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Abstract. The configuration-space Faddeev equations are derived for p-d scattering tak-
ing into account the difference in interaction between the participant particles. Appropri-
ate modifications have been made in the well-known configuration-space equations for
n-d scattering. To show the effect of these modifications, the s-wave calculations are per-
formed for bound state and scattering problems. We model the charge symmetry breaking
effect for *H and 3He with a modified Malfliet-Tjon MT I-III potential. Results obtained
for elastic n-d and p-d scattering at E;,,=14.1 MeV are compared with our prediction
(Ref. [1]) and those of the Los-Alamos/Ilowa group (Ref. [2]) .

1 Introduction

The isotopic formalism was developed for the study of neutron-deuteron scattering in the framework
of the configuration space Faddeev equations (Ref. [3]). Charge-independence breaking in the three-
nucleon system was investigated in elastic neutron-deuteron and breakup prosesses (Ref. [4]). Here
we study proton-deuteron scattering. Presence of the electromagnetic interaction requires one to con-
sider the neutron and proton to be different particles and precludes literal use of the isotopic formalim
of (Ref. [3]). So the FNNM equations used in (Ref. [5]) have to be changed.

Taking the neutron as particle 1 and protons as particles 2 and 3 we have the requirement
Y(1,2,3) = —¥(1,3,2). To satisfy this condition, we present ¥ in terms of Faddeev components
as

Y(1,2,3) = ©1(1,2,3) + ©(2,3,1) — D,(3,2, 1), 1)

where it is understood that in @(i, k, [) particles are grouped as i + (k/) and @, is antisymmetric in the
last pair of arguments: ®(1,2,3) = —®(1, 3,2). As function ®,(2, 3, 1) has no definite properties un-
der interchange 3 < 1 we encounter permutations which are not cyclic P15(231) = (321), P3(123) =
(321). In terms of these operators and operators P* we obtain for the independent components ®; and
@, a system

(E = A-01(2,3))01(1,2,3) = 03(2,3)(P~@2(1,2,3) - P1301(1,2,3)),

(E-A=-0G3.D)022.3,1) = 023, D(PT®1(2,3, 1) = Pra®2(2,3, 1)). )
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Here v;(2, 3) is a sum of the Coulomb and nuclear potentials and v,(3, 1) is the pure nuclear potential:
v1(2,3) = 0:(2,3) + vpp(2,3), 12(3,1) = vpu(3, 1). (3)

The final pair of equations is essentially the same as for the nd case with changes described above.

[E+ <62 +35) = G [0 ) = ) [oen) + o] @150 Ger )+
B

1 : S S
3 f du Y’ (g5 @1 /31,055 (e, ) = gt [0, @0 (s, ), )
-1
Y
where (x2,y2) = P~ (x1,y1) and (x3,y3) = P13(x1,41).

|+ —<62 +35) = 0 G2y [ 0550 (s y2) = ) [0 [0 Gr i)+
B

fduz 02/ 32, WM (e, 1) = g™ (o /0, DM (x33), (5)

where (x1,y1) = P* (x2,y2) and (x3,y3) = Pr2(x2,42). In these formulas the multi index @ =
{l,0,j,s,4}, gf;) and gfﬁ? are representatives of the operators 2P* and 2P, in the MGL basis (Ref.

[6]).

2 s-wave approach. Elastic scattering

In the s-wave approach there exists a single equation in the spin-quartet case for quantum state @ =
{0,1,1,3/2,0} and our new results for n-d and p-d elastic amplitudes at E;,,=14.1 MeV calculated
with the Malfliet-Tjon MT-I-III potential do not practically differ from our predictions (Ref. [1])
and those of the Los-Alamos/Iowa group (Ref. [2]) and we do not present them here. However in
the spin-doublet case there exist three equations for quantum states @; = {0,0,0,1/2,0} and a, =
{0,1,1,1/2,0}, one for ®;,, and two for ®,,,, (i=1,2). For the ppn system, a set of equations is
writen as:

. 1!
|E+ —(62 +03) = 0 | @10, (1. y1) = [0°C00) + 0pp (00 e [ @1 (et 1) + 5 f duhfgg (1 /1, 1)
-1

ﬁq’zm (%3, y3)>“ (6)

x[( - %q)z,al (x2,42) — %q)z,al (x37!/3)) + (ﬁ 2

> Dy 0, (X2, 42) +

l l
|E+ _(32 +03,) = 0 | @20, (x12.42) = [0 (2o [ P2 (32.42) + 5 f duhfgo (2 /%2, 1)
-1
1 1 V3
(= 5®@ra (1Y) = 5 Po, (53, 43) = == Do (23.43))| (7)
|E+ —(a; + 0,) = V9| @2.0, (2, 12) = [0pn(62) L | P20, (32, 12)

