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RENORMALIZING THE STANDARD MODEL

. FRED JEGERLEHNER
' Paul Scherrer Institute
. CH-5232 Villigen PSI, Switzerland

ABSTRACT

We review the renormalization of the Standard Model of electroweak interac-
tions and go into details of calculating and renormalizing parameters and cross
sections. The main emphasis is on calculations for precision physics with Z
bosons. Theoretical calculations are confronted with recent results from LEP.

I. THE STANDARD MODEL

‘- 1. Introduction

the gauge group [1,2]
Groe = SU(3). @ SU(2) L @ U(L)y .

The known fundamental interactions of elementary particles (strong, weak and
electromagnetic) derive from a local gauge principle (Weyl 1932, Yang-Mills 1954) with

The theory is essentially determined once the matter fields and their transformation laws
under G, are specified. The real world is built from massless spin 1/2 particles, the
leptons and colored quarks. Massless particles necessarily have fixed belicity (chirality).
The relativistic massless Dirac field 3» decomposes into two independent Weyl fields a

left-handed field ¢, = 2<%4) and a right-handed field ¢ = 254

éo-—; 0%?
Pr Pr

In relativistic quantum field theory locality and causality enforce particle-antiparticle

pairing and the spin-statistics theorem to hold. For the chiral fields this implies that a

left-handed field 47, describes at the same time a left-handed particle and a right-handed

antiparticle and a right-handed field ¢ describes a right-handed particle and a left-handed
RN antiparticle. If we count particles and antiparticles separately, using g ~ ¥, we thus
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may consider all fields to be left-handed. If we use the labels r=red, g=green and b=blue
for the quark colors, the list of particles in the first lepton - quark family reads

= ¢ ¢ c c c c
VeL:eL,eL1uLnuLgauLbaquauLgauLb)dLr)dLgrdLb:dLn Lgr“Lb

and there are two additional such families. These are 45 degrees of freedom described
by the free matter Lagrangian

£matter,0 = E&Lmiﬁfuaplpl’;a . (2)

This Lagrangian has a global U(45) symmetry. Natute has chosen the subgroup G, C
U(45) to be a local symmetry

B — Ulz) ¥r,U € Gloc-

This requires the existence of a set of gauge fields V,; which minimally couple to the
fermions

8;.:4’L - —Du'ﬁbb = (a,u - izngriV,u ri) (7

By T;; we denote the generators of the local group (r labeling the different group factors)
and g, are arbitrary coupling constants. Thus, the matter field interactions are determined
to be :

Lmatter,s’nt - Z gr]:-‘; Vu ri (3)

where
78 = Yy Tddbr,

are the fermion currents. We observe that fermions talk to each other only via spin 1
gauge bosons. _

In the unbroken phase, mass terms for fermions are forbidden, since ¥ = Yrr-+
Priby is not SU(2); ® U(1)y invariant.

The transformation properties of the fermions under G, are the simplest possible
ones. Only the fundamental (the nontrivial representation of lowest dimension) and the
trivial (singlet) representations show up. The weak quantum numbers and multiplets are
summarized in the following Tables.

Doublets Singlets

(VE)L (EH)L (u> ) t)L (d3 3 b)L (VK)R (e_)R (U,, i) t)R (d; Sy b)R
ol o | -1 ] 2/3 /3 | 0 | -1 | 2/3 ~1/3
.l 12 | —1/2] 172 ~1/2 0 0 0 0
Y| -1 -1 1/3 1/3 0 -2 4/3 —2/3




group multiplet
SU(3). : leptons
quarks

antiquarks

SU@)r (;ﬂ )L?‘( ?{)L
(:f )L’(g)f,
(;’:)L’( )L

eI_%a UR, dR3
KR CRs SR,
T};: tRa bR

Lo n 3 3

U(l)y :
Y=2(Q-1T3)

representation

color singlets
color triplets
anticolor triplets

weak
isospin
doublets

weak
1s0spin
singlets

abelian
weak
hypercharge

By § we denoted the Cabibbo-Kobayashi-Maskawa (CKM) rotated quarks §y = Ugarqq
where g¢ = (d, s,b) is a horizontal quark vector (see below) [3].
For the massless spin 1/2 gauge fields and the gauge couplings we will use the

following notation,

group fields
SU(?))C G#{
SU(Z)L Wﬂa
U(l)y: Bﬂ

i=1,--+,8
a=1,2,3

coupling

gs
g

!

g

The pure gauge Yang-Mills Lagrangian is given by a sum of independent pieces from

each group factor,
1

vi 1 va 1 v
£YM = —*ZGMW‘G‘U - ZWLWGW“ — ZB’“}B“

where

g
&
Il

3

pri = 6}4Gui - 3qu' + zgsftgk G,uijk
8,(;Wua - 8VW,ua + 2'g'ea.bc"-/Vv.u.bT}Vyc
— 8,B,~0,B,

C))



are the non-abelian and abelian field strength tensors. The crucial consequence of non-
abelian gauge invariance is that it requires the non-abelian fields to be self-interacting
(they carry themselves non-abelian charge) and that the self-couplings are uniquely fixed
once the couplings to the matter fields are determined. Thus one coupling constant
determines three topologically different vertices (Fig. 1).

AN 7,
W g [/
Figure 1: Interrelated interaction vertices of a gauge theory

In the following we will concentrate our considerations to the electroweak subgroup
SU(2)r, @ U(1)y which is broken in the real world to the electromagnetic abelian gauge
group U(1)em known from QED.

The eigenstates of charge @ can be found easily. The W’s have ¥ = 0 and hence
Q = T3, where T3 denotes the 3rd component of weak isospin. The charge raising and
lowering generators are obtained in the standard way. The shift operators

. 0 1
Td:-:Tl:FZTg;T.',:(g 0) ,T...=(g 0)

satisfy the commutation relation
(15, Ty] = T
and correspondingly the fields

1
Wf = E(WM ¥ Z‘W,,;z) (3

carry charge +1. The fields W, and B, both have ¥ = 0 and T3 = 0 and hence Q =0
and thus can mix. The field which couples to the @ = 0 particle v, we denote by Z,
and the field orthogonal to it is the photon

Z, = cosOwW,3 —sinCGwB,

A, = cosOyB,+sinOwW,;. (6)

The weak mixing angle Oy is determined by tan ©w = ¢'/¢. * In terms of the physical
fields we may summarize the structure of the electroweak theory as follows:

1Historically, the electroweak standard model gauge group has been introduced by Glashow in 1961.
At that time only the charge changing weak currents JF and J7 = (J j)T were known. If one argues
them to be the Noether currents which derive from a symmetry, SU(2) being the obvious candidate, the
algebra of generators must be required to close

[T+>T—] =-2T3.

This implies that there must exist a neutral current associated with the 3rd generator Ts. Since the 3rd
cutrent cannot be identified with the electromagnetic current, W3 cannot be identified with the photon
and an extra abelian group factor was necessary in order to unify weak and electromagnetic interactions.
In this way mixing and the weak mixing parameter sin? @y was introduced.
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The charged current (CC) has the form

J¥ = Ju — idu2 = Devu(l — ¥6 )€ + Guvull ~ v5)Ukmge (7

and exhibits quark flavor changing, through mixing by the unitary Cabibbo- Kobayashi-
Maskawa matrix Uxn. The neutral current (NC) is strictly flavor conserving [4]

Jf = Juz — 2sin’ Owit™ = D ¢vulvy — ap¥s)dy (&
f
with
i =2 Qv ©)
f

the electromagnetic current. The sums extend over the individual fermion flavors f (and
color). In our convention the vector and axial-vector neutral current coefficients are given
by

Vg = T3 - QQ_;‘ Sil’].2 @W , ar = T3_f (10)
f

where T3 is the weak isospin (:i:%) of the fermion f. The matter field Lagrangian thus
takes the form

T . g - g -em
Lmatter = ;?,b;z'y”@#gbf + m(J:W“ + h.c.) + meZ“ +ejp A (11)

where ¢ = ¢ sin O is the charge of the positron (unification condition). The discovery
of the W and Z bosons at the pp collider at CERN {5] directly confirmed these weak
gauge boson couplings. On the other hand for a direct confirmation of the weak gauge
boson self-interactions in the Yang-Mills part of the Lagrangian

1 1 .
Lym = _Z(aqu —8,B,)" — Z(auWui - O, Wi+ zgeile#kWW)z (12)

we have to wait for W-pair production at LEP2. Phenomenologically we know that the
SU(2)r ® U(1)y symmetry is broken by the mass terms

- 1 1
Luass = = S mybpby + s MEZ,Z% + =My WiW ™ (13)
f

of the physical particles. Since the mass terms are not SU(2); @ U(1)y invariant this
massive vector boson theory is not renormalizable.

2. The Higgs Mechanism

The minimal renormalizable extension is obtained if we generate the masses by
the Higgs mechanism (Higgs 1964 [6], Weinberg 1967 [1]). The basic idea comes from



the Landau-Ginsburg theory of superconductivity (see e.g. Landau-Lifschitz, Theoreti-
cal Physics, Vol. IX). A massless particle (the photon) moving in a Bose condensate
ground state (sea of Cooper-pairs) behaves like a massive particle (Meissner-effect). The
Meissner effect is illustrated in the following Figure 2 showing the magnetic field of a
magnetic monopol in the normal and in the superconducting phase.

normal \ ™ ™ ™ "superconducting
5 | |
y A
! ‘ ! >\-/ ‘
\ l Y | l
l I
Y L o
Prmagn K L My =0 Prnagn X ":“ P My = & o /T,
o jpf? # 0
Weyl, Yang-Mills Yukawa

Figure 2;: The Meissner effect in superconductivity

One can apply the same principle and couple the “to be massive” fields invariantly to a
scalar ficld which develops a non-vanishing vacuum expectation value. Since we must
break the SU(2)L, we need a scalar field which transforms non-trivially under this group.
The simplest choice is to take a complex doublet with weak hypercharge ¥ =1

&, = ( o" ) \/_(H +w,¢)( ) =%e‘%“"‘ ( g) (14)

and its Y-charge conjugate ®; = i1, ®;

— 5 _..L i dh 1 _ PH i 1
@t'—(__ ¢—-)_\/§(Hs+z tqsz)(o)_'ﬁe <0) ] (15)

the charge being determined by @ = T3+Y/2. In order to write down the gauge invariant
Lagrangian for the scalars we need the covariant derivative, which is given by

!
D@y = (8~ i% By — i57aW,) s (16)
and the Higgs Lagrangian takes the form (requiring renormalizability)

LHiggs = (Du@b)+ (Dﬂ(bb) — A (@j@b)z + /“‘2 (@3—@6) : (17)
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Since the fermion doublets and the Higgs doublets have identical SU(2) transformation
properties, and taking into account the hypercharge assignments, we can write down the
following invariant Yukawa type couplings

Ly ukawa = — (Gze Le®ver + h-C-) - (Gbe L®yr + h-C-)
~ (G L, ®up + hoc.) — (Goy L®ydp + hoc.) (18)

where I; denote the lepton and quark doublets and G.; Yukawa couplings. We choose
u? > 0, such that the Higgs potential has a non-trivial minimum at < H; >=v > 0
which represents the actual ground state (vacuum) in the broken phase. Here, H, is the
neutral scalar component of the Higgs doublet

$o + &5

V2
and H = H, — v is the physical Higgs field with vanishing vacuum expectation value
< H>=0.

Exploiting the invariance of all terms in the Lagrangian we notice that we can gauge
away the fields ¢; in the polar representation given in Egs. (14,15), since the exponential
is a SU(2)-matrix. This means that three (§;) of the four scalar fields (py, §;) are in fact
unphysical. They are called Higgs ghosts or “would be Goldstone bosons”. The gauge
for which the ghosts are absent is called unitary or physical gauge. While L, q¢sr and
Ly remain unaffected by a gauge transformation, Lriges a0A Ly ykawe take a special

simple form, because
H4+v (0
=25 (1)

in this gauge (identifying pyy = H 4 v). One gets
(H + 'v)2

H, =

Litiggs = —(a HOH) + 222 02z, 20 4+ oMWW
—ZH“ _wH - -2-m§,H2
Lyukawa = — ;mf$f¢f (1+ ij—) (19)
and thus, Lhiges + Lyukaws = ﬁmm + Ly with
Ly = —(aH)2 HH?'
_ ;—U—vﬁ s H + A—f—zz-z“zm + —%%EKW;W““H e Q0

as an extra piece, which renders the theory renormalizable.
The Higgs sector is completely unverified so far and its confirmation is a big chal-
lenge for experimental particle physics. The proof of renormalizability by G. ’t Hooft {7]
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rejuvenated particle physics about 20 years ago and preceded the first phenomenological
success of the SM which was the discovery of the neutral currents [8] in 1973.

A basic consequence of the Higgs mechanism is the validity of the following mass-
coupling relations. The vector boson masses are given by

guv qv
My=—, 6 M;=—"+—+—. 2
W= 9 27 9005 Op 1)

The fermion masses and the Higgs mass are given by similar relations

m;:%v,m3=\[2—/\-v. (22)

in terms of the Yukawa couplings G and of the Higgs coupling A. In the standard model
the u-decay constant G, is given by

g 1
G = =
oM V202

and thus the Higgs vacuum expectation value

= 1.166389(22) x 10~° (GeV)™? (23)

v = (v2G,)"/* = 246.2186(16) GeV

is a very precisely known quantity, frequently called the Fermi scale, which figures as
a conversion factor between couplings and masses. One important consequence is that
the existence of heavy particles requires strong couplings and for too heavy particles
this leads to a breakdown of perturbation theory. With other words, particles with
masses large as compared to the Fermi scale are unnatural in the minimal SM. The non-
decoupling of heavy particles is a new feature characteristic of a spontaneously broken
gauge theory. In contrast, in QED and QCD heavy particles decouple as required by the
Appelquist-Carazzone theorem [9].

If we take for granted the SM, we can say that the existence of the Higgs condensate
has been established. Like in superconductivity the Higgs could in fact be composite. It
is certainly a very interesting question, whether there is an underlying “BCS-theory” for
the standard model . In any case, phenomenologically one expects the SM to work as a
low energy effective theory at scales below 1 TeV.

On a formal level the role played by the Higgs mechanism is the following: It

e breaks SU(2)L & U(I)y to U(l)em s
e generates the masses of the weak gauge bosons W=, Z and the fermions,
e provides a “physical cut-off” to the massive vector boson gauge theory.

The prize we have to pay is that

o a neutral physical particle H must exist.
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The mass of the Higgs is a free unknown parameter. At present the limit for my from
LEP experiments is my = 49 GeV. At LEP2 the Higgs search can be extended to about
my ~ Mgz. If the Higgs should be heavier, and this is likely the case, a discovery is
possible only at future colliders like SSC or LHC.

3. Yukawa couplings

The most general form for SU(2);, @ U(1)y invariant couplings between fermions
and scalars follows from the following transformation properties of the fields

Vs =Ly — U(z)L; fermion doublet
&, — U(z)®yy Higgs doublet
fr — fr fermion singlet.

Since we insist in renormalizability, the most general invariant Higgs fermion interaction
is a complex linear combination of terms are of the form

Ly®sfr = (ap¢* +dpdo)dhn, Ls®fr= (8385~ dpé™ Juk
and their hermitian conjugates. Here, 1, j = 1, 2, 3 are family indices and the quantum
numbers of the right-handed singlets are fixed by weak hypercharge neutrality. Since
each family is made up of fields with identical SU(2); ® U(1)y transformation laws
invariant Yukawa couplings are possible for combinations of fields from different families
(Z # 7).

With the fields having identical SU(2);, ® U(1)y quantum numbers one can form
horizontal vectors. For the quarks there are the 4 horizontal vectors ¢,r., qir, qur, 9er
where g, = (u,¢,t) and ¢¢ = (d, 5, b).

In order to transform the fermion mass matrix (obtained by replacing ¢f = ¢o =
v/V2, ¢t = ¢~ = 0) to diagonal form we must perform independent global unitary
transformations of the 4 horizontal vectors. Whereas,

e unitary transformations of (q.,qa)r as a doublet, g,r and g4z do not change the
matter field Lagrangian,

¢ an independent transformation of ¢4z, leads to “mismatch”
dar. = Ukmqar
of the quark fields in the charged current.

This leads us to the form of the charged current

o

IS = (8,6 0)7.(1 — v5)Ukm ( ) 24)
given in Eq. (7) with the unitary 3 x 3 matrix
Vud Vus Vub
Ukm=1 Va Voo Vo (25)
‘/td v:‘,s I/;ﬁb
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which may be parametrized in terms of 3 rotation angles and a phase.

This family mixing occurs if 4 independent unitary transformations are required to
diagonalize the mass matrix, and this is the case if particles of the same charge all have
different masses. This happens to be so for the quarks. If we belief that all neutrinos
are massless no mixing in the leptonic current is possible. Indeed all searches for lepton
number violation have yielded no signal so far.

Due to unitarity, there is no mixing effect in the neutral current, since

Gaz.Gar = Qargdr -

This is called the GIM-mechanism explaining the absence of flavor-changing neutral
currents (FCNC). In fact, in order to explain the absence of FCNC's, Glashow, Tliopouvtos
and Maiani had to propose, in 1970, the existence of a fourth quark, the charm quark ¢
as a doublet partner of the s quark. At that time only three quarks where known [4].
The discovery of the J/+) in 1974 [10] revealed the completeness of the 2nd family with
the charm quark c. The first 3rd family member showed up in 1975 with the discovery
of the T [11]. With the observation of the Y [12] the existence of the b quark could be
established. We are still waiting for the direct observation of bottom’s doublet partner,
the top quark. The direct lower limit for m, from CDF is [13]

m: > 89 GeV . | (26)

We summarize the following important consequences:

e i) all masses of quarks and leptons are independent

e ii) the coupling of the Higgs boson to the fermions is universally proportional to
each fermion mass, for bosons proportional to the square of each boson mass

o iii} there is quark flavor violation in charge exchange weak interactions

e iv) the phases in Uxas are CP-violating and thus potentially capable of explaining
the observed CP-violation in K-decays. At least 3 families are needed to “explain”
CP-violation in this way.

e v) flavor is conserved in neutral currents (GIM mechanism). This is strikingly
supported by experiment, at least for the light flavors.

The leptonic CC has some very special properties, which derive from the apparent absence
of right-handed neutrinos. If v, does not exist m,, = 0 and lepton number L, is
conserved individually for £ = e, p, 7. Among the neutrino-puzzles we mention: Have
neutrinos a mass and if so why are they so small? Do neutrinos have unusual magnetic
moments? Are there neutrinos which are their own antiparticles (Majorana neutrinos)?

The properties of the weak currents have been established in a long history which
started with Fermi in 1934. Here, we only mention some more recent of the fundamental
experimental tests [14]:

10



¢ V-A structure of the CC:
u-decay provides the most sensitive clean direct tests for right-handed currents
(e.g. SU(2)r ® SU(2)r, ® U(1)p_r extension of the SM). The best limit for the
transition amplitude is
Avia

ZVrd <0029 (90%CL)
Av_y

¢ absence of flavor-changing NC at tree level:

(K — ptp”)/T(Kp — all) = (9.5%3%) x 107°
(D% — utp™)/T(D° — all) < 1.1 x 1073
['(B® — ete™)/T(B® > all) < 3x 1073

Flavor-changing NC processes are allowed in higher orders (rare processes).

e special properties of the lepton current:
Present limits on the neutrino masses are:
My

. < 94eV (from*H — °H, e 7,)
my, < 250 keV  (from 7 — pv,)
my,, < 35MeV (from v~ — 37 v,)

L, conservation is established by the branching fractions:

R< 49x1071 (from px — ey)
R< 1.0x1072 (from pu — 3¢)

Neutrino mixing searches (v-oscillations v, < v} also have been negative so far.

Open problems are the measurements of direct CP-violation (¢’) in the K-meson system
and CP-violation in the B-meson system [15]. 'We still do not know whether CP-violation
is a phenomenon which has its “origin” in the CKM-phase solely, or if it’s due to a new
super-weak interaction outside the SM. Still unsolved is the solar neutrino problem [16].
The observed solar v, flux is too low. This could signal flavor mixing (causing conversion
of v, into v, , not visible to present detectors) of the neutrinos which is possible only if
the neutrinos have different masses. Another possibility would be that the v, is unstable.
In summary: no deviations from the SM could be established until now.

4. Fixing the parameters of the SM

Besides the fermion masses, the CKM-mixing parameters and the Higgs mass the
SM has 3 basic parameters g, g’ and v. They are conventionally replaced by parameters
which can be measured directly in a physical process. A specific choice of experimental
data points as input parameters defines a renormalization scheme. Like in QED a natural
choice would be the fine structure constant and the physical particle masses (on-shell
scheme):

ayMWaMZ:mf,mH-

11



Since My will not be known accurately at LEP1 we must use the precisely known
u-decay constant G, in place of M. Thus, we will use the parameter set

o, G.th szmf:mH

for accurate predictions of measurable quantities. In the pre-LEP era when Mz was not
known or known with rather limited accuracy from the pp-collider, instead of Mz the
weak mixing parameter sin® Oy had to be used. For a study of low energy processes
this is still the adequate choice

a, Gy, siny, N(e), Mg, MH

The universal fine structure constant o = €?/4n = 1/137.0359895(61) (determined in
low momentum transfer Coulomb scattering), the Fermi constant &, (from the muon
decay rate} and the weak mixing parameter sin® Oy, () (from low momentum transfer
neutrino scattering).

‘We first discuss the relation between the different parameter sets.

« , Thomson limit g2 — 0

-PeMy, .
Ve
2z
- M -2
= >< Posin® Qe Puue = Gre/G.

Figure 3: Parameters from low energy four-fermion processes

The low energy four-fermion processes are described by the effective Fermi-type La-
grangian

Lefs = -7 (GuiJ"™ + GeJZT*) + eji A4, @27)
which is the low energy effective form (jg?| < Mg, M3) of
- + Y178 Zou em
Ling = 2f(JW +he) + ——2CS®WJZ +ejmA, (28)

12
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The electroweak unification condition and the parameter relations deriving from the
processes shown in Fig. 3 read

1) Vara = e = g¢sinOy
i) VG, = Hdmx = &

ViGre = mmiess = b @
2’“) Po = Q.émiﬁ'. = mz%:%zptree

For the moment we have relaxed from the assumption py = 1 valid in the minimal SM.
From the parameter relations we now obtain the tree level relation

e i ¢*sin’Oy

T = — =
4 4
2 ec Miy sin® Oy
iti) 2 . M,
= V26, M2 (1 P M%) .
If radiative corrections are included this relation is modified into [17]
M «
2G M} ([1—-—2%| = . 30
V2@, Miy (1 poM%) "TTA G

which is the defining equation for Ar (with p, kept fixed at its tree level value!). In
the following we take po = 1, as appropriate for doublet Higgses, such that by the last
relation of Eq. (29)

sinf@w =1— —%-. (31)

The definition of Ar by Eq. (30) is conceptually very simple, all quantities involved
have been measured and can be found in the particle data booklet.

