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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit verschiedenen aktuellen Fragestellungen
aus dem Bereich offener Quantensysteme. Neben der Identifikation von Anfangs-
korrelationen in der Dynamik offener Systeme, umfasst dies die Charakterisierung
von Gedächtniseffekten und deren Auftreten durch korrelierte Umgebungszustände
sowie Möglichkeiten ein offenes Quantensystem als Sensor für Eigenschaften seiner
Umgebung einzusetzen.

Wie vor geraumer Zeit gezeigt wurde, können Anfangskorrelationen zwischen
System und Umgebung zu einem starken Informationsfluss in das offene Quanten-
system führen, welcher durch den Spurabstand quantifiziert wird. Die diesem Effekt
zugrunde liegende, nicht kontrahierende Systemdynamik kann indessen prinzipiell
auch mittels anderer Abstandsmaße auf dem Zustandsraum kenntlich gemacht wer-
den. Eine vegleichende Studie anhand zweier Modellsysteme, die im Zuge dieser
Arbeit angefertigt wurde, zeigt jedoch deutlich die bedeutende Rolle des Spurab-
standes für die Detektion von Anfangskorrelationen.

Abgesehen hiervon treten solche Informationsflüsse ebenfalls durch starke Sys-
tem-Umgebung-Wechselwirkungen und strukturierte sowie endliche Umgebungen
auf, die typischerweise nicht-Markov’schen Dynamiken zugeordnet werden. In die-
ser Arbeit werden die Eigenschaften der kürzlich eingeführten Charakterisierung
nicht-Markov’schen Verhaltens, die dieses einem Informationsaustausch zwischen
dem offenen System und seiner Umgebung zuschreibt, und des zugehörigen Ma-
ßes resümiert. Insbesondere wird die Funktionsweise und der praktische Nutzen
der lokalen Darstellung des Maßes für die Quantifizierung von Gedächtniseffekten
anhand eines photonischen Experiments bündig dargelegt.

Durch eine naheliegende Erweiterung dieses auf den Spurabstand aufbauenden
Maßes lässt sich zudem eine verallgemeinerte Kennzeichnung von Gedächtnisef-
fekten erzielen, die mit der wohlbekannten Definition für klassische stochastische
Prozesse verknüpft ist. Diese Verknüpfung der erweiterten Definition Markov’schen
Verhaltens, die gedächtnislose Prozesse mit einer monotonen Zeitentwicklung von
Helstrom-Matrizen assoziiert, wird möglich durch seine äquivalente Charakterisie-
rung in Form der Teilbarkeit einer solchen Dynamik bezüglich positiver Abbildun-
gen. Neben derselben Interpretation wie der ursprüngliche Ansatz, genießt das ver-
allgemeinerte Maß ferner ebenso ähnliche mathematische Darstellungen. Es kann
gezeigt werden, dass Helstrom-Matrizen, die einen maximalen Informationsrück-
fluss evozieren, orthogonale Zustände beinhalten und dass für endlich-dimensionale
offene Systeme eine lokale und universelle Darstellung des Maßes existiert. Die
bestehenden Unterschiede dieses Ansatzes im Vergleich zu anderen wird mittels
einiger Beispiele veranschaulicht, anhand derer auch gezeigt werden kann, dass
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weder Markov’sche noch, wie kürzlich bewiesen, nicht-Markov’sche Prozesse kon-
vexe Mengen bilden.

Ferner wird die Relevanz spezifischer Anfangskorrelationen in einer zusam-
mengesetzten Umgebung, die einen Informationsrückfluss in vielteiligen offenen
Quantensystemen hervorrufen können, beleuchtet. Mittels einer Dekohärenz erzeu-
genden Dynamik zweier Qubitsysteme, die lokal an ein Multimodenfeld koppeln,
das durch zweimodige Gauss-Zustände charakterisiert ist, wird dargelegt, dass sol-
che nicht-lokalen Gedächtniseffekte auch in Abwesenheit von Verschränkung in
der Umgebung möglich sind. Wie gezeigt wird, bietet eine für allgemeine De-
phasierungsprozesse mit linearer Kopplung und Gauss’schen Umgebungszuständen
abgeleitete Bedingung an den Korrelationskoeffizient der in die Wechselwirkung
involvierten Umgebungsoperatoren eine Erklärung hierfür. Die Rolle der bosoni-
schen Umgebung für das Auftreten nicht-lokaler Gedächtniseffekte wird schließlich
mittels einer effektiven Beschreibung durch endlich-dimensionale Umgebungen in
maximal verschränkten Zuständen studiert, die offenlegt, dass mindestens Drei-
Niveau-Systeme als Umgebungen gewählt werden müssen.

