Machine Learning (2024) 113:1189-1217
https://doi.org/10.1007/510994-023-06490-y

®

Check for
updates

On the effects of biased quantum random numbers
on the initialization of artificial neural networks

Raoul Heese' ©® - Moritz Wolter? - Sascha Miicke? - Lukas Franken* -
Nico Piatkowski*

Received: 31 May 2021 / Revised: 11 August 2023 / Accepted: 23 November 2023 /
Published online: 16 January 2024
© The Author(s) 2024

Abstract

Recent advances in practical quantum computing have led to a variety of cloud-based
quantum computing platforms that allow researchers to evaluate their algorithms on noisy
intermediate-scale quantum devices. A common property of quantum computers is that
they can exhibit instances of true randomness as opposed to pseudo-randomness obtained
from classical systems. Investigating the effects of such true quantum randomness in the
context of machine learning is appealing, and recent results vaguely suggest that benefits
can indeed be achieved from the use of quantum random numbers. To shed some more
light on this topic, we empirically study the effects of hardware-biased quantum random
numbers on the initialization of artificial neural network weights in numerical experiments.
We find no statistically significant difference in comparison with unbiased quantum ran-
dom numbers as well as biased and unbiased random numbers from a classical pseudo-
random number generator. The quantum random numbers for our experiments are obtained
from real quantum hardware.

Keywords Quantum computing - Random number generation - Neural networks - Machine
learning

Editor: Barbara Hammer.

< Raoul Heese
raoul.heese @ gmail.com

Fraunhofer Center for Machine Learning and Fraunhofer Institute for Industrial Mathematics
ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Fraunhofer Center for Machine Learning and Fraunhofer Institute for Algorithms and Scientific
Computing SCAI, Schloss Birlinghoven, Konrad-Adenauer-Strafle, 53757 Sankt Augustin,
Germany

3 Artificial Intelligence Group, TU Dortmund University, Otto-Hahn-Strafle 12, 44227 Dortmund,
Germany

Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, Schloss Birlinghoven,
Konrad-Adenauer-StraBe, 53757 Sankt Augustin, Germany

@ Springer

http://orcid.org/0000-0001-7479-3339
http://orcid.org/0000-0002-6334-8042
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06490-y&domain=pdf

1190 Machine Learning (2024) 113:1189-1217

1 Introduction

The intrinsic non-deterministic nature of quantum mechanics (Kofler & Zeilinger, 2010)
makes random number generation a native application of quantum computers. It has been
exemplarily studied in Bird et al. (2020) how such quantum random numbers can affect
stochastic machine learning algorithms. For this purpose, electron-based superposition
states have been prepared and measured on quantum hardware to create random 32-bit
integers. These numbers have subsequently been used to initialize the weights in neural
network models and to determine random splits in decision trees and random forests. Bird
et al. have observed that quantum random numbers can lead to superior results for cer-
tain numerical experiments in comparison with classically. generated pseudo-random
numbers.

However, the authors have not further explained this behavior. In particular, they have
not discussed the statistical properties of the generated quantum numbers. Due to tech-
nical imperfections and physical phenomena like decoherence and dissipation, measure-
ment results from a quantum computer might in fact significantly deviate from idealized
theoretical predictions (Tamura & Shikano, 2020; Shikano et al., 2020; Tamura & Shikano,
2021). This raises the question of whether it is not the superiority of the quantum random
number generator to sample perfectly random from the uniform distribution that leads to
the observed effect, but instead its ability to sample bit strings from a very particular distri-
bution that is imposed by the quantum hardware.

We therefore revisit this topic in the present manuscript and generate biased random
numbers using real quantum hardware, where the specifics of the bias are determined by
the natural imperfections of the hardware itself. The bias is therefore not under our control
and even beyond our full understanding. With this approach, we aim to better comprehend
the effects observed by Bird et al. for an analogous setup and explore the resulting implica-
tions. Summarized, our main goal is to further study the results of that work and to analyze
the effects of quantum and classical random numbers with and without biases on neural
network initialization. Our analysis is mainly based on numerical experiments and statisti-
cal tests.

The structure of the remaining paper is as follows. In Sect. 2, we briefly summarize the
background of the main ingredients of our work, namely quantum computing and random
number generation. Subsequently, we present the setup of our quantum random number
generator and discuss the statistics of its results in Sect. 3. In Sect. 4, we study the effects
of the generated quantum random numbers on artificial neural network weight initialization
using numerical experiments. Finally, we close with a conclusion.

2 Background
In the following, we provide a brief introduction to quantum computing and random num-

ber generation without claiming to be exhaustive. For more in-depth explanations, we refer
to the cited literature.

! We use the term “classical” in the sense of the physics community to distinguish deterministically behav-
ing entities from the realm of classical physics from those governed by the non-deterministic rules of quan-
tum physics (Norsen, 2017).

@ Springer

Machine Learning (2024) 113:1189-1217 1191

2.1 Quantum computing

Quantum mechanics is a physical theory that describes objects at the scale of atoms and
subatomic particles, e. g., electrons and photons (Norsen, 2017). An important interdisci-
plinary subfield is quantum information science, which considers the interplay of informa-
tion science with quantum effects and includes the research direction of quantum comput-
ing (Nielsen & Chuang, 2011).

2.1.1 Quantum devices

A quantum computer is a processor which utilizes quantum mechanical phenomena to pro-
cess information (Benioff, 1980; Grumbling & Horowitz, 2019). Theoretical studies show
that quantum computers are able to solve certain computational problems significantly
faster than classical computers, for example, in the fields of cryptography (Pirandola et al.,
2020) and quantum simulations (Georgescu et al., 2014). Recently, different hardware solu-
tions for quantum computers have been realized and are steadily improved. For example,
superconducting devices (Huang et al., 2020) and ion traps (Bruzewicz et al., 2019) have
been successfully used to perform quantum computations. However, various technical
challenges are still unresolved so that the current state of technology, which is subject to
substantial limitations, is also phrased as noisy intermediate-scale quantum (NISQ) com-
puting (Preskill, 2018). Nevertheless, quantum supremacy on NISQ devices has already
been verified experimentally for a specialized task of randomized sampling (Boixo et al.,
2018; Wu et al., 2021).

There are different theoretical models to describe quantum computers, typically used for
specific hardware or in different contexts. We only consider the quantum circuit model, in
which a computation is considered as a sequence of quantum gates and the quantum com-
puter can consequently be seen as a quantum circuit (Nielsen & Chuang, 2011). In contrast
to a classical computer, which operates on electronic bits with a well-defined binary state
of either O or 1, a quantum circuit works with qubits. A qubit is described by a quantum
mechanical state, which can represent a binary O or 1 in analogy to a classical bit. In addi-
tion, however, it can also represent any superposition of these two values. Such a quantum
superposition is a fundamental principle of quantum mechanics and cannot be explained
with classical physical models. Moreover, two or more qubits can be entangled with each
other. Entanglement is also a fundamental principle of quantum mechanics and leads to
non-classical correlations (Bell & Aspect, 2004).

In order to illustrate the aforementioned fundamental quantum principles and to con-
nect them with well-known notions from the field of machine learning, one can consider
the following intuitive (but physically inaccurate) simplifications: Superposition states can
be understood as probability distributions over a finite state space, while entanglement
amounts to high-order dependencies between univariate random variables. This intuition
particularly emphasizes the close relationship between quantum mechanics and probability
theory.

Any quantum computation can be considered as a three-step process, which is
sketched in Fig. 1. First, an initial quantum state of the qubits is prepared, usually a
low-energy ground state. Second, a sequence of quantum gates deterministically trans-
forms the initial state into a final quantum state. Third, a measurement is performed
on the qubits to determine an outcome. When a qubit is measured, the result of the

@ Springer

1192 Machine Learning (2024) 113:1189-1217

hardware- “hardware-
related R - R related
€rTors uncertainty

state
. gate measurement
preparation
errors errors
errors
S S S
1. state 2. gate 3. mea- 1t
preparation operations surements resu
i)

quantum computation process
intrinsic . intrinsic
randomness _uncertainty

Fig. 1 Sketch of the three-step quantum computation process consisting of an initial state preparation, a
sequence of gate operations and a final measurement, which yields the result of the computation. Also
shown are the errors associated with each step in the computation process: the state preparation errors, the
gate errors, and the measurement errors, respectively. They are all hardware-related errors, which can in
principle be reduced (or even eliminated) by technological advances. These errors can cause a hardware-
related uncertainty (statistical and systematic) of the computation result. On the other hand, the intrinsic
randomness of quantum mechanics emerging at the time of the measurement causes an intrinsic uncertainty
of the computation result, which is an integral part of quantum computing and can be exploited to construct
QRNGs

measurement is always either O or 1, but the observation is non-deterministic with a
probability depending on the quantum state of the qubit at the time of the measurement.

In this sense, a quantum computation includes an intrinsic element of randomness.
This randomness is in particular not a consequence of lack of knowledge about the
quantum system, but an integral part of quantum mechanics itself. In constrast to classi-
cal mechanics, where complete knowledge about the intitial state of a system allows to
infer all later (and earlier) states, complete knowledge about a quantum mechanical state
does not generally allow the prediction of a single measurement outcome, but only its
probability as determined by Born’s rule (Norsen, 2017). The non-deterministic nature
of quantum mechanics relies on the assumption that there are no so-called hidden vari-
ables whose knowledge would lead to a deterministic behavior (Norsen, 2017). Vari-
ous theoretic and experimental evidences, for example based on Bell’s theorem (Bell &
Aspect, 2004) or the Kochen-Specker theorem (Kochen & Specker, 1975), strongly sug-
gest that there are no such hidden variables. However, a conclusive answer to the ques-
tion of quantum non-determinism is still in scientific discourse. For a more detailed dis-
cussion about this topic, we refer to Bera et al. (2017) and references therein. Since our
work concerns the practical application of random numbers in machine learning algo-
rithms and a theoretical provability of their randomness from first principles is beyond
the scope of this paper, we presume in the following that quantum mechanics is indeed
intrinsically non-deterministic for all purposes considered.

