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Abstract
Recent advances in practical quantum computing have led to a variety of cloud-based 
quantum computing platforms that allow researchers to evaluate their algorithms on noisy 
intermediate-scale quantum devices. A common property of quantum computers is that 
they can exhibit instances of true randomness as opposed to pseudo-randomness obtained 
from classical systems. Investigating the effects of such true quantum randomness in the 
context of machine learning is appealing, and recent results vaguely suggest that benefits 
can indeed be achieved from the use of quantum random numbers. To shed some more 
light on this topic, we empirically study the effects of hardware-biased quantum random 
numbers on the initialization of artificial neural network weights in numerical experiments. 
We find no statistically significant difference in comparison with unbiased quantum ran-
dom numbers as well as biased and unbiased random numbers from a classical pseudo-
random number generator. The quantum random numbers for our experiments are obtained 
from real quantum hardware.
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1  Introduction

The intrinsic non-deterministic nature of quantum mechanics (Kofler & Zeilinger, 2010) 
makes random number generation a native application of quantum computers. It has been 
exemplarily studied in Bird et  al. (2020) how such quantum random numbers can affect 
stochastic machine learning algorithms. For this purpose, electron-based superposition 
states have been prepared and measured on quantum hardware to create random 32-bit 
integers. These numbers have subsequently been used to initialize the weights in neural 
network models and to determine random splits in decision trees and random forests. Bird 
et  al. have observed that quantum random numbers can lead to superior results for cer-
tain numerical experiments in comparison with classically.1 generated pseudo-random 
numbers.

However, the authors have not further explained this behavior. In particular, they have 
not discussed the statistical properties of the generated quantum numbers. Due to tech-
nical imperfections and physical phenomena like decoherence and dissipation, measure-
ment results from a quantum computer might in fact significantly deviate from idealized 
theoretical predictions (Tamura & Shikano, 2020; Shikano et al., 2020; Tamura & Shikano, 
2021). This raises the question of whether it is not the superiority of the quantum random 
number generator to sample perfectly random from the uniform distribution that leads to 
the observed effect, but instead its ability to sample bit strings from a very particular distri-
bution that is imposed by the quantum hardware.

We therefore revisit this topic in the present manuscript and generate biased random 
numbers using real quantum hardware, where the specifics of the bias are determined by 
the natural imperfections of the hardware itself. The bias is therefore not under our control 
and even beyond our full understanding. With this approach, we aim to better comprehend 
the effects observed by Bird et al. for an analogous setup and explore the resulting implica-
tions. Summarized, our main goal is to further study the results of that work and to analyze 
the effects of quantum and classical random numbers with and without biases on neural 
network initialization. Our analysis is mainly based on numerical experiments and statisti-
cal tests.

The structure of the remaining paper is as follows. In Sect. 2, we briefly summarize the 
background of the main ingredients of our work, namely quantum computing and random 
number generation. Subsequently, we present the setup of our quantum random number 
generator and discuss the statistics of its results in Sect. 3. In Sect. 4, we study the effects 
of the generated quantum random numbers on artificial neural network weight initialization 
using numerical experiments. Finally, we close with a conclusion.

2 � Background

In the following, we provide a brief introduction to quantum computing and random num-
ber generation without claiming to be exhaustive. For more in-depth explanations, we refer 
to the cited literature.

1  We use the term “classical” in the sense of the physics community to distinguish deterministically behav-
ing entities from the realm of classical physics from those governed by the non-deterministic rules of quan-
tum physics (Norsen, 2017).
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2.1 � Quantum computing

Quantum mechanics is a physical theory that describes objects at the scale of atoms and 
subatomic particles, e. g., electrons and photons (Norsen, 2017). An important interdisci-
plinary subfield is quantum information science, which considers the interplay of informa-
tion science with quantum effects and includes the research direction of quantum comput-
ing (Nielsen & Chuang, 2011).

2.1.1 � Quantum devices

A quantum computer is a processor which utilizes quantum mechanical phenomena to pro-
cess information (Benioff, 1980; Grumbling & Horowitz, 2019). Theoretical studies show 
that quantum computers are able to solve certain computational problems significantly 
faster than classical computers, for example, in the fields of cryptography (Pirandola et al., 
2020) and quantum simulations (Georgescu et al., 2014). Recently, different hardware solu-
tions for quantum computers have been realized and are steadily improved. For example, 
superconducting devices (Huang et al., 2020) and ion traps (Bruzewicz et al., 2019) have 
been successfully used to perform quantum computations. However, various technical 
challenges are still unresolved so that the current state of technology, which is subject to 
substantial limitations, is also phrased as noisy intermediate-scale quantum (NISQ) com-
puting (Preskill, 2018). Nevertheless, quantum supremacy on NISQ devices has already 
been verified experimentally for a specialized task of randomized sampling (Boixo et al., 
2018; Wu et al., 2021).

There are different theoretical models to describe quantum computers, typically used for 
specific hardware or in different contexts. We only consider the quantum circuit model, in 
which a computation is considered as a sequence of quantum gates and the quantum com-
puter can consequently be seen as a quantum circuit (Nielsen & Chuang, 2011). In contrast 
to a classical computer, which operates on electronic bits with a well-defined binary state 
of either 0 or 1, a quantum circuit works with qubits. A qubit is described by a quantum 
mechanical state, which can represent a binary 0 or 1 in analogy to a classical bit. In addi-
tion, however, it can also represent any superposition of these two values. Such a quantum 
superposition is a fundamental principle of quantum mechanics and cannot be explained 
with classical physical models. Moreover, two or more qubits can be entangled with each 
other. Entanglement is also a fundamental principle of quantum mechanics and leads to 
non-classical correlations (Bell & Aspect, 2004).

In order to illustrate the aforementioned fundamental quantum principles and to con-
nect them with well-known notions from the field of machine learning, one can consider 
the following intuitive (but physically inaccurate) simplifications: Superposition states can 
be understood as probability distributions over a finite state space, while entanglement 
amounts to high-order dependencies between univariate random variables. This intuition 
particularly emphasizes the close relationship between quantum mechanics and probability 
theory.

Any quantum computation can be considered as a three-step process, which is 
sketched in Fig.  1. First, an initial quantum state of the qubits is prepared, usually a 
low-energy ground state. Second, a sequence of quantum gates deterministically trans-
forms the initial state into a final quantum state. Third, a measurement is performed 
on the qubits to determine an outcome. When a qubit is measured, the result of the 



1192	 Machine Learning (2024) 113:1189–1217

1 3

measurement is always either 0 or 1, but the observation is non-deterministic with a 
probability depending on the quantum state of the qubit at the time of the measurement.

