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RENORMALIZING THE STANDARD MODEL 

FRED JEGERLEHNER 

Paul Scherrer Institute 

CH-5232 Villigen PSI, Switzerland 

ABSTRACf 

We review the renonnalization of the Standard Model of electroweak interac­
tions and go into details of calculating and renonnalizing parameters and cross 

sections. The main emphasis is on calculations for precision physics with Z 
bosons. Theoretical calculations are confronted with recent results from LEP. 

I. THE STANDARD MODEL 

1. Introduction 

The known fundamental interactions of elementary particles (strong, weak and 

electromagnetic) derive from a local gauge principle (Weyl 1932, Yang-Mills 1954) with 

the gauge group [1,2] 

G1oc = SU(3)c 0 SU(2)L 0 U(l)y . (1) 

The theory is essentially determined once the matter fields and their transformation laws 

under G1oc are specified. The real world is built from massless spin 1/2 particles, the 

leptons and colored quarks. Massless particles necessarily have fixed helicity (chirality). 

The relativistic massless Dirac field ,P decomposes into two independent Weyl fields a 

left-handed field .PL = 1-z"s .p and a right-handed field 7/Jn = 1±?-.P: 

In relativistic quantum field theory locality and causality enforce particle-antiparticle 

pairing and the spin-statistics theorem to hold. For the chiral fields this implies that a 

left-handed field .PL describes at the same time a left-handed particle and a right-handed 

antiparticle and a right-handed field .p R describes a right-handed particle and a left-handed 

antiparticle. If we count particles and antiparticles separately, using .Pn ~ 7/Jf, we thus 
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may consider all fields to be left-handed. If we use the labels r=<i, g=green and b=blue 

for the quark colors, the list of particles in the first lepton - quark family reads 

and there are two additional such families. These are 45 degrees of freedom described 

by the free matter Lagrangian 

Cmatter,o = "L_:IfLail"o".PLa. (2) 
a 

This Lagrangian has a global U( 45) symmetry. Nature has chosen the subgroup G1oc c 
U ( 45) to be a local symmetry 

1/JL-> U(x) 1/JL, U E Gloc· 

This requires the existence of a set of gauge fields V"; which minimally couple to the 

fermions 

op1/JL-> Dp'I/JL = (o~'- iLgrTr;V"ri) 1/JL 
r 

By Tri we denote the generators of the local group (r labeling the different group factors) 

and gr are arbitrary coupling constants. Thus, the matter field interactions are determined 

to be 

where 

£matter,int = Lgrj~i VI£ ri 
r 

(3) 

are the fermion currents. We observe that fermions talk to each other only via spin 1 

gauge bosons. 
In the unbroken phase, mass terms for fermions are forbidden, since 'f,p = 'iJL'ifJR+ 

{;RI/JL is not SU(2)L 0 U(l)y invariant. 
The transformation properties of the fermions under G1oc are the simplest possible 

ones. Only the fundamental (the nontrivial representation of lowest dimension) and the 

trivial (singlet) representations show up. The weak quantum numbers and multiplets are 

summarized in the following Tables. 

·. Doublets Singlets 

(vt)L (C )L (u,c,t)L (d,s,b)L (vt)R (C )R ( u, c, t)R (d,s,b)R 

Q 0 -1 2/3 -1/3 0 -1 2/3 -1/3 

T3 1/2 -1/2 1/2 -1/2 0 0 0 0 

y _:_1 -1 1/3 1/3 0 -2 4/3 -2/3 
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'J : 

group multiplet representation 

SU(3)c: leptons 1 color sing lets 
quarks 3 color triplets 

antiquarks 3* anticolor triplets 

SU(2)L: ( :~ t' ( J) L 

( ;~ t,U t weak 
2 = 2* isospin 

doublets 

( := t,Ot 
e]i, un, dn, weak 

f.LJi, en, sn, 1 isospin 

rji, tR, bR singlets 

U(1)y : abelian 

Y=2(Q-T3) weak 
hypercharge 

By if we denoted the Cabibbo-Kobayashi-Maskawa (CKM) rotated quarks ifd = UKMqd 
where qd = (d,s,b) is a horizontal quark vector (see below) [3]. 

For the massless spin 1/2 gauge fields and the gauge couplings we will use the 
following notation, 

group fields coupling 
SU(3)c: G"' i = 1, ... '8 g. 
SU(2)L: w". a= 1,2,3 g 
U(l)y: B" g' 

The pure gauge Yang-Mills Lagrangian is given by a sum of independent pieces from 
each group factor, 

where 

r 
1 

G G""' 
1 

W W"""- ~B B"" '-Y M = -4 p.vi - 4 p.va 4 "" 

a,. W"" - a" W"" + igc:.bc W,.b Wvc 

a,.B" - a"B" 

3 
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are the non-abelian and abelian field strength tensors. The crucial consequence of non­
abelian gauge invariance is that it requi.t:es the non-abelian fields to be self-interacting 
(they carry themselves non-abelian charge) and that the self-couplings are uniquely fixed 
once the couplings to the matter fields are determined. Thus one coupling constant 
determines three topologically different vertices (Fig. 1 ). 

Figure 1: Interrelated interaction vertices of a gauge theory 

In the following we will concentrate our considerations to the electroweak subgroup 

SU(2)L 181 U(l)y which is broken in the real world to the electromagnetic abelian gauge 
group U(l)em known from QED. 

The eigenstates of charge Q can be found easily. TheW's have Y = 0 and hence 
Q = T3 , where T3 denotes the 3rd component of weak isospin. The charge raising and 
lowering generators are obtained in the standard way. The shift operators 

T± = T1 ~iT, ; T+ = 0 ~ ) , T_ = ( ~ ~ ) 
satisfy the commutation relation 

and correspondingly the fields 

w; = ~(w,., ~ iW,.2) (5) 

carry charge ±1. The fields W,.3 and B,. both have Y = 0 and T3 = 0 and hence Q = 0 
and thus can mix. The field which couples to the Q = 0 particle veL we denote by z,. 
and the field orthogonal to it is the photon 

z,. = cos0wW,.3-sin0wB,. 

A,. = cos 0w B,. +sin 0w W ,.s . (6) 

The weak mixing angle 0w is determined by tan 0w = g' /g. 1 In terms of the physical 
fields we may summarize the structure of the electroweak theory as follows: 

1Historically, the electroweak standard model gauge group has been introduced by Glashow in 1961. 

At that time only the charge changing weak currents Jt and J;; = (J;!') t were known. If one argues 

them to be the Noether currents which derive from a symmetry, SU(2) being the obvious candidate, the 

algebra of generators must be required to close 

[T+, T_) = -2T3. 

This implies that there must exist a neutral current associated with the 3rd generator T3 • Since the 3rd 

current cannot be identified with the electromagnetic current, W,.3 cannot be identified with the photon 

and an extra abelian group factor was necessary in order to unify weak and electromagnetic interactions. 

In this way mixing and the weak mixing parameter sin2 0w was introduced. 
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The charged current (CC) has the form 

J: = J,.,- iJ,.2 = vn,.(l -')'s)£ + 1u!,.(l -')'s)UKMqd (7) 

and exhibits quark flavor changing, through mixing by the unitary Cabibbo- Kobayashi­
Maskawa matrix UxM- The neutral current (NC) is strictly flavor conserving [4] 

(8) 

with 

(9) 

the electromagnetic current. The sums extend over the individual fermion flavors f (and 
color). In our convention the vector and axial-vector neutral current coefficients are given 

by 

(10) 

where T31 is the weak isospin ( ±t) of the fermion f. The matter field Lagrangian thus 
takes the form 

£matter= L 1{;Ji1"8,...PJ + g 10(J:w"- + h.c.) + 
2 

g B 1; Z" + ej~m A" 
1 2v2 cos w 

(11) 

where e = g sin E>w is the charge of the positron (unification condition). The discovery 
of the w± and Z bosons at the pp collider at CERN [5] directly confirmed these weak 

gauge boson couplings. On the other hand for a direct confirmation of the weak gauge 
boson self-interactions in the Yang-Mills part of the Lagrangian 

we have to wait for W-pair production at LEP2. Phenomenologically we know that the 

SU(2)L 0 U(l)y symmetry is broken by the mass terms 

£mass=- 2:-mtlfi,..p, + ~M~Z,.Z" + ~M&w:w-" 
J 

(13) 

of the physical particles. Since the mass terms are not SU(2)L 0 U(l)y invariant this 
massive vector boson theory is not renormalizable. 

2. The Higgs Mechanism 

The minimal renormalizable extension is obtained if we generate the masses by 
the Higgs mechanism (Higgs 1964 [6], Weinberg 1967 [1]). The basic idea comes from 
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the Landau-Ginsburg theozy of superconductivity (see e.g. Landau-Lifschitz, Theoreti­
cal Physics, Vol. IX). A massless particle (the photon) moving in a Bose condensate 
ground state (sea of Cooper-pairs) behaves like a massive particle (Meissner-effect). The 
Meissner effect is illustrated in the following Figure 2 showing the magnetic field of a 
magnetic· monopol in the normal and in the superconducting phase. 

normal I - - -supercoiiauc1Jngl 

CJ92t=)..==== 
L_ _____ _ 

l.{Jmagn ex: ; ; m"Y == 0 

Weyl,Yang-Mills 

Figure 2: The Meissner effect in superconductivity 

One can apply the same principle and couple the "to be massive" fields invariantly to a 
scalar field which develops a non-vanishing vacuum expectation value. Since we must 
break the SU(2)L, we need a scalar field which transforms non-trivially under this group. 
The simplest choice is to take a complex doublet with weak hypercharge Y = 1 

( 
q,+ ) 1 ( . .1. ) ( 0 ) PH ;:!i.e. ( 0 ) q;b = <Po = Vi H, + zri'f'i 1 = Vie 2 • 1 (14) 

and its Y-charge conjugate .P, = ir2 .Pi: 

( 
</>o ) 1 ( . ) ( 1 ) PH i:!i.B· ( 1 ) .P, = _ q,- = Vi H.+ tr;t/>; 0 = Vie 2 • 0 , (15) 

the charge being determined by Q = T3 + Y /2. In order to write down the gauge invariant 
Lagrangian for the scalars we need the covariant derivative, which is given by 

I 

D~.Pb = (8~- i; B~- i~r.w~.)wb 

and the Higgs Lagrangian takes the form (requiring renormalizability) 

[.Higgs= (D~.Pb)+ (D".Pb)- >. ( <Pt<Pb)
2 
+ f.£2 

( <Pt<Pb) 

6 

(16) 

(17) 

.. 

. y 

• 

... ! 



. . 

' 

.. 

• 

Since the fermion doublets and the Higgs doublets have identical SU(2) transformation 
properties, and taking into account the hypercharge assignments, we can write down the 
following invariant Yukawa type couplings 

Cvukawa =- ( Gu Leif!,ven + h.c.) - ( G&e Leif!bf_R + h.c.) 

- ( G,q Lqifi,un + h.c.) - ( Gbq Lqif!bdR +h. c.) (18) 

where L1 denote the lepton and quark doublets and G.1 Yukawa couplings. We choose 
f.l 2 > 0, such that the Higgs potential has a non·trivial minimum at < H, >= v > 0 
which represents the actual ground state (vacuum) in the broken phase. Here, H, is the 
neutral scalar component of the Higgs doublet 

H _<Po+ <Po 
s- J2 

and H = H, - v is the physical Higgs field with vanishing vacuum expectation value 
< H >= 0. 

Exploiting the invariance of all terms in the Lagrangian we notice that we can gauge 
away the fields 8i in the polar representation given in Eqs. (14,15), since the exponential 
is a SU(2)·matrix. This means that three (8;) of the four scalar fields (pH, 8i) are in fact 
unphysical. They are called Higgs ghosts or "would be Goldstone bosons". The gauge 
for which the ghosts are absent is called unitary or physical gauge. While Cmatter and 
Cy M remain unaffected by a gauge transformation, £Higgs and CYukawa take a special 
simple form, because 

if! =H+v(O) 
b J2 1 

in this gauge (identifying pH = H + v ). One gets 

C I.(a H8"H) + (H + v)Z(M2 Z Z" +2M2 w+w-") 
Higgs = 2 p. 2V2 z !' W " 

.>-4\3122 -4H - AVH - 2mHH 

"" - H 
CYukawa = - L., mtifJJ1fJJ (1 +-) 

f v 
(19) 

and thus, £Higgs + CYukawa = Cma<s + CH with 

~(8H)2 - ~m"hH2 
2 2 

""m1 - M'j 2Mfv + -L..,-1/JJ.PJH+-Z"Z""H+--W w-""H+··· 
f v v v " (20) 

as an extra piece, which renders the theory renormalizable. 
The Higgs sector is completely unverified so far and its confirmation is a big chal· 

Jenge for experimental particle physics. The proof of renormalizability by G. 't Hooft [7] 
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rejuvenated particle physics about 20 years ago and preceded the first phenomenological 
success of the SM which was the discovery of the neutral currents [8] in 1973. 
A basic consequence of the Higgs mechanism is the validity of the following mass­
coupling relations. The vector boson masses are given by 

M 
_ gv M gv 

w--, z== 
2 2cosGw 

(21) 

The fermion masses and the Higgs mass are given by similar relations 

G I r,::, 
m1 == .j2 v, mn = v2.A v . (22) 

in terms of the Yukawa couplings G 1 and of the Higgs coupling >.. In the standard model 
the {l-decay constant G,. is given by 

G,. = ,// 
2 

= ; = 1.166389(22) x 10-5 (Gev)-2 

4 2Mw v2v2 
(23) 

and thus the Higgs vacuum expectation value 

v = (-./2G,.t1
/

2 = 246.2186(16) GeV 

is a very precisely known quantity, frequently called the Fermi scale, which figures as 
a conversion factor between couplings and masses. One important consequence is that 
the existence of heavy particles requires strong couplings and for too heavy particles 
this leads to a breakdown of perturbation theory. With other words, particles with 
masses large as compared to the Fermi scale are unnatural in the minimal SM. The non­
decoupling of heavy particles is a new feature characteristic of a spontaneously broken 
gauge theory. In contrast, in QED and QCD heavy particles decouple as required by the 
Appelquist-Carazzone theorem [9]. 
If we take for granted the SM, we can say that the existence of the Higgs condensate 
has been established. Like in superconductivity the Higgs could in fact be composite. It 
is certainly a very interesting question, whether there is an underlying "BCS-theory" for 
the standard model . In any case, phenomenologically one expects the SM to work as a 
low energy effective theory at scales below 1 Te V. 
On a formal level the role played by the Higgs mechanism is the following: It 

• breaks SU(2)L 0 U(l)y to U(l)em , 

• generates the masses of the weak gauge bosons W±, Z and the fermions, 

• provides a "physical cut-off' to the massive vector boson gauge theory. 

The prize we have to pay is that 

• a neutral physical particle H must exist. 
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The mass of the Higgs is a free unknown parameter. At present the limit for mH from 
LEP experiments is mH :» 49 GeV. At LEP2 the Higgs search can be extended to about 
mH ~ Mz. If the Higgs should be heavier, and this is likely the case, a discovery is 
possible only at future colliders like SSC or LHC. 

3. Yukawa couplings 

The most general form for SU(2)L 0 U(l)v invariant couplings between fermions 
and scalars follows from the following transformation properties of the fields 

'I!LJ.:. L1 ---> U(x)LJ fermion doublet 

iJ?b,t ---> U(x )iJ?b,t Higgs doublet 

fn ---> fn fermion singlet. 

Since we insist in renormalizability, the most general invariant Higgs fermion interaction 
is a complex linear combination of terms are of the form 

LJiJ?dn = (u}_,p+ + Ji<?o)dk, LJiJ?tfn = (u~,P~- JiL,p-)uk 

and their hermitian conjugates. Here, i, j = 1, 2, 3 are family indices and the quantum 
numbers of the right-handed singlets are fixed by weak hypercharge neutrality. Since 
each family is made up of fields with identical SU(2)L 0 U(l)y transformation laws 
invariant Yukawa couplings are possible for combinations of fields from different families 
(i "'j). 

With the fields having identical SU(2)L 0 U(l)y quanmm numbers one can form 
lwrizontal vectors. For the quarks there are the 4 horizontal vectors quL, qdL, qun, qdR 
where qu = ( u, c, t) and qd = ( d, s, b). 

In order to transform the fermion mass matrix (obtained by replacing <Po = <Po = 
vfv'2, ,p+ = ,p- = 0) to diagonal form we must perform independent global unitary 
transformations of the 4 horizontal vectors. Whereas, 

• unitary transformations of (qu, qd)L as a doublet, qun and qdR do not change the 
matter field Lagrangian, 

• an independent transformation of qdL leads to "mismatch" 

iJdL = UKMqdL 

of the quark fields in the charged current. 

This leads us to the form of the charged current 

J;}0 = (u, c, l}y,.(l -ls)UKM ( ~ ) 
given in Eq. (7) with the unitary 3 x 3 matrix 

( 

Vud Vus 
UKM = V';,d Vcs 

V,d V.s 

9 
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which may be parametrized in terms of 3 rotation angles and a phase. 
This family mixing occurs if 4 independent unitary transformations are required to 

diagonalize the mass matrix, and this is the case if particles of the same charge all have 

different masses. This happens to be so for the quarks. If we belief that all neutrinos 

are massless no mixing in the leptonic current is possible. Indeed all searches for lepton 

number violation have yielded no signal so far. 
Due to unitarity, there is no mixing effect in the neutral current, since 

This is called the GIM-mechanism explaining the absence of flavor-changing neutral 

currents (FCNC). In fact, in order to explain the absence of FCNC's, Glashow, Iliopoulos 

and Maiani had to propose, in 1970, the existence of a fourth quark, the charm quark c 

as a doublet partner of the s quark. At that time only three quarks where known [4]. 

The discovery of the J N in 1974 [10] revealed the completeness of the 2nd family with 

the charm quark c. The first 3rd family member showed up in 1975 with the discovery 

of the r [11]. With the observation of the Y [12] the existence of the b quark could be 

established. We are still waiting for the direct observation of bottom's doublet partner, 

the top quark. The direct lower limit for m, from CDF is [ 13] 

m, > 89 GeV. (26) 

We summarize the following important consequences: 

• i) all masses of quarks and leptons are independent 

• ii) the coupling of the Higgs boson to the fermions is universally proportional to 

each fermion mass, for bosons proportional to the square of each boson mass 

• iii) there is quark flavor violation in charge exchange weak interactions 

• iv) the phases in UxM are CP-violating and thus potentially capable of explaining 

the observed CP-violation in K -decays. At least 3 families are needed to "explain" 

CP-violation in this way. 

• v) flavor is conserved in neutral currents (GIM mechanism). This is strikingly 

supported by experiment, at least for the light flavors. 

The leptonic CC has some very special properties, which derive from the apparent absence 

of right-handed neutrinos. If Vtn does not exist mv, = 0 and lepton number Le is 

conserved individually for£ = e, p, r. Among the neutrino-puzzles we mention: Have 

neutrinos a mass and if so why are they so small? Do neutrinos have unusual magnetic 

moments? Are there neutrinos which are their own antiparticles (Majorana neutrinos)? 

The properties of the weak currents have been established in a long history which 

started with Fermi in 1934. Here, we only mention some more recent of the fundamental 

experimental tests [14]: 
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• V-A structure of the CC: 
!-'-decay provides the most sensitive clean direct tests for right-handed currents 
(e.g. SU(2)n 0 SU(2)L 0 U(l)B-L extension of the SM). The best limit for the 
transition amplitude is 

AAV+A < 0.029 (90%CL) 
V-A 

• absence of flavor-changing NC at tree level: 

r(KL-> fl+p,-)jr(KL-> all) 
r(D0 -> p,+p,-)jr(D0 -> all) 
r(B0 -> e+e-)jr(B0 -> all) 

= (9.52:i:i) x w-9 

< 1.1 x lo-s 
< 3 X 10-s 

Flavor-changing NC processes are allowed in higher orders (rare processes). 

• special properties of the lepton current: 
Present limits on the neutrino masses are: 

mv. < 9.4 eV (from 3H-> 3He e- iie) 

mv" < 250 ke v (from ?r -+ p, v ,) 
mvr < 35 MeV (from r- -+ 3?r v7 ) 

Le conservation is established by the branching fractions: 

R < 4.9 X w-ll (from p,-+ e-y) 
R < 1.0 x 10-13 (from p, -+ 3e) 

Neutrino mixing searches (v-oscillations ve <-> ve•) also have been negative so far. 

Open problems are the measurements of direct CP-violation (e') in the K-meson system 
and CP-violation in the B-meson system [15]. We still do not know whether CP-violation 
is a phenomenon which has its "origin" in the CKM-phase solely, or if it's due to a new 
super-weak interaction outside the SM. Still unsolved is the solar neutrino problem [16]. 
The observed solar v. flux is too low. This could signal flavor mixing (causing conversion 
of v. into v,,r not visible to present detectors) of the neutrinos which is possible only if 
the neutrinos have different masses. Another possibility would be that the v. is unstable. 
In summary: no deviations from the SM could be established until now. 

4. Fixing the parameters of the SM 

Besides the fermion masses, the CKM-mixing parameters and the Higgs mass the 
SM has 3 basic parameters g, g' and v. They are conventionally replaced by parameters 
which can be measured directly in a physical process. A specific choice of experimental 
data points as input parameters defines a reriormalization scheme. Like in QED a natural 
choice would be the fine structure constant and the physical particle masses (on-shell 
scheme): 
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Since Mw will not be known accurately at LEPl we must use the precisely known 
p-decay constant G,. in place of Mw. Thus, we will use the parameter set 

for accurate predictions of measurable quantities. In the pre-LEP era when Mz was not 
known or known with rather limited accuracy from the pjJ-collider, instead of Mz the 
weak mixing parameter sin2 E>w had to be used. For a study of low energy processes 
this is still the adequate choice 

The universal fine structure constant a = e2 /47r = 1/137.0359895(61) (determined in 
low momentum transfer Coulomb scattering), the Fermi constant G,. (from tbe muon 
decay rate) and the weak mixing parameter sin2 E>v"N(e) (from low momentum transfer 
neutrino scattering). 

We first discuss the relation between the different parameter sets. 

a , Thomson limit q2 --+ 0 

G,. 

VIL VIJ. 

I 
e e X 

Figure 3: Parameters from low energy four-fermion processes 

The low energy four-fermion processes are described by the effective Fermi-type La­

grangian 

Ceff =-~ ( G,.J: J"- + GNcJ; J"z) + ejzm A,. 

which is the low energy effective form (jq2 j ~ Mfv, M1) of 

Cint = g M (J:w"- +h. c.) + 2 g E> J; Z" + ejzm A,. . 
2v2 cos -w 
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The electroweak unification condition and the parameter relations deriving from the 
processes shown in Fig. 3 read 

i) ~ - e gsin0w 

ii) ../2G" 
2 1 

- 4lr' v' 
../2GNc 

r 1 (29) ~ 
4M~cos2 0w - Po., 

iii) Po 
!2lli;. M2w -- G~ 

- M~ cos2 E>w = Ptree 

For the moment we have relaxed from the assumption p0 = 1 valid in the minimal SM. 
From the parameter relations we now obtain the tree level relation 

ii) 
../2G "Mfv sin 2 0w 

•.0 r,:; 2 ( Mfi, ) 
VL-G"Mw 1- PoMl . 