@ Springer

Machine Learning (2024) 113:1189-1217 1193

NISQ devices, as their name suggests, are typically only capable of computing noisy
results. A fundamental reason is that the quantum computer, despite all technical efforts,
is not perfectly isolated and interacts (weakly) with its environment. In particular, there are
two major effects of the environment that can contribute to computational errors, namely
dissipation and decoherence in the sense of dephasing (Zurek, 2007; Vacchini, 2016). Dis-
sipation describes the decay of qubit states of higher energy due to an energy exchange
with the environment. Decoherence, on the other hand, represents a loss of quantum super-
positions as a consequence of environmental interactions. Typically, decoherence is more
dominating than dissipation. Beyond these typical effects, other (possibly unknown) influ-
ences can occur, which can lead to additional uncertainties.

To compensate the resulting computational errors to a certain extend, error correc-
tion can be used (Roffe, 2019). However, it is generally not possible to completely
eliminate statistical (also called aleatoric) or systematic (also called epistemic) uncer-
tainties, which might originate from quantum and classical effects, respectively. There-
fore, quantum algorithms must be designed sufficiently robust for practical applica-
tions on NISQ hardware.

In Fig. 1, we briefly outline different error sources in the quantum computation
process. Specifically, each computation step is affected by certain hardware-related
errors, which are referred to as state preparation errors, gate errors, and measurement
errors, respectively (Nachman & Geller, 2021). All of them are a consequence of the
imperfect physical hardware and they are non-negligible for NISQ devices (Leymann
& Barzen, 2020). The resulting hardware-related uncertainty might be both statistical
and systematic. In addition, the final measurement step is also affected by the intrinsic
randomness of quantum mechanics. The measurement ultimately yields a computation
result that contains two layers of uncertainty (Heese & Freyberger, 2014): First, the
uncertainty caused by the hardware-related errors, and second, the uncertainty caused
by the intrinsic randomness. While technological advances (like better hardware and
improved algorithm design) can in principle reduce (or even eliminate) hardware-
related errors and thus the hardware-related uncertainty, the intrinsic uncertainty is
an integral part of quantum computing. It is this intrinsic uncertainty which can be
exploited to construct QRNGs.

2.1.2 Quantum machine learning

In a machine learning context, we may identify a quantum circuit with a parameteriza-
ble probability distribution over all possible measurement outcomes, where each meas-
urement of the circuit draws a sample from this distribution. The interface between
quantum mechanics and machine learning can be attributed to the field of quantum
machine learning (Biamonte et al., 2017). A typical use case is the processing of clas-
sical data using algorithms that are fully or partially computed with quantum circuits,
which is also called quantum-enhanced machine learning (Dunjko et al., 2016).

The noisy nature of NISQ devices presents a challenge for machine learning appli-
cations. On the other hand, the probabilistic nature of quantum computing can be
related to the statistical background of machine learning algorithms, for which the
understanding and modeling of uncertainty is crucial. A review about different types
of uncertainty in machine learning and how to typically deal with them can for exam-
ple be found in Hiillermeier and Waegeman (2021).

@ Springer

1194 Machine Learning (2024) 113:1189-1217

2.2 Random number generation

For many machine learning methods, random numbers are a crucial ingredient and there-
fore random number generators (RNGs) are an important tool. Examples include sampling
from generative models like generative adversarial networks, variational autoencoders or
Markov random fields, parameter estimation via stochastic optimization methods, as well
as randomized regularization and validation techniques, randomly splitting for cross-val-
idation, drawing of random mini-batches, and computing a stochstic gradient, to name a
few. Randomness also plays an important role in non-deterministic optimization algorithms
or the initialization of (trainable) neural network parameters (Glorot & Bengio, 2010; He
et al., 2015).

At its core, a RNG performs random coin tosses in the sense that it samples from a
uniform distribution over a binary state space (or, more generally, a discrete state space
of arbitrary size). Given a sequence of randomly generated bits, corresponding integer or
floating-point values can be constructed straightforwardly.

2.2.1 Classical RNGs

In the classical world, there are two main types of random number generators. Pseudo-
random number generators (PRNGs) represent a class of algorithms to generate a sequence
of apparently random (but in fact deterministic) numbers from a given seed (James & Mon-
eta, 2020). In other words, the seed fully determines the order of the bits in the generated
sequence, but the statistical properties of the sequence (e. g., mean and variance) are inde-
pendent of the seed (as determined by the underlying algorithm). We remark that PRNGs
can also be constructed based on machine learning algorithms (Pasqualini & Parton, 2020).

The more advanced true random number generators (TRNGs) are hardware devices that
receive a signal from a complex physical process, which is unpredictable for all practi-
cal purposes, to extract random numbers (Yu et al., 2019). A multitude of physical effects
can be used as sources of entropy for TRNGs, with only some of them directly linked to
quantum phenomena. For example, metastability in latches can be exploited in specialized
electrical circuits (CMOS devices) to yield random bits (Tokunaga et al., 2008; Holleman
et al., 2008). Usually, such setups are built to calibrate themselves to account for hardware-
inherent bias effects. Multiple of these self-calibrating entropy sources can be combined to
further increase the cryptographic quality (Mathew et al., 2015). Other approaches make
use of ring oscillators to source randomness from timing jitter (Kim et al., 2017), or exploit
random telegraph noise to produce bit streams (Puglisi et al., 2018; Brown et al., 2020).

For TRNGs, the lack of knowledge about the observed physical system induces random-
ness, but it cannot be guaranteed in principle that the dynamics of the underlying physical
system are unpredictable (if quantum effects are not sufficiently involved). Likewise, the
statistical properties of the generated random sequence are not in principle guaranteed to
be constant over time since they are subject to the hidden process.

Independent of their source, random numbers have to fulfill two properties: First, they
have to be truly random (i. e., the next random bit in the sequence must not be predictable
from the previous bits) and second, they have to be unbiased (i. e., the statistics of the
random bit sequence must correspond to the statistics of the underlying uniform distribu-
tion). In other words, they have to be secure and reliable. A “good” RNG has to produce
numbers that fulfill both requirements. In practice, it is difficult to rigorously proof the

@ Springer

Machine Learning (2024) 113:1189-1217 1195

quality of RNGs. For a bit sequence of finite length, there is no formal method to decide
its randomness with certainty. On the other hand, an infinite bit sequence cannot be tested
in finite time (Khrennikov, 2015). Therefore, statistical test are typically used to check spe-
cific properties of RNGs with a certain confidence.

Typically, statistical tests are organized in the form of test suites (e. g., the NIST Sta-
tistical Test Suite described in Rukhin et al., 2010) to provide a comprehensive statistical
screening. A predictive analysis based on machine learning methods can also be used for
a quality assessment (Li et al., 2020). It remains a challenge to certify classical RNGs in
terms of the aforementioned criteria (Balasch et al., 2018) to, e. g., ensure cryptographical
security.

When implementing learning and related algorithms, PRNGs are typically used. Despite
the broad application of randomness in machine learning, the apparent lack of research
regarding the particular choice of RNGs suggests that it is usually not crucial in practice.
This assumption has been experimentally verified, e. g., in Rajashekharan and Shunmuga
Velayutham (2016) for differential evolution and is most certainly due to the fact that mod-
ern PRNGs seem to be sufficiently secure and reliable for most practical purposes. The
influence of different seeds for a PRNG on various deep learning algorithms for computer
vision has been studied empirically in Picard (2021) with the result that it is often possible
to find seeds that lead to a much better or much worse performance than the average. This
highlights the fact that numerical experiments with non-deterministic algorithms have to
be conducted carefully to account for the variance of random numbers. However, the spe-
cific implications of varying degrees of security and reliability of RNGs on machine learn-
ing applications generally remain unresolved, i. e., it generally remains unclear whether a
certain machine learning algorithm may suffer or benefit from the artifacts of an imperfect
RNG. In the present work, we approach this still rather open field of research by specifi-
cally considering the randomness in artificial neural network initialization.

2.2.2 Quantum RNGs

As previously stated, quantum computers (or, more generally, quantum systems) have an
intrinsic ability to produce truly random outcomes in a way that cannot be predicted or
emulated by any classical device (Calude et al., 2010). Therefore, it seems natural to uti-
lize them as a source of random numbers in the sense of a quantum random number gen-
erator (QRNG). Such QRNGs (Herrero-Collantes & Garcia-Escartin, 2017) have already
been realized with different quantum systems, for example using nuclear decay (Park et al.,
2020) or optical devices (Leone et al., 2020).

Summarized, the main difference between randomness from classical systems and ran-
domness from quantum systems is that a classical system is fully deterministic and there-
fore all randomness can only result from a lack of knowledge about the system, whereas
a quantum system is non-deterministic and therefore — even with perfect knowledge — an
intrinsic randomness may be involved. In this sense, the origin of randomness is different
for quantum and classical RNGs. However, it is in principle not possible to mathematically
distinguish the randomness of a classical system from the randomness of a quantum system
(Khrennikov, 2015).

A simple QRNG can be straightforwardly realized using a quantum circuit. For this pur-
pose, each of its qubits has to be brought into a superposition of 0 and 1 such that both
outcomes are equally probable to be measured. This operation can for example be per-
formed by applying a single Hadamard gate on each qubit (Nielsen & Chuang, 2011). Each

@ Springer

1196 Machine Learning (2024) 113:1189-1217

measurement of the circuit consequently generates a sequence of i.i.d. random bits, one for
each qubit.

However, when computing this simple QRNG circuit on a NISQ device, it can be
expected that the results will deviate from the theoretic expectations due to statistical and
systematic uncertainties such that the QRNG is likely to produce biased outcomes. This
means that it is in fact not guaranteed that the measurement outcomes obey the theoreti-
cally predicted probability distribution of a fair coin toss. It is not even guaranteed that the
measurement outcomes are truly random in the sense that bits are generated entirely inde-
pendent. As a consequence (and based on the fact that quantum non-determinism is not
ultimately resolved), it cannot be generally taken for granted that random numbers from
such a QRNG are naturally “better” than random numbers from PRNGs, both with respect
to security and reliability. For this reason, technically more refined solutions are necessary
to realize trustworthy QRNGs on NISQ decices. Moreover, QRNGs have to be certified
similar to classical RNGs. For example, to enable a theoretically secure QRNG, the Bell
inequality (Pironio et al., 2010) or the Kochen-Specker theorem can be utilized (Abbott
et al., 2014, 2015; Kulikov et al., 2017). For an experimental verification of random bit
sequences from a QRNG, entanglement-based public tests of randomness can be used
without violating the secrecy of the generated sequences (Jacak et al., 2020).