Later, we will often use « and the physical particle masses as a convenient set
of independent parameters. The Fermi constant is then a calculable quantity (u-decay
amplitude). Originally, the u life-time 7, has been calculated within the framework of
the effective four-point Fermi interaction. If we include the QED corrections (Fig. 4)
we obtain the result

1 Gmd 8m? a 200 my 25
-5 {1+§(1+é—;logm)(z—w) . (32)

1, 19273

e

This formula is used as the defining equation for G, in terms of the experimental p
life-time. Present data [14] yield the value given above.

13



O KX KK

Figure 4: p decay with QED corrections in the effective Fermi model

The Z-mass has been determined rather accurately now at LEP1 [18]

Mz =91.176 £ 0.021 GeV (33)
while the W mass we know from the collider experiments U/ A2 [19] and CDF [20].
Using their determination of the mass ration My /M, for which common systematic
errors drop out, together with the Z mass from LEP1 we obtain

My = 80.19 £0.32 GeV (34)

The various measurements of sin® Oy are collected in Table 1.

Table 1. sin? Oy measurements in NC processes [14,19,20,18]

Measurement sin” O
-*}% (pP) 02265 £+ 0.0062 (ave.)
UA2 02202 4+ 0.0084¢ £ 0.0045
CDF 0229 + 0.016 =+ 0002
(ggg)w 0232 + 0.006 (ave.)
CDHS 02275 4+ 0005 <+ 0.005
CHARM 0236 + 0005 =+ 0.005
P. V.in Cs 0.215 + 0.007 <+ [0.017]*
e~D (SLAC) 0217 £+ 0015 =+ [0.013]*
Rye=722 CHARMI |0240 £ 0009 & 0008
assume m; = 140 £ 40 — | 0.230 + 0.016
Iy, Abg LEP 02302 £+ 0.0025
assume m,; = 140 £40 — [ 0220 + 0.006

Assuming pye. = 1, as required by the minimal SM, recent global fits yield for the weak
mixing angle and the top mass (68%C.L.)

sin? Oy = 0.2273 +0.0033 , m, = 12273 GeV Ref. [21]
sin?2 O = 0.2272 +0.0040 , m, =1397F £ 16 GeV Ref. [22] (35)
sin? @, = 0.2325+0.0015 , m;=127+34+17 GeV Ref. [18]

when 40 GeV < my <1TeV.

A very important parameter in electroweak theory is the p-parameter, defined by
the neutral to charged current ratio at low energy. The vV scattering data yield the most
sensitive determination of the p-parameter.
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Figure 6: mg-dependence of various sin® © conversions.

Taking p and sin® O as independent parameters, a recent global fit to all NC-data {22]
yields (the values indicated with an asterisk I have obtained by scaling with the theoretical
predictions)

m. (GeV) 100 140 180 200

sin” Ow 02305 0.2260* 0.2207* 0.2215 | - 0.0010
sin® Oy (SM) | 0.23027 0.22580 0.22048 0.21741

£0 1.003 3.99996* 0.996* 0.994 + 0.003
p (SM) 1.00776 1.01082 1.01492 1.01737
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where the theoretical values (SM) are given for my = 100 GeV. py = ;ﬁ corresponds
t0 piree if We ignore possible radiative corrections from non-standard physics. Thus p,
is remarkably close to the minimal standard model value p¢ye, = 1.

These experimental results are extremely important constraints for possible devi-
ations from the SM. For example, the measured value for sin® @y is clearly in con-
tradiction to the simplest grand unified model, namely, minimal SU(S), which predicts
sin? Ow ~ 0.211 —0.218. Independently, this theory has been ruled out by proton decay
experiments. The bounds on the p-parameter allow to have additional scalar doublets or
singlets which do not affect the minimal SM value p;.. = 1. However, possible Higgs
triplet contaminations are limited because they implies p;.. < 1 and a pure triplet would
giVe pPiree = 1/2.

Since the discovery of the weak neutral current, almost two decades ago, the SM
has been astonishingly successful and one has to wonder why. In the following we will
discuss some important aspect of the SM in more detail with the hope to shed some more
light on its unique structure.

Appendix A. Axial Vector Anomaly and Anomaly Cancellation.

Axial vector currents lead to the axial anomaly [23], which is associated with the
triangle fermion loop diagram depicted in Figure 7. More generally, anomalies show up
in diagrams which exhibit an odd number of axial vector current vertices and which are
UV divergent (and hence need regularization at intermediate steps). One can show that
all anomalies are related to the triangle anomaly, which we briefly discuss now.

n k P2
igy*T; igy"T;
k+ p: k — p,

by
5T
TSk —(Pl +Pz)

Figure 7: Triangle diagram exhibiting the axial anomaly
The amplitude for the triangle graph is given by the integral
T o) = —Tr(TTTE) -
2
g / d4 ET 1 v 1 o 1 A
@r)’ "\F= prric! fic! it ptic )
Adding the diagram we obtain by interchanging the two vector vertices we get an am-
plitude which is bose symmetric

T (pr, ) = Thx (o1, p2) + T (P20 1)
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and for which we impose vector current conservation (condition on possible renormal-
ization counter term)

Pluﬂ?ZA(PhPZ) = quﬂ’jZA(Pth) = 0.

It then turns out that the divergence of the axial vector current is non-vanishing and
uniquely determined by the mass independent anomaly

—(p1 + pz)Aﬂ?ZA(Pth) = il—gﬁDijk’-lEWNPsza #0 (36)

(Adler, Bell and Jackiw 1969). We have introduced the abbreviation Dy, = Tr({T3, T;}T%)
for the representation dependent coefficient of the anomaly. The result can be obtained
as a matrix element of the anomalous divergence equation

2
Oxji(®) = 1o Disp Gt (2)C () (37)

where G, is the (abelian or non-abelian) field strength tensor and G = 26477 Gipg
its dual tensor. This is a very surprising result because the canonical Ward-Takahashi
identities reading

O, (1/;17”%) (z) = i(my—my) (751%) (=)
Ay ("f;l’Y”’Ysi/)z) (z) = i(ma+m:) (1/;1’75%52) (z)

do not exhibit such a term and for massless fields both currents are conserved. The
anomaly given above can be shown to be unaltered by higher order effects. Eq. (37) is
thus the exact (non-perturbative) form of the axial anomaly (Adler and Bardeen 1969 ,
Gross and Jackiw 1972 and Korthals Altes and Perottet 1972). The crucial point about the
anomaly is the fact that its presence spoils renormalizability af a theory! Only anomaly
free theories are viable theories. The appearance of anomalies in a gauge field theory is
strongly related to the fermion representations. Which representations are anomaly free?

o Real representations (R ~ R*) are anomaly free, since D;;: = 0 for all real
representations.
The groups which have only real representations are: SO(2¢ + 1) for (£ > 1),
Sp(2€), Ga, Fy, Eq, Eg. In addition D,y = 0 also holds for SO(2¢£) for (£ > 1)
with one exception: SO(6) ~ SU(4).

e Since for any representation R one has D;;.(R) = D (Ro) - K(R) where R,
denotes the fundamental representation and K(R) is a representation dependent
invariant, all representations are anomaly free if Dy;.(Ro) = 0 . In particular, this
is the case for SU(2), for which (R ~ Rp), and for Eg.

o The groups SU(n), (n > 3) have complex representations (R +# R*) and D;;:(Ro) #
0. These groups are not anomaly save !

If we write

it = g Ty, + drY* Tribr , (38
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at the ~ys-vertex and use

14 _ _!_1 s
s 5 = 5 (39)
we obtain
Diir = Tr({Twi, Te;}Trx) — Tr({Tri, Tr; Y Trs) (40)

which tells us that left-handed and right-handed fields give independent contribu-
tions to the anomaly. Of particular interest for us is the color group SU(3), and
the quark representations. The quarks are in the fundamental representation 3, the
antiquarks in 3*. Under charge conjugation we have

Te] . N
Y — ¢E = 3’)'21!’12 .

Therefore it follows that 1y and g are in the same representation and hence
D;j = 0. Evidently, renormalizability of QCD requires parity conservation and
thus the absence of axial current couplings.

e Finally, anomalies are obtained from abelian axial current couplings. Here we
have to worry about the U(1)y. Per doublet & = (1,%,), using @ = T3 + Y/2,
Q1 — Q2 = 1 and Qr; = Qri, we get

D=3 (Vi Yi)=—12Q:1+6 (41)

which yields Dlepton = 6 and unark = _GNC (ZQE - 1) = —6.

As a consequence we find that the U(1)y subgroup of the standard model is renormaliz-
able if and only if there is the lepton-quark family structure! This lepton-quark duality
is one of the most surprising properties of the SM. Nature seems to take very serious
the mathematical consistency of the theory. Although, a direct experimental “proof” for
the existence of the top quark is still missing, there is strong indirect evidence for its
existence.

Appendix B. How natural is the minimal SM?

We finally try to derive the SM by starting from some general assumptions [24].
Let us make the following assumptions:
1) local field theory
2) interactions follow from a local gauge principle
3) renormalizability
4) masses derive from the minimal Higgs system
5) vg is absent or if it exists it does not carry hypercharge.
We admit that the last assumption looks quit ad hoc, but nevertheless we make it. From
the above assumptions the following picture develops:
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o For the gauge interactions the simplest non-trivial possibility is that the fundamental
massless matter fields group into doublets and triplets which are the fundamental
representations of SU(2) and SU(3).

¢ Since fields are massless all fields can be chosen left-handed. Left-handed particles
and left-handed antiparticles at this stage are uncorrelated.

e We must have pairing for particles that are going to be massive, since a mass
term (we ignore the possibility to have Majorana fields here) has the form 1 =
1R+ Yrir. Notice that for massive particles, only, we know which left-handed
antiparticle belongs to which left-handed particle to form a Dirac field.

¢ For SU(3), triplets we must have pairing in order to avoid axial anomalies. SU(3)
is the simplest group having complex representations. This allows to put particles
in 3 and antiparticles in the inequivalent 3*. As a consequence a rich color singlet
structure (= hadron spectrum) results. Furthermore, confinement requires SU(3).
to be unbroken !

e SU(2),, is anomaly free and hence there is no anomaly condition associated with
this group. To generate mass we have to break SU(2)r by a Higgs mechanism.
The simplest and natural possibility is to chose one Higgs field in the fundamental
representation of SU(2). There is no hypercharge for the moment. The Higgs
field may be written in the form

= 0
<I>6=<i’xb;xb=(1)

in terms of a 2 x 2 matrix field
2
V2

The covariant derivative being given by

‘5= (Hs-}—z'r,-qS,-).

D& = (8, — z'%rawm)@,, ,
the Higgs system Eq. (17) exhibits an extra global SU(2)p-symmetry x; — V¥ xs.
One easily checks that the transformation

& - U(z)dV+

with U(z) € SU(2)pocats V. € SU(2)R giobar leaves the Higgs Lagrangian in-
variant. This implies that the fields (W, W,, W ™) form an isospin triplet with
Mz = My+.

Now consider the fermions (still no hypercharge). Since Ly and ®; are doublets
R; must be a singlet ! otherwise we would not be able to write down an invari-
ant and renormalizable fermion-Higgs coupling. Therefore SU(2);, must be parity
violating of V-A-type! The Yukawa term has the general form

LYukawa. = ——f/fé ( 9192 ) Rj + h.C.
9304
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with 4 complex couplings ¢; and Ry a “doublet” having to right-handed singlets
as entries. Although we have not used hypercharge to restrict these couplings the
existence of a global SU(2)gr-symmetry of the Higgs system allows to transform
the Yukawa couplings ,

$()R; — EVH()WR;

to standard form, V*+(-)W= real diagonal. Since V' € SU(2)gr has 3 parameters
and W is an arbitrary unitary matrix with 4 parameters we end up with one free
parameter such that the system exhibits a global U(1) invariance. This is not
surprising since in the unitary gauge we always can end up only with Ly yieu, in
the simple standard form Eq. (19).

The global U(1) which is a consequence of the minimal Higgs mechanism may be
interpreted as a global U(1)y. We are free to assign to ®; Y = 1, which means
nothing else than that we measure Y in units of the ®;- hypercharge. Then

~ 1
<I>t=‘1>xt;xt=(0)

has Y = —1, and we may write & = (&, ®,). Since we have the global U(1)y
for free, we may assume this symmetry to be local. The covariant derivative for
@ now reads

D& = 8,8 +iLB,&r, — ilr.W,.&

n (7 9 # 3 9@ pa

and we find back the usual Higgs Lagrangian. The 3 real fields ¢, ¢ = 1,2,3
can be gauged away and only 3 out of 4 gauge fields can acquire a mass. Hence
there must exist one massless field, the photon! Evidently we obtain the relations
¢' = gtan Ow and p = M}, /(M% cos? Ow) = 1! instead of Mz = M= when
g' =0
Now, what can we say about the hypercharge of the fermions?:
A Jeft-handed doublet transforms like

. '
Loeshtg

where Y7, is arbitrary. By inspection of Lyuiawe We find for the hypercharges of
the singlets: 1;x must have Y1z = Y7, + 1 and 1,z must have Yop = Y7 — 1. One
consequence is that U(1)y must violate parity. The astonishing thing is that the
fermion current which couples to the photon preserves parity. By inspection we
find

/

D.u,Lf = (3“ — i%YLB - p— i%T3W#3 _ .)Lf
/

DRy = (9u—iSYiB—p—igmB.—-- )R
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.

L 4

and the couplings of Ly and Ry to A, read

Ly ¢ —i(gsinOw % + ¢ cos @W%)Aﬂ
Ry :  —i(g cos Oy % + ¢’ cos @w%)A# .

Because we have ¢’ cosOw = gsin®@w = e we find the Gell-Mann-Nishijima
(GMN) relation

Y
Q=Ts+ 5
as a consequence of a minimal Higgs structure! What we find is, that, whatever
the hypercharge of L; is L; and R, must couple identically to photons. Thus QED
must be parity conserving! Furthermore the charges of the upper (1) and lower (2)
components of the doublets satisfy

Qri=Qri, 1~GQr=1land 1 +&: =Y.

So far we have no charge quantization. Here we need a last assumption.

If vp does not exist we have to set Y,p = 0 and consequently we must have
Yio=-1=Yy=0and Q, =0, @, = —1. For the U(1)y anomaly cancella-
tion we need lepton-quark duality and the charges of the quarks must have their
known values if they appear in three colors. One thus must have the usual charge
quantization.

We finally summarize the consequences of the assumptions stated above:

Breaking SU(2), by a minimal Higgs automatically leads to a global U(1)y, which
can be gauged

parity violation of SU(2).

p = Mé[/(MZcos®?Ow) =1

existence of the photon

parity conservation of QED

validity of the Gell-Mann-Nishijima relation
family structure

charge quantization

We do not know of course why right-handed neutrinos do not exist or not couple in the
: real world and it remains a mystery why there exist family replica.
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. QUANTIZATION AND REGULARIZATION
1. Gauge fixing

 The quantum field theory associated with the classical gauge invariant Lagrangian

oCim: = Ematter + LYM + ‘CHig_gs + »CYukawa
— E[?ilineur + [:i'nt

nv mv

in the broken phase &, = & + J=(3)
SUR)L @ U{(Ly = U(L)em.

may be defined by writing down the path-integral representation
Z{J, %%} = [ DVuDyDpet [EerrtTVaxidue) (42)

for the generating functional of the time-ordered Green functions. By J, %, x, -
we denote the classical source functions. If we would try to choose L.;; = Lin, the
functional integral would not exist. The problem is known from QED. Because of the
gauge invariance of the action Si,, = ¢ [d*'zL;n, the equations of motion do not
determine the gauge fields uniquely. In order to get non-degenerate equations of motion
we have to fix a gauge. A convenient choice is the linear covariant 't Hooft gauge
(R; — gauge). Each gauge field has associated a gauge function

W : CF = -9, WHE LitwMwd* (=0)
Z, : Cg=—8,2"—t;Mzé (=0) (43)
A, : Cy=—38,4% (= 0)

and one adds to the invariant Lagrangian the bilinear Lorentz-invariant gauge fixing part

1 1 1
Lop=——CtC™ — ——C% - —-C% . (44)
Tt 2y 77 2 A
The ¢;’s are independent gauge parameters. For notational convenience we will take
them equal, & = €5 = &4 = ¢ Of course physics must be independent of £ ! The
extra terms in the gauge functions containing the Higgs ghosts have been chosen such
that the non-diagonal (mixed) terms
o L0 = Mwd WHrté™ + hoc. + M38,2%¢

my

drop out in the sum L¥4mes" 4+ Lsp. In this way we achieve a diagonalization of the

terms bilinear in 8, W¥ and ¢, with the consequence that the Higgs ghosts get a gauge
dependent mass. The mass term obtained is

22
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o LB = —EwM ¢t — 22 MEH .

Mass

The gauge dependent masses are another direct indication that the Higgs ghosts (“would
be Goldstone bosons™) cannot be physical. We now obtain the well-defined gauge boson
propagators

1
p? — ME +ie

(45)

Dﬁy(P, f) = 4 (g.uu — (1 — fV)pz _ g:/]:\i[% + ?:E)

for V.= W2, Z,, A, and with M, = m., = 0. For £ = 1 we have the ‘t Hooft-Feynman
gauge where the propagators take the particularly simple form

_ig»u'y

PP~ MZ A e (46)

The renormalizable R,-gauge (R-gauge) provides a one parameter interpolating family of
gauges with the unitary gauge as a limiting case. For £ — oo we indeed get the physical
U-gauge propagator

: 7'p” 1
—i [ g — V=W 2
z(g g ) P Mg v

which is purely transverse. If we write the R-gauge propagator in the form

v . p,u.pu 1 .p“py !
& = — By -
DY (p, &) = —i (9' Mg,) PP~ M% tie | M3 pt—Ey ME + ie

we observe that the first term is the unitary piece while the second term is a kind of
Pauli-Villars cut-off term. The ghost propagators are given by

D¢ (p) = - 47
V(p) p2 . §VM]2/ ‘+‘ ?:E ( )

and freeze out D{’i(p) — 0 as £ — oo (unitary gauge). It is rather amusing to see how

the “gauging away” of the Higgs ghosts works at the level of the Feynman diagrams.

2. Faddeev-Popov ghosts

Unlike in QED adding Lax to the invariant Lagrangian spoils gauge invariance,
unitarity and renormalizability of S-matrix! If we compare the classical abelian with the
non-abelian gauge transformations

Ul) : A,— A, +0w
Cyp—Cy— 0w

SU(2) @ Wy — Wi+ 0ws — g€upe Waews
Ca. - Ca - Dwa + geabca#(wpccwb)
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we observe that the harmless extra term in the abelian gauge function is replaced by a
non-trivial and non-harmless extra term in the non-abelian case. Faddeev and Popov [25]
have found the way out of the dilemma. The restauration of the gauge symmetry can
be achieved by taking into account the functional determinant obtained in the functional
integral under a gauge transformation of the fields (integration variables). If we define
the functional integral as follows, with a Faddeev-Popov determinant,

/’DW Det ( ) ¢ f(£im-FCo)dts

one easily checks that now the functional integral is independent on the specific choice
of the gauge fanction C,. By inwoducing anticommuting scalars, the FP ghost fields
i1, and n,, we may represent the FP-determinant as a Berezin integral over Grassmann
variables (algebra of anticommuting c-numbers) [26]

Det (60 ) /DnDne‘fﬁF*’d z

with

-~ . 6C,
Lpp = oMy ; Mgy = .

by, “8)

As a result we find the proper functional integral quantization
f DW,,, DnDije’ f Lersd'=
with the “quasi invariant” effective Lagrangian
Less = Liny+ Lor+ Lrp . (49)

In the following we will use a somewhat more compact notation. We treat SU(2) ®
U(1)y = G as a single gauge group G with generators T4 and structure constants famc-
The gauge fields and the FP-ghosts are denoted by
GA# H Wf, ZH,A#
VR
Using this notation the FP-Lagrangian reads

A:£,2,7.

Lrp = 7FMipnp + (Mzpnp + RM,p15
with
8C 4 6Gg, 8C4 6%¢
8Go, bwp P T 8%g bwp
Since the quantities associated with a gauge transformation of fields, which appear in the

last equation, will be used for a discussion of the Slavnov-Taylor identities later, we list
them in detail here:

Mygne =
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¢ The gauge variations are given by:

6G 4u
——rr = D
S0 B +wABTB

Duspis = Ou* £i[e(WER = A?) — g cos Ow(WiEC - Z,n*)]
D,z8nB 8, — ig cos Ow (W, n* — Win™)
Duypns = O+ ic(W;:n+ - WI??") (50)

It

53,
5(0 <. B = (D@A)BWB

g (sin® O — cos? Q)

(D¢*)pnp = + [e¢ix + pEC+ %(H + iqﬁ)ni] |

2cos O
(Dé)sns = [2cos®w He+ (¢+ ¢-U+)]
(DH)gnp = 2cos@ ¢+ (¢+ - ¢ ) (51)

&Y,
6_‘"7?13 = (D‘I’ )B"‘?B

(D'ﬂbw)BnB = 1 [ 2COS Ow C 'l:wa \/-T] ¢L£

(Dye)gns = ¢ [‘\7—5 N YLy, + m ¢ Pre — elepy — etan O ( 1/)»:] (52)

¢ For M,pnp we obtain:

Mipns = —On* — Myt — 62 (H 2ig) 9*
+2EMwg cos Ow ((1 — tan® Ow) ( —2tan OwR) o+
+ig cos Owd* (W (¢ — tan OwR) — (Z, — tan Ow4,.) n*)

Mgzgng = —0(—EMEC - f-—zHC (53)
fM_zM_m (¢tn~ +¢ 7%)
+ig cos O (W, nt — Wihy™)
M-anB = —0OR —1e (W;T]-i- — W:T]_)
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Now, the FP-Lagrangian Lpp is explicitly given by the sum of the last three terms
multiptied from the left by 7%, ¢ and R, respectively. A warning should be made here,
Lpp is not hermitian ! Thus in contrast to ordinary fermion loops, FP ghosts contribute
differently for ghosts running clock wise or counter-clock wise in a diagram.
By the above expressions the FP-ghost propagators read

1

AnV(pv &) = p2 — GVME% T ie (54)

and thus look the same as the Higgs ghost propagators. However, they obey Fermi
statistics such that there is a factor (—1) per FP-ghost loop! in the Feynman rules.
Similarly to the Higgs ghosts, the FP-ghosts freeze out (A}, — 0) in the unitary gauge
limit £ — oo with one exception. The FP-ghost partner of the photon A%(p) = pziie
remains in the game. In addition, there are two interaction terms —6-’4:*11‘1‘*1;* (H L 1:4)
and —¢ [MJ%CCH + MaMw ¢ (gty= + ¢~n*)| which have a coupling proportional to £
which in the U-gauge limit give rise to the so called Lee-Yang terms [27]. Since we are
not going to consider calculations in the unitary gauge we need not care further about
these terms.

