

The general configuration-space Faddeev formalism for studying pd scattering

Vladimir M Suslov^{1,a}, Mikhail A Braun², Igor Filikhin¹, Ivo Slaus³, and Branislav Vlahovic¹

¹*North Carolina Central University, 1801 Fayetteville St., Durham, NC, USA*

²*Dep. of High Energy physics, University of St. Petersburg, St. Petersburg, 199034 Russia*

³*Rudjer Boskovich Institute, Zagreb, 10000 Croatia*

Abstract. The configuration-space Faddeev equations are derived for p-d scattering taking into account the difference in interaction between the participant particles. Appropriate modifications have been made in the well-known configuration-space equations for n-d scattering. To show the effect of these modifications, the s-wave calculations are performed for bound state and scattering problems. We model the charge symmetry breaking effect for ${}^3\text{H}$ and ${}^3\text{He}$ with a modified Malfliet-Tjon MT I-III potential. Results obtained for elastic n-d and p-d scattering at $E_{lab}=14.1$ MeV are compared with our prediction (Ref. [1]) and those of the Los-Alamos/Iowa group (Ref. [2]) .

1 Introduction

The isotopic formalism was developed for the study of neutron-deuteron scattering in the framework of the configuration space Faddeev equations (Ref. [3]). Charge-independence breaking in the three-nucleon system was investigated in elastic neutron-deuteron and breakup processes (Ref. [4]). Here we study proton-deuteron scattering. Presence of the electromagnetic interaction requires one to consider the neutron and proton to be different particles and precludes literal use of the isotopic formalism of (Ref. [3]). So the FNNM equations used in (Ref. [5]) have to be changed.

Taking the neutron as particle 1 and protons as particles 2 and 3 we have the requirement $\Psi(1, 2, 3) = -\Psi(1, 3, 2)$. To satisfy this condition, we present Ψ in terms of Faddeev components as

$$\Psi(1, 2, 3) = \Phi_1(1, 2, 3) + \Phi_2(2, 3, 1) - \Phi_2(3, 2, 1), \quad (1)$$

where it is understood that in $\Phi(i, k, l)$ particles are grouped as $i + (kl)$ and Φ_1 is antisymmetric in the last pair of arguments: $\Phi_1(1, 2, 3) = -\Phi_1(1, 3, 2)$. As function $\Phi_2(2, 3, 1)$ has no definite properties under interchange $3 \leftrightarrow 1$ we encounter permutations which are not cyclic $P_{12}(231) = (321)$, $P_{13}(123) = (321)$. In terms of these operators and operators P^\pm we obtain for the independent components Φ_1 and Φ_2 a system

$$\begin{aligned} (E - \Delta - v_1(2, 3))\Phi_1(1, 2, 3) &= v_1(2, 3)(P^- \Phi_2(1, 2, 3) - P_{13} \Phi_2(1, 2, 3)), \\ (E - \Delta - v_2(3, 1))\Phi_2(2, 3, 1) &= v_2(3, 1)(P^+ \Phi_1(2, 3, 1) - P_{12} \Phi_1(2, 3, 1)). \end{aligned} \quad (2)$$

^ae-mail: vsuslov@nccu.edu

Here $v_1(2, 3)$ is a sum of the Coulomb and nuclear potentials and $v_2(3, 1)$ is the pure nuclear potential:

$$v_1(2, 3) = v_c(2, 3) + v_{pp}(2, 3), \quad v_2(3, 1) = v_{pn}(3, 1). \quad (3)$$

The final pair of equations is essentially the same as for the *nd* case with changes described above.

$$\begin{aligned} \left[E + \frac{\hbar^2}{m} (\partial_{x_1}^2 + \partial_{y_1}^2) - v_{\alpha}^U(x_1, y_1) \right] \Phi_{1,\alpha}^{\lambda_0, s_0, M_0}(x_1, y_1) &= \sum_{\beta} \left[v_c(x_1) + v_{pp}(x_1) \right]_{\alpha\beta} \left[\Phi_{1,\beta}^{\lambda_0, s_0, M_0}(x_1, y_1) + \right. \\ &\quad \left. \frac{1}{2} \int_{-1}^1 du \sum_{\gamma} \left(g_{\beta\gamma}^{(-)}(y_1/x_1, u) \Phi_{2,\gamma}^{\lambda_0, s_0, M_0}(x_2, y_2) - g_{\beta\gamma}^{(13)}(y_1/x_1, u) \Phi_{3,\gamma}^{\lambda_0, s_0, M_0}(x_3, y_3) \right) \right], \end{aligned} \quad (4)$$

where $(x_2, y_2) = P^-(x_1, y_1)$ and $(x_3, y_3) = P_{13}(x_1, y_1)$.

