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Abstract

The cryocooled DC electron gun at Arizona State Univer-
sity is the first electron gun built to implement single-crystal,
ordered surface and epitaxially grown photocathodes to pro-
duce cold and dense electron beams at the source. These
high brightness electron sources are extremely desirable
for ultrafast electron applications such as Xray Free Elec-
tron Lasers, Ultrafast Electron Diffraction/Microscopy, and
electron-ion colliders. Electron beams are produced from
a cryogenically cooled photocathode using a tunable wave-
length laser to emit electrons close to the photoemission
threshold. The full four-dimensional transverse phase space
of the electron beam can be measured by a Pinhole Scan
technique, allowing us to directly calculate the transverse
emittance in both dimensions. In this contribution we report
and discuss the beamline setup for the 4D transverse phase
space measurement and first results.

INTRODUCTION

Major upgrades to electron beam dependent time resolved
tools such as X-ray Free Electron Lasers (XFEL), Ultrafast
Electron Diffraction (UED), Ultrafast Electron Microscopy
(UEM), and linear electron colliders for fundamental physics
research can be realized with brighter electron beams cre-
ated by novel photocathodes [1]. XFELs in particular will
benefit from improvements to the brightness of electron
beams at the source as this produces higher pulse energies
and photon lasing energies [2] and enables them to be built
in a compact framework suitable for university laboratories
which will increase their reach in STEM research [3]. At this
time, there is a push to improve the normalized transverse
emittance which is critical to UED/M and directly related
to electron beam brightness [4—7]. The measure of bright-
ness for photoemission-based linear electron accelerators,
or photoinjectors, with low longitudinal and transverse cou-
pling [1] is the 4D beam brightness, which can be given
by:

MTE’ ey
where E, is the accelerating electric field at the photocathode
surface at the time of electron emission, and » is a number
between 1 and 2 depending on the aspect ratio of the electron
beam [8, 9]. MTE is the mean transverse energy, equal to
%mo(vf) where my, is the electron rest mass and v, is the
electron velocity in the direction transverse to the beam prop-
agation. MTE is related to the normalized RMS emittance
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as:
€ni = 0, \MTE/mc?, (2)

where ¢,,; is the emittance in a direction transverse to the
beam propagation, ¢, is the RMS transverse size of the elec-
tron beam, and mc? is the rest mass energy of the electron.
There are active efforts to improve brightness by creating
higher electric fields; this has been successful through the
use of RF guns [10], but further improvements require a re-
duction in emittance. MTE is limited by a number of factors,
namely things like the choice of the photocathode, the pho-
tocathode’s lattice temperature, the cathode surface quality,
and the wavelength of light used for electron emission.

A low MTE is primarily limited by a high excess energy,
E.,, which is the difference between the photon energy and
the photocathode work function [11]:

MTE = E,, /3. 3)

This can be resolved by using electrons that are emitted from
the tail of the Fermi distribution in metals, which is done
by tuning the photon energy to the work function such that
the excess energy is zero or slightly negative. This results
in MTE being limited instead by the photocathode lattice
temperature as:

MTE = kT, “4)

where T is the cathode temperature and kg is the familiar
Boltzmann constant [12]. Modern photoinjectors fall into a
range of MTE of a few 100 meV [13-16] due to their choice
of laser and cathode. Recent works have suggested using
single-crystalline, atomically ordered photocathodes as next
generation bright electron sources [17-21], and in particular
epitaxially grown alkali-antimonides [22, 23].

A cryogenically cooled 200 kV DC electron gun and ac-
companying photocathode diagnostics beamline has been
commissioned at ASU [4, 24] with an objective to test such
novel materials as cathodes. This electron gun has a versatile
photocathode mounting capability, a cryogenic cooling capa-
bility, the necessary surface preparation tools, and a tunable
wavelength laser for photoemission. In this paper, we de-
scribe the beamline connected to this gun for 4D transverse
phase space measurements.

PINHOLE SCAN TECHNIQUE FOR FULL
4D PHASE SPACE MEASUREMENTS

In Fig. 1, we show the current accelerator beamline with
various elements highlighted for clarity. The beamline con-
sists of 8 corrector dipole magnets to steer the electron beam,
two solenoid magnets for transverse focusing, an aperture
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Figure 1: The beamline consists of corrector dipole magnets
(yellow), two solenoid magnets (red), a 3.0 GHz buncher
cavity, a ”pinhole” aperture element, a 3.0 GHz deflection
cavity, and multiple YAG screens.

element, a 3.0 GHz buncher cavity of the Eindhoven de-
sign [25] for longitudinal focusing, and a 3.0 GHz deflection
cavity. The final element is a YAG:Ce scintillator screen cou-
pled to a CMOS camera and lens. In this beamline we plan
to implement a solenoid scan emittance measurement [26],
a time response measurement [26], a beam cropping phase
space measurement [27, 28], and eventually UED in the
stroboscopic and single-shot modes [29-31].