If radiative corrections are included this relation is modified into [17] 

r,:; 2 ( Mfi,) a v .t.G"Mw 1 - M 2 = 1r A • 
Po z 1- u.r 

(30) 

which is the defining equation for f..r (with p0 kept fixed at its tree level value!). In 
the following we take p0 = 1, as appropriate for doublet Higgses, such that by the last 
relation of Eq. (29) 

. 20 Mfi, sm -w=1- M 2 • 
z 

(31) 

The definition of f..r by Eq. (30) is conceptually very simple, all quantities involved 
have been measured and can be found in the particle data booklet. 

Later, we will often use a and the physical particle masses as a convenient set 
of independent parameters. The Fermi constant is then a calculable quantity (J.L-decay 
amplitude). Originally, the J.L life-time r" has been calculated within the framework of 
the effective four-point Fermi interaction. If we include the QED corrections (Fig. 4) 
we obtain the result 

1 G~m~ ( 8m~) [ a ( 2a m" 25 2 )] - = 1-- 1+- 1 +-log-)(- -1r • 
T" 1927r3 m~ 27r 37r me 4 

(32) 

This formula is used as the defining equation for G" in terms of the experimental J.L 

life-time. Present data [14] yield the value given above. 
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Figure 4: fl- decay with QED corrections in the effective Fermi model 

The Z-mass has been determined rather accurately now at LEP1 [18] 

Mz=91.176±0.021 GeV (33) 

while the W mass we know from the collider experiments U A2 [19] and CDF [20]. 
Using their determination of the mass ration Mw/Mz, for which common systematic 
errors drop out, together with the Z mass from LEP1 we obtain 

Mw = 80.19 ± 0.32 GeV (34) 

The various measurements of sin2 Gw are collected in Table 1. 

Table 1. sin2 Gw measurements in NC processes [14,19,20,18] 

Measurement sin2 0w 
Vz (pp) 0.2265 ± 0.0062 (ave.) 

UA2 0.2202 ± 0.0084 ± 0.0045 
CDF 0.229 ± 0.016 ± 0.002 

(:~~) v~N 0.232 ± 0.006 (ave.) 

CDHS 0.2275 ± 0.005 ± 0.005 

CHARM 0.236 ± 0.005 ± 0.005 
P. V. in Cs 0.215 ± 0.007 ± [0.017]'h 

e-D (SLAC) 0.217 ± 0.015 ± [0.013]'h 

R = """' CHARM ll 
vp.e Cft:-pe 

0.240 ± 0.009 ± 0.008 

assume m, = 140 ± 40 --> 0.230 ± 0.016 

re,Ah LEP 0.2302 ± 0.0025 

assume m, = 140 ± 40 --> 0.220 ± 0.006 

Assuming Ptree = 1, as required by the minimal SM, recent global fits yield for the weak 
mixing angle and the top mass (68%0.£.) 

sin2 Gw = 0.2273 ± 0.0033 , m, = 122:!:i~ GeV Ref. [21] 

sin2 0w = 0.2272 ± 0.0040 , m, = 139:!:fg ± 16 GeV Ref. [22] (35) 

sin2 0e = 0.2325 ± 0.0015 , m, = 127 ± 34 ± 17 GeV Ref. [18] 

when 40 GeV < mH < 1 TeV. 
A very important parameter in electroweak theory is the p-parameter, defined by 

the neutral to charged current ratio at low energy. The v N scattering data yield the most 
sensitive determination of the p-parameter. 
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Taking p and sin2 Gw as independent parameters, a recent global fit to all NC-data [22) 
yields (the values indicated with an asterisk I have obtained by scaling with the theoretical 
predictions) 

m 1 (GeV) 100 140 180 200 

sin2 Gw 0.2305 0.2260* 0.2207* 0.2215 ± 0.0010 

sin2 Gw (SM) 0.23027 0.22580 0.22048 0.21741 

Po 1.003 0.99996* 0.996* 0.994 ± 0.003 
p (SM) 1.00776 1.01082 1.01492 1.01737 
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where the theoretical values (SM) are given for mH = 100 GeV. p0 = e"• corresponds 
to Ptree if we ignore possible radiative corrections from non-standard P'lf%ics. Thus p0 

is remarkably close to the minimal standard model value Ptree = 1. 
These experimental results are extremely important constraints for possible devi­

ations from the SM. For example, the measured value for sin2 Gw is clearly in con­
tradiction to the simplest grand unified model, namely, minimal SU(S), which predicts 
sin2 Gw ~ 0.211-0.218. Independently, this theory has been ruled out by proton decay 
experiments. The bounds on the p-parameter allow to have additional scalar doublets or 
singlets which do not affect the minimal SM value Ptree = 1. However, possible Higgs 
triplet contaminations are limited because they implies Ptree < 1 and a pure triplet would 
give Ptree = 1/2. 

Since the discovery of the weak neutral current, almost two decades ago, the SM 
has been astonishingly successful and one has to wonder why. In the following we will 
discuss some important aspect of the SM in more detail with the hope to shed some more 
light on its unique structure. 

Appendix A. Axial Vector Anomaly and Anomaly Cancellation. 

Axial vector currents lead to the axial anomaly [23], which is associated with the 
triangle fermion loop diagram depicted in Figure 7. More generally, anomalies show up 
in diagrams which exhibit an odd number of axial vector current vertices and which are 
UV divergent (and hence need regularization at intermediate steps). One can show that 
all anomalies are related to the triangle anomaly, which we briefly discuss now. 

PI k Pz 
in"T;\------1 ig1vTj 

-(p, + Pz) 

Figure 7: Triangle diagram exhibiting the axial anomaly 

The amplitude for the triangle graph is given by the integral 

T-"">.( ) ijk p,,pz = 

Adding the diagram we obtain by interchanging the two vector vertices we get an am­
plitude which is bose symmetric 

T"">.( ) T-"">.( ) T-"">.( ) ijk p,,pz = ijk P1>P2 + jik Pz,p, 
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and for which we impose vector current conservation (condition on possible renormal­
ization counter term) 

Pr"T!j~\pr,pz) = PzvT!j~\Pr.Pz) = 0. 

It then turns out that the divergence of the axial vector current is non-vanishing and 
uniquely determined by the mass independent anomaly 

(36) 

(Adler, Bell and Jackiw 1969). We have introduced the abbreviation D;jk = Tr( {T;, Tj }Tk) 
for the representation dependent coefficient of the anomaly. The result can be obtained 
as a matrix element of the anomalous divergence equation 

2 

(\jMx) = 1 ~1f2 DijkG;v(x)Gj"v(x) (37) 

where G;"" is the (abelian or non-abelian) field strength tensor and Gf" = ~c;"vpu G;pu 
its dual tensor. This is a very surprising result because the canonical Ward-Takahashi 
identities reading 

8" (ifJo".Pz) (x) - i(mr- mz) (ifJr.Pz) (x) 

8" (frl"ls.Pz) (x) - i(mr+ mz) (.p-;_ls.Pz) (x) 

do not exhibit such a term and for massless fields both currents are conserved. The 
anomaly given above can be shown to be unaltered by higher order effects. Eq. (37) is 
thus the exact (non-perturbative) form of the axial anomaly (Adler and Bardeen 1969 , 
Gross and Jackiw 1972 and Korthals Altes and Perottet 1972)- The crucial point about the 
anomaly is the fact that its presence spoils renormalizability af a theory! Only anomaly 
free theories are viable theories. The appearance of anomalies in a gauge field theory is 
strongly related to the fermion representations. Which representations are anomaly free? 

• Real representations (R ~ R*) are anomaly free, since D;jk = 0 for all real 
representations. 
The groups which have only real representations are: SO(U + 1) for (£ > 1), 
Sp(2£), G2, F4, E7 , E8 • In addition D;jk = 0 also holds for S0(2£) for(£> 1) 
with one exception: S0(6) co: SU( 4). 

• Since for any representation R one has Diik(R) = D;jk(~) · K(R) where ~ 
denotes the fundamental representation and I< ( R) is a representation dependent 
invariant, all representations are anomaly free if Diik(~) = 0 . In particular, this 
is the case for SU(2), for which(~~ .RQ), and for E6• 

• The groups SU(n), (n ~ 3) have complex representations (R f R*) and D;jk(~) i' 
0. These groups are IWt a!Wmaly save ! 
If we write 

(38) 
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at the 15-vertex and use 

(39) 

we obtain 

(40) 

which tells us that left-handed and right-handed fields give independent contribu­

tions to the anomaly. Of particular interest for us is the color group SU(3)c and 

the quark representations. The quarks are in the fundamental representation 3, the 

antiquarks in 3*. Under charge conjugation we have 

,{, 0 ,{,C • 2,{.* 
't'L -+ o/L = Z/ o/R • 

Therefore it follows that .PL and 1/JR are in the same representation and hence 

Dijk = 0. Evidently, renormalizability of QCD requires parity conservation and 

thus the absence of axial current couplings. 

• Finally, anomalies are obtained from abelian axial current couplings. Here we 

have to worry about the U(1)y. Per doublet>¥= (,P1,,P2), using Q = Ta + Y/2, 

Q1 - Qz = 1 and QRi = QLi• we get 

D = l:(Yl;- YJ,) = -12Ql + 6 (41) 

which yields Dlepton = 6 and Dquark = -6Nc (2Qr -1) = -6. 

As a consequence we find that the U ( 1 )v subgroup of the standard model is renormaliz­

able if and only if there is the lepton-quark family structure! This lepton-quark duality 

is one of the most surprising properties of the SM. Nature seems to take very serious 

the mathematical consistency of the theory. Although, a direct experimental "proof' for 

the existence of the top quark is still missing, there is strong indirect evidence for its 

existence. 

Appendix B. How natural is the minimal SM? 

We finally try to derive the SM by starting from some general assumptions [24]. 

Let us make the following assumptions: 
1) local field theory 
2) interactions follow from a local gauge principle 
3) renormalizability 
4) masses derive from the minimal Higgs system 
5) VR is absent or if it exists it does not carry hypercharge. 

We admit that the last assumption looks quit ad hoc, but nevertheless we make it. From 

the above assumptions the following picture develops: 
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• For the gauge interactions the simplest non-trivial possibility is that the fundamental 
massless matter fields group into doublets and triplets which are the fundamental 
representations of SU(2) and SU(3). 

• Since fields are massless all fields can be chosen left-handed. Left-handed particles 
and left-handed antiparticles at this stage are uncorrelated. 

• We must have pairing for particles that are going to be massive, since a mass 
term (we ignore the possibility to have Majorana fields here) has the form {np = 
1JL.Pn+1Jn'~PL· Notice that for massive particles, only, we know which left-handed 
antiparticle belongs to which left-handed particle to form a Dirac field. 

• For SU(3)c triplets we must have pairing in order to avoid axial anomalies. SU(3) 
is the simplest group having complex representations. This allows to put particles 
in 3 and antiparticles in the inequivalent 3*. As a consequence a rich color singlet 
structure <= hadron spectrum) results. Furthermore, confinement requires SU(3)c 
to be unbroken ! 

• SU(2)L is anomaly free and hence there is no anomaly condition associated with 
this group. To generate mass we have to break SU(2)L by a Higgs mechanism. 
The simplest and natural possibility is to chose one Higgs field in the fundamental 
representation of SU(2)L· There is no hypercharge for the moment. The Higgs 
field may be written in the form 

q,b = <}Xb ; Xb = ( ~ ) 

in terms of a 2 x 2 matrix field 

- 1 
1> = ..;'2(H. + ir;</>;) • 

The covariant derivative being given by 

D,.1>b = (8,.- i~r.w,..)1>b, 

the Higgs system Eq. (17) exhibits an extra global SU(2)n-symmetry Xb-+ v+Xb· 
One easily checks that the transformation 

ii'>-+ U(x)ii'>v+ 

with U(x) E SU(2)L,Iocah V E SU(2)R,global leaves the Higgs Lagrangian in­
variant. This implies that the fields (W+, W3 , w-) form an isospin triplet with 

Mz=Mw±-
Now consider the fermions (still no hypercharge). Since L 1 and {[>b are doublets 
R1 must be a singlet ! otherwise we would not be able to write down an invari­
ant and renormalizable fermion-Riggs coupling. Therefore SU(2)L must be parity 
violating of V-A-type! The Yukawa term has the general form 

- - ( 9192 ) £Yukawa = -Lf{[> Rj + h.c. 
9394 
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with 4 complex couplings g; and R1 a "doublet" having to right-handed singlets 
as entries. Although we have not used hypercharge to restrict these couplings the 
existence of a global SU(2)wsymmetry of the Higgs system allows to transform 
the Yukawa couplings 

to standard form, v+(·)W= real diagonal. Since V E SU(2)R has 3 parameters 
and· W is an arbitrary unitary matrix with 4 parameters we end up with one free 
parameter such that the system exhibits a global U(l) in variance. This is not 
surprising since in the unitary gauge we always can end up only with CYukawa in 
the simple standard form Eq. (19). 

• The global U(1) which is a consequence of the minimal Higgs mechanism may be 
interpreted as a global U(1)y. We are free to assign to <lib Y = 1 , which means 
nothing else than that we measute Yin units of the <lib- hypercharge. Then 

<lit = 'ht ; Xt = ( ~ ) 

has Y = -1, and we may write <1? =(<lib, <lit)· Since we have the global U(1)y 
for free, we may asswne this symmetry to be local. The covariant derivative for 
<1? now reads 

- - .gl - .g -
D,.cf! = a,.cf! + z2 B,.cf!r3 - z2r.W,..cf! 

and we find back the usual Higgs Lagrangian. The 3 real fields </>. a = 1, 2, 3 
can be gauged away and only 3 out of 4 gauge fields can acquire a mass. Hence 
there must exist one massless field, the photon! Evidently we obtain the relations 
g1 = gtan8w and p = M'fv/(M~cos2 8w) = 1! instead of Mz = Mw± when 
gl = 0. 
Now, what can we say about the hypercharge of the fermions?: 
A left-handed doublet transforms like 

·d.. L-> e'> hL 

where YL is arbitrary. By inspection of LYukawa we find for the hypercharges of 
the singlets: .PrR must have YiR = YL + 1 and 1/JzR must have Y2R = YL - 1. One 
consequence is that U(1)y must violate parity. The astonishing thing is that the 
fermion current which couples to the photon preserves parity. By inspection we 
find 

I 

D,.LJ (a,.- i~ YLB- f!- i~r3W,.3- · · ·)LJ 
I 

D,.Rf - (&,.- i~ YLB- {!- i~r3B,.- · · ·)RJ 
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and the couplings of L1 and R1 to A,. read 

L ·c . e rs I e YL )A 
1 -t g sm - w 2 + g cos - w2 " 

·c 1 0 rs I 0 YL )A R1 -t g cos- w 2 + g cos- w2 ,. . 

Because we have g1 cos Gw = g sin 0w = e we find the Ge!l-Mann-Nishijima 
(GMN) relation 

as a consequence of a minimal Higgs structure! What we find is, that, whatever 
the hypercharge of L 1 is L 1 and R1 must couple identically to photons. Thus QED 
must be parity conserving! Furthermore the charges of the upper (1) and lower (2) 
components of the doublets satisfy 

So far we have no charge quantization. Here we need a last assumption. 

• If vR does not exist we have to set YvR = 0 and consequently we must have 
YvL = -1 = rtL = 0 and Qv = 0, Qe = -1. For the U(1)y anomaly cancella­
tion we need lepton-quark duality and the charges of the quarks must have their 
known values if they appear in three colors. One thus must have the usual charge 
quantization. 

We finally summarize the consequences of the assumptions stated above: 

• Breaking SU(2)£ by a minimal Higgs automatically leads to a global U(l)y, which 
can be gauged 

• parity violation of SU(2)L 

• p = Mf..,j(Micos2 Gw) = 1 

• existence of the photon 

• parity conservation of QED 

• validity of the Gell-Mann-Nishijima relation 

• family structure 

• charge quantization 

We do not know of course why right-handed neutrinos do not exist or not couple in the 
real world and it remains a mystery why there exist family replica . 
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II. QUANTIZATION AND REGULARIZATION 

1. Gauge fixing 

The quantum field theory associated with the classical gauge invariant Lagrangian 

in the broken phase <I>b = <I>+ ;:12m 

SU(2)L ® U(l )y -> U(l )e.m. 

may be defined by writing down the path-integral representation 

z {J, x, x, ... } = j 1JV,;1J'Ij;1J{;e' J(Cef!+JV+x.P+~x+···) (42) 

for the generating functional of the time-ordered Green functions. By J, x, x, · · · 
we denote the classical source functions. If we would try to choose £.11 = .Cinv the 

functional integral would not exist. The problem is known from QED. Because of the 

gauge invariance of the action Sinv = i J d4 x.C;nv the equations of motion do not 

determine the gauge fields uniquely. In order to get non-degenerate equations of motion 

we have to fix a gauge. A convenient choice is the linear covariant 't Hooft gauge 

(Re -gauge). Each gauge field has associated a gauge function 

C± = -o,W"± ±i~wMw¢± 
Cz = -o,Z"- ~zMz¢ 
cA = -o,A" 

(= 0) 
(= 0) 
(= 0) 

(43) 

and one adds to the invariant Lagrangian the bilinear Lorentz-invariant gauge fixing part 

1 + 1 2 1 2 
.Cap=--C c---Cz--CA. 

~w 2~z 2~A 
(44) 

The ~is are independent gauge parameters. For notational convenience we will take 

them equal, ~w = ~z = ~A = ~- Of course physics must be independent of ~ ! The 
extra terms in the gauge functions containing the Higgs ghosts have been chosen such 

that the non-diagonal (mixed) terms 

• .c);::;f) = i Mwo,W"+q,- + h.c. + Mzo,Z"</J 

drop out in the sum .Cf~l~near + .Cap. In this way we achieve a diagonalization of the 

terms bilinear in 8, W.i and ¢. with the consequence that the Higgs ghosts get a gauge 

dependent mass. The mass term obtained is 
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• .Ci:lss = -~wMf..,q,+q,-- ~~zM~</>2 • 

The gauge dependent masses are another direct indication that the Higgs ghosts ("would 
be Goldstone bosons") cannot be physical. We now obtain the well-defined gauge boson 
propagators 

DV(p, ~) = -i (g"u- (1 - .;v) 2 r::.2 + . ) 2 ~2 + . (45) 
p - v v ~€ p - v ~€ 

for V = w:, Z,., AI' and with MA = m-y = 0. Fore = 1 we have the 't Hooft-Feynman 
gauge where the propagators take the particularly simple form 

-igJJ.V 
(46) 

p2 - M~ +ie · 

The renormalizable Rcgauge (R-gauge) provides a one parameter interpolating family of 
gauges with the unitary gauge as a limiting case. For .; ---> oo we indeed get the physical 
U-gauge propagator 

-. ( "" p"p") 1 . v - w z ~ g - M2 2 M2 · , - , v P - v +~e 

which is purely transverse. If we write the R-gauge propagator in the form 

( 

I' ") 1 I' v 1 I'V - • I'V p p .p p 
Dv (p, .;) - -z g - M2 2 M2 + · - ~ M2 2 .; M2 + · v p - v ~€ v p - v v ~€ 

we observe that the first term is the unitary piece while the second term is a kind of 
Pauli-Villars cut-off term. The ghost propagators are given by 

Dt(P) = p2- ~v~~ + ie (47) 

and freeze out Dt(P) ---> 0 as .; ---> oo (unitary gauge). It is rather amusing to see how 
the "gauging away" of the Higgs ghosts works at the level of the Feynman diagrams. 

2. Faddeev-Popov ghosts 

Unlike in QED adding .CaF to the invariant Lagrangian spoils gauge invariance, 
unitarity and renormalizability of S-matrix! If we compare the classical abelian with the 
non-abelian gauge transformations 

U(l) 

SU(2) 

A,. ---+ A" + o,.w 
CA---> CA- Ow 

W,.. ---> W,.. + 8,.w. - 9€abc W,.cwb 
Ca ---+ C4 - Owa + geabco"(WI'cwb) 
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we observe that the harmless extra term in the abelian gauge function is replaced by a 

non-trivial and non-harmless extra term in the non-abelian case. Faddeev and Popov [25] 

have found the way out of the dilemma. The restauration of the gauge symmetry can 

be achieved by taking into account the functional determinant obtained in the functional 

integral under a gauge transformation of the fields (integration variables). If we define 

the functional integral as follows, with a Faddeev-Popov determinant, 

1 'DW,..Det ( ~~:) e' f(t:<n.--fecnd•x 

one easily checks that now the functional integral is independent on the specific choice 

of the gauge function c.. By introducing anticommuting scalars, the FP ghost fields 

fia and 1Ja• we may represent the FP-determinant as a Berezin integral over Grassmann 
variables (algebra of anticommuting c-numbers) [26] 

Det ( ~~:) = 1 1)7]'Dfie' f t:ppd'x 

with 

r - M M.b ='= oC. 
'-'FP = 1Ja ab1Jb ; c 

UWb 
(48) 

As a result we find the proper functional integral quantization 

1 'DW,..'Dt]'Dfie' J Le/fd'x 

with the "quasi invariant" effective Lagrangian 

c.fj = Linv + CaF + LFP • (49) 

In the following we will use a somewhat more compact notation. We treat SU(2)L ® 

U(l)y =Gas a single gauge group G with generators TA and structure constants !ABC· 

The gauge fields and the FP-ghosts are denoted by 

GA,. : w;,z,.,A,. 
1JA : 1]±, (, \{ 

A: ±,Z,-y. 

Using this notation the FP-Lagrangian reads 

LFP = ii" M±B1JB + (MzB1JB + ~M-,B1JB 
with 

oCA oGc,. oCA 6ilic 
MAB1JB = "G -0-t]B + ""' -c -t]B · 

U G,. WB U'<!G UWB 

Since the quantities associated with a gauge transformation of fields, which appear in the 

last equation, will be used for a discussion of the Slavnov-Taylor identities later, we list 

them in detail here: 
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• The gauge variations are given by: 

8GA~ . 
--'I)B =D AB'/)B 
8wB " 

D,±B'/)B - 8~'1)± ± i [eCWiN- A~'l)±)- gcosGw(Wi(- Z~'l)±)] 

D,.zB'I)B - 8~(- ig cos Gw(W;'I)+- w:'l)-) 

D~-yB'/)B - a~N + ie(W;'I)+- w:1n 

81>A 
-
8 

-'I)B .:_ (D<I>A)B'I)B 
WB 

(Dtft±)B1JB - ± [eq,±N + g (sin
2 
Gw- cos

2 
Gw) ¢>±( + [!_(H + i¢>)1J±] 

2cos0w 2 

(D¢>)B'I)B - -i [2co~0w H( + !(¢;+'1)-- r'l)+)) 

(DH)B'r/B i g ¢>( + f!..c ¢;+.,- - r.,+) - 2cos0w 2 

8'I!· 
~'f/B .:_ (D'I!;)B'r/B 

WB 

(D'ifJv, )B1JB - i [ 2 co! Gw ( 'ifJLv, + .Jz'f/+ 1/JLe] 

(D'ifJe)B'f/B i [ ../z "1-'ifJLv, + 2 g e ( 1/Ju- eN'if;e- e tan 0w( 1/Je] - 2 cos ·w 

• For MAB'f/B we obtain: 

M±B'f/B = -Dry±- ~Mfi,'l)±- ~~w (H ± i¢>) ry± 

MzB'f/B -

M.,B'f/B -

+t~MwgcosGw ((1- tan2 Gw) (- 2tan0wN)¢>± 
±igcosGwa~ (w; ((- tan0wN) - (Z~- tanGwA~) ry±) 

-D(- ~M'i(- ~~H( -eM,::w (¢;+.,- + ¢>-ry+) 
+igcosewa~cw;.,+- w:rt-) 

-Dl:\- ie a~ (W;ry+- w:ry-) 
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Now, the FP-Lagrangian £ FP is explicitly given by the sum of the last three terms 

multiplied from the left by ifF, ( and ~,.respectively. A warning should be made here, 

£pp is not hermitian ! Thus in contrast to ordinary fermion loops, FP ghosts contribute 

differently for ghosts running clock wise or counter-clock wise in a diagram. 

