.83 | 0.667 | 0.0709
0.86 | 0.630 | 0.0735 | 0.89 | 0.452 | 0.0512
0.92 | 0.475 | 0.0530 | 0.95 | 0.409 | 0.0578
0.98 | 0.282 | 0.0357 | 1.01 | 0.160 | 0.02247

menor, o que torna o intervalo de entre os dois buracos negros extremos
muito menor, e portanto resultando ambas as situagao extremas em modos
de vibracao com atenuacao semelhante.

Na tabela 4.7, vemos os modos quasi-normais para diferentes valores de
momento angular [, e o comportamento de que a parte imaginaria pouco
varia para diferentes valores de [ é similar ao encontrado na perturbacao
tensorial. A parte real aumenta ligeiramente com o aumento da carga, para
valores pequenos de carga, e a partir de um valor critico de carga, o qual
depende do valor de [, comeca a decrescer novamente. A parte imaginaria
por sua vez pouco varia para valores pequenos da carga.

Quando A = 0.083, o valor para o qual o buraco negro se torna extremo
é Qc = 0.93, o que indica a auséncia de modos instaveis mesmo em regioes
proximas a de buracos negros extremos.

As figuras 4.14 e 4.15 representam a perturbagao do campo gravitacional
para diferentes valores de [. E possivel com elas visualizar a mesma ate-
nuagao para os modos, ainda que [ varie, contudo uma frequéncia diferente,
dependente de I.

Em todos os modos analisados para 5 dimensoes, nao foram encontra-
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Figura 4.13: Campo gravitacional vetorial para valores diferentes de @), A =
0.167 el = 2.

dos vestigios de modos instéveis, como por exemplo em [6, 7], encontramos
modos instaveis para o potencial gravitacional escalar com D > 7. O tnico
suporte para a existéncia de modos instaveis estd em alguns modos para os
quais, depois de um longo periodo de integragao, aparentemente o modo volta
a crescer ao invés de decair (por exemplo 4.9 e 4.10). Tal comportamento
contudo, corresponde ao limite numérico do programa utilizado uma vez que
a precisao nao ultrapassa a décima quinta casa para todos os calculos de
integragao (e. g. coordenada tartaruga, valor do potencial, valor do campo,
etc), e neste sentido nao é mais do que “ruido”. Tal limitagdo é momentane-
amente inerente a estrutura do programa utilizado para o cdlculo (fortran,
Versao gnu), mesmo que com a maior precisao possivel para todas as varidveis
(precisao estendida). As caudas obtidas quando a precisdo necessaria para
sua obtencao nao ultrapassa 107!, seguem uma exponencial decrescente,

como em [69].
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Tabela 4.7: Modos quasi-normais de uma perturbacao gravitacional vetorial
para o buraco negro de Reissner-Nordstrom de Sitter, com A = 0.0833 e

diferentes valores de [.

210 b

In|W|

230 |

240 F

-50

Figura 4.14: “Zoom” de campo gra-
vitacional com A ~ 0.083 e ) = 0.5,
para dois valores de momento angu-

Q

w(l=2)

w(l =3)

w(l=4)

0.1

1.238 + 0.3161

1.716 + 0.3151

2.181 + 0.3151

0.2

1.243 + 0.3101

1.720 + 0.3091

2.183 + 0.309i

0.3

1.248 + 0.2991

1.720 + 0.2991

2.179 + 0.298i

0.4

1.250 + 0.284i

1.712 + 0.284i

2.161 + 0.283i

0.5

1.243 + 0.2651

1.619 + 0.264i

2.125 + 0.264i

0.6

1.225 + 0.241i

1.653 + 0.241i

2.069 + 0.242i

0.7

1.191 + 0.2161

1.595 + 0.2171

1.989 + 0.2181

0.8

1.131 + 0.1891

1.512 + 0.192i

1.884 + 0.1921

0.9

1.199 + 0.1361

1.456 + 0.154i

1.769 + 0.1131
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Capitulo 5
Apontamentos Finais

Ao longo deste trabalho, debrucamo-nos sobre o estudo das frequéncias quasi-
normais de buracos negros com campos eletromagnéticos.

A determinacao dos modos quasi-normais de buracos negros tem uma
série de interesses fisicos: como ferramente teérica de comparacao de futuras
medidas de ondas gravitacionais em grandes laboratérios (LISA, VIRGO,
etc); como ferramente tedrica para a eventual comparacao com a area de ter-
modinamica de buracos negros, e determinacao de se os modos de vibracao
carregam as propriedades termodinamicas de solucao, e, de que maneira isso
acontece; como teste de estabilidade do espago-tempo, podendo denotar a
presenca de modos que crescam no dominio temporal, o que pode ser inter-
pretado como um forte indicio da instabilidade do espago-tempo (um teste
robusto de uma instabilidade, contudo, pode ser arquitetado apenas com a
teoria nao-linear, e nao com expansoes em primeira ordem. Neste sentido,
os modos quasi-normais estao limitados a dar uma resposta segura apenas
quando as vibragoes sao estaveis, i. e., decaem com o tempo).

Ocupamo-nos no decorrer dos trés capitulos anteriores com cada um des-
tes aspectos, utilizando solugoes diferentes, de acordo com o estado da arte
em cada subtdpico.