In this sense, a quantum computation includes an intrinsic element of randomness. 
This randomness is in particular not a consequence of lack of knowledge about the 
quantum system, but an integral part of quantum mechanics itself. In constrast to classi-
cal mechanics, where complete knowledge about the intitial state of a system allows to 
infer all later (and earlier) states, complete knowledge about a quantum mechanical state 
does not generally allow the prediction of a single measurement outcome, but only its 
probability as determined by Born’s rule (Norsen, 2017). The non-deterministic nature 
of quantum mechanics relies on the assumption that there are no so-called hidden vari-
ables whose knowledge would lead to a deterministic behavior (Norsen, 2017). Vari-
ous theoretic and experimental evidences, for example based on Bell’s theorem (Bell & 
Aspect, 2004) or the Kochen-Specker theorem (Kochen & Specker, 1975), strongly sug-
gest that there are no such hidden variables. However, a conclusive answer to the ques-
tion of quantum non-determinism is still in scientific discourse. For a more detailed dis-
cussion about this topic, we refer to Bera et al. (2017) and references therein. Since our 
work concerns the practical application of random numbers in machine learning algo-
rithms and a theoretical provability of their randomness from first principles is beyond 
the scope of this paper, we presume in the following that quantum mechanics is indeed 
intrinsically non-deterministic for all purposes considered.

Fig. 1   Sketch of the three-step quantum computation process consisting of an initial state preparation, a 
sequence of gate operations and a final measurement, which yields the result of the computation. Also 
shown are the errors associated with each step in the computation process: the state preparation errors, the 
gate errors, and the measurement errors, respectively. They are all hardware-related errors, which can in 
principle be reduced (or even eliminated) by technological advances. These errors can cause a hardware-
related uncertainty (statistical and systematic) of the computation result. On the other hand, the intrinsic 
randomness of quantum mechanics emerging at the time of the measurement causes an intrinsic uncertainty 
of the computation result, which is an integral part of quantum computing and can be exploited to construct 
QRNGs
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NISQ devices, as their name suggests, are typically only capable of computing noisy 
results. A fundamental reason is that the quantum computer, despite all technical efforts, 
is not perfectly isolated and interacts (weakly) with its environment. In particular, there are 
two major effects of the environment that can contribute to computational errors, namely 
dissipation and decoherence in the sense of dephasing (Zurek, 2007; Vacchini, 2016). Dis-
sipation describes the decay of qubit states of higher energy due to an energy exchange 
with the environment. Decoherence, on the other hand, represents a loss of quantum super-
positions as a consequence of environmental interactions. Typically, decoherence is more 
dominating than dissipation. Beyond these typical effects, other (possibly unknown) influ-
ences can occur, which can lead to additional uncertainties.

To compensate the resulting computational errors to a certain extend, error correc-
tion can be used (Roffe, 2019). However, it is generally not possible to completely 
eliminate statistical (also called aleatoric) or systematic (also called epistemic) uncer-
tainties, which might originate from quantum and classical effects, respectively. There-
fore, quantum algorithms must be designed sufficiently robust for practical applica-
tions on NISQ hardware.

In Fig.  1, we briefly outline different error sources in the quantum computation 
process. Specifically, each computation step is affected by certain hardware-related 
errors, which are referred to as state preparation errors, gate errors, and measurement 
errors, respectively (Nachman & Geller, 2021). All of them are a consequence of the 
imperfect physical hardware and they are non-negligible for NISQ devices (Leymann 
& Barzen, 2020). The resulting hardware-related uncertainty might be both statistical 
and systematic. In addition, the final measurement step is also affected by the intrinsic 
randomness of quantum mechanics. The measurement ultimately yields a computation 
result that contains two layers of uncertainty (Heese & Freyberger, 2014): First, the 
uncertainty caused by the hardware-related errors, and second, the uncertainty caused 
by the intrinsic randomness. While technological advances (like better hardware and 
improved algorithm design) can in principle reduce (or even eliminate) hardware-
related errors and thus the hardware-related uncertainty, the intrinsic uncertainty is 
an integral part of quantum computing. It is this intrinsic uncertainty which can be 
exploited to construct QRNGs.

2.1.2 � Quantum machine learning

In a machine learning context, we may identify a quantum circuit with a parameteriza-
ble probability distribution over all possible measurement outcomes, where each meas-
urement of the circuit draws a sample from this distribution. The interface between 
quantum mechanics and machine learning can be attributed to the field of quantum 
machine learning (Biamonte et al., 2017). A typical use case is the processing of clas-
sical data using algorithms that are fully or partially computed with quantum circuits, 
which is also called quantum-enhanced machine learning (Dunjko et al., 2016).

The noisy nature of NISQ devices presents a challenge for machine learning appli-
cations. On the other hand, the probabilistic nature of quantum computing can be 
related to the statistical background of machine learning algorithms, for which the 
understanding and modeling of uncertainty is crucial. A review about different types 
of uncertainty in machine learning and how to typically deal with them can for exam-
ple be found in Hüllermeier and Waegeman (2021).
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2.2 � Random number generation

For many machine learning methods, random numbers are a crucial ingredient and there-
fore random number generators (RNGs) are an important tool. Examples include sampling 
from generative models like generative adversarial networks, variational autoencoders or 
Markov random fields, parameter estimation via stochastic optimization methods, as well 
as randomized regularization and validation techniques, randomly splitting for cross-val-
idation, drawing of random mini-batches, and computing a stochstic gradient, to name a 
few. Randomness also plays an important role in non-deterministic optimization algorithms 
or the initialization of (trainable) neural network parameters (Glorot & Bengio, 2010; He 
et al., 2015).

At its core, a RNG performs random coin tosses in the sense that it samples from a 
uniform distribution over a binary state space (or, more generally, a discrete state space 
of arbitrary size). Given a sequence of randomly generated bits, corresponding integer or 
floating-point values can be constructed straightforwardly.

2.2.1 � Classical RNGs

In the classical world, there are two main types of random number generators. Pseudo-
random number generators (PRNGs) represent a class of algorithms to generate a sequence 
of apparently random (but in fact deterministic) numbers from a given seed (James & Mon-
eta, 2020). In other words, the seed fully determines the order of the bits in the generated 
sequence, but the statistical properties of the sequence (e. g., mean and variance) are inde-
pendent of the seed (as determined by the underlying algorithm). We remark that PRNGs 
can also be constructed based on machine learning algorithms (Pasqualini & Parton, 2020).

The more advanced true random number generators (TRNGs) are hardware devices that 
receive a signal from a complex physical process, which is unpredictable for all practi-
cal purposes, to extract random numbers (Yu et al., 2019). A multitude of physical effects 
can be used as sources of entropy for TRNGs, with only some of them directly linked to 
quantum phenomena. For example, metastability in latches can be exploited in specialized 
electrical circuits (CMOS devices) to yield random bits (Tokunaga et al., 2008; Holleman 
et al., 2008). Usually, such setups are built to calibrate themselves to account for hardware-
inherent bias effects. Multiple of these self-calibrating entropy sources can be combined to 
further increase the cryptographic quality (Mathew et al., 2015). Other approaches make 
use of ring oscillators to source randomness from timing jitter (Kim et al., 2017), or exploit 
random telegraph noise to produce bit streams (Puglisi et al., 2018; Brown et al., 2020).

For TRNGs, the lack of knowledge about the observed physical system induces random-
ness, but it cannot be guaranteed in principle that the dynamics of the underlying physical 
system are unpredictable (if quantum effects are not sufficiently involved). Likewise, the 
statistical properties of the generated random sequence are not in principle guaranteed to 
be constant over time since they are subject to the hidden process.