Motiviert durch die Möglichkeit Parameter zweimodiger Gauss-Zustände mit-
tels nicht-lokaler Gedächtniseffekte zu schätzen, wird im letzten Teil der Arbeit die
Fragestellung untersucht, welche Informationen der Umgebung im offenen System
zugänglich sind. Zunächst werden hierzu Ansätze betrachtet, die die Korrelatio-
nen in Messstatistiken von Observablen des offenen Systems und der Umgebung
als Funktion der angewandten Wechselwirkung und der Anfangszustände quan-
tifizieren. Der Versuch eine Relation zwischen der gewonnenen Information und
der dadurch hevorgerufenen Störung der Umgebung abzuleiten, ist leider nicht
erfolgreich. Wie gezeigt wird, können einige existierende Ansätze nicht auf die be-
schriebene Situation angewendet werden.

Darüber hinaus werden auch zwei bekannte Sensorstrategien, die die Dynamik
des offenen Systems gebrauchen, studiert und erweitert. Für Dephasierungsprozes-
se offener Systeme, die ähnlich zum quantenmechanischen harmonischen Oszillator
sind, kann zum Beispiel gezeigt werden, dass der Erwartungswert gewisser zeit-
lich gemittelter Observablen gegen den einer Erhaltungsgröße der Umgebung – ob
endlich- oder unendlich-dimensional – konvergiert. Die zeitabhängige Messstatistik
einer Observable eines offenen Quantensystems mit variabler Energieaufspaltung
bietet hingegen die Möglichkeit verschiedene Umgebungseigenschaften bei dissipa-
tiven Wechselwirkungen, die jedoch nur virtuelle Übergänge im offenen System her-
vorrufen, zu erhalten wie anhand der suprafluiden Anregungen im Bose-Hubbard
Modell anschaulich dargelegt wird.



Abstract

The purpose of this thesis is to review several recently discussed questions un-
derlying the theory of open quantum systems such as the role of initial system-
environment correlations, the essence of memory effects in the quantum regime
and their occurrence due to correlated environments as well as the ability to gain
information on the environment using the open quantum system.

It is well known that a veritable flow of information to the open quantum system
as quantified by the trace distance may be induced by initial correlations between
the open system and its environment. But a breakdown of the contractivity of the
reduced dynamics may, in principle, be also identified by other distance measures.
The prominent role of the trace distance in witnessing initial correlations is eventu-
ally confirmed by a comparative study of different quantifiers for two models that
is performed in this thesis.

Besides resulting from initial correlations, a flow of information may also be
due to strong system-environment couplings and structured or finite reservoirs
characterizing non-Markovian processes. The recent characterization of quantum
non-Markovianity based on the exchange of information between the open system
and its environment is reconsidered in the following, essentially focusing on the
local representation of the associated measure. In fact, the functioning of this
mathematical representation as well as its use for the experimental determination
of the degree of non-Markovianity is convincingly demonstrated by means of an
all-optical experiment.

Moreover, by means of a straightforward extension of the trace-distance-based
approach to quantum non-Markovianity, it is shown that the so far solely loose
connection of quantum and classical non-Markovianity can be made rigorous. As-
signing memory effects to the evolution of Helstrom matrices, another characteri-
zation of quantum Markovianity in terms of an information flow is obtained which
additionally features a clear-cut connection to its classical counterpart due to its
equivalence to divisibility of quantum processes with respect to positive maps.
In addition, mathematical representations similar to those found for the original
trace-distance-based measure are shown to hold true for the associated measure.
That is, optimal Helstrom matrices showing a maximal information backflow are
proven to consist of orthogonal states and, for finite-dimensional open systems, a
local and universal representation of the measure can be established. Several exam-
ples are used to illustrate the essential difference between the generalized measure
for quantum non-Markovianity and other approaches to quantify memory effects
and, moreover, to show that the set of Markovian processes is nonconvex just as
that of non-Markovian evolutions, which has been proven recently.
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Further, the information flow in multipartite open quantum systems due to
correlated local environments, leading to nonlocal memory effects, is studied per-
taining to the role of entanglement. Employing the dephasing dynamics of two
qubit systems that are coupled locally to multimode fields, being described by
two-mode Gaussian states, nonlocal memory effects are shown to occur also in
the absence of entanglement. This is explained by a general condition on the
correlation coefficient of the environmental coupling operators valid for arbitrary
dephasing dynamics with linear interactions and Gaussian environmental states.
The significance of the bosonic environment for such a behavior is finally examined
by the study of an effective description using finite-dimensional environments in
a maximally entangled state. Surprisingly, to obtain such an effective modelling
of the coherence factors’ evolution, the environments are required to be at least
three-dimensional.