Currently, there exist various commercial and non-commercial QRNGs, which can be
used to create quantum random numbers on demand, for example ANU (2021). Although
there still seem to be some practical challenges (Martinez et al., 2018; Petrov et al., 2020),
theoretical and technological advances in the field will most certainly lead to a steady
improvement of QRNGs.

3 Biased QRNG

Motivated by the work in Bird et al. (2020), we take a different approach than usual in
this manuscript. Instead of aiming for a RNG with as little bias as possible, we discuss
whether the typical bias in a naively implemented, gate-based QRNG can actually be ben-
eficial for certain machine learning applications. In other words, we consider the bias that
is “naturally” imposed by the quantum hardware itself (i. e., by the hardware-related errors
outlined in Fig. 1). In addition to a bias, we also accept that the randomness of the results is
not necessarily guaranteed in the sense that the QRNG can (to some degree) produce corre-
lations or predictable patterns from systematic quantum hardware errors. Since the imper-
fections of the quantum hardware are beyond our control (i. e., they can in particular not
be switched off at will), a RNG realized in this way contains unknown and uncontrollable
elements. Therefore, we have to analyze its outcomes statistically to capture the effects of
these elements on the generated random numbers. In the present section, we first describe
our experimental setup for such a naively implemented QRNG and subsequently discuss
the statistics of the resulting “hardware-biased” quantum random numbers.

3.1 Setup

To realize a hardware-biased QRNG (B-QRNG), we utilize a physical quantum computer,
which we access remotely via Qiskit (Abraham et al., 2019) using the cloud-based quantum
computing service provided by IBM Quantum (IBM, 2021). With this service, users can
send online requests for quantum experiments using a high-level quantum circuit model of

@ Springer

Machine Learning (2024) 113:1189-1217 1197

e 6
=]
D

(a) Topology diagram of the ibmg-manhattan (b) Circuit diagram. A single Hadamard gate
backend with 65 qubits. Qubits are shown as (denoted by H) is applied to each of the 65
boxes with their respective hardware index n. qubits from (a) and a subsequent measurement
Pairs of qubits that support two-qubit gate op- is performed. The idealized measurement re-
erations (which are not used in our setup) are sult of each qubit is either 0 or 1 with an equal
connected with lines. probability of 50%.

Fig.2 Main components of our B-QRNG setup: a topology diagram of the backend and b circuit diagram

computation, which are then executed sequentially (LaRose, 2019). The respective quan-
tum hardware, also called backend, operates on superconducting transmon qubits.

For our application, we specifically use the ibmq_manhattan backend (version 1.11.1),
which is one of the IBM quantum Hummingbird r2 processors with N = 65 qubits. A
sketch of the backend topology diagram can be found in Fig. 2a. It indicates the hardware
index of each qubit and the pairs of qubits that support two-qubit gate operations between
them. IBM also provides an estimate for the relaxation time 7', and the dephasing time T,
for each qubit at the time of operation. The mean and standard deviation of these times
over all qubits read 7|, ~ 59.11 + —15.25ps and T, = 74.71 + —31.22 ps, respectively.

Initially, all qubits in this backend are prepared in the ground state. Our B-QRNG cicuit,
which is sketched in Fig. 2b, consists of one Hadamard gate applied to each qubit such that
it is brought into a balanced superposition of ground state and excited state. A subsequent
measurement on each qubit should therefore ideally (i. e., in the error-free case) reveal an
outcome of either 0 (corresponding to the ground state) or 1 (corresponding to the excited
state) with equal probability. However, since we run the circuit on real quantum hardware,
we can expect to obtain random numbers which deviate from these idealized outcomes due
to hardware-related errors. An analogous setup with a different backend is considered in
Tamura and Shikano (2020); Shikano et al. (2020); Tamura and Shikano (2021).

We sort the qubit measurements according to their respective hardware index in an
ascending order so that each run of the backend yields a well-defined bit string of length
N. Such a single run is called a shot in Qiskit. We perform sequences of S = 8192 shots
(which is the upper limit according to the backend access restrictions imposed by IBM)
for which we concatenate the resulting bit strings in the order in which they are executed.
Such a sequence of shots is called experiment in Qiskit. We repeat this experiment R = 564
times (900 experiments is the upper limit set by IBM) and again concatenate the result-
ing bit strings in the order of execution. A sequence of experiments is denoted as a job in
Qiskit and can be submitted directly to the backend. It is run in one pass without interrup-
tion from other jobs.

@ Springer

1198 Machine Learning (2024) 113:1189-1217

bit string

@630 6 .. O 63
| shot 1 shot 2 shot 8192 | te | e | s |
| experiment 1 experiment 2 experiment 564 |

job

Fig. 3 Bit string composition from our B-QRNG. A single job is submitted to the backend, it consists of
564 experiments. In each experiment, 8192 shots are performed. In each shot, each of the 65 qubits yields a
single bit. The resulting bit string consequently contains 300318720 bits

Our submitted job ran from March 5, 2021 10:45 AM GMT to March 5, 2021
11:58 AM GMT. The final result of the job is a bit string of length M = NSR = 300318720
as sketched in Fig. 3. The choice of R is determined by the condition M Z 3e8, which we
have estimated as sufficient for our numerical experiments. We split the bit string into
chunks of length C = 32 to obtain L = M/C = 9384960 random 32-bit integers, which we
use for the following machine learning experiments.

3.2 Statistics

Before we utilize our generated random numbers for learning algorithms, we first briefly
discuss their statistics. The measurement results from the nth qubit can be considered as a
Bernoulli random variable (Forbes et al., 2011), where n € {0, ..., 64} represents the hard-
ware index as outlined in Fig. 2. Such a variable has a probability mass function

f(bip) = pP(1 = p)'=* (1)

depending on the value of the bit b € B and the success probability p € [0, 1] of observing
an outcome b = 1.

3.2.1 Bias

We denote the measured bit string from our B-QRNG as a vector B € B™. The extracted
bit string exclusively resulting from measurements of the nth qubit is given by the vector

bn = (Bn+l’B”+1+N’""Bﬂ+l+M—N) (2)

with b, € BM/N. Based on its population, the corresponding expected probability p, (0) of
obtaining the bit b for the nth qubit is given by

NYMNy (i b)

b) = ——==! 3
Pn(b) 7
with the indicator function
oy = J LBy =0
LG, b) = { 0 otherwise S

@ Springer

Machine Learning (2024) 113:1189-1217 1199

p19(0) & 0.4576 p50(0) &~ 0.5794
.60 PP PR
58l 18, (0) B p, (1) — p(0) —p(1) — 5
56| |
54t |

.52

probability

A48 H a

44
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

qubit hardware index n

Fig.4 Measured bit distribution for each qubit from the B-QRNG on ibmg_manhattan. We show the
expected probability p,(0) of obtaining a zero bit from the measured bit string for the nth qubit, Eq. (3), and
(stacked on top) its complement p,(1) = 1 — p,(0). Also shown are the corresponding expected probabili-
ties with respect to all measured bits p(0) ~ 0.51 and p(1) = 1 — p(0) = 0.49, respectively, Eq. (6). Appar-
ently, all bit distributions deviate differently from the uniform probability p, Eq. (5), which we assume to be
a consequence of the imperfect hardware. The distributions with the highest (n = 50) and lowest (n = 19)
expected probabilities of obtaining a zero bit are marked on top

such that p,(0)+ p,(1) = 1. From an idealized prediction of the measurement results
of qubits in a balanced superposition, we would assume that all expected probabilities
Po(b), ..., py(b) correspond to the uniform probability

pb)

N —

p (&)
with uncertainties coming only from the finite number of samples.

‘We show the estimated probabilities in Fig. 4. It is apparent that all bit probabilities deviate
significantly from their idealized value p, Eq. (5). In particular, we find an expected probabil-
ity and standard deviation with respect to all measured bits of

P(0) ~ 0.5112 + 0.0215. 6)

We assume that this is a consequence of the imperfect hardware with its decoherence and
dissipation effects. In particular, the fact that p(0) > p(1) is most likely a consequence of
dissipation since a bit of O corresponds to an observation of a qubit ground state, whereas a
bit of 1 is associated with an excited state.

From a)(2 test (Pearson, 1900) on the measured bit distribution, the null hypothesis of a
uniform zero bit occurrence can be rejected as expected with a confidence level of 1.0000. To
further quantify the deviation of the measured probabilities from a uniform distribution, we
utilize the discrete Hellinger distance (Hellinger, 1909)

2 (VaG -Vam). (7)

H(q,9,) = —

@ Springer

1200 Machine Learning (2024) 113:1189-1217

3 23 50 56 64
10 | | | | |
00 ph > a
08} 0o pp, <a
(6%
=
= 06 . .
el
<
S 04 .
o
0.2} |

I
I I I
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

qubit hardware index n

Fig.5 Results of Wald-Wolfowitz runs test on the bit strings of all qubits, where p} denotes the resulting
p-value of the bit string of the nth qubit b,, Eq. (2). We show p-values in different colors depending on
whether or not they exceed a = 0.05. In case of p; < a, the corresponding hardware indices are additionally
denoted on top of the plot and indicate the qubits that fail the test of randomness

which can be used to measure similarities between two discrete probability distributions
g, = q,(i) and g, = ¢,(i) defined on the same probability space Q. By iterating over all
qubits we find the mean and standard deviation

(H(p,.p)) ~ 0.0133 + 0.0110. ®)

The mean value quantifies the average deviation of the measured qubit distributions from
the idealized uniform distribution and confirms our qualitative observations. The non-
negligible standard deviation results from the fluctuations in-between the individual qubit
outcomes.

3.2.2 Randomness

Although quantum events intrinsically exhibit a truly random behavior, the output of our
B-QRNG is the result of a complex physical experiment behind a technically sophisticated
pipeline that appears as a black box to us and it can therefore not be assumed with certainty
that its outcomes are indeed statistically independent. To examine this issue in more detail,
we briefly study the randomness of the resulting bit string in the following.