By the above expressions the FP-ghost propagators read 

f>"( ")- ~ v p, '> - 2 t: M2 + · P - '>V V ~€ 

(54) 

and thus look the same as the Higgs ghost propagators. However, they obey Fermi 

statistics such that there is a factor ( -1) per FP-ghost loop! in the Feynman rules. 

Similarly to the Higgs ghosts, the FP-ghosts freeze out (f>.![, -> 0) in the unitary gauge 

limit ( ...., oo with one exception. The FP-ghost partner of the photon t,.ll(p) = P,~;, 

remains in the game. In addition, there are two interaction terms -( ~wi)'fry± (H ± i<P) 

and -e [~((H + Mz:wc (<fo+ry- + 4>-rt+)] which have a coupling proportional toe 

which in the U-gauge limit give rise to the so called Lee-Yang terms (27]. Since we are 

not going to consider calculations in the unitary gauge we need not care further about 

these terms. 

I Quantization complete ! I 

3. Becchi-Rouet-Stora (BRS) symmetry 

The local gauge invariance of the functional integral 

J 'DG'Dry'Di)ei J Leffd'x (55) 

yields relations between Green functions, the Slavnov-Taylor (ST) [28] identities. They 

generalize the Ward-Takahashi (WT) [29] identities which derive from global symmetries. 

The ST-identities provide the tool needed for proofs of 

i) gauge invariance 

ii) unitarity 

iii) renormalizability 

of the S-matrix. ST-identities may be obtained from the BRS-symmetry [30] of £eff· 

The idea behind BRS-symmetry is to dispose of the as yet undefined transformation 

properties of the FP-ghost fields i) and Tf such that 

(56) 
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In order to achieve this it is natnral to demand the following relations to hold: 

i) 8Cinv - 0 
ii) 8CcF - -zCAMABWB 
iii) 8Cpp - SfiMAB'r/8 + fiAS(MAB'r/B) 

- -8CcF 
iv) 1JG1Jry1Jfi invariant . 

A solution for this set of conditions may be obtained as follows: 1) Introduce anticom­

muting global c-number variables 8>., 8>. anticommuting with rJ and fi, and identify 

wa = rJBS>.. Thus 

• SGA = DABrJBDA 

where G A can be a gauge field, a scalar or a fermi field with D AB'r/B given in the previous 

subsection. 2) Assume rJ to transform according to the regular representation, thus 

• DrJA = -!gfABC'r/BrJCDA 

where a permutation symmetry factor 1/2 (antisymmetry of fABC and anticommutativity 

of the ry's) has been taken into account. 1) and 2) imply S(MAB'rJB) = 0 . We thus take 

the freedom to choose: 3) The field fi transforms as 

• sr;A =-teAs>. 

such that conditions i) to iii) are satisfied. One can show iv) to be true for the above set 

of transformations which define the BRS-transformation. 

4. ST-identities 

The BRS invariance of Ceff allows a simple derivation of the ST-identities. Per­

forming a change of integration variables in the functional integral does not change the 

value of the integral. If we choose an (infinitesimal) BRS-transformation we get 

z { J, iJ, /3} _ j 1JG1Jry1Jijei j(c.f J+JG+>;{J+jj•)d'z 

j 1JG1Jry1Jijei J(···)ei j(JSG+Siif3+fjo")d'z 

_ j 1JG1Jry1Jfieif(···l[l + i j dz(JSG + 8ijf3 + i]Sry)(z)] (57) 

In the second step we have used 8 >. 2 = 0 which implies that terms higher than linear 

vanish if we expand the exponential. Using 8>.{3 = -{38>. etc. we can write 

J 1JG1Jry1Jij i J dz { JADAB'r/B + iCAf3A- ~iJA9fABC'r/B'r/C} (z) 

Xei J d'y(C,ff+JAGA+iiAf3A+iJA•A) = 0 • 
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Taking the functional derivative 

. o I 
z 8 f3c ( x) ... iJ=f3=D 

we obtain the ST-identities 

j 1JG1Jr(Dfi i j dz { fic(x)JADAB'f/B + i~CADcA8(x- z)} (z) 

Xei J d'y(J:<II+JAGA) = 0 • 

For the time-ordered Green functions, by applying 

fj(N) 
( -i)N · · ·\J-o 

fjJA 1 (x,) · · • fjJAN(XN) -

to the functional ST-identity, this implies 

1 e < 0\TCc(x)GA,(x,)···GAN(xN)\0 > 

=I:< 0\TGA,(x,)· ··fic(x)(DA;BTJB)(x;)···GAAxN)\0 > 

As an example we obtain for the gauge boson propagators 

< 0\TCc(x)GA(Y)\0 > = ~ < 0\Tfic(x)(DABTJB)(y)\0 >, 

or, for the individual fields, (by a • we indicates a derivative of a field) 

- < Ta,Z"(x)Zv(Y) > -~Mz < T</J(x)Zv(Y) > 
= ~ < T((x)av((y) > -ig cos0w ~ < T((x)(W;TJ+- w,;IJ-)(y) > 

w± 
~+~Mz ~+< o~;@•)oO+-igcosewe o~~ =D 

z z <P z ( ( ( TJ'f 

(58) 

(59) 

(60) 

For the mixed cases < Ta,A" Zv > and < TavZ" Av > we get similar relations. The 
ST-identities tell us how the gauge terms like a,Z" cancel against Higgs and FP-ghosts! 
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Before we derive another set of relations for gauge field propagators, we consider the 
FP-ghost propagator. We have 

JVGVr(Dfj fic(x) 0 ef(L,II+JG)dx 
O'f!A(z) 

- i j 1JG1Jry1Jfj fic(MAB'f/B)(z)eif(···) 

- j VG1Jry1Jij5cA5(x- z)i f(···) (61) 

where the last step is a partial integration. Taking a functional derivative for vanishing 

sources, we find 

which is the FP-ghost propagator in the standard form. We may use this result in 
order to get time-ordered Green functions with multiple insertions of gauge functions 
CA. To this end, in the derivation of the ST-identities, we add a source term for CA by 

replacing JAGA -> JAGA+LACA. This implies a substitution JADAB'f/B-> JAD ABTJB+ 
LAMABTJB in the above derivation and taking the functional derivative 

. 8 I 
-z OLA(Y) . . . J~L~o 

of the modified functional ST-identity, we find 

z < O!TCc(x)CA(Y)!O > = < O!Tfic(x)(MAB'f/s)(y)!O > 
= i8cA8(x- y). 

Inserting the specific forms of the gauge functions we arrive at the equations 

< To,.A"(x)ovAv(y) >= -i~8(x- y) 
< To,.A"(x)ovzv(y) > + ~Mz < To,.A"(x)<f>(y) >= 0 

< To,.Z"(x)ovzv(y) > + ~Mz < To,.Z"(x)<f>(y) > 
+ ~Mz < T<f>(x)ovzv(y) > + eM1 < T<f>(x)<f>(y) >= -i~8(x- y) 

(63) 

for the longitudinal parts of the gauge field propagators. One can use these ST-identities 

to prove that longitudinal amplitudes in propagators drop out in physical amplitudes. Of 
course similar relations are valid for vertex functions and higher Green functions. 

5. Dimensional Regularization 

So far we have ignored that quantities like the path integra! and Green functions etc. 
are mathematically illdefined. We assume the theory to be defined by its formal power 

series expansion in Lint. The perturbative definition is acceptable if the expansion 
is well defined order by order in the perturbative expansion and if this expansion is 
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renormalizable i.e. it can be made finite by a redefinition of the parameters (parameter 

renormalization) and the fields (multiplicative wave function renormalization). 

Starting with the Feynman rules of the classical quantized Lagrangian, called bare La­

grangian, the formal perturbation expansion is given in terms of ultraviolet (UV) diver­

gent Feynman integrals. As an example consider the scalar self-energy diagram 

which is divergent because the integral does not fall-off sufficiently fast at large k. In 

order to get a well-defined perturbation expansion the theory must be regularized. The 

regularization should respect as much a possible the symmetries (ST-identities) of the 

"classical theory". Two regularizations are known to respect local gauge symmetries (up 

to possible violation of chiral properties): 

1. Lattice regularization, which makes possible the application of methods known 

from statistical mechanics. In particular it makes possible a non-perturbative ap­

proach (Monte Carlo simulation of lattice gauge theories) [31]. 

2. Dimensional regularization (DR), which is suitable for the perturbative approach 

. [32]. 

Since we are interested in perturbative calculations we need to discuss dimensional reg­

ularization only. The basic observations behind DR are the following: 

i) Feynman rules formally look the same in different space-time dimensions d = 
n(integer) 

ii) Feynman integrals converge the better the lower d is. 

5. 1. Dyson power counting 

The action 

S = i j ddx£.ff 

measured in units of li = 1 is dimensionless and therefore dim [.•ff = din mass units. 

The inspection of the individual terms yields the following dimensions for the fields: 

{ry" 8" ,P dim .p - d-1 
2 

(EJ,.G;v- · · -)2 dim a,, - d-2 
2 

8 q;+ 8"<1> dim q; - d-2 

" 2 

go{ry"T;,PG;,. dim g0 - •;d =>- !io = gofi'/2 

£aF = -i~(o,G'( + · · Y dim' - 0 

[.FP = -i/01] + ... dim 11 - 4=1. 
2 
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where e = d - 4, g0 denotes the dimensionless bare coupling constant (dim g0 == 0) 
and J.L is an arbitrary mass scale. The dimension of time ordered Green functions in 
momentum space is then given by (the Fourier transformation f ddqe-iqx · · · gives -d 

for each field): 

( ) d-2 d-1 
dimG n 8 '

2
nF = ns-

2
- + 2nF-

2
-- (n9 + 2nF )d (64) 

where 
#of boson fields : G;~, 1>, 'f/ 
#of Dirac fields (in pairs) : '</; • · • ;j; 

It is convenient to split off trivial factors which correspond to external propagators and 

four -momentum conservation: 

• amputation of external legs 

~ = -i(p- m) <»-€ 
~ = -i.(p2- m2)~ 

• d - momentum conservation : 

dimG ---> dimG + 1 

dimG ---> dimG + 2 

yields for the proper amputated vertex functions 

• d-2 d-1 
dimGamp = d- ns-- - 2nF--

2 2 

A generic Feynman diagram represents a Feynman integral 

:wf.. __ ·x- ~ Ir(p) = J t,~)'d ... t:~Jr(p,k). 

(65) 

The convergence of the integral can be inspected by looking at the behavior of the 
integrand for large momenta: For k; = >.k, and >. ...... oo we find 

IT;~ kdr(p, k) ...... >. d(f') 

where 

d-2 d-1 n 
d(r) == d- ns--- 2nF-- + 2]d;- d) 

2 2 ~1 
(66) 

is called the superficial divergence of the lpi diagram r. The sum extends over all (n) 
vertices of the diagram and d; denotes the dimension of the vertex i. The convergence 
criterion then reads: 

Ir convergent M d( 'Y) < 0 V lpi subdiagrams 1 c r 
fr divergent tx1 3 I C r with d( 1) 2: 0 
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In d ::::: 4 dimensions, a renonnalizable theory has the following types of primitively 

divergent diagrams (i.e. diagrams with d(r) ;::: 0 which may have divergent subintegrals): 

d(r) d(r) 
d (d= 4) d (d== 4) 

+<1§»- d-3 (1) -«: d-4 (0) 2 

~ d-2 (2) ~ 1 + d-4 
2 (1) 

--·-®--- d-2 (2) )( d-4 (0) 
• 

·~-®-~· d-2 (2) ~., 1 + d-4 (1) .... 2 

+ Lr( d24
) for a diagram with Lr loops. Thus the dimensional analysis tells us that 

convergence improves for d < 4. For a renonnalizable theory we have 

• d(r) ::::: 2 for d = 4 . 

In lower dimensions 

• d(r) < 2 for d < 4 

a renonnalizable theory becomes super-renonnalizable, while in higher dimensions 

• d(r) unbounded! d > 4 

the theory is non-renonnalizable. 

5. 2. Dimensional regularization 

Dimensional regularization of theories with spin is defined in three steps. 

1. Start with Feynman rules fonnally derived in d = 4. 

2. Generalize to d = 2n > 4! This intennediate step is necessary in order to treat the 

vector and spinor indices appropriately. 

1) For fennions we need the d = 2n dimensional Dirac algebra: 

(67) 

where 'Ys must satisfy 'Yi = 1 and 'Yt = 'Ys such that Hl ± 'Ys) are the chiral projection 

matrices. The metric has dimension d 

(68) 
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By 1 we denote the unit matrix in spinor space. In order to have the usual relation for 
the adjoint spinors we furthermore require 

Simple consequences of this d-dimensional algebra are: 

/c/Y"' - d1 
/al"l"' - (2- d)!" 

(69) 
/a I"!" I"' 4g"" 1 + ( d- 4) 1"1" -
lai"I"IPI"' - -2/P/"1" + (4- d)/"1"/P etc. 

Traces of strings of ~-matrices are very similar to the ones in 4-dimensions. In d = 2n 
dimensions one can easily write down 2dfz dimensional representations of the Dirac 
algebra [33]. Then 

Tr1 - f(d) = 2df2 

Tr In~11 1"' (-/) - 0 
(70) 

Tr1"1" - !(d) g"" 
Tri"I"IP/q - f( d) (g"" gpq - gi'P g"q + g"q g"P) etc. 

One can show that for renormalized quantities the only relevant property of f( d) is 
f( d) --> 4 for d --> 4. Very often the convention f( d) = 4 (for any d) is adopted. Bare 
quantities and the related M S or M S quantities depend upon this convention (by terms 
proportional to In 2). 

In anomaly free theories we can assume Is to be fully anticommuting! But then 

The 4-dimensional object 

(71) 

cannot be obtained by dimensional continuation if we use an anticommuting Is [33]. 

Since fermions do not have self interactions they only appear as closed fermion 
loops, which yield a trace of 1-matrices, or as a fermion strings connecting an external 
7/J · · ·If, pair of fermion fields. In a transition amplitude !TI2 = Tr( · · ·) we again get a 
trace. Consequently, in principle, we have eliminated all1's! Commonly one writes a 
covariant tensor decomposition into invariant amplitudes, like, for example, 
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where J1, is an external index. 

2) External momenta (and external indices) must be taken d = 4 dimensional 

because four functions cannot be analytic continuation of three etc. The following rules 
apply: 

External momenta: p~ = (p0 ,p1 ,p2 ,p3
, 0, · · ·, 0) 4 dimensional 

Loop momenta : k" = ( k0 , • • • kd-I) d dimensional 
p = (k0)2- (P)2- ... - (kd-1)2 

pk = p0k0
- p· k 4 dimensional etc. 

3. Interpolation in d to complex values and extrapolation to d < 4. 
Loop integrals now read 

with J1, an arbitrary scale parameter. The crucial properties valid in DR independent of 

d are: (F.P. = finite part) 

a) J ddkk,.J(P) = 0 
b) Jddkf(k+p)=Jddkf(k) 

which is not true with UV cut- off's 
c) Ifj(k)=f(lkl): 

fddkf(k) = ~1; f0=drrd-lj(r) 

d) For divergent integrals, by analytic subtraction, : 
F.P. f0

00 drrd-I+<> = 0 for arbitrary a 
so called minimal subtraction (MS). Consequently 

F.P. f ddkf(k) = F.P. f ddkf(k + p) = F.P. J dd(>..k)j(>..k) 

This implies that 

dimensionally regularized integrals behave like convergent integrals 
and formal manipulations are justified. Starting with d sufficiently small, by partial 

integration, one can always find a representation for the integral which converges for 

d=4-6, 6>0small. 

In the following we discuss DR for one-loop integrals in some detail. 

One-loop integrals: 
An integral of the general form 

J II'?' k"i 
JJ.J•••J.tm d J-1 

Ir (Pt, ... ,pn) = d kTI': ((k + ·)2- ~ + . ) 
,=t Pt m, zc 
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has superficial degree of divergence 

d(r) = d + m - 2n :::; d- 2 

where the bound holds for renormalizable theories and d :::; 4. Ir is convergent for 

d(r) < 0 in d = 4. If d(r) ;:=:: 0 in d = 4, consider d = n integer ;:=:: 4 because of vectors 

k"'. We split the objects into: 
Vectors in physical subspace (J-L = 0, 1, 2, 3): p, k, · · · 
Vectors in the d- 4 dimensional complement (J-L = 4, · · · , d- 4): p, k, .. .. 
Correspondingly, the notation is as follows: 

External momenta 

Loop momenta 

Metric tensor 

Pi= Pi; Pi= 0 
k = k + k; k . k = 0 
p;k = p,k 
k 2 = k2 + P = k2

- w2
; w =I k I 

g"" = §"" + g""; fj. g = 0 
g" = d g~" = 4 g-" = d- 4 J.l. , J.l. , f.,£ • 

In physical amplitudes the indices of the integral It' ... ,m are either external (if we resort 

to a covariant decomposition e.g.) or contracted. The possibilities are: 

1. contraction with an external momentum pf; : k"i --+ k"; (pk = pk) 
2. the index is external (e.g. -r matrix) g"i" : §~; k" = k~'i 
3. an index pair is contracted (with g,v): g,vk"k" = k2• 

In the first two cases the k"' 's can be taken four dimensional, in the last case we obtain 

an integral of the form 

We write 

such that 

J 
p kl'> ... k~'m-2 

ddk~~~--~~-~~~~~~--~~ 
(k + p)2

- m 2 + ic: f1i=1'((k + p:)2
- m[ + ic:) 

k2 (2pk + p2 
- m 2 ) .,.,.--....,.-::-----;:-.,..- = 1 - .,.-"--=---:-::--'-----:-~'-

(k + p)2 - m 2 + ic: (k + p)2
- m 2 + ic: 

In this way all the one-loop integrals reduce to 

· · J d n~ 1 k"; 
rr···"m(fit.· .. ,fin) = d kiT" ((k+ 1~~)2- 2+ ·) 

;=1 P1 m, zc: 

with 
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In the d - 4 dimensional complement the integrand depends on w only! The angular 

integration over diJ.d-4 yields 

J 
21re/2 

diJ.d-4 = sd-4 = r(e/2) ; £ = d- 4. 

which is the surface of the d -4 dimensional sphere. Using this result we get (discarding 

4-dimensional indices) 

Ir(P;) = j ~kJr(d,p,k) 
where 

Jr(d,p,k) == sd-4 f" ~wd-5/(p,k,w). 

Now this integral can be analytically continued to complex values of d. For the w­

integration we have 

d"'(r) = d- 4- 2n 

i.e. the w-integral converges if 

d<4+2n (*). 

On the other hand the condition for convergence of Ir is 

d(r) = d + m - 2n < 0 

i.e. d < 2n - m but then ( *) is also true. As a result we find that 

• for a renorrnalizable theory d(r) :::; 2 in d :S: 4 and hence all integrals converge for 

Re d < 2. However: 

f' ~wd-5/(p,k,w) 
is infrared divergent for Re d < 4. The integral has 

domain of convergence : 4 < d < 4 + 2n 

and is 

analytic in a strip : 4 < Re d < 4 + 2n . 

Therefore it can be defined by analytic continuation in the complex d-plane. The analytic 

continuation can be obtained by partial integration: 

. d-4 

1

00 00 d-4 a 
laoo ~wd-5/(p,k,w) = ; - 4f(p, k,w) 0 -fa ~;- 4 aj(p,k,w) 
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The first term vanishes in 4 < Re d < 4 + 2n the second term (integral) is convergent 
for 3 < Re d < 4 + 2n with a pole at d = 4 ! Using 

d-< 
Sd-4 2n_2_ 

d - 4 = r( d;• + 1) ; 

p-fold partial integration yields 

I#= r(~: p) j d
4k fa'"' dwwd-5+

2
" (- 0~2 r f(p,k,w) (73) 

where the integral is convergent in 4- 2p <Red< 2n- m = 4- d(4)(r) ~ 2. 
For a renormalizable theory at most 2 partial integrations are necessary to define the 
theory. 

Imd 

3 4 Red 

One problem case remains. For n = 1 the integral f ddk f2 diverges for any d! and 
hence must be regularized differently 
1. either by an I R regulator i.e. finite mass or 
2. by an UV cut off. 
In the first case we obtain 

In the second case we find 

m 2
( 47r t 2 

{ ~ _, + ln 47r -ln m 2
} 

0 form=O. 

sd fA 
- (

2
n)d la dwwd-3 convergent for Red> 2 

sd 1 Ad-2 ai . . d 
(21r )d d _ 2 an ytical m . 

For Re d < 2 the limit limA-oo = 0 exists and thus as an analytical function: 

Notice that 1. and 2. yield the same unambiguous result! 
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In a similar way we find 

(74) 

This proves the rule: 

F.P. fooo dw w" = 0 any a (75) 

or, equivalently, 
perform partial integrations until the integral converges for. d < 4 - c:; c: > 0 

infinitesimal, and ignore boundary terms. 
We may summarize the results as follows: 

• In DR divergent Feynman integrals can be represented by integrals converging in 

the strip 3 < Re d < 4. 

• The analytic continuation to this strip is obtained by partial integration and ignoring 

the boundary terms. 

• The integrals are meromorphic functions in d with poles at certain d = n integer. 

• The poles at d = 4 can only be removed by renormalization. 

We add two remarks concerning higher orders and infrared problems. 

Higher orders: The order of the poles is given by the order of the perturbation expansion 

(number of loops) 

oc e-n since x=x oc e-1 

Infrared problems: m; = 0 integrals 
a) One-Loop: the worst case is If'· .. ~= for m = 0. For off-shell momenta (i.e. p; 

generic) the integral 

J
ddk 1 = Jddk 1 1 

ITi=t((k + p;)2 + ic:) k2 + ic: (k + PD2 + ic: 

has the domain of convergence 

2 < d 

i 
for 
IR 

< 
i 

for 
uv 

=? no problem for n > 11 
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The only problem case (n=l) has been discussed already before. 
b) Higher orders: 

1)1 -loop: 

f ddk 1 1 ( 2).!!:! 
oc (2")a k' (k+p)' oc P ' 

2)n -loop: 

~···0: 
3) 

This integral is UV convergent for d < 4 and IR convergent for d > n~1 n=4oo 4 ! Thus, 
inn+ 1-loop order the convergence domain is 

and shrinks to zero as n -> oo. 

