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Abstract. The configuration-space Faddeev equations are derived for p-d scattering tak-

ing into account the difference in interaction between the participant particles. Appropri-

ate modifications have been made in the well-known configuration-space equations for

n-d scattering. To show the effect of these modifications, the s-wave calculations are per-

formed for bound state and scattering problems. We model the charge symmetry breaking

effect for 3H and 3He with a modified Malfliet-Tjon MT I-III potential. Results obtained

for elastic n-d and p-d scattering at Elab=14.1 MeV are compared with our prediction

(Ref. [1]) and those of the Los-Alamos/Iowa group (Ref. [2]) .

1 Introduction

The isotopic formalism was developed for the study of neutron-deuteron scattering in the framework

of the configuration space Faddeev equations (Ref. [3]). Charge-independence breaking in the three-

nucleon system was investigated in elastic neutron-deuteron and breakup prosesses (Ref. [4]). Here

we study proton-deuteron scattering. Presence of the electromagnetic interaction requires one to con-

sider the neutron and proton to be different particles and precludes literal use of the isotopic formalim

of (Ref. [3]). So the FNNM equations used in (Ref. [5]) have to be changed.

Taking the neutron as particle 1 and protons as particles 2 and 3 we have the requirement

Ψ(1, 2, 3) = −Ψ(1, 3, 2). To satisfy this condition, we present Ψ in terms of Faddeev components

as

Ψ(1, 2, 3) = Φ1(1, 2, 3) + Φ2(2, 3, 1) − Φ2(3, 2, 1), (1)

where it is understood that in Φ(i, k, l) particles are grouped as i + (kl) and Φ1 is antisymmetric in the

last pair of arguments: Φ1(1, 2, 3) = −Φ1(1, 3, 2).As functionΦ2(2, 3, 1) has no definite properties un-

der interchange 3 ↔ 1 we encounter permutations which are not cyclic P12(231) = (321), P13(123) =

(321). In terms of these operators and operators P± we obtain for the independent components Φ1 and

Φ2 a system

(
E − Δ − v1(2, 3)

)
Φ1(1, 2, 3) = v1(2, 3)

(
P−Φ2(1, 2, 3) − P13Φ2(1, 2, 3)

)
,

(
E − Δ − v2(3, 1)

)
Φ2(2, 3, 1) = v2(3, 1)

(
P+Φ1(2, 3, 1) − P12Φ2(2, 3, 1)

)
. (2)
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Here v1(2, 3) is a sum of the Coulomb and nuclear potentials and v2(3, 1) is the pure nuclear potential:

v1(2, 3) = vc(2, 3) + vpp(2, 3), v2(3, 1) = vpn(3, 1). (3)

The final pair of equations is essentially the same as for the nd case with changes described above.

[
E +
�

2

m
(∂2

x1
+ ∂2

y1
) − vλl

α (x1, y1)
]
Φ
λ0,s0,M0

1,α (x1, y1) =
∑
β

[
vc(x1) + vpp(x1)

]
αβ

[
Φ
λ0 s0,M0

1,β (x1, y1)+

1

2

∫ 1

−1

du
∑
γ

(
g(−)
βγ (y1/x1, u)Φλ0,s0,M0

2,γ (x2, y2) − g(13)
βγ (y1/x1, u)Φλ0,s0,M0

3,γ (x3, y3)
)
, (4)

where (x2, y2) = P−(x1, y1) and (x3, y3) = P13(x1, y1).

[
E +
�

2

m
(∂2

x2
+ ∂2

y2
) − vλl

α (x2, y2)
]
Φ
λ0,s0,M0

2,α (x2, y2) =
∑
β

[
vpn(x2)

]
αβ

[
Φ
λ0 s0,M0

2,β (x2, y2)+

1

2

∫ 1

1

du
∑
γ

(
g(+)
βγ (y2/x2, u)Φλ0,s0,M0

1,γ (x1, y1) − g(12)
βγ (y2/x2, u)Φλ0,s0,M0

3,γ (x3y3)
)
, (5)

where (x1, y1) = P+(x2, y2) and (x3, y3) = P12(x2, y2). In these formulas the multi index α =
{l, σ, j, s, λ}, g(±)

αα′ and g(ik)
αα′ are representatives of the operators 2P± and 2Pik in the MGL basis (Ref.