Independent of their source, random numbers have to fulfill two properties: First, they 
have to be truly random (i. e., the next random bit in the sequence must not be predictable 
from the previous bits) and second, they have to be unbiased (i.  e., the statistics of the 
random bit sequence must correspond to the statistics of the underlying uniform distribu-
tion). In other words, they have to be secure and reliable. A “good” RNG has to produce 
numbers that fulfill both requirements. In practice, it is difficult to rigorously proof the 
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quality of RNGs. For a bit sequence of finite length, there is no formal method to decide 
its randomness with certainty. On the other hand, an infinite bit sequence cannot be tested 
in finite time (Khrennikov, 2015). Therefore, statistical test are typically used to check spe-
cific properties of RNGs with a certain confidence.

Typically, statistical tests are organized in the form of test suites (e. g., the NIST Sta-
tistical Test Suite described in Rukhin et al., 2010) to provide a comprehensive statistical 
screening. A predictive analysis based on machine learning methods can also be used for 
a quality assessment (Li et al., 2020). It remains a challenge to certify classical RNGs in 
terms of the aforementioned criteria (Balasch et al., 2018) to, e. g., ensure cryptographical 
security.

When implementing learning and related algorithms, PRNGs are typically used. Despite 
the broad application of randomness in machine learning, the apparent lack of research 
regarding the particular choice of RNGs suggests that it is usually not crucial in practice. 
This assumption has been experimentally verified, e. g., in Rajashekharan and Shunmuga 
Velayutham (2016) for differential evolution and is most certainly due to the fact that mod-
ern PRNGs seem to be sufficiently secure and reliable for most practical purposes. The 
influence of different seeds for a PRNG on various deep learning algorithms for computer 
vision has been studied empirically in Picard (2021) with the result that it is often possible 
to find seeds that lead to a much better or much worse performance than the average. This 
highlights the fact that numerical experiments with non-deterministic algorithms have to 
be conducted carefully to account for the variance of random numbers. However, the spe-
cific implications of varying degrees of security and reliability of RNGs on machine learn-
ing applications generally remain unresolved, i. e., it generally remains unclear whether a 
certain machine learning algorithm may suffer or benefit from the artifacts of an imperfect 
RNG. In the present work, we approach this still rather open field of research by specifi-
cally considering the randomness in artificial neural network initialization.

2.2.2 � Quantum RNGs

As previously stated, quantum computers (or, more generally, quantum systems) have an 
intrinsic ability to produce truly random outcomes in a way that cannot be predicted or 
emulated by any classical device (Calude et al., 2010). Therefore, it seems natural to uti-
lize them as a source of random numbers in the sense of a quantum random number gen-
erator (QRNG). Such QRNGs (Herrero-Collantes & Garcia-Escartin, 2017) have already 
been realized with different quantum systems, for example using nuclear decay (Park et al., 
2020) or optical devices (Leone et al., 2020).

Summarized, the main difference between randomness from classical systems and ran-
domness from quantum systems is that a classical system is fully deterministic and there-
fore all randomness can only result from a lack of knowledge about the system, whereas 
a quantum system is non-deterministic and therefore – even with perfect knowledge – an 
intrinsic randomness may be involved. In this sense, the origin of randomness is different 
for quantum and classical RNGs. However, it is in principle not possible to mathematically 
distinguish the randomness of a classical system from the randomness of a quantum system 
(Khrennikov, 2015).

A simple QRNG can be straightforwardly realized using a quantum circuit. For this pur-
pose, each of its qubits has to be brought into a superposition of 0 and 1 such that both 
outcomes are equally probable to be measured. This operation can for example be per-
formed by applying a single Hadamard gate on each qubit (Nielsen & Chuang, 2011). Each 
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measurement of the circuit consequently generates a sequence of i.i.d. random bits, one for 
each qubit.

However, when computing this simple QRNG circuit on a NISQ device, it can be 
expected that the results will deviate from the theoretic expectations due to statistical and 
systematic uncertainties such that the QRNG is likely to produce biased outcomes. This 
means that it is in fact not guaranteed that the measurement outcomes obey the theoreti-
cally predicted probability distribution of a fair coin toss. It is not even guaranteed that the 
measurement outcomes are truly random in the sense that bits are generated entirely inde-
pendent. As a consequence (and based on the fact that quantum non-determinism is not 
ultimately resolved), it cannot be generally taken for granted that random numbers from 
such a QRNG are naturally “better” than random numbers from PRNGs, both with respect 
to security and reliability. For this reason, technically more refined solutions are necessary 
to realize trustworthy QRNGs on NISQ decices. Moreover, QRNGs have to be certified 
similar to classical RNGs. For example, to enable a theoretically secure QRNG, the Bell 
inequality (Pironio et  al., 2010) or the Kochen-Specker theorem can be utilized (Abbott 
et  al., 2014, 2015; Kulikov et  al., 2017). For an experimental verification of random bit 
sequences from a QRNG, entanglement-based public tests of randomness can be used 
without violating the secrecy of the generated sequences (Jacak et al., 2020).

Currently, there exist various commercial and non-commercial QRNGs, which can be 
used to create quantum random numbers on demand, for example ANU (2021). Although 
there still seem to be some practical challenges (Martínez et al., 2018; Petrov et al., 2020), 
theoretical and technological advances in the field will most certainly lead to a steady 
improvement of QRNGs.

3 � Biased QRNG

Motivated by the work in Bird et  al. (2020), we take a different approach than usual in 
this manuscript. Instead of aiming for a RNG with as little bias as possible, we discuss 
whether the typical bias in a naively implemented, gate-based QRNG can actually be ben-
eficial for certain machine learning applications. In other words, we consider the bias that 
is “naturally” imposed by the quantum hardware itself (i. e., by the hardware-related errors 
outlined in Fig. 1). In addition to a bias, we also accept that the randomness of the results is 
not necessarily guaranteed in the sense that the QRNG can (to some degree) produce corre-
lations or predictable patterns from systematic quantum hardware errors. Since the imper-
fections of the quantum hardware are beyond our control (i. e., they can in particular not 
be switched off at will), a RNG realized in this way contains unknown and uncontrollable 
elements. Therefore, we have to analyze its outcomes statistically to capture the effects of 
these elements on the generated random numbers. In the present section, we first describe 
our experimental setup for such a naively implemented QRNG and subsequently discuss 
the statistics of the resulting “hardware-biased” quantum random numbers.

3.1 � Setup

To realize a hardware-biased QRNG (B-QRNG), we utilize a physical quantum computer, 
which we access remotely via Qiskit (Abraham et al., 2019) using the cloud-based quantum 
computing service provided by IBM Quantum (IBM, 2021). With this service, users can 
send online requests for quantum experiments using a high-level quantum circuit model of 
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computation, which are then executed sequentially (LaRose, 2019). The respective quan-
tum hardware, also called backend, operates on superconducting transmon qubits.

For our application, we specifically use the ibmq_manhattan backend (version 1.11.1), 
which is one of the IBM quantum Hummingbird r2 processors with N ≡ 65 qubits. A 
sketch of the backend topology diagram can be found in Fig. 2a. It indicates the hardware 
index of each qubit and the pairs of qubits that support two-qubit gate operations between 
them. IBM also provides an estimate for the relaxation time T1 and the dephasing time T2 
for each qubit at the time of operation. The mean and standard deviation of these times 
over all qubits read T1 ≈ 59.11 + −15.25 μs and T2 ≈ 74.71 + −31.22 μs , respectively.