The emittance in Eq. (2) is a critically important measure-
ment of an electron beam in relation to the beam brightness
in Eq. (1). To find emittance, we use a Pinhole Scan tech-
nique to measure the full 4D phase space using an aperture
element to select a section of the focused electron beam and
illuminate a detector screen after some drift space. This
technique was developed at the MEDUSA beamline in Cor-
nell University [5, 28, 32]. An illustration of the technique
is shown in Fig. 2.

In our beamline we use a thin tantalum foil with 10 um,
30 um, and 80 um apertures to crop to a small portion of
the focused electron beam. After the beam is cropped, the
electrons pass through a drift space before they reach the
scintillator screen which allows us to measure the transverse
momentum spread. The phase space measured will give us
enough information to calculate the 4D beam matrix, which
is the two RMS transverse positions and momenta and their
related correlations
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Figure 2: This is an illustration of the Pinhole Scan tech-

nique. Beam position is measured at the aperture, and the
momentum spread is measured after a drift space.
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In the equation, x and y represent the transverse position
of the beam at the aperture, and the primed coordinates
are derivatives with respect to longitudinal position and
represent the transverse momentum. We use this matrix to
calculate the 4D normalized emittance and determine the
mean transverse energy (MTE) of the beam

€app = (7 B)*|det(Z4p), (6)

where det is the determinant of the matrix. The 4D emittance
can then be used to find the electron beam MTE,

€4D.n

MTE = .
o2mgyc?

@)

In this equation, ¢; is the RMS laser spot size and mc? is
the rest mass energy of a free electron.

IMPLEMENTING THE PINHOLE SCAN AT
THE ASU CRYOGUN BEAMLINE

Simulations of Phase Space Measurements

We modeled this Pinhole Scan technique in GPT [33]
and analyzed the results in MATLAB. We simulated our
expected beam parameters and real beamline elements to
compute an image comparable to our real detector screen
and CMOS camera. The beam was rastered over the aperture
by adjusting the simulated corrector coils. We then used
MATLAB to compute the full 4D phase space of the beam
using the resulting images of the simulation. Using simu-
lation, have predicted results for a large range of values for
MTE’s and beam spot sizes we expect to measure.

The smallest emittance that can be measured is limited
by the aperture used, the resolution of the screen and cam-
era system, and the distance between the aperture and the
screen. In our setup the drift distance is 0.7 m. For this
drift a 1.0 um spot on the screen corresponds to a transverse
momentum of 0.30 eV/c. Assuming a 50 um resolution of
the YAG screen and the camera-lens imaging system, we get
a precision of of 14.97 eV/c in the measured o .. If we use
the 10 um aperture, the smallest possible emittance that can
be measured is 0.53 nm-rad.

Measurements on the Beamline

In Fig. 3, we show a Pinhole Scan of a beam from a
Cs3Sb photocathode on a molybdenum substrate. This pho-
tocathode was significantly degraded since it had been in
the electron gun for over two months since growth. A 532
nm continuous laser with S mW power was focused to the
center 100 pm of the photocathode. A flip mirror was used
to direct the laser beam to a intensity profiler matching the
distance to the photocathode to measure the laser spot size,
which was measured to be 70 um RMS. The beam was fo-
cused and centered onto the 80 um aperture. We rastered the
beam in small steps using an advanced optimized scanning
strategy to suppress errors due to systematic drift [34, 35].
Each image was 811-by-811 pixels and the resolution was
13.636 um per pixel. Our MATLAB code interpreted these
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Figure 3: A full 4D phase space was reconstructed from
our degraded Cs;Sb photocathode grown on molybdenum
using the Pinhole Scan technique. This was measured in
our beamline at 30 keV with a spot size of 70 um. We show
the transverse positions x-y (a), where o, = 158.53 ym and
o, = 151.02 um. In (b) and (c), we plot the 2D phase space
in one transverse axes x-x’ and y-y’ respectively, \[e4p =
27.1 nm-rad.

images to compute the matrix is Eq. (5) and emittance in
Eq. (6). Using Eq. (7), we measured an MTE of 76.6 meV
for our degraded Cs;Sb sample using 532 nm light.

CONCLUSION

Future automation of this code can be implemented to
remove as much of the manual operation of the beam as possi-
ble, particularly in the dipole coil momentum calibration and
in the actual measurement process. Testing single-crystalline
cathodes at cryogenic temperatures will be a priority because
they have demonstrated record low transverse energy spreads,
and measuring the full 4D phase space of such materials at
high voltage in optimal conditions is currently only possible
using this electron gun and beamline.

Cryogenic cooling was not used because the laser was
significantly above threshold energy for Cs3Sb. The next
iteration of this beamline will use our tunable wavelength
laser, which has a 500 kHz repetition rate and a FWHM pulse
length of 150 fs from a pulsed Optical Parametric Amplifier.
We expect to see a difference in the emittance after tuning
the wavelength to threshold and cryogenically cooling the
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photocathode [17]. This beamline will eventually be used for
UED in both the stroboscopic and single-shot modes [31, 36,
37], making it possible to surpass the k-space resolution of
existing UED tools, given proper beam quality preservation,
due to the ability to make use of higher brightness sources
in our electron gun.
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