Motivated by the opportunity to estimate parameters of the two-mode Gaussian
states using nonlocal memory effects, the question about the information on the
environment that is accessible by the open quantum system is finally addressed. As
a first ansatz to this problem, attempts are studied that quantify how correlated
the probability distributions of observables on the open quantum system and the
environment – defining a constant of motion or not – are as a function of the initial
states and the applied interaction. In order to relate the information gained by
such a measurement and the thus-caused disturbance on the environment, several
known information-disturbance tradeoffs are studied, but none of these relations
can be applied to the given setup as is shown.

Besides this, two general probing schemes are considered that utilize the entire
dynamics of the open system. For appropriately adjusted pure dephasing dynamics,
open systems that are equivalent to the quantum harmonic oscillator are shown
to yield a time-averaged operator mean converging to the expectation value of a
constant of motion on the environment which might be of arbitrary dimension. On
the contrary, in case of a dissipative coupling inducing only virtual transitions in the
open system, environmental properties can be identified from the time-dependent
measurement statistics of an observable on an open system with tunable energy
splitting as is illustrated for the superfluid excitations in the Bose-Hubbard model.
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Chapter 1

Introduction

In almost any quantum mechanics experiment, it is impossible to perfectly isolate
the observed quantum object from its surroundings. As a consequence of the un-
avoidable interaction with its environment, a quantum object typically exhibits an
irreversible dynamics – contrary to the predictions of the standard theory claiming
a unitary evolution described by the Schrödinger equation – that is characterized
by dissipation of energy, the relaxation to thermal equilibrium or another station-
ary state, as well as the decay of quantum coherences and correlations (Breuer and
Petruccione, 2002). Due to the experimental progress, a profound understanding of
these so-called open quantum systems and a reliable description of their dynamics
has become more and more important.

Taking the effects of an exchange of energy and information between a quan-
tum system and its environment into account, the theory of open quantum systems
(Breuer and Petruccione, 2002) studies and provides methods that target a reliable
and efficient description of such an irreversible time evolution. A well-established
tool of this theory characterizing the evolution of an open system is given by a
quantum master equation which refers to a first-order differential equation for the
reduced density operator defining the open system. To derive a master equation
for the open system from a microscopic system-environment approach, different
methods have been developed within the last decades (see, e.g., Nakajima (1958),
Zwanzig (1960), Prigogine (1962), Hashitsumae et al. (1977), Shibata et al. (1977),
Chaturvedi and Shibata (1979), Shibata and Arimitsu (1980)). Among this kind of
description for the open system dynamics, a simple and popular ansatz is given by
master equations with time-independent generators that lead to dynamical semi-
groups for the open system’s state evolution. To obtain such a dynamics, the
generators of these so-called Markovian master equations are forced to have a spe-
cific structure which is typically attributed to Lindblad (1976) who derived it at
the same time and independently of1 Gorini et al. (1976). Apart from general
mathematical and physical principles leading to the Lindblad structure, Marko-
vian master equations can also be deduced from microscopic system-environment
approaches to the dynamics if several rather drastic approximations are invoked
which explain the basic features required to obtain a semigroup evolution for an
open system’s dynamics.

1As a consequence, the particular structure of a master equation that yields a semigroup
dynamics is sometimes also referred to as Lindblad-Gorini-Kossakowski-Sudarshan form in order
to acknowledge all researchers that contributed to its discovery.
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2 Chapter 1. Introduction

Due to this fact, it is not surprising that a description by means of a semigroup
dynamics fails to give a faithful picture for many open quantum systems (see, e.g.,
Breuer and Petruccione (2002) for models not obeying such a dynamics). The
used approximations which are applied to a differential equation obtained from
second-order perturbation theory with respect to the system-environment interac-
tion are, for example, deficient for strong couplings or structured as well as finite
environments, low temperatures or nonnegligible initial correlations between the
open system and its environment. These properties typically result in environ-
mental correlation times that are not small in comparison with the open system’s
relaxation times or its intrinsic evolution, finally leading to a breakdown of the
usual separation of times scales that is needed for the deployment of the Markov
and the rotating wave approximation (Breuer and Petruccione, 2002).

Starting already long ago (see, e.g., Davies (1974), Lindblad (1976, 1979), Ac-
cardi et al. (1982)), any open system dynamics that may not be faithfully described
by a dynamical semigroup has been termed non-Markovian2, referring to the well-
established concept of non-Markovian stochastic processes in classical probability
theory which are typically assigned to have memory (see, e.g., Gardiner (2004)
and van Kampen (2007)). On the contrary, the semigroup property of a dynamics
resulting from a Markovian master equation may clearly be interpreted as charac-
terizing a memoryless dynamical process, whereupon the attribute “memoryless”
is additionally supported by the requirements regarding the validity of the pre-
viously mentioned approximations needed to derive such a master equation from
a microscopic model. However, the connection to the well-known classical con-
cept of Markovian stochastic processes is only loose as the classical definition may
not be straightforwardly adapted in quantum theory due to the particular role of
measurements in quantum mechanics (cf. Vacchini et al. (2011) and Breuer et al.
(2016)).