Imd 

4n 
-- <d<4 
n+1 

2 

0 UV poles 
2 3 45 x IR poles 
! !!!··· 

3 4 Red 

Result: For generic off-shell momenta time ordered Green functions exist in DR also 
for the massless case (on-shell is another story!). 

5. 3. Tools for evaluation of Feynman integrals 

1. e: = 4 - d expansion, e: -> +0. 

For the expansion of integrals near d = 4 we need some asymptotic expansions of 
r-functions: 

(76) 
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where ((n) denotes Riemann's Zeta function. 

As a result 

r'(l)- -1; 1=0.577215···Euler'sconstant 
11"2 

r"(l) - 1
2 + ((2) ; ((2) = 6 = 1.64493 .. · 

r(I + ~) = 1- ~~ + (~)2 .!(12 + ((2)) + ... 
2 2 2 2 

2. Bogolubov-Schwinger parametrization. 

(77) 

Suppose we choose for each propagator an independent momentum and take into account 
momentum conservation at the vertices by 8-functions. Then, for d = n integer, we use 

i) 

ii) 

and find that all momentum integrations are of Gaussian type. The Gaussian integrals 
yield 

( 
· 8 ) d/2 

JddkP(k)eia(k
2 +2b(k·p)) = p ~- (~) e-iab

2
p

2 

2ab8p w 

for any polynomial P. The resulting form of the Feynman integral is the so called 
Bogolubov-Schwinger representation. 

3. Feynman parametric representation. 

Transforming pairs of a-variables in the above Bogolubov-Schwinger parametrization 
according to (l is denoting the pair ( i, k )) 
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the integrals are successively transformed into f~ d~ · · · integrals and at the end there 

remains one a-integration only which can be performed using 

1"" daaae-C<X = r(a + 1)X-(a+l) . 

The result is the Feynman parametric representation. If L is the number of Jines of a 

diagram, the Feyman integral is L -1 dimensional (all other integrations being "trivial"). 

4. Euclidean region, Wick rotations. 

Time ordered Green functions may be continued analytically in the complex p0 (x0 ) 

plane. Crucial is the ic:-prescription in the propagators: 

1 1 1 

p2 _ m2 + ic: - Po_ ,jp2 + m2 _ ic: Po+ ,jpz + m2 _ ic: 

Imp0 

We can thus perform a rotation by .,. /2 

without crossing any pole. The euclidean propagators 

1 __ __::_ __ -> 1 
pz- m2 + ic: 

are positive (discarding the overall sign) and any integral in Minkowski space may be 

obtained via 

from its euclidean version. Here, a denotes the number of internal lines (propagators) 

and b the number of loop integrations if we use the substitutions 

to define the euclidean integrals. 
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Scalar one-loop integrals (euclidean). 

Here we apply our tools to the simplest scalar one-loop integrals (p.i.= partial integration). 

m 

0 
p 

where 

~· 

"'-d J dd k I = ~~.4-d(47r)-d/Z fr"' daa-d/Ze-am' 
(Z~)d - .&'+m' r 0 

convergent for d < 2 
-~~~f.L4-d( 47rJ-d/2 foco da1-d/2cam2 

convergent for d < 4 

-2m2(47rJ-d/2r(2d-~/2) ( m:)d/2-2 
" 2 

-2m2(47r)-21r(1 + £,:)-1-e~(In4~-In-',5'l 
e 2 2-e 

m 2(47r)-2 H -1 + 1 + ln47r -In;:}+ O(c) 

y'-~ f dk 1 1 
(2~) d .!£2+mi (k+_E)'+ml 

( 2 2 ~ 2) 

f.L4-d( 47r )-d/2 J~ dal da2( O!J + a2J-d/2e- a,m, +a,m,+ a, +a,E 

a 1 = x.>- ; a 2 = (1 - x ).>-
f.L4-d(47r)-d/2r(2- ~) Jti dx(xm~ + (1- x)m~ + x(l- x)r/))d/2- 2 

convergent for d < 4 
t :em~+(l-:e)m~+:e(l-:e)p2 

(47r)-2~r(1 + Ve~In4~ fti dxe-2In •' 

( 47r)-2 { ~ -~ + ln47r- Jti dx In xmi+(l-x);;~+x(l-x)p'} + O(c) 

y'-d Jddk 1 1 1 
(2'1!')d - .&2 +mi (k+,E1 )2+m~ (k+_e1+£2 F+m5 

convergent for d = 4 

(47r)-2 reo da da da 1 e-(a,mi+a,m~+a,m;J 
Jo 1 2 3 (en +o:2+a3)2 

a1 02P~+a203,E;+a3a1R~ 
Xe a1+o2+o3 

a1 = xy.>-; 1Y.2 = x(l- y).>-; IY.3 = (1- x).>-; a1 + IY.z + a3 =A 

(47rJ-2 Jti dydxx ~ 

N = x2y (1- Y)E~ + x (1 ___: x)(l- Y)E; + x (1- x) Y~ 

+xymi + x (1- y) m~ + (1- x) m~ 

We summarize these results by listing the 
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Standard scalar one-loop integrals (m2~m2 - i6). 

m 

0 
p 

where 

A0(m) = -m2(Reg + 1-lnm2
). 

By Reg we denote the UV regnlator 

2 
Reg=- -1 + ln47r + lnJ.!~ = lnJ.!2 

6 

where the last identification defines the M S scheme of minimal subtraction. 

m1 e 1 ddk 1 . i 2 

-::-0---P =J.!o (27r)d(k2-mi)((k+p)2-mm = 161rzBo(ml,mz;p) 
mz 

where 

B0(m1,mz;s) =Reg -l dzln( -sz(1- z) + mi(1- z) + m~z- i6). 

P1 

~ 
Pz 

where 

lo
l lox 1 

C0 (m1,m2 ,m3;81,sz,s3) = dx dy 2 b 2 d f 
a ax + y + cxy + x + ey + 

with 

a= s2 

b = 81 

C = 83-81 - 8z 

d - 2 2 - m 2 - m 3 - 8 2 

e = mi - m~ + 8z - 83 
f 

2 . =m3 -!6. 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

The UV -singularities (poles in 6 at d=4) give .raise to finite extra contributions when 
they are multiplied with d (or functions of d) which arise from contractions like g~ = 

d , 1"1" = d etc. For d --> 4 we obtain: 

dAo(m) = 4A0(m) +2m2 , dBo = 4B0 - 2. (85) 

The explicit evaluation of the scalar integrals (up to the scalar four-point function) is 
discussed in Ref. [35]. 
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5. 4. Tensor integrals (one-loop) 

Integrals of the form 

J dd k k~'1 • • • kP.m 
l"'···P.m(p, .. ·) = (21r)d (P- m?)((k + P1?- mD((k + P1 + P2)2 - m~) · · · 

can be reduced to scalar one-loop integrals. In DR transformation of variables and partial 

fraction decomposition hold true independent of the convergence of the integral. The 

reduction of tensor integrals to scalar integrals may be achieved by the following steps: 

i) Covariant decomposition: 

in terms of an appropriately symmetrized tensor basis formed with the linearly 

independent momenta and g,.v. 

ii) Contraction with g,.v: 

iii) Contraction with p;,. : 

etc., until all Imis are given as linear combination of scalar integrals. By 1/( i) we 
denote the scalar propagator with mass m,. In the following we work out 

Some basic tensor integrals 

A factor 16'~2 is taken out for simplicity of notation, i.e. 

[ ... = 1611"
2 J ddk .... 

A i (21r)d 

In order to conform with the Passarino-Veltman convention in Ref. [34], we define the 

invariant functions Im1 , • • • using a factor ( -1 )n in front of the integrals, where n is 

the number of propagators, and a factor (-1) in front of the g"'"•'s appearing in the 
kinematical tensors of the covariant decomposition. Accordingly, we consider integrals 

of the form 

1 
k~'1 • • • kl'm 

=-::-----;;::-----:-:-:----~---...,-;:----= = ( -1 t (pi'' · · · Pi'm I d · · ·) 
k (k2 -mi)···((k +P1 +P2 ··· + Pn-1)2 - m~) m 
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in the following, and calculate the Im;'s in terms of scalar functions. We now discuss 

tadpoles, self-energies and form-factors in turn. 

1. Tadpoles 

By performing a shift k -> k + p of the integration variable we easily find the 

following results: 

1 (k + p~2- m2 = 1 k2 ~ m2 = -Ao(m) 

f ..,.--,.k-:-~ ---:: _ f k" - p" - f k~ -p~ f 1 - p~ A ( m) 
Jk (k + p)2 - m 2 - Jk P- m2 - Jk P- m2 Jk k2- m2 - 0 

Using 

'--v--' '--v--' 

f k~k" 

Jk(k+p)2-m2 

= f (k- p)"(k- p)" -
Jk P -m2 

0 -Ao(m) 

k"k" 
-p"p" Ao(m) + f p 2 Jk -m 

1 k"k" 1 p 1 1 
g,.v p 2 = dA22 = k2 2 = 1 +m2 f k2 2 

k - m k - m k Jk - m 
- '--v--' 0 -Ao 

we find 
dA22 = -m2Ao(m); A21 = A0(m) 

and expanding in d = 4 - e, e -> 0 we get 

which implies 

and thus as a final answer 

- Ao(m) 
m2 m4 

- -4Ao(m)+3 

45 

(86) 

(87) 

(88) 

(89) 



2. Self-energies 

[ k" _ "B ( . 2) A(1)(2)-p 1m1,m2,p 

where contraction with p" and using 

yields 

2p2B1 r ..12!;__ _ r 1 r 1 (p2 + m2 m2) r 1 Jk (1)(2) - Jk (1) - Jk (2) - 1 - 2 Jk (1)(2) 
- -Ao(m1) + Ao(m2)- (p2 + m~- mDBo 

{ k"k" - " v B "" B 
Jk (1)(2) - p p 21- g 22 

Contraction with Pv gives 

2p"(p2 B21 - Bn) - .h k"(
2

pk) 

- ( k\l-)(
2
) r k" ( 2 2 2) r k" 

= Jk (1) - Jk (2) - P + m1 - m2 Jk (1)(2) 
= -p" Ao(m2)- p"(p2 + m~- mi)B1(m1, m2;p2) 

t> 2(p2 B21- Bn) = -Ao(m2)- (p2 + mi- mDB1 

while contraction with g "" yields 

2 r k2 r 1 2 r 1 
p B21- dB22 = Jk (1)(2) = Jk (2) + m1 Jk (1)(2) 

t> p2B21- dB22 = -Ao(m2) + m~Bo(ml>m2;p2 ) 

Now we have to expand in d = 4 - c:, c: ----> 0: From 

2p2 B21 - 2Bn - Ao( m2) - (p2 + m~ - mDB1 

p2 B 21 - 4Bzz - -Ao(m2) + mi Bo- c:B22 
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we obtain 

B 22 = ~ { A0 ( m 2) - 2m~ B0 - (p2 + m; - m~)B1 - 2c:B22} 

where the UV singular part (c: pole term) is 

and hence 

B sing _ 1 (m2 + m2 p2j3) 2 
22 - -4 1 2- ~ 

2c:Bn = -(m~ + m~- p2 /3) + O(c:) 

This result also determines 

B21 = 
3
: 2 {-Ao( m2) - 2(p2 + m~ - mDB1 - m~ B0 + c:B22 } 

and leads us to the final answer 

II 
B21 = 3!2 {-Ao(m2) -2(p2 +mi -mDBt- miBo -1/2(mi +m~- p2/3)} (94) 
B22 = i {+Ao(m2)- (p2 + mi- mDBt- 2miBo- (mi + m~- p2/3)} 

where the arguments of the B-functions are obvious. 

3. Form factors 

In the simplest cases we define the following invariant amplitudes 

f Pk" .:.. ~ "C ~ "C ( ~ "+ ~ ")C + ~"C jk (l)(2)(3) - -P1P1 21- PzP2 22- P1P2 P2P1 23 9 24 

where P3 = -(p, + P2)· 

(95) 

(96) 

(97) 

The C1;'s can be found using all possible independent contractions. This leads to the 
equations 

( ~:P2 ~t) 
X 
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with 
R1 - ~(Bo(m2,m3;p~)- Bo(mbm3;p5) 

- (p~ + m~- mDCo) 
R2 - ~(Bo(mbm3;P~)- Bo(m1,m2;pD 

+(Pi-P~- m~ + mDCo) . 

The inverse of the kinematical matrix of the equation to be solved is 

x-1- 1 ( P~ 
- DetX -PlP2 

and the solution reads 

Cn - De
1
tX {p~R~ - (p1P2)R2} 

C12 - D:tX { -(p1p2)R1 + p~ R2} (98) 

The same procedure applies to the more elaborate case of the C2;' s where the solution 

may be written in the form 

with 

and 

mi 1 1 1 
C24 = -2Co + 4Bo(2,3)- 4(hCn + !2C12) + 4 

R3 - C24- ~ (frCn + Bl(l,3) + B0 (2,3)) 

Rs - -H!zCn + B1(1,2)- B1(1,3)) 

R4 - -HJrC1d Bl(1,3)- Bl(2,3)) 

14, - C24 - ~ (JzC12 - B1 (1, 3)) 

h=~+~-~;h=~-~+~-~ 

(99) 

(100) 

The notation used for the B-functions is as follows: B0(1, 2) denotes the two point 

function obtained by dropping propagator (~) from the form factor i.e. fk (ll(2) and 

correspondingly for the other cases. 
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6. Applications 

1. Virtual fermion contributions to gauge boson self-energies 

fz, k + p 

-i!I""(p) = Y~~x,._ 
--B~--

f,,k 

J d"k {k+m, v /J+k+mz " } 
=-gAgB (21r)dTr P-mr' (aB+bB/s)(p+k)2 -m~l (aA+bA!s) 

For the different self-energies the couplings are given by: 

1. w+w- : gA = gB = ~: 

( j~ ) doublet m 1 f' m 2 

2. ZZ: gA = gB = lf; 
fz = j, = f single fermion 

3. Z1: gA = eQf,gB = lf; 
fz = f, = f 

4. //: gA = gB = eQJ 

fz = j, = f 

Calculation of the trace of Dirac matrices: 

aA = aB =a= 1 
bA = bB = b = -1 

Viz assumed 

a A = aB = a= 4Qf sin2 Gw - 2!3! 
bA = bB = b = -2!3! 
2I3f = ±1 , m 1 = mz = mf 

aA = 1,aB =a= 4Q1sin2 0w- 2I3f 
bA = O;bB = b = -2I3j 
m 1 =m2 = mf 

aA = aB = 1 
bA = bB = 0 
m 1 =m2 = mf 

(k + m,)J"( a+ bis)B(P + k + mz)J"( a+ hs)A 
k1"( a+ bis)B(P + k )!"(a+ bis)A 

+m,mzi"(a + hs)Bi"(a + bis)A 

+terms with odd number of 1's (have Tr () - 0) 

- k1"(p + k)J"(aAaB + bAbB + (aAbB + aBbA)/s) 

+m,mzi"!"(aAaB- bAbB- (aAbB- aBbA)is) 

+··· 
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Now, Tr-y"'Y"'Ys = 0 and Tr/q"(i> + kh"'Ys = 4ie"'"fJ"k,(f> + k)fJ after integration 

fk k, · · · = p, · · · cannot contribute since e"'i3""PaPfJ = 0. 
The trace of the remaining terms is given by: 

Tr(· · ·) - 4(g"'"g13" + g"'"g13"- g"'13g"")k,(p + k)fJ(aAaE +bAbE) 
+ 4m1m2g""(aAaE- bAbE) 
- 4(aAbE +bAbE) {k"(p+ k)" + k"(p+ k)"- g""(P + kp)} 
+ 4(aAaE- bAbE)m2m2g"" 

We now may evaluate the integrals. We use the notations (1) = P- m~ +it::, (2) = 
(p + k )2 

- m~ + it:: and fk · · · ..:... 1
";

2 
f (g:~a · · · and use the definitions 

We write II"" in the form 

II""(p) = g""III(P2) + p"p"II2(P2) 
= (g"" - •;)" )II1 + •:t(p2II2 + II1) . 

Only the transverse amplitude II1 contributes to S-matrix elements, e.g. if contracted 

with a polarization vector the II2 amplitude drops out due to t:: iP, ). )p" = 0. In general 

II2 cancels against ghost amplitudes. 
The relevant integrals we need are given by: 

p"p"ZB21 - g""ZB22 

where, for the last integral, we have used the decomposition 

1 1 
k2 + pk = -(2k2 + 2pk) = -

2
(k2 -m~+(k+ p)2

- m~-(p2 -m~ -mD) 
2 '"-v--' 

(1) (2) 

We then obtain the result 

II1 = ( -i) 16~, 4gAgE· 

{ (aAaE +bAbE) ( -2B22 + ~Ao(mr) + ~A0(m2) + ~(p2 - m~- m~)Bo) 
+(aAaE- bAbE)m1m2Bo} 

II2 ( -i)16~,4gAgE· 
(aAaE +bAbE) (2B21 + 2B1) 
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with 

B1 - 2!, ( -Ao(m!) + Ao(mz)- (p2 + mi- mnBo) 
Bz1 3!, ( -A0 (m2)- 2(p2 + mi- mnB1 - miBo 

-1/2(mi + m~- p2 /3)) 
Bzz - i (Ao(mz)- (p2 + mi :___ mnB1- 2miBo 

-(mi + m~- p 2 /3)) 

Inserting the latter expressions yields the final result: 

We now specialize the result for the different self-energy functions: 
I. W -self energy (contribution of a fermion doublet) 

For the evaluation of IT~w (0) we use the following relations: 
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2. Z-self energy (contribution of a single fermion) 

rrzz 
1 

For the evaluation of IIfZ ( 0) we use: 

and find 

a contribution which is purely axial (proportional to b 1 ). 
3. Z-y-mixing (bAbB = 0 pure vector contribution) 

eQr(~~:rMz · a1 · ~ {2m}- p2 /3 + 2Ao(mJ) 

+(p2 + 2m})B0(mhmf;p2
)} 

0 
eQrar(-/2G•)'i2 Mz 2 2 {1 E_ _ §.} 

161r2 3P n 11-2 3 

4. -y-self energy (photon vacuum polarization) 

4m2 ( ) 1 ilt+l • 
where we defined Y! = .:;T and G Y! = 2,e

1
ln ilrl wrth f3J = y'l- Y!· 

(104) 

(105) 

(106) 

(107) 

As it should be, we find IIT'(O) = 0 i.e. the photon remains massless (unrenormalized). 
This remains true also at higher orders in the perturbation expansion. 

I JI"'f'"l' 
For rr;n (p2 ) = 7 we find the following asymptotic values 
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II~-,-, (0) 

II~TI(p2) 

m} ~IP2 1 

2 
e

2 
4 Q2 1 :::t_ 

-16'l'l"2 3 f n ~-'2 
e
2 4Q2 (1 •2 5) --- f n~--1611"2 3 J,L2 3 

(108) 

We may apply these results to calculate quantities which show up in the calculation of 
electroweak parameter shifts to be discussed in Sections IV and V. 

1. p-parameter 

The p-parameter is defined as the neutral to charged current ratio, which within 
the SM is a finite gauge invariant calculable quantity. For the fermion contributions we 

obtain 
p 

!J.p 

(Veltman 1977). For the known fermion doublets only the top-bottom doublet has a large 
mass splitting. A very heavy top yields a contribution 

2. b.r 

Within the SM the Fermi constant G" can be calculated in terms of a, Mw and 
Mz. It thus appears as a correction the the f.l-decay amplitude 

r.:. 1l"a 
v <.G, = M1. (1 + b.r). 

Ma,{l- 'iff) 
z 

One may write !J.r in the form 

cos2 0w 
!J.r = b. a - . 2 G b.p + b.r rem 

sm ·w 

where 6.rrem collects the numerically small terms (~ 0.6%). The large term !J.a is due 
to the photon vacuum polarization 

!J.a rr;TI(O)- rr;'~'~(M~) 

a "' 2 M~ 5 - -
3 

L_., Q fNcj(ln - 2 - -
3

) ~ 0.06 . 
1l" f mf 
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The numerical value is given for the sum of the contributions from the light fermions e, 
p, r, u, d, c, s, b (see Sec. IV). Since theW-mass is not yet very precisely known we 
may use this result to predict Mw in terms of a, G,. and Mz. By solving the defining 
equation for Mw we obtain 

4A5 1 ) 1- M 2 6. (1 + 6.rrem) 
p z1- a 

where p = l-~p and 

3. N C couplings near the Z peak 

The Z f /-vertex to lowest order is given by 

( .J2GSI22Mzi"( -Qf sin2 E>w + (1- 'Ys) [;1 ) 

and higher order effects (radiative corrections) may be included by using renormalized 
effective couplings: 

--+ P!G,. = GNcJ(M~) 
--t ~/ sin2 E>w = sin2 El1 

Since a, G,. and Mz are given, we may calculate sin2 0 1 using 

where 6.r 1 has the form 

a relation similar to the expression given for 6.r, however with a 6.p contribution which 
is by a factor sin2 E>w / cos2 E>w smaller. 

We finally calculate another interesting type of diagrams, namely, those exhibiting 
a virtual Higgs particle. 
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2. Virtual Higgs contributions to gauge boson self-energies 

-iiT~"(p) = v _).{ v + """"")J.'vvvv- + ~ 
~ , ___ _ 

v 1> 

W: 

Z: g -> ~' Mw -> Mz 

We take the 't Hooft-Feynman gauge~= 1 and use a; = ~r = v'2G~M1v obtaining 

i to 2 
- 16,..,v2G~Mw· 

{p~p" [Bo(Mw, mH;p2) + 4Bl + 4B21J 
-g~" [4M{vB0 + 4B22 + Ao(mH)]} 

Thus we get the amplitudes 

mvw(p2) = 

ITfW(p2) = 

-12!/!fw {4B22 +4M(vBo + Ao(mH)} 
2~;,~k {4B21 + 4B1 + B0 } • 

In terms of the scalar one-loop integrals we then find for the physical transverse part 
(V = W,Z): 

II;'~'(p2 ) = ~~~~ A0(Mv) +4A0(mH) + M~,7}(A0(Mv)- A 0(mH)) 

+(p2 + 10Mt- 2m7I + (M~;;n'H)')Bo(Mv,mH;p2 ) (l09) 

- 2(Mt + m1- p2 /3)} 

Proceeding as we did for the fennions we get 

rr;v (0) 

in the 't Hooft-Feynman gauge~= 1 and the MS-scheme. 
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Using these results we may calculate the Higgs contributions to the parameter shifts. 

1. p-parameter 

In contrast to the fermion contributions, the Higgs contribution alone is neither gauge 
invariant nor UV-finite! Only the sum with the remaining (non-fermionic) contribution 
is finite and gauge independent For p, = Mw an e = 1 one obtains a possible splitting 
of terms which exhibits the full mwdependence in any case. 
We finally consider limiting cases: (setting p, = Mw) 

6-p = .;2G ,.Mf.., . 3 sin 
2 0w 

l61r2 cos2 0w 

ii) ms ~ Mv: 

Notice: 

1. For g'-> 0 (Mz-> Mw, sin2 0w-> 0) we get 6-pHiggs = 0 . 
w±, Z would be SU(2)n triplet of a global SU(2)n of CH;ggs, i.e. 6-pHiggs mea­
sures breaking of SU(2)n by the weak hypercharge. 

