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Takayuki Myo!**, Myagmarjav Odsuren®, and Kiyoshi Kato*

U General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan

2 Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
3School of Engineering and Applied Sciences, Nuclear Research Centre, National University of Mongolia,
Ulaanbaatar 210646, Mongolia

*Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

*E-mail: takayuki.myo@oit.ac.jp

Received August 22, 2022; Accepted September 22, 2022; Published September 26, 2022

In neutron-rich ®He, we study the soft dipole resonance, which is regarded as a dipole os-
cillation of four valence neutrons against the *He core, and its effect on the low-energy
electric dipole strength with a *He+n+4n+n-+n five-body cluster model. This work is an ex-
tended study of an earlier letter [T. Myo and K. Kato, Phys. Rev. C 106, L021302 (2022)].
The five-body unbound 1~ states of *He are obtained with complex-energy eigenvalues
by using the complex scaling method and the dipole strength is calculated in terms of the
complex-scaled Green’s function. Two kinds of dominant excitation modes are confirmed
in the dipole strength below 20 MeV of the excitation energy. The strengths below 10 MeV
are exhausted by the "He+n channel, which sequentially decays to ®He+n+n. Above 10
MeV, the strengths arise from the soft dipole mode of four neutrons (4n) oscillating against
the “He core. We further explore the possibility of the soft dipole resonance for this state by
carefully searching for the resonance pole and finally predict the corresponding resonance
with the excitation energy of 14 MeV and the decay width of 21 MeV. The soft dipole res-
onance exhausts about half of the dipole strength in the relative motion between the “He
core and 4n.

Subject Index D10, D11, D13

1. Introduction

Unstable nuclei have shown exotic nuclear structures with the development of radioactive beam
experiments. Neutron halo structure is observed in some of the drip-line nuclei, such as ®°He
and ''Li [1,2]. In unstable nuclei, excess nucleons often form the weakly bound state with re-
spect to the stable core nucleus and they are excited to the unbound states beyond the particle
thresholds with small excitation energy. Hence, the structures of resonances and the responses
of continuum states have become important research targets of unstable nuclear physics. A soft
dipole mode including the possibility of resonance has been proposed as a new collective mo-
tion with dipole oscillation of excess neutrons against the core nucleus [3,4]. Here we define
that the core nucleus is kept in the ground state in the soft dipole mode in comparison with the
giant dipole resonances, in which the core nucleus is excited. The Coulomb breakup reaction is
useful to investigate the dipole response of unstable nuclei experimentally, and can bring exotic
excitations due to the presence of excess neutrons [5-7].

In neutron-rich He isotopes, only two bound states are observed in °He and 8He. The 8He
nucleus has a large neutron—proton ratio of 3 and consists of the *He core nucleus and four
valence neutrons, which are bound with a small separation energy of 3.1 MeV in the ground
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state [8]. For the excitations of He, many experiments have been reported [9—15], and recently
the dipole excitation has been examined theoretically [16,17].

In 8He, the lowest particle threshold is the *He+n+n three-body channel with an excitation
energy of 2.1 MeV, and the next channel is the "He+n two-body one with an excitation energy
of 2.6 MeV, where the ground state of "He is a resonant state of ®°He+n. Experiments report the
candidates of the excited states of ®He, which are located above the *He+n-+n+n+n five-body
channel [14,15]. From these facts, the excitations of ®He lead to breakups into the many-body
channels of "He+n, °He+n+n, S He+n+n+n, and *He+n+n+n+n.

So far, we have performed an analysis of the neutron-rich He isotopes and their mirror
proton-rich unbound nuclei in the *He+N-+N+N+N five-body cluster model, where “He is
treated as an inert core [18-22]. We solve the motion of multi valence nucleons around the *He
core in the cluster orbital shell model (COSM) [23-26]. In the COSM, the threshold energies of
the particle emissions can be reproduced, namely, the subsystem energies of $He. This is an im-
portant property in the proper description of the multineutron emissions. Under this condition,
we describe many-body resonances using the complex-scaling method (CSM) [27-32] impos-
ing the correct boundary conditions for decaying states. In the CSM, one solves the eigenvalue
problem of the complex-scaled Hamiltonian using L? basis functions and obtains the reso-
nances explicitly with complex-energy eigenvalues. Structures of resonances have been success-
fully investigated using the CSM not only for eigenenergies but also for the strength function
applying the Green’s function [31-33,34,35]. For Coulomb breakup reactions of halo nuclei *He
and ''Li, we have successfully investigated the three-body breakup cross sections [31,36,37,38].
In particular, we can decompose the strength function into the various channels of the direct
three-body breakup and the sequential breakup via the subsystems.