[ Quantization complete ! |

3. Becchi-Rouet-Stora (BRS) symmetry

The local gauge invariance of the functional integral
] DGDyDietf Lers s (55)

yields relations between Green functions, the Slavnov-Taylor (ST) [28] identities. They
generalize the Ward-Takahashi (WT) [29] identities which derive from global symmetries.
The ST-identities provide the tool needed for proofs of
i) gauge invariance
ii) unitarity
iii) renormalizability
of the S-matrix. ST-identities may be obtained from the BRS-symmetry [30] of L.;;.

The idea behind BRS-symmetry is to dispose of the as yet undefined transformation
properties of the FP-ghost fields 7 and 7 such that

§BR Lo =0 . (56)
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In order to achieve this it is natural to demand the following relations to hold:

i) 6Liw = O

it) 6Lgr = —1CaMupwp
i) 6Lpp = &fMasng +7a6(Mapns)
= —-5£GF

i) DGEDnD7 invariant .

A solution for this set of conditions may be obtained as follows: 1) Introduce anticom-
muting global c—number variables §X, ) anticommuting with  and #, and identify
wp = ngbéA. Thus

[ 5GA = DABWBS)\

where G 4 can be a gauge field, a scalar or a fermi field with D 4gnp given in the previous
subsection. 2) Assume 7 to transform according to the regular representation, thus

o Sna = —39faBcnBncéA

where a permutation symmetry factor 1/2 (antisymmetry of f4pc and anticommutativity
of the 7’s) has been taken into account. 1) and 2) imply 6(M4png) = 0. We thus take
the freedom to choose: 3) The field 7 transforms as

L 5ﬁA = ——%CA(SA

such that conditions i) to iii) are satisfied. One can show iv) to be true for the above set
of transformations which define the BRS-transformation.

4. ST-identities

The BRS invariance of L., allows a simple derivation of the ST-identities. Per-
forming a change of integration variables in the functional integral does not change the
value of the integral. If we choose an (infinitesimal) BRS-transformation we get

z2{J,8,8} = f DGDyDie J(Less+IG+P+Pn)d 2
= j DGDyDie J ()i [(26G+67B+Bon)d 2
= [ DGOy [N +i [ dx(I8G + 67p + Ben)(=)) . (5T

In the second step we have used §A% = O which implies that terms higher than linear
vanish if we expand the exponential. Using 63 = —B6A etc. we can write

. 1 1,
f DGDyD7 i / dz {JADABUB + 'ECAﬁA — 5Pagf ABC’?B"?C} (2)

sei | VLo +IaGa+aBa+BATA) = |
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Taking the functional derivative

7 ——-——6 |
6,80‘ (3:) E=ﬁ=0
we obtain the §T-identities

3

. .1
jDG’DnDﬁ zfdz {ﬁc(x)JADABnB +15Cabcab(z — z)} (2)
Xeifd"y(ﬁeu+JAGA) =0.

(38)
For the time-ordered Green functions, by applying
. 50
(=) -+ |r=0
64, (21) -~ 8T an(zn)
to the functional ST-identity, this implies

1

¢ < OITCC(x)GAI(:I?l) e GAN(QtN)lo >
= <TG, (21) - Tic(@)(Dasns)(zs) - Gay(en)i0 >

replacing G 4, (=}

(39

As an example we obtain for the gauge boson propagators

<O TCo(z)G a0 > = & < T7c(2)(Dasns)(w)0 >, (60)

or, for the individual fields, (by a e we indicates a derivative of a field)
— < T9,A%(2)A,(y) >= & < TR(2)3,R(y) > +iet < TRz} W, nt —Win )y) >

w*
OPNEIIMNO+E OPe D)o pe0+ict 0D )ePed =0
v v R R R gF

— < T8,2¥(x)2.(y) > —EtMz < Td(z)Z.(y) >
= ¢ < T{(2)8,¢(y) > —ig cosOw & < T{(z) W, nt — Win")w) >

Wi
PN o+ EM +£ OB D Pe0+ —igeosOwt O e e ped =0
ey p o_@,\,“ 7 C@ ; g cos O 2

For the mixed cases < T'9,4*Z, > and < T39,Z*4, > we get similar relations. The
ST-identities tell us how the gauge terms like §,Z# cancel against Higgs and FP-ghosts!
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Before we derive another set of relations for gauge field propagators, we consider the
FP-ghost propagator. We have

oJ (Less+IG)dz

/'DG'DW'D?? ﬁc($)5ﬁA(Z)
¢ | DGDADA fo(Mapns)(<)eH )
= - f DEDDiiboab(x — 2)e J) (61)

Il

where the last step is a partial integration. Taking a functional derivative for vanishing
sources, we find

< OlTﬁc(m)(MABT;B)(Z)GA1(-’1’;‘1) v |0 >= 260,;5(3 — Z) < 0lTGA1($1) s [0 >, (62)

which is the FP-ghost propagator in the standard form. We may use this result in
order to get time-ordered Green functions with multiple insertions of gauge functions
C 4. To this end, in the derivation of the ST-identities, we add a source term for Cy4 by
replacing J4G 4 — JaGa+LaC4. This implies a substitution J4 D apnp ~ J4Dapnp+
LM 4pnp in the above derivation and taking the functional derivative

6
ST
L 4(y)

of the modified functional ST-identity, we find

L < 0|ITCc(z)Calw)l0 > = < O|Tiic(z)(Maznz)(y)I0 >

= ibcablz —y). ©3)

Inserting the specific forms of the gauge functions we arrive at the equations

< T3, 4%(2)d,A*(y) >= —it8(z — y)

< TO,A%(2)8,2"(y) > + Mz < TO,AM(z)d(y) >=0

< T8,7%(2),2"(y) > + EMyz < T8,Z2(2)$(y) >

+ EMz < T¢(2)0,Z"(y) > + £MZ < Td(z)¢(y) >= —ifé(z — y)

for the longitudinal parts of the gauge field propagators. One can use these ST-identities
to prove that longitudinal amplitudes in propagators drop out in physical amplitudes. Of
course similar relations are valid for vertex functions and higher Green functions.

5. Dimensional Regularization

So far we have ignored that quantities like the path integral and Green functions etc.
are mathematically illdefined. We assume the theory to be defined by its formal power
series expansion in Lint. The perturbative definition is acceptable if the expansion
is well defined order by order in the permurbative expansion and if this expansion is
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renormalizable i.e. it can be made finite by a redefinition of the parameters (parameter
renormalization) and the fields (multiplicative wave function renormalization).

Starting with the Feynman rules of the classical quantized Lagrangian, called bare La-
grangian, the formal perturbation expansion is given in terms of ultraviolet (UV') diver-
gent Feynman integrals. As an example consider the scalar self-energy diagram

g +P= -_l-—/d“k 1 1 Ikl €ma,me f_‘l_k
> (2m)* k2 — m} +ie(k + p)? —mj +ic k*

which is divergent because the integral does not fall-off sufficiently fast at large k. In
order to get a well-defined perturbation expansion the theory must be regularized. The
regularization should respect as much a possible the symmetries (ST-identities) of the
“classical theory”. Two regularizations are known to respect local gauge symmetries (up
to possible violation of chiral properties):

1. Lattice regularization, which makes possible the application of methods known
from statistical mechanics. In particular it makes possible a non-perturbative ap-
proach (Monte Carlo simulation of lattice gauge theories) [31].

2. Dimensional regularization (DR), which is suitable for the perturbative approach
- [32].

Since we are interested in perturbative calculations we need to discuss dimensional reg-
ularization only. The basic observations behind DR are the following:

i) Feynman rules formally look the same in different space-time dimensions d =
n(integer)
ii) Feynman integrals converge the better the lower d is.
5. 1. Dyson power counting

The action
S=1 f dda:Ee ff

measured in units of & = 1 is dimensionless and therefore dim L.;y = d in mass units.
The inspection of the individual terms yields the following dimensions for the fields:

By 0, . dim =

1o ]
-

(8,Giy — -+ ) . dim G, = 42

0,210 % : dim & = 52

Gy Tip Gy D dim §o = = Go = goul’
Logr = -—51-6-(8#(;? +-- ')2 : dim £ = 0

Lep=—-70n+ - : dimnp = 4
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.o

where € = d — 4, go denotes the dimensionless bare coupling constant (dim go = 0)
and g is an arbitrary mass scale. The dimension of time ordered Green functions in
momentum space is then given by (the Fourier transformation [ d?ge=9% ... gives —d
for each field):

d—2 d—1

dimGrRB2F) = np + 2ng 5

— (ng + 2nr)d (64)
where

ng : Fof boson fields: G, 8,9

onp : ftof Dirac fields (in pairs) :4p---% .
It is convenient to split off trivial factors which correspond to external propagators and
four-momentum conservation:

e amputation of external legs Gna.2nr) _, (np2np)amp
->-é = —i(p —m) O*é : dimG — dimG +1
,,,é = —itpz - mz)o"'\% : dimG — dimG 42
e d— momentum conservation: : G"rB2nr) = (27 )6A(T p,, )G 2F)

yields for the proper amputated vertex functions

d-2 _, d-1
5 TS

A generic Feynman diagram represents a Feynman integral

dimG¥™ = d — ng

(63)

2
ot 4:>IF(P)=f‘§£‘J"'%{}E§3JF(P,k)-

The convergence of the integral can be inspected by looking at the behavior of the
integrand for large momenta: For k; = Ak; and A — oo we find

L dk: Jo(p, k) — A%D)

where

d—-2 d—1

d(T) = d - ng=—— — 2np—

+ i(d,— —d) (66)
i=1

is called the superficial divergence of the 1pi diagram I". The sum extends over all (n)
vertices of the diagram and d; denotes the dimension of the vertex i. The convergence
criterion then reads:

Ir convergent pa d(y) <0 V 1pt subdiagrams y C T
Ir divergent pa 3 yC I withd(y) >0 .
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In d < 4 dimensions, a renormalizable theory has the following types of primitively
divergent diagrams (i.e. diagrams with d(T") > 0 which may have divergent subintegrals):

) ar)

i (d=4) i (d=4)
@ d-3 () ~& & ©
e d-2 () @ 145 @
- i-2 (2) :@: d—4  (0)
> EBrre d—2 (2 n*»@: 1+42 (1)

+Lp(%5*) for a diagram with Ly loops. Thus the dimensional analysis tells us that
convergence improves for d < 4. For a renormalizable theory we have

e dIYL2ford=4.

In lower dimensions
e dT)Y<2ford< 4

a renormalizable theory becomes super-renormalizable, while in higher dimensions
e d(T") unbounded! d > 4

the theory is non-renormalizable,
5. 2. Dimensional regularization

Dimensional regularization of theories with spin is defined in three steps.
1. Start with Feynman rules formally derived in d = 4.
2. Generalize to d = 2n > 4! This intermediate step is necessary in order to treat the
vector and spinor indices appropriately.

1) For fermions we need the d = 2n dimensional Dirac algebra:
{v, 7"} =2¢"1; {+*,%} =0 (67)

where «s must satisfy 72 = 1 and 4§ = +s such that 2(1 & ) are the chiral projection
matrices. The metric has dimension d

g'uygyu = gﬁ =d v Guv = . .. . (68)
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By 1 we denote the unit matrix in spinor space. In order to have the usual relation for
the adjoint spinors we furthermore require

7 =00

Simple consequences of this d-dimensional algebra are:

Yot ® = d1

Yarhy* = (2—d)y (69)
Va7V YY" = 4gM L4 (d—4) vy

VAPV = =290y (4= d)yRy P et

Traces of strings of y-matrices are very similar to the ones in 4-dimensions. In d = 2n
dimensions one can easily write down 242 dimensional representations of the Dirac
algebra [33]. Then

- Trl = f(d) =242
TrITZr v (v*) = 0

= 70
Troiny Z Hd) o (70
Ty = Fd) (0 g £ ) el

One can show that for renormalized quantities the only relevant property of f(d) is
f(d) — 4 for d — 4. Very often the convention f(d) = 4 (for any d) is adopted. Bare
quantities and the related M.S or M S quantities depend upon this convention (by terms
proportional to In 2).

In anomaly free theories we can assume -5 to be fully anticommuting! But then
Tro¥ "y~ =0 for all d # 4!
The 4-dimensional object
42e#07 = Troytoy"vP47ys for d =4 - (71)

cannot be obtained by dimensional continuation if we use an anticommuting 5 [33].

Since fermions do not have self interactions they only appear as closed fermion
loops, which yield a trace of y-matrices, or as a fermion strings connecting an external
3 - - -9 pair of fermion fields. In a transition amplitude [T|? = T'r(---) we again get a
trace. Consequently, in principle, we have eliminated all 4’s! Commonly one writes a
covariant tensor decomposition into invariant amplitudes, like, for example,

f
l“{ = —-ie{'y“Al +’)’#"}’5A2+2'0'“V L A3+}
f 2m
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where g is an external index.

2) External momenta {and external indices) must be taken d = 4 dimensional
because four functions cannot be analytic continuation of three etc. The following rules

apply:

External momenta: p* = (p° p!, 0% p%0,---,0) 4 dimensional
Loop momenta : k# = (O, k41) d dimensional

kz — (kO)z - (kl)z e (kd-——l)2

pk =%k — 5k 4 dimensional etc.

3. Interpolation in d to complex values and extrapolation to d < 4.
Loop integrals now read

4-d __‘_idi e
(2m)?

with g an arbitrary scale parameter. The crucial properties valid in DR independent of
d are: (F.P. = finite part)

a) [dlkk,f(k*)=0
b) [ dkf(k +p) = J dkf(k)

which is not true with UV cut — off’s
o) IEfE)=f(%]):

[ dkf(k) = 2 52 drr T £(r)

d) For divergent integrals, by analytic subtraction, :
F.P. f{° drré~17* =0 for arbitrary o
so called minimal subtraction (MS). Consequently

F.P.[d*kf(k) = F.P. [ d®k f(k + p) = F.P. [ d*(Ak)f(AE) .
This implies that

dimensionally regularized integrals behave like convergent integrals
and formal manipulations are justified. Starting with d sufficiently small, by partial
integration, one can always find a representation for the integral which converges for
d=4—¢, >0 small

In the following we discuss DR for one-loop integrals in some detail.

One-loop integrals:
An integral of the general form

H?:I k#j
i (5 + pi)* — m? + ie)

IF: e lim (Pn e ’pn) —_ fddk (72)
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has superficial degree of divergence
dYy=d+m-2n<d-2

where the bound holds for renormalizable theories and d < 4. Ip is convergent for
d(T) < 0ind=4. If dI') > 0 in d = 4, consider d == n integer > 4 because of vectors
ki, We split the objects into:

Vectors in physical subspace (4 = 0,1,2,3): 3, k-

Vectors in the d — 4 dimensional complement (i =4,--+, d —4): §,k,+-- .
Correspondingly, the notation is as follows:

External momenta : p; =p; pi =0

Loop momenta c k=k+Fk k-E=0
pik =I3£i0
=R+ =k -0k w=|k|
Metric tensor s g =GR+ g* GG =0

gh=4d, gh=4,g=d—-4 .

In physical amplitudes the indices of the integral Ir' "™ are either external (if we resort
to a covariant decomposition e.g.) or contracted. The possibilities are:

1. contraction with an external momentum pf? : k% — Fri (pk = ﬁi?:)

2. the index is external (e.g. - matrix) 4% : §& &k = kw

3. an index pair is contracted (with g,,,) : g, k#k” = k2.

In the first two cases the k*’s can be taken four dimensional, in the last case we obtain
an integral of the form

jddk L? ko, fem—2
(k+ p)* — m? +de [ ((k + pi)* — m? +ie)

We write
k= (k+p)° —mz—(2;61?:—}-132 ~m?)
such that
K _ oy _(2pk 43"~ m?)
(k +p)2 —m? + e (k+p)?—m2+ie

In this way all the one-loop integrals reduce to

e . i j
JE1Bm oy Pa) = d%k JAI
Bt b0) = [ P s

with

&k = d*kd**k = d*kw* S dwdQy_, .
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In the d — 4 dimensional complement the integrand depends on w only! The angular
integration over d{2,_4 yields

omel?
Nef2) ' © 7
which is the surface of the d —4 dimensional sphere. Using this result we get (discarding
4-dimensional indices)

f dQs = S4_g = —4.

In(p) = [ d*kJc(d, 5, F)
where
To(d,B, k) = Sacs [ duonst = f(5,k,0)

Now this integral can be analytically continued to complex values of d. For the w-
integration we have

d(Ty=d—4-2n
ie. the w-integral converges if
d<4+2n (x).
On the other hand the condition for convergence of Ip is
dI)=d+m—2n<0

ie. d < 2n — m but then (%) is also true. As a result we find that
o for a renormalizable theory d(I') < 2 in d < 4 and hence all integrals converge for
Re d < 2. However:

| =55, k)
0

is infrared divergent for Re d < 4. The integral has

domain of convergence: 4<d<4+42n
and is

analytic in a strip: 4< Red<4+2n .
Therefore it can be defined by analytic continuation in the complex d-plane. The analytic
continuation can be obtained by partial integration:

o oo wi—% 8 e
AR v G

d—4

[ =253, k) = 7 £, k)
0 d—4
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The first term vanishes in 4 < Re d < 4 4+ 2n the second term (integral) is convergent
for 3< Red <4+ 2n withapole at d =41 Using

Syes orst d—4 d—4
— Y = 2T .
d—4 I\(d— + 1) (d 4)P( ) P( + 1)

p-fold partial integration yields

d _ 2 5" ap, < d—5+2p _i P s 3
= E=EEy / &tk fo diot 53 ) f(B k) (73)

where the integral is convergentin 4 —2p < Red <2n—-m=4—d®(T) > 2.
For a renormalizable theory at most 2 partial integrations are necessary to define the
theory.

Imd 1 >
s ® UV poles
Shgh
@ @ B
2 3 4 Red
\
\

One problem case remains. For n = 1 the integral [ d°k & diverges for any d! and
hence must be regularized differently

1. either by an IR regulator i.e. finite mass or

2. by an UV cut off.

In the first case we obtain

( )[./d'k'k2 > = m*{4m) y4In 47 —In m

e=4—d—+0

0 form=20.

In the second case we find

1
= d&) d—3 f
(21:')4 ,/ k<A & k &2 (2ﬂ_)d f w convergent for Re d > 2
- (zls,‘:)d a‘i—gAd_z analytical in d .

For Re d < 2 the limit lima_.., = 0 exists and thus as an analytical function:
/ ddk —=0Vd.
Notice that 1. and 2. yield the same unambiguous result!

37



In a similar way we find

1
ik (Y™ =0; =
[d (k%) 0,]ddk(k2)n 0
f ARk - i = 0 (74)
This proves the rule:
F.P. fo dw w® =0 any « (75)

or, equivalently,

perform partial integrations until the integral converges for d < 4 —¢; ¢ > 0
infinitesimal, and ignore boundary terms.

We may summarize the results as follows:

e In DR divergent Feynman integrals can be represented by integrals converging in
the strip 3 < Re d < 4.

e The analytic continuation to this strip is obtained by partial integration and ignoring
the boundary terms.

e The integrals are meromorphic functions in d with poles at certain & = n integer.
e The poles at d = 4 can only be removed by renormalization.
We add two remarks conceming higher orders and infrared problems.

Higher orders: The order of the poles is given by the order of the perturbation expansion
(number of loops)

_m...o- o =" since ><D<oc¢:_l
Infrared problems: m; = 0 integrals

a) One-Loop: the worst case is If*™™ for m = 0. For off-shell momenta (ie. p;
generic) the integral

&’k = [ ath —— .
/ Fe((k 4 pi)? + ie) / k2 + ie (k + p})® + e

has the domain of convergence

2 < d < 2n
T T
for for
IR vy convergence

= 1o problem for n > 1!
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(L4

1)

The only problem case (n=1) has been discussed already before.
b) Higher orders:

1)1 —loop :

d =4
>O< X f_g# k12 (k-[-p)z e (p2)
2)n — loop :

YOO CL s

e
[ 84 B g

This integral is UV convergent for d < 4 and IR convergent for d > 2% "=° 4 { Thus,
in n + 1-loop order the convergence domain is

4
i <d< 4
n+1
and shrinks to zero as n — oo.
Imd 1 ® UV poles
n =1 92 345 X IR poles
Lo
L4 CANNL " Faay s >
2 3 4 Red

Result: For generic off-she]l momenta time ordered Green functions exist in DR also
for the massless case (on-shell is another story!).

5. 3. Tools for evaluation of Feynman integrals

1. £ = 4 — d expansion, ¢ — +0.

For the expansion of integrals near d = 4 we need some asymptotic expansions of
I-functions:

I‘(w +1)

I(z) = L D) =v7; TG =3V (76)

39



P14 0) = ST 42 = ng_;gg B b S (1)

n=2
where ((n) denotes Riemann’s Zeta function.
(1) = —v; v=0.577215.-- Euler's constant

M) = *+(2); ¢2)= fg =1.64403- -

As a result

1

£ £ &
P14+ 2)=1—~2y+(2)

(¥ +L@)+--- an

2. Bogolubov-Schwinger parametrization.

Suppose we choose for each propagator an independent momentum and take into account
momentum conservation at the vertices by é-functions. Then, for d = n integer, we use

i)

y 00
z . f doe—tem?—p* +ie)
pP—m?+ic  Jo

1 oo ikx
§9(k) = oy /_m dipe®

and find that all momentum integrations are of Gaussian type. The Gaussian integrals
yield

. df2
d (R4 _ p | TV 8 (f_) —iab?p?
f dEEP(k)e P ( — ap) =) e

for any polynomial P. The resulting form of the Feynman integral is the so called
Bogolubov-Schwinger representation.

3. Feynman parametric representation.

Transforming pairs of a-variables in the above Bogolubov-Schwinger parametrization
according to (I is denoting the pair (i, k))

(o, o) = (€1, ) = (e, o) = (Lo, (1 — &)a)

fooofoooda;dak--- =f0°oda;0qj:d§z~-- ,
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the integrals are successively transformed into f3 d¢--- integrals and at the end there
remains one a-integration only which can be performed using

/oo dao®e™® = T(a + 1)z~
0

The result is the Feynman parametric representation. If L is the number of lines of a
diagram, the Feyman integral is L — 1 dimensional (all other integrations being “trivial™).