For this purpose, we make use of the Wald-Wolfowitz runs test (Wald & Wolfowitz,
1940), which can be used to test the null hypothesis that elements of a binary sequence are
mutually independent. We perform a corresponding test on the measured bit string from
the nth qubit b,, Eq. (2), and denote the resulting p-value as p;. The null hypothesis has to
be rejected if this probability does not exceed the significance level, which we choose as
a = 0.05.

The test results are shown in Fig. 5. We find that the bit strings from almost all qubits
pass the test and can therefore be considered random in the sense of the test criteria. How-
ever, the bit strings from five qubits fail the test, which implies non-randomness. We also

@ Springer

Machine Learning (2024) 113:1189-1217 1201

perform a test on the total bit string B, which yields the p-value p* ~ 0.0000 < « such that
the test also fails for the entire sequence of random numbers.

Summarized, we find that the reliability of the generated quantum random numbers is
questionable. A typical binary random sequence from a PRNG of the same length as B can
be expected to pass the Wald-Wolfowitz runs test. However, within the scope of this work,
the reason for this observation cannot be further investigated and we accept it as an inte-
gral part of our naive approach to the B-QRNG. Further work regarding the properties of
our setup (applied to a different quantum hardware) can be found in Tamura and Shikano
(2020); Shikano et al. (2020); Tamura and Shikano (2021), which contain similar observa-
tions. A lack of reliability is not surprising considering the fact that we have not aimed for
a certified random number generation and our setup is motivated by a strongly idealized
model of quantum gate computers, as already mentioned above.

3.2.3 Integers

Next, we analyze the resulting random 32-bit integers. To obtain these, we convert B into a
vector of integers B — I € {0, ..., 2€ — 1} by consecutively grouping its elements into bit
strings of length C and converting them to non-negative integers according to

L=) Begoiist2' ©
i=0

with j € {1,...,L}. For a bit string of Bernoulli random variables B with a fair success
probability p = p, Egs. (1) and (5), the sequence of random integers in I would be uni-
formly distributed. However, as we have seen before, this assumption does not hold true for
the results from our B-QRNG. So the question arises as to what the distribution of random
integers looks like for our unfair set of Bernoulli variables.

For this purpose, we rescale the elements of I by a division by

=201 (10)

such that I/£ € [0, 1]* and group the range [0, 1] into K = 250 equally sized bins. Thus,
the population of the kth bin is given by

L
PEPRINS (11)
i=1
with the indicator function
. k=1 _ i _ k
1lifk<K A TSE<;
1) =41ifk=K A %sg (12)

0 otherwise

forke {1,...,K}.

Additionally, we consider a simplified theoretical description of the bin population by
modeling the bit string as the result of a Bernoulli process with a single success prob-
ability p, Eq. (1). That is, the bits represent i.i.d. Bernoulli random variables. The integer
j €10, ..., &} corresponding to a bit string 7(j) € BC is determined in analogy to Eq. (9)

@ Springer

1202 Machine Learning (2024) 113:1189-1217

1.0 I s wa—

T
|

0.8 A | p— S1(p)/(C'n2)
0.6 7

T
|

0.4
02 d
00 3 l l l l ;
0.0 0.2 0.4 0.6 0.8 1.0
P

T
|

Fig.6 Expected value I(p), Eq. (14), and entropy § 1(p), Eq. (15), for a random integer from the domain
{0, ..., &} resulting from a string of C random bits from a Bernoulli process with success probability p,
Eq. (1). The expected value is proportional to p, whereas the entropy attains its maximum value at p = 0.5.
We apply rescaling factors to constrain both quantities to the same scale

such that ZlC:_Ol 7,,1(D2" =j. The probability mass function of the resulting integers can
consequently be written as

C
PG.p) = [p 000 - p)'=0. (13)
i=1
Its expected value is given by
R ¢
Ip) =Y iPli.p) = &p (14)
i=0

and the information entropy (Shannon, 1948) in nats by

4
S,(p) = Z P(i,p)InP(i,p) = =C[pInp + (1 — p) In(1 — p)|. (15)
i=0

We show a plot of Egs. (14) and (15) in Fig. 6. Finally, the predicted (possibly non-integer)
population of the kth bin reads

5
&(p) =LY, 1G, PG, p), (16)
i=0

which we use as our simplified model of Eq. (11).

We show both the measured bin population c;, Eq. (11), and the theoretical bin popula-
tion ¢,(p), Eq. (16), for a success probability p corresponding to the expected probability
of all measured bits p(1) = 1 — p(0), Eq. (6), in Fig. 7. Clearly, the generated sequence of
random integers is not uniformly distributed (i. e., with a population of L/K in each bin).
Instead, we find a complex arrangement of spikes and valleys in the bin populations.

Specifically, since p(0) > p(1), random integers become more probable when their
binary representation contains as many zeros as possible, which is reflected in the bin
populations. In particular, the first bin (containing the smallest integers) has the highest
population. The minor deviations between the measured and the theoretic bin populations
results from the finite number of measured samples and the simplification of the theoretical

@ Springer

Machine Learning (2024) 113:1189-1217 1203

bin number &
1 50 100 150 200 250
I

Tnerlne,(5(1)) uniform

population /10%

00 01 02 03 04 05 06 07 08 09 1.0
bin edges

Fig.7 Measured distribution of 32-bit integers from the B-QRNG. The values from the generated vector
of random integers I, Eq. (9), are rescaled by a division by (232 — 1) and sorted into 250 equally sized bins.
The kth bin (with k € {1, ...,250}) has a population of ¢, according to Eq. (11). For comparison, the corre-
sponding theoretic bin population of the kth bin &, (p(b)) is shown, which is obtained from a Bernoulli pro-
cess according to Eq. (16) with a success probability of p = p(1) = 1 — p(0), Eq. (6). The minor deviations
between the two populations results from the finite number of measured samples as well as the observation
that bits from different qubits have their own success probability, cf. Fig. 4. An outline of the uniform bin
population is shown as a frame of reference

model: The success probability of each bit from the B-QRNG specifically depends on the
qubit it is generated from as shown in Fig. 4, whereas our theoretical model only uses one
success probability for all bits corresponding to p(1).

We recall the Hellinger distance, Eq. (7), to quantify the deviation of the distribution of
integers from the uniform distribution. Specifically, we find

H@..p,) = 0.0213, (17)

where we have made use of the measured integer distribution p, = p.(k) = ¢, /L and the
corresponding uniform distribution p, = p.(k) = 1/K with k € {1,...,K}. This metric
quantifies our observations from Fig. 7.

For comparative purposes, we show additional theoretical bin populations for other suc-
cess probabilities in Fig. 8. As expected, the rugged pattern of the distribution becomes
sharper for lower or higher values of p and the deviation from the uniform distribution
increases.

4 Experiments

To study the effects of quantum-based network initializations, we consider two inde-
pendent experiments, which are both implemented in PyTorch (Paszke et al., 2019):
First, a convolutional neural network (CNN) and second, a recurrent neural network
(RNN). The choice of these experiments is motivated by the statement from Bird et al.

@ Springer

1204 Machine Learning (2024) 113:1189-1217

_S 106 |- ér(p1) with pp = 0.3 I(p1)/€ uniform
=
= .
2
2 |

10
_§ 106 ér(p2) with p; =04 I(ps)/€ uniform
=
=
2
2 |

10
_5 106 ¢k (ps) with p3 = 0.5 I(ps)/€ uniform
=
3 |
2
: |

103
_5 106 ¢ (pa) with py = 0.6 I(py)/€ uniform
=
= :
2
2 |

10°
E 106 ¢k (ps) with ps = 0.7 I(ps)/€ uniform
=
é h
2

10°

0.0 0.1 02 03 04 05 06 07 08 09 1.0

bin edges

Fig.8 Theoretical distribution of 32-bit integers in analogy to Fig. 4 for different success probabili-
ties p € {p; =0.3,p, =0.4,p; =0.5,p, =0.6,ps = 0.7}, Eq. (16). The population axis is scaled log-
arithmically. We also show the (rescaled) mean values 1(p)/&, Eq. (14), and the uniform distribution P,
as used in Eq. (17). The corresponding Hellinger distances, Eq. (7), with p.(p) = p.(p;k) = ¢;(p)/L and
ke {l,....K} read Hp.(p)).p.) ~ HP.(ps).p.) ~ 03776, H(p(p,).p,) ~ H(p,(ps).p,) ~ 0.1867. and
H®,.(p3),p.) = 0.0000, respectively

(2020) that “neural network experiments show greatly differing patterns in learning
patterns and their overall results when using PRNG and QRNG methods to generate
the initial weights.”

To ensure repeatability of our experiments, PyTorch is run in deterministic mode
with fixed (i. e., hard-coded) random seeds. The main hardware component is a Nvidia
GeForce GTX 1080 Ti graphics card. Our Python implementation of the experiments is
publicly available online (Wolter, 2021).

In the present section, we first summarize the considered RNGs. Subsequently, we
present the two experiments and discuss their results.

@ Springer

Machine Learning (2024) 113:1189-1217 1205

Table 1 Overview over the four considered RNGs presented in Sect.on 4.1, which are either based on a
classical pseudo-random number generator or a quantum experiment (as indicated by the rows) and yield
either unbiased or biased outcomes (as indicated by the columns)

Unbiased Biased
Classical PRNG B-PRNG
Quantum QRNG B-QRNG

population /10%

bin number k&

3.90 1 50 100 150 200 250
. I | | i
i Bug Buc uniform

3.85 | -

3.80

3.75

A e |

0
00 01 02 03 04 05 06 07 08 09
bin edges

=
o

Fig. 9 Distribution of 32-bit integers from the QRNG in analogy to Fig. 7. The values from the vector of
random integers I’ are rescaled by a division by (232 — 1) and sorted into 250 equally sized bins. The popu-
lation of the kth bin (with k € {1, ...,250}) is denoted by c,/(. For comparison, we also show the correspond-
ing population ¢;, Eq. (11), from the B-QRNG and an outline of the uniform bin population

4.1

RNGs

In total, we use four different RNGs to initialize neural network weights:

B-QRNG: Our hardware-biased quantum random number generator introduced in Sect. 3
from which we extract the integer sequence I according to Eq. (9). The data is publicly
available online (Heese et al., 2023).