In our previous work [21], we predicted four resonances of 8He with positive parity in the
low excitation energy; the lowest resonance is the 27 state, whose energy and decay width are
consistent with the recent experimental data [15]. In our recent letter [22], we predicted the soft
dipole mode of 3He (17) in the electric dipole strength, which shows a mild peak at an exci-
tation energy of 13 MeV. This mode shows the collective nature of four neutrons oscillating
against the “He core. In this paper, we report the detailed and extended analysis of the electric
dipole strength of ®He in the low excitation energy according to the recent letter. We calculate
the 1~ states of He in the COSM and CSM and evaluate the dipole strength function using
the Green’s function. For the soft dipole mode, we further explore the possibility of the iso-
lated resonance by searching for the resonance pole carefully in the complex scaling. We do
not discuss the giant resonances in this study, because the configuration of “He is fixed in the
five-body cluster model. The present analysis is useful for the Coulomb breakup experiments
of 8He (C. Lehr et al. [SAMURALI Collaboration], unpublished work).

In Sect. 2, we explain the framework of the COSM with the CSM. In Sect. 3, we discuss the
results of the electric dipole strength of ®He and the possibility of the soft dipole resonance. In
Sect. 4, we give a summary.

2. Method

2.1 Cluster orbital shell model

We explain the five-body cluster model of ®He with the *He+n+n+n+n COSM. The relative
coordinates of the four neutrons are {r;} withi =1, ..., 4 as shown in Fig. 1. The Hamiltonian
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Fig. 1. Coordinate system of *He+n+n+n+n in the COSM. The vector R is a relative coordinate from
the center of mass of “He to the center of mass of the four neutrons.

is the same as used in the previous studies [18-22]:

AV A\v A\'
H=t,+Y ti—tg+y v+ vV (1)
i=1 i=1 i<j
Ay p2 Ay p . p
:Z(ﬁqtv;“v)qLZ(—I; mf +v{-§N), )
i=1 i<j o

where 4, and 4, are the number of valence neutrons and the mass number of “He, respectively.
The total mass number is 4 = 4, + A,, where (4,, A,) = (4, 4) for 8He. The kinetic energy op-
erators 4, t;, and t¢ are those of “*He, one neutron, and the center-of-mass part, respectively.
The operator p; is the relative momentum between “He and a neutron. The *He-nucleon in-
teraction v*V is given by the microscopic Kanada—Kaneko-Nagata-Nomoto potential [29,39].
For the nucleon—nucleon interaction vV, we use the Minnesota central potential [40].

In the COSM, the 3He wave function W’ with spin J is expanded in the linear combination
form of the COSM configuration ¥/ as

v =3 "clv/, 3)
v/ = A {®(*He), @/}, “)
cbi = A[[¢p1 (Vl)? d)pz (VZ)]j12’ [¢I73 (V3)7 ¢p4 (V4)]j34]]. (5)

We adopt the (0s)* configuration of the harmonic oscillator wave function for the ®(*He) of
“He. The range parameter of the Os orbit is 1.4 fm to reproduce the charge radius of *He. For
valence neutrons, the single-particle wave function ¢,(r) is a function of the relative coordinate
r and has a quantum number p, the set of {n, £, j} in the jj coupling scheme. The label # is
for the different radial components explained later and £ is the orbital angular momentum
coupled with a neutron spin as j = [£, 1/2]. The spins of ji; and j34 are for the neutron pairs.
The operators for the antisymmetrization A’ and A are between “He and a valence neutron and
between valence neutrons, respectively. The former is treated with the orthogonality condition
model [41], where the relative Os orbit is removed in the ¢,. The label ¢ in Eq. (3) means the set
of {p1, P2, P3 P4, j12, jaa}. We superpose the available configurations W/ with the amplitude of
C7 in Eq. (3). The Hamiltonian matrix elements are calculated using the COSM basis states in
the analytical form and one solves the eigenvalue problem of the Hamiltonian:

> (wlIH W) Cl = E'C, (6)

/

C
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Yy =1 (7)
We obtain the amplitudes {C/} and the energy eigenvalues E/ of *He measured from the five-
body threshold energy of *He+n+n+n+n.
We expand the radial part of ¢,(r) with a finite number of Gaussian functions u(r, b) for each
single-particle state:

N/g/'
bp(r) =D dlug(r, b)), ®)
q=1
—(r/pT N2 R
ug(r, sz) = ple=(1b,) /2 [Ye(®), Xf/2:|j’ )
<¢p|¢p’> = 8p,p’ = 8n,n’ 5@,13’ (Sj,j’- (10)
The label ¢ is for the Gaussian range parameter bz J with ¢ =1, ..., Ny;, where Ny; is a basis

number. The parameters {5 ;are given in the geometric progression [42]. The coefficients {d}
in Eq. (8) are determined using the orthogonal condition of the basis states {¢,} in Eq. (10).
The number Ny; is determined to get the convergence of the solutions and we use Ny, = 12 at
most with the range of b7 ; from 0.3 fm to around 40 fm. The multineutron configuration @ in
Eq. (5) is expanded using the products of the single-particle basis states ¢,.