2. The limit ms -> 0 exists and yields a small finite term. 

3. There remain no m1- terms for ms -> oo. Instead one observes a logarithmic 
Higgs mass dependence. 

Similarly one finds: 

2. 6-r, 6.r1 

56 

.. 

.• 



• 

• 

lll. RENORMALIZATION 

So far, we have defined dimensionally regularized Green functions for complex 
space-time dimensions d with Re d < 4 which have poles in c: = d - 4. These bare 

Green functions have been obtained by the perturbation expansion based on the splitting 

(111) 

of the full Lagrangian .Cb into a free and an interaction part. This splitting is not UV­

finite, and hence not physical, and makes sense only if we have regularized the theory. 
The bare perturbation expansion thus is regularization dependent. In particular, using 
dimensional regularization it depends on an arbitrary scale parameter fl ! For the bare 
Green functions the limit c: -> 0 does not exist! Green functions which allow to take the 

limit c: -> 0 require renormalization, which amounts to a reorganization of the formal 
perturbation series. 

Basic reason for the problem is the following: We have tried to solve the equations 
of motion of the system without imposing appropriate boundary conditions. Since our 
goal is to calculate scattering matrix elements, the physical boundary conditions are 

obvious: We have to introduce renormalized fields which describe, at asymptotic times, 

free physical scattering states. For the electron field, for exall_lple 

0 f,ren( ~ ) t~-/+oo "'' ( ~ t) 
o/e X, t -+ o/e in/out X, (112) 

must describe a free electron of mass m •. This is the so called LSZ asymptotic condition 
[36] 

Since masses and the normalization of fields are altered by quantum effects (loops) 
the physical boundary conditions (renormalization conditions) must be enforced by renor­

malization. These boundary conditions are conditions on the mass-shell p2 = m 2 of the 
external particles, therefore the corresponding renormalization procedure (renormaliza­
tion scheme) is called on-shell scheme. 

The independent parameters are the physical particle masses plus a coupling con­
stant. A natural choice for the coupling is the universal (due to electromagnetic current 
conservation) fine structure constant a. This defines a QED-like on-shell renormalization 
scheme with independent parameters: 

(113) 

All other couplings are then fixed (dependent parameters) by the mass-coupling relations: 

g= 

sin2 0w - 1 - Mfi, 
M1 

~ 
sin0w 

I~ 
g = 

cos0w 
v'2 1 1ra 2G" - v2 = Mfi, sin2 0w · 
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The renonnalization then may be perfonned in two steps: 

1. Parameter renormalization 

The parameters in the true bare Lagrangian are the bare parameters ab, Mwb, · ... 

We reparametrize the bare Lagrangian in tenns of the physical parameters (experimental 

input) a, Mw, · · · by the following parameter renonnalizations: 

(115) 

which have to be performed for the dependent parameters (which serve as convenient 

abbreviations only) correspondingly : 

. 20 sm -wb • 2 0 < • 2 0 . 2 0 (1 8 sin2 0w) 
- sm -w+usm -w=sm -w + . 2

0 sm -w 

- G, + SG, = G, (1 + sg") 
" 

where, to linear order (suitable for one-loop calculations): 

8sin2 0w 
sin2 0w 

SG, 
G, 

2 SM~ SM'fv 
- cot 0w( M~ - M'fv ) 

Sv- 1 Sa SM'fv 8 sin2 0w 
- 2-- - - - -- - -:--;;-;::--"-

v-1 - a M'fv sin2 0w . 

(116) 

(117) 

It is important to notice that these parameter shifts do not alter the invariance properties 

of the Lagrangian. The ST-identities thus keep their bare fonn. Since the bare parameters 

and the renonnalized parameters (detennined by S-matrix elements) are gauge invariant 

also the parameter counter tenns are gauge invariant ! This statement is true only if the 

tadpoles are treated properly. Since (momentum independent) tadpoles drop out from 

physical quantities we will not discuss them further (see e. g. [37]). 

2. Field renormalization (wave function renormalization) 

In order that the fields describe properly nonnalized scattering states we must 

renonnalize them such that the residue of the propagator pole is unity. 
For simplicity we ignore the infrared problem caused by soft photon effects. This 

problem has to be treated in the same way as in pure QED and we assume the reader to 
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be familiar with it. We shall use an infinitesimal photon mass m., as an infrared regulator 
at intermediate steps. For observable quantities the limit m., -> 0 must exist. 

We then write for the physical fields: 

V,b jZ;v,ren; V = A,Z, w± 

'lj;f b .jZ;'if;f ren 
Hb - vz;; Hren (118) 

and the Z-factors are fixed by the condition that propagators of the renormalized fields 

have residue one at the pole. 
For unstable particles, like the vector bosons, the location and residue of the pole 

are complex. Unitarity requires the counter terms to be real. Therefore the counter terms 
are determined by the real parts of the location and residue of the pole, in ths case. 

It may be questioned whether independent field renormalizations are compatible 

with the local non-abelian gauge structure. In fact the canonical (=bare) form of the ST­
identities only admits a renormalization factor for each field multiplet ! The following 

remarks are important here: 

• The Z-factors are gauge dependent and in order to get gauge invariant S-matrix 

elements there is no freedom in the choice of the wave function renormalization 

factors. Only the Z-factors fixed by the LSZ-conditions for the individual fields 

lead to the physical S-matrix [38] [39]. 

• The apparent conflict with the ST -identities is not as serious at it looks at first. 

From the path-integral representation of the generating functional 

we learn that a change of the integration variables, for example, 

does not change the value of the integral ! This means that if the fields V,; do not 

appear as external fields, all the Z-factors drop out completely in the interior of 

the Feynman diagrams. The Z-factors only affect the external legs (source terms 
in Eq. (119)) of a diagram, i.e. only external fields carry a normalization factor 

1 
VJLi b ---+ VJLi ren = f"l7 VJLi b 

yZ; 
(120) 

Consequently: If we perform individual field renormalizations in the bare ST-identities 

their renormalized forms are not altered by higher order corrections, although, now, they 

have no longer a simple canonical form. Notice that, when written in terms of the physical 
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fields, the ST-identities do not look very symmetric anyhow. If one insists in preserving 

the bare form of the ST-identities one has to renormalize away only the singular e-pole 

terms. These of course satisfy the bare ST-identities. This latter procedure is called 

minimal subtraction M S or M S - scheme, defined by the substitutions 

MS: 

MS: 

2 2 2 - + lnf!o = lnf!Ms e 
2 2 2 - -~ + ln47r + lnp0 = lnpMS, 
e 

respectively. These subtractions correspond to a choice of counter-terms 

(8Mt)Ms - (8Mt)os,uv 

(8a:)Ms - (8a:)os,uv 
(8Z;)Ms - (8Z;)os,uv 

(121) 

(122) 

as compared to the on-shell scheme (OS). By the index UV we indicated the e-pole terms 

related to the UV-divergences. All the renormalization schemes used by different authors 
range from pure M S to pure OS and mixtures of them! 

The irreducible vertices are obtained by amputation of the external legs (amputl!-ted 

legs correspond to scattering states!). Amputation means multiplication with the inverse 

propagator which carries a factor Z;. Thus, field renormalization for the irreducible 

vertices amounts to multiplication of an external (amputated) field by ..;z;. To leading 

order Z; = 1 and we may write 

Z; = 1 + 8Z;; jZ. ~ 1 + ~8Z; + · · · . (123) 

The renormalization procedure for physical amplitudes may be summarized by the fol­

lowing simple rules: Performing the parameter shifts and the field renormalizations and 

expanding to linear order (appropriate for one-loop calculations) we get the simple sub­

stitutions (we abbreviate sin2 Gw = srv) 

eQn" 

~7'"(1-ls) ..j2v -> ~~7'"(1 -Is) 

( 
lcz lcz lcz 1S:J:.w 1SG,) 

· 1 + 2° W + 2° 11 + 2° h + 2 w + 2 G" 
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and analogously for the other vertices. 

3. Renormalization schemes 

The notion "renormalization scheme" is used in two different senses of the word. 

Often the term is used in a more technical sense as 

• a specific way of performing renormalization at intermediate steps. This includes 
the choice of the regularization, the way field renormalizations and/or parameter 

renormalizations are organised. Some authors emphasize the use of renormal­
ized Green-functions at intermediate steps others are interested in on-shell matrix­
elements only. If the same physical quantity is calculated in terms of the same 
parameters to the same order in perturbation theory the result does not depend on 

the choice of the scheme. This first kind of distinction of different schemes is 

therefore not relevant for the physics. 

The second possible distinction of renormalization schemes is more physical, namely as 

characterizing 

• a specific choice of input parameters. Perturbative predictions in terms of different 

input parameter sets are scheme dependent as we shall see below. 

We will use the term in general in this second sense. Before we are going to discuss 

the scheme dependence of physical predictions we briefly give an incomplete survey 
of different schemes used for one-loop calculations in electroweak theory by different 

groups: 

1. MS [41] 
2. semi OS [42, 43] parameter counter-terms OS 

one OS Z-factor per gauge multiplet 

3. full OS [44] leads to S-matrix elements 
in one step! 

4. * [45] emphasize VB propagator effects and 
running parameters (bubble summation) 

The relation between the OS-scheme and the -<-scheme is briefly discussed in an Appendix 

at the end of this Section. 

Notice: If a physical transition matrix element is calculated in terms of a given 

set of physical input parameters the answer does not depend on the scheme used at 

intermediate steps (the schemes differ by the bookkeeping only). Evidently in all schemes 

the starting quantities are the bare or the equivalent M S quantities. If a particular value 
for p is chosen one may give numerical values for M S quantities e. g. for a MS, 

sin2 0 Ms(P = Mz). 
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A scheme dependence of physical predictions shows up if different input parameters 

are used in a calculation. A specific choice of experimental data points used as an input 

parameter set defines a renormalization scheme (RS). Parametrizations frequently used 

are the following: 
I) A natural choice of "basic" parameters is the QED-like parametrization in terms 

of the fine structure constant a and the physical particle masses 

often referred to as the "on-shell scheme". We shall refer to it as the a-scheme. It allows 

for a natural separation of the QED part of the electroweak radiative corrections which 

is dominated often by large soft photon effects accompanying external charged particles. 

2) In the Standard Model , which unifies weak and electromagnetic interactions, 

we can use as a coupling parameter as well the Fermi constant G" instead of a. We then 

have 

as an independent set of parameters. This set is suitable for processes which are domi­

nated by neutral (NC) or charged (CC) current transitions. An important property of G" 

is that it is not running from low energy up to the vector boson mass scale Mw(Mz). 

This G"-scheme thus is a genuine high energy scheme in the sense that no large loga­

rithms show up in the calculation of vector boson processes in the LEP energy region (Z 

and W-pair production). 
We know that the parameters of the two schemes ate related by [17] 

he = 1ra 1 

" Mfi, sin2 0w 1 - C:,.r' 
(124) 

where C:,.r is the non-QED correction top-decay calculated in the a-scheme. If not stated 

otherwise, we use the definition 

·2e 2 Mfi, 
Sill - W = Sw = 1 - --2 Mz 

(125) 

for the weak mixing angle. 
A disadvantage of the parametrizations (I) and (II) is that they require a precise 

knowledge of Mw which will be measured precisely at LEP2 only. In order to keep the 

input parameter errors as small as possible we have to replace Mw by G" in (!). 

3) The scheme to be used as a starting point for precise calculations of radiative 

corrections uses 

(III) 
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as input parameters, with Mz measured from the Z line-shape at LEPL 
4) A similar parameter set using the W -mass instead of the Z-mass 

a,Gp.,Mw,mf>mH (IV) 

seems not particularly interesting, since the W -mass will never be known more accurately 

than the Z-mass. 
5) Another interesting possibility would be to predict quantities in terms of the low 

energy parameters 

where sin2 0v"e is determined from neutrino-electron scattering (by CHARM II for ex­
ample). 

Scheme-dependence can be investigated by predicting an observable in t'erms of 

different input parameter sets. Since not all the parameters are known to the same pre­

cision we proceed as follows: We first predict Mw and sin2 0v"e in the scheme (III) 
and then take any 3 parameters which are independent at tree level to calculate quan­

tities like the vector boson widths rZJ!• rWJf'• or the cross-sections a(e+e- ->If), 
a( e+ e- -> w+w-) e.t.c. 

Predictions of physical quantities of course should not depend on the specific choice 
of the input parameters and they in fact do not if we include all orders of the pertur­
bation expansion. Actually, the reparametrization invariance is inferred by renormaliza­

tion group invariance. However, practical perturbative calculations are approximations 

obtained by truncation of the perturbation series. The accuracy of the finite order ap­

proximations depends on the choice of the input parameters i.e. finite order results are 

scheme dependent [46]. 
Let us illustrate this point by an example: Suppose we compute a matrix element 

M in the a-scheme (I) to one-loop order yielding a result 

M(1
) = anC[1 + ba]. 

Now, suppose we calculate the same quantity in the G,.-scheme (II) which amounts to a 

replacement of a~ 137-1 by a' = 1_'::,r ~ 128-1 i.e. to one-loop order a' = a[l + aa] 

and 

M'(l) = a'nC[l + b'a']. 

Inserting a' we get 

M'(1l = M(') + 6M 

with b' = b - na and 

6M = anC [((n 
2
-

1
) a2 + (n + 1)ab')a2 +-- · + an+1 b'an+Z]. 
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Thus the result differs by SM. If we do not actually calculate the higher orders 

SM = M'(') - M(l) 

must be considered as an uncertainty due to unknown higher order effects. 
For LEP experiments one-loop calculations are insufficient to get the precision of 

0.1 o/o and one has to go to resummation improved calculations by including leading higher 

order effects. The study of the scheme dependence of resummation improved results is 

a way to estimate missing higher order contributions (educated guess). Of course only 

an actual n-loop calculation can tell us what the full n-loop answer is. 

Let us summarize the content of this subsection by the following conclusions: 

• If a physical quantity is calculated with different input parameters the answer is 
the same if we calculate it to arbitrary high orders. 

However: 

• Calculating a quantity to a given order the omitted higher order terms differ for 
different parametrizations. This leads to a scheme dependence of the result (ap­

proximate) due to different truncation errors. 

• Differences can also be due to different resummation prescriptions (see below). 

After these general considerations we now discuss one-loop renormalization in details. 

4. One-loop renormalization 

4.1. Feynman rules 

Starting point is the classical gauge invariant Lagrangian 

Cinv =£Yang-Mills+ Cmatter +£Higgs+ CYukawa • 

The quantization is obtained by adding the gauge-fixing (GF) and Faddeev-Popov (FP) 
terms in order to get the quasi-invariant effective action suitable for the path-integral 

quantization: 
.Ceff = .Cinv + .CaF + .CFP • 

The correct Feynman rules for non-abelian Gauge theories have first been obtained by 

't Hooft [7]. Here we restrict ourselves to write down, in Figure 8, the Feynman rules 

in the Feynman - 't Hooft gauge for the physical fields. The gauge self-couplings are 

given in terms of the tensors (momenta incoming) 

V"u·"(p) - gPu (pz -pi)" + gP" (p, - P3t + gu" (P3 - pz)P 
TJ.LV, pa _ 2 giLl/ gPU _ gf.LP gi.Hf _ giLO' 9vp 
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These Feynman rules are "complete" only in the unitary gauge. In this gauge 

. 1 
-tgf'V k2- MZ 

'( kf'kV) 1 
- -t gf'V- MZ k2- MZ 

Feynman-'t Hooft unitary (non-renormalizable) 

such that &" Wf = 0 on the mass-shell (i.e. k" ( · · ·) = 0 for k2 = M 2
). 

+ 

+ 

+ 
+ 

A"DA " ~ k 
-i g~J-1.1 k12 

w+" (o + Ma,) w; w -i gf'V k2 1 
QrvvvvvO M2w 

Z" (D + M~) Z" ~ -i g"v k2 -\ai 

H(D +m1-)H H i 
().-----<> k2 -m1-

interaction vertices : 

~w+ p 
ig..,,z vPq·"(p ); gz = gcos6w g.., = e, 

wq-
C..,..,= e2 

1,z"Xwp+ -iC;T"v,pu(p ); C..,z = eg cos 6w 

"f,Zv W; Czz = g2 cos2 ew 

w+xw+ " p ig2Tf'v,pu (p ); 

w- w-v q 

___ H_<~ igvMvg"v V=Z,W 

H '•,, <V" 
i~g~g"v gz=~, '• gw=g , 

H ,,,'" Vv 

H 
,,"' H 

-i3~ / -------< •, v 
' ',,H 

H ' ... ,, ,,' H 
', ' ' ' -i3~ 
,,x,, v 

H ,,.,., '',,H 

Figure 8a: Feynman rules for LyM + LHigos 
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;j;1(i1"8,.- m 1),PJ f i 
0 ' 0 />-m, 

+ j~m A" ~; ieQn" 

+ JNcz,. 
" ~; i 'Y"(v -an) 2cos€>w f 5 

+ J±CCW'f ~h i27z!"(1 - 'Ys) Vik 
" " J; 

+ GifrJ,P!H ___ ]£< ~ -i!!!.L 
v 

Figure 8b: Feynman rules for Cmatter + CYukawa 

Here and in the following we do not explicitly write the it:-prescription for the Feynman 

propagators and include it in the mass. Thus M 2 always stands for M 2 - ie:. 

As discussed in Sec. ll the gauge boson propagators are only defined after fixing a 
gauge, because the 4-component field W,.; describes only 3 physical degrees of freedom 
( 2 transverse and 1 longitudinal). A convenient gauge is the general covariant and linear 
't Hooft gauge also called "Rc gauge" for which the massive vector boson propagators 

take the form 

. ( ( ") k,.kv ) 1 
-z g,.v - 1 - ~ p - eM2 k2 - M2 (126) 

The prize we have to pay in going from the physical non-renormalizable unitary gauge 
to a renormalizable gauge is that we have to take into account ghosts: the 3 Higgs 
ghosts q,± and ¢> and 4 Faddeev-Popov ghosts (±, ( and ~ , which have 39 additional 

interaction vertices. The existence of the 't Hooft gauge is conceptually very important 
because it allows to interpolate in a continuous way between a renonnalizable gauge like 
the Feynman-'t Hooft gauge with e = 1 (simple propagators, unphysical polarization, 
ghosts) and the unitary gauge reached as e -> oo (no ghosts, Lee-Yang terms, UV­
behavior of off-shell quantities bad). For the gauge invariant (s-independent) physical 
quantities this infers at the same time renormalizability and unitarity. 

66 

. 
' 

> 

• 

• 



. . 

After these introductory remarks we are going to discuss renormalization in more 

detail. In order to be able to control the UV-divergences, we have to use a renormalizable 

gauge (validity of power counting arguments). In order to keep notation as handy as 

possible we use the Feynman- 't Hooft gauge. We have to inspect those Green functions 

which are superficially divergent, propagators, form-factors and four-point functions. 

4.2 VB propagator corrections 

Since, in physical matrix elements (on-shell quantities), the longitudinal parts of the 

VB propagators cancel against ghost amplitudes, as a consequence of the Slavnov-Taylor 

identities, we need consider only the transverse part in the following. In order to see how 

the splitting into transverse and longitudinal parts works, we introduce the projectors 

which satisfy 

k~kv 
T~v =g~v-~ 

transverse projector 

T~TP = T~ 
p v v 

T~LP = 0 
p v 

L = k~kv 
~v p 

longitudinal projector 

L~LP = L~ 
p v v 

L~TP = 0 
p v 

and write a VB-propagator in the form 

D~v(k) - -i (T~v · II1(k2) + L~v · II2(k2)) 

( 
2 A 2 ) - -i gp.v • Il1(k) + kp.kv • Il2(k ) (127) 

with II2 = k2 IT2 + II1. Thus the transverse amplitude II1 is uniquely given by the g""­
term in the propagator and II2 does not mix with the transverse part. The index 1 will 

be omitted in the following 

4.2.1 The W-propagator 

Diagrammatically theW-propagator is given in Figure 9a. Since the g~v·tensor in 

front of the transverse self-energy acts as a unit tensor, we may omit it for notational 

convenience. Thus -i/(k2 - Ma,) represents the free transverse VB-propagator and 

(128) 

defines the self-energy function as the propagator with amputated legs, given by the sum 

of one-particle irreducible (!pi) diagrams. These are the graphs which cannot be cut 

into two disjoint parts by cutting one line. The tadpole graphs ( 2nd group in the figure 

above) play a special role. They must be included if one wants to have gauge invariant 
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mass counter-terms. They cancel however in physical quantities and will be omitted 

henceforth. At one loop order the propagator is then given by 

-i Dw(k
2

) = k2 -=-~fv ( -i Ilw(k
2
)) k2 -=-~fv 

The full or dressed propagator is given by the geometrical progression (Dyson summation) 

~= Ovvvv-<:>+~+~+··· 
. . . 

-~ -~ -~ 

- k2 - M(v + k2 - M(v ( -i ITw) k2 - M(v + 
. . . 

-~ -~ -~ 

k2 -M(v (-i Ilw) k2 _ M(v (-i Ilw) k2 _ M(v + ··· 

-i { ( -Ilw ) ( -Ilw ) 
2 

} 
- k2 - M(v 1 + k2 - M(v + k2 - M(v + ... 

- k2 -=-~fv { 1 + k~rr)0w} = k2- M(v-! Ilw(k2) = -i Dw(kz) 

Let us briefly discuss some important properties of Ilw: 
1) Ilw(P) is complex, when k2 > (m1 + m 2 )

2 

ITw = Re ITw + i Im ITw 

(129) 

m 1 and m 2 are the masses of the particles into which the W can decay. For example 

w- can decay into v.e- and we have m1 = mv, = 0 and m2 = m. so ImiTw =J 0 if 

k2 > m;. As a rule, a cut diagram 

~-~--­---~--

contributes to the imaginary part if the cut diagram kinematically allows physical inter­

mediate states. The W is an unstable particle and on the mass-shell P = M(v of the W 

we have 

Im ITwW = Ma,) = Mw rw =J 0 (130) 

defining the finite width rw of the W-particle. The real part Re ITw is UV-divergent 

and requires renormalization: At lowest order the propagator is 

1 
Dw = k2 -M(v 
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which has a pole k2 = Mi\r with residue one. In higher orders we define the mass (and 
the width) from the location of the pole of the propagator, which for unstable particles 
lies in the complex P-plane. We define the pole to lie at 

(k2
)pole = Mi\r- i Mw rw = Mi\r (131) 

thus we have the correspondence 

physical mass {==;. real part of location of propagator pole 
width {==;. imaginary part of the location of the pole . 