$$\begin{aligned} \left[E + \frac{\hbar^2}{m} (\partial_{x_2}^2 + \partial_{y_2}^2) - v_{\alpha}^U(x_2, y_2) \right] \Phi_{2,\alpha}^{\lambda_0, s_0, M_0}(x_2, y_2) &= \sum_{\beta} \left[v_{pn}(x_2) \right]_{\alpha\beta} \left[\Phi_{2,\beta}^{\lambda_0, s_0, M_0}(x_2, y_2) + \right. \\ &\quad \left. \frac{1}{2} \int_1^1 du \sum_{\gamma} \left(g_{\beta\gamma}^{(+)}(y_2/x_2, u) \Phi_{1,\gamma}^{\lambda_0, s_0, M_0}(x_1, y_1) - g_{\beta\gamma}^{(12)}(y_2/x_2, u) \Phi_{3,\gamma}^{\lambda_0, s_0, M_0}(x_3, y_3) \right) \right], \end{aligned} \quad (5)$$

where $(x_1, y_1) = P^+(x_2, y_2)$ and $(x_3, y_3) = P_{12}(x_2, y_2)$. In these formulas the multi index $\alpha = \{l, \sigma, j, s, \lambda\}$, $g_{\alpha\alpha'}^{(\pm)}$ and $g_{\alpha\alpha'}^{(ik)}$ are representatives of the operators $2P^{\pm}$ and $2P_{ik}$ in the MGL basis (Ref. [6]).

2 s-wave approach. Elastic scattering

In the *s*-wave approach there exists a single equation in the spin-quartet case for quantum state $\alpha = \{0, 1, 1, 3/2, 0\}$ and our new results for n-d and p-d elastic amplitudes at $E_{lab}=14.1$ MeV calculated with the Malfliet-Tjon MT-I-III potential do not practically differ from our predictions (Ref. [1]) and those of the Los-Alamos/Iowa group (Ref. [2]) and we do not present them here. However in the spin-doublet case there exist three equations for quantum states $\alpha_1 = \{0, 0, 0, 1/2, 0\}$ and $\alpha_2 = \{0, 1, 1, 1/2, 0\}$, one for Φ_{1,α_1} and two for Φ_{2,α_i} , ($i=1,2$). For the ppn system, a set of equations is written as:

$$\begin{aligned} \left[E + \frac{\hbar^2}{2m} (\partial_{x_1}^2 + \partial_{y_1}^2) - v_q^{00} \right] \Phi_{1,\alpha_1}(x_1, y_1) &= [v_c(x_1) + v_{pp}(x_1)]_{\alpha_1\alpha_1} \left[\Phi_{1,\alpha_1}(x_1, y_1) + \frac{1}{2} \int_{-1}^1 du h_{0000}^0(y_1/x_1, u) \right. \\ &\quad \left. \times \left[\left(-\frac{1}{2} \Phi_{2,\alpha_1}(x_2, y_2) - \frac{1}{2} \Phi_{2,\alpha_1}(x_3, y_3) \right) + \left(\frac{\sqrt{3}}{2} \Phi_{2,\alpha_2}(x_2, y_2) + \frac{\sqrt{3}}{2} \Phi_{2,\alpha_2}(x_3, y_3) \right) \right] \right] \end{aligned} \quad (6)$$

$$\begin{aligned} \left[E + \frac{\hbar^2}{2m} (\partial_{x_2}^2 + \partial_{y_2}^2) - v_q^{00} \right] \Phi_{2,\alpha_1}(x_2, y_2) &= [v_{pn}(x_2)]_{\alpha_1\alpha_1} \left[\Phi_{2,\alpha_1}(x_2, y_2) + \frac{1}{2} \int_{-1}^1 du h_{0000}^0(y_2/x_2, u) \right. \\ &\quad \left. \left(-\frac{1}{2} \Phi_{1,\alpha_1}(x_1, y_1) - \frac{1}{2} \Phi_{2,\alpha_1}(x_3, y_3) - \frac{\sqrt{3}}{2} \Phi_{2,\alpha_2}(x_3, y_3) \right) \right] \end{aligned} \quad (7)$$