For the single-particle states ¢,, we include the orbital angular momenta ¢ < 2 for the ground
state of #He. This condition gives the two-neutron separation energy of °He(0") with an accu-
racy of 0.3 MeV in comparison with the calculation including a large ¢. For 1~ states of 3He,
we increase the configurations including the ¢ = 3 states for the dipole transition. We use the
173.7 MeV of the repulsive strength of the Minnesota potential vV instead of the original 200
MeV to reproduce 0.975 MeV of the two-neutron separation energy of ®He. This condition is
the same as used in the previous works [18,19,21,22] and gives a nice reproduction of the energy
levels of He isotopes and their mirror nuclei.

2.2 Electric dipole transition

We investigate the electric dipole transition from the ground state of $He. In the present five-
body COSM, we fix the configuration of “He, and consider the dipole transition induced by
the motion of valence neutrons around *He. We introduce the relative coordinate R between
“He and the center of mass of the four valence neutrons as shown in Fig. 1. The operator of
the electric dipole (£1) transition is expressed in terms of R with R = |R)| as the recoil effect of
“He from the center of mass,

A, ~
O = _EeZaR Y1.(R), (11)
R ! i (12)
= — ri,
Ay i=1

where Z, is the proton number of *He. We consider the completeness relation of the 1~ states
of ¥He in the dipole transition, which gives the non-energy weighted sum-rule value for the
cluster model, denoted as B.(E1) and expressed using the mean squared distance between “He
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and the center of mass of the four valence neutrons in the ground state:
- 3¢ (AZN o,

B.(E1) = zﬂ:(%qom#am#@m) == (R?). (13)

The value of B.(E1) is useful to evaluate the amount of dipole strength obtained in the cal-
culation. For comparison, taking the 4-nucleon dipole excitations, the ordinary non-energy
weighted sum-rule value is given as B(E1) = 3¢*/(4m) - Z,/(r3) where (r7) is a mean squared
proton radius of the ground state. In this study, the excitation of “He is not treated and this
effect is expected to contribute to the dipole strength of ®He above the excitation energy of

around 20 MeV.

2.3 Complex-scaling method
We describe resonances and continuum states in the many-body systems with the CSM [27-
32]. In this study, the resonances are Gamow states satisfying the outgoing boundary condition
with complex eigenenergies, and the continuum states are orthogonal to these resonances. In
the CSM, the coordinates {r;} in Fig. 1 are transformed with a scaling angle 6 as

rp—r; e, P;—> D; e, (14)
where p; is the conjugate momentum of r; and is used in the Hamiltonian (2). The complex-
scaled Schrodinger equation is written with the complex-scaled Hamiltonian Hy as

HyV] = EJ W), (15)
vy =) Clvl, (16)

1= () (17)

c
We solve the eigenvalue problem of Eq. (15) and obtain the complex-scaled wave function W
in Eq. (16), where the coefficients CL{ , are f-dependent complex numbers. We obtain the energy
eigenvalues £ on a complex-energy plane according to the so-called ABC theorem proved by
Aguilar, Balslev, and Combes [43,44].

This theorem indicates that the complex scaling transforms the divergent outgoing resonant
wave into a damping form. As a result, the asymptotic boundary condition of resonances in
the CSM becomes the same as bound states [29,31]. In the CSM, every Riemann branch cut is
rotated down by 26 in the complex-energy plane, according to the momentum transformation
in Eq. (14). The branch cuts start from the threshold energies of particle emissions and the
continuum states are obtained on the corresponding 26 lines. In the ABC theorem, the energies
of bound and resonant states are independent of 6 and the resonance energy eigenvalue is given
as E, — iI'/2 with the resonance energy E, measured from the threshold energy and the decay
width T'.

In the CSM, one can expand the resonance wave functions with the L? basis functions because
of the damping boundary condition being normalized in the condition in Eq. (17). One does
not use the Hermitian product according to the bi-orthogonal property of the adjoint states
[27,28,44].

We calculate the strength function of the electric dipole transition into the unbound states of
8He. For this purpose, we consider the extended completeness relation (ECR) of ®He consisting
of bound, resonant, and continuum states with the complex-scaled eigenstates ¥, in Eq. (6)
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[18,36,44]. When one adopts a large value of 6, the five-body components of ®He are classified
into several categories, which construct the five-body ECR of ®He as

1—Z|w W0y |

— {bound state of *He}
+{resonances of *He}
+{two-body continuum states of "He™ + n)
+{three-body continuum states of SHe™ 4 n + n}
+{four-body continuum states of "He™ + n + n + n}
+{five-body continuum states of *He + n + n + n + n}, (18)

where {¥ g’v} form bi-orthogonal bases with the state index v.