[6]).

2 s-wave approach. Elastic scattering

In the s-wave approach there exists a single equation in the spin-quartet case for quantum state α =
{0, 1, 1, 3/2, 0} and our new results for n-d and p-d elastic amplitudes at Elab=14.1 MeV calculated

with the Malfliet-Tjon MT-I-III potential do not practically differ from our predictions (Ref. [1])

and those of the Los-Alamos/Iowa group (Ref. [2]) and we do not present them here. However in

the spin-doublet case there exist three equations for quantum states α1 = {0, 0, 0, 1/2, 0} and α2 =

{0, 1, 1, 1/2, 0}, one for Φ1,α1
and two for Φ2,αi , (i=1,2). For the ppn system, a set of equations is

writen as:

[
E +

�
2

2m
(∂2

x1
+ ∂2

y1
) − v00

q

]
Φ1,α1

(x1, y1) = [vc(x1) + vpp(x1)]α1α1

[
Φ1,α1

(x1, y1) +
1

2

∫ 1

−1

duh0
0000(y1/x1, u)

×
[(
− 1

2
Φ2,α1

(x2, y2) − 1

2
Φ2,α1

(x3, y3)
)
+
( √3

2
Φ2,α2

(x2, y2) +

√
3

2
Φ2,α2

(x3, y3)
)]]

(6)

[
E +

�
2

2m
(∂2

x2
+ ∂2

y2
) − v00

q

]
Φ2,α1

(x2, y2) = [vpn(x2)]α1α1

[
Φ2α1

(x2, y2) +
1

2

∫ 1

−1

duh0
0000(y2/x2, u)

(
− 1

2
Φ1,α1

(x1, y1) − 1

2
Φ2,α1

(x3, y3) −
√

3

2
Φ2,α2

(x3, y3)
)]

(7)

[
E +

�
2

2m
(∂2

x2
+ ∂2

y2
) − v00

q

]
Φ2,α2

(x2, y2) = [vpn(x2)]α2α2

[
Φ2α2

(x2, y2)

+
1

2

∫ 1

−1

duh0
0000(y2/x2, u)

( √3

2
Φ1,α1

(x1, y1) −
√

3

2
Φ2,α1

(x3, y3) +
1

2
Φ2,α2

(x3, y3)
)]
. (8)
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In the s-wave approach the functions g(±)
αα′ and g(ik)

αα′ are reduced to functions h0
0000

(yi/xi, u) =

xiyi/(xkyk). Here (xk, yk) are the coordinates of the integrand components Φ1,2 and (k � i).
In the deuteron domain (x2 finite, y2 → ∞) the asymptotic condition for the component Φ2 corre-

sponding to elastic channel:

Φ
0,1/2,1/2
2,α2

(x2, y2) ∼
{
δσ1δJ1eiΔc

0 Fc
0(qy2) + e−iΔc

0

(
Gc

0(qy2) + iFc
0(qy2)

)
a1/2

01/2,01/2

}
ψl(x2). (9)

In formula (9) F0(qy2) and G0(qy2) are the regular and irreqular Coulomb functions and ψl(x2) is the s
- wave component of the deuteron wave function (l = 0). Amplitudes Φ1,α1

and Φ2,α1
have zero initial

conditions and zero elastic asymptotics.