4, Euclidean region, Wick rotations.
Time ordered Green functions may be continued analytically in the complex p° (z9)
plane. Crucial is the ie-prescription in the propagators:

1 1
p?—mitie pO0—+/p2+mi—ic pP°+/p2+mi—ic

We can thus perform a rotation by «/2
p—p; p° =i’ =p'; P~ ~—p
without crossing any pole. The euclidean propagators

1 - 1
pr—m2?+ie p?+m?

are positive (discarding the overall sign) and any integral in Minkowski space may be
obtained via

Inu(p) = ("i)a(i)bIE(Q) |p‘=ip° ; m2om2—ic

from its euclidean version. Here, a denotes the number of internal lines (propagators)
and b the number of loop integrations if we use the substitutions

1 1 i i
pz—mz—{—z's—}g"—i-m?; ]dk—>/djg

to define the euclidean integrals.
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Scalar one-loop integrals (euclidean).

Here we apply our tools to the simplest scalar one-loop integrals (p-1.= partial integration).

m

P

a
-

s

where

N =

{%—)—jfddk -'r-"‘ = pt¥(4x) 4 [§° dao~%e —am?
convergent for d < 2
—2m 2#4 d(4ﬂ,) -d/2 f°° dal~ d/2 —am?
convergent for d < 4
—2mA(4r)~¢/2LE8/) (md )‘*/2 -2
2

2
_2m2(4ﬂ-)—2%1ﬂ(1 + E)Eez(hvhr—lnlf‘i}.)
m2(4r)2 {3 — 7 +1+Indr —n % | + O(e)

d
'@ijgfdkk2+m2 (,_.+P)12+m2 .
4—d(4ﬂ.) df2 fo da’]_dag(a’l + 042) df2, —(a1m? +o:2m2+—-l—2—a 2P
ag =2h; ay={1—2)A
Md-d(47r)-d/21"(2 - %) f01 dz(zm?+ (1 — oym3 + z(1 — m)Bz))djz—z
convergent for d < 4
(4m)22T(1 + §)ed 7 [ dze ™
em24-(1—z)m2+z{l—z)p?
(4m)~? {; —v+Indnr — Jodzln j+-2) 22"' (1-2)p } +O(e)

xm?-}-(l —.-z-)m%+:r(1—:|=)p:z

£ln
=

7

(2‘11’)4 fd k2+m2 (k+p )2-!-1112 (k+201-[-p2) +m3
convergent for d = 4
(47") 2 foo da1da2da3me"(alm1+azm2+aam2)

haz 0‘21’! fazag 92+°a o1 Pa
xe oy dagtog

p=ayr; az=z(l—y)A; aa=(1—z}X; o +agtaz=2A
(4m)~? [} dydzz

2hy (1—y)p +a (1= z)(1 —y)ps + o (1—2) yp;
yzym? 42 (l—y)mi+(1—z)mj

We summarize these results by listing the
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Standard scalar one-loop integrals (m?*=m? — ig).

. om
Crde 1
—p& — o (27 k2 —m? ~ 1672 Ao{rm) (78)
where
Ag(m) = —m*(Reg+1—Inm?). (79)
By Reg we denote the UV regulator
2
Reg:—;—’y-l—hxéw—i—lnpgzlnyz (80)
where the last identification defines the M S scheme of minimal subtraction.
iy e ] ddk 1 . 't .B ( . 2)
A e N T G [ (R R

39

where

1
Bo(my, ma;s) = Reg — fo dzIn(—s2(1 — z) + mi(1 — z) + miz — €) . (82)

b1
my . [ dk 1
o 2 =40 @y (B =) (2o — m) (k + 1+ 2a)” = m3)
3 ]
P2 = — 1575 Co(ma, ma, ms; p}, 73, P5) (83)
where
! de [ d 1 84
Co(ma,ma, 1155 51, 82, 85) = L x.[o Yaz? +oy? +cay+dz +ey + f ©4
with
a = 84 d=m§—-m§—sz
b=s e=m; —ms+s;— 3

c=353—8 —S; f=mi—ic .

The UV-singularities (poles in ¢ at d=4) give raise to finite extra contributions when
they are multiplied with d (or functions of d) which arise from contractions like gf =
d, "y, = detc. For d — 4 we obtain:

dAo(m) = 4Ae(m) +2m? , dBy=4Bp—2. (85)
The explicit evaluation of the scalar integrais (up to the scalar four-point function) is

discussed in Ref. {35].
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5. 4. Tensor integrals (one-loop)
Integrals of the form
d°k kM. .. fim
(2m)¢ (k2 — m){((k + p1)? — mE)((E+ p1 + p2)? — m3) -

can be reduced to scalar one-loop integrals. In DR transformation of variables and partial
fraction decomposition hold true independent of the convergence of the integral. The
reduction of tensor integrals to scalar integrals may be achieved by the following steps:

Iﬂl‘"ﬂm(pl’ .. _) —

i) Covariant decomposition:

IHtm(py, pay - ) = Py 'pitm-[ml(piaplpibpg: SO L EER
in terms of an appropriately symmetrized tensor basis formed with the linearly
independent momenta and g,,,.

ii) Contraction with g,,:

k2 =(k2—m2)+m2=1+ m?
£2 — mi 52 — 2 L2 — m2

iif) Contraction with p;, :

2kp; = ((k +p1)? — mz) — (k% - ml) (9} —m3 + m?)

== -m+meg

etc., until all I,,;’s are given as linear combination of scalar integrals. By 1/(¢) we
denote the scalar propagator with mass m,. In the following we work out

Some basic tensor integrals

A factor #2- is taken out for simplicity of notation, i.e.

/ o 16n® ¢ 'k
r 1 J (2n)

In order to conform with the Passarino-Veltman convention in Ref. [34], we define the
invardant functions I,,--- using a factor (—1)" in front of the integrals, where n is
the number of propagators, and a factor (—1) in front of the g*#*’s appearing in the
kinematical tensors of the covariant decomposition. Accordingly, we consider integrals
of the form

/ | s PRI
(k2 —mi)---((k+p1+p2 -+ Pai)? = mi)

= (1P T )

44



in the following, and calculate the I,.;’s in terms of scalar functions. We now discuss
tadpoles, self-energies and form-factors in turn.

1. Tadpoles

By performing a shift £ — &k + p of the integration variable we easily find the
following results:

1 1
-/k (k+p)—m? fk e = ~A(m) (86)

— 1 g
/(k+p)2—m2 fk?-mz fk? w2 P e TP ) D)
~Ag(m)

k“'ku " VA o
km = —pFpYAg + " An
kE— £ _ n) y k,ukv
= [GmpPEZD s+ [ (88)
Using
ke kY k2 2 1
I [ T2 — 2 —Cliﬂizz_./i’clcz—m2 —/i;1+m /kkz“-m2
e N, rttet!
0 —Ag
we find

dAgg = —-m2Ag(m) ; A21 = Ao(m)
and expanding in d = 4 —¢, ¢ — 0 we get
44y = —mPAs(m)t+edp
~ mt. -ﬁ- + finite

which implies
2mt

ghgy — T 0(¢)
and thus as a final answer
A21 = Ao(m)
m? m*
A22 = ——TAo(m) + ‘8— (89)



2. Self-energies

1 1 .

/kk "l (k) —ml = Bo(m, m2; p°) (90)
k* -

D p“Ba(mzl,mz;pg) (1)

where contraction with p, and using

2pk = (p + k)2 — m2 — (k* — m?) — (p* + m? — m2)
yields

2°B1 = L (1)(2) =k~ b — @t m—md) i mm
= —Ao(m) + Ao(mz) — (p* + m} — m3)Bo

| Bi(mg,me;p®) = # {—4o(mn) + Ao(m2) — (p* + mi —mi)Bo} 92)
k* kY

x{(1)(2)

Contraction with p, gives -

= p*p" By — 9" Boy 93)

2p"(p*Bu — Ba) = [ k&)z(zl)c

= hty—hp— @ +mi-md)ham
= —p'qu(mg) p#(p + ml - mI)Bl(ml)mZ;p )
> 2(p*Ba — ng) = —Ao(ma) — (p* + mi —mi)By

while contraction with g, yields

2 2 1
P8 - a8~ = L+ Lo

> P?'Bm — dByy = ~Ay(ms) + meo(ml, mz;P2)

Now we have to expand in d = 4 — e, — 0: From

2'p2321 - 2322 = -—Ao(mg) — (p2 -4 mf -_ mg)Bl
p’By — 4By = —Ao(ma) + meo — €8y,
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we obtain
By, = %{Ao(mg) —2m2By — (p* + m? —m3)B, — 25.822}
where the UV singular part (¢ pole term) is
B = —(md 4k~ 73)°
and hence
2¢By2 = —(m] + mj — p’/3) + O(e) .
This result also determines
B = 55 {—Ao{rma) = 2(p* + m = m) By — mBo + cBin)

and leads us to the final answer

Bn = 5z {~4d(m2) —2(p" + m} — mi)By — miBo — 1/2(m} + m3 — p*/3)} ©94)
By = ¢{+A4o(m2) — (p* +m{ —mi)By — 2m{Bo — (mi +m3 — p*/3)}
where the arguments of the B-functions are obvious.
3. Form factors
In the simplest cases we define the following invariant amplitudes
f : 1 : = —Co( ma; P, Py, P3)  (95)
e k2 — m% (k +p1)2 _ m% (k + p, +p2)2 _ m‘% - o\"M1, My, M3; D1, P2, P3
[ oo = ki — pAC (96)
& (1)(2)(3) =—hbtn P2li2
EHEY - _pupuc _ #puc ___( o, L + u y)C + g (97)
. “—‘—(1)(2)(3) 1PiCa = PaPrla —\P1P T PePr )23 T 8 g

where ps = —(p; + p2).
The Cy;’s can be found using all possible independent contractions. This leads to the

equations
( P e Cu Ry
PP P /. Cx R,

“~

r—

X
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with .
o= g(Bo(mz,mg;pg) — Bo(my, ms; p3)
—(p? +mi —m3)Co)
Ry = %(Bo(ml,ms;pg) — Bo(my, ms; 1)
+ (p} — p§ —m3 + m3)Co) .
The inverse of the kinematical matrix of the equation to be solved is

B 1 B - -
X7 = DetX ( "Psz I;%pz ) > Dot *pira - (ere)

and the solution reads

1 2
Cun = DeiX {Ple — (P1P2)R2}

1 2
Cis = DeiX {"(Pﬂ?z)Rl "FPle} . (98)

The same procedure applies to the more elaborate case of the Cy;’s where the solution
may be written in the form

m2 1 i 1
Cu = -—'-2-‘00 + 130(2, 3) — Z(ﬁcu + f2C12) + 1 (99)

Ca\ -1 Bs ), Cu \ _ o1 Ba
(&)= (R)(&)-(E) o

with
Rs = Cy—1(fiCn + B1(1,3) + Bo(2, 3))
R.s = —% (fgCu + B1(1,2) - .81(1,3))
Ry = —1(fiCia+ B:i(1,3) - Bi(2, 3)
Ry = Co— %(fzcm - 31(173))
and

fi=pi+mi—md; fo=pi—p+mi—ms .
The notation used for the B-functions is as follows: Bg(1,2) denotes the two point

function obtained by dropping propagator (—1— from the form factor ie. [, —-—-(1)1(2) and

3)
correspondingly for the other cases.
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6. Applications
1. Virtual fermion contributions to gauge boson self-energies
f 2y k + P

i (p) = S s

fl,k

d“k k+ +kik+m
—g§AYB / (r )d {k2 mlﬂ (aB + bB’Ys)(p+ k)2 — ﬂ”(a,a + bA’Ys)}

For the different self-energies the couplings are given by:

agp=ag=a=1

ba=bp=b=—1

( -'? ) doublet my # m, Vi2 assumed
2

1. WtW-:iga=gp =22

2v

aGp=ap =a= 4:Q_f Sin2ew - 2.[3;
by =bp =b=—2I3
f2 = f = f single fermion 23 = X1, my = my = my

2. ZZ:g4=gp="22 ;

. 2
— M . aA=1,aB=a:4Qfs1n ew—QI;;f
3. Z')’ ga = 6QfsgB ) bA=0'bB=b:—2I3f

fo=fi=f My =My = Mmy
a4 —=ag =1

bA=bB=O
f2=f1=f m1=m2=mf

4. yy:ga =g =eQy ;
Calculation of the trace of Dirac matrices:

(k +mi)v(a + bys)s(b + K + ma)y*(a + bys)a
= kv'(a+bys)p(b + k)v*(a +bvys)a
+mymay’{a + bys)sy*(a + bys)a
+terms with odd number of 4’s (have Tr () = 0)
= kv'(p+ k)v*(asap + babp + (a4bpg + apba)vs)
+mymaey ' y*(agap — babp — (asbp — apba)ys)
_I_ .
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Now, Try“v#vs = 0 and Trky"(p + k)vPys = 4ie*P*k.(p + k)p after integration

Ju ko -+ = po - - cannot contribute since e****p,pp = 0.
The trace of the remaining terms is given by:
Tr(--) = 4(g*g™ + g°*¢" — 9°° 9" )ka(p + K)p(anap + babp)
+ 4mymyg*“{asap — babp)
= 4(aadp +babs) {K(p+ k) + k*(p + k)" — g*(k* + kp)}
+ 4(aqap — babp)mamag"”

We now may evaluate the integrals. We use the notations (1) = k? —m? + ¢, (2) =
(p+k)P-mit+icand f,.--= 16n® (g—w')i; - and use the definitions

H

(J;EEQ) = p*p* By — g% By,

ks = B
I (1)1(2) = By = BO(mlam2;p2)
S ﬁ = —Ao(m1); fk'é‘) = —Ao(mz) .

‘We write T1#” in the form

I*(p) = ¢“TL(p®)+ PP Tx(p?)
= (¢~ B + 22 (T, + 1L) .

Only the transverse amplitude II; contributes to S-matrix elements, e.g. if contracted
with a polarization vector the IT; amplitude drops out due to ¢,(p, A)p* = 0. In general
II, cancels against ghost amplitudes.

The relevant integrals we need are given by:

2 e oy FE = p*p*2By ~ g¥V2By,

ey
2 [ &5 (1)%2) = p “p¥2B,
fk lzl;b;c = (fk {2) + fk {1 + (ml + m2 2) fk 1)1(2) ))

2( Ao(ml) Ao(my) + (mi + mi — p*)By)

where, for the last integral, we have used the decomposition

1 1
K+ ph = S(2k° + 2pk) = (K —mi + (k + p)* — m3 —(p" —mi —m3))
' (1) @)

‘We then obtain the result
0 = (—t)gzt9a98

{ (aaap +babs) (~2By + $Ao(ma) + S Ao(ms) + 3(9* — m} — m3)Bo)

+(aAa_B — babp)mimaBo}
I, = (—%)jiz49495

(asap + babp) (2By: + 2B,)
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with
By 57 (—Ao(m) + Ao(mz) — (P> + mi — m3)Bo)
By = gz (—Ao(my) —2(p* +m] —m3)B; —miBo
—1/2(m] + mz P*/3))
By = §(Ao(ms2)—(p*+ ml m3) By — 2miBo
~(m} +mj — p*/3)) .

Inserting the latter expressions yields the final result:

I = 52349495 {1(caas + bAbB) [(m2 + m% — p?/3)
+  Ao(my) + Ao(m2) — (Ao(ml) Ao(ms2))
20t —p? (24 m2)—(m? —m2)? 2 (101)
+ R Bo(ml,mz, )]
+(asap — bAbB)mlszo(ml,mz,p )}

We now specialize the result for the different self-energy functions:
1, W-self energy (contribution of a fermion doublet)

oy = V2GuME 4 3 {m? + m2 — p?/3 + Ao(my) + Ao(mz)

1 'rr2
- 22?i 25’1‘?2’(:1)1)(; _m(;z%)) (102)
L I R Bo(my, ma; p° )}

For the evaluation of IIV"(0) we use the following relations:

Bo(my,mg;p?) = Bo(my,ma;0) + p*Bo(my, ma; 0) + - - -

BO(m]_,mg;O) — _Ao(ml) - Ao(mz)

m} —mj

2(?’?2% - m%)zﬁ’o(mh g, 0) = Aﬂ(ml) 3 Ao(mz) + (ml -+ mz)[l + Bo(ml,mg, O)]

Ao(m) = —m?4+m? ln'u—
where, writing the bare quantities in the M S-scheme, In y? = % — v+ Indx. We find
() = I it gm) 4 o)
+HILE T o) — Aol
\/51%;2431, {27"‘"11 lni - Zg i _ (m} + m%)} (103)
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2. Z-self energy (contribution of a single fermion)

7z = ML ((a? 1 83) [om3 ~ p?/3 + 240(my)

+H(p® = m3)Bo(myg,my; p?)] (104)
+(a% — b%)3m% Bo(my, myg; p* )}

For the evaluation of IIZ%(0) we use:

Ay(m
Bo(msyms;0) = —1-— -—%%;L)
m2
Ao(mf) = —m? + m? In #—2}-
and find
V26, M2
IF0) = i {2650m] + Ao(my))} 05
= VIOM; [om21n T—i} (105)
1672 f ue
a contribution which is purely axial (proportional to by).
3. Z~-mixing (bybg = 0 pure vector contribution)
_ e 1/2
mf” = RN o 2 {om? ~ 573+ 2A0(my)
+(p -+ 2mf)Bo(mf,mf,p )}
ey = 0 (106)
_tQye 1/2
& o S fEGIPMe s (18 5)
m} < p? |
4, ~-self energy (photon vacuum polarization)
82 2
m = Ts%f'% 2y = /34 2Ao(m) + 0 + 2m) Bolmems )}
e 2

!\)
—y

1075y, o1 1) s = 1)G()

_ _f=ra 2
- 1r23p P

where we defined y; = —pzi and G(yy) = —— ln—-d:l with 8y = /1 —y;.
As it shouid be, we find II77(0) = 0 i.e. thc photon remains massless (unrenormalized),
This remains true also at higher orders in the perturbation expansion.

For I1;"(p?) = 5;- we find the following asymptotic values
1 \P >
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ey = £ AQ L

T 16x23
: 82 2
L) v i@t (nE-f) . (108)
m} «| p* |

We may apply these resuits to calculate quantities which show up in the calculation of
electroweak parameter shifts to be discussed in Sections IV and V.

1. p-parameter

The p-parameter is defined as the neutral to charged current ratio, which within
the SM is a finite gauge invariant calculable quantity. For the fermion contributions we
obtain

p = Le=1+4p
pp = EEO M0

FA w
V2Gy 2 2 2mim2 m?
= foxt Ves (mi +me+ In Z%)
2 .
~ X/EG&N . mhcauy 7 mhea'uy >> mlight
B ;o =me

(Veltman 1977). For the known fermion doublets only the top-bottom doublet has a large
mass splitting. A very heavy top yields a contribution

V2G,

top .,
Ap = 1672

2
3m;; my>my .

2. Ar

Within the SM the Fermi constant G, can be calculated in terms of o, My and
M. It thus appears as a correction the the p-decay amplitude

V26, = ——2 — (1+Ar).
t MR- 5

One may write Ar in the form

cos? OQw

Ar = Aa — Ap + Arpem

sin’ O

where Ar,.., collects the numerically small terms (~ (0.6%). The large term A« is due
to the photon vacuum polarization

Ae = TL"(0) - T"(M3)

_ Y M; 5,
= Sﬂ_zf:Qchf(lnm? 3) = 0.06.
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The numerical value is given for the sum of the contributions from the light fermions e,
i, 7, U, d, ¢, 3, b (see Sec. IV). Since the W-mass is not yet very precisely known we
may use this result to predict My in terms of o, G, and M. By solving the defining
equation for My we obtain

M2 2
M3V=p Z(1+\J1—:A° 1 (1+Ar,.m))

1_ and

1-Ap

where p =

mx

Al = .
0 G,

3. NC couplings near the Z peak
The Z ff-vertex to lowest order is given by

) L
(V2G,) *2Mzy*(—Qy sin® Ow + (1 — ’Ys)—;i)

and higher order effects (radiative corrections) may be included by using renormalized
effective couplings:

Gy — psGu = Gnes(M3)
sin? Oy - rysin? O = sin®O;
Since @, G, and M are given, we may calculate sin® ©; using

. Yi£e%
ﬁG’yMjcosz'@fsm?@f = IH—AT'I‘
where Ar; has the form

Ary=ADa—Ap+ Dyrem s

a relation similar to the expression given for Ar, however with a Ap contribution which
is by a factor sin® Oy [ cos® Oy smaller.

We finally calculate another interesting type of diagrams, namely, those exhibiting
a virtual Higgs particle.
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2. Virtual Higgs contributions to gauge boson self-energies

H H
....E.Hluu(p) = W + wvvt"-..:ywu‘ + va»@vv\r

~—

14 ¢
#2g2)? (=g 1 1
v2 ) fk (k2 —{ME e - gtw) k2— M2, +ie (k+p)2—mi +ic
2

+(2) % Foa e i (2K + p)*(2k + p)”
2 v
53 e

Z : g -} aéLw, MW —_— MZ

We take the 't Hooft-Feynman gauge £ = 1 and use 943 = %24’- = \/iGnyy obtaining

= V2G,.Mi,
{p*p* [Bo(Mw,mpy; p*) + 4By + 4By]
—g" [AME By + 48B4y + Ao(mp)]}

Thus we get the amplitudes
IPW(p?) = X’-:%;—m {4Baz + 4M2, By + Ao(mp)}
03" (p*) = lci;,r {4B2 +4B; + Bo} .

In terms of the scalar one-loop integrals we then find for the physical transverse part
V=W,2): ‘

—m2
YV () = Y252 { Ao(Mv) + 4 Ao(rmm) + 2SR Ao(My) — Aofmn)

+(p? + 10ME — 2m? + —LL)BO(MV,mH, 2y |(109)
— 2(M} + m§ — p*/3)}

Proceeding as we did for the fermions we get

2 2
W) = Gt 4Ao(mH)—Ma—mﬁ,—s—;‘—‘urmo(Mv)—Ao(mg))}
VIOML L 5(ME — mly) + dmiy In "F — 6M3 1n 25 (110)
+6M3’V_—m%;lnh—4%}

in the 't Hooft-Feynman gauge £ = 1 and the M S-scheme.
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Using these results we may calculate the Higgs contributions to the parameter shifts.

1. p-parameter

Ap = MEO MmO _ V36 [ 60310 M5 g, 1n M)

M ML T 216x2 u?