Initially, all qubits in this backend are prepared in the ground state. Our B-QRNG cicuit, 
which is sketched in Fig. 2b, consists of one Hadamard gate applied to each qubit such that 
it is brought into a balanced superposition of ground state and excited state. A subsequent 
measurement on each qubit should therefore ideally (i. e., in the error-free case) reveal an 
outcome of either 0 (corresponding to the ground state) or 1 (corresponding to the excited 
state) with equal probability. However, since we run the circuit on real quantum hardware, 
we can expect to obtain random numbers which deviate from these idealized outcomes due 
to hardware-related errors. An analogous setup with a different backend is considered in 
Tamura and Shikano (2020); Shikano et al. (2020); Tamura and Shikano (2021).

We sort the qubit measurements according to their respective hardware index in an 
ascending order so that each run of the backend yields a well-defined bit string of length 
N. Such a single run is called a shot in Qiskit. We perform sequences of S ≡ 8192 shots 
(which is the upper limit according to the backend access restrictions imposed by IBM) 
for which we concatenate the resulting bit strings in the order in which they are executed. 
Such a sequence of shots is called experiment in Qiskit. We repeat this experiment R ≡ 564 
times (900 experiments is the upper limit set by IBM) and again concatenate the result-
ing bit strings in the order of execution. A sequence of experiments is denoted as a job in 
Qiskit and can be submitted directly to the backend. It is run in one pass without interrup-
tion from other jobs.

Fig. 2   Main components of our B-QRNG setup: a topology diagram of the backend and b circuit diagram
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Our submitted job ran from March  5, 2021 10:45  AM  GMT to March  5, 2021 
11:58 AM GMT. The final result of the job is a bit string of length M ≡ NSR = 300318720 
as sketched in Fig. 3. The choice of R is determined by the condition M ⪆ 3e8 , which we 
have estimated as sufficient for our numerical experiments. We split the bit string into 
chunks of length C ≡ 32 to obtain L ≡ M∕C = 9384960 random 32-bit integers, which we 
use for the following machine learning experiments.

3.2 � Statistics

Before we utilize our generated random numbers for learning algorithms, we first briefly 
discuss their statistics. The measurement results from the nth qubit can be considered as a 
Bernoulli random variable (Forbes et al., 2011), where n ∈ {0,… , 64} represents the hard-
ware index as outlined in Fig. 2. Such a variable has a probability mass function

depending on the value of the bit b ∈ � and the success probability p ∈ [0, 1] of observing 
an outcome b = 1.

3.2.1 � Bias

We denote the measured bit string from our B-QRNG as a vector B ∈ �M . The extracted 
bit string exclusively resulting from measurements of the nth qubit is given by the vector

with bn ∈ �M∕N . Based on its population, the corresponding expected probability pn(0) of 
obtaining the bit b for the nth qubit is given by

with the indicator function

(1)f (b;p) ≡ pb(1 − p)1−b

(2)bn ≡
(
Bn+1,Bn+1+N ,… ,Bn+1+M−N

)

(3)pn(b) =
N
∑M∕N

i=1
1n(i, b)

M

(4)1n(i, b) ≡

{
1 if Bn+(i−1)N+1 = b

0 otherwise

Fig. 3   Bit string composition from our B-QRNG. A single job is submitted to the backend, it consists of 
564 experiments. In each experiment, 8192 shots are performed. In each shot, each of the 65 qubits yields a 
single bit. The resulting bit string consequently contains 300318720 bits
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such that pn(0) + pn(1) = 1 . From an idealized prediction of the measurement results 
of qubits in a balanced superposition, we would assume that all expected probabilities 
p0(b),… , pN(b) correspond to the uniform probability

with uncertainties coming only from the finite number of samples.
We show the estimated probabilities in Fig. 4. It is apparent that all bit probabilities deviate 

significantly from their idealized value p̃ , Eq. (5). In particular, we find an expected probabil-
ity and standard deviation with respect to all measured bits of

We assume that this is a consequence of the imperfect hardware with its decoherence and 
dissipation effects. In particular, the fact that p̄(0) > p̄(1) is most likely a consequence of 
dissipation since a bit of 0 corresponds to an observation of a qubit ground state, whereas a 
bit of 1 is associated with an excited state.

From a �2 test (Pearson, 1900) on the measured bit distribution, the null hypothesis of a 
uniform zero bit occurrence can be rejected as expected with a confidence level of 1.0000. To 
further quantify the deviation of the measured probabilities from a uniform distribution, we 
utilize the discrete Hellinger distance (Hellinger, 1909)

(5)p̃ ≡ p̃(b) ≡
1

2

(6)p̄(0) ≈ 0.5112 ± 0.0215.

(7)H(q1, q2) ≡
1√
2

��
i∈Q

�√
q1(i) −

√
q2(i)

�2

,

Fig. 4   Measured bit distribution for each qubit from the B-QRNG on ibmq_manhattan. We show the 
expected probability pn(0) of obtaining a zero bit from the measured bit string for the nth qubit, Eq. (3), and 
(stacked on top) its complement pn(1) = 1 − pn(0) . Also shown are the corresponding expected probabili-
ties with respect to all measured bits p̄(0) ≈ 0.51 and p̄(1) = 1 − p̄(0) ≈ 0.49 , respectively, Eq. (6). Appar-
ently, all bit distributions deviate differently from the uniform probability p̃ , Eq. (5), which we assume to be 
a consequence of the imperfect hardware. The distributions with the highest ( n = 50 ) and lowest ( n = 19 ) 
expected probabilities of obtaining a zero bit are marked on top
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which can be used to measure similarities between two discrete probability distributions 
q1 ≡ q1(i) and q2 ≡ q2(i) defined on the same probability space Q. By iterating over all 
qubits we find the mean and standard deviation

The mean value quantifies the average deviation of the measured qubit distributions from 
the idealized uniform distribution and confirms our qualitative observations. The non-
negligible standard deviation results from the fluctuations in-between the individual qubit 
outcomes.

3.2.2 � Randomness

Although quantum events intrinsically exhibit a truly random behavior, the output of our 
B-QRNG is the result of a complex physical experiment behind a technically sophisticated 
pipeline that appears as a black box to us and it can therefore not be assumed with certainty 
that its outcomes are indeed statistically independent. To examine this issue in more detail, 
we briefly study the randomness of the resulting bit string in the following.

For this purpose, we make use of the Wald-Wolfowitz runs test (Wald & Wolfowitz, 
1940), which can be used to test the null hypothesis that elements of a binary sequence are 
mutually independent. We perform a corresponding test on the measured bit string from 
the nth qubit bn , Eq. (2), and denote the resulting p-value as pr

n
 . The null hypothesis has to 

be rejected if this probability does not exceed the significance level, which we choose as 
� = 0.05.