In the breakup domain we have for Φ1,α1
and Φ2,α1,2

the asymptotics:

Φ
0 1

2
1
2

1,α1
∼ e−W1(θ1)A0 1

2
1
2

1,α1
(θ1), Φ

0 1
2

1
2

2,α1,2
∼ E0A0 1

2
1
2

2,α1,2
(θ2), E0 = 2π

∫ 1

−1

dueiW2(x̂2,ŷ2), u = cos(x̂2ŷ2). (10)

In these formulas the Coulomb distorted phases W1 and W2 are as following

W1(θ) = − 1

2
√

E

me2

�2

ln(2
√

EX)

cos θ
, cos θ =

x1

X
, (11)

and

W2(x̂2, ŷ2) = − 1

2
√

E

me2

�2

X

|x2/2 +
√

3y2/2|
ln(2

√
EX), X =

√
x2

i + y
2
i . (12)

The two doublet amplitudes are given as follows

Aα1
(θ2) = A2,α1

(θ2) +
1

2

∫ 1

−1

duh0
0000(y2/x2, u)

(
g11A1,α1

(θ1) − g(12)
11

A2,α1
(θ3) − g(12)

12
A2,α2

(θ3)
)

(13)

Aα2
(θ2) = A2,α2

(θ2) +
1

2

∫ 1

−1

duh0
0000(y2/x2, u)

(
g21A1,α1

(θ1) − g(12)
21

A2,α1
(θ3) − g(12)

22
A2,α2

(θ3)
)
. (14)

Equations (6 - 8) violate the isospin symmetry because of distinctions between nn, pp and np

forces. The charge asymmetry is obtained by allowing the strengths of the central nn and pp forces to

be different from np one. We modify MT-I-III potentials to reproduce singlet n-n and p-p scattering

data by scaling the pn potential by factors 0.982 and 0.9745 for nn and pp, respectively. While MT-

I-III uses for anp, ann and app the value of scattering length is -23.5 fm, we modify the potential to

produce their scattering lenghts to agreement with experimental data (Ref. [10]).

The accuracy of this adjustment procedure is checked by calculating binding energies for 3H and
3He using MT-I-III potential and its modifications. Our new results and previous ones from Ref. [7]

and Ref. [8] obtained in isospin formalism are given in table 1. Our new results calculated applying

a new set of three Faddeev equations with modified MT-I-III NN potentials are in a good agreement

with those from Ref. [7] and Ref. [8]. Results for our Coulomb energy ΔBc and CSB energy ΔB(CBS)

are given in table 1.

In the s-wave approach the value of ΔBc is 661 keV slightly different from the result of 693

keV (Ref. [9]). Our result for the charge-symmetry breaking energy ΔB(CSB) is 61 keV close to

71 keV evaluated by Miller et al. [10]. Our new results for phase shifts and elasticities for n-d
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Table 1. B(3H) and B(3He) binding energies (in MeV), the Coulomb energy ΔBc (in keV), CSB effect for

energy ΔB(CSB) (in keV). The results of Ref. [7] (Ref. [8]) are given in brackets (square brackets). mn (mp) is

the mass of neutron (proton).

mn mp B(3H) B(3He) ΔBc ΔB(CSB)

MT-I-III 939.0 939.0 8.545

– – (8.535) (7.868)

– – [8.54] [7.88]

939.565 938.272 8.548 7.882

Modified MT-I-III nn – – 8.396 7.735 661

pp – – 7.674 – 61

Table 2. Spin-doublet case. n-d and p-d elastic shifts and inelasticities at Elab=14.1 MeV.

n - d p - d

MT-I-III [1] modified MT-I-III MT-I-III [1] modified MT-I-III

δ(deg) 106.16 105.47 105.56 111.05 108.06 110.76

η 0.4653 0.4649 0.4744 0.533 0.4929 0.536

and p-d breakup scattering at Elab=14.1 MeV calculated assuming the neutrons and protons to be

distinguishable particles are presented in table 2. One concludes that CSB is visible in phase shifts

and inelasticities for neutron-deuteron and proton-deuteron scattering at Elab=14.1 MeV. However

these results have been obtained applying partly artifficial procedure for constructing s-wave singlet

nn and pp components of MT-I-III potential. Therefore we are currently extending our studies using

the charge dependent AV18 NN potential.
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