2m2 2 2 m2
5(M3 — MZ,) +6 (g’%z:ﬂ—g;ln%g _ ﬁ%ln-ﬁ%)} .
In contrast to the fermion contributions, the Higgs contribution alone is neither gauge
invariant nor UV-finite! Only the sum with the remaining (non-fermionic) contribution
is finite and gauge independent. For y = My an £ = 1 one obtains a possible splitting
of terms which exhibits the full my-dependence in any case.
We finally consider limiting cases: (setting p = M)

i) myg < My:
Ap = V2G, M, . 3sin2 Ow [lncos’Ow | &
p= 1672 cos? O \ sin’ Oy 6
i) myg > My:
2 -2 2
Apz_\/éG,;MW‘:;sm Ow lnmf R
1672 cos? O Mz 6
Notice:

1. For ¢' = 0 (M7 — My, sin? Oy —0) weget ApfeE=0,
W+, Z would be SU(2)g triplet of a global SU(2)r of Liiggs» i.6. Ap™8 mea-
sures breaking of SU(2)g by the weak hypercharge.

2. The limit my — 0 exists and yields a small finite term.
3. There remain no m¥ terms for my -+ oo. Instead one observes a logarithmic
Higgs mass dependence.

Similarly one finds:

2. Ar, Ary
ArHisss  ~ __.__‘/ﬁG“M‘?V_l_]: nm_if _ E
- 1672 3 ME 8
<2
Ar?';ggs ~ ﬁGuM]?V 1 +931n eW In mf;{ _ E
1672 3cos? Ow Mg 6
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#

OE. RENORMALIZATION

So far, we have defined dimensionally regularized Green functions for complex
space-time dimensions d with Re d < 4 which have poles in ¢ = d — 4. These bare
Green functions have been obtained by the perturbation expansion based on the splitting

['b=-cbo+£bint (111)

of the full Lagrangian £; into a free and an interaction part. This splitting is not UV-
finite, and hence not physical, and makes sense only if we have regularized the theory.
The bare perturbation expansion thus is regularization dependent. In particular, using
dimensional regularization it depends on an arbitrary scale parameter p ! For the bare
Green functions the limit ¢ — 0 does not exist! Green functions which allow to take the
limit € — 0 require renormalization, which amounts to 2 reorganization of the formal
perturbation series.

Basic reason for the problem is the following: We have tried to solve the equations
of motion of the system without imposing appropriate boundary conditions. Since our
goal is to calculate scattering matrix elements, the physical boundary conditions are
obvious: We have to introduce renormalized fields which describe, at asymptotic times,
free physical scattering states. For the electron field, for example

R CR) R SR N ¢-X) (112)
must describe a free electron of mass m,. This is the so called LSZ asymptotic condition
[36]

Since masses and the normalization of fields are altered by quantum effects (loops)
the physical boundary conditions (renormalization conditions) must be enforced by renor-
malization. These boundary conditions are conditions on the mass-shell p? = m? of the
external particles, therefore the corresponding renormalization procedure (renormaliza-
tion scheme) is called on-shell scheme.

The independent parameters are the physical particle masses plus a coupling con-
stant. A natural choice for the coupling is the universal (due to electromagnetic current
conservation) fine structure constant . This defines a QED-like on-shell renormalization
scheme with independent parameters:

Q’,Mw,Mz,mf,mH - (113)
All other couplings are then fixed (dependent parameters) by the mass-coupling relations:
M2
sinf@y = 1——%
M3
_ Vé4ra , Véra
9= sin @y 9 = os O
1 T
2G, = —=—o—5—. 114
v2 # v? M} sin® Oy (114)



The renormalization then may be performed in two steps:
1. Parameter renormalization

The parameters in the true bare Lagrangian are the bare parameters o, My, - - -
We reparametrize the bare Lagrangian in terms of the physical parameters (experimental
input) a, Myy,- - - by the following parameter renormalizations:

SM2

Mpy = M+ My =M (14+ )V = W2

mp = mf“l“smf:mf(l'*‘%nﬂ}j‘)

mhy = by = (14 2

o = a+5a=a(1+%) (115)

which have to be performed for the dependent parameters (which serve as convenient
abbreviations only) correspondingly :

.2
sin?Ow, = sin®Ow + §sin’® Oy =sin? Ow (1 + &SI—I;QW-)
sin® Ow
5G
pr = G”+6G#=G“ (1-{- G”) (116)
7]
where, to linear order (suitable for one-loop calculations):
§sin® Ow ) SML  SMYy
sin? O ot"Ow(Zn ~p, )
G, sv=1  ba 6ME,  6sin’Op
= 2 =— = — . 1
G, v=3 a M sin’Oy a1n

It is important to notice that these parameter shifts do not alter the invariance properties
of the Lagrangian. The ST-identities thus keep their bare form. Since the bare parameters
and the renormalized parameters {(determined by S-matrix elements) are gauge invariant
also the parameter counter terms are gauge invariant ! This statement is true only if the
tadpoles are treated properly. Since (momentum independent) tadpoles drop out from
physical quantities we will not discuss them further (see e. g. [37]).

2. Field renormalization (wave function renormalization)

In order that the fields describe properly normalized scattering states we must
renormalize them such that the residue of the propagator pole is unizy.

For simplicity we ignore the infrared problem caused by soft photon effects. This
problem has to be treated in the same way as in pure QED and we assume the reader to
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be familiar with it. We shall use an infinitesimal photon mass m., as an infrared regulator
at intermediate steps. For observable quantities the limit m., — § must exist.
We then write for the physical fields:

Ve = ZyV, en ;V=A,Z,Wi
¢f b =y Zf’ﬂbj ren
Hy = /ZyH,en (118)

and the Z-factors are fixed by the condition that propagators of the renormalized fields
have residue one at the pole.

For unstable particles, like the vector bosons, the location and residue of the pole
are complex. Unitarity requires the counter terms to be real. Therefore the counter terms
are determined by the real parts of the location and residue of the pole, in ths case.

It may be questioned whether independent field renormalizations are compatible
with the local non-abelian gauge structure. In fact the canonical (= bare) form of the ST-
identities only admits a renormalization factor for each field multiplet ! The following
remarks are important here:

e The Z-factors are gauge dependent and in order to get gauge invariant S-matrix
elements there is no freedom in the choice of the wave function renormalization
factors. Only the Z-factors fixed by the LSZ-conditions for the individual fields
lead to the physical S-matrix [38] [39].

e The apparent conflict with the ST-identities is not as serious at it looks at first.
From the path-integral representation of the generating functional

Z{J, >-<—’ X, ‘} — V/"DVFQ‘D'ﬂbD'l!;ei f(£¢;;+JV+i¢+JX+-..) (119)

we learn that a change of the integration variables, for example,

Viis = V2Vt ren

does not change the value of the integral ! This means that if the fields V,,; do not
appear as external fields, all the Z-factors drop out completely in the interior of
the Feynman diagrams. The Z-factors only affect the external legs (source terms
in Eq. (119)) of a diagram, i.e. only external fields carry a normalization factor

1

Vm'b - Vm’ren = _'Z

Vs - (120)

Consequently: If we perform individual ﬁéld renormalizations in the bare ST-identities
their renormalized forms are not altered by higher order corrections, aithough, now, they
have no longer a simple canonical form. Notice that, when written in terms of the physical
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fields, the ST-identities do not look very symmetric anyhow. If one insists in preserving
the bare form of the ST-identities one has to renormalize away only the singular e-pole
terms. These of course satisfy the bare ST-identities. This latter procedure is called
minimal subtraction M S or MS - scheme, defined by the substitutions

MS: 2 4mnd=lnpds

— 2
MS: E—7+In47r+lnpg=ln,u2ﬁ5—, (121)

respectively. These subtractions correspond to a choice of counter-terms

MYz = (6MP)ospv

: : (122)
(badzz = (Sa)ospyy
(6Zs = ($Zdospv

as compared to the on-shell scheme (OS). By the index UV we indicated the e-pole terms
related to the UV-divergences. All the renormalization schemes used by different authors
range from pure M S to pure OS and mixtures of them!

The irreducible vertices are obtained by amputation of the external legs (amputated
legs correspond to scattering states!). Amputation means multiplication with the inverse
propagator which carries a factor Z;. Thus, field renormalization for the irreducible
vertices amounts to multiplication of an external (amputated) field by +/Z;. To leading
order Z; = 1 and we may write

z;=1+5z;;\/5;:1+%5z.-+‘--. (123)

The renormalization procedure for physical amplitudes may be summarized by the fol-
lowing simple rules: Performing the parameter shifts and the field renormalizations and
expanding to linear order (appropriate for one-loop calculations) we get the simple sub-
stitutions (we abbreviate sin? Oy = s¥y)

eQ 7" - Qv (1+ 462, + 62, + &)

€

w

52,
Mant (T35(1 = 15) — 2Qs5%) — Hzpm (Tsf(l — ) — 2Qsshy (1 + %3&5&))
(13025462, + 15 + 155

My i1 — s) — MU y#(1 — )
(14 302w + 362, + 362, + 15 + 152

w “
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and analogously for the other vertices.
3. Renormalization schemes

The notion “renormalization scheme” is used in two different senses of the word.
Often the term is used in a more technical sense as

e a specific way of performing renormalization at intermediate steps. This includes
the choice of the regularization, the way field renormalizations and/or parameter
renormalizations are organised. Some authors emphasize the use of renormal-
ized Green-functions at intermediate steps others are interested in on-shell matrix-
elements only. If the same physical quantity is calculated in terms of the same
parameters to the same order in perturbation theory the result does not depend on
the choice of the scheme. This first kind of distinction of different schemes is
therefore not relevant for the physics.

The second possible distinction of renormalization schemes is more physical, namely as
characterizing

e a specific choice of input parameters. Perturbative predictions in terms of different
input parameter sets are scheme dependent as we shall see below.

We will use the term in general in this second sense. Before we are going to discuss
the scheme dependence of physical predictions we briefly give an incomplete survey
of different schemes nsed for one-loop calculations in electroweak theory by different

groups:

1. MS 2 [41]
2. semiOS : [42, 43} parameter counter-terms OS
: one OS Z-factor per gauge multiplet
3. fullOS {441 leads to S-matrix elements
in one step!
4, * : [45] emphasize VB propagator effects and

running parameters (bubble summation)

The relation between the OS-scheme and the »~scheme is briefly discussed in an Appendix
at the end of this Section.

Notice: If a physical transition matrix element is calculated in terms of a given
set of physical input parameters the answer does not depend on the scheme used at
intermediate steps (the schemes differ by the bookkeeping only). Evidently in all schemes
the starting quantities are the bare or the equivalent M S quantities. If a particular value
for u is chosen one may give numerical values for M S quantities ¢. g. for a7,
sin*O gz = Mz) .
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A scheme dependence of physical predictions shows up if different input parameters
are used in a calculation, A specific choice of experimental data points used as an input
parameter set defines a renormalization scheme (RS). Parametrizations frequently used
are the following:

1) A natural choice of “basic” parameters is the QED-like parametrization in terms
of the fine structure constant « and the physical particle masses

a, MWsMZ)mfa myg (I)

often referred to as the "on-shell scheme”. We shall refer to it as the a-scheme. It allows
for a natural separation of the QED part of the electroweak radiative corrections which
is dominated often by large soft photon effects accompanying external charged particles.

2) In the Standard Model , which unifies weak and electromagnetic interactions,
we can use as a coupling parameter as well the Fermi constant G, instead of «. We then
have

Gy, Mw,Mz,ms, my (II)

as an independent set of parameters. This set is suitable for processes which are domi-
nated by neutral (NC) or charged (CC) current transitions. An important property of G,
is that it is not running from low energy up to the vector boson mass scale My (Mz).
This G ,-scheme thus is a genuine high energy scheme in the sense that no large loga-
rithms show up in the calculation of vector boson processes in the LEP energy region (Z
and W-pair production).

We know that the parameters of the two schemes are related by [17]

T 1
2G, = 124
V26, M2, sin* O 1 — Ar’ (124)
where Ar is the non-QED correction to u-decay calculated in the a-scheme. If not stated
otherwise, we use the definition

sin’ Ow =83 =1— —= (125)

for the weak mixing angle.

A disadvantage of the parametrizations (1) and (II) is that they require a precise
knowledge of My which will be measured precisely at LEP2 only. In order to keep the
input parameter errors as small as possible we have to replace My by G, in (I).

3) The scheme to be used as a starting point for precise calculations of radiative
corrections uses

o, Gy, Mz, mys,mp (I1I)
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as input parameters, with Mz measured from the Z line-shape at LEP1.
4) A similar parameter set using the #-mass instead of the Z-mass

a,Gu,MW,mI,mH (IV)

seems not particularly interesting, since the WW-mass will never be known more accurately
than the Z-mass.

5) Another interesting possibility would be to predict quantities in terms of the low
energy parameters

&, Gu: sin® ®u.ues Mg, My (V)

where sin? ©,,. is determined from neutrino-electron scattering ( by CHARM II for ex-
ample ).

Scheme-dependence can be investigated by predicting an observable in terms of
different input parameter sets. Since not all the parameters are known to the same pre-
cision we proceed as follows: We first predict Mw and sin® 9, in the scheme (III)
and then take any 3 parameters which are independent at tree level to calculate quan-
tities like the vector boson widths T'zs7, T zn, OF the cross-sections o(ete™ — ff),
olete” = WHW ™) ete.

Predictions of physical quantities of course should not depend on the specific choice
of the input parameters and they in fact do not if we include all orders of the pertur-
bation expansion. Actually, the reparametrization invariance is inferred by renormaliza-
tion group invariance. However, practical perturbative calculations are approximations
obtained by truncation of the perturbation serics. The accuracy of the finite order ap-
proximations depends on the choice of the input parameters i.e. finite order results are
scheme dependent [46].

Let us illustrate this point by an example: Suppose we compute a matrix element
M in the «-scheme (I) to one-loop order yielding a result

MW = o™C[1 + ba].

Now, suppose we calculate the same quantity in the G ,-scheme (II) which amounts to a
replacement of @ ~ 137! by o/ = =% 2¢ 128~! i.e. to one-loop order o' = &l + aq]
and

M@ = o/"C[1 + b'o].
Inserting o' we get
MO = MO L sM
with ¥ = b — na and

§M = a"C (‘—ir—z(arl—z_i)—a2 +(n+ Dab')a® + -+ + a1 a2 .
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Thus the result differs by §M. If we do not actually calculate the higher orders
M = M — pr

must be considered as an uncertainty due to unknown higher order effects.

For LEP experiments one-loop calculations are insufficient to get the precision of
0.1% and one has to go to resummation improved calculations by including leading higher
order effects, The study of the scheme dependence of resummation improved results is
a way to estimate missing higher order contributions (educated guess). Of course only
an actual n-loop calculation can tell us what the full n-loop answer is.

Let us summarize the content of this subsection by the following conclusions:

o If a physical quantity is calculated with different input parameters the answer is
the same if we calculate it to arbitrary high orders.

However:

¢ Calculating a quantity to a given order the omitted higher order terms differ for
different parametrizations. This leads to a scheme dependence of the result (ap-
proximate) due to different truncation errors.

o Differences can also be due to different resummation prescriptions (see below).

After these general considerations we now discuss one-loop renormalization in details.
4. One-loop renormalization
4.1, Feynman rules
Starting point is the classical gauge invariant Lagrangian

ﬁin‘u = LYang-—-Mills + Lonatter + L:Higgs + ['Yukawa .

The quantization is obtained by adding the gauge-fixing (GF) and Faddeev-Popov (FP)
terms in order to get the quasi-invariant effective action suvitable for the path-integral
quantization:

Leps = Liny + Lor+ Lrp .

The correct Feynman rules for non-abelian Gauge theories have first been obtained by
’t Hooft [7]. Here we restrict ourselves to write down, in Figure 8, the Feynman rules
in the Feynman - ’t Hooft gauge for the physical fields. The gauge self-couplings are
given in terms of the tensors (momenta incoming)

VerE(py = ¢* (pa—p)* + ¢* (o —p3)” + g7 (ps —p2)’
Tyu,pa — zg,uugpa _ g,u,pgua' . g,uagup
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These Feynman rules are “complete” only in the unitary gauge. In this gauge

. : 1 . k.k, 1
~Wu T 2 — M2 (9 = M? ) k2 — M2
Feynman-"t Hooft unitary (non-renormalizable)

such that 8, W} = 0 on the mass-shell (L.e. k* (---) =0 for k¥* = M?).

A“GA# ) #\NVVVO;: 5 —t g‘w%
- 154 v
+ WO+ MW oo i g gk
+  Ze(O+ M2)Z, ondano —i 9"
+ H@O+mip)H ot o ka—_’,;g

+ interaction vertices :

W-f-
4 .
7«~¢< igyzV?*(p); gy =€, 9z =gcosOw
L~ P2

IE 74 C‘Y’Y
= 82
£

Z
Y diu —-iC;T“”’W(})); C‘yZ = eg CcoS @W
%2, W, Czz = g* cos Ow
W Wi
W W,
v,
_--E_{:: g igv My g V=2,W
Vu
H \\\\ V# 12w
) 2979 92 = ox6y> IW =9
H /',’ V.
S H
___f_I_*:' —2'33}-
\\\\H
H i r/,H 2
\:x:; “is%ﬂ

H " \H
I’ \\

Figure 8a: Feynman rules for Lyar + LHiges
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Figare 8b: Feynman rules for L, tzer + Ly vkawe

Here and in the following we do not explicitly write the ie-prescription for the Feynman
propagators and include it in the mass. Thus M? always stands for M? — ic.

As discussed in Sec. IT the gauge boson propagators are only defined after fixing a
gauge, because the 4-component field W,; describes only 3 physical degrees of freedom
( 2 transverse and 1 longitudinal). A convenient gauge is the general covariant and linear
’t Hooft gange also called “R,- gauge” for which the massive vector boson propagators
take the form

. ku k., 1
— (g.uu —-(1- 5)};:2 _ :sz) £2 — M2 (126)

The prize we have to pay in going from the physical non-renormalizable unitary gauge
to a renormalizable gauge is that we have to take into account ghosts: the 3 Higgs
ghosts ¢* and ¢ and 4 Faddeev-Popov ghosts (%, ¢ and R , which have 39 additional
interaction vertices. The existence of the 't Hooft gauge is conceptually very important
because it allows to interpolate in a continuous way between a renormalizable gauge Iike
the Feynman-'t Hooft gauge with £ = 1 (simple propagators, unphysical polarization,
ghosts) and the unitary gauge reached as £ — oo (no ghosts, Lee-Yang terms, UV-
behavior of off-shell quantities bad). For the gauge invariant (£-independent) physical
quantities this infers at the same time renormalizability and unitarity.
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After these introductory remarks we are going to discuss renormalization in more
detail. In order to be able to control the UV-divergences, we have to use a renormalizable
gauge (validity of power counting arguments). In order to keep notation as handy as
possible we use the Feynman-'t Hooft gauge. We have to inspect those Green functions
which are superficially divergent, propagators, form-factors and four-point functions.

4.2 VB propagator corrections

Since, in physical matrix elements (on-shell quantities), the longitudinal parts of the
VB propagators cancel against ghost amplitudes, as a consequence of the Slavnov-Taylor
identities, we need consider only the transverse part in the following. In order to see how
the splitting into transverse and longitudinal parts works, we introduce the projectors

k. k., k. k,
T;w =quv — ;;2 ] pr = #

transverse projector longitudinal projector
which satisfy
TEA4- LY = &8
=T , LLi=1Lj
T¥Ly =0 , LiT) =0
and write a VB—propagatdr in the form

Dy(k) = —i (T Wa(k?) + Ly, - Ta(k?)
= —i (g - Ta(k?) + kb, - To(k?)) (127)
with I, = k%II, + II;. Thus the transverse amplitude II; is uniquely given by the g,.-

term in the propagator and IT, does not mix with the transverse part. The index 1 will
be omitted in the following

4.2.1 The W-propagator

Diagrammatically the W-propagator is given in Figure 9a. Since the g, -tensor in
front of the transverse self-energy acts as a unit tensor, we may omit it for notational
convenience. Thus —i/(k* — M}, ) represents the free transverse VB-propagator and

defines the self-energy function as the propagator with amputated legs, given by the sum
of one-particle irreducible (1pi) diagrams. These are the graphs which cannot be cut
into two disjoint parts by cutting one line. The tadpole graphs ( 2nd group in the figure
above) play a special role. They must be included if one wants to have gauge invariant
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mass counter-terms. They cancel however in physical quantities and will be omitted
henceforth. At one loop order the propagator is then given by

—i Dy (k%) = 7

_2—-—:%4"3; (—i Hw(kz)) - —1

2 ME,
The full or dressed propagator is given by the geometrical progression (Dyson summation)
O'\NW\@VV\WO = Owann0 +OnEERnAn0 +W®W@-~o 4o

-1

b (CiThp) e +
Mg kML R M,

— -2 -1
— (4 —_ T (i) ———— ...
o, W g, G e

= —Iy ~yw |\’
- e () () -

—2 1 —1 ) 2
= kz-—M%; {1_}__;_:3_%} - kg'—MI?V+Hw(k2) =—3.DWUC )
(129}

Let us briefly discuss some important properties of Il :
1) Iy (k?) is complex, when k% > (m; + my)?

Iw = Re ly + ¢ Im Iy

my and m, are the masses of the particles into which the W can decay. For example
W= can decay into 7,e~ and we have m; = m,, = 0 and m, = m, so ImIlw # 0 if
k% > m?. As arule, a cut diagram

my

k
my
contributes to the imaginary part if the cut diagram kinematically allows physical inter-

mediate states. The W is an unstable particle and on the mass-shell k% = My, of the W
we have

Im Ow(k* = My) =My Tw #0 (130)
defining the finite width Ty of the W-particle. The real part Re Iy is UV-divergent
and requires renormalization: At lowest order the propagator is

1
Dw =91

68




which has a pole k? = MZ with residue one. In higher orders we define the mass (and
the width) from the location of the pole of the propagator, which for unstable particles
lies in the complex k%-plane. We define the pole to lie at

(k%)pote = M — i Mw Ty = My (131)
thus we have the correspondence

physical mass <=  real part of location of propagator pole
width <=> imaginary part of the location of the pole .

By our derivation above we obtained

1

Dw =5 — M2, + Ow(k?)

with Re IIw (M%) # 0, which tells us that the location of the pole gets shifted by
radiative corrections . Consequently, My in the previous equation cannot be the physical
mass of the W but it is the bare mass. Thus

My — My = My, + My,
where M7, is the mass counter-term fixed by the condition:

Re[k* — M}, — My + Uw(k) oy, =0
iy (132)
M, = Rellyw (M%) ~ Relly (ME,)

this removes the quadratically divergent term from the W self-energy. Since I'y /My =
O(a), we may use M, ~ MZ, in the one-loop approximation. Now, after one subtrac-
tion, '

1
k2 — My, + (Mw(k?) — Rellw (33,))

Dy =

is logarithmically divergent, only. Thus it still has poles in e = d — 4. If the W is not
an external particle (describing a scattering state) we may use minimal subtraction here
by applying the substitution Eq. (121). This procedure preserves the bare form of the
Slavnov-Taylor identities. For an external W we have to proceed differently and perform
on-shell wave function renormalization: It is fixed by the condition

o the real part of the residue of the propagator pole must be normalized to one.