QRNG: A bias-free quantum random number generator (ANU, 2021) based on quantum-
optical hardware that performs broadband measurements of the vacuum field contained
in the radio-frequency sidebands of a single-mode laser to produce a continuous stream
of binary random numbers (Symul et al., 2011; Haw et al., 2015). We particularly use a
publicly available pre-generated sequence of random bits from this stream (ANU, 2017),
extract the first M bits and convert them into the integer sequence I’ € {0, ...,2¢ — 1}F
according to Eq. (9). Based on the Hellinger distance H(pi_ ,p.) = 0.0018, Eq. (7), with
p.=plk)=c,/Landc, = Z,~L=1 1(I}, k), Eq. (12), fork € {1,..., K}, we find that I is
indeed much closer to the uniform distribution than I, Eq. (17). We visualize the cor-
responding integer distribution in Fig. 9.

@ Springer

1206 Machine Learning (2024) 113:1189-1217

3. PRNG: The (presumably unbiased) native pseudo-random number generator from
PyTorch.

4. B-PRNG: A “pseudo hardware-biased quantum random number generator”’, which gen-
erates a bit string of i.i.d. Bernoulli random variables with a success probability p cor-
responding to the expected probability of all measured bits p(1) = 1 — p(0), Egs. (1 and
(6), using the native pseudo-random number generator from PyTorch. The bit strings
are then converted into integers according to Eq. (9). Their probability mass function is
given by Eq. (13).

All of these RNGs, which are summarized in Tab. 1, produce 32-bit random numbers.
However, the random numbers from the B-QRNG and the QRNG are taken in order (i. e.,
unshuffled) from the predefined sequences I and I’, respectively, whereas the PRNG and
the B-PRNG algorithmically generate random numbers on demand based on a given ran-
dom seed.

For the sake of completeness, we also analyze the binary random numbers from the
B-QRNG and the QRNG, respectively, with the NIST Statistical Test Suite for the valida-
tion of random number generators (Rukhin et al., 2010; NIST, 2010). For this purpose, the
bit strings are segmented into smaller sequences and multiple statistical tests are evaluated
on each sequence. Each test consists of one or more sub-tests with the null hypothesis that
the sequence being tested is random. Based on the proportion of sequences for which a
sub-test satisfies the null hypothesis, it is considered as passed or rejected, where a rejec-
tion indicates non-randomness. A more detailed discussion about this procedure can also
be found in Sys et al. (2015).

A summary of our results is listed in Tab. 2. It shows that the B-QRNG numbers fail a
majority of statistical tests of randomness, as expected, whereas the QRNG passes all.

4.2 CNN

In the first experiment, we consider a LeNet-5 inspired CNN with ReLU activation func-
tions and without dropout (Lecun et al., 1998). The network weights are initialized as pro-
posed by He et al. (2015), but we use a uniform distribution instead of a normal distri-
bution, as is also common. This means that each weight w; (withi = 1,2, ...) is sampled
uniformly according to

w; ~ [=h;, by, (18)

where h; > 0 is chosen such that a constant output variance can be achieved over all layers.
The network biases are initialized analogously.

As data we use the MNIST handwritten digit recognition problem (LeCun et al., 1998),
which contains 70,000 grayscale images of handwritten digits in 28 X 28 pixel format. The
digits are split into a training set of 60,000 images and a training set of 10,000 images. The
network is trained using Adadelta (Zeiler, 2012) over d = 14 epochs.

In Fig. 10 we show the CNN test accuracy convergence for each epoch over 31 inde-
pendent training runs using the four RNGs from Sect. 4.1. The use of a biased RNG
means that the He et al. initialization is actually effectively realized based on a non-uni-
form distribution instead of a uniform distribution. Therefore, such an approach could
potentially be considered a new type of initialization strategy (depending on the bias),
which is why one might expect a different training efficiency. However, the results show

@ Springer

Machine Learning (2024) 113:1189-1217 1207

Table2 Summary of the results from the NIST Statistical Test Suite for the validation of random number
generators (NIST, 2010) applied to the whole sequence of binary random numbers from the B-QRNG and
the QRNG, respectively

Test name v b’ Passed v X Passed
Approximate entropy 0 1 0 1 0 99
Frequency within block 0 1 0 1 0 98
Cumulative sums 0 2 0,0 2 0 98, 99
Discrete Fourier transform 0 1 60 1 0 100
Frequency 0 1 0 1 0 99
Linear complexity 1 0 100 1 0 96
Longest run of ones within block 0 1 72 1 0 100
Non-overlapping template matching 40 108 524 +41.5 148 0 99.0 + 1.0
Overlapping template matching 0 1 0 1 0 100
Random excursions 0 0 - 8 0 71.5+0.7
Random excursions variant 0 0 - 18 0 71.7+0.6
Binary matrix rank 1 0 100 1 0 100
Runs 0 1 0 1 0 96
Serial 1 1 0, 100 2 0 98, 99
Maurer’s “universal statistical” 0 1 80 1 0 99
Total 43 119 188 0

B-QRNG QRNG

For each of the two bit strings, a series of statistical tests is evaluated, where each test consists of one
or more sub-tests with the null hypothesis that the sequence being tested is random. The bit strings are
segmented into sequences and each sub-test is run on each of these sequences. A sub-test is accepted or
rejected based on a certain proportion of sequences that satisfy the null hypothesis. A rejection therefore
indicates non-randomness. We choose 100 bitstreams in the program options such that each sequence con-
tains at least 10° bits, as recommended. The required number of passed sequences of the total number of
sequences for the acceptance of a sub-test is 96 of 100 for all tests except for the Random excursion tests,
for which it is 68 of 72 due to a reduced number of effectively used sequences. The predefined standard
parameters are used for all tests (e. g., significance level a = 0.01). We list for each statistical test the cor-
responding number of accepted (“v”) and rejected (“x”) sub-tests. The total number of acceptances and
rejections are shown at the bottom in bold. In addition, the column “Passed” contains information about
the number of passed sequences. For tests with only one or two sub-tests, we explicitly list the number of
passed sequences. Otherwise, we present the respective means and standard deviations. A detailed descrip-
tion of the software and its statistical tests of randomness can be found in Rukhin et al. (2010). Summa-
rized, the QRNG data passes all tests of randomness, whereas most of the tests fail for the B-QRNG data,
which indicates non-randomness. Note that the Random excursions tests are not applicable for the B-QRNG
data since they require the acceptance of the rejected Frequency test (Sys et al., 2015)

that the choice of RNG for the network weight initialization has no major effect on the
CNN test accuracy convergence. Only a closer look reveals that the mean QRNG results
seem to be slightly superior to the others in the last epochs.

To quantify this observation, we utilize Welch’s (unequal variances) t-test for the
null hypothesis that two independent samples have identical expected values without
the assumption of equal population variance (Welch, 1947). We apply this test to two of
each of the four results from different RNGs, where the resulting test accuracies from
all runs in a specific epoch are treated as samples. We denote the two results to be com-
pared as x and y, respectively, with X,y € R34 for 31 runs and d epochs. Consequently,
for each pair of results and each epoch i € {1,...,d}, we obtain a two-tailed p-value

@ Springer

1208 Machine Learning (2024) 113:1189-1217

99.2 _
99.0
X 98.8
~
> -
< 98.6
=]
3 o
© 98.4 | Vo 10 13
— B-QRNG
QRNG
98.2 *I PRNG
—— B-PRNG
98.0 T T T T T T

T T I T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14
epoch

Fig. 10 CNN test accuracy convergence on the MNIST data set using four different random number genera-
tors (B-QRNG, QRGN, PRGN and B-PRNG from Sect. 4.1). Shown are mean values over 31 runs with the
respective standard deviations (one sigma). The inset plot zooms in on the means of the final epochs

Pi(x,y). The null hypothesis has to be rejected if such a p-value does not exceed the sig-
nificance level, which we choose as @ = (0.05.

We are particularly interested whether the aforementioned hypothesis holds true for all
epochs. To counteract the problem of multiple comparisons, we use the Holm-Bonferroni
method (Holm, 1979) to adjust the p-values pf(x, y) — ﬁ;(x, y) foralli € {1,...,d}. Sum-
marized, if the condition

minpi(x,y) = minp’ . (X,y) > a=0.05 (19)
X,y X,y

is fulfilled, no overall statistically significant deviation between the results from different
RNGs is present.

In addition, we also quantify the correlation of x and y using the Pearson correlation
coefficient (Pearson, 1895)

e
p(X7 Y) = z ! (S [_1, 1] (20)
TE? X,

of the mean values over all runs, where we make use of the abbreviations
o d _ o3l - _ d _ o3l
Y=Ex -y, x/d x= ijlxji/31, yi=y - X, y/d, and y. = zj:lyﬁ/fil. A coef-

ﬁlcient of 1 implies a perfect linear correlation of the means, whereas a coefficient of 0
indicates no linear correlation.

For the results from the CNN experiment, we obtain the similarity and correlation
metrics listed in Tab. 3 in the rows marked with “CNN”. Summarized, we find a high

mutual similarity [Eq. (19) holds true] and almost perfect mutual correlations of the

@ Springer

Machine Learning (2024) 113:1189-1217 1209

Table 3 Minimum p-values from

Welch'’s r-test over all epochs X y Pain(%Y) P.¥)

Proin %), Eq. (19), and Pearson - -y B-QRNG QRGN 0.3784 0.9984
correlation coefficient p(x,y),

Eq. (20), of the experimental data B-QRNG PRGN 1.0000 0.9980

B-QRNG B-PRNG 0.9749 0.9986

QRGN PRGN 0.0641 0.9941

QRGN B-PRNG 0.0577 0.9992

PRGN B-PRNG 1.0000 0.9951

RNN-M B-QRNG QRGN 1.0000 0.9997

B-QRNG PRGN 0.4526 0.9995

B-QRNG B-PRNG 1.0000 0.9998

QRGN PRGN 1.0000 0.9998

QRGN B-PRNG 1.0000 0.9999

PRGN B-PRNG 0.5355 0.9996

RNN-A B-QRNG QRGN 1.0000 0.9946

B-QRNG PRGN 1.0000 0.9954

B-QRNG B-PRNG 1.0000 0.9962

QRGN PRGN 1.0000 0.9944

QRGN B-PRNG 1.0000 0.9951

PRGN B-PRNG 1.0000 0.9965

The metrics are listed for all mutual combinations of the results
from the four RNGs (B-QRNG, QRGN, PRGN, and B-PRNG from
Sect. 4.1) of all experiments (CNN, RNN-M, and RNN-A from
Sects. 4.2 and 4.3, respectively)

results. This means that the choice of RNG for the network weight initialization has no
statistically significant effect on the CNN test accuracy convergence and, in particular,
the QRNG results are not superior despite the visual appearance in Fig. 10.