Though, for example, Lindblad (1979) and Accardi et al. (1982) have tried to
define quantum stochastic processes in general, a rigorous and satisfying classifica-
tion of dynamical processes with and without memory effects – again attributing
the terms non-Markovian and Markovian to it – which solely relies on the dynamics
of the open quantum system has not been achieved until recently when the topic
has again attracted a lot of attention, culminating in a series of proposals for a
proper definition of non-Markovianity in the quantum regime. All these approaches
are based on appropriate features that characterize memory effects extending the
classical notion. However, the question how memory effects manifest themselves in
the dynamical behavior of open quantum systems and how they can be uniquely
identified has been answered differently. While some proposals invoke analogies
to the classical counterpart extending the semigroup property3 (see, e.g., Rivas
et al. (2010), Hou et al. (2011), Hall et al. (2014) and Chruściński and Maniscalco
(2014)), several other approaches are based on physically meaningful and intuitive
characterizations of the notion of memory effects (see, e.g., Breuer et al. (2009),

2Previously, the term non-Markovian has also be frequently assigned to dynamics arising from
master equations which are not local in time (see, e.g., Zwanzig (1960)) which is, however, not
equivalent to a deviation from a semigroup dynamics (cf. Sec. 3.3).

3There are yet approaches that stick to the previous classification, defining the border between
non-Markovianity and Markovianity by the semigroup property (see, e.g., Wolf et al. (2008), Hou
et al. (2015) and Ali et al. (2015)).
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Chruściński et al. (2011), Luo et al. (2012) and Fanchini et al. (2014)). Being based
on analogies to the classical definition and interpretations of the notion of memory
effects, it is not surprising that all these approaches lack a direct connection to the
classical definition of a Markov process.

The present thesis reviews the classical notion along with the discussion on the
proper definition of quantum non-Markovianity, mainly focusing, however, on the
characterization of an exchange of information between the open system and its
environment which was proposed by Breuer et al. (2009) (see also Breuer et al.
(2016) and Rivas et al. (2014) for reviews on the topic primarily paying attention
to this approach and those based on the divisibility of the open system dynamics in
terms of completely positive maps). Besides illustrating the representations of the
measure quantifying the degree of non-Markovianity in terms of an information
flux in an all-optical experiment (cf. Liu et al. (2014)), the essence of memory
effects and their different sources such as initial correlations in the environment or
between the open system and its environment are considered in the first part of
the thesis.

Indeed, as has been shown by Laine et al. (2012, 2013) (see also Liu et al.
(2013a) for a photonic realization), initially correlated environments of a multi-
partite open quantum system can lead to pronounced memory effects albeit the
dynamics of the subsystems is Markovian, contrary to the general view as, e.g.,
detailed by Martinazzo et al. (2011) for Brownian motion. Though this peculiar
phenomenon has been observed in different open quantum systems, the relevance
of the type of correlations for its occurrence has not been studied so far. To address
this question, nonlocal memory effects are examined for a dephasing dynamics of
a two qubit open quantum system that is linearly coupled to a multimode bosonic
environment in a Gaussian state, providing a convenient framework to expose the
role of entanglement in the environment along with the primary source of nonlocal
memory effects (cf. Wißmann and Breuer (2014)).

Nonfactorizing initial conditions, i.e. if the open system and its environment
may not be prepared statistically independent at the initial time, represent an-
other well-known source of memory effects as exposed by Laine et al. (2010a) who
used this fact to construct a witness for initial system-environment correlations.
Apart from the trace distance quantifying the information flow, any other distance
measure that is contractive with respect to completely positive and trace preserv-
ing maps, subadditive and satisfies the triangle inequality could, in principle, be
similarly used to quantify initial correlations from the open system dynamics. To
gather insights into the best choice of a distance measure for the purpose of wit-
nessing initial correlations, the comparative study by Dajka et al. (2011) is further
extended. On the basis of this extension an outstanding capability of the trace
distance is demonstrated (cf. Wißmann et al. (2013)).