Because the W is a charged particle the on-shell residue of the pole does not exist for
massless photons (QED infrared problem). As mentioned earlier we use an infinitesimal
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photon mass in this case in order to be able to proceed in the canonical way which, in
a strict sense, applies to neutral particles only. After these remarks we go on with the
determination of the residue of the pole. If we expand the self-energy at the pole

. v dllw o~ .
My () o My (M) + (K = Mfy) —- (M) + -+ 5 ¥ — I3,
we obtain, using §M%, = Rell(M%), MwTyw = ImII(ME),
1
Dw = -
k2 — M7 + (Tw(k2) — Rellw(113))
1 1

= . ~— + O(k% — M
k2 — Mg 1+ 4w (A7) ( w)

and the residue of the pole can be read off., If we now perform the field renormalization
Eq. (118) and consider the propagator of the renormalized field Dy rer. = Zi7 Dw bare
1. e.
1 1 1
k2 = My +Twren(k?) — Zw k2 — M3, + (Tw(k?) — Rellw (3M3))

(133)

which is required to have residue one and thus
dllw
dk?
If we expand to linear order (suitable for 1-loop calculations)

dllw
dk?

-1
Zw = Re [1 + (Mgv)] : (134)

8Zw=Zw —1~—Re

(ME) (135)

and the renormalized self-energy function reads

O ren(k?) = Iw(k?) — Re My (ME) — (k* — M%) Re %‘;X(Ma,)

+O((K — M%) (136)

The wave function renormalization also affects the imaginary part and hence the width
by a next order term. Denoting by A_I‘g) the next order corrections not considered here,
the corrected width reads

: dIl
Iy = (1) + ard) /(1—|—Re dk‘;"(Mgg,)) : (137)

We finally notice that the inverse bare propagator

-1

_2‘ Guv 'D;VI - —Z gy.l/ (k2 - MK%V + HW(k2)) = AnAnnae + J\M@\fvv'
is given by the irreducible self-energy diagrams.
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Figure 9b: Z self-energy diagrams

f w W
v &2 Z,7= > “Qw . W< },,M,. + JW\{A:ZM,-

Figure 9¢: v and 4 Z self-energy diagrams

l@i=_ﬂ._+_,&§_+_,ﬁﬁi

Figure 10: Fermion self-energy diagrams

f y 7 1%
@«w=7,z§>w~+ W>~w+ f’|}~wv~
bi f! 174

Figure 11: Electromagnetic vertex diagrams
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4.2.2 The (Z,)-propagator

The renormalization of the Z-propagator

Z __Z Z Y
NNEOIAAD = OvnnnD + OAAEEIANG + ORI AEEDAnnO + OAE DA EEDAND o 3
proceeds similarly to the W-propagator, however, the situation is complicated by v — Z
mixing

Lol 40 -
Due to mixing one cannot treat the Z and the -+ propagators separately. They rather form
a 2 x 2 -matrix propagator. The simplest way to treat this problem is to start from the
inverse propagator given by the irreducible self-energies (sum of 1pi diagrams). Again
we restrict ourselves to a discussion of the transverse part and we take out a trivial factor
—1 g, in order to keep notation as simple as possible. With this convention we have
for the inverse v — Z propagator the symmetric matrix

-1 _ k* + H‘W(kz) H-vz(k2)
D ( (k) K — ME + Tgp(k?) ) (138)

Using 2 x 2 matrix inversion

_fab o 1 ¢ —b
M_(b c)#M _ac-b2(—b a)

we find for the propagators

1 1
D.ﬁ. = e jacd
(%?) 2 2

k.2 + Hw(kz) —_ H—_m k + H’?‘Y(k )

Doy = —11,z(%*) - —1L,z(k?)
T B+ I (R)(R? — M3+ pg(R?) — I2,(R?) — k2 (k2 — M3)
1 1

Dzrz = T > . (139

kz—M.gz'f'HZZ(kz)—p—;‘%z—z; k? — M3% + T zz(k?)

These expressions sum correctly all the reducible bubbles. The approximations indicated
are the one-loop results. The extra terms are higher order contributions. For precision
physics at LEP they have to be taken into account because, as we shall see later, one-
loop approximations are insufficient. Of course we have to proceed order by order in
perturbation theory and we only discuss the one-loop case here. At one-loop order
the Z propagator is renormalized in the same way as the W propagator. Thus with
M2, = M2+ 6M% and Z,p = VZ 75 yren

dilzz

-1
——dk—z(M%)] : (140)

5M%:R6H32(M%), Zz = Re [1-}-
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1 Diagrammatically the Z-propagator is given in Figure 9b.
For the photon propagator the unbroken local U(1),,,-invariance (conservation of
the electromagnetic current) implies

I, (F*) = B I, (k?) (141)
and hence (ignoring the higher order mixing term (see below))
i Y
1
G0 g, D) (142)

T E LI T

and thus the pole is strictly at k% = (. No photon mass term is generated by higher order
effects and there is no photon mass renormalization. Like in QED, the photon wave

1We should mention that the definition of the physical vector boson masses My and Mz is not unique
because of the instability of these particles. Usually they are defined by the real parts of the locations of
the poles of the wansverse parts of the W and Z propagators:

1
§ - MPZV - 6M3V + Ow(s)
1 .
s =~ M§ - 6MZ + Tizz(s) — (Hyz(s))?/(s + Iy (s)

To the order O(«) (neglecting the mixing term in the Z propagator), M? is the physical mass if we fix
the mass counter-term M2 by §M? = Rell(M?). The total width T is determined by the imaginary part
of the self-energy function I according t0 MT = ImII(M?).

A subtlety comes in, if we want to include higher order effects, becaunse the vector bosons are unstable
particles such that the poles of the propagators are Iocated at complex values so = M 2_iMTofs. To
our knowledge, afi LEP physics calculations , which intend to include higher order effects systematically,
have been using the “physical” masses defined by the location of the propagator pole in the zero width
approximation such that

Dw(s) =

Dz(s)

§ME = Relw(ME)
§M%Z = Re(lzz(MZ)— (Wyz(ME))* /(M3 + Iy (M3)))

are the mass counter-terms. Since, near the resonance, the imaginary part of II is linear in 5 to a very
good approximation, Imll(s) = sT'/M [47}, the real part of the location of the pole is not M? but
M2 = M?—T? ( by insertion of so given above in ImIl(s) ) (see Conscli and Sirlin in Ref. [47]). Thus,
there is a difference between the two definitions of the mass given by A — M’ = 302/M. The "true”
mass M’ to the order O(a?) coincides with the “reduced” mass introduced by Bardin et al. [49], which
is obtained if one redefines the mass and the width in such a way, that the s dependence of the width in
the propagator disappears near resonance:

5 1 s
(s — M?)? +52£—22 T 1492 (s — M)y 4 MI2

Tpeak X

with v = O/M, M' = M//1+~y?and IV = T'//1 + ~2 So MZ-M_;; is about 35 MeV and, depending
on the top mass, My -My, is about 30 or 40 MeV.

It should be stressed that this higher order ambiguity in the definition of the vector boson masses does not
mean that O(a?) effects are not taken care off correctly in the standard approach, The two definitions just
lead to a different bookkeeping of the higher order effects.
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function renormalization is given by

Zy = [1 411, (0)] " = 1-1I,(0). (143)

The mixing amplitude has to be renormalized as well. The proper renormalized
photon and Z fields must be determined such that the (v, Z)-propagator has the correct
particle pole structure. To this end we have to guarantee that the renormalized propagator
matrix is diagonal at the photon pole k2 = 0 and at the Z-pole k% = M2 =~ M%. This
is satisfied precisely if the v — Z mixing amplitude vanishes at both poles (see (139)).
Thus the renormalized mixing self-energy must be

L2
H’rZ fen(kz) = Hvz(kg) - H'VZ(O) - —.M'—% (RSH'yZ(M%) - H’}’Z(O)) . (144)

This can be achieved by two subsequent transformations of the bare fields:

i) Infinitesimal (perturbative) rotation

(é:) - (Ai _Af)(g:)

diagonalizing the mass matrix at one-loop (n+1-loop) order given that the mass
matrix has been diagonalized at tree (n-loop) level.

ii) Upper diagonal matrix wave function renormalization inducing a kinetic mixing
term (this cannot be done by an orthogonal transformation)

Al ) {2, —Az )\ [ A4
z 0 VZz ) \ Z
which allows to normalize the residues to one for the  and Z-propagator and to

shift to zero the mixing propagator at the Z-pole.

Thus the relationship between the bare and the renormalized (LSZ) fields is (expanded
to linear order)

Ab =y Z-yAr - (AZ + ‘/—\0) Zr
Zy = \JZgZ.+ Ao 4, , (145)

generalizing (118). The counter-terms A, and Ay are determined by the condition (144)

_ H’YZ(O)
ANy = __M%
Ay = ReH’YZ(M%) _ H?Z(O) (146)

M3
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The field transformations of course induce mixing counter terms at the vertices. Again,
this non-symmetric transformation only affects the bookkeeping such that the propagator
pole structure becomes obvious. It does not change the value of the functional integral
i.e. the mixing counter terms cancel in the interior of Feynman diagrams.

4.3 Charge renormalization

In electroweak theory charge renormalization looks formally pretty much the same
as in pure QED. There are of course additional Feynman diagrams contributing. In
particular there are new ~yZ mixing contributions. The fermion propagators are renor-
malized in the same way as the electron propagator in QED. However unlike in QED
the right-handed and left-handed fields are renormalized in a different way such that

8Z¢ = zyp + Zagys - - (147)

Finally, we have to determine the counter term for the electric charge. The condition is

that . +
v : Z
= + +4 4 counter terms
e

evaluated in the Thomson limit (k% = 0, E,, — 0) gives the renormalized charge e. Thus

. be i (7] II 7z
— Fil4— 4 =62 ve + AT — —— £ L
z6{7 ( tg TRl t st A 2 sin Oy cos Ow M2
Yyee Qg H-yZ e koz ~yee
Hzae + 43 2 sin Ow cos Oy M2 )75) i 2m, 43
— — tey* in the Thomson hmit (148)

where AY°® are vertex corrections and IL, 7 is the v — Z mixing term. By the electromag-
netic Ward-Takahashi identity (0,5%, = 0) some of the diagrams cancel. For example,
we have (V =+, 2)

V
7
V>"’*+% }'\'\.'F% V}va:O

The diagrams with the loops sitting on the external legs are contributions to the wave
function renormalization and the factor 1 has its origin in Eq. (123).
While in pure QED
de 1 1_,
— = —§5Z¢ = EH”’(O)
in the Standard Model we find
§ 1 — 458, 11
_P: 2 (0) _ 1 4:SW 72(20)
27 4swew Mz

— A7°(0) — Zye = %Hg(o) +2KsL. (149
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2
where K = %, L=1In Mﬂ%‘ﬁ. The last texm is the non-abelian contribution from bosonic
Tow
loops in the M .S scheme and the Feynman-"t Hooft gauge. Since

sw I1,2(0) 2
22— =t = 4 L
cw M% KSW

we may write

Sax de sw ,z(0)

— =2—=1I 2Tl

> 6 2(0) + oy (150)
The fermionic contributions H,{,Z(O) = ( vanish at zero momentum transfer. By the e.m.
Ward-Takahashi identity we have

1 ILs0) _,

Agee + Zae —
43WCW M%

(151)

With Se, the mass counter-terms and the wave function renormalization factors we have
a complete set of counter-terms which allow to renormalize all other divergent quantities.
The Feynman diagrams for the vector boson self-energies are depicted in Fig. 9. Since the
tadpoles drop out in renormalized quantities we will not consider them. The fermion self-
energies are needed for the determination of the wave function renormalization factors
only. The diagrams for the fermion self energies and the electromagnetic vertex are
shown in Figs. 10 and 11, respectively. Graphs involving ghost fields and graphs which
vanish in the limit of vanishing fermion masses are not shown.

Appendix: -scheme and M S-scheme versus on-shell scheme

The % — scheme is equivalent to MS together with propagator resummation and a
particular choice of physical boundary conditions. VB self-energies plus certain universal
vertex and box contributions are incorporated in running “bare” parameters

1 1
2(¢®) eg(uz)‘RereQ(qz,#z)
1 1
= —RCH’ qz,ﬂz
AP~ g el )
1 1
= — Re (T4 — M0 (g2, 1°
e~ aseam e W —The)ldh k)
1 1

= — Re (133 — 11 qz, S
426 ups(g?) 4V2G ps(12) (Tlss = Haa ")
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Here, the reduced self-energy amplitudes have been defined by

2
I, = e;llgq

2
€ 2
I = —— {lIzg — s;11
+Z Sbcb( 30 — 5iTlqq)
2
_ % 2 4
zz = s§c§ (H33—235H3Q+35HQQ)
2
e
Oww = —& Il
8

with s? = ef/g? and ¢f = 1 — sZ. Such reduced self-energy functions have been used
before in Refs. [54, 55]. Notice that at this point the running parameters do not satisfy
the appropriate physical boundary conditions. For example, for fixed bare parameters,

g2 -0
eX(¢?) + &€ =4dra .

In order to fulfill the physical renormalization conditions the bare parameters must be
turned appropriately. The *-scheme uses matching conditions for «, G, and My

e’ = eX0)=dna™?
Gu = Gu(0) =G

exTp

p = pl0)=p¥

Mg— — ei 1 —_ ;’cp2
3303 4\/§G;;*P* M2

With the definition

¢ = (M) = 236 p M2 1 |1 = =
* \/Z-G,u,*P*M%

the running of the parameters is determined by

62

2r .2 _
e*(q ) - 1 — equ(qz)
2,2 g
g*(q ) - 1— ggAaQ(qz)
G
G . 2 — 1t
wlq”) 1 - 4\/§G#Ai(g2)
G
Cul@Ipuld) = e

1~ 4v2G,.pAs(¢?)
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where

Do(@?) = Re{llpo(0) — Mye(e®)}
Asg(¢®) = Re{Iho(M3) - Min(¢")}
Ax(¢®) = Re{lli(¢*) —Tlsg(g®) — M(0)}
Aq(d%) = RC{H3(¢12)—Haq(q2)—H33(0)} :

Evaluated at the vector boson mass scale, these running parameters have been used in
Ref. [55], with the exception that G, which does not run up to the vector boson mass
scale, was kept fixed. After having imposed the matching conditions for given o, G,
and My, all quantities in the standard OS-scheme have equivalent representations in the
-scheme. Let II denote the renormalized self-energies expressed in terms of a, G, and
M. For four-fermion processes with light fermions, suppressing the external fermion
current matrix elements, we obtain the following correspondence:

Yot _ & = o2 = 32
>"‘M 1411, (s) *

¥ Z 2 ﬂ’z(") 2 =2
. —re . = =
@ F Syt swewsi G Kb
> = wmemwn - A :
— = ——— — s -
sy 3-—M?z+r[z(5) 55 Cs suﬁm-}-:\/sr‘.z&)

& —i
Sy 3—%+Hw (s)

=
N
i

1
7
* s_fé- W’EIG:'H‘/;F*W(S)

ThB wcak mixing an 1CS 3 and 82 S sin2 @W are determined fI'Ol'I’l &, G and MZ
)4 w 73
USil’lg

o T 1 T 1
522

T RGML1-AF VY T BG ME1- Ar

and the W-mass is given by M3 = M%cos? Ow. The radiative corrections Ar and
AF will be given in detail in Sections IV and V, respectively. The renormalized VB
self-energies have been defined here as suitable for the study of four-fermion processes.
Since there are no external vector bosons involved, the VB wave-function renormalization
factors drop out from the matrix-elements (remember the discussion after Eq. (118) at
the beginning of this Section). However, in order to get finite (renormalized) self-energy
functions a second subtraction (besides mass renormalization) in necessary. The one
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chosen here is obtained in a natural way by starting from the bare matrix-elements and
rewriting them in terms of the renormalized parameters by means of the shifts (115-117).
The parameter counter terms then may be combined with the bare self energies, where
they show up in form of wave function factors. One obtains

. S, ,6sin’ Oy,
flu(s) = D) = w043 - (s = 243) (2 - ity
~ Sa ¢t — s Ssin? O
- - _ _ 2y _ 2 PO\ EW W !
fla(s) = Talo) = Ta(M3) - (s — 1a3) 2y - S S Oy )
. sw ,6sin® Ow
: o) = Mals) ~Tha0) + s (225 Omy)
N do
i) = me) - s (E2)
with
By _ Ex im0y s(0)
a’ o« cosOw M3
-
(6sin2 Ow y = §sin® Ow 5,008 Ow IL,2(0)
~ sin? Ow T sin’ Oy sin Oy M2
L _ 6082 ®W Re Hz(M%) _ Hw(M%;) + 2Si].‘l @W H.yz(())
- ~ sin?Ow M2 ME, cosOw M3

for the “renormalized” self-energies. Since the splitting into self-energy and vertex+box
contributions is not gauge invariant and finite terms proportional to II,z(0) have been
subtracted from the self-energies and added to the vertex+box contributions such that the
two groups of contributions are separately finite. We mention that II,z(0) vanishes in
the unitary gauge as well as in the 375 scheme for x = Myy. In the *t Hooft-Feynman
gauge the vertex-+box contribution is numerically small, though not negligible.

In the ~scheme the physical widths of the Z is determined from the imaginary part
of the propagator by (see Eq. (137))

P,,Z(M%) + APZ

r, =
z 1+E*Z

where 1 + k.7 is determined by the residue of the Z-propagator

el 1 5
s — G (s — M2) (14 k.2)

. and AT’z stands for additional corrections (vertex, QED and possible QCD corrections).
- - For the W width corresponding equations hold.
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The effective weak mixing angle parametrizing the NC-couplings at LEP energies
has been given different names by different authors. Up to numerically small contribu-
tions (s')? [54], sin?@, [55], s2 [45], sin® © = 5? [56] and sin?® Opzz = sin’ O [41] are
equivalent, particularly, for what concerns the fermion contributions, the top and Higgs
mass dependence.

The special treatment of the self-energies is justified because they include the large
non-QED corrections (fermion loops) and can be used to get improved Born approxima-
tions, which take into account the numerically most relevant non-photonic corrections.
Of course, in order to get fully corrected four-fermion amplitudes form-factor and box-
diagram corrections must be added. In general only the full set of corrections is gauge-
invariant and finite. Any kind of splitting into effective couplings plus remainders is
ambiguous and only a matter of bookkeeping and should not affect physical predictions
within the given precision of the perturbative approximation.

The resummation of the reducible blocks involved in the above treatment of the
propagator corrections means that some higher order effects have been taken into account
while others (e.g. two-loop irreducible contributions) have been omitted. The question
is whether this partial resummation of higher order terms leads to a better approximation
to the unknown full answer. For the gauge couplings e and ¢ one can show that the
propagator resummation is equivalent to solving the renormalization group (RG) for the
running gauge couplings, which is a systematic resummation of the leading logarithmic
corrections. For the other two parameters G, and p the summation of the reducible
diagrams only does not properly include terms of leading size! ie. the two-loop irre-

ducible diagrams give contributions of the same order as the square of the one loop result .

included in the bubble summation. This will be discussed in detail in the next section.

The relationship between the standard OS-scheme and the M .S scheme is relatively
simple. For example, for the weak mixing angle the OS version sin® Oy is related to its
bare value by (116,117)

sin’® 0, = (1 + Ei%z—ew-) sin® Cw

sin® Opr
§sin® Ow __ cos® Oy Re HZ(M%) " HW(szov)
sin? @y sin‘ O MZ M,

while the 75 version is defined by
§sin? Ow

sin? Ow

Sin2 @b = (1 + ( )W(U=MW)) Sin2 (:)

§sin? © . . §sin? © .
where (%55 375 (umptw) ONLY Picks the UV singular term from 235w The choice
1 = My for the scale is made here because we are interested in an effective sin® © at
LEP energies. The relation between the two mixing angles thus reads, expanded to linear
order,

§sin? O

sin® Oy

§sin’? Ow

sin? O

sinzéz(1+ —(

)W(,u:Mw)) Sin2 @W
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which is finite, depends however on the particular choice of g. The finite quantity

_ Hz(O) Hw(O) sin Ow qu(O)
Ap—{ Mz Mg, +2cos@W M2

exhibiting the leading heavy particle effects is present in %%%%E only

§sin? @ cos? @
2 T == 2 WAP‘[""
sin” Ow sin® Qw

but absent in (4830w )-e . Hence the main difference is exhibited in

sin® @y

cos? O

sin® © = (1 + Ap) sin? Ow = sin® Ow + Apcos® O
sin? Oy

and one may calculate §2 = sin® 6 from «, G# and Mz by

2 a2 T 1

S =R M1 - AF

where A7 is obtained from Ar, discussed in the next section, by replacing the OS
counter terms by their M S counter parts. Corresponding, considerations apply to other
quantities.

A final remark should be made. The advantage of the effective weak mixing
parameters, or other running parameters, is that they are flavor independent and take
into account the universal large fermion loop effects. The disadvantage is that they are
theoretical constructs and do not simply relate to physical quantities, like for example
sin? @y, which is determined by the physical VB mass ratio and is completely model
independent. It is also clear from the many slightly differing definitions that a natural
definition accepted by everybody does not exist. Hence a precise comparison of different
definitions always needs a lot of explanation, and the members of the radiative corrections
community can keep busy by debating for their preferred parametrization. After all
a properly done physical prediction to a given accuracy should not depend on such
bookkeeping questions.
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IV. RENORMALIZATION OF MASS-COUPLING RELATIONS

The title of this Section could read as well: “Calculation of the muon decay constant
G, in terms of o and the vector boson masses”. By the relation (30) the parameters
My, Mz, o and G, are not independent. Here we calculate G, from o, My and My
( on-shell scheme):

T 1 1

a, =2
Y VRME sin? O 1 — Ar

where Ar = 0 due to radiative corrections. Since the QED corrections have been already
included in the definition of G, we have to calculate the non-QED part of the u decay
transition amplitude for k% ~ 0

G
—4=E 7(#) yle}u
\/2", I

Here, J® = a,, [y, (1 —vs)] u, and J{ = @, {7, (1~ ffs)] v,, denote the muon (u)
and the electron (e) charged current matrix elements, v and v are the external spinors.
The different contributions are shown in Fig. 12.