By our derivation above we obtained 

1 
Dw = k2- Mi\r + Ilw(P) 

with Re ITw(Mi\r) f= 0, which tells us that the location of the pole gets shifted by 
radiative corrections . Consequently, Mw in the previous equation cannot be the physical 
mass of the W but it is the bare mass. Thus 

where liMi\r is the mass counter-term fixed by the condition: 

Re [k2
- Mi\r- liMi\r + ITw(k2 )Jjk2~lif2w = 0 

~ 
liMi\r = ReiTw(Mi\r) ~ ReiTw(Mi\r) 

(132) 

this removes the quadratically divergent term from the W self-energy. Since rw / Mw = 
O(a), we may use Mi\r ~ Mi\r in the one-loop approximation. Now, after one subtrac­
tion, 

1 
Dw - ----...,.---------:::---""' 

- k2- Mi\r + (rrw(P)- ReiTw(Mi\r)) 

is logarithmically divergent, only. Thus it still has poles in c = d - 4. If the W is not 
an external particle (describing a scattering state) we may use minimal subtraction here 
by applying the substitution Eq. (121). This procedure preserves the bare form of the 
Slavnov-Taylor identities. For an external W we have to proceed differently and perform 
on-shell wave function renormalization: It is fixed by the condition 

• the real part of the residue of the propagator pole must be normalized to one . 

Because the W is a charged particle the on-shell residue of the pole does not exist for 
massless photons (QED infrared problem). As mentioned earlier we use an infinitesimal 
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photon mass in this case in order to be able to proceed in the canonical way which, in 
a strict sense, applies to neutral particles only. After these remarks we go on with the 
determination of the residue of the pole. If we expand the self-energy at the pole 

2 - 2 2 - 2 diTw - 2 2 - 2 
Ilw(k) ~ Ilw(Mw) + (k - Mw) dk2 (Mw) + · · · ; k -> Mw 

we obtain, using oMf., = Reii(Mf., ), Mwrw = Imii(Mf., ), 

1 
Dw = 

k2- Mf., + (rrw(k2)- Reiiw(Mf.,)) 

1 1 + O(k2 - _M-2 ) 
k2- .Ma, 1 + d.:!,rc.M&) w 

and the residue of the pole can be read off. If we now perform the field renormalization 
Eq. (118) and consider the propagator of the renormalized field Dw ren = Ziil Dw bare 
i. e. 

1 1 1 

k2 -Mfi,+Ilwren(k2) = Zw. k2-Mf.+(IIw(k2)-Reiiw(Mf.)) 

which is required to have residue one and thus 

zw = Re [1 + ~~ c.Mf.)r . 

If we expand to linear order (suitable for 1-loop calculations) 

diTw( 2) oZw = Zw - 1 ~ -Re dk2 Mw 

and the renormalized self-energy function reads 

2 2 ( 2 ) ( 2 2 ) dii w (M2 ) IIwren(k ) - Ilw(k ) - Re Ilw Mw - k - Mw Re dk2 w 

(133) 

(134) 

(135) 

+O(W- Ma.)2
). (136) 

The wave function renormalization also affects the imaginary part and hence the width 
by a next order term. Denoting by t~.r~l the next order corrections not considered here, 
the corrected width reads 

rgl = (r~l + t~.rgl); (1 +Red!~ (Mf., )) (137) 

We finally notice that the inverse bare propagator 

-i g,v Dw' = -i g,v ( k2 - Mfi, + Ilw( k2)) = ~'+~ 
is given by the irreducible self-energy diagrams. 
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~ 
Figure 9a: W self-energy diagrams 

~ ; LJ ~ f 
H 

+ 
, .. --, 
~ 

Figure 9b: Z self-energy diagrams 

~~; LJ ~ f 
Figure 9c: 1 and 1 Z self-energy diagrams 
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Figure 10: Fennion self-energy diagrams 
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V'VVVVVVVVV' 

~ 

w ,0, 

~~ 
Figure 11: Electromagnetic vertex diagrams 
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4.2.2 The (Z,7)-propagator 

The renormalization of the Z-propagator 

z z z ")' 
~= ~+~+~+~+··· 

proceeds similarly to the W -propagator, however, the situation is complicated by "Y - Z 
mixing 

~;<o· 
Due to mixing one cannot treat the Z and the "Y propagators separately. They rather form 
a 2 x 2 -matrix propagator. The simplest way to treat this problem is to start from the 
inverse propagator given by the irreducible self-energies (sum of 1pi diagrams). Again 
we restrict ourselves to a discussion of the transverse part and we take out a trivial factor 
-i g ~'" in order to keep notation as simple as possible. With this convention we have 
for the inverse "Y - Z propagator the symmetric matrix 

(138) 

Using 2 x 2 matrix inversion 

M- (a - b 
b) M-1 1 ( c 
c =? = ac- b2 -b 

we find for the propagators 

D..,..,= 
1 1 

D..,z 

Dzz - (139) 

These expressions sum correctly all the reducible bubbles. The approximations indicated 
are the one-loop results. The extra terms are higher order contributions. For precision 
physics at LEP they have to be taken into account because, as we shall see later, one­
loop approximations are insufficient. Of course we have to proceed order by order in 
perturbation theory and we only discuss the one-loop case here. At one-loop order 
the Z propagator is renormalized in the same way as the W propagator. Thus with 

M~b = M~ +oM~ and Z~'b = y'ZzZ~'ren 

8M~ = Re ITzz(M~) , Zz = Re 
diTzz 2 

[ ] 

-1 

1 + dk2 (Mz) . (140) 
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1 Diagrammatically the Z-propagator is given in Figure 9b. 
For the photon propagator the unbroken local U(l).m-invariance (conservation of 

the electromagnetic current) implies 

II-y-y(e) = k2 rr~(k2) (141) 

and hence (ignoring the higher order mixing term (see below)) 
I I 

~ = -i g,.v ~2 1 + rr~..,(k2 ) = -i gp.v D..,( e) (142) 

and thus the pole is strictly at k2 = 0. No photon mass term is generated by higher order 

effects and there is no photon mass renormalization. Like in QED, the photon wave 

1 We should mention that the definition of the physical vector boson masses Mw and Mz is not unique 
because of the instability of these particles. Usually they are defined by the real parts of the locations of 
the poles of the transverse parts of the W and Z propagators: 

Dw(s) = 

Dz(s) = 

1 
s- Mfv- 6Mfv + ITw(s) 

1 

s- M~- 6M~ + ITzz(s)- (IT-,z(s))2/(s + IIn(s)) 

To the order 0( a) (neglecting the mixing term in the Z propagator), M 2 is the physical mass if we fix 
the mass counter-term 6M2 by 6M2 = Reii(M2). The total width r is determined by the imaginary part 
of the self-energy function II according to Mr = ImiT(M2 ). 

A subtlety comes in, if we want to include higher order effects, because the vector bosons are unstable 
particles such that the poles of the propagators are located at complex values s0 = M 2 - iMr of s. To 
our knowledge, all LEP physics calculations , which intend to include higher order effects systematically, 
have been using the "physical" masses defined by the location of the propagator pole in the zero width 
approximation such that 

6Mfv = ReiTw(Mfv) 

6M~ = Re(ITzz(M~)- (II..,z(M~W /(M~ + II-,-,(M~))) 

are the mass counter-terms. Since, near the resonance, the imaginary part of II is linear in s to a very 
good approximation, ImiT(s) oe srjM [47], the real part of the location of the pole is not M 2 but 
M'2 = M 2 - r 2 (by insertion of so given above in ImiT(s)) (see Consoli and Sirlin in Ref. [47]). Thus, 
there is a difference between the two definitions Of the mass given by M- M' = ! r 2 fM. The "lrue" 
mass M' to the order O(a2 ) coincides with the "reduced" mass introduced by Bardin eta!. [49], which 
is obtained if one redefines the mass and the width in such a way, that the s dependence of the width in 
the propagator disappears near resonance: 

with-y= rjM, M' = Mj..jl +-y2 and r' = rj..jl +-y2. So Mz-M~ is about 35 MeV and, depending 

on the top mass, Mw-M;., is about 30 or 40 MeV. 
It should be stressed that this higher order ambiguity in the definition of the vector boson masses does not 
mean that 0( a 2) effects are not taken care off correctly in the standard approach. The two definitions just 
lead to a different bookkeeping of the higher order effects. 
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function renormalization is given by 

(143) 

The mixing amplitude has to be renormalized as well. The proper renormalized 
photon and Z fields must be determined such that the (/, Z)-propagator has the correct 

particle pole structure. To this end we have to guarantee that the renormalized propagator 

matrix is diagonal at the photon pole P = 0 and at the Z-pole k2 = Ml ~ Ml. This 

is satisfied precisely if the 1- Z mixing amplitude vanishes at both poles (see (139)). 

Thus the renormalized mixing self-energy must be 

This can be achieved by two subsequent transformations of the bare fields: 

i) Infinitesimal (perturbative) rotation 

diagonalizing the mass matrix at one-loop (n+l-loop) order given that the mass 
matrix has been diagonalized at tree (n-loop) level. 

ii) Upper diagonal matrix wave function renormalization inducing a kinetic mixing 

term (this cannot be done by an orthogonal transformation) 

which allows to normalize the residues to one for the 1 and Z-propagator and to 
shift to zero the mixing propagator at the Z-pole. 

Thus the relationship between the bare and the renormalized (LSZ) fields is (expanded 

to linear order) 

Ab - {Z;Ar- (flz +flo) Zr 

Zb jz;zr +flo Ar, (145) 

generalizing (118). The counter-terms flo and flz are determined by the condition (144) 

flo 
IL,z(O) 
M~ 

flz 
ReiL,z(Ml)- IL,z(O) 

(146) - M2 z 
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The field transformations of course induce mixing counter terms at the vertices. Again, 

this non-symmetric transformation only affects the bookkeeping such that the propagator 

pole structure becomes obvious. It does not change the value of the functional integral 

i.e. the mixing counter terms cancel in the interior of Feynman diagrams. 

4.3 Charge renonnalization 

In electroweak theory charge renormalization looks formally pretty much the same 

as in pure QED. There are of course additional Feynman diagrams contributing. In 

particular there are new 'Y Z mixing contributions. The fermion propagators are renor­
malized in the same way as the electron propagator in QED. However unlike in QED 

the right-handed and left-handed fields are renormalized in a different way such that 

{)Zf = Zvf + Zaf/5 · (147) 

Finally, we have to determine the counter term for the electric charge. The condition is 

that ee+-~-! __ = "----- + ~---- + z 
7

___ /----
7

___ ~+counter terms 

evaluated in the Thomson limit (P = 0, E-y -> 0) gives the renormalized charge e. Thus 

. { " ( 5e 1 c -yee Ve II-yz 
z e 'Y 1 +- + -2oZ-y + Zve + Al - 2 . e e M2 e sm-wcos·w z 

( A-yee a. II-yz) ) . "" k" A"~••} + Zae + 2 - 2 . e e M2 /5 - ZIT -2 3 Sln - w cos - w z me 

-> - ie1" in the Thomson limit (148) 

where At• are vertex corrections and II-yz is the 'Y- Z mixing term. By the electromag­

netic Ward-Takahashi identity (a,j~m = 0) some of the diagrams cancel. For example, 

we have (V = /, Z) 

The diagrams with the loops sitting on the external legs are contributions to the wave 

function renormalization and the factor ~ has its origin in Eq. (123). 

While in pure QED 

5e = _.!:.sz = .!:. rr' (O) 
e 2"~2"~ 

in the Standard Model we find 

Se = -21 rr~(O)- ~- 48& rr;;~O)- A;'".(O)- Zve = -21 II~(O) + 2Ks&L. 
e swcw z 

(149) 
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where K = =r
4 

" , L = ln Mr. The last term is the non-abelian contribution from bosonic 
1r8w It 

loops in the M S scheme and the Feynman-'t Hooft gauge. Since 

2
8
w TI~~O) = 4Ks'fvL 

cw z 

we may write 

8a = 2 8e = TI' (O) + 2 sw TI-,z(O) 
a e " cw M} 

(150) 

The fermionic contributions n;z(O) = 0 vanish at zero momentum transfer. By the e.m. 

Ward-Takahashi identity we have 

A
-yee 1 TI-,z(O) _ O 
2 + Zae - 4 M2 - · 

swcw z 
(151) 

With 8e, the inass counter-terms and the wave function renormalization factors we have 

a complete set of counter-terms which allow to renormalize all other divergent quantities. 

The Feynman diagrams for the vector boson self-energies are depicted in Fig. 9. Since the 

tadpoles drop out in renormalized quantities we will not consider them. The fermion self­

energies are needed for the determination of the wave function renormalization factors 

only. The diagrams for the fermion self energies and the electromagnetic vertex are 

shown in Figs. 10 and 11, respectively. Graphs involving ghost fields and graphs which 

vanish in the limit of vanishing fermion masses are not shown. 

Appendix: *-scheme and M S -scheme versus on-shell scheme 

The *- scheme is equivalent to MS together with propagator resummation and a 

particular choice of physical boundary conditions. VB self-energies plus certain universal 

vertex and box contributions are incorporated in running "bare" parameters 
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Here, the reduced self-energy amplitudes have been defined by 

IL,7 - e~ ITqq 
2 

II7 z eb ( 2 ) - - rr3Q- sbiTQQ 
SbCb 

2 

IIzz eb ( 2 4 ) 22 rr33- 2sbiT3Q + sbiTQQ 
sbcb 

2 
eb II ITww - - ± s2 b 

with s~ = eVg~ and c~ = 1- s~. Such reduced self-energy functions have been used 
before in Refs. [54, 55]. Notice that at this point the running parameters do not satisfy 
the appropriate physical boundary conditions. For example, for fixed bare parameters, 

In order to fulfill the physical renormalization conditions the bare parameters must be 
tuned appropriately. The *"scheme uses matching conditions for a, G, and Mz 

e2 - e;(o) = 4?raexp 

G" - G"*(O) = G~xp 
p - p.(O) = p~fj 

M~ e
2 

1 I _ Mexp2 
- s;~; 4.../2G,.p. M!. 

- z 
z 

With the definition 

the running of the parameters is determined by 

e;(q2) 
e2 

1- e26.q(q2) 

g;(q2) 
g2 

-
1- g26.3q(q2) 

G,.(l) 
G, 

-
1- 4.../2G"6.±(q2) 

G w( q2)p.( q2) G"p -
1- 4.../2G"p6.3 (q2

) 
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where 

.6.Q(q2) - Re { IIQQ(O)- IIQQ(q2
)} 

.6.3Q(l) - Re { rr;Q(Mf)- rr;Q(q2
)} 

.6.±(l) - Re {II±(l)- II3Q(l)- II±(O)} 

.6.3(l) - Re {II3(q2
)- II3Q(l)- II33(0)} 

Evaluated at the vector boson mass scale, these running parameters have been used in 
Ref. [55], with the exception that G,., which does not run up to the vector boson mass 
scale, was kept fixed. After having imposed the matching conditions for given a, G,. 
and Mz, all quantities in the standard OS-scheme have equivalent representations in the 
*"scheme. Let fi denote the renormalized self-energies expressed in terms of a, G,. and 
M z. For four-fermion processes with light fermions, suppressing the external fermion 
current matrix elements, we obtain the following correspondence: 

~ 
e2 ez = e_2 - Hn;,(s) - • 

~ 2 n;z<•l 
sw + swcw Hn;,(s) - 8 2 = 82 • 

~ 
e2 1 ,z 1 - s~c~ s-Ml+ITz(s) - s:2 

8 ;·2 -t-./2G +iy'Sr.z(s) "•c• !-l•P• 

~ 
e2 1 e2 1 - ~ s-M'w+ilw(s) - ?' ' d,a:; • s-~ 4 20~-'* +i.jSr .w(s) 

The weak mixing angles 82 and si\r = sin2 0w are determined from a, G,. and Mz 
using 

-2-2 ?rCl! 1 2 2 
s c swcw 

= .../2G,.Mi 1 - .6.r ' 
7rCl! 1 

and the W-mass is given by Mfi, = M'i cos2 0w. The radiative corrections .6.r and 
.6.r will be given in detail in Sections IV and V, respectively. The renormalized VB 
self-energies have been defined here as suitable for the study of four-fermion processes. 
Since there are no external vector bosons involved, the VB wave-function renormalization 
factors drop out from the matrix-elements (remember the discussion after Eq. (118) at 
the beginning of this Section). However, in order to get finite (renormalized) self-energy 
functions a second subtraction (besides mass renormalization) in necessary. The one 
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chosen here is obtained in a natural way by starting from the bare matrix-elements and 
rewriting them in terms of the renormalized parameters by means of the shifts (115-117). 
The parameter counter terms then may be combined with the bare self energies, where 
they show up in form of wave function factors. One obtains 

frw( s) 

frz(s) 

with 

_ 8a _ 
2

sin0w IL1z(O) 

a cos0w M~ 

- II~(O) 

8 sin2 Gw cos Gw IT.,z(O) 
sin2 Gw + 2 

sin Gw M~ 
_ cos2 0w Re {ITz(M~) _ ITw(Mfi,) + 2 sin0w II-,z(O)} 

sin2 Gw M~ Mfi, cos Gw M~ 

for the "renormalized" self-energies. Since the splitting into self-energy and vertex+box 
contributions is not gauge invariant and finite terms proportional to II-,z(O) have been 
subtracted from the self-energies and added to the vertex+box contributions such that the 
two groups of contributions are separately finite. We mention that II-,z(O) vanishes in 
the unitary gauge as well as in the MS scheme for J1 = Mw. In the 't Hooft-Feynman 
gauge the vertex+box contribution is numerically small, though not negligible. 

In the *"scheme the physical widths of the Z is determined from the imaginary part 
of the propagator by (see Eq. (137)) 

rz = r.z(M~) + D.rz 
1 +K.z 

where 1 + K,z is determined by the residue of the Z-propagator 

s- :~ 2 y'2
1 

= (s-M~)(1+K,z) 
s,c. 4 2G ,..p. 

and D.rz stands for additional corrections (vertex, QED and possible QCD corrections). 
For the W width corresponding equations hold. 
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The C<ffective weak mixing angle parametrizing the NC-couplings at LEP energies 
has been given different names by different authors. Up to numerically small contribu­
tions (s')2 [54], sin2e.ff [55], s; [45], sin2 e = s2 [56] and sin2 0xts = sin2 e [41] are 

equivalent, particularly, for what concerns the fermion contributions, the top and Higgs 
mass dependence. 

The special treatment of the self-energies is justified because they include the large 
non-QED corrections (fermion loops) and can be used to get improved Born approxima­
tions, which take into account the numerically most relevant non-photonic corrections. 

Of course, in order to get fully corrected four-fermion amplitudes form-factor and box­
diagram corrections must be added. In general only the full set of corrections is gauge­
invariant and finite. Any kind of splitting into effective couplings plus remainders is 
ambiguous and only a matter of bookkeeping and should not affect physical predictions 
within the given precision of the perturbative approximation. · 

The resummation of the reducible blocks involved in the above treatment of the 

propagator corrections means that some higher order effects have been taken into account 
while others (e.g. two-loop irreducible contributions) have been omitted. The question 
is whether this partial resummation of higher order terms leads to a better approximation 

to the unknown full answer. For the gauge couplings e and g one can show that the 
propagator resummation is equivalent to solving the renormalization group (RG) for the 
running gauge couplings, which is a systematic resummation of the leading logarithmic 
corrections. For the other two parameters G" and p the summation of the reducible 
diagrams only does not properly include terms of leading size! i.e. the two-loop irre­

ducible diagrams give contributions of the same order as the square of the one loop result . 
included in the bubble summation. This will be discussed in detail in the next section. 

The relationship between the standard OS-scheme and the M S scheme is relatively 
simple. For example, for the weak mixing angle the OS version sin 2 0w is related to its 
bare value by (116,117) 

while the M S version is defined by 

• 2 ( (8sin
2

0w ) . 2 , 
sm 0b = 1 + sin2 0w )Ms(,=Mw) sm 0 

where ( 8 ~;n2 ew \...._ only picks the UV singular term from 8 ~;n2 ew. The choice 
sm2 E>w JMS(Jl;;;:;Mw) sm2 E>w 

Jl = Mw for the scale is made here because we are interested in an effective sin2 0 at 
LEP energies. The relation between the two mixing angles thus reads, expanded to linear 
order, 

. 2 , ( 8 sin
2 
0w 8 sin2 0w ) 

Sill 0 = 1 + . 2 e - ( . 2 0 )Ms(,=Mw) 
sm-w sm-w 
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which is finite, depends however on the particular choice of f.l· The finite quantity 

6.p = { IIz(O) _ IIw(O) + 2 sin 0w II.,z(O)} 
M~ Mfi, cos 0w M~ 

exhibiting the leading heavy particle effects is present in s~i'l,':w only 
s1n -w 

li sin2 0w cos2 0w 6. 
-s-in"""'2'"""0--....:w.:... = sin2 0w P + · · · 

but absent in ( 5.;~"1':;)Ms(~;Mw)· Hence the main difference is exhibited in 

sin2 e = (1 + c~s: ~w 6.p) sin2 0w = sin2 0w + 6.p cos2 0w 
sm ·w 

and one may calculate .52 = sin2 e from a, G~ and Mz by 

•2•2 1ft:> 1 s c = 
../2G~M~ 1 - M ' 

where 6.f is obtained from 6.r, discussed in the next section, by replacing the OS 
counter terms by their M S counter parts. Corresponding, considerations apply to other 
quantities. 

· A final remark should be made. The advantage of the effective weak mixing 
parameters, or other running parameters, is that they are flavor independent and take 
into account the universal large fermion loop effects. The disadvantage is that they are 
theoretical constructs and do not simply relate to physical quantities, like for example 
sin2 0w, which is determined by the physical VB mass ratio and is completely model 
independent It is also clear from the many slightly differing definitions that a natural 
definition accepted by everybody does not exist. Hence a precise comparison of different 
definitions always needs a lot of explanation, and the members of the radiative corrections 
community can keep busy by debating for their preferred parametrization. After all 
a properly done physical prediction to a given accuracy should not depend on such 
bookkeeping questions . 
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IV. RENORMALIZATION OF MASS-COUPLING RELATIONS 

The title of this Section could read as well: "Calculation of the muon decay constant 
G~ in terms of a and the vector boson masses". By the relation (30) the parameters 

Mw. Mz, a and G~ are not independent. Here we calculate G~ from a, Mw and Mz 
( on-shell scheme): 

G=1W 1 1 
~ yl2 Mfi, sin2 0w 1 - t::.r 

where t::.r f 0 due to radiative corrections. Since the QED corrections have been already 
included in the definition of G~, we have to calculate the non-QED part of the J.l decay 
transition amplitude for P ~ 0 

-4 G~ J(~J J(•J~ 
V2~ 

Here, J~~) = fl"" ['Y~ (1 - 'Ys)] u~ and J~•J = fie ['Y~ (1 - 'Ys)] vv, denote the muon (J.l) 

and the electron (e) charged current matrix elements, u and v are the external spinors. 

The different contributions are shown in Fig. 12. 

I 
"~ J!(; + :::r + :::t + =L= + :::@:: I 

. e Ve CC,box . 

Figure 12a: Radiative corrections to wdecay 

z 
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?YW+ 
Figure 12b: CC vertex diagrams 
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Figure 12c: CC box diagrams 
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At the tree level we read off 

G,. e2 1ra 

../2 = 8M&sin
2

Elw = M& ( 1 - ~i) 

We may check the validity of this relation by using the experimental values for a, G" and 
sin2 Elw = 0.231 ± 0.006, obtained from deep inelastic v,.N scattering, for a prediction 
of the vector boson masses which are given by 

Ao Mw 
Mw = . , Mz= ; 

smElw cosElw ( ) 

1/2 

Ao = ~~" = 37.2802(3) GeV. (152) 

Comparing the lowest order predictions Mw = 77.57 ± 1.01 and Mz = 88.39 ± 0.81 
with the experimental values M;P = 80.19 ± 0.32 and M~"P = 91.176 ± 0.021, we see 
that the numbers are not in agreement with eachother. This disagreement illustrates the 
importance of radiative corrections . 