We explain the general procedure to calculate the strength function using the ECR, where we
omit the spin notation. One can define the complex-scaled Green’s function G’ (E) as a function
of the energy E:

oY@
G'(E) = Z |E i (19)

The strength function S;(E) of the transition operator O, with rank A is represented by using
the Green’s function without complex scaling as

SUE) =) (W|O}|W,)(,|0; W) §(E — E,) (20)

v | ~
———1Im {<w0|01g(E)0A|w0>}, (21)

where W is the initial state. We apply the complex scaling to the strength function and use
G%(E)in Eq. (19):

SiE) =) S,.(E), (22)

(@8@*) lwexwloelw)}

(23)

1
S1(E) = —— Im{ T

One can extract the contributions of the state v, S, ,(E), in the total strength S, (E) and classify
S,.(E) in terms of the ECR in Eq. (18). It is noted that the functions S, (E) and S,_,(E) are
independent of 6 [18,36,34]. This is because the state v is uniquely classified in the ECR in
Eq. (18) and then S, ,(E) is also uniquely obtained. The complex-scaled Green’s function has
been widely used in calculations of the scattering amplitudes [31,37,45,46].

We mention the properties of the strength function S, ,(E). The total strength function S, (E)
1s observable and positive definite. On the other hand, the component S;_,(E) is not imposed
to keep the positive definite at all energies, because S;_,(E) is non-observable, similar to the
complex energies of resonances. This property means that S, ,(E) can show negative values.
We have generally discussed this point of the strength function in the CSM in Refs. [33,36].

In this study, many-body continuum states are expanded with the Gaussian functions in Eq.
(9) similar to the resonances, and then the states are discretized. The reliability of the discretiza-
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Fig. 2. Energy levels of **He measured from the “*He energy [21]. Units are in MeV. Red (right) and

black (left) lines are the values of theory and experiments, respectively. Small numbers indicate the decay
widths I" of resonances. For $He, the experimental data are taken from Refs. [14,15].

tion of the unbound states in the CSM has been shown in terms of the continuum level density
[34,45,47,48].

3. Results

3.1 Energy spectra of He isotopes

We now start to discuss the results of the energy spectra of He isotopes to show the validity
of the COSM with complex scaling, the main parts of which have already been reported in
the previous work [21]. The energy spectra are useful to confirm the threshold energies of the
multineutron emissions in the dipole transition of 8He. The systematic behavior of the energy
levels of “®He is shown in Fig. 2. For ®He, we obtain five states with positive parity; only the
ground state is a bound state and the others are resonances.

For the ground 0% state of ®He, the relative energy measured from the *He+n-+n+4n+n thresh-
old is 3.22 MeV, close to the experimental value of 3.11 MeV. For the 2] resonance of $He, we
obtain a relative energy of 0.32 MeV and a decay width I" of 0.66 MeV. These values are con-
sistent with the recent experimental report of the corresponding energy 0.43(6) MeV and decay
width I' = 0.89(11) MeV, which are derived from the energy dependence of the cross section in
the proton inelastic scattering [15]. The dominant configurations of four neutrons in the energy
levels are shown in the previous analysis [21].

In Table 1, we summarize the spatial properties of the ground state of ®He. The matter and
charge radii of 8He are 2.53 and 1.92 fm, respectively, which agree with the experiments. The
mean distance between “He and the center of mass of the four valence neutrons, a—4n, is ob-
tained as m = 2.05 fm. This distance is responsible for the electric dipole transition from
the ground state according to Eq. (13). The non-energy weighted sum-rule value for the cluster
model B.(E1) is obtained as 1.01 ¢ fm? using this distance. The radius of four neutrons in 8He
is also obtained as 2.91 fm.

3.2 Electric dipole transition

We investigate the electric dipole transition strength of $He. Before showing the results with
complex scaling, first we demonstrate the case without complex scaling, i.e., the scaling angle 6
= 0° and the eigenenergies of the 1~ states of 8He are discretized on the real energy axis in the
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Table 1. Radial properties of the ground state of ®He in units of fm for matter, proton, neutron, and
charge parts. Comparisons with the experiments, a [49], b [50], ¢ [51], d [13], € [52], and f [53], are shown.
Mean distances between *He and one valence neutron a—n and between *He and four valence neutrons
a—4n, and the radius of four valence neutrons 4n, are shown together in fm. The non-energy weighted
sum-rule value B.(E1) of the dipole strength in the cluster model is given in units of ¢ fm?.