JSE TR B S W | B

Ve CC box

Figure 12a: Radiative corrections to y-decay

£ vy Z £ Vg
—%7_= TR s DWW

Figure 12b: CC vertex diagrams
Yy
@ = Wi {z+z} W
o AP K
+ { @— ’Y><}

Figure 12¢c: CC box diagrams




At the tree level we read off

G, e? TQ

E-—:SM&,siﬁ@W =M3v (1_%2%) '
Z

We may check the validity of this relation by using the experimental values for a, G . and
sin® Ow = 0.231 4 0.006, obtained from deep inelastic v, N scattering, for a prediction
of the vector boson masses which are given by

Ap _ My
sinOw * 7 cosOp

1/2

My = (\/_G ) = 37.2802(3) GeV . (152)
Comparing the lowest order predictions My = 77.57 4- 1.01 and Mz = 88.39 + 0.81
with the experimental values Mp” = 80.19 £ 0.32 and MZ™ = 91.176 & 0.021, we see
that the numbers are not in agreement with eachother. Thls disagreement illustrates the
importance of radiative corrections .

Including the one-loop radiative corrections we distinguish among 1) propagator
(self-energy) corrections, 2) vertex corrections and 3) box contributions. We will neglect
terms proportional to the light fermion masses, since for my < My, they are numerically
insignificant. This will lead to rather simple analytical expressions for thc vertex and
box contributions in the low energy limit.

Using the bare parameter relations (115-117) we get

G el Iy (0

;7% = 8 Sinz ei;VbMI?Vb {1 + ITZ-;(%,) + 6CC,vertea: + 600,60::}
e? {1+ de  cos’ Oy (6M§ JM‘?V)

8sin? Oy M, e sin’ Oy M2 ME,
SME Iy (0
- Mé:r Mg ) + 5C’G,uertex + 600,60:0}
o

The vertex and box diagrams are dcp1cted in Figs. 12b and 12c.

The important quantity Ar has been calculated first by Sirlin [17]. We read off the
formal one-loop result from the foregoing expression. Collecting the self-energy terms
in Ar,, we may write

Ar = Ar(o,Mwy,Mz,mg,my)
= Arsc + Aruerte.r+bor . (154)
and denoting s2, = sin? Oy and &, = cos? Oy we have

o 7 — 4s?y,
AT yertext+bor = 47"5%!, (6 - 25%/

Incé ) (155)
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which is the sum of the vertex, box and lepton wave-function contributions plus a vZ
mixing term 2—”’-3“%@ rendering the term ultraviolet finite (in the 't Hooft-Feynman

gauge) * . If we mscrt the expressions for the counter-terms and rewrite the result by
splitting off the self-energies at k% = 0 as

(k%) = I1(0) + &£ II'(%£?)

the self-energy confributions read:

Aty = II(0) — Re Il (M2) (156)
_(ZOS2 @w Hz(U) _ Hw(()) +28in @W H.vz(O)
sin’ @y | M% M3, cosOw M2
~Re Ty (M) + Re T, (MZ)—i—COSgWR I’ ,(M3)
cos? Ow sin Ow _, 2 }
_22E EwW M anVw
o Re {IG(M2) — Iy (3fy) + * I 7(03)

This is a réprescntation of Ar,. in terms of the unrenormalized gauge boson self-energy
functions. The form of this result exhibits the large and potentially large terms in Ar
which we may write as

cos? O
11’12 @W

I pifferent from the NC processes (at one-loop order) , for the CC processes there is no natural separation
into QED and “weak” part in the Standard Model. The QED cormrections to g decay are not ultraviolet
finite and they do not form a gauge invariant subset . This is in contrast also to the QED corrections for
this process if modeled by an effective Fermi interaction, which can be transformed into a NC form via
a Fierz transformation. The only trouble is caused by the photonic box diagram. After subtraction of the
photonic four-fermion vertex correction, which has been included by convention in the QED correction
factor of (32), an ultraviolet divergent and gauge dependent contribution R,,, as indicated in Fig. 12¢, is
left over which has to be included in (155).

Ar = Ao — Ap + Arperm (157)

We then have
Se ew Iyz(0
Aruertez‘-}-boz =2 ( ) + 6CC vertex -+ 6CC bor T+ 2—“1%
vertezr Sw
where
2
92 (?—_6) = _2A‘1)'ee -+ {LS_W__]LH'YZSO) = K- 43%2{!1;
€ Jyertes 2swew MZ
2 2
W Wev, Sw 1 3 Sw
e = o) B )
bccpor = AEc=~K- ( 3+ 6¢cfy + 28y ) Inedy + Ru
where K = %, L ln——’M and B, = K - (2L +1). The amplitudes A are normalized to the
w

Born terms. We refer the reader to [50] for a more detalled discussion.
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where

Aa = II(0) — Re IT',(M3)

o, _ T2(0)  Tw(0) sinOw Myp(0)
P = TME T T cosOw M2
z w w A

(158)

are the large (due to fermion loop contributions) terms and Ar,., is the remainder.
Though the latter term is numerically smaller by one order of magnitude it is an interesting
term which includes contributions from gauge boson self-couplings and Higgs-vector
boson interactions. We are now going to discuss the various terms in (156) in some
detail.

1. Aa

Aa is the photon vacuum polarization contribution which comes in through

be

= II(0)— Re Il (M2)+---+ Re IL, (M3)
Aa + caa

and is large due to the large change in scale going from zero momentum (Thomson limit)
to the Z-mass scale ¢ = Mz. Here, by zero momentum more precisely we mean the
light fermion mass thresholds. The leading light fermion (m; < Mw) contribution is

given by
f
Ao = 3 ,:Z,( ),,?,.
/ f
2 502 Mz _5
3 Zf:Qde(ln mt "3

= Aeptons + AL, + Ay . (159)

hadrons

Since the top quark is heavy we cannot use the light fermion approximation for it. A
very heavy top in fact gives no contribution since
a 4 M2
Aty 2 ————2 50
Gitor 3w 15 m? -
when m; >> Mo,
A serious problem is the low energy contributions of the five light quarks u,d,s,c
and b which cannot be reliably calculated using perturbative QCD. Fortunately one can
evaluate this hadronic term Aaﬁ’dwns from hadronic e*e™- annihilation data by using a

85



dispersion relation. The relevant vacuum polarization amplitude satisfies the convergent
dispersion relation

ImII (s')
s'(s' — s — i€)

Rell)(s) - T1,(0) = = Re ] ds'
and using the optical theorem (unitarity) one has
ImlIl L(s) = atot(e e~ —» 4" — hadrons)(s) .

In terms of the cross-section ratio

gi(ete™ — 4* — hadrons)

R(s) =

o*(e'*e“ — - PL""PL—) ’

where o(ete™ — y* — ptp™) = :4_3:_;%?. at tree level, we finally obtain

oy aM% R(s)
Aahadrons(MZ) - 3 Re 4m2 dss(s —_ M% —_ 'LS) )

(160)

Using the experimental data for R{s) up to E., = 40 GeV ( for larger energies vZ
mixing would complicate the analysis) and perturbative QCD for the high energy tail we
get (see Appendix to this section)

Ao, o (s) = 0.0282+0.0009 (161)
+0.002980 - {In(s/s0) +0.005696 - (s/50 — 1)}

with (/s = 91.176 GeV [51]. In the range 50 GeV < /5 < 200 GeV the above fit is
“exact” as compared to the error. Alternatively, this result of the dispersion calculation
can be reproduced by using perturbative QCD with the effective “quark masses™

m, = 62 MeV, my=83MeV
ms =215 MeV, m,= 15 GeV
my = 4.5 GeV

and a QCD correction factor (1 + a,.zp/m) With o, . = 0.133 2,
We should mention that a light fermion not only contributes to Aa but also to Ar,ep,:

a ¢ty Ny
AT‘:rem - 471'8%;/ (1_-_W-) 8

KQCD In C%V.

2Warning: Do not use these values for the quark masses for small space-like momenta (as needed in
Bhabha scattering). These would give wrong results.
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This yields AT, e teptons & 0.0015 and Ar&) L\~ 0.0040 .
Perturbative QCD corrections for light quarks (at some high energy scalg) are taken
care off by the factor I{QCD =1+ 5QGD given by

2 234 2
Saon = 9‘-% +1.405 (3%‘@) (162)

using [52]
ALL — 20042% MeV corresponding to a,(M3) = 0.117 & 0.01 . (163)

We first assume the top to be a “normal” not too heavy fermion and will discuss heavy
top effects in a second step. If there would not exist heavy unknown particles, Ar would
be determined by the following typical contributions (e, = 60 GeV, mgy = 100 GeV):

Atieptons =~ 0.0315+0.0015 0.0330

AThadrons =~ 0.0282+0.0040 0.0322 + 0.0009

2

ATy, ~ 0.0025 (depends on m,)

Arposons =~ 0.0033 (depends on my) .

The term Aryersersbor =0.0004 is included in Aryoeons. For the light fermions the
individual contributions from A« and Ar,.,, are exhibited as a sum of two terms. The
full analytic expression for a light top would be

a b M: 5 o <t
ArtP = o—2 (ngf - E) T Tonst, (1 - ??f) 2 Incly aon

for m, < Ms.

Numerically the fermionic contributions dominate. The bosonic contributions are
smaller by one order of magnitude but they are nevertheless non-negligible. The self-
energy contributions are large and depend on unknown physics, like the top mass, the
Higgs mass, on 4th family fermion masses e.t.c. Next we consider what happens if the
top is very heavy.

2. Ap

It has been observed first by Veltman {53] that fermion doublets with large mass
splitting give large non-decoupling contributions to Ap (large weak isospin breaking
effects). By now we know that the top quark is unexpectedly heavy , m; > 89 GeV,
while m;, ~ 4.8 GeV is rather light.

The diagrams yielding leading doublet mass splitting effects are those which exhibit
Wb (CC) transitions and are quadratically divergent. The Z¢t and Zbb (NC) vertices do
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not mix ¢ and b and thus do not “feel” the mass splitting. In our case we are concerned
with the finit part of the W self-energy diagram 3 '

W t a 1 m?
= ——— N —t ...
"WbQM‘ 4w 45k, "ML +
It yields a k%-independent leading term which is (for dimensional reasons) quadratic in

m,. We thus obtain

_ Hz(O) Hw(O) (47 mf
0= MR S Toned, e,

+- (165)

and this large contribution gets further enhanced in Ar

y
Arlhea'vy = _32 AP—I-"'
M

by an enhancement factor ~ 3.34 for s}, = 0.23 .

The remainder also contains logarithmic terms which are not negligible numericaily.
A heavy top would give the contribution

Artop - _\/QG#MI%V { c%’V mf + 2 (C%V 1) 1 m?

4
Cw Sw _ = 2
1672 sty M s 3 nMsz + 3

2 cy T
n CW + ;g -_ 5 .
(166)
Let us mention finally that whereas Ac is unchanged by unknown physics, Ap is sen-
sitive to all kinds of SU(2)r multiplets which directly couple to the gauge bosons and
exhibit large mass-splitting.
3. Higgs contribution

The Higgs contributions deserve our special attention. In the light fermion approx-
imation only the vector-boson self-energy diagrams

¥ (8)

Pt

RS

contribute. At one-loop order there is no quadratic Higgs mass dependence in Ap and
in Ar. The leading heavy Higgs contribution is logarithmic:

ApHiggs ~ _\/EGFM%"S_%V_ {3 (ln m%{ S )}

V=2W

- 1672 ¢ M, 6
ios V2GM}, 11, my b
ArHiggs  ~ H—‘i_éi—?_w ?(lnﬁgf. -5 (myg > Mw). (167)

3The UV singular terms are proportional to m? also for the Z self-energy and the latter must be taken
into account to cancel the UV divergence of the W self-energy.
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This is due to the accidental SU(2)g symmetry of the Higgs sector in the minimal
Standard Model, which implies p = 1 at tree level (Veltman screening) [57]. More
precisely, the theorem states that for vanishing fermion masses quadratic terms are absent.
Furthermore, in Ap also the logarithmic term disappears in the limit of vanishing U(1)y
coupling ¢'. The logarithmic term in the low energy observable Ap is a consequence of
the weak isospin breaking by hypercharge. On the other hand, in Ar the coefficient of
the logarithm does not depend on ¢’. Next we have to include the leading higher order
effects.

4, Summation of leading higher order effects

Our one-loop calculation gave us the O(«) result

o
\/EG# = m(l'{'AT) .

Typically we get Ar o~ 0.07 for Mz=91 GeV, m,=60 GeV and my=100 GeV. For the
next order term we expected a contribution of the order Ar? ~ 0.005. This would yield a
shift in the prediction of the W mass (in terms of a, G, and M3z) of My ~ 190 MeV.
Since My will be measured with an accuracy of éMw ~ 70 MeV at LEP2, the O{«)
result is insufficient for LEP experiments and we have to think about how to include the
leading higher order terms.

a. Summation of leading logarithms.

The summation of leading logarithms is governed by the renormalization group.
Since, in our case, the leading logs showed up in the QED vacuum polarization only, the
leading log summation may be understood as the solution of the renormalization group
equation for the U(1)em coupling constant (x = renormalization scale)

bl ! a 27,2
prama() = B2 = S0 5 0

my<p
yielding the effective fine structure constant at scale Mz

(¢

o(Mz) = 1-Aax

(168)

where

o M2
Ar ~ Aa o~ 3. Z chQfeln—-—Z-

2
my<Mz mf

in this approximation. Thus Eq. (30) obtained from our one-loop result by the substitution

1+ Ar —

1-—Ar
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- 2 . - -
represents the resummation of all powers of («In %’%) 1t is important to notice that the

leading log summation is scheme independent. This can be seen by writing, in leading
log approximation,

1 1 pE
Aal = — - —— = N, 111 <M
exhibiting that the r.h.s is independent of the electroweak couplings and hence of the
parametrization used.
Including non-leading log terms we observe that the substitution

1 1
1—Aa—Ar, 1—Ar ‘
in fact only is correct if Ar,, is small. This would be the case only if the top would be
light. As a next step we have to investigate what happens if Ap is large.
b. Summation of large Ap terms.
A careful analysis of the resummation of large Ap terms [58] shows that Eq. (30)
gets modified into

1+ Ar=14+ Ao+ Ar, —

T 1 1
G, = Arpem ¢ - 169
VM sin? Oy { 1—-Aal+ %ﬁf(ép)irr +Aar } (169)

Here, (Ap),,, represents the leading irreducible contribution to the p parameter defined
from the ratio of neutral current to charged current amplitudes at low energy, calculated
in Ref. [59], i.e.

A — =1+A ir'r'l_A irr+'“=.———' 170
It is important to note that, in contrast to Ac, which is not significantly modified by the
inclusion of two loop irreducible contributions,

Aa;eptons - (1 + )A ggtons

where Aot is the one-loop lepton contribution to Ac, p as defined in Eq. (172),

leptons
can sizably differ from the one loop result. In fact as shown in Ref. [58], by including
the two loop irreducible terms calculated in Ref. [59], one finds
Am? G
f
(Ap)irr = Negzg[l — (20" — 19)zs + -], 2 = .0 7% . (171)

This means that low energy physics, is not sensitive to the bare mass splitting (Am3),
but rather to the effective quantity

(Am2).sy = Am} {1 — (2n% — 19) - 5_ }

90




The screening effects, due to the Yukawa coupling with the scalar sector, may become
large for a large mass splitting. This phenomenon, if confirmed from a closer inspection of
the higher order terms in the perturbative expansion, may have far reaching consequences
(possible restoration of decoupling) for our understanding of the Standard Model .

If we take the result of the full one loop calculation and include correctly the Ao and
Ap effects, resummed to all orders, we arrive at the final expression

M7 4A% 1
MI%V = 3_2"& (1 + J 1- 2 ( + ATrem) ) (172)

Nonleading one-loop self-energy effects can be included by using Eq. (172) together
with the replacements [58] [60]:

Aa — Ae=TI(0)—TII, (MW)+CW I , (M)

Mz(M7)  Ow(My) + sw I z(MZ) + I1,2(0)

M3 M, cw M3 ’
where II; includes +Z mixing terms as given in Eq. (139). We have checked that
the above substitution reproduces correctly all self-energy terms up to O(a?) . Such
a resummation could make sense for the fermion contributions, which form a gauge
invariant subset. However, since terms like the irreducible contribution proportional
to £v/2G,m}In(m?/M%) are unknown, non leading terms and the vertex and box
corrections, ( contributing to Eq. (30) ) should be added perturbatively i.e. included in
Aryem-

5. Applications

Ap — Ap= (173)

Once Ar is given the W mass can be predicted by using the values of «, G, and
Mz from LEP1. According to Egs. (30) and (31) we obtain

M2 4AE 1
2 _ 7z -7t
M = 5 (1+J1 le_Ar) (174)
and, equivalently,
1 442 1
. 2 _ _ _ “_
sin“ Oy = 5 (1 \jl METZ Ar ). (175)

with Ay given in Eq. (152). Explicit expressions for the various quantities which have
been mentioned in this section can be found in Ref. [48,41], for example. Numerical
results are given in Tab. 2. In Fig. 13 the m,-dependence of Ar is shown for various
Higgs masses. The W mass measurement is equivalent to a determination of

T 1

Ar=1- —. (176)
V26, My (1 - 5)
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Table 2. Prediction of My and related parameters (M = 91.176 GeV, o, = 0.117).
Masses in GeV. sin? O, sin® @, and sin? © will be considered below. ;

me | my | My Ar | sin?Op | sin® O, | sin®*©, | sin? O T,

90 1 100 | 79.928 | 0.06032 | 0.2315 | 0.2334 | 0.2335 | 0.2326
110 | 100 | 80.037 | 0.05430 | 0.2294 | 0.2329 | 0.2333 | 0.2322

130 50 | 81.182 | 0.04607 § 0.2266 | 0.2321 | 0.2328 | 0.2313 >
130 | 100 | 80.151 | 0.04786 | 0.2272 | 0.2324 | 0.2330 | 0.2316
130 | 1000 | 80.002 | 0.05623 | 0.2301 | 0.2334 | 0.2341 | 0.2327

150 | 100 { 80.275 | 0.04068 | 0.2248 | 0.2318 | 0.2328 | 0.2310
200 | 100 { 80.642 | 0.01840 | 0.2177 | 0.2299 | 0.2321 | 0.2292
230 | 100 | 80.905 | 0.00133 | 0.2126 | 0.2286 | 0.2315 | 0.2278

i | T U U TOUEN [N SUN U JUSN T SN St i SO VU TS TN S 1

+ Xuaz o (Mz)=0. 117 + 0.01
A CDF Mz = 91,176 £ 0,021 GeV <

-0.021 —— @, - 4000 GeV

—= m gy~ 100 GeV
004 L o, 50 Gev I
0.4+ —r—r—-——r—r————r—r——r——
100 150 200 250 300
m, { Gev )

Figure 13: Ar as a function of the top mass for various my

Using the experimental values (33-34) for My and My, Ar is determined fairly well
and since Ar is strongly dependent on the top mass we can use the results to find a

92



direct constraint on the top mass. Within one standard deviation we read off from Fig.
13 (the second uncertainty in m, comes from’the change of my)

Ar =0.0461001s < m, = 136751 GeV (177)

assuming my <1 TeV. We notice that the direct lower limit m, > 89 GeV is stronger
than the indirect one obtained here.

In future one expects to be able to achieve a precision of éMy = 70 MeV at
LEP2. An accuracy éMw = 100 MeV possibly may be achieved by combining the
hadron collider results from CDF and D0 by the end of 1995 with an integrated lumi-
nosity of about 70pb~! [61]. This corresponds to an error in Ar of §Ar = 0.0056, and
using &2 = — 2487 this would determine m, to an accuracy better than 6m; = 10 GeV.
Of course we are waiting for the direct discovery of the top which is within reach in the
next years at the Tevatron.

Appendix: Hadronic contributions to coupling shifts (update of Ref. [51]).

The Crystal Ball (CB) Collaboration has carefully reanalyzed their old e*e~- an-
nihilation data and now obtain R(s) values substantially lower than the Mark I data [62]
and in agreement with other experiments (LENA). The results now are in much better
agreement with perturbative QCD. The change of the data is mainly due to a up to date
treatment of the QED radiative corrections and 7 subtraction. If we include the new
results from CB and discard the Mark I data, which systematically lic 28% higher, in
average, we obtain updated values for the hadronic contributions to the photon vacuum
polarization. The results for Aa/e? = Ax.,(Mz) are collected in Table 3.

Table 3a: Contributions to A, (Mz) x 10%

(final state) | (energy range) | (contribution) (stat) (syst)
P (0.28, 1.20) 37.36 (0.15) ( 1.12)

w (0.42, 2.00) 3.74 ( 0.38) (0.11)

¢ (0.42, 2.00) 5.75 (0.26) (0.17)
J/p 11.08 ( 1.46) ( 1.66)

T 1.27 ( 0.04) ( 0.08)
hadrons 0.84, 3.10) 38.59 (0.99) (1.72)
hadrons (3.10, 3.60) 6.52 ( 0.34) ( 1.25)
hadrons (3.60, 5.20) 19.04 (0.19) ( 1.27)
hadrons (5.20, 9.46) 35.78 (0.52) ( 2.16)
hadrons (9.46,40.00) 102.07 ( 1.36) ( 3.18)
perturbative (40.0,00) 46.53 ( 0.32) ( 0.64)
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Table 3b: "Distribution” of errors

Am, x 10° { relat. error

Resonances: 59.20 (2.53) 43 %

(pw¢ : 46.85 (1.24) 2.6 %)
Background:

E < My 38.59 (7.78) 20.2 %

MJ/¢ < 6.52 (1.30) 199 %

E 19.04 (1.28) 6.7 %

> My 35.78 (2.22) 6.2 %

40GeV > E > My | 102.07 (3.46) 34 %

E < 40 GeV data { 261.12 (9.34) 3.6 %

E > 40 GeV QCD 46.53 (0.72) 1.5 %

total 307.65 (9.36) 3.0 %

(%) (6.62) 2.1 %)

The last line () shows the error one would get if the experimental error on R(s) would

be reduced to 5% in the regions with larger errors.

Aag‘r’%&d may be determined using a partial separation of flavors, as explained in

Ref. [51]. The following results are obtained:

Partial flavor separation of Ax.{Mz)
uds c b
E < M(J/¥) 85.44
M@J]4b) < E < M(T) | 43.94 | 28.48
M(T)< E 55.68 | 37.12 | 10.55

Using the approximate relation

1 3 3
Az, = "2"A7T:d$ + é‘Aifrf! + ZAGT:, ,

which derives from assuming SU(3)/iaver for (u,d,s) and the OZI-rule for the heavy
flavors ¢,b and t, the hadronic contributions to the shift of the SU(2) coupling o is the

given by
Aa:(zsi)md = ¢* Ay (M7z), ¢* =¢?/sin’ O .
For sin® Ow = 0.23 we obtain

Aal®, = 0.0282+0.0009(6)
A, = 0.0587 +0.0018(12)
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where the error in brackets is the (x) value mentioned above. Since the errors of Aag?d
and Aaﬁad are correlated the error in the renormalization of the weak mixing angle
from neutrino scattering

= 1—ACI!2

sin? @ = ( - A A4 ) sin® O.,.N)

remains quite small. We get

or
§sin® ©,,,n() 2 0.00021

which is negligibly small relative to the experimental error 0.006 shown in Tab. 1.
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V. LEP/SLC PHYSICS

Radiative corrections play a crucial role in the interpretation of electroweak pre-
cision measurements. In this last section, we will concentrate on discussing radiative
corrections for LEP1/SLC physics near the Z peak.