The test results are shown in Fig. 5. We find that the bit strings from almost all qubits 
pass the test and can therefore be considered random in the sense of the test criteria. How-
ever, the bit strings from five qubits fail the test, which implies non-randomness. We also 

(8)⟨H(p
n
, p̃)⟩ ≈ 0.0133 ± 0.0110.

Fig. 5   Results of Wald-Wolfowitz runs test on the bit strings of all qubits, where pr
n
 denotes the resulting 

p-value of the bit string of the nth qubit bn , Eq.  (2). We show p-values in different colors depending on 
whether or not they exceed � = 0.05 . In case of pr

n
≤ � , the corresponding hardware indices are additionally 

denoted on top of the plot and indicate the qubits that fail the test of randomness
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perform a test on the total bit string B , which yields the p-value pr ≈ 0.0000 < 𝛼 such that 
the test also fails for the entire sequence of random numbers.

Summarized, we find that the reliability of the generated quantum random numbers is 
questionable. A typical binary random sequence from a PRNG of the same length as B can 
be expected to pass the Wald-Wolfowitz runs test. However, within the scope of this work, 
the reason for this observation cannot be further investigated and we accept it as an inte-
gral part of our naive approach to the B-QRNG. Further work regarding the properties of 
our setup (applied to a different quantum hardware) can be found in Tamura and Shikano 
(2020); Shikano et al. (2020); Tamura and Shikano (2021), which contain similar observa-
tions. A lack of reliability is not surprising considering the fact that we have not aimed for 
a certified random number generation and our setup is motivated by a strongly idealized 
model of quantum gate computers, as already mentioned above.

3.2.3 � Integers

Next, we analyze the resulting random 32-bit integers. To obtain these, we convert B into a 
vector of integers B ↦ I ∈ {0,… , 2C − 1}L by consecutively grouping its elements into bit 
strings of length C and converting them to non-negative integers according to

with j ∈ {1,… , L} . For a bit string of Bernoulli random variables B with a fair success 
probability p = p̃ , Eqs.  (1) and (5), the sequence of random integers in I would be uni-
formly distributed. However, as we have seen before, this assumption does not hold true for 
the results from our B-QRNG. So the question arises as to what the distribution of random 
integers looks like for our unfair set of Bernoulli variables.

For this purpose, we rescale the elements of I by a division by

such that I∕� ∈ [0, 1]L and group the range [0, 1] into K ≡ 250 equally sized bins. Thus, 
the population of the kth bin is given by

with the indicator function

for k ∈ {1,… ,K}.
Additionally, we consider a simplified theoretical description of the bin population by 

modeling the bit string as the result of a Bernoulli process with a single success prob-
ability p, Eq. (1). That is, the bits represent i.i.d. Bernoulli random variables. The integer 
j ∈ {0,… , �} corresponding to a bit string �(j) ∈ �C is determined in analogy to Eq. (9) 

(9)Ij ≡

C−1∑
i=0

BC(j−1)+i+12
i

(10)� ≡ 2C − 1

(11)ck ≡

L∑
i=1

1(Ii, k)

(12)1(i, k) ≡

⎧⎪⎨⎪⎩

1 if k < K ∧
k−1

K
≤

i

𝜉
<

k

K

1 if k = K ∧
K−1

K
≤

i

𝜉

0 otherwise
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such that 
∑C−1

i=0
�i+1(j)2

i = j . The probability mass function of the resulting integers can 
consequently be written as

Its expected value is given by

and the information entropy (Shannon, 1948) in nats by

We show a plot of Eqs. (14) and (15) in Fig. 6. Finally, the predicted (possibly non-integer) 
population of the kth bin reads

which we use as our simplified model of Eq. (11).
We show both the measured bin population ck , Eq. (11), and the theoretical bin popula-

tion ĉk(p) , Eq. (16), for a success probability p corresponding to the expected probability 
of all measured bits p̄(1) = 1 − p̄(0) , Eq. (6), in Fig. 7. Clearly, the generated sequence of 
random integers is not uniformly distributed (i. e., with a population of L/K in each bin). 
Instead, we find a complex arrangement of spikes and valleys in the bin populations.

Specifically, since p̄(0) > p̄(1) , random integers become more probable when their 
binary representation contains as many zeros as possible, which is reflected in the bin 
populations. In particular, the first bin (containing the smallest integers) has the highest 
population. The minor deviations between the measured and the theoretic bin populations 
results from the finite number of measured samples and the simplification of the theoretical 

(13)P(j, p) ≡

C∏
i=1

p�i(j)(1 − p)1−�i(j).

(14)Î(p) ≡

𝜉∑
i=0

iP(i, p) = 𝜉p

(15)SI(p) ≡

�∑
i=0

P(i, p) lnP(i, p) = −C
[
p ln p + (1 − p) ln(1 − p)

]
.

(16)ĉk(p) ≡ L

𝜉∑
i=0

1(i, k)P(i, p),

Fig. 6   Expected value Î(p) , Eq.  (14), and entropy SI(p) , Eq.  (15), for a random integer from the domain 
{0,… , �} resulting from a string of C random bits from a Bernoulli process with success probability p, 
Eq. (1). The expected value is proportional to p, whereas the entropy attains its maximum value at p = 0.5 . 
We apply rescaling factors to constrain both quantities to the same scale
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model: The success probability of each bit from the B-QRNG specifically depends on the 
qubit it is generated from as shown in Fig. 4, whereas our theoretical model only uses one 
success probability for all bits corresponding to p̄(1).

We recall the Hellinger distance, Eq. (7), to quantify the deviation of the distribution of 
integers from the uniform distribution. Specifically, we find

where we have made use of the measured integer distribution pc ≡ pc(k) ≡ ck∕L and the 
corresponding uniform distribution p̃c ≡ p̃c(k) ≡ 1∕K with k ∈ {1,… ,K} . This metric 
quantifies our observations from Fig. 7.

For comparative purposes, we show additional theoretical bin populations for other suc-
cess probabilities in Fig. 8. As expected, the rugged pattern of the distribution becomes 
sharper for lower or higher values of p and the deviation from the uniform distribution 
increases.

4 � Experiments

To study the effects of quantum-based network initializations, we consider two inde-
pendent experiments, which are both implemented in PyTorch (Paszke et  al., 2019): 
First, a convolutional neural network (CNN) and second, a recurrent neural network 
(RNN). The choice of these experiments is motivated by the statement from Bird et al. 

(17)H(pc, p̃c) ≈ 0.0213,

Fig. 7   Measured distribution of 32-bit integers from the B-QRNG. The values from the generated vector 
of random integers I , Eq. (9), are rescaled by a division by (232 − 1) and sorted into 250 equally sized bins. 
The kth bin (with k ∈ {1,… , 250} ) has a population of ck according to Eq. (11). For comparison, the corre-
sponding theoretic bin population of the kth bin ĉk(p̄(b)) is shown, which is obtained from a Bernoulli pro-
cess according to Eq. (16) with a success probability of p = p̄(1) = 1 − p̄(0) , Eq. (6). The minor deviations 
between the two populations results from the finite number of measured samples as well as the observation 
that bits from different qubits have their own success probability, cf. Fig. 4. An outline of the uniform bin 
population is shown as a frame of reference
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(2020) that “neural network experiments show greatly differing patterns in learning 
patterns and their overall results when using PRNG and QRNG methods to generate 
the initial weights.”