The discussion on non-Markovian open system dynamics is also reviewed in
order to address the problem of a “reconciliation” with the classical notion. Of
course, a general classification of quantum non-Markovianity allowing for a direct
connection to its classical counterpart is particularly interesting if it could addi-
tionally be equipped with an intuitive characterization of memory effects. Inspired
by the work by Chruściński et al. (2011), a generalized criterion which indeed com-
bines a link to the classical notion with an intuitive characterization is introduced
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in the first part of the thesis (see also Breuer et al. (2016)). As this criterion repre-
sents a straightforward extension of the original ansatz quantifying non-Markovian
behavior in terms of an information backflow, the associated measure is shown to
obey mathematical representations similar to those found for the original trace-
distance-based measure (cf. Wißmann et al. (2015)). The mathematical structure
of the space of thus-assigned Markovian and non-Markovian dynamics is addition-
ally studied by means of examples for two-level systems based on which paradig-
matic models are deduced illustrating the essential difference between the different
approaches for quantum non-Markovianity.

Besides these fundamental questions concerning the proper definition of quan-
tum memory effects and their primary origin, several recent studies have demon-
strated that the non-Markovian dynamics of an open quantum system also reflects
characteristic properties of the environment. For example, Haikka et al. (2011,
2013, 2012b) has detailed how the effective dimension and the temperature of a
Bose-Einstein-condensate significantly influences the non-Markovianity of an im-
mersed impurity atom, and the studies of nonlocal memory effects have shown
that nonlocal correlations within composite environments may be associated with
the strength of the observed memory effects (see Laine et al. (2012, 2013), Liu
et al. (2013a) and Wißmann and Breuer (2014)). Similarly, the non-Markovianity
of polarization states of photon pairs exposes the amount of angular correlations
in their environmental states (Smirne et al., 2013a). These examples (see also
Apollaro et al. (2011), Haikka et al. (2012a) and Gessner et al. (2014a) for further
instances) thus encourage the new perspective that open systems can be exploited
as quantum probes for nontrivial features of its environment. On the way towards
a general theory of such quantum probes, describing the prospects and limitations
of this ansatz, the information on a complex quantum system that can be deduced
by means of measurements of a small quantum system as a function of its initial
state and the chosen interaction represents a fundamental question. The second
part of this thesis is devoted to this topic, studying and explaining different tools
that may be used to address this problem on a fundamental level. Apart from ap-
proaches quantifying correlations between single measurements of observables on
a quantum object and the associated probe, two general strategies are discussed
that employ the time evolution of probe observables to gather information on a
complex quantum system.

The thesis is organized as follows: To set the stage for the discussion of memory
effects in the quantum regime held in the first part, results concerning the quan-
tum state space as well as operations and functionals thereon are recapitulated
in Chapter 2 . In particular, in Section 2.3 a characterization of the eigenbases
of states defining a convex set is proven which deepens the direct connection of
the generalized trace-distance-based measure for quantum non-Markovianity to its
classical counterpart. In addition to this, the notion of Gaussian states for bosonic
systems is introduced in Section 2.5 and two particular classes of such states are
defined which are, later on, employed for the study of nonlocal memory effects.

Chapter 3 provides an introduction to the basic notions used in the theory
of open quantum systems such as dynamical maps, the divisibility of a process
and master equations where special attention is payed to the exactness of time-
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convolutionless master equations of second order for zero-mean Gaussian environ-
mental states and linear couplings. Besides this, the detection of initial system-
environment correlations by means of open system dynamics is addressed in Sec-
tion 3.5 , focusing on a comparative study that highlights the trace distance’s dis-
tinguished capability to witness initial correlations.

Starting with a review on classical Markovian processes, different concepts for
quantum non-Markovianity are reviewed in Chapter 3 . After a detailed discussion
of the trace-distance-based measure along with an illustration of the functioning
and use of its local representation for practical purposes using an all-optical ex-
periment in Section 4.3 , the generalized criterion of quantum non-Markovianity is
introduced and its properties such as its direct connection to the classical defini-
tion are exposed in Section 4.4 . Finally, Section 4.5 concerns the mathematical
structure of the space of Markovian and non-Markovian dynamical processes.

Chapter 5 contains the discussion about the type of environmental correlations
that is required to observe nonlocal memory effects. By studying a dephasing
dynamics of two qubit systems, it is shown in Section 5.2 that entanglement is not
necessary for nonlocal memory effects which is explained in the subsequent section,
i.e. Section 5.3 , by means of a general dephasing model, leading to a necessary
and sufficient condition for the occurrence of such memory effects. The study of
nonlocal memory effects is concluded by addressing in Section 5.4 the question on
the significance of an infinite-dimensional environment for perfect nonlocal memory
effects.

In the second part, comprising Chapter 6 , the information content of an open
quantum system regarding environmental properties is considered. After an in-
troduction to indirect measurements using tools from the quantum theory of mea-
surements in Section 6.1 , different quantifiers that can be employed to characterize
the performance of an indirect retrieval of information are introduced and possi-
ble relations between the gained information and the thus-caused disturbance are
studied in Section 6.2 . Finally, in Sections 6.3 and 6.4 two strategies are provided
that allow to extract information on the environment from the time evolution of
the measurement statistics of an observable on an open system for nondissipative
and dissipative dynamics.