Including the one-loop radiative corrections we distinguish among 1) propagator 
(self-energy) corrections, 2) vertex corrections and 3) box contributions. We will neglect 
terms proportional to the light fermion masses, since for m1 ~ Mw, they arenumerically 
insignificant. This will lead to rather simple analytical expressions for the vertex and 
box contributions in the low energy limit. 
Using the bare parameter relations (115-117) we get 

G,. e~ { Ilw(O) } 
rn2 - 8 · 2 e M2 1 + M 2 + occ,vertex + occ,box 

VL- sm Wb Wb W 

1+2-- -----e
2 

{ oe cos
2 

Elw (oM"j oM&) 
8sin2 ElwM& e sin2 Elw M} M& 

oM& ITw(O) } 
- M& + M& + Occ,vertex + Occ,box 

'!ret 

2 . 20 M2 {1 + .6.r} sm -w w 

The vertex and box diagrams are depicted in Figs. 12b and 12c. 

(153) 

The important quantity .6.r has been calculated first by Sirlin [17]. We read off the 
formal one-loop result from the foregoing expression. Collecting the self-energy terms 
in .6.r3 e we may write 

.6.r - .6.r(a, Mw, Mz, mn, mf) 

- !:l.r se + .6.r vertex+ box · 

and denoting s~ = sin2 Elw and c~ = cos2 Elw we have 

a 7- 4sw 2 
.6.rvertex+box = -

4 2 (6 + 
2 2 !new) 

1rsw sw 
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which is the sum of the vertex, box and lepton wave-function contributions plus a 1 Z 
mixing term 2£l£ rr,MzJol, rendering the term ultraviolet finite (in the 't Hooft-Feynman 

sw z 
gauge) 1 • If we insert the expressions for the counter-terms and rewrite the result by 
splitting off the self-energies at k2 = 0 as 

II(k2
) = II(O) + e II'(k2) 

the self-energy contributions read: 

D.r,e = II~(O)- Re II~(M~) (156) 

cos
2

0w {IIz(O) _ IIw(O) + 2 sin0w II-vz(O)} 
sin2 0w M~ Mfi, cos0w M~ 

, ( 2 ) , ( 2) cos Gw , 2) -Re IIw Mw + Re II-v Mz + . e Re II-,z(Mz 
sm -w 

cos
2 

Gw Re {II' (M2 ) _II' (M2 ) + sin 0w II' (M2 )} 
sin20w z z w w cos0w -,z z 

This is a representation of D.r se in terms of the unrenormalized gauge boson self-energy 
functions. The form of this result exhibits the large and potentially large terms in D.r 
which we may write as 

cos2 Gw 
D.r = D.a- . 2 e b.p + D.rrem 

sm ·w 
(157) 

1 Different from the NC processes (at one-loop order) , for the CC processes there is no natural separation 
into QED and "weak" par! in the Standard Model. The QED corrections to I" decay are not ultraviolet 
finite and they do not form a gauge invariant subset . This is in contrast also to the QED corrections for 
this process if modeled by an effective Fermi interaction, which can be transformed into a NC form via 
a Fierz transformation. The only trouble is caused by the photonic box diagram. After subtraction of the 
photonic four-fermion vertex correction, which has been included by convention in the QED correction 
factor of (32), an ultraviolet divergent and gauge dependent contribution Rw, as indicated in Fig. 12c, is 
left over which has to be included in (155). 

We then have 

(6e) cw IT1 z(O) 
~rvertex+box = 2 - + 6cc,vertex + Occ,box + 2- M2 

e vertex 8 W Z 

where 

2 (be) = _2Ai" + 4s[v- 1 ll1 z(O) = K. 4s[vL 
-;- 2sw cw Mz2 

""'" 
6cc,.ort« = (A;;""• +Ate"·)= -K ·2 { (2+ ·n L+ G- .u c[vlncrv + ( ·:- 3)} 

6cc,boz A}:6c = -K · ...!,.- (-3 + 6c[v + 2cfv) lnc[v + Rw 
2sw 

M' ' where K = 4,~, , L = ln y and Rw = K · 4f (2£ + 1). The amplitudes A. are normalized to the 
w 

Born terms. We refer the reader to [50] for a more detailed discussion. 
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where 

- II~(O) - Re II~(M1) 

b.p 
_ IIz(O) _ IIw(O) +

2
sin8w IT-yz(O) 

M~ M~ cos8w M~ · 
(158) 

are the large (due to fermion loop contributions) terms and 6rrem is the remainder. 
Though the latter term is numerically smaller by one order of magnitude it is an interesting 

• - term which includes contributions from gauge boson self-couplings and Higgs-vector 
boson interactions. We are now going to discuss the various terms in (156) in some 
detail. 

1. b.a 

b.a is the photon vacuum polarization contribution which comes in through 

8e 
2- -

e 
II~(O) + · · · 
II~(O)- Re II~(M1) + · · · + Re II~(M1) 

- b,.a + ... 

and is large due to the large change in scale going from zero momentum (Thomson limit) 
to the Z-mass scale 11- = Mz. Here, by zero momentum more precisely we mean the 
light fermion mass thresholds. The leading light fermion (m 1 ~ Mw) contribution is 
given by 

(159) 

Since the top quark is heavy we cannot use the light fermion approximation for it. A 
very heavy top in fact gives no contribution since 

a 4M2 
b.ato ~ ___ ______£_ -t 0 

P 31f 15 m~ 

when m, ~ Mz. 
A serious problem is the low energy contributions of the five light quarks u,d,s,c 

and b which cannot be reliably calculated using perturbative QCD. Fonunately one can 
evaluate this hadronic term b,.a~~drons from hadronic e+ e-- annihilation data by using a 
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dispersion relation. The relevant vacuum polarization amplitude satisfies the convergent 

dispersion relation 

Reii' (s)- II' (0) = !.Re roods' Imii~(s') 
"Y -r 7r lso s'(s'-s-ic) 

and using the optical theorem (unitarity) one has 

s 
Imii~(s) = 20"tot(e+e--> 1'-> hadrons)(s). 

e 

In terms of the cross-section ratio 

R( 
8

) = O"tot( e+ e- -> 1' -> hadrons) 
o-( e+ e- -> /* -> Jl.+ Jl.-) ' 

where o-( e+ e- -> ,. -> Jl.+ Jl.-) = 4~~2 

at tree level, we finally obtain 

(5) 2 aMi J.oo R(s) 
/:;.ahadrons(Mz) = --3-Re ds ( M2 · ) · 

7r 4m~ S S - z - 't£ 
(160) 

Using the experimental data for R(s) up to Ecv.t = 40 GeV (for larger energies 1Z 
mixing would complicate the analysis) and perturbative QCD for the high energy tail we 
get (see Appendix to this section) 

(5) ( ) -
b..ahadrons 8 - 0.0282 ± 0.0009 (161) 

+0.002980 · {ln(s/s0 ) + 0.005696 · (sfs0 -1)} 

with .,ftO = 91.176 GeV [51]. In the range 50 GeV ::; -Js::; 200 GeV the above fit is 

"exact" as compared to the error. Alternatively, this result of the dispersion calculation 

can be reproduced by using perturbative QCD with the effective "quark masses" 

mu = 62 MeV, md = 83 MeV 
m, = 215 MeV, me= 1.5 GeV 
m 0 = 4.5 GeV 

and a QCD correction factor (1 + as,cJJI1f) with a,,eff = 0.133 2• 

We should mention that a light fermion not only contributes to /:;.a but also to /:;.rrem: 

1 a ( c?v) Ncf 2 
/:;.rrem ~ -

4 2 1 - - 2- --KqcD In Cw. 
1rsw sw 6 

------------------------
2Warning: Do not use these values for the quark masses for small space-like momenta (as needed in 

Bhabha scattering). These would give wrong results. 
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This yields t>rrem,leptons ~ 0.0015 and t>.r~~~.hadrons ~ 0.0040. 
Perturbative QCD corrections for light quarks (at some high energy scale) are taken 

care off by the factor I<qcv = 1 + bqcv given by 

bqcv = as(::~) + 1.405 (a.(::~)) 
2 

(162) 

using [52] 

ArJ
5 

= 200:J:igg MeV corresponding to as(Ml) = 0.117 ± 0.01 . (163) 

We first assume the top to be a "normal" not too heavy fermion and will discuss heavy 
top effects in a second step. If there would not exist heavy unknown particles, t>.r would 
be determined by the following typical contributions (m, = 60 GeV, mH = 100 GeV): 

6rleptons ~ 0.0315+0.0015 = 0.0330 

6rhadrons ~ 0.0282+0.0040 = 0.0322 ± 0.0009 

6rtop ~ 0.0025 (depends on m,) 

6rbosons ~ 0.0033 (depends on mH) . 

The term 6rvertex+box ~0.0064 is included in t>.rbosons· For the light fermions the 
individual contributions from t>.a and t>.r rem are exhibited as a sum of two terms. The 
full analytic expression for a light top would be 

t>.rtop =~~(In M~- ~) + a (1- c~) 2 Inc~ (164) 
3·rr3 m~ 3 16?rs~ s~ 

form,« Mz. 
Numerically the fermionic contributions dominate. The bosonic contributions are 

smaller by one order of magnitude but they are nevertheless non-negligible. The self­
energy contributions are large and depend on unknown physics, like the top mass, the 
Higgs mass, on 4th family fermion masses e.t.c. Next we consider what happens if the 
top is very heavy. 

2. t>.p 

It has been observed first by Veltman [53] that fermion doublets with large mass 
splitting give large non-decoupling contributions to t>.p (large weak isospin breaking 
effects). By now we know that the top quark is unexpectedly heavy , m, > 89 GeV, 
while mb ~ 4.8 Ge V is rather light. 

The diagrams yielding leading doublet mass splitting effects are those which exhibit 
Wtb (CC) transitions and are quadratically divergent. The Ztt and Zbb (NC) vertices do 
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not mix t and b and thus do not "feel" the mass splitting. In our case we are concerned 

with the finit part of the W self-energy diagram 3 

~= 
b 

a 1 m2 

----N-t +··· 
4?r 4s?v c Ma, 

It yields a P-independent leading term which is (for dimensional reasons) quadratic in 

m1• We thus obtain 

C::. _ IIz(O) IIw(O) a N m; 
p- M2 - M2 ~ 16 2 CM2 + ... 

z w ?rsw w 
(165) 

and this large contribution gets further enhanced in C::.r 

by an enhancement factor ~ 3.34 for s?v = 0.23 . 
The remainder also contains logarithmic terms which are not negligible numerically. 

A heavy top would give the contribution 

C::.rtop = ../2G,.Ma, { 3 c?v m; 2 (c?v _ .!.) 1 m; _i 1 2 c?v _ 2} 
16 2 2 M2 + 2 3 nM2 + 3 new+ 2 9 

?r sw w 8 w w 8 w 
(166) 

Let us mention finally that whereas C::.a is unchanged by unknown physics, C::.p is sen­

sitive to all kinds of SU(2)L multiplets which directly couple to the gauge bosons and 

exhibit large mass-splitting. 

3. Higgs contribution 

The Higgs contributions deserve our special attention. In the light fermion approx­

imation only the vector-boson self-energy diagrams 

vJ! (m v zw 
~+~ =, 

contribute. At one-loop order there is no quadratic Higgs mass dependence in C::.p and 

in C::.r. The leading heavy Higgs contribution is logarithmic: 

(167) 

3The UV singular terms are proportional to m j also for the Z self -energy and the latter must be taken 

into account to cancel the UV divergence of theW self-energy. 
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This is due to the accidental SU(2)R symmetry of the Higgs sector in the minimal 
Standard Model, which implies p = 1 at tree level (Veltman screening) [57]. More 
precisely, the theorem states that for vanishing fermion masses quadratic terms are absent. 
Furthermore, in flp also the logarithmic term disappears in the limit of vanishing U(1 )y 
coupling g'. The logarithmic term in the low energy observable flp is a consequence of 
the weak isospin breaking by hypercharge. On the other hand, in flr the coefficient of 
the logarithm does not depend on g'. Next we have to include the leading higher order 

effects. 

4. Summation of leading higher order effects 

Our one-loop calculation gave us the 0( a) result 

rn 'Ira 
v L.G ~ = . 2 e M 2 ( 1 + flr) . 

sm -w w 

Typically we get flr ~ 0.07 for Mz=91 GeV, m,=60 GeV and ms=lOO GeV. For the 
next order term we expected a contribution of the order flr 2 ~ 0.005. This would yield a 
shift in the prediction of the W mass (in terms of a, G~ and Mz) of 5Mw ~ 190 MeV. 
Since Mw will be measured with an accuracy of 5Mw ~ 70 MeV at LEP2, the O(a) 
result is insufficient for LEP experiments and we have to think about how to include the 
leading higher order terms. 

a. Summation of leading logarithms. 
The summation of leading logarithms is governed by the renormalization group. 

Since, in our case, the leading logs showed up in the QED vacuum polarization only, the 
leading log summation may be understood as the solution of the renormalization group 
equation for the U ( 1 )em coupling constant (!'- = renormalization scale) 

yielding the effective fine structure constant at scale M z 

a 
a(Mz) = £;. 1- a 

(168) 

where 

in this approximation. Thus Eq. (30) obtained from our one-loop result by the substitution 

1 
1 + flr --t " 

1 - w..r 
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represents the resummation of all powers of (a In ~ ). It is important to notice that the 
ml 

leading log summation is scheme independent. This can be seen by writing, in leading 

log approximation, 

-1 1 1 1 "' 2 /J-2 
t.a = -(0) - a(~~.2) = -3 L..J NcfQ fIn -2 ; fJ, ::; Mw 

a r 7r m 1<P. mf 

exhibiting that the r.h.s is independent of the electroweak couplings and hence of the 

parametrization used. 
Including non-leading log terms we observe that the substitution 

1 1 
1 + t.r = 1 + t.a +t-rw --+ " " - .,.-----,-

1- ua- L>Tw 1- t.r 

in fact only is correct if t.r w is small. This would be the case only if the top would be 

light As a next step we have to investigate what happens if t.p is large. 

b. Summation of large t.p terms. 

A careful analysis of the resummation of large t.p terms [58] shows that Eq. (30) 

gets modified into 

G~ = v'2M~:n2 0w { 1 -1t.a 1 + ~:~~~(t.p)irr + t.rrem} . (169) 

Here, ( t.p )irr represents the leading irreducible contribution to the p parameter defined 

from the ratio of neutral current to charged current amplitudes at low energy, calculated 

in Ref. [59], i.e. 

GNc(O) 2 1 
Gcc(O) = p = 1 + (t.p)irr + (t.p),.r + ... = 1- (t.p)irr (170) 

It is important to note that, in contrast to t.a, which is not significantly modified by the 

inclusion of two loop irreducible contributions, 

(1) 3a (1) 
t.aleptons --+ (1 + 41!" )t.aleptons 

where t.af!~tons is the one-loop lepton contribution to t.a, p as defined in Eq. (172), 

can sizably differ from the one loop result. In fact as shown in Ref. [58], by including 

the two loop irreducible terms calculated in Ref. [59], one finds 

(171) 

This means that low energy physics, is not sensitive to the bare mass splitting (t.m}). 
but rather to the effective quantity 

2 2{ 2 t.m}G~} (t.m1 )eff = t.m1 1- (27r -19) v'2 . 
87r2 2 
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The screening effects, due to the Yukawa coupling with the scalar sector, may become 
large for a large mass splitting. This phenomenon, if confirmed from a closer inspection of 
the higher order terms in the perturbative expansion, may have far reaching consequences 
(possible restoration of decoupling) for our understanding of the Standard Model . 
If we take the result of the full one loop calculation and include correctly the ~a and 
~p effects, resummed to all orders, we arrive at the final expression 

M~ = pM~ (1+ 
2 

4A6 1 
1- M2 ( 1 ~ +~rrem) ). 

p z - a 
(172) 

Nonleading one-loop self-energy effects can be included by using Eq. (172) together 
with the replacements [58] [60]: 

~a -t ~e = II~(O)- II~(M~) + cw Il~z(M~) 
sw 

~P ~, _ Ilz(M~) _ IIw(M~) sw II-rz(M~) + II-rz(O) 
-t P- M2 M2 + M2 , z w cw z 

(173) 

where Ilz includes 7Z mixing terms as given in Eq. (139). We have checked that 
the above substitution reproduces correctly all self-energy terms up to 0( a 2

) • Such 
a resummation could make sense for the fermion contributions, which form a gauge 
invariant subset. However, since terms like the irreducible contribution proportional 
to :, v'2G ,m~ In( mUM~) are unknown, non leading terms and the vertex and box 
corrections, ( contributing to Eq. (30) ) should be added perturbatively i.e. included in 

5. Applications 

Once ~r is given the W mass can be predicted by using the values of a, G" and 
Mz from LEPl. According to Eqs. (30) and (31) we obtain 

M2 - M~ (1+ w - 2 

and, equivalently, 

. 2 e 1 ( sm-w=-1-
2 

4A6 1 
1 - Mj1- ~r) 

4A2 1 
1 -M; 1- ~r ). 

(174) 

(175) 

with A0 given in Eq. (152). Explicit expressions for the various quantities which have 
been mentioned in this section can be found in Ref. [48,41], for example. Numerical 
results are given in Tab. 2. In Fig. 13 the m,-dependence of ~r is shown for various 
Higgs masses. The W mass measurement is equivalent to a determination of 

(176) 
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Table 2. Prediction of Mw and related parameters (Mz = 91.176 GeV, a. = 0.117). 
Masses in GeV. sin2 e., sin2 eb and sin2 8 will be considered below. 

ffit mH Mw ll.r sin2 ew sin2 e. sin2 eb sin2 e 
90 100 79.928 0.06032 0.2315 0.2334 0.2335 0.2326 

110 100 80.037 0.05430 0.2294 0.2329 0.2333 0.2322 

130 50 81.182 0.04607 0.2266 0.2321 0.2328 0.2313 
130 100 80.151 0.04786 0.2272 0.2324 0.2330 0.2316 
130 1000 80.002 0.05623 0.2301 0.2334 0.2341 0.2327 

150 100 80.275 0.04068 0.2248 0.2318 0.2328 0.2310 
200 100 80.642 0.01840 0.2177 0.2299 0.2321 0.2292 
230 100 80.905 0.00133 0.2126 0.2286 0.2315 0.2278 

0.10 XUA2 a,.<M2 l-Q.117 ± 0.01 

0.08 
ACDF Mz - 91.176 ± 0.021 GeV 

.... Opp .... 
0.06 

0.04 

c.. 

<l 0.02 ' '·, ... , .,_ 
' ' ' ' 0.00 ' ' ', ' ', ·,. 

' ' ' ., 
-0.02 m " - 1000 GeV 

"\ ., 
' ' m.· 100 GeV '.. ·,. 

' ' -0.04 ' ·, 
50 GeV ' m.· ' ' ' ' -0.06 

100 150 200 250 300 
m 1 ( GeV l 

Figure 13: flr as a function of the top mass for various mH 

Using the experimental values (33-34) for Mz and Mw, ll.r is determined fairly well 
and since ll.r is strongly dependent on the top mass we can use the results to find a 
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direct constraint on the top mass. Within one standard deviation we read off from Fig. 
13 (the second uncertainty in m, comes from.the change of mH) 

(177) 

assuming mH ::; 1 TeV. We notice that the direct lower limit m, > 89 GeV is stronger 
than the indirect one obtained here. 

In future one expects to be able to achieve a precision of 8Mw = 70 MeV at 
LEP2. An accuracy 8Mw = 100 MeV possibly may be achieved by combining the 
hadron collider results from CDF and DO by the end of 1995 with an integrated lumi­
nosity of about 70pb-1 [61]. This corresponds to an error in b.r of 8f:.r = 0.0056, and 
using hi!.r. = _!

2 
sAAr this would determine m, to an accuracy better than 8m, = 10 GeV. m, r 

Of course we are waiting for the direct discovery of the top which is within reach in the 
next years at the Tevatron. 

Appendix: Hadronic contributions to coupling shifts (update of Ref. [51]). 

The Crystal Ball (CB) Collaboration has carefully reanalyzed their old e+ e-- an­
nihilation data and now obtain R(s) values substantially lower than the Mark I data [62] 
and in agreement with other experiments (LENA). The results now are in much better 
agreement with perturbative QCD. The change of the data is mainly due to a up to date 
treatment of the QED radiative corrections and r subtraction. If we include the new 
results from CB and discard the Mark I data, which systematically lie 28% higher, in 
average, we obtain updated values for the hadronic contributions to the photon vacuum 
polarization. The results for b.a/ e2 = b.1r'Y(Mz) are collected in Table 3. 

Table 3a: Contributions to f:.1r"~(Mz) x 103 

(final state) (energy range) (contribution) (stat) (syst) 

p (0.28, 1.20) 37.36 ( 0.15) ( 1.12) 
w (0.42, 2.00) 3.74 ( 0.38) ( 0.11) 
q, (0.42, 2.00) 5.75 ( 0.26) ( 0.17) 

JN 11.08 ( 1.46) ( 1.66) 
y 1.27 ( 0.04) ( 0.08) 

hadrons (0.84, 3.10) 38.59 ( 0.99) ( 7 .72) 
hadrons (3.10, 3.60) 6.52 ( 0.34) ( 1.25) 
hadrons (3.60, 5.20) 19.04 ( 0.19) ( 1.27) 
hadrons (5.20, 9.46) 35.78 ( 0.52) ( 2.16) 
hadrons (9.46,40.00) 102.07 ( 1.36) ( 3.18) 

perturbati ve (40.0,oo) 46.53 ( 0.32) ( 0.64) 
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Table 3b: "Distribution" of errors 
f:.7r-y X 103 relat. error 

Resonances: 59.20 (2.53) 4.3% 
(pw¢>; 46.85 (1.24) 2.6%) 

Background: 

E<MJN 38.59 (7.78) 20.2% 

MJN< 6.52 (1.30) 19.9% 
E 19.04 (1.28) 6.7% 

>MT 35.78 (2.22) 6.2% 
40GeV > E > MT 102.07 (3.46) 3.4% 
E < 40 GeV data 261.12 (9.34) 3.6% 

E > 40GeV QCD 46.53 (0. 72) 1.5% 
total 307.65 (9.36) 3.0% 
(*) (6.62) (2.1 %) 

The last line(*) shows the error one would get if the experimental error on R(s) would 

be reduced to 5% in the regions with larger errors. 
t::.a~5Ld may be determined using a partial separation of flavors, as explained in 

Ref. [51]. The following results are obtained: 

Partial flavor separation of !::.7r-y(Mz) 
uds c b 

E < M(Jj,p) 85.44 
M(Jj,p) < E < M(Y) 43.94 28.48 

M(Y) < E 55.68 37.12 10.55 

Using the approximate relation 

which derives from assuming SU(3)Jlavor for (u,d,s) and the OZI-rule for the heavy 
flavors c,b and t, the hadronic contributions to the shift of the SU(2) coupling a 2 is the 

given by 

For sin2 E>w = 0.23 we obtain 

!::.a~~d -
A (5) 
uaz had 

0.0282 ± 0.0009(6) 

0.0587 ± 0.0018(12) 
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where the error in brackets is the (*)value mentioned above. Since the errors of t>.ai~d 
and .6.a~5l.d are correlated the error in the renormalization of the weak mixing angle 
from neutrino scattering 

• 2 e- ( 1 - .6.a2 ) . 2 e 
sm - = 1 - f>.a +... sm - ""N(e) 

remains quite small. We get 

or 

8 (
1 - .6.a2

) ~ 0.0009 
1- f>.a 

8 sin2 
0vpN(e) ~ 0.00021 

which is negligibly small relative to the experimental error 0.006 shown in Tab. 1. 