Theory Experiments
matter 2.53 2.49(4)* 2.45(7)° 2.49(4)°
proton 1.81
neutron 2.73
charge 1.92 1.929(26)¢ 1.959(16)¢ 1.9559(158)f
a—n 3.56
a—4n 2.05
4n 291
B.(E1) 1.01

0.04 —————
A l
E 0.03 .
N& + E
= 0.02
= | ,
& 001 .
0.00 =

0 5 10 15 20 25 30
Excitation energy [MeV]

Fig. 3. Discretized electric dipole strength B(E1, v) of 8He with the state index v as a function of the
excitation energy E, , without complex scaling. Units are ¢* fm?. For the three states with labels A, B,
and C, the transition densities are calculated in Sect. 3.3.

bound-state approximation. The transition strengths are calculated for each discretized state
and we adopt Eq. (20) to calculate the dipole strength

B(E1,v) = (W | 0L, [1W1- )01 1| Op1 || W) (24)

using the reduced matrix elements of the state index v in the discretized 1~ states.

In Fig. 3, we show the discretized dipole strength without complex scaling. In the distribution,
we can confirm the low-energy strengths at around the excitation energies from 3-9 MeV and
also at around 14 MeV. Although the strength distribution is discretized as a function of the
energy as shown in Fig. 3, it becomes continuous by using the Green’s function with complex
scaling. Later, we investigate the properties of the strength using the complex scaling in detail.

In Fig. 4, we show the accumulated dipole transition strength ), B(E1, v) as a function of
the excitation energy of ®He. This is useful to check the completeness relation of the discretized
1~ states. The results are normalized by B.(£1) shown in Table 1. It is found that, at 80 MeV,
the accumulated strength is converged and the ratio becomes 0.993 with respect to B.(E1). This
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=, B(E1,v) / B(E)
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0 10 20 30 40 50 60 70 80
Excitation energy [MeV]

Fig. 4. Accumulated electric dipole strength Y, B(E1, v) of ¥He as a function of the excitation energy
without complex scaling. The ratio to B.(£1) in Table 1 is given.

‘He+n+n+n+n

*He(3/2)y+n+n+n
o DAY
a1+ RPR

6 | "He(1)
7F 6=18°

Y~ ) R S T S S S
0o 2 4 6 8 10 12 14

Re(Energy) [MeV]

Im(Energy) [MeV]
A

Fig. 5. Energy eigenvalue distribution of ®He (1~) with complex scaling in the complex-energy plane
measured from the ground-state energy. The scaling angle 6 is 18° [22]. Units are in MeV. Some of the
channels of multineutron emissions are shown.

means that the 1~ states sufficiently construct the completeness relation in the COSM even
without complex scaling.

Next, we perform the calculation of the electric dipole strength using the complex scaling
with a finite 6. One of the advantages of this calculation is that each eigenstate is distinguish-
able in the categories of various channels of ®He explained in Eq. (18). Another advantage is
that the complex scaling provides the correct level density even in a finite number of basis states
[34]. By using the Green’s function with complex scaling in Eq. (19), one can obtain the contin-
uous strength as a function of the excitation energy, being independent of 6, and the resulting
distribution can be compared with the experimental data.

In Fig. 5, we show the complex-energy eigenvalues of *He (1~) with complex scaling, mea-
sured from the ground state of ®He where the scaling angle & = 18°. The states are obtained
along several lines, which have the angle 26 with respect to the real axis and are called the
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Fig. 6. Distribution of the electric dipole strength dB(E1)/dE of 3He as a function of the excitation energy
using the complex scaling with § = 18° [22]. Units are in ¢*> fm?/MeV.

- SHe(1)
- 6=18° .

0 10 20 30 40 50 60 70 80
Excitation energy [MeV]

B(ELE) / B(E1)
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Fig. 7. Integrated electric dipole strength B(E1, E) of 8He using complex scaling up to the excitation
energy E. The ratio to B.(E1) in Table 1 is given.

26 lines. The 26 lines are the branch cuts starting from the thresholds, in the case of ®He,
of *He(0")+n+n, "He(3/27)+n, *He+n+n+n+n, *He(3/27)+n+n+n, and ‘He(2)+n+n, as
the excitation energy increases. These eigenstates represent the discretized continuum states
of each channel. One can extract the contributions of the individual continuum states to the
strength function, which is handled by using the Green’s function with complex scaling and
ECR [31,33,36].

In Fig. 6, we give the electric dipole strength function dB(E1)/dE of $He, which corresponds
to Sy — 1(E£) in Eq. (22) as a function of the excitation energy, where all of the complex-scaled
solutions of the 1~ states are used. The line presented in Fig. 6 is obtained by the continuation
of discretized strength function shown in Fig. 3. In the CSM, the strength function obtained
with appropriate basis states does not depend on the scaling angle 6. Some parts of the present
analysis have already been reported in the previous letter [22]. It is found that the strength shows
a spike at 2.8 MeV and, after that, a mild peak is obtained at around 5 MeV. Above 5 MeV, the
strength gradually decreases as the excitation energy increases.