The results of this thesis are summarized in Chapter 7 where, additionally, an
outlook on further prospects and open questions concerning the addressed topics
is given.





Part I

Open quantum systems and
non-Markovianity





Chapter 2

States, the state space and operations thereon

In this section, the concept of physical states of a quantum mechanical system
are briefly reviewed in order to clarify and fix the notation, and to discuss the
structure of this set of states, usually called the state space. Apart from pre-
liminaries concerning quantum states including correlations, endomorphisms and
representations of linear operators, the structure of convex subsets of the state
space for finite-dimensional Hilbert spaces is examined. Obviously, if such a sub-
set comprises the maximally mixed state, then any orthonormal basis provides an
eigenbasis for some state of the subset. It is, however, shown in the present thesis
that the converse of this rather trivial statement proves true, too. As a consequence
of this result, the coveted connection of quantum and classical non-Markovianity,
describing these processes in terms of master equations, can finally be established
(see Sec. 4.4.2). Another issue of this section concerns distance measures for states
which are relevant for various tasks in quantum physics ranging from the detection
of correlations in bipartite systems to ensemble discrimination. For the present
work, the trace distance is particularly important due to its remarkable properties
and its physical interpretation. Finally, a particular class of states of infinite-
dimensional systems, the so-called Gaussian states, is introduced.

2.1 The space of quantum states

The description of a quantum system is based on quantum states which are char-
acterized by density operators ρ encoding the statistics of any type of quantum
measurement performed on it. Using an axiomatic approach for the expectation
values associated with self-adjoint operators in terms of real functionals (von Neu-
mann, 1932b), it is shown that density operators must be given by bounded linear
operators on a Hilbert space H over the field of complex numbers C satisfying the
additional constraints (Langerholc, 1965) (see also Breuer and Petruccione (2002))

ρ = ρ† , ρ ≥ 0 , Tr{ρ} = 1 . (2.1)

This means that a quantum state is described by a self-adjoint and positive,
bounded linear operator with unit trace and, therefore, defines a so-called trace
class operator (see also Sec. 2.4.1). While the second requirement, which is the
acronym for a state ρ being positive, ensures that positive expectation values are

9
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assigned to events of the theory, the last constraint warrants their probabilistic
interpretation. Note that an operator X is said to be positive1, i.e. X ≥ 0, if and
only if one has 〈ψ|X|ψ〉 ≥ 0 for all elements |ψ〉 of the Hilbert space. Moreover,
if X and Y are two Hermitian operators, then one says that X ≥ Y if and only if
X − Y ≥ 0.

Quantum states may be equivalently characterized in terms of their eigenstates
and eigenvalues. Because self-adjoint operators are in particular normal, that is,
an operator that commutes with its Hermitian conjugate, the spectral theorem
applies to quantum states (Rudin, 1991). For arbitrary Hilbert spaces a density
operator thus admits a spectral decomposition,

ρ =
dimH∑

j=1
pj |ψj〉〈ψj | , (2.2)

that is characterized by its eigenvalues pj and associated eigenstates |ψj〉 which,
in addition, constitute an orthonormal basis of the Hilbert space. Positivity of a
quantum state is then equivalent to the fact that the eigenvalues are real-valued
and nonnegative, i.e. pj ≥ 0 for all j . Moreover, according to Lidskii’s theorem2

(see, e.g., Simon (2005)), the last condition of Eq. (2.1) is equivalent to ∑j pj = 1.
For infinite-dimensional systems, the eigenvalues thus define an `1-convergent series
having `1-norm equal to unity. In the case of a finite-dimensional Hilbert space, the
notion of physical states obviously coincides with that of positive matrices whose
diagonal elements – and, similarly, its eigenvalues – sum to one. Due to these
features of the eigenvalues, they can be interpreted as elements of a probability
distribution. It is worth stressing that the requirement on states being self-adjoint
is redundant since this already follows from positivity of states as the underlying
Hilbert space H is over the field of complex numbers (Bengtsson and Zyczkowski,
2007).