At this point, the question arises whether a different bias of the RNGs might have
led to better training results. To answer this question, we consider additional pseudo-
random number generators B-PRNG(p), which are based on a Bernoulli process with
success probability p, Eq. (1), such that the originally considered B-PRNG corresponds
to B-PRNG(p(1)), Eq. (6), and the PRNG corresponds to B-PRNG(0.5). In the extreme
cases of p =0 and p = 1, B-PRNG(p) is not random anymore and produces only con-
stant values of 0 and 23 — 1, respectively. The probability mass function of the resulting
integers is given by Eq. (13). We train the CNN again on the MNIST data set with a
weight initialization based on B-PRNG(p) for different values of p € [0, 1] and consider
the test accuracy at epoch 14.

The results are shown in Fig. 11. Clearly, the mean test accuracy attains a maxi-
mum at p = 0.5, which corresponds to an unbiased pseudo-random number generator
@i. e., the PRGN). For smaller and larger success probabilities, the mean test accu-
racy decreases. In particular, we observe a steep drop in performance for p < 0.2 and
p > 0.95, which indicates that a bias of the random number generator towards O has
more severe effects than a bias towards 1. The worst performance is achieved for p =0
and p = 1, respectively.

We recall that for p = 0.5, weights are sampled uniformly around zero, Eq. (18).
Thus, for p > 0.5, the weights are more probable to be positive, whereas for p < 0.5,

@ Springer

1210 Machine Learning (2024) 113:1189-1217

100 99.2
w0l | 99.0
[
o o 988
= eof =
5} [@ 98 6 -
<] .
5 f 3
S 40f 3
= | S 984 :
20 —e— B-PRNG(p) B 082 |/ +|—* B-PRNG(p) |
q + B-PRNG ° ' + B-PRNG
| | + PRNG) + PRNG
| |
%.O 02 04 06 08 1.0 98'%.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p p
(a) full bias range p € [0, 1] (b) zoom on p € [0.2,0.95]

Fig. 11 CNN test accuracy on the MNIST data at epoch 14 using different pseudo-random number gen-
erators B-PRNG(p), which are based on a Bernoulli process with success probability p, Eq. (1). We con-
sider p € {0,.05,.1,.2,.3, 4,.5,.6,.7,.8,.9,.95, 1}. Shown are mean values over 30 runs with the respective
standard deviations (one sigma) as error bars for (a) the full bias range and (b) a zoom on the peak of the
accuracy at p = 0.5. For comparison, we also plot the corresponding results from Fig. 10 for the B-PRNG
with p = p(1), Eq. (6), as well as for the PRNG with p = 0.5

they are more probable to be negative, cf. Eq. (14). Since our CNN contains ReL.U acti-
vation functions, a shift of the weights towards negative values leads to vanishing gradi-
ents. According to our experiments, this seems to become significant for p < 0.2. On the
other hand, an equivalent shift towards positive values does not drastically decrease the
training performance and even for p = 0.95 the test accuracy is above 98.6 %. However,
for p = 1 the test accuracy also drops. We think that the reason for this behavior is that
the weights are in this case constant and attain the maximum value of the distribution,
Eq. (18). The resulting lack of diversity, which is for example evident from the entropy,
Eq. (15), is probably the cause for the bad training performance (Frankle & Carbin,
2019).

4.3 RNN

In the second experiment, we consider a recurrent LSTM cell with a uniform initializa-
tion in analogy to Eq. (18), which we apply on the synthetic adding and memory standard
benchmarks (Hochreiter & Schmidhuber, 1997) with T = 64 for the memory problem. For
this purpose, we use RMSprop (Hinton, 2012) with a step size of e-3 to optimize LSTM
cells (Hochreiter & Schmidhuber, 1997) with a state size of 256. For each problem, a total
of 9e5 updates with training batches of size 128 is computed until the training stops. In
total, there are |9¢5/128| = 7031 training steps.

@ Springer

Machine Learning (2024) 113:1189-1217 1211

0.55 0.20
—— B-QRNG — B-QRNG
0.50 - QRNG 0.18 7 QRNG
PRNG 0.16 N PRNG
0.45 - —— B-PRNG —— B-PRNG
s 0.14
0.40 0.12 1
£ 0.35 - 2 0.10-
0.30 - 0.08 7
. 0.06
0.25
0.04 X
0-20 7 0.02 |
0.15 T T T T T 0.00 T T \ T T
1 14 27 40 53 66 79 1 14 27 40 53 66 79
epoch epoch
(a) Memory problem (b) Adding problem

Fig. 12 RNN convergence on two benchmark data sets using four different RNGs (B-QRNG, QRGN,
PRGN and B-PRNG from Sect. 4.1). Shown are mean values over 31 runs with the respective standard
deviations (one sigma) in analogy to Fig. 10. The inset plot zooms in on the means of the final epochs

Since the synthetic data sets are infinitely large, overfitting is not an issue and we can
consequently use the training loss as performance metric. Specifically, we consider 89
consecutive training steps as one epoch, which leads to d = 4687/89 = 79 epochs in total,
each associated with the mean loss of the corresponding training steps.

The results are shown in Fig. 12, where we present the loss for each of the 79 epochs
over 31 independent training runs for both problems. Again, we compare the results using
random numbers from the four RNGs from Sect. 4.1. The use of a biased RNG effectively
realizes a non-uniform initialization (depending on the bias) in comparison with the uni-
form initialization from a non-biased RNG. However, we find that no RNG yields a major
difference in performance.

In analogy to the first experiment, we list the similarity and correlation metrics in
Tab. 3 in the rows marked with “RNN-M" and “RNN-A”, respectively. Again, we find a
high mutual similarity [Eq. (19) holds true] and correlation. Thus, the choice of RNG also
has no statistically significant effect in this second experiment. Due to the numerical effort
required to train the RNNs, we cannot perform an analysis of different biases of RNGs as
in the first experiment.

5 Conclusions
Summarized, by running a naively designed quantum random number generator on a

quantum gate computer, we have generated a random bit string. Its statistical analysis has
revealed a significant bias and mutual dependencies as imposed by the quantum hardware.

@ Springer

1212 Machine Learning (2024) 113:1189-1217

When converted into a sequence of integers, we have found a specially shaped distribution
of values with a rich pattern. We have utilized these integers as hardware-biased quan-
tum random numbers (B-QRNG). Motivated by the results from Bird et al. (2020), we
have deliberately chosen to use these biased and correlated random numbers to study their
impact on machine learning algorithms.

Specifically, we have studied their effect on the initialization of artificial neural network
weights in two experiments. For comparison, we have additionally considered unbiased
random numbers from another quantum random number generator (QRNG) and a classi-
cal pseudo-random number generator (PRNG) as well as random numbers from a classi-
cal pseudo-random number generator replicating the hardware bias (B-PRNG). The two
experiments consider a CNN and a RNN, respectively, and show no statistically significant
influence of the choice of RNG.

Despite a similar setup, we have not been able to replicate the observation from Bird
et al. (2020), where it is stated that quantum random number generators and pseudo-ran-
dom number generators “do inexplicably produce different results to one another when
employed in machine learning.” However, we have not explicitly attempted to replicate the
numerical experiments from the aforementioned work, but have instead considered two
different examples that we consider typical applications of neural networks in machine
learning.

Since our results are only exemplary, it may indeed be possible that there is an advan-
tage in the usage of biased quantum random numbers for certain applications. Based on our
studies, we expect, however, that in such cases it will in fact not be the “true randomness”
of the quantum random numbers, but rather the opposite — their hardware-induced bias,
including possible correlations — that will cause an effect. But is quantum hardware really
necessary to produce such results? It seems that classical pseudo-random number genera-
tors are also able to mimic these effects. Even more, because the reliability and security
of PRNGs can be ensured with less effort and a greater confidence than that of gate-based
QRNGs on NISQ devices. Therefore, we think that for typical machine learning applica-
tions the usage of (high-quality) pseudo-random numbers is sufficient. Accordingly, a more
elaborate experimental or theoretical study of the effects of biased pseudo-random num-
bers (with particular patterns) on certain machine learning applications could be a suitable
research topic, e. g., to better understand the claims from Bird et al. (2020).

Repeatability is generally difficult to achieve for numerical calculations involving ran-
dom numbers (Crane, 2018). In particular, our B-QRNG can in principle not be forced to
reproduce a specific random sequence (as opposed to PRNGs). Furthermore, the statistics
of the generated quantum random numbers may depend on the specific configuration of the
quantum hardware at the time of operation. It might therefore be possible that a repetition
of the numerical experiments with quantum random numbers obtained at a different time
or from a different quantum hardware may lead to significantly different results. To ensure
the greatest possible transparency, the source code for our experiments is publicly available
online (Wolter, 2021) and may serve as a point of origin for further studies.

Acknowledgements We thank Christian Bauckhage and Bogdan Georgiev for informative discussion. Parts
of this work have been funded by the Federal Ministry of Education and Research of Germany as part of the
competence center for machine learning ML2R (01|S18038A and 01|S18038B), the Fraunhofer Cluster of
Excellence Cognitive Internet Technologies (CCIT), the Fraunhofer Research Center Machine Learning as
well as the State of North Rhine-Westphalia (Germany) as part of the Lamarr Institute for Machine Learning
and Artificial Intelligence. We thank the University of Bonn for access to its Auersberg and Teufelskapelle
clusters and acknowledge the use of IBM Quantum services for this work. Access to the IBM hardware has
been funded by the Ministry of Science and Health of the State of Rhineland-Palatinate (Germany) as part

@ Springer

Machine Learning (2024) 113:1189-1217 1213

of the project AnQuC-2. For our numerical calculations, we have made particular use of Virtanen et al.
(2020); Seabold and Perktold (2010); Paszke et al. (2019).