The basic processes investigated at LEP1/SLC are fermion pair production ete™ —
FF(f # ¢) and Bhabha scattering ete~ — ete~. At LEP2 W-pair production ete™ —
W+W~ will be the main process. )

The large cross-section at the Z-peak, o7, ~ 1.45(1.95) nb for f = e, p, and
30.08 (40.65) nb for hadrons, (in brackets, the value without QED corrections) gives
easily a production of 1 million Z’s per year at LEP1. The cross-section is enhanced
relative to the pure QED process by a factor (Mz/T'z)? ~ 10° or about 150 for leptons
and 750 for hadrons.

For precision physics the most important aims are

e the detailed investigation of ete™ — ff around the Z resonance which should
allow to observe small calculable deviations of the partial and total cross-sections
o; = olete” — ff) and o, = 2.y oy and the partial and total widths I'y =
I(Z — ff)and I'z = 3, T’y from their lowest order predictions

V2G M3 ; 127 T, Iy
Tzi7= ““‘1‘2“_7;—(”} + a)Nog ; C’gejak N o

TS (179)

where v; = Tip — 2Q;sin® Ow and a; = Ty are, respectively, the vector and
axial-vector neutral current (NC) couplings for fermions with flavor f. N is the
color factor which is 1 for leptons and 3 for quarks.

¢ Additional information will be obtained from the on-resonance asymmetries, the
forward-backward asymmetries A{;{; and the 7 polarization-asymmetry A7 . If
‘longitudinally polarized beams would be realized, the measurement of the left-right
asymmetry Arp and the polarized forward-backward asymmetries AHB,W, would
allow to substantially improve the results. All the asymmetries are functions of

the specific ratios

vaaf

= m (180)

Ag
of the NC couplings, and thus provide accurate determinations of the weak mixing
angle sin® ©w. At the tree level the on-resonance asymmetries are given by

3

- . _ 3
A}f"'fB = ZABAf? ALR = Apol = AC‘! A{;'fB,pol ==

4

The "weak” (non-QED) radiative corrections reveal the asymmetries to be very inter-
esting quantities, mainly because the different asymmetries exhibit different sensitivities

Ay (181)
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to various interesting effects. The measurement of many independent quantities, which
depend in their own way on unknown physics, is important in order to be able to disen-
tangle the origin of possible deviations from lowest order predictions.

Since higher order predictions depend on the unknown mass of the Higgs boson, the
remnant of the spontaneous symmetry breaking, and the mass of the unknown top quark,
the missing member of the 3rd fermion family and other possible unknown physics, as
a first step, data mainly constrain the unknown parameters of the SM. At the same time
bounds on possible extensions of the SM gradually improve.

While the higher order predictions of physical quantities depend substantiaily on
the unknown top mass the dependence on the unknown Higgs mass is much weaker.
The first important goal thus is to restrict the range for the top mass.

1. Effective Couplings at the Z Resonance

Radiative corrections for the NC process ete~ — ff have been calculated by
may groups {63]. The diagrams for the “weak” (=non-photonic) one-loop corrections are
depicted in the Figure 14. Diagrams involving ghost. particles are not shown.

NSES L Sl B >
+ + & +
e f
Figure 14a: Radiative corrections to ete™ — ff

f W,

% = wv—éz + w~<§W+ —-{(’

f 114

Figure 14b: NC vertex diagrams

e*@:i \f:[+ VA
e~ f B Izi

NC,box

- Ll 3

Figure 14c: NC box diagrams

NC,box

Here we discuss the non-photonic corrections for the observables Egs. (179,181), mea-
sured in resonant production and decay of Z’s in ete™ — Z — ff. Because of the
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factorization of the “weak” corrections at the resonance, we restrict ourselves to consider
the Z vertex corrections

f%&: >~\,W+ %&N‘,J, >1%+coumertems

They can be cast into an overall renormalization of the Z f f vertex

(V2G Y2 Mzv*(—2Q5 sin® Ow + (1 — v5)Tiy)

by p}/ 2 and a renormalization of sin® @y in the NC vector-coupling [65]:

G, — psG, , sin®Op — k;sin® Oy (182)

where py = 1+ Apse + Dpguertes ad k7 = 1 + Ak,e + Akgperter. In terms of the
corrections dvy and Say of the vector and axial-vector couplings we have
ba !

Ap=2—L, Ar= .
P af * —Qfaf Sil’l2 @W

agdvy —veday

Using the counter terms defined in Egs. (115-117) and (123,147) we find

SML  6G,

- AZfS LY 57 -9 in2 el L
5 Ay +2( 2+ M§+G#> Qy sin” Ow sin® Ow +

2
_aztf & 6Mz | 8G,
603_,«' = A7/ + 5 (523—}- M% + a,

Sw M%

where the lepton wave function terms (124) have been added to the bare vertex corrections
A, — A, +vzy — az, A, — Ag + az, — vz, Inserting the explicit expressions for
the counter terms we may write Ap and Ak in terms of the bare self-energies plus
vertex corrections. The potentially large self-energy contributions {(se) are universal. The
analogues of Eq. (157) for Ap and Ax read

Apse = Aﬁ = Ap + Apsc,rem (183)

I

2
w

) AP + A’cse,rem
Sw

Ak, = AR

with Ap defined in Eq. (158). The self-energy terms are given by

_ _Tp(MZ)  I1z(0)  [(dllz\ . o
APse,rem = Az = M% - M% dq2 (MZ)

2
Ak, = Ap (184)
Sw
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where Ap is given in Eq. (173). The vertex contributions are (if f # b) relatively small

(but not negligible) and flavor dependent ! . We may define effective sin® @’s by

where

and, generalizing Eq. (176),

Using Eqgs. (157) and (183) we obtain

sin? Q; =Ky sin’ Ow = E;.EZ
~ 1
#=sn?0 = 5 (- 1= 4A2/M2Z ) = 0.2122(1)
is the lowest order sin® © in terms of o, G, and Mz. We have
. é &
Ry =rys+ 52_§2Ar = 62_§2A7‘f
VG M2 cos?O;sin? @) = ————— ; Ar Ar+ &= Ak (189)
witz f f__(l_ATf)! f 72 f -

ATJr =Aa—Ap+ ATj,rem .

The explicit expressions for the light fermion vertex corrections are (42, 64]

{2(30% + a§)As(s, Mz)

_‘4'3%{(1 - 2(1 - [Qf DS%V)A-Z(S, MW) + 246%;! A-:-L(s, MW)} — Aryeriendbor

V3G, M2
Apj,vcrtez _16%&
V2G, M3
AKfyerter = _'1-5%_2-"&

{1 — 41Q;1s )1 — 2IQs sty ) B2(s, Mz)
+2¢%, (1 — 2(1 — |Qs sk )Aa(s, Mw) — 12¢5 As(s, Mw)}

Whete Aryertezibor IS given by Eq. (155) and comes in through the & — G, replacement used here., The

functions A;(s, M) are given (y = M?2/s with M = Mz or My, s > 0)

Az(s, M) =

A3(S, M) =

where the formula for As is valid for s < 4M? only. The Spence function is defined by Sp(z) =

2 =%~ (2 + ()

120149 [xn(y) (1 - Sp(—ﬂ

— i [3 + 2y —2(y+ 1)%In (l.'.;.i’)]

5 2y 2 1
¥,z 1Y /4y — %
6 3 +3(29+ Y4y —1arc an\/fi—y——_T

—-8*( +2)(ar tan—-—l—-— :
3V R y-1)

- fol 4t |n(1 — =t). For f=b the expressions are more complicated and may be found in Ref. [66].

1
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and we may calculate

442 1

“ B 1=ar)) as)

sin*@; = &ysin’Op = %(1 - J 1

which compares to Eq. (175). Figs. 15 and 16 exhibit the different behavior as a function
of M.

0.240 —
0.2351

0.230

sin?@ (m, = 100 GeV)

0,225+

0.220+

kY
160 150 200 250 300
m, ( GeV )
Figure 15: Flavor dependence of effective sin? ©’s.

Comparing (190) with (157), we notice that the LEP1 versions Ar; and sin® ©; of Ar
and sin? Oy (obtained from the W-mass measurement) are by a factor c¥, /s%, = 3.3 less
sensitive to heavy particle effects (see Fig. 15 below). But in both cases it is the same
quantity , namely Ap, which is measured. Also, one finds that the sensitivity to a heavy
Higgs is Jower by a factor (1 + 9s%,)/(11c¥,) ~ 2.8. This does not mean that LEP1
experiments are less suitable to get important information on heavy physics, however.
Thanks to the higher statistics of LEP1 experiments, LEP1 observables are measured with
higher precision. Furthermore, the relative sensitivity to the Higgs is higher at LEP], a
welcome fact, since the Higgs remains “the big unknown” in the Standard Model.
From the measured effective sin® ©;’s we may evaluate

Arg? =1 —2 -

' V2G M sin® O cos? 7

The values for sin® @j’”’ can be obtained, using the tree level formulae, from the on-
resonance asymmetries which have been corrected for QED effects, experimental cuts

(192)
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Figure 15: Flavor dependence of effective p’s.

and detector efficiencies. For example, from the experimental left-right asymmetry we

get
Arp =141 - A2, (193

4Arr ’

which confronts with the theoretical prediction (191). The last equation may also be used
to determine sin® ©@%” from the forward-backward asymmetry A;}“ if we identify

/4 -
ALR = EA;.*.BM .

The weak mixing parameter most precisely measured at LEP is

sin? OFF = sin?@pp =

sin® ©,(M2) = 0.2302 4+ 0.0025 & m, = 196354124 GeV | (194)

We see that the m,-bound is weaker than the one obtained from the hadron collider results.
The smaller error cannot yet compensate for the weaker m,-dependence of sin® ©, in
comparison to sin? . While this measurement does not improve the upper limit, it
does improve the lower limit to m, > 104 GeV. LEP has dramatically improved the
precision of the leptonic Z couplings

Particle Data 90 {14] | LEP 90 [18)]
gy =-0.045 £ 0.022 | -0.037 % 0.005
g% =-0.513 + 0.025 | -0.501 + 0.003
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‘Since g§ = —p./2 and g% /g% =1 — 4 (1 + AR.) §%1 = 1 — 4sin’ ©, we obtain
Ap, = 0.002£0.006 , Ak, =0.126%0.048 , sin®?©, = 0.2315 £ 0.0027 .

Due to virtual b-t transitions in the Zbb vertex

one finds large vertex corrections from a heavy top quark, given by [65, 66]

V3G, M2,

2
Aﬁb,uertea: = {2

my n
M

1672
Apb wertex  — —2A Kpyertex-

1 1 2
516+ ) ;;év +} (195)

These corrections lead to a much weaker top mass dependence of quantities (partial width,
asymmetries) associated with b6 final states. Thus, in comparison with other channels
the production of b5 is particularly interesting since

‘a2 a2 . =2
s ®b — S @e = 8 (Aﬁb,vertex - Ane,uertez)

gf&/gi = 1+ (Apb,vertez - Ape,'uertea:)

measure the large top contribution of the Zbb-vertex. They are completely independent

of Higgs and other heavy particle effects and hence they are ideal heavy top meters.

As an example, for m; = 200 GeV we obtain sin® @, — sin? @,= 0.0020 and g’ /¢%=

0.9821. For sin® @, an experimental accuracy of 0.0009 is supposed to be achievable.
We may define a flavor independent effective sin® © by

sin@ = (14 Ak, )sin® Oy (196)
and include the small vertex corrections in a second step
sin?@; = (1 + Ak perser)sin® @ (197)

up to negligible higher order terms.

The flavor independent auxiliary quantity sin® @ is used in Ref. [56, 64] and is
very similar to s? introduced in Ref. [45]. The “barred”(or “starred”)-quantities are
obtained by ignoring (small) corrections different from the vector boson self-energies.

The leading heavy top and heavy Higgs dependence is given by

V26, M2 m? 2 m?
=top BTW 3t L3 - 19
Aar 162 ME 3 Mg T (198)

top
Ary

V26, ME, _14sf mi + 16ck, (e, — s%) — 1 In m? L
1672 cy Mg 3¢y ME
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and

(199)

A,’-,-Higgs ~ '\/iGnMI?V 1 +98W( 5 )
1672 3ck, "6

respectively. Except from extra top contributions in the case f = b, all heavy particle

effects are universal ie. Ary%, = AFP and Ar% = AFfioee,

What is the proper resummation of the large higher terms in case Ap is large?
Using Eqgs. (183), (170) and (172) we have

cos? O
sin? O

sinf@; = (1-{- Ap—i—---) sin® Oy

My 1 443 . 1
= 1- PMZ T 2(1_J1_pM§1—/_\a+ PR

where the ellipses stand for the small remainder terms. As a result we obtain

1 1
1-— A?“f = 1 — Ao (1 - (Ap)ir'r) + Af'f,rem (200)

for the proper resummation of the large terms in Eqs. (189) and (191). This leads to the
important relation

V2G ,5M% cos? Oy sin? O; = 7a(1 + AT pertes) (201)
where
1 1 o o
0= o &= ~ 202
PET A S 1-ap *T 1 Ae"1-Aa (202)

with Ap and Ae given in Eqs. (183) and (173), respectively. Ignoring vertex corrections
we obtain the universal relation

V2G,pM2 cos?@sin? O = 7a . (203)

For completeness we mention that sin? ©, measured at the Z peak is the high
energy analogue of sin’ ©,,. measured in low momentum transfer v,e — scattering. In
fact, the two versions of sin? © are related in a way which is practically independent of
unknown effects ( they differ by vZ mixzing and v, charge radius contributions only,
which, by accident, largely cancel each other numerically ). Formally we have

sin2 @e = (1 + Ase + Au,.ge,vertez-i-box + Ane,veffe-’ﬂ) Sin2 @"’Fe (204)
where
_cosOy [, 2y Az
Bee = sin Ow {H"rZ(Mz) ——(0) (205)
— AO{ — Aag
a (2 M 24ch, — 14ck, + 9
A = 2 e - *
vpeverteztbor 47TS]2,V {3 (ln mi + 1) + 46%1/ }
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and Ak, yerter 1S the same as in Eq. (182) (see (185)). The shift Aa; in the SU(2)L,
coupling ap = ;g% is analogous to Ao Eq. (158)

Aa, = Hg,,(O)—Hg,,(Mg)

M2
= ErIQzl(ln Z )+Aa£f‘zad,.m (206)

where the sum extends over the light leptons and [51] (see Appendix Sec. IV)

AGE) grons(s) = 0.0587 +0.0018 (207)
40.006184 - {In(s/s0) + 0.005513 - (s/s0 — 1)}

is the hadronic contribution of the 5 known light quarks u,d.s,c.b (/5o = 91.176 GeV).
The proper summation of the higher order effects in this case reads

1-—Aa2

-2 _

+ Au,,e,vertea:+bo:c + Aﬂe,vertex} sin? ev,,e (208)
The ratio sin?®©,,,/ sin® ©, is shown in Fig. 6 as a function of m,. The value of this
ratio is close to 1.002. This relation provides a short of “model independent” constraint
for the Standard Model . The CHARM II value for 0.240 £ 0.012 [67] is in agreement
with the SM. The precise definition of the low energy p-parameter is (to linear order)

. Gre(®)
(473 GCG(O)

=1+ AP + Apuertez+boa: | (209)

with Ap given in Eq. (158) and

ME 2
A pyertezrbor = ‘/—G 24ch, — d4ck, + 15 — 2‘2" (4cky +3)Inck, ¢ .
1671'2 sty

Similar to the asymmetries, the correctcd'partial widihs T, = YACME (2

a3)N.sKqcp (1 + égrp) and the peak cross-sections Upeak o ﬁ"%&?— are g1vcn by the

Born formulae using the effective parameters Eq. (182). The uncertamty in «, implies
an uncertainty of 12 MeV in I'z,,;. The QED-correction including real photon emission
is given by égpp = 32Q3%. In Tab. 4 some values are given for the widths and peak
cross-sections. Full QCD corrections are taken into account [68]. In contrast to other
authors we use a nunning M S top mass. QCD corrections for the heavy top are small in
this case, i.e. the results are close to the results which do not include QCD corrections
for the heavy top.
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Table 4. Z widths and peak cross-sections for Mz = 91.176 GeV and «, = 0.117.
Masses are given in GeV, widths in MeV and cross sections in nb.

eak
my| mpg| Tz | T | Do |Dine | Do | T | Rhaa | 05%% | oho

90 | 100 | 2482 | 1733 | 83.4 | 499 | 296 | 378 | 20.787 | 1.9927 | 41.423
110 | 100 | 2485 | 1735 | 83.5 { 499 | 296 | 378 | 20.782 | 1.9937 | 41.432

130 50 | 2490 | 1739 | 83.7 | 500 | 297 | 378 | 20.780 | 1.9944 | 41.443
130 | 100 | 2489 | 1738 { 83.7 | 500 | 297 | 377 | 20.775 { 1.9949 | 41.444
130 | 1000 | 2481 | 1732 | 83.5 | 499 | 296 | 376 | 20.755 | 1.9971 | 41.449

150 | 100 | 2494 | 1741 | 83.9 | 501 | 298 | 377 | 20.767 | 1.9963 | 41.456
200t 100 | 2508 | 1751 | 84.4 | 504 | 301 [ 375 | 20.745 | 2.0002 | 41.494
230 | 1002519 | 1759 | 84.9 | 506 | 303 | 375 | 20.731 | 2.0028 | 41.521

2. Results from LEP at the Z Resonance

The results from LEP based on 600,000 Z decays (presented at the Aspen Confer-
ence January 1991) are collected in Tab. 5.

The central values are given for m; = 136 GeV and my = 100 GeV. The un-
certainties for the SM predictions include variations of the parameters within the one
standard deviation bounds 89 GeV < m,; < 204 GeV, from the UA2 and CDF data,
and 50 GeV < my < 1 TeV. More precisely, the allowed range for m, depends on
mpy. Since, in the range of interest, all quantities are monotonic functions of mpg and
m, we may inspect the extremal cases simply: For mgy = 50 GeV the 1o range for m;
is (74,180) GeV or (89,180) GeV if we take into account the direct bound (26). For
my = 1 TeV we get (104,204) GeV. The bounds given in Tab. 5 are then the maximum
or minimum values from the two extremal cases. Taking an upper bound 1 TeV for the
Higgs mass is of course a theoretical prejudice.

The mass and the total width of the Z are determined from the line-shape. The
separate analysis of the visible channels ete~ — hadrons and ete™ — £+£~ allows to
determine ;g and Ty (¢ = e, , 7), Tespectively. Using that the total Z-width is given

by
Tz = Chag + 3o + Tinvisivte 3 Dinvisite = No(T)sm - (210)

in terms of the hadronic, leptonic and neutrinic contributions, T';, s is determined. N,
is the effective number of SM neutrinos. The most important result established by the
LEP experiments is that NV, = 2.95 + 0.05 and hence no additional light (m, £45GeV)
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neutrino (sneutrino, Majoron etc.) exists [18]. This rules out the existence of further
family replicas of the known type with (within experimental limits) massless neutrinos.

Table 5. LEP results on the Z peak

ALEPH | DELPHI | L3 OPAL | LEP SM | sin?©
Z decays | 195,000 | 130,000 | 125,000 | 156,000 | 600,000
M 91.182 | 91.175 | 91.180 | 91.160 | 91.176 0.2315
(GeV) | £0.009 | +£0.010 | £0.010 | £0.009 | 40.005 + s
4+0.020 | +0.020 | £0.020 | £0.020 | £0.020
Tz 2488 2454 2500 | 2497 | 2485 | 2490 | 0.2322

(MeV) | +£17 +21 +17 +17 +10 +22 | 5t

oPeF | T4176 | 41.98 | 4092 | 4123 | 4145 | 41.45 | 0.2313
@by | £039 | 1063 | +£047 | 4047 | 4021 | +0.12
Tra | 1756 | 1718 | 1730 | 1747 | 1744 | 1739 | 0.2314
MeV) | *15 422 | £19 | £19 | +10 | +18 | +.0022
T, 83.6 834 | 833 | 834 | 834 | 837 | 0.2326
MeV) | 207 | £10 | 208 | £07 | +£04 | +0.5 |+.0021
Rnez | 2107 | 2161 | 2088 | 2094 | 2092 | 20.77
+0.19 | +033 | +£028 | +0.24 | +0.13 | +0.12
Tine 487 436 511 499 496 | 500
(MeV) | +14 | =21 18 | 17 +9 +3
N, 290 | 293 308 | 300 | 295 3
+08 | +£13 | +£10 | +10 | +05
(v.fa.)” | 0.0081 | 0.0028 [ 0.0081 | 0.0024 | 0.0056 | 0.0051 | 0.2315
+.0028 | £.0056 | £.0051 | +£.0028 | +.0016 | £.0013 | +.0027

Ab.g 0.141 0.130 | 0.080 [ 0.117 [ 0.0962 | 0.2241
+.044 +.043 +? +.027 | *to2 | £.0077
Ane” 100239 | 0.0084 | 0.0239 | 0.0072 | 0.0166 | 0.0151 | 0.2313
+.0082 | +.0168 | £.0150 | +.0084 | +.0047 | +.004 | £.0027

Of particular interest is the observable Rj.qs = I's.q/T"¢ which is almost independent of
ms, due to an accidental cancellation of the m-dependence between the Zbb-vertex and
the self-energies. A deviation from the SM would be a direct signal for non-standard
physics. The experimental value 20.92 £ 0.13 is slightly higher than the SM prediction
20.77 & 0.12. Also the hadronic peak cross-section o7°%¥ is weakly dependent on m,
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Figure 17: Results for I'y.q, Iy and By qq.
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only. The experimental value is in perfect agreement with the prediction. Before more
stringent tests are possible one has to pin down further the allowed mass ranges for the
top and the Higgs. We do not expect that the errors on Mz and «, can be substantially
improved further.

Some major results obtained in the first year of LEP (~ 600 000 Z’s) are shown
together with theoretical predictions in Figures 17 and 18. All Figures show the data
together with the theoretical prediction as a function of the top mass for my= 50,100
and 1000 GeV. An uncertainty a, = 30.01 in the strong interaction coupling constant
is shown as a inner error band whereas the outer error band shows the uncertainty in the
prediction due to the experimental error §M, = +0.021 in the Z-mass. The agreement
between the experimental numbers and the theoretical predictions is impressive,
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