Throughout the thesis, the set of physical states of a quantum system on the
Hilbert space H is denoted by S(H), i.e., one has

S(H) ≡ {ρ ∈ B(H) | ρ ≥ 0, Tr(ρ) = 1} , (2.3)

where B(H) indicates the so-called set of bounded linear operators on H that are
characterized by a finite operator norm ‖·‖∞ . A fundamental property of the state
space is that it defines a convex set. This means, for any pair of states ρ and σ
and parameter λ ∈ [0, 1], one has

ρλ ≡ (1− λ)σ + λρ ∈ S(H) . (2.4)

Convexity of a set thus signifies that the straight line connecting ρ and σ is entirely
contained in S(H) . Clearly, the reverse is not true: there exist states that cannot be
written as the convex combination of two unequal states defining the extreme points
of the convex set S(H) (see, e.g., Rockafellar (1972)). These states are consequently
termed pure states and it can be shown that they are given by ρ = |ψ〉〈ψ| for

1In mathematics, this property is actually referred to as positive semi-definiteness.
2The theorem states that the matrix trace of a trace class operator on a separable Hilbert

space equals its spectral trace, that is, the sum of its eigenvalues.
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|ψ〉 ∈ H , representing elements of the projective Hilbert space linked to H . The
set of states which can be obtained as convex combination of orthogonal pure states
will be studied in the next section.

Note that the notion of orthogonality, which represents a fundamental and im-
portant feature of a Hilbert space, is generalized to quantum states in the following
way: Two states are called orthogonal, which is henceforth denoted by ρ ⊥ σ , if
they have orthogonal supports. That is, the complements of the kernels of the
linear operators ρ and σ are orthogonal with respect to the inner product of the
Hilbert space. As a consequence, such operators have a common spectral decompo-
sition (cf. Eq. (2.2)) with complementary eigenvalues, meaning that the respective
sets of eigenvalues regarded as vectors (or series for dimH = ∞) are orthogonal
with respect to the usual scalar product. Because the eigenvalues are positive, one
concludes that orthogonal states must have some zero eigenvalues and are thus
part of any norm-based boundary of the state space (see below).

It is worth noticing that the seemingly different concept of orthogonality for op-
erators is reconciled with the standard approach by means of the so-called Hilbert-
Schmidt inner product. The functional (ρ, σ)HS = Tr{ρ†σ} defines an inner prod-
uct3 and the previous characterization clearly implies that two states ρ and σ are
orthogonal if and only if they satisfy (ρ, σ)HS = 0.

2.2 Generalized Bloch representation

A convenient description of the state space for finite-dimensional systems is ob-
tained using representations of the special unitary group. Using the operator basis
defined by the representatives of the group’s generators, the state space can be
characterized as a subset of Euclidean space. This embedding is typically referred
to as generalized Bloch representation (Bengtsson and Zyczkowski, 2007) or co-
herence vector representation (Byrd and Khaneja, 2003), extending the convenient
and well-known Bloch representation for two-level systems.

For a quantum system that is described by a Hilbert space H with dimension
N , the generators of the fundamental representation of the (N2 − 1)-dimensional
special unitary group SU(N) on H and the identity operator provide an operator
basis for the linear operators on this Hilbert space. Using traceless and Hermitian
representatives of the independent generators which satisfy Tr{σjσk} = 2δjk , a
Hermitian operator is described as

A = α0
N
1N +

N2−1∑

j=1

√
N − 1

2N αjσj , (2.5)

where α0 = Tr{A} as well as αj = Tr{Aσj} are real-valued constants for all
j ∈ {1, . . . , N2 − 1} . Apart from being traceless and Hermitian, the SU(N)-

3More precisely, it defines a scalar product on the complex vector space of Hilbert-Schmidt
operators that are given by the set of operators A for which Tr{A†A} is finite.
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generators σj obey

σjσk = 2
N
δjk1N +

N2−1∑

j,k=1
(djkl + ifjkl)σl , (2.6)

where fjkl are the so-called structure constants, defining a completely antisymmet-
ric tensor, and djkl refers to the symmetric d-tensor (Byrd and Khaneja, 2003).
A systematic construction of the generators with respect to an orthonormal basis
{|j〉 | 0 ≤ j ≤ N − 1} of H is given by

λj,k = |j〉〈k|+ |k〉〈j| , λ̃j,k = i
{|j〉〈k| − |k〉〈j|} , (2.7)

λ′l =
√

2
(l + 1)(l + 2)

{
(l + 1)|l + 1〉〈l + 1| −

l∑

j=0
|j〉〈j|

}
, (2.8)

where 0 ≤ j < k ≤ N − 1 and 0 ≤ l ≤ N − 2 (Hioe and Eberly, 1981). Grouping
these N2− 1 operators into a list, the previously used labels σj are assigned to the
list’s elements. In fact, defining for example for two-level systems the operators as
(σ1, σ2, σ3) ≡ (λ0,1, λ̃0,1, λ′0), this yields the well-known Pauli spin operators. Note
that for N = 3 one obtains the Gell-Mann matrices known from particle physics
(Peskin and Schroeder, 1995).