Author contributions All authors contributed to the research. RH particularly contributed to conception,
writing, design and statistical analysis. MW particularly contributed to numerical experiments and Python
code. NP particularly contributed to the machine learning and statistics background. All authors read and
approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. Parts of this work have been
funded by the Federal Ministry of Education and Research of Germany as part of the competence center
for machine learning ML2R (01]|S18038A and 01|S18038B), the Fraunhofer Cluster of Excellence Cogni-
tive Internet Technologies (CCIT), the Fraunhofer Research Center Machine Learning as well as the State
of North Rhine-Westphalia (Germany) as part of the Lamarr Institute for Machine Learning and Artificial
Intelligence. All fundings are also listed in the acknowledgements.

Availability of data and material All data used for the numerical experiments is publicly accessible online
via the respective references.

Code availability The code is publicly accessible online (Wolter, 2021).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Ethical approval Not Applicable.

Consent for publication All authors consent to the publication of this manuscript.

Consent to participate Not Applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbott, A. A., Calude, C. S., & Svozil, K. (2014). A quantum random number generator certified by value
indefiniteness. Mathematical Structures in Computer Science, 24(3), €240303. https://doi.org/10.1017/
S0960129512000692

Abbott, A. A., Calude, C. S., & Svozil, K. (2015). A variant of the Kochen-Specker theorem localising value
indefiniteness. Journal of Mathematical Physics, 56(10), 102201. https://doi.org/10.1063/1.4931658

Abraham, H., & AduOffei, Agarwal R., et al. (2019) Qiskit: An open-source framework for quantum com-
puting. https://doi.org/10.5281/zenod0.2562110

ANU QRNG. (2017). AARNRnet cloudstor: pre-generated random binary numbers. https://cloudstor.aarnet.
edu.au/plus/s/91k6roa7 ACFyWL4/ANU_3May2012_100MB, Accessed on April 2021.

ANU QRNG. (2021). ANU QRNG quantum random numbers. https://qrng.anu.edu.au/, accessed on
November 2021.

Balasch, J., Bernard, F., Fischer, V. et al. (2018). Design and testing methodologies for true random number
generators towards industry certification. In 2018 IEEE 23rd European Test Symposium (ETS), pp.
1-10, https://doi.org/10.1109/ETS.2018.8400697

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0960129512000692
https://doi.org/10.1017/S0960129512000692
https://doi.org/10.1063/1.4931658
https://doi.org/10.5281/zenodo.2562110
https://cloudstor.aarnet.edu.au/plus/s/9Ik6roa7ACFyWL4/ANU_3May2012_100MB
https://cloudstor.aarnet.edu.au/plus/s/9Ik6roa7ACFyWL4/ANU_3May2012_100MB
https://qrng.anu.edu.au/
https://doi.org/10.1109/ETS.2018.8400697

1214 Machine Learning (2024) 113:1189-1217

Bell, J. S., & Aspect, A. (2004). Speakable and unspeakable in quantum mechanics: Collected papers on
quantum philosophy (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511
815676

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing machines. Journal of Statistical Physics, 22, 563-591.
https://doi.org/10.1007/BF01011339

Bera, M. N., Acin, A., Kus, M., et al. (2017). Randomness in quantum mechanics: Philosophy, physics
and technology. Reports on Progress in Physics, 80(12), 124001. https://doi.org/10.1088/1361-6633/
aa8731

Biamonte, J., Wittek, P., Pancotti, N., et al. (2017). Quantum machine learning. Nature, 549(7671), 195—
202. https://doi.org/10.1038/nature23474

Bird, J. J., Ekart, A., & Faria, D. R. (2020). On the effects of pseudorandom and quantum-random number
generators in soft computing. Soft Computing, 24(12), 9243-9256.

Boixo, S., Isakov, S. V., Smelyanskiy, V. N., et al. (2018). Characterizing quantum supremacy in near-term
devices. Nature Physics, 14(6), 595-600. https://doi.org/10.1038/s41567-018-0124-x

Brown, J., Zhang, J. F., Zhou, B., et al. (2020). Random-telegraph-noise-enabled true random num-
ber generator for hardware security. Scientific Reports, 10(1), 17210. https://doi.org/10.1038/
541598-020-74351-y

Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum computing:
Progress and challenges. Applied Physics Reviews, 6(2), 021314. https://doi.org/10.1063/1.5088164

Calude, C. S., Dinneen, M. J., Dumitrescu, M., & Svozil, K. (2010). Experimental evidence of quantum ran-
domness incomputability. Physical Review A. https://doi.org/10.1103/PhysRevA.82.022102

Crane, M. (2018). Questionable answers in question answering research: Reproducibility and variability of
published results. Transactions of the Association for Computational Linguistics, 6, 241-252. https://
doi.org/10.1162/tacl_a_00018

Dunjko, V., Taylor, J. M., & Briegel, H. J. (2016). Quantum-enhanced machine learning. Physical Review
Letters. https://doi.org/10.1103/PhysRevLett.117.130501

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. John Wiley & Sons.

Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv:1803.03635

Georgescu, I. M., Ashhab, S., & Nori, F. (2014). Quantum simulation. Reviews of Modern Physics, 86,
153-185. https://doi.org/10.1103/RevModPhys.86.153

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks.
In Y. W. Teh, M. Titterington (Eds.) Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, PMLR, Chia Laguna Resort, Sardinia, Italy, Proceedings of Machine
Learning Research, vol. 9, pp. 249-256, http://proceedings.mlr.press/v9/glorot10a.html

Grumbling, E., & Horowitz, M. (2019). Quantum computing: Progress and prospects. The National Acad-
emies Press. https://doi.org/10.17226/25196

Haw, J. Y., Assad, S. M., Lance, A. M., et al. (2015). Maximization of extractable randomness in a quantum
random-number generator. Physical Review Applied, 3, 054004. https://doi.org/10.1103/PhysRevApp
lied.3.054004

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pp. 1026-1034

Heese, R., & Freyberger, M. (2014). Pointer-based simultaneous measurements of conjugate observables in
a thermal environment. Physical Review A, 89, 052111. https://doi.org/10.1103/PhysRevA.89.052111

Heese, R., Wolter, M., & Miicke, S. et al. (2023). Hardware-biased quantum random numbers. https://doi.
org/10.5281/zenodo.8223863, Accessed on August 2023.

Hellinger, E. (1909). Neue Begriindung der Theorie quadratischer Formen von unendlichvielen Verédnderli-
chen. Journal fiir die reine und angewandte Mathematik, 1909(136), 210-271. https://doi.org/10.1515/
crll.1909.136.210

Herrero-Collantes, M., & Garcia-Escartin, J. C. (2017). Quantum random number generators. Reviews of
Modern Physics. https://doi.org/10.1103/RevModPhys.89.015004

Hinton, G. (2012). Neural networks for machine learning, lecture 6a overview of mini—batch gradient
descent. https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf, Accessed on May 2021.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Holleman, J., Bridges, S., Otis, B. P., & Diorio, C. (2008). A 3 yW CMOS true random number genera-
tor with adaptive floating-gate offset cancellation. IEEE Journal of Solid-State Circuits, 43(5), 1324—
1336. https://doi.org/10.1109/JSSC.2008.920327

@ Springer

https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1007/BF01011339
https://doi.org/10.1088/1361-6633/aa8731
https://doi.org/10.1088/1361-6633/aa8731
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41598-020-74351-y
https://doi.org/10.1038/s41598-020-74351-y
https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/PhysRevA.82.022102
https://doi.org/10.1162/tacl_a_00018
https://doi.org/10.1162/tacl_a_00018
https://doi.org/10.1103/PhysRevLett.117.130501
http://arxiv.org/abs/1803.03635
https://doi.org/10.1103/RevModPhys.86.153
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.17226/25196
https://doi.org/10.1103/PhysRevApplied.3.054004
https://doi.org/10.1103/PhysRevApplied.3.054004
https://doi.org/10.1103/PhysRevA.89.052111
https://doi.org/10.5281/zenodo.8223863
https://doi.org/10.5281/zenodo.8223863
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1103/RevModPhys.89.015004
https://www.cs.toronto.edu/%7ehinton/coursera/lecture6/lec6.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/JSSC.2008.920327

Machine Learning (2024) 113:1189-1217 1215

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6(2), 65-70.

Huang, H. L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting quantum computing: A review. arXiv:
2006.10433

Hiillermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine Learning, 110(3), 457-506. https://doi.org/10.1007/
$10994-021-05946-3

IBM. (2021). IBM Quantum. https://quantum-computing.ibm.com

Jacak, J. E., Jacak, W. A., Donderowicz, W. A., & Jacak, L. (2020). Quantum random number generators
with entanglement for public randomness testing. Scientific Reports, 10(1), 164. https://doi.org/10.
1038/s41598-019-56706-2

James, F., & Moneta, L. (2020). Review of high-quality random number generators. Computing and Software
for Big Science, 4(1), 2. https://doi.org/10.1007/s41781-019-0034-3

Khrennikov, A. (2015). Randomness: Quantum versus classical. arXiv:1512.08852

Kim, E., Lee, M., & Kim, J. J. (2017). 8Mb/s 28Mb/mJ robust true-random-number generator in 65nm CMOS
based on differential ring oscillator with feedback resistors. In 2017 IEEE International Solid-State Cir-
cuits Conference (ISSCC), pp. 144-145, https://doi.org/10.1109/ISSCC.2017.7870302

Kochen, S., & Specker, E. P. (1975). The problem of hidden variables in quantum mechanics (pp. 293-328).
Springer. https://doi.org/10.1007/978-94-010-1795-4_17

Kofler, J., & Zeilinger, A. (2010). Quantum information and randomness. European Review, 18(4), 469—480.
https://doi.org/10.1017/S1062798710000268

Kulikov, A., Jerger, M., Poto¢nik, A., et al. (2017). Realization of a quantum random generator certified with
the Kochen-Specker theorem. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.119.240501

LaRose, R. (2019). Overview and comparison of gate level quantum software platforms. Quantum, 3, 130.
https://doi.org/10.22331/q-2019-03-25-130

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791

LeCun, Y., Cortes, C., & Burges, CJC. (1998). The MNIST database of handwritten digits. http://yann.lecun.
com/exdb/mnist, Accessed on May 2021.