$$\begin{aligned} \left[E + \frac{\hbar^2}{2m} (\partial_{x_2}^2 + \partial_{y_2}^2) - v_q^{00} \right] \Phi_{2,\alpha_2}(x_2, y_2) &= [v_{pn}(x_2)]_{\alpha_2\alpha_2} \left[\Phi_{2,\alpha_2}(x_2, y_2) \right. \\ &\quad \left. + \frac{1}{2} \int_{-1}^1 du h_{0000}^0(y_2/x_2, u) \left(\frac{\sqrt{3}}{2} \Phi_{1,\alpha_1}(x_1, y_1) - \frac{\sqrt{3}}{2} \Phi_{2,\alpha_1}(x_3, y_3) + \frac{1}{2} \Phi_{2,\alpha_2}(x_3, y_3) \right) \right]. \end{aligned} \quad (8)$$

In the s-wave approach the functions $g_{\alpha\alpha'}^{(\pm)}$ and $g_{\alpha\alpha'}^{(ik)}$ are reduced to functions $h_{0000}^0(y_i/x_i, u) = x_i y_i / (x_k y_k)$. Here (x_k, y_k) are the coordinates of the integrand components $\Phi_{1,2}$ and $(k \neq i)$.

In the deuteron domain (x_2 finite, $y_2 \rightarrow \infty$) the asymptotic condition for the component Φ_2 corresponding to elastic channel:

$$\Phi_{2,\alpha_2}^{0,1/2,1/2}(x_2, y_2) \sim \left\{ \delta_{\sigma 1} \delta_{J1} e^{i\Delta_0^c} F_0^c(qy_2) + e^{-i\Delta_0^c} (G_0^c(qy_2) + iF_0^c(qy_2)) a_{01/2,01/2}^{1/2} \right\} \psi_l(x_2). \quad (9)$$

In formula (9) $F_0(qy_2)$ and $G_0(qy_2)$ are the regular and irregular Coulomb functions and $\psi_l(x_2)$ is the s -wave component of the deuteron wave function ($l = 0$). Amplitudes Φ_{1,α_1} and Φ_{2,α_1} have zero initial conditions and zero elastic asymptotics.

In the breakup domain we have for Φ_{1,α_1} and Φ_{2,α_1} the asymptotics:

$$\Phi_{1,\alpha_1}^{0,1/2,1/2} \sim e^{-W_1(\theta_1)} A_{1,\alpha_1}^{0,1/2,1/2}(\theta_1), \quad \Phi_{2,\alpha_1}^{0,1/2,1/2} \sim \mathcal{E}_0 A_{2,\alpha_1,2}^{0,1/2,1/2}(\theta_2), \quad \mathcal{E}_0 = 2\pi \int_{-1}^1 du e^{iW_2(\hat{\mathbf{x}}_2, \hat{\mathbf{y}}_2)}, \quad u = \cos(\hat{\mathbf{x}}_2 \hat{\mathbf{y}}_2). \quad (10)$$

In these formulas the Coulomb distorted phases W_1 and W_2 are as following

$$W_1(\theta) = -\frac{1}{2\sqrt{E}} \frac{me^2}{\hbar^2} \frac{\ln(2\sqrt{EX})}{\cos \theta}, \quad \cos \theta = \frac{x_1}{X}, \quad (11)$$

and

$$W_2(\hat{\mathbf{x}}_2, \hat{\mathbf{y}}_2) = -\frac{1}{2\sqrt{E}} \frac{me^2}{\hbar^2} \frac{X}{|\mathbf{x}_2/2 + \sqrt{3}\mathbf{y}_2/2|} \ln(2\sqrt{EX}), \quad X = \sqrt{x_i^2 + y_i^2}. \quad (12)$$

The two doublet amplitudes are given as follows

$$\mathcal{A}_{\alpha_1}(\theta_2) = A_{2,\alpha_1}(\theta_2) + \frac{1}{2} \int_{-1}^1 du h_{0000}^0(y_2/x_2, u) (g_{11} A_{1,\alpha_1}(\theta_1) - g_{11}^{(12)} A_{2,\alpha_1}(\theta_3) - g_{12}^{(12)} A_{2,\alpha_2}(\theta_3)) \quad (13)$$

$$\mathcal{A}_{\alpha_2}(\theta_2) = A_{2,\alpha_2}(\theta_2) + \frac{1}{2} \int_{-1}^1 du h_{0000}^0(y_2/x_2, u) (g_{21} A_{1,\alpha_1}(\theta_1) - g_{21}^{(12)} A_{2,\alpha_1}(\theta_3) - g_{22}^{(12)} A_{2,\alpha_2}(\theta_3)). \quad (14)$$

Equations (6 - 8) violate the isospin symmetry because of distinctions between nn, pp and np forces. The charge asymmetry is obtained by allowing the strengths of the central nn and pp forces to be different from np one. We modify MT-I-III potentials to reproduce singlet n-n and p-p scattering data by scaling the pn potential by factors 0.982 and 0.9745 for nn and pp, respectively. While MT-I-III uses for a_{np} , a_{nn} and a_{pp} the value of scattering length is -23.5 fm, we modify the potential to produce their scattering lengths to agreement with experimental data (Ref. [10]).