The operators 1N , σ1, . . . , σN2−1 are indeed mutually orthogonal with respect
to the Hilbert-Schmidt norm as the generators are traceless (cf. Eq. (2.6)). They
thus define an orthogonal operator basis for the vector space of Hermitian operators
on H which is characterized by N2 free parameters and includes the state space as
a subset. As a consequence, the assignment

(α0, ~α)↔ A = α0
N
1N +

N2−1∑

j=1

√
N − 1

2N αjσj (2.9)

defines a linear homeomorphism from RN
2 to the set of Hermitian operators on

the N -dimensional Hilbert space H . Since any linear operator can be represented
as the sum of two Hermitian operators4, this map extends even to a linear home-
omorphism from CN

2 to the bounded linear operators B(H) .
The set of vectors corresponding to the state space is actually contained in a hy-

perplane of RN2 . According to the normalization of quantum states (cf. Eq. (2.1)),
it follows that α0 = 1 for any quantum state so that the assignment reduces to

ρ = 1
N
1N +

N2−1∑

j=1

√
N − 1

2N αjσj . (2.10)

The (N2 − 1)-dimensional vector ~α = (α1, . . . , αN2−1)T is called the generalized
Bloch vector or coherence vector associated with the state ρ (see, e.g., Bengtsson
and Zyczkowski (2007), Byrd and Khaneja (2003)). Unfortunately, this represen-
tation looks much more innocent than it really is. Clearly, the set of admissible

4Given a linear operator X, it may be written as X = X++iX− where the Hermitian operators
X+ = (1/2)(X +X†) and X− = (−i/2)(X −X†) characterize the Hermitian and anti-Hermitian
part of X, respectively.
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coherence vectors must be closed and convex as the linear and homeomorphic as-
signment applies to the closed and convex set S(H). One furthermore shows that
the unit ball with respect to the Euclidean norm in RN

2−1 defines the smallest
isotropic superset, whereas the largest isotropic subset is given by a ball that is
centered at zero and has radius Rin = 1/(N − 1) (Harriman, 1978; Kimura and
Kossakowski, 2005). The exact shape of the set of admissible vectors is deter-
mined by a lattice of N nested inequalities which are induced by the requirement
of positivity of states. Considering the roots of the characteristic polynomial

pρ(λ) = det
(
ρ− λ1N

)
= (−1)N

N∑

k=0
(−1)kakλN−k , (2.11)

where a0 = 1, it follows from Descartes’ rule of signs that the eigenvalues are
positive if and only if all coefficients ak are positive semi-definite (Dickson, 1914;
Kimura, 2003). Note that the coefficients for k > 0 can be determined using
Newton’s formula (Lewin, 1994; Byrd and Khaneja, 2003; Kimura, 2003) leading
to the recursive relation

k · ak = −
k∑

j=1
(−1)jak−jTr{ρj} . (2.12)

Employing symmetric parts of traces over the basis elements (Byrd and Khaneja,
2003), the elements Tr{ρj} can be expressed in terms of the vectors ~α ∈ RN

2−1

by means of which the coefficients of the characteristic polynomial may thus be
written in terms of the coherence vectors. For the first three coefficients one obtains

a1 = 1 , (2.13)

a2 = N − 1
2N

{
1− ~α · ~α} , (2.14)

a3 = (N − 1)(N − 2)
6N2

{
1− 3~α · ~α+ 2(~α ? ~α) · ~α} , (2.15)

where the ?-product is defined as

(~α ? ~β)l =

√
N(N − 1)

2
1

N − 2djklαjβk , (2.16)

which hence relies on the algebraic structure of the generators of SU(N) . As
the first coefficient is trivially positive, there is only a single constraint given by
a2 ≥ 0 for two-level systems. One immediately recognizes that this condition
implies the well-known Bloch representation for qubit systems, i.e., all vectors in
R3 with norm smaller than or equal to unity warrant positivity of the associated
operators. Clearly, for higher-dimensional systems, this condition still constrains
the coherence vectors to be contained in the unit ball, providing a first hint on
the smallest isotropic superset. The further inequalities aj ≥ 0 for j ≥ 3 impose,
however, nontrivial constraints on the vectors breaking the simple symmetry found
for two-level systems. Note that pure states are always part of the unit sphere as
they are characterized by coherence vectors satisfying ‖~α‖ = 1 and ~α ? ~α = ~α
(Byrd and Khaneja, 2003). However, unless N = 2 where the d-tensor vanishes,
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the second condition restricts the set of allowable rotations connecting pure states
to a proper subset of SO(N2 − 1). Even though it is, for example, only a single
further constraint for a three-level system, it is already a tedious task to check
whether a vector yields a positive operator or not. Of course, this gets even more
challenging for larger Hilbert spaces.

Note that two states are orthogonal if their associated coherence vectors obey
~α1 · ~α2 = cos(θ) where θ = arccos(−1/{N − 1}) . For two-dimensional