Leone, N., Rusca, D., Azzini, S., et al. (2020). An optical chip for self-testing quantum random number genera-
tion. APL Photonics, 5(10), 101301. https://doi.org/10.1063/5.0022526

Leymann, F., & Barzen, J. (2020). The bitter truth about gate-based quantum algorithms in the NISQ era. Quan-
tum Science and Technology, 5(4), 044007. https://doi.org/10.1088/2058-9565/abae7d

Li, C., Zhang, J., Sang, L., et al. (2020). Deep learning-based security verification for a random number genera-
tor using white chaos. Entropy, 22(10), 1134.

Martinez, A. C., Solis, A., Diaz Herndndez Rojas, R., et al. (2018). Advanced statistical testing of quantum ran-
dom number generators. Entropy. https://doi.org/10.3390/e20110886

Mathew, S., Johnston, D., & Newman, P. et al. (2015). uRNG: A 300-950mV 323Gbps/W all-digital full-
entropy true random number generator in 14nm FinFET CMOS. In ESSCIRC Conference 2015 - 41st
European Solid-State Circuits Conference (ESSCIRC), pp. 116-119, https://doi.org/10.1109/ESSCIRC.
2015.7313842

Nachman, B., & Geller, M. R. (2021). Categorizing readout error correlations on near term quantum computers.
arXiv:2104.04607

Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information: 10th anniversary edi-
tion (10th ed.). Cambridge University Press.

NIST. (2010). Statistical Test Suite. https://csrc.nist.gov/projects/random-bit-generation/documentation-and-
software, Accessed on May 2021.

Norsen, T. (2017). Foundations of quantum mechanics. Springer.

Park, K., Park, S., Choi, B. G., et al. (2020). A lightweight true random number generator using beta radiation
for IoT applications. ETRI Journal, 42(6), 951-964. https://doi.org/10.4218/etrij.2020-0119

Pasqualini, L., Parton, M. (2020). Pseudo random number generation: a reinforcement learning approach. Pro-
cedia Computer Science 170:1122-1127, https://doi.org/10.1016/j.procs.2020.03.057, https://www.scien
cedirect.com/science/article/pii/S1877050920304944, the 11th International Conference on Ambient Sys-
tems, Networks and Technologies (ANT)/The 3rd International Conference on Emerging Data and Indus-
try 4.0 (EDI40)/Affiliated Workshops.

Paszke, A., Gross, S., & Massa, F. et al. (2019). PyTorch: An imperative style, high-performance deep learning
library. In: H. Wallach, H. Larochelle, A. Beygelzimer et al. (Eds.) Advances in Neural Information Pro-
cessing Systems 32, (pp. 8024-8035) Curran Associates, Inc.

Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal
Society of London, 58, 240-242.

@ Springer

http://arxiv.org/abs/2006.10433
http://arxiv.org/abs/2006.10433
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://quantum-computing.ibm.com
https://doi.org/10.1038/s41598-019-56706-2
https://doi.org/10.1038/s41598-019-56706-2
https://doi.org/10.1007/s41781-019-0034-3
http://arxiv.org/abs/1512.08852
https://doi.org/10.1109/ISSCC.2017.7870302
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1017/S1062798710000268
https://doi.org/10.1103/PhysRevLett.119.240501
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1063/5.0022526
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.3390/e20110886
https://doi.org/10.1109/ESSCIRC.2015.7313842
https://doi.org/10.1109/ESSCIRC.2015.7313842
http://arxiv.org/abs/2104.04607
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://doi.org/10.4218/etrij.2020-0119
https://doi.org/10.1016/j.procs.2020.03.057
https://www.sciencedirect.com/science/article/pii/S1877050920304944
https://www.sciencedirect.com/science/article/pii/S1877050920304944

1216 Machine Learning (2024) 113:1189-1217

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a corre-
lated system of variables is such that it can be reasonably supposed to have arisen from random sampling.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175.
https://doi.org/10.1080/14786440009463897

Petrov, M., Radchenko, 1., & Steiger, D. et al. (2020). Independent security analysis of a commercial quantum
random number generator. arXiv:2004.04996

Picard, D. (2021). Torch.manual_seed(3407) is all you need: On the influence of random seeds in deep learning
architectures for computer vision. arXiv:2109.08203

Pirandola, S., Andersen, U. L., Banchi, L., et al. (2020). Advances in quantum cryptography. Advances in Optics
and Photonics, 12(4), 1012. https://doi.org/10.1364/a0p.361502

Pironio, S., Acin, A., Massar, S., et al. (2010). Random numbers certified by Bell’s theorem. Nature, 464(7291),
1021-1024. https://doi.org/10.1038/nature09008

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.
22331/9-2018-08-06-79

Puglisi, F. M., Zagni, N., Larcher, L., & Pavan, P. (2018). Random telegraph noise in resistive random access
memories: Compact modeling and advanced circuit design. /EEE Transactions on Electron Devices,
65(7), 2964-2972. https://doi.org/10.1109/TED.2018.2833208

Rajashekharan, L., & Shunmuga Velayutham, C. (2016). Is differential evolution sensitive to pseudo random
number generator quality?—An investigation. In S. Berretti, S. M. Thampi, & P. R. Srivastava (Eds.),
Intelligent systems technologies and applications (pp. 305-313). Springer International Publishing.

Roffe, J. (2019). Quantum error correction: An introductory guide. Contemporary Physics, 60(3), 226-245.
https://doi.org/10.1080/00107514.2019.1667078

Rukhin, A., Soto, J., & Nechvatal, J. et al. (2010). A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Tech. Rep. Natl. Inst. Stand. Technol. Spec. Publ. 800-22revla,
National Institute of Standards and Technology.

Seabold, S., Perktold, J. (2010). statsmodels: econometric and statistical modeling with Python. In 9th Python
in Science Conference.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3),
379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shikano, Y., Tamura, K., & Raymond, R. (2020). Detecting temporal correlation via quantum random number
generation. Electronic Proceedings in Theoretical Computer Science, 315, 18-25. https://doi.org/10.4204/
EPTCS.315.2

Symul, T., Assada, S. M., & Lamb, P. K. (2011). Real time demonstration of high bitrate quantum random num-
ber generation with coherent laser light. Applied Physics Letters, 98, 231103. https://doi.org/10.1063/1.
3597793

Sys, M., Riha, Z., Matyas, V., et al. (2015). On the interpretation of results from the NIST Statistical Test Suite.
Romanian Journal of Information Science and Technology, 18(1), 18-32.

Tamura, K., Shikano, Y. (2020). Quantum random number generation with the superconducting quantum com-
puter IBM 20Q Tokyo. Cryptology ePrint Archive, Report 2020/078, https://ia.ct/2020/078

Tamura, K., Shikano, Y., et al. (2021). Quantum random numbers generated by a cloud superconducting quan-
tum computer. In T. Takagi, M. Wakayama, & K. Tanaka (Eds.), International symposium on mathemat-
ics, quantum theory, and cryptography (pp. 17-37). Springer Singapore.

Tokunaga, C., Blaauw, D., & Mudge, T. (2008). True random number generator with a metastability-based
quality control. IEEE Journal of Solid-State Circuits, 43(1), 78-85. https://doi.org/10.1109/JSSC.2007.
910965

Vacchini, B. (2016). Quantum noise from reduced dynamics. Fluctuation and Noise Letters, 15(03), 1640003.
https://doi.org/10.1142/s0219477516400034

Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python. Nature Methods, 17, 261-272. https://doi.org/10.1038/s41592-019-0686-2

Wald, A., & Wolfowitz, J. (1940). On a test whether two samples are from the same population. The Annals of
Mathematical Statistics, 11(2), 147-162. https://doi.org/10.1214/aoms/1177731909

Welch, B. L. (1947). The generalization of ‘student’s’ problem when several different population variances are
involved. Biometrika, 34(1-2), 28-35. https://doi.org/10.1093/biomet/34.1-2.28

Wolter, M. (2021). Python implementation of the experiments from this manuscript. https://github.com/Castle-
Machine-Learning/quantum-init-experiments

Wu, Y., Bao, W. S., Cao, S., et al. (2021). Strong quantum computational advantage using a superconduct-
ing quantum processor. Physical Review Letters, 127, 180501. https://doi.org/10.1103/PhysRevLett.127.
180501

Yu, F, Li, L., Tang, Q., et al. (2019). A survey on true random number generators based on chaos. Discrete
Dynamics in Nature and Society, 2019, 2545123. https://doi.org/10.1155/2019/2545123

@ Springer

https://doi.org/10.1080/14786440009463897
http://arxiv.org/abs/2004.04996
http://arxiv.org/abs/2109.08203
https://doi.org/10.1364/aop.361502
https://doi.org/10.1038/nature09008
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1109/TED.2018.2833208
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.4204/EPTCS.315.2
https://doi.org/10.4204/EPTCS.315.2
https://doi.org/10.1063/1.3597793
https://doi.org/10.1063/1.3597793
https://ia.cr/2020/078
https://doi.org/10.1109/JSSC.2007.910965
https://doi.org/10.1109/JSSC.2007.910965
https://doi.org/10.1142/s0219477516400034
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1214/aoms/1177731909
https://doi.org/10.1093/biomet/34.1-2.28
https://github.com/Castle-Machine-Learning/quantum-init-experiments
https://github.com/Castle-Machine-Learning/quantum-init-experiments
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1155/2019/2545123

Machine Learning (2024) 113:1189-1217 1217

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv:1212.5701

Zurek, W. H. (2007). Decoherence and the transition from quantum to classical — revisited. In B. Duplantier,
J. M. Raimond, & V. Rivasseau (Eds.) Quantum Decoherence: Poincaré Seminar 2005, Birkhduser Basel,
Basel, pp. 1-31, https://doi.org/10.1007/978-3-7643-7808-0_1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/1212.5701
https://doi.org/10.1007/978-3-7643-7808-0_1

	On the effects of biased quantum random numbers on the initialization of artificial neural networks
	Abstract
	1 Introduction
	2 Background
	2.1 Quantum computing
	2.1.1 Quantum devices
	2.1.2 Quantum machine learning

	2.2 Random number generation
	2.2.1 Classical RNGs
	2.2.2 Quantum RNGs

	3 Biased QRNG
	3.1 Setup
	3.2 Statistics
	3.2.1 Bias
	3.2.2 Randomness
	3.2.3 Integers

	4 Experiments
	4.1 RNGs
	4.2 CNN
	4.3 RNN

	5 Conclusions
	Acknowledgements
	References