In Fig. 7, we show the integrated dipole strength up to the excitation energy of *He. We plot
the ratio with respect to B.(E1), similar to the results shown in Fig. 4. It is confirmed that, at 80
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Fig. 8. Distributions of the electric dipole strengths of ®He using different conditions of the final 1~
states with 6 = 18°. (1) Plane waves are shown by a blue dashed line; (2) results without the interactions
between valence neutrons (v¥'V = 0) by a green dotted line. The original results, shown by a red solid line,
are taken from Fig. 6.

MeV of the excitation energy, the ratio becomes 0.996. This ensures the completeness relation
of the complex-scaled 1~ states and is similar to the case without complex scaling as shown in
Fig. 4.

In Fig. 8, we further calculate the dipole strength function with complex scaling, where four
valence neutrons in the 1~ states of 8He are treated as plane waves; namely, no final-state in-
teraction is considered. We adopt this condition by omitting v*" and v™" in the Hamiltonian
in Eq. (2) for the 1 states. This calculation is useful to understand the effect of the final-state
interaction on the strength function and we have performed a similar analysis for two-neutron
halo nuclei of ®He and ' Li[36,54,55]. It is found that the magnitude of strength becomes lower
and the distribution is much wider over the excitation energy in comparison with the original
calculation including the interactions. We confirm a mild bump at a higher excitation energy of
around 40 MeV. This indicates that the interaction effect in the 1~ states of 3He is important
to explain the observed strength below 20 MeV shown in Fig. 6. It is known that the dipole
strength to the plane waves reflects the spatial distribution of the weak-binding neutrons in the
ground state [5,33], but this effect cannot explain the observed strength. When we omit only

NN in the Hamiltonian, the strength starts to show

the interactions between valence neutrons v
at around 5 MeV near the *He+n+n+n threshold energy, where *He is a 3/2~ resonance, and
the peak of the strength shifts to around 10 MeV and the height is reduced from the original
one.

To clarify the structures of the original dipole strength, in Fig. 9 we show the distribution of
the dipole matrix elements for the 1~ eigenstates with the complex-energy eigenvalues shown in
Fig. 5, which was originally explained in the previous letter [22] and is complementarily useful in
the present analysis. The size of the open circles is proportional to the real part of the following
reduced dipole matrix element, Re{({f/g+ I 02? It ) (\’Ivlf,yv [10%,11%8,)}. Below 10 MeV of the
excitation energy, the two-body continuum states of the "He(3/27)+n channel show a large
contribution to the dipole strength. The strengths from the other channels of *He+4-n+n+n+n,
SHe+n-+n+n, and *He+n+n are very minor.

In Tables 2 and 3, we select the typical "He+n states having relatively large dipole matrix
elements and show the dominant configurations of valence neutrons in these states; one is
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Fig. 9. Dipole matrix elements of the 1~ eigenstates of ®*He using the complex scaling with 6 = 18° in
the complex-energy plane, taken from Ref. [22]. Small red dots indicate the complex eigenenergies. The
radius of the open circles is the absolute value of the real part of the dipole matrix element for each state
in arbitrary units.

Table 2. Dominant parts of the squared amplitudes (ch, p )? of the 1~ state of ®He with the "He+n(s-wave)
configuration.

Configuration (Cy)?

@3/2)3(151/2) 0.918 — i0.020
(P32)(P12)*(1s12)  0.027 +i0.001
(Pan)(dsp)*(1s12)  0.019 + i0.002
(P32)*(P12)(1s12)  0.014 +i0.007

Table 3. Dominant parts of the squared amplitudes (C/,)? of the 1~ state of *He with the "He-+n(d-wave)
configuration.

Configuration (Cly)?

(p32)*(dsp2) 0.918 —i0.013
(P32)(P12)*(dsp)  0.028 4 i0.005
(P32)(dsp)? 0.017 — i0.003

(P32)(1s12)%(dsp)  0.006 + i0.002
(P3)(d3p)*(dsp) — 0.004 4 i0.001

"He+n(s-wave) and the other is "He4-n(d-wave). The different radial components in the same
orbit are summed up. It is found that the "He+» channels dominantly have the (p3»)°® configu-
ration for the "He part, and the last neutron is in the continuum s-wave or d-wave states. Hence,
the dipole strengths to the "He+n channels shown in Fig. 9 are understood to be caused by
single-particle excitation from the ground state of $He.

In Fig. 9, several 1~ states show large dipole matrix elements at around 13 MeV of the exci-
tation energy. In the previous letter [22], it was found that these states have a property of the
strong configuration mixing with the multineutron excitations. This feature suggests the col-
lectivity of four-neutron (4n) excitations and we assign these states as the soft dipole mode of
4n oscillating against the *He core. The excitation energy of 13 MeV looks high but can be
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Fig. 10. Decomposition of the electric dipole strength of 3He using the complex scaling as a function of
the excitation energy E, taken from Ref. [22]. The components are "He(3/2~)+n(s-wave) (blue solid line),
"He(3/27)+n(d-wave) (green dashed line), and the soft dipole mode (orange dash—dotted line); the total
strength is shown by a red dotted line.

naively understood from the 1w excitation of the relative motion between 4n and the *He core
estimated using the mean relative distance in the ground state [22].