3 1
‘fcbz,m (3,43) + 5 P2, (33.9)) | ®)

1 V3
Zf d“hoooo(yz/xz,u)( Pro (x1.91) = =
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In the s-wave approach the functions gf;) and gf}’(kl) are reduced to functions hgooo(y,-/x,-,u) =

Xiyi [ (xeyr). Here (xx, yx) are the coordinates of the integrand components @; , and (k # i).
In the deuteron domain (x;, finite, y, — co) the asymptotic condition for the component @, corre-
sponding to elastic channel:

N2 (23, ) ~ 8016160 Fi(qun) + e (Giqya) + iF§(qy))ag s o o fi(x2).  (9)

In formula (9) Fy(qy») and Go(qy,) are the regular and irreqular Coulomb functions and ¢;(x,) is the s
- wave component of the deuteron wave function (! = 0). Amplitudes @, ,, and @, ,, have zero initial
conditions and zero elastic asymptotics.
In the breakup domain we have for @, ,, and ®,,,, the asymptotics:
1
@,

1
1 11 11 11

L —W,(0 011 0,7 05, W (%09 A A

f ~ e Wil I)Aljllz (61), q)22 1 50A2;1i2(92), & = 271f due' 2("2’”), u=cosX¥2). (10)

Ned|
-1

In these formulas the Coulomb distorted phases W, and W, are as following

1 2 In2 VEX
W,(0) = —— me” InC VE ) coso= (11
2VE h*  cosf X
and "
1 me X
Wk, $2) = ——=—5- N2 VEX), X = |2+ (12)
2VE 7 Ix3/2 + V3y2/2)

The two doublet amplitudes are given as follows
1 1
Ay (62) = Azg,(62) + 3 f duh(y2/ X2, 1)
-1
(91141.0,01) = 617 A20,(603) — 915 A2.0,(65)) (13)

1 1
A, (02) = Az, (02) + 3 f duhfyyo (Y2 /X2, 1)
-1

(921410, (O1) = 65,7 A2, (63) = 95 A 0, (63)). (14)

Equations (6 - 8) violate the isospin symmetry because of distinctions between nn, pp and np
forces. The charge asymmetry is obtained by allowing the strengths of the central nn and pp forces to
be different from np one. We modify MT-I-III potentials to reproduce singlet n-n and p-p scattering
data by scaling the pn potential by factors 0.982 and 0.9745 for nn and pp, respectively. While MT-
I-III uses for ayp, any and ap, the value of scattering length is -23.5 fm, we modify the potential to
produce their scattering lenghts to agreement with experimental data (Ref. [10]).

The accuracy of this adjustment procedure is checked by calculating binding energies for *H and
3He using MT-I-1II potential and its modifications. Our new results and previous ones from Ref. [7]
and Ref. [8] obtained in isospin formalism are given in table 1. Our new results calculated applying
a new set of three Faddeev equations with modified MT-I-III NN potentials are in a good agreement
with those from Ref. [7] and Ref. [8]. Results for our Coulomb energy AB, and CSB energy AB(CBS)
are given in table 1.

In the s-wave approach the value of AB, is 661 keV slightly different from the result of 693
keV (Ref. [9]). Our result for the charge-symmetry breaking energy AB(CSB) is 61 keV close to
71 keV evaluated by Miller et al. [10]. Our new results for phase shifts and elasticities for n-d
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Table 1. B(H) and B(*He) binding energies (in MeV), the Coulomb energy AB, (in keV), CSB effect for
energy AB(CSB) (in keV). The results of Ref. [7] (Ref. [8]) are given in brackets (square brackets). m,, (m,) is
the mass of neutron (proton).

m, m, BCH) B(He) AB, AB(CSB)
MT-I-II 939.0 939.0 8.545
- - (8.535) (7.868)
- - [8.54]  [7.88]
939.565 938.272 8.548  7.882
Modified MT-I-III nn - - 8.396 7.735 661
PP - - 7.674 - 61

Table 2. Spin-doublet case. n-d and p-d elastic shifts and inelasticities at E;,,=14.1 MeV.

n-d p-d
MT-I-1IT [1] modified MT-I-IT | MT-I-111 [1] modified MT-I-I1T
6(deg) 106.16  105.47 105.56 111.05  108.06 110.76
n 0.4653  0.4649 0.4744 0.533  0.4929 0.536

and p-d breakup scattering at E;;,=14.1 MeV calculated assuming the neutrons and protons to be
distinguishable particles are presented in table 2. One concludes that CSB is visible in phase shifts
and inelasticities for neutron-deuteron and proton-deuteron scattering at E;,,=14.1 MeV. However
these results have been obtained applying partly artifficial procedure for constructing s-wave singlet
nn and pp components of MT-I-III potential. Therefore we are currently extending our studies using
the charge dependent AV18 NN potential.
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