95 



V. LEP/SLC PHYSICS 

Radiative corrections play a crucial role in the interpretation of electroweak pre­
cision measurements. In this last section, we will concentrate on discussing radiative 
corrections for LEPl/SLC physics near the Z peak. 

The basic processes investigated at LEPl/SLC are fermion pair production e+ e- --> 
f ](! -/= e) and Bhabha scattering e+ e- --> e+ c. At LEP2 W-pair production e+ e- --> 
w+w- will be the main process. 

The large cross-section at the Z-peak, u;f.k ~ 1.45 (1.95) nb for f = e, J.L, r and 
30.08 ( 40.65) nb for hadrons, (in brackets, the value without QED corrections) gives 
easily a production of 1 million Z's per year at LEPl. The cross-section is enhanced 
relative to the pure QED process by a factor (Mzfrz) 2 ~ 103 or about 150 for leptons 
and 750 for hadrons. 

For precision physics the most important aims are 

• the detailed investigation of e+ e- --> f J around the Z resonance which should 
allow to observe small calculable deviations of the partial and total cross-sections 
u f = u( e+ e- --> f f) and O"tot = L,1 u f and the partial and total widths r 1 -

r(Z--> ff) and rz = L,1 r f from their lowest order predictions 

-J2G~M~ 2 2 ff 12nr.r, 
rzff= 12n (v,+a,)Ncfi upeak ~ M1 r~ 

(179) 

where v1 = T31 - 2Q1 sin2 Gw and a1 = T31 are, respectively, the vector and 
axial-vector neutral current (NC) couplings for fermions with flavor f. Ncf is the 
color factor which is 1 for leptons and 3 for quarks. 

• Additional information will be obtajned from the on-resonance asymmetries, the 
forward-backward asymmetries A{/8 and the r polarization-asymmetry A;oz· If 
longitudinally polarized beams would be realized, the measurement of the left-right 
asymmetry ALn and the polarized forward-backward asymmetries Af/;,,pol would 
allow to substantially improve the results. All the asymmetries are functions of 
the specific ratios 

(180) 

of the NC couplings, and thus provide accurate determinations of the weak mixing 
angle sin2 Gw. At the tree level the on-resonance asymmetries are given by 

Af/;, = ~A.Ah ALn = A;oz =A., Af/;,,pol =~A! . (181) 

The "weak" (non-QED) radiative corrections reveal the asymmetries to be very inter­
esting quantities, mainly because the different asymmetries exhibit different sensitivities 
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to various interesting effects. The measurement of many independent quantities, which 
depend in their own way on unknown physics, is important in order to be able to disen­
tangle the origin of possible deviations from lowest order predictions. 

Since higher order predictions depend on the unknown mass of the Higgs boson, the 
remnant of the spontaneous symmetry breaking, and the mass of the unknown top quark, 
the missing member of the 3rd fermion family and other possible unknown physics, as 
a first step, data mainly constrain the unknown parameters of the SM. At the same time 
bounds on possible extensions of the SM gradually improve. 

While the higher order predictions of physical quantities depend substantially on 
the unknown top mass the dependence on the unknown Higgs mass is much weaker. 
The first important goal thus is to restrict the range for the top mass. 

1. Effective Couplings at the Z Resonance 

Radiative corrections for the NC process e+ e- ---+ f f have been calculated by 
may groups [63]. The diagrams for the "weak" (=non-photonic) one-loop corrections are 
depicted in the Figure 14. Diagrams involving ghost. particles are not shown. 

Figure 14a: Radiative corrections to e+c ---+ f f 

Figure 14b: NC vertex diagrams 

+ 

Figure 14c: NC box diagrams 

Here we discuss the non-photonic corrections for the observables Eqs. (179,181), mea­
sured in resonant production and decay of Z's in e+ e- ---+ Z ---+ f f. Because of the 
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factorization of the "weak" corrections at the resonance, we restrict ourselves to consider 
the Z vertex corrections 

;~= r+ ~+ ~+countertecrM 
They can be cast into an overall renormalization of the Z f J vertex 

by p}f2 and a renormalization of sin2 Gw in the NC vector-coupling [65]: 

(182) 

where Pi = 1 + !:>p,. + !:>pj,vertex and Kj = 1 + f:>Kse + !:>Kj,vertex· In terms of the 
corrections 8v1 and 8a1 of the vector and axial-vector couplings we have 

Using the counter terms defined in Eqs. (115-117) and (123,147) we find 

AZJJ Vj (cz 8M~ 8G") - 2Q . 2 e (8 sin
2 

Gw cw It,z(M~)) 
- v + 2 u z + M2 + G f Sln w . 2 e + M2 z ,. sm - w sw z 

Zff a1 ( 8M~ 8G,.) 
= A. +2 8Zz+ M2 +G 

z p. 

where the lepton wave function terms (124) have been added to the bare vertex corrections 

Av --> Av + vzv - az., Aa --> Aa + azv - vz.. Inserting the explicit expressions for 

the counter terms we may write !:>p and !:>K in terms of the bare self-energies plus 

vertex corrections. The potentially large self-energy contributions (se) are universal. The 

analogues of Eq. (157) for !:>p and !:>K read 

!:>p,. - f:>p = f:>p + f:>pse,rem 

c2 
- f:,K; = S~ f:>p + f:>Kse,rem 

w 

with !:>p defined in Eq. (158). The self-energy terms are given by 

!J.pse,rem 
6. = ITz(M~) _ ITz(O) _ (dllz) (M2) 

z M~ M~ dq2 z 
2 

cw A. -up 
82 w 
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where b.p is given in Eq. (173). The vertex contributions are (iff# b) relatively small 

(but not negligible) and flavor dependent 1 • We may define effective sin 2 0' s by 

(186) 

where 

82 = sin2 e = ~ (1- V1- 4A6/M1) = 0.2122(1) (187) 

is the lowest order sin2 0 in terms of a, G,. and Mz. We have 

(188) 

and, generalizing Eq. (176), 

In 2 2 0 . 2 0 7ret 
v .t.G,.Mz cos -1 sm -1 = (l _ flrt) 

c2- 82 
- b.r + _

2 
fl"'t . (189) 

c 

Using Eqs. (157) and (183) we obtain 

(190) 

1The explicit expressions for the light fermion vertex corrections are [42, 64] 

v'2a.M~ { z z 
APJ,vertex = 1671'2 2(3vf + af)Az(s,Mz) 

-4c?v{l-2(1-IQ,I)s?.,)A,(s,Mw)+24ct,~(s,Mw)}- Arvortox+box 

v'2a.M~ { 2 2 ( ) 
AI<J,vortex 1671'2 -(1- 4IQJI•w )(1- 2IQJI•w )Az s, Mz 

+2c?.,(1- 2(1 -IQ,I)s?., )Az(s, Mw)- 12ct,A3(s, Mw)} (185) 

where b.rv<rtex+box is given by Eq. (155) and comes in through the c. ___, G" replacement used here. The 

functions A;(s,M) are given (y = M 2 fs with M = Mz or Mw, s > 0) 

Az(s,M) = 
7 - 2- 2y- (2y + 3) ln(y) 

+2(1+ y)2 [ln(y)ln( 
1

; Y)- Sp( -i)J 
-i1r [3 + 2y- 2(y+ 1)2 ln C; y)] 

= ~- 2Y+~(2y+l)J4y-larctan 1 
6 3 3 )4y- 1 

8 ( 1 )
2 

- 3y(y + 2) arctan V
4

Y _ 1 

where the formula for A3 is valid for s < 4M2 only. The Spence function is defined by Sp(x) = 
- J; '\l ln(1 - xt). For f~b the expressions are more complicated and may be found in Ref. [66]. 
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and we may calculate 

-2 0 ·2e 1( sm - 1 = K,f sm - w =- 1-
2 

(191) 

which compares to Eq. (175). Figs. 15 and 16 exhibit the different behavior as a fimction 

ofmt. 
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Figure 15: Flavor dependence of effective sin2 0's. 

Comparing (190) with (157), we notice that the LEP1 versions f>.r 1 and sin2 0 1 of f>.r 

and sin2 0w (obtained from theW-mass measurement) are by a factor c?v / s?v ~ 3.3 less 
sensitive to heavy particle effects (see Fig. 15 below). But in both cases it is the same 

quantity , namely f>.p, which is measured. Also, one finds that the sensitivity to a heavy 

Higgs is lower by a factor (1 + 9s?v )/(llc?v) ~ 2.8. This does not mean that LEPl 
experiments are less suitable to get important information on heavy physics, however. 
Thanks to the higher statistics of LEP1 experiments, LEP1 observables are measured with 
higher precision. Furthermore, the relative sensitivity to the Higgs is higher at LEP1, a 

welcome fact, since the Higgs remains "the big unknown" in the Standard Model. 
From the measured effective sin2 0;'s we may evaluate 

exp _ 7r0: 1 
f>.ri - 1 - !<'> 2 . 2 eexp 2 e•xp. 

v2G,Mzsm -. cos -. 
(192) 

The values for sin2 e•/" can be obtained, using the tree level formulae, from the on­

resonance asymmetries which have been corrected for QED effects, experimental cuts 
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300 

and detector efficiencies. For example, from the experimental left-right asymmetry we 
get 

ALn- 1 + · /1 - Al.n 
sin2 eexp = sin2 0LR = ---___,-'Y'-----"-'--

e 4ALR ' 
(193) 

which confronts with the theoretical prediction (191). The last equation may also be used 
to determine sin2 e:xp from the forward-backward asymmetry A);.i'- if we identify 

A J4A"+"-LR = 3 FB · 

The weak mixing parameter most precisely measured at LEP is 

sin2 e.(M~) = 0.2302 ± 0.0025 ¢? m, = 196~~~~i~ GeV (194) 

We see that the m,-bound is weaker than the one obtained from the hadron collider results. 
The smaller error cannot yet compensate for the weaker m,-dependence of sin2 e. in 
comparison to sin2 0w. While this measurement does not improve the upper limit, it 
does improve the lower limit to m, > 104 GeV. LEP has dramatically improved the 
precision of the leptonic Z couplings 

Particle Data 90 [ 14] LEP 90 [18] 
g]r = -0.045 ± 0.022 -0.037 ± 0.005 
g~ = -0.513 ± 0.025 -0.501 ± 0.003 
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Since gA = -p./2 and gf.fgA = 1-4 (1 + ~~.) 821 = 1- 4sin2 e. we obtain 

~p. = 0.002 ± 0.006 ' ~~. = 0.126 ± 0.048 ' sin2 e.= 0.2315 ± 0.0027 

Due to virtual b-t transitions in the Z bb vertex 

b~ w + t 
b 

one finds large vertex corrections from a heavy top quark, given by [65, 66] 

.../2G~Ma, { m; 1( 1 ) m; } 
~i<b,vertex - 1611"2 2M~ + 3 16 + CW Jn M~ + ... 
~Pb,vertex - -2.6.Kb,vertex· 

(195) 

These corrections lead to a much weaker top mass dependence of quantities (partial width, 
asymmetries) associated with bb final states. Thus, in comparison with other channels 
the production of bb is particularly interesting since 

sin2 
eb- sin2 ee - S2

(LlKb,vertex- .6.Ke,vertex) 

g~j g'A_ - 1 + ( ~Pb,vertex - ~Pe,vertex) 

measure the large top contribution of the Zbb-vertex. They are completely independent 
of Higgs and other heavy particle effects and hence they are ideal heavy top meters. 
As an example, form, = 200 GeV we obtain sin2 eb- sin2 e.= 0.0020 and g~fgA= 
0.9821. For sin2 eb an experimental accuracy of 0.0009 is supposed to be achievable. 

We may define a flavor independent effective sin2 e by 

(196) 

and include the small vertex corrections in a second step 

sin2 e, = (1 + ~"J,vertex) sin2 e (197) 

up to negligible higher order terms. 
The flavor independent auxiliary quantity sin2 0 is used in Ref. [56, 64] and is 

very similar to sz introduced in Ref. [45]. The "barred"(or "starred")-quantities are 
obtained by ignoring (small) corrections different from the vector boson self-energies. 

The leading heavy top and heavy Higgs dependence is given by 

.../2G~Ma, { m; 2 m; } (198) 
- 1611"2 -3M~+ 3cw In M~ +··· 

.../2G,M~ { 1 + sw m; 16cw(c?v- s?v)- 1 1 m; } 
- 16 2 - 2 M2 + 3 4 n Mz + ... 

1f cw w cw w 

102 

.. 
' .. 

' . 



.. -

... 

.. 
I 

.. 

and 

(199) 

respectively. Except from extra top contributions in the case f = b, all heavy particle 
effects are universal i.e. D.r}";b = D.r'op and D.rf'••• = D,.:pHigg•. 

What is the proper resummation of the large higher terms in case D.p is large? 
Using Eqs. (183), (170) and (172) we have 

1 + . D.p + · · · sm - w ( 
cos

2 0w ) . 2 e 
sm2 0w 

.---------
4A2 1 

1- ----%( + .. ·)) + ... 
pMz 1- D.a 

M 2 1 
- 1 - ___!:!C. + ... = -(1 -

pM~ 2 

where the ellipses stand for the small remainder terms. As a result we obtain 

1 1 
1 

D. = 
1 

D. (1 - ( D.p )irr) + D.r j,rem (200) 
- r 1 - a 

for the proper resummation of the large terms in Eqs. (189) and (191). This leads to the 
important relation 

J2G,pM~ cos2 e, sin2 e, = 1ra(1 + D.rf,vertex) (201) 

where 
- 1 1 
p= ~ 1 - D.p . 1 - D.p 

_ a _..:::a-:--a- ""-J-::-
-1-D.e -1-D..a 

(202) 

with D.p and D.e given in Eqs. (183) and (173), respectively. Ignoring vertex corrections 
we obtain the universal relation 

(203) 

For completeness we mention that sin2 e. measured at the Z peak is the high 
energy analogue of sin2 0"•• measured in low momentum transfer v,e- scattering. In 
fact, the two versions of sin2 0 are related in a way which is practically independent of 
unknown effects (they differ by 1Z mixing and v, charge radius contributions only, 
which, by accident, largely cancel each other numerically ). Formally we have 

(204) 

where 

_ cos 0w {rr' (M2 ) _ dll.,z (a)} 
sin 0w .,z z dq2 

(205) 

- D.a- D.a2 

f::l.vJ.'e,vertex+bo:c - -- - n -- + 1 + --'-'--=---'"---a {2 (l Ma, ) 24cfv -14c& + 9} 
41l's& 3 m~ 4c& 
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and .6.~>-e vertex is the same as in Eq. (182) (see (185)). The shift .6.a2 in the SU(2)L 

coupling' a 2 = f.: is analogous to .6.a Eq. (158) 

(206) 

where the sum extends over the light leptons and [51] (see Appendix Sec. IV) 

(5) ( ) -
.6.a2,hadrons 8 - 0.0587 ± 0.0018 (207) 

+0.006184 · {In(s/s0 ) + 0.005513 · (sjs 0 - 1)} 

is the hadronic contribution of the 5 known light quarks u,d,s,c,b (y'SO = 91.176 GeV). 
The proper summation of the higher order effects in this case reads 

• 2 e { 1 - ,6_a2 A A } • 2 e 
Slll .. e = l _ .6.a + Ll.v~£e,vertex+bo:.c + Ul'-e,vertex Sin - vpe (208) 

The ratio sin2 Elv •• / sin2 e. is shown in Fig. 6 as a function of m 1• The value of this 

ratio is close to 1.002. This relation provides a short of "model independent" constraint 

for the Standard Model . The CHARM II value for 0.240 ± 0.012 [67] is in agreement 

with the SM. The precise definition of the low energy p-parameter is (to linear order) 

GNc(O) 
Pv"e = Gcc(O) = 1 + .6.p + .6.pvertex+box (209) 

with .6.p given in Eq. (158) and 

v"iG ,M~ { • 2 c~ ( 2 2 } .6.Pvertex+box = 2 24cw - 44cw + 15- 2-2- 4cw + 3) In cw 
1~ sw 

Similar to the asymmetries, the corrected partial widths r z 1! = 0~;M~ ( v] + 
a2

1)Nc1Kqcv (1 + bqEv) and the peak cross-sections at!.k ~ ~r~f' are given by the 
z z 

Born formulae using the effective parameters Eq. (182). The uncertainty in a. implies 

an uncertainty of 12 MeV in rz,tot· The QED-correction including real photon emission 

is given by bqED = ~~Q}. In Tab. 4 some values are given for the widths and peak 
cross-sections. Full QCD corrections are taken into account [68]. In contrast to other 

authors we use a running M S top mass. QCD corrections for the heavy top are small in 

this case, i.e. the results are close to the results which do not include QCD corrections 

for the heavy top. 
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Table 4. Z widths and peak cross-sections for Mz = 91.176 GeV and a, = 0.117. 
Masses are given in GeV, widths in MeV and cross sections in nb. 

m, mH rz rh re rinv rc rb Rhad 
apeak peak 

" 
(!had 

90 100 2482 1733 83.4 499 296 378 20.787 1.9927 41.423 

110 100 2485 1735 83.5 499 296 378 20.782 1.9937 41.432 

130 50 2490 1739 83.7 500 297 378 20.780 1.9944 41.443 
130 100 2489 1738 83.7 500 297 377 20.775 1.9949 41.444 
130 1000 2481 1732 83.5 499 296 376 20.755 1.9971 41.449 

150 100 2494 1741 83.9 501 298 377 20.767 1.9963 41.456 
200 100 2508 1751 84.4 504 301 375 20.745 2.0002 41.494 
230 100 2519 1759 84.9 506 303 375 20.731 2.0028 41.521 

2. Results from LEP at the Z Resonance 

The results from LEP based on 600,000 Z decays (presented at the Aspen Confer­
ence January 1991) are collected in Tab. 5. 

The central values are given for m, = 136 GeV and mH = 100 GeV. The un­
certainties for the SM predictions include variations of the parameters within the one 
standard deviation bounds 89 GeV < m, < 204 GeV, from the UA2 and CDF data, 
and 50 GeV < mH < 1 TeV. More precisely, the allowed range for m, depends on 
mH. Since, in the range of interest, all quantities are monotonic functions of mH and 
m, we may inspect the extremal cases simply: For mH =50 GeV the lCJ range form, 
is (74,180) GeV or (89,180) GeV if we take into account the direct bound (26). For 
mH = 1 TeV we get (104,204) GeV. The bounds given in Tab. 5 are then the maximum 
or minimum values from the two extremal cases. Taking an upper bound 1 Te V for the 
Higgs mass is of course a theoretical prejudice. 

The mass and the total width of the Z are determined from the line-shape. The 
separate analysis of the visible channels e+ e- --+ hadrons and e+ e- --+ e+ e- allows to 
determine rhad andre (£ = e, f1, r), respectively. Using that the total Z-width is given 
by 

(210) 

in terms of the hadronic, leptonic and neutrinic contributions, rinvisible is determined. Nv 
is the effective number of SM neutrinos. The most important result established by the 
LEP experiments is that Nv = 2.95 ± 0.05 and hence no additional light Cmv "'-45Ge V) 
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neunino (sneunino, Majoron etc.) exists [18]. This rules out the existence of further 
family replicas of the known type with (within experimental limits) massless neuninos. 

Table 5. LEP results on the Z peak 

ALEPH DELPHI L3 OPAL LEP SM sin2 e 

Zdecays 195,000 130,000 125,000 156,000 600,000 

Mz 91.182 91.175 91.180 91.160 91.176 0.2315 
(GeV) ±0.009 ±0.010 ±0.010 ±0.009 ±0.005 +.0018 

-.0019 

±0.020 ±0.020 ±0.020 ±0.020 ±0.020 

rz 2488 2454 2500 2497 2485 2490 0.2322 
(MeV) ±17 ±21 ±17 ±17 ±10 ±22 +.0017 

-.0024 
peak 

fJhad 41.76 41.98 40.92 41.23 41.45 41.45 0.2313 
(nb) ±0.39 ±0.63 ±0.47 ±0.47 ±0.21 ±0.12 
rhad 1756 1718 1739 1747 1744 1739 0.2314 

(MeV) ±15 ±22 ±19 ±19 ±10 ±18 ±.0022 

rt 83.6 83.4 83.3 83.4 83.4 83.7 0.2326 
(MeV) ±0.7 ±1.0 ±0.8 ±0.7 ±0.4 ±0.5 ±.0021 

Rhad 21.07 21.61 20.88 20.94 20.92 20.77 
±0.19 ±0.33 ±0.28 ±0.24 ±0.13 ±0.12 

rinv 487 486 511 499 496 500 
(MeV) ±14 ±21 ±18 ±17 ±9 ±3 

Nv 2.90 2.93 3.08 3.00 2.95 3 
±.08 ±.13 ±.10 ±.10 ±.05 

(v.Ja.)' 0.0081 0.0028 0.0081 0.0024 0.0056 0.0051 0.2315 
±.0028 ±.0056 ±.0051 ±.0028 ±.0016 ±.0013 ±.0027 

Ah 0.141 0.130 0.080 0.117 0.0962 0.2241 
±.044 ±.043 ±? ±.027 +.012 ±.0077 .006 

A'''" FB 0.0239 0.0084 0.0239 0.0072 0.0166 0.0151 0.2313 
±.0082 ±.0168 ±.0150 ±.0084 ±.0047 ±.004 ±.0027 

Of particular interest is the observable Rhad = r hadfr t which is almost independent of 
m., due to an accidental cancellation of the m,-dependence between the Zbb~vertex and 
the self-energies. A deviation from the SM would be a direct signal for non-standard 
physics. The experimental value 20.92 ± 0.13 is slightly higher than the SM prediction 
20.77 ± 0.12. Also the hadronic peak cross-section uf.:",/ is weakly dependent on m, 
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only. The experimental value is in perfect agreement with the prediction. Before more 
stringent tests are possible one has to pin down further the allowed mass ranges for the 
top and the Higgs. We do not expect that the errors on Mz and a, can be substantially 
improved further . 

Some major results obtained in the first year of LEP (~ 600 000 Z's) are shown 
together with theoretical predictions in Figures 17 and 18. All Figures show the data 
together with the theoretical prediction as a function of the top mass for mH= 50,100 
and 1000 Ge V. An uncertainty 8a, = ±0.01 in the strong interaction coupling constant 
is shown as a inner error band whereas the outer error band shows the uncertainty in the 
prediction due to the experimental error 8Mz = ±0.021 in the Z-mass. The agreement 
between the experimental numbers and the theoretical predictions is impressive. 
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