In Fig. 10, we show the results of the decomposition of the dipole strength into the "He+4n
channels and the soft dipole mode by using the results of Figs. 5 and 9. It is confirmed that
the "He(3/27)+n channel is dominant below 10 MeV of the excitation energy, indicating the
sequential breakup process via the "He resonance. At 13 MeV, the soft dipole mode makes a
broad peak in the strength, which explains the total strength above 10 MeV as shown in Fig. 6.

3.3 Transition density

The transition density is useful to understand the spatial distribution of multineutrons in the
dipole excitations of ®He [22]. The transition density pg;, ,(r) is defined as the integrand of the
reduced matrix element of the transition to the state v:

<{rlliv||0El||q’0+> = / pE1u(r)ridr, (25)
0
V4 4 8(ri—r)
prLy(r) = —==re ) (Ui llr Vi) = 5—I1%-), (26)
j=1 J

where r stands for the distance between “He and a neutron. It is possible to apply complex
scaling to this quantity; however, the complex scaling changes the spatial distribution of the
integrand along the scaled coordinate of re”. To discuss the spatial property of the transition
density pg . (r) directly, we calculate the transition density with 6 = 0° and select the specific
states with the same configuration properties as obtained with the complex scaling.

We choose a typical state having the "He+n (s-wave) channel with a large dipole matrix ele-
ment of $He, which is the state with label A in Fig. 3. In this state, a single neutron is mainly
excited from the p-state to the s-state, and the transition density is shown with the blue dashed
line in Fig. 11. The long tail behaviour is obtained in the distribution because of the separation
of one neutron from 8He. The second case is the "He+n (d-wave) channel in the state with label
B in Fig. 3. In Fig. 11, this state also shows the long tail behaviour in the green dotted line,
indicating the d-wave neutron in the continuum. The last case is the soft dipole mode with label
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Fig. 11. Transition densities of electric dipole strengths for three 1~ states of *He as shown in Fig. 3 with
labels. Three states are shown with their representative configurations of A: "He-+n(s-wave) with a blue
dashed line, B: "He+n(d-wave) with a green dotted line, and C: soft dipole mode with a red solid line,
respectively.

C in Fig. 3. The transition density in the red solid line shows the large strength concentrating
at 3 fm without a long tail, indicating a soft dipole mode of 4n oscillating against the “He core
[4].

Summing up the dipole transition densities of ®He, there are two kinds of different exci-
tations: single-particle excitations to the "He+4n channel and collective excitation to the soft
dipole mode.

3.4 Possibility of a soft dipole resonance

We locate an isolated 1~ resonance that represents the soft dipole mode of 8He. For this pur-
pose, we adopt a larger scaling angle 6 than 18° used in Fig. 5 in the complex scaling and try
to search for the resonance pole, which is separated from the rotated continuum states in the
complex-energy plane. In the calculation of complex scaling with large 6, the numerical accu-
racy generally decreases because we expand the radial wave function with the finite number of
basis functions. For this reason, several continuum lines in the complex-energy plane often de-
viate from the position at the threshold energies. It is possible to improve the numerical stability
with large 0 in terms of the complex-range Gaussian basis functions [42], which increase the
basis number.

In Fig. 12, we show the results of the distribution of the dipole matrix elements using 6 = 26°
in the complex-energy plane, together with the complex-energy eigenvalues, similarly to Fig. 9.
We obtain one candidate for the resonance pole at (Ey, I') = (14, 21) MeV having a large dipole
matrix element shown by the large size of the circle. Here, large 6 values decrease the numerical
accuracy, so low-energy continuum lines such as the "He+# channel are slightly shifted to the
right direction and not distinguishable clearly. On the other hand, the resonance pole is stably
obtained with this value of 6 in the complex-energy plane. We consider that this resonance
becomes the candidate for the soft dipole resonance (SDR) of 8He.

We evaluate the radial properties of the SDR in Table 4. For unbound states with complex en-
ergies, the matrix elements can be complex, and if the state is a resonance, its radius is uniquely
determined [32,56,57]. We can interpret the spatial size of the resonance using the real part of
the radius if the imaginary part is relatively smaller than the real part.
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Fig. 12. Dipole matrix elements of the 1~ eigenstates of *He using the complex scaling with 6 = 26° in
the complex-energy plane measured from the ground-state energy. Notations are the same as those used
in Fig. 9. The short arrow indicates the eigenenergy of the soft dipole resonance (SDR) with (E,, I') =
(14, 21) MeV showing the large dipole matrix element.