To ensure repeatability of our experiments, PyTorch is run in deterministic mode 
with fixed (i. e., hard-coded) random seeds. The main hardware component is a Nvidia 
GeForce GTX 1080 Ti graphics card. Our Python implementation of the experiments is 
publicly available online (Wolter, 2021).

In the present section, we first summarize the considered RNGs. Subsequently, we 
present the two experiments and discuss their results.

Fig. 8   Theoretical distribution of 32-bit integers in analogy to Fig.  4 for different success probabili-
ties p ∈ {p1 = 0.3, p2 = 0.4, p3 = 0.5, p4 = 0.6, p5 = 0.7} , Eq.  (16). The population axis is scaled log-
arithmically. We also show the (rescaled) mean values Î(p)∕𝜉 , Eq.  (14), and the uniform distribution p̃c 
as used in Eq.  (17). The corresponding Hellinger distances, Eq.  (7), with p̂c(p) ≡ p̂c(p;k) ≡ ĉk(p)∕L and 
k ∈ {1,… ,K} read H(p̂c(p1), p̃c) ≈ H(p̂c(p5), p̃c) ≈ 0.3776 , H(p̂c(p2), p̃c) ≈ H(p̂c(p4), p̃c) ≈ 0.1867 , and 
H(p̂c(p3), p̃c) ≈ 0.0000 , respectively



1205Machine Learning (2024) 113:1189–1217	

1 3

4.1 � RNGs

In total, we use four different RNGs to initialize neural network weights: 

1.	 B-QRNG: Our hardware-biased quantum random number generator introduced in Sect. 3 
from which we extract the integer sequence I according to Eq. (9). The data is publicly 
available online (Heese et al., 2023).

2.	 QRNG: A bias-free quantum random number generator (ANU, 2021) based on quantum-
optical hardware that performs broadband measurements of the vacuum field contained 
in the radio-frequency sidebands of a single-mode laser to produce a continuous stream 
of binary random numbers (Symul et al., 2011; Haw et al., 2015). We particularly use a 
publicly available pre-generated sequence of random bits from this stream (ANU, 2017), 
extract the first M bits and convert them into the integer sequence I’ ∈ {0,… , 2C − 1}L 
according to Eq. (9). Based on the Hellinger distance H(p�

c
, p̃c) ≈ 0.0018 , Eq. (7), with 

p�
c
≡ p�

c
(k) ≡ c�

k
∕L and c�

k
≡
∑L

i=1
1(I�

i
, k) , Eq. (12), for k ∈ {1,… ,K} , we find that I’ is 

indeed much closer to the uniform distribution than I , Eq. (17). We visualize the cor-
responding integer distribution in Fig. 9.

Table 1   Overview over the four considered RNGs presented in Sect.on  4.1, which are either based on a 
classical pseudo-random number generator or a quantum experiment (as indicated by the rows) and yield 
either unbiased or biased outcomes (as indicated by the columns)

Unbiased Biased

Classical PRNG B-PRNG
Quantum QRNG B-QRNG

Fig. 9   Distribution of 32-bit integers from the QRNG in analogy to Fig. 7. The values from the vector of 
random integers I’ are rescaled by a division by (232 − 1) and sorted into 250 equally sized bins. The popu-
lation of the kth bin (with k ∈ {1,… , 250} ) is denoted by c′

k
 . For comparison, we also show the correspond-

ing population ck , Eq. (11), from the B-QRNG and an outline of the uniform bin population
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3.	 PRNG: The (presumably unbiased) native pseudo-random number generator from 
PyTorch.

4.	 B-PRNG: A “pseudo hardware-biased quantum random number generator”, which gen-
erates a bit string of i.i.d. Bernoulli random variables with a success probability p cor-
responding to the expected probability of all measured bits p̄(1) = 1 − p̄(0) , Eqs. (1 and 
(6), using the native pseudo-random number generator from PyTorch. The bit strings 
are then converted into integers according to Eq. (9). Their probability mass function is 
given by Eq. (13).

All of these RNGs, which are summarized in Tab.  1, produce 32-bit random numbers. 
However, the random numbers from the B-QRNG and the QRNG are taken in order (i. e., 
unshuffled) from the predefined sequences I and I’ , respectively, whereas the PRNG and 
the B-PRNG algorithmically generate random numbers on demand based on a given ran-
dom seed.

For the sake of completeness, we also analyze the binary random numbers from the 
B-QRNG and the QRNG, respectively, with the NIST Statistical Test Suite for the valida-
tion of random number generators (Rukhin et al., 2010; NIST, 2010). For this purpose, the 
bit strings are segmented into smaller sequences and multiple statistical tests are evaluated 
on each sequence. Each test consists of one or more sub-tests with the null hypothesis that 
the sequence being tested is random. Based on the proportion of sequences for which a 
sub-test satisfies the null hypothesis, it is considered as passed or rejected, where a rejec-
tion indicates non-randomness. A more detailed discussion about this procedure can also 
be found in Sýs et al. (2015).

A summary of our results is listed in Tab. 2. It shows that the B-QRNG numbers fail a 
majority of statistical tests of randomness, as expected, whereas the QRNG passes all.

4.2 � CNN

In the first experiment, we consider a LeNet-5 inspired CNN with ReLU activation func-
tions and without dropout (Lecun et al., 1998). The network weights are initialized as pro-
posed by He et  al. (2015), but we use a uniform distribution instead of a normal distri-
bution, as is also common. This means that each weight wi (with i = 1, 2,… ) is sampled 
uniformly according to

where hi > 0 is chosen such that a constant output variance can be achieved over all layers. 
The network biases are initialized analogously.

As data we use the MNIST handwritten digit recognition problem (LeCun et al., 1998), 
which contains 70,000 grayscale images of handwritten digits in 28 × 28 pixel format. The 
digits are split into a training set of 60,000 images and a training set of 10,000 images. The 
network is trained using Adadelta (Zeiler, 2012) over d ≡ 14 epochs.

In Fig. 10 we show the CNN test accuracy convergence for each epoch over 31 inde-
pendent training runs using the four RNGs from Sect.  4.1. The use of a biased RNG 
means that the He et al. initialization is actually effectively realized based on a non-uni-
form distribution instead of a uniform distribution. Therefore, such an approach could 
potentially be considered a new type of initialization strategy (depending on the bias), 
which is why one might expect a different training efficiency. However, the results show 

(18)wi ∼ [−hi, hi],
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that the choice of RNG for the network weight initialization has no major effect on the 
CNN test accuracy convergence. Only a closer look reveals that the mean QRNG results 
seem to be slightly superior to the others in the last epochs.