Utilizando o buraco negro de Melvin-Ernst (que possui dois parametros
em sua geometria, a massa e o campo magnético), calculamos os modos de vi-

bragao correspondentes a propagacao de um campo escalar em tal geometria,
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considerando o campo magnético pequeno. Tal aproximacao ¢é valida, visto
que buracos negros (astrofisicos) possuem, via de regra, discos de acresgao
de matéria que geram uma contribuicao nao nula de campo magnético, que
ainda assim ¢ muito menor do que a massa do buraco negro. Demonstramos
que a propagacao de um campo escalar em tal geometria tem o mesmo po-
tencial da propagacao de um campo escalar com massa em uma geometria de
Schwarzschild, com a correspondéncia da massa de tal campo escalar sendo
p = 2|m|B, m o nimero azimutal de harmonicos esféricos e B. Além desta
equivaléncia, a propagacao do campo escalar na geometria de Melvin-Ernst
tem a propriedade de que o buraco negro se torna um melhor oscilador (me-
lhora o fator de qualidade () = wr/wy, tanto maior é o campo magnético do
espaco-tempo.

Também usando buracos negros com campo magnético de fundo, investi-
gamos a contribuicao do campo escalar para a entropia da solugao através do
método Brick Wall proposto por 't Hooft em 1984. A contribuicao do campo

magnético é da ordem B2, para a divergéncia ultravioleta, .

No caso
de buracos negros D-dimensionais, a divergéncia ultra-violeta tem a mesma
forma daquela divergéncia para Schwarzschild, eg, tendo a divergéncia ul-
travioleta, contudo um formato diferente dado por %, de maneira que o
campo magnético age diminuindo tal divergéncia (que para Schwarzschild é
dada por LP71).

Com uma solugao de Reissner-Nordstrom em quatro dimensoes analisa-
mos as propriedades termodinamicas do buraco negro e a relacao com seus
modos de vibracao. Utilizando a proposta de Maggiore para a conjectura
Hod, de reinterpretacao da constante de quantizacao da area do buraco ne-
gro de Schwarzschild, a partir de uma comparacao com o oscilador harmonico
com atrito (o que d4 um sentido semi-cldssico e explica algumas criticas da
antiga proposta de Hod), calculamos os modos quasi-normais em Reissner-
Nordstrom chegando a mostrar que o espacamento assintético dos modos se
aproxima da mesma quantizacao que para Schwarzschild.

Além da conjectura Hod modificada, testamos ainda a relagao dos modos
quasi-normais com a transi¢ao de ordem de segunda fase [47], como proposta

por Jing et al [49]. No setor de perturbagoes gravitacionais, a equivaléncia
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encontrada em [49] demonstrou-se nao existir, de maneira que, assim como
para a solucao de Kerr tal correspondéncia nao é valida, podemos afirmar
que se trata de uma coincidéncia numérica. Nao se pode negar que os modos
quasi-normais carreguem as propriedades termodinamicas relacionadas com
a transicao de ordem de segunda fase, mas se esta caracteristica existe ela é
mais profunda do que a proposta em [49].

Finalmente, estudamos no ultimo capitulo, a perturbacao gravitacional
de um buraco negro de Reissner-Nordstrom-de Sitter em 5 dimensoes, cu-
jos modos quasi-normais, tanto para o potencial tensorial como vetorial,
demonstraram-se estaveis, no sentido de que decaem com o tempo. O com-
portamento particular de cada frequéncia depende, como esperado dos parametros
do buraco negro, e em geral, exceto para situacoes extremas, varia de ma-
neira univoca com a variagao dos parametro: por exemplo, com o aumento
da carga do buraco negro, tanto wg quanto w; diminuem, tendendo a zero
quando de um buraco negro extremo com horizonte de eventos e cosmoldgico
no mesmo ponto. Além, a influéncia do momento angular das vibragoes é
mais sentida em wp do que em w;: para dados pariametros M, Q e A, a
variacao de [ produz uma grande variagdo em wg, mas uma pequena (ainda
menor que para o caso de Schwarzschild) variacao em wy.

Como perspectivas futuras, demarcamos algumas idéias passiveis de es-
tudo, em cada um dos trabalhos aqui relatados durante os anos de sua pes-

quisa:

e A investigagao da propagacao de campos elétricos ou da perturbacao
gravitacional em um buraco negro de Schwarzschild imerso em um Uni-
verso magnético. A dificuldade em tal caso é dada pela escrita do tensor
perturbagao gravitacional em respeitando as simetrias do espago-tempo
para o caso da perturbacao, e ainda, no desacoplamento das equacoes

de campo para o caso do campo elétrico;

e A verificacdo da conjectura modificada de Hod para o buraco negro
de Kerr com limites diferentes dos calculados em [70], bem como a
verificagdo se a presenca de divergéncias em dwpr/dw; esté relacionada

com a transicao de fase de segunda ordem utilizando outros buracos

108



negros como espagos-tempo de teste.

O célculo dos modos quasi-normais para um numero maior de di-
mensoes do buraco negro de Reissner-Nordstrom-de Sitter, e a veri-
ficacao de se a instabilidade encontrada para o potencial escalar acon-
tece também para os potenciais vetorialou tensorial [6, 7]. O calculo dos

modos para o buraco negro de RN-AdS, e a relagao com a conjectura
AdS-CFT [71, 72, 73].
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