The accuracy of this adjustment procedure is checked by calculating binding energies for ${}^3\text{H}$ and ${}^3\text{He}$ using MT-I-III potential and its modifications. Our new results and previous ones from Ref. [7] and Ref. [8] obtained in isospin formalism are given in table 1. Our new results calculated applying a new set of three Faddeev equations with modified MT-I-III NN potentials are in a good agreement with those from Ref. [7] and Ref. [8]. Results for our Coulomb energy ΔB_c and CSB energy $\Delta B(\text{CBS})$ are given in table 1.

In the s-wave approach the value of ΔB_c is 661 keV slightly different from the result of 693 keV (Ref. [9]). Our result for the charge-symmetry breaking energy $\Delta B(\text{CSB})$ is 61 keV close to 71 keV evaluated by Miller et al. [10]. Our new results for phase shifts and elasticities for n-d

Table 1. $B(^3\text{H})$ and $B(^3\text{He})$ binding energies (in MeV), the Coulomb energy ΔB_c (in keV), CSB effect for energy $\Delta B(\text{CSB})$ (in keV). The results of Ref. [7] (Ref. [8]) are given in brackets (square brackets). m_n (m_p) is the mass of neutron (proton).

	m_n	m_p	$B(^3\text{H})$	$B(^3\text{He})$	ΔB_c	$\Delta B(\text{CSB})$
MT-I-III	939.0	939.0	8.545			
	—	—	(8.535)	(7.868)		
	—	—	[8.54]	[7.88]		
	939.565	938.272	8.548	7.882		
Modified MT-I-III	nn	—	8.396	7.735	661	
	pp	—	—	7.674	—	61

Table 2. Spin-doublet case. n-d and p-d elastic shifts and inelasticities at $E_{lab}=14.1$ MeV.

	n - d		p - d		
	MT-I-III	[1]	modified MT-I-III	MT-I-III	[1]
$\delta(\text{deg})$	106.16	105.47	105.56	111.05	108.06
η	0.4653	0.4649	0.4744	0.533	0.4929

and p-d breakup scattering at $E_{lab}=14.1$ MeV calculated assuming the neutrons and protons to be distinguishable particles are presented in table 2. One concludes that CSB is visible in phase shifts and inelasticities for neutron-deuteron and proton-deuteron scattering at $E_{lab}=14.1$ MeV. However these results have been obtained applying partly artificial procedure for constructing *s*-wave singlet *nn* and *pp* components of MT-I-III potential. Therefore we are currently extending our studies using the charge dependent AV18 NN potential.

Acknowledgements

This work is supported by the NSF (HRD-1345219).

References

- [1] V.M. Suslov and B. Vlahovic, Phys. Rev. C **69** (2004) 044003.
- [2] J.L. Friar, G.L. Payne, W. Glöckle, D. Hüber, and H. Witala, Phys. Rev. C **51** (1995) 2356.
- [3] A.A. Kvitsinsky, Yu.A. Kuperin, S.P. Merkuriev, A.K. Motovilov, S.L. Yakovlev, EChYa, 17 (1986) 267-317.
- [4] H. Witala, W. Glöckle, and H. Kamada, Phys. Rev. C **43** (1991) 1619.
- [5] V.M. Suslov, M.A. Braun, I. Filikhin, B. Vlahovic, I. Slaus, Few-Body Syst. (2011) 50; 267.
- [6] S.P. Merkuriev, C. Gignoux, A. Laverne, Annals of Phisics **99**, 30-71 (1976).
- [7] J.L. Friar, B.F. Gibson, G.L. Payne, Phys. Rev. C **24** (1981) 2279.
- [8] J. Bernabeu, V.M. Suslov, T.A. Strizh, S.I. Vinitsky, Hyperfine interaction 110/102 (1996) 391-399
- [9] S.A. Coon and R.C. Barrett, Phys. Rev. C **36** (1987) 2189.
- [10] G.A. Miller and W.T.H. van Oers, arXiv:nucl-th/9409013