To quantify this observation, we utilize Welch’s (unequal variances) t-test for the 
null hypothesis that two independent samples have identical expected values without 
the assumption of equal population variance (Welch, 1947). We apply this test to two of 
each of the four results from different RNGs, where the resulting test accuracies from 
all runs in a specific epoch are treated as samples. We denote the two results to be com-
pared as x and y , respectively, with x, y ∈ ℝ31×d for 31 runs and d epochs. Consequently, 
for each pair of results and each epoch i ∈ {1,… , d} , we obtain a two-tailed p-value 

Table 2   Summary of the results from the NIST Statistical Test Suite for the validation of random number 
generators (NIST, 2010) applied to the whole sequence of binary random numbers from the B-QRNG and 
the QRNG, respectively

For each of the two bit strings, a series of statistical tests is evaluated, where each test consists of one 
or more sub-tests with the null hypothesis that the sequence being tested is random. The bit strings are 
segmented into sequences and each sub-test is run on each of these sequences. A sub-test is accepted or 
rejected based on a certain proportion of sequences that satisfy the null hypothesis. A rejection therefore 
indicates non-randomness. We choose 100 bitstreams in the program options such that each sequence con-
tains at least 106 bits, as recommended. The required number of passed sequences of the total number of 
sequences for the acceptance of a sub-test is 96 of 100 for all tests except for the Random excursion tests, 
for which it is 68 of 72 due to a reduced number of effectively used sequences. The predefined standard 
parameters are used for all tests (e. g., significance level � = 0.01 ). We list for each statistical test the cor-
responding number of accepted (“✓”) and rejected (“✗”) sub-tests. The total number of acceptances and 
rejections are shown at the bottom in bold. In addition, the column “Passed” contains information about 
the number of passed sequences. For tests with only one or two sub-tests, we explicitly list the number of 
passed sequences. Otherwise, we present the respective means and standard deviations. A detailed descrip-
tion of the software and its statistical tests of randomness can be found in Rukhin et al. (2010). Summa-
rized, the QRNG data passes all tests of randomness, whereas most of the tests fail for the B-QRNG data, 
which indicates non-randomness. Note that the Random excursions tests are not applicable for the B-QRNG 
data since they require the acceptance of the rejected Frequency test (Sýs et al., 2015)

Test name ✓ ✗ Passed ✓ ✗ Passed

Approximate entropy  0  1  0  1  0  99
Frequency within block  0  1  0  1  0  98
Cumulative sums  0  2  0, 0  2  0  98, 99
Discrete Fourier transform  0  1  60  1  0  100
Frequency  0  1  0  1  0  99
Linear complexity  1  0  100  1  0  96
Longest run of ones within block  0  1  72  1  0  100
Non-overlapping template matching  40 108  52.4 ± 41.5 148  0  99.0 ± 1.0
Overlapping template matching  0  1  0  1  0  100
Random excursions  0  0 –  8  0  71.5 ± 0.7
Random excursions variant  0  0 –  18  0  71.7 ± 0.6
Binary matrix rank  1  0  100  1  0  100
Runs  0  1  0  1  0  96
Serial  1  1  0, 100  2  0  98, 99
Maurer’s “universal statistical”  0  1  80  1  0  99
Total  43 119 188  0

B-QRNG QRNG
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pt
i
(x, y) . The null hypothesis has to be rejected if such a p-value does not exceed the sig-

nificance level, which we choose as � = 0.05.
We are particularly interested whether the aforementioned hypothesis holds true for all 

epochs. To counteract the problem of multiple comparisons, we use the Holm-Bonferroni 
method (Holm, 1979) to adjust the p-values pt

i
(x, y) ↦ p̄t

i
(x, y) for all i ∈ {1,… , d} . Sum-

marized, if the condition

is fulfilled, no overall statistically significant deviation between the results from different 
RNGs is present.

In addition, we also quantify the correlation of x and y using the Pearson correlation 
coefficient (Pearson, 1895)

of the mean values over all runs, where we make use of the abbreviations 
x̄�
i
≡ x�

i
−
∑d

i=1
x�
i
∕d , x�

i
≡
∑31

j=1
xji∕31 , ȳ�i ≡ y�

i
−
∑d

i=1
y�
i
∕d , and y�

i
≡
∑31

j=1
yji∕31 . A coef-

ficient of 1 implies a perfect linear correlation of the means, whereas a coefficient of 0 
indicates no linear correlation.

For the results from the CNN experiment, we obtain the similarity and correlation 
metrics listed in Tab. 3 in the rows marked with “CNN”. Summarized, we find a high 
mutual similarity [Eq.  (19) holds true] and almost perfect mutual correlations of the 

(19)min
i,x,y

p̄t
i
(x, y) ≡ min

x,y
p̄t
min

(x, y)
!

> 𝛼 = 0.05

(20)𝜌(x, y) ≡

∑c

i=1
x̄m
i
ȳm
i�∑

i(x̄
m
i
)2
∑

j(ȳ
m
j
)2

∈ [−1, 1]

Fig. 10   CNN test accuracy convergence on the MNIST data set using four different random number genera-
tors (B-QRNG, QRGN, PRGN and B-PRNG from Sect. 4.1). Shown are mean values over 31 runs with the 
respective standard deviations (one sigma). The inset plot zooms in on the means of the final epochs
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results. This means that the choice of RNG for the network weight initialization has no 
statistically significant effect on the CNN test accuracy convergence and, in particular, 
the QRNG results are not superior despite the visual appearance in Fig. 10.

At this point, the question arises whether a different bias of the RNGs might have 
led to better training results. To answer this question, we consider additional pseudo-
random number generators B-PRNG(p), which are based on a Bernoulli process with 
success probability p, Eq. (1), such that the originally considered B-PRNG corresponds 
to B-PRNG( p̄(1) ), Eq. (6), and the PRNG corresponds to B-PRNG(0.5). In the extreme 
cases of p = 0 and p = 1 , B-PRNG(p) is not random anymore and produces only con-
stant values of 0 and 232 − 1 , respectively. The probability mass function of the resulting 
integers is given by Eq.  (13). We train the CNN again on the MNIST data set with a 
weight initialization based on B-PRNG(p) for different values of p ∈ [0, 1] and consider 
the test accuracy at epoch 14.

The results are shown in Fig.  11. Clearly, the mean test accuracy attains a maxi-
mum at p = 0.5 , which corresponds to an unbiased pseudo-random number generator 
(i.  e., the PRGN). For smaller and larger success probabilities, the mean test accu-
racy decreases. In particular, we observe a steep drop in performance for p < 0.2 and 
p > 0.95 , which indicates that a bias of the random number generator towards 0 has 
more severe effects than a bias towards 1. The worst performance is achieved for p = 0 
and p = 1 , respectively.

We recall that for p = 0.5 , weights are sampled uniformly around zero, Eq.  (18). 
Thus, for p > 0.5 , the weights are more probable to be positive, whereas for p < 0.5 , 

Table 3   Minimum p-values from 
Welch’s t-test over all epochs 
p̄t
min

(x, y) , Eq. (19), and Pearson 
correlation coefficient �(x, y) , 
Eq. (20), of the experimental data

The metrics are listed for all mutual combinations of the results 
from the four RNGs (B-QRNG, QRGN, PRGN, and B-PRNG from 
Sect.  4.1) of all experiments (CNN, RNN-M, and RNN-A from 
Sects. 4.2 and 4.3, respectively)

x y p̄t
min

(x, y) �(x, y)

CNN B-QRNG QRGN 0.3784 0.9984
B-QRNG PRGN 1.0000 0.9980
B-QRNG B-PRNG 0.9749 0.9986
QRGN PRGN 0.0641 0.9941
QRGN B-PRNG 0.0577 0.9992
PRGN B-PRNG 1.0000 0.9951

RNN-M B-QRNG QRGN 1.0000 0.9997
B-QRNG PRGN 0.4526 0.9995
B-QRNG B-PRNG 1.0000 0.9998
QRGN PRGN 1.0000 0.9998
QRGN B-PRNG 1.0000 0.9999
PRGN B-PRNG 0.5355 0.9996

RNN-A B-QRNG QRGN 1.0000 0.9946
B-QRNG PRGN 1.0000 0.9954
B-QRNG B-PRNG 1.0000 0.9962
QRGN PRGN 1.0000 0.9944
QRGN B-PRNG 1.0000 0.9951
PRGN B-PRNG 1.0000 0.9965
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they are more probable to be negative, cf. Eq. (14). Since our CNN contains ReLU acti-
vation functions, a shift of the weights towards negative values leads to vanishing gradi-
ents. According to our experiments, this seems to become significant for p < 0.2 . On the 
other hand, an equivalent shift towards positive values does not drastically decrease the 
training performance and even for p = 0.95 the test accuracy is above 98.6% . However, 
for p = 1 the test accuracy also drops. We think that the reason for this behavior is that 
the weights are in this case constant and attain the maximum value of the distribution, 
Eq. (18). The resulting lack of diversity, which is for example evident from the entropy, 
Eq.  (15), is probably the cause for the bad training performance (Frankle & Carbin, 
2019).

4.3 � RNN

In the second experiment, we consider a recurrent LSTM cell with a uniform initializa-
tion in analogy to Eq. (18), which we apply on the synthetic adding and memory standard 
benchmarks (Hochreiter & Schmidhuber, 1997) with T = 64 for the memory problem. For 
this purpose, we use RMSprop (Hinton, 2012) with a step size of e-3 to optimize LSTM 
cells (Hochreiter & Schmidhuber, 1997) with a state size of 256. For each problem, a total 
of 9e5 updates with training batches of size 128 is computed until the training stops. In 
total, there are ⌊9e5∕128⌋ = 7031 training steps.

Fig. 11   CNN test accuracy on the MNIST data at epoch 14 using different pseudo-random number gen-
erators B-PRNG(p), which are based on a Bernoulli process with success probability p, Eq. (1). We con-
sider p ∈ {0, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, 1} . Shown are mean values over 30 runs with the respective 
standard deviations (one sigma) as error bars for (a) the full bias range and (b) a zoom on the peak of the 
accuracy at p = 0.5 . For comparison, we also plot the corresponding results from Fig. 10 for the B-PRNG 
with p = p̄(1) , Eq. (6), as well as for the PRNG with p = 0.5
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Since the synthetic data sets are infinitely large, overfitting is not an issue and we can 
consequently use the training loss as performance metric. Specifically, we consider 89 
consecutive training steps as one epoch, which leads to d ≡ 4687∕89 = 79 epochs in total, 
each associated with the mean loss of the corresponding training steps.

The results are shown in Fig. 12, where we present the loss for each of the 79 epochs 
over 31 independent training runs for both problems. Again, we compare the results using 
random numbers from the four RNGs from Sect. 4.1. The use of a biased RNG effectively 
realizes a non-uniform initialization (depending on the bias) in comparison with the uni-
form initialization from a non-biased RNG. However, we find that no RNG yields a major 
difference in performance.

In analogy to the first experiment, we list the similarity and correlation metrics in 
Tab. 3 in the rows marked with “RNN-M” and “RNN-A”, respectively. Again, we find a 
high mutual similarity [Eq. (19) holds true] and correlation. Thus, the choice of RNG also 
has no statistically significant effect in this second experiment. Due to the numerical effort 
required to train the RNNs, we cannot perform an analysis of different biases of RNGs as 
in the first experiment.

5 � Conclusions

Summarized, by running a naively designed quantum random number generator on a 
quantum gate computer, we have generated a random bit string. Its statistical analysis has 
revealed a significant bias and mutual dependencies as imposed by the quantum hardware. 

Fig. 12   RNN convergence on two benchmark data sets using four different RNGs (B-QRNG, QRGN, 
PRGN and B-PRNG from Sect.  4.1). Shown are mean values over 31 runs with the respective standard 
deviations (one sigma) in analogy to Fig. 10. The inset plot zooms in on the means of the final epochs
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When converted into a sequence of integers, we have found a specially shaped distribution 
of values with a rich pattern. We have utilized these integers as hardware-biased quan-
tum random numbers (B-QRNG). Motivated by the results from Bird et  al. (2020), we 
have deliberately chosen to use these biased and correlated random numbers to study their 
impact on machine learning algorithms.

Specifically, we have studied their effect on the initialization of artificial neural network 
weights in two experiments. For comparison, we have additionally considered unbiased 
random numbers from another quantum random number generator (QRNG) and a classi-
cal pseudo-random number generator (PRNG) as well as random numbers from a classi-
cal pseudo-random number generator replicating the hardware bias (B-PRNG). The two 
experiments consider a CNN and a RNN, respectively, and show no statistically significant 
influence of the choice of RNG.

Despite a similar setup, we have not been able to replicate the observation from Bird 
et al. (2020), where it is stated that quantum random number generators and pseudo-ran-
dom number generators “do inexplicably produce different results to one another when 
employed in machine learning.” However, we have not explicitly attempted to replicate the 
numerical experiments from the aforementioned work, but have instead considered two 
different examples that we consider typical applications of neural networks in machine 
learning.

Since our results are only exemplary, it may indeed be possible that there is an advan-
tage in the usage of biased quantum random numbers for certain applications. Based on our 
studies, we expect, however, that in such cases it will in fact not be the “true randomness” 
of the quantum random numbers, but rather the opposite – their hardware-induced bias, 
including possible correlations – that will cause an effect. But is quantum hardware really 
necessary to produce such results? It seems that classical pseudo-random number genera-
tors are also able to mimic these effects. Even more, because the reliability and security 
of PRNGs can be ensured with less effort and a greater confidence than that of gate-based 
QRNGs on NISQ devices. Therefore, we think that for typical machine learning applica-
tions the usage of (high-quality) pseudo-random numbers is sufficient. Accordingly, a more 
elaborate experimental or theoretical study of the effects of biased pseudo-random num-
bers (with particular patterns) on certain machine learning applications could be a suitable 
research topic, e. g., to better understand the claims from Bird et al. (2020).

Repeatability is generally difficult to achieve for numerical calculations involving ran-
dom numbers (Crane, 2018). In particular, our B-QRNG can in principle not be forced to 
reproduce a specific random sequence (as opposed to PRNGs). Furthermore, the statistics 
of the generated quantum random numbers may depend on the specific configuration of the 
quantum hardware at the time of operation. It might therefore be possible that a repetition 
of the numerical experiments with quantum random numbers obtained at a different time 
or from a different quantum hardware may lead to significantly different results. To ensure 
the greatest possible transparency, the source code for our experiments is publicly available 
online (Wolter, 2021) and may serve as a point of origin for further studies.
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