Table 4. Radial properties of the soft dipole resonance of 8He in units of fm. We show matter, proton,
and neutron radii, the mean distance between “He and four valence neutrons o—4#n, and the radius of
four valence neutrons 4n.

matter 3.11 +i0.86
proton 1.97 +i0.28
neutron 3.41 +i0.99
a—4n 2.67 4+ i0.84
4n 3.71 +il.14

It is found that the obtained radial matrix elements of the SDR have larger real parts than
imaginary parts, although this resonance has a very large decay width of 21 MeV. Using real
parts, the resonance shows large spatial sizes in comparison with those of the ground state as
shown in Table 1. The radius of 47 in the resonance is 3.71 fm, which is larger than 2.91 fm in
the ground state. The distance between “*He and 4n also becomes large as 2.67 fm from 2.05 fm
in the ground state. These results indicate that in the SDR, the size of 4n is expanded from that
in the ground state and the mean relative distance also becomes large for dipole oscillation.

Finally, we calculate the electric dipole strength of ®He using the complex-scaled solutions
including the SDR obtained with 6 = 26° in Fig. 13. We also compare the results with those
obtained using 6 = 18°. It is found that strength at around 3 MeV of the excitation energy dis-
appears, because the continuum states of the "He-+# channel are slightly shifted in the complex-
energy plane as shown in Fig. 12. Above 5 MeV of the excitation energy, the strength is almost
the same between the two results of & = 26° and 18°. We further extract the component of the
SDR alone, which is described following Eq. (23) as

dB(E1,SDR) . llm Mg + iM; B 1 MrT/2 — M{(E — E,) 27)
dE I E—Espr | m (E—E)?+T2%4 7
where
Espr = E —iI'/2, <‘ijg+||(021)0||W3DR><®SDR||O%l||lpg+> = MR +iM;. (28)
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Fig. 13. Electric dipole strength dB(E1)/dE of *He as a function of the excitation energy using the com-
plex scaling with 6 = 26° (blue solid line) and # = 18° (red dotted line). Units are in ¢*> fm?*/MeV. The
contribution of the soft dipole resonance (SDR) with 6 = 26° is shown with an orange dash—dotted line.
The resonance energy is shown by the black solid circle on the energy axis.

The obtained distribution of SDR in Fig. 13 is similar to those of the soft dipole mode as
shown in Fig. 10. This indicates that the SDR is the main component of the soft dipole mode
in the dipole strength. The integration of Eq. (27) over energy becomes Mg.

The SDR provides the electric dipole matrix element of My + iM; = 0.55 + i0.25 (¢* fm?)
and the real part Mg exhausts about half of the cluster sum-rule value B.(E1) = 1.01 ¢? fm?
presented in Table 1. This property represents the strong collectivity of the 4n excitation in the
SDR from the ground state of 8He. The imaginary part M; determines the deviation of the
energy dependence of the strength function from the Breit-Wigner distribution according to
Eq. (27) [58], and the peak energy of the strength is shifted from the resonance energy E, as
shown by the solid circle in Fig. 13.

4. Summary

We investigated the possibility of the soft dipole resonance of ®He and its effect on the electric
dipole strength using the *He+n+n+n+n five-body cluster model. We describe the multineu-
tron motion around the *He core in the cluster orbital shell model (COSM) and the complex-
scaling method (CSM) and obtain many-body resonant and non-resonant continuum states
of 8He. The Green’s function is utilized with complex scaling to calculate the dipole strength
function of ®He.

It is found that the dipole strength of ®He shows a low-energy enhancement and the distribu-
tion continues in a wide energy range up to around 20 MeV. Using the extended completeness
relation (ECR) expanded in the complex-scaled eigenstates of 8He, the strength is mainly con-
structed by two components. Below 10 MeV of the excitation energy, two-body continuum
states consisting of the resonance of "He and a neutron contribute to the strength. This is the
single-particle excitation and indicates the sequential breakup process via "He. At around 13
MeV, the collective excitations of four neutrons (4n) make a broad peak in the strength. From
the analysis of the transition densities of the dipole matrix elements, this excitation causes the
soft dipole mode, in which 4n are oscillating against the inert *He core [4], and is different from
the giant dipole resonance, in which the core nucleus is excited.
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For the soft dipole mode, we searched for the resonance pole in the complex-energy plane by
using a large 6 in the complex scaling. As a result, we found one candidate for the soft dipole
resonance at an excitation energy of 14 MeV with a decay width of 21 MeV, which contributes
greatly to the dipole strength in the energy region of 13 MeV. These interesting features of
the dipole excitations of *He can be confirmed by experiments, such as the Coulomb breakup
reaction of 8He (C. Lehr et al. [SAMURAI Collaboration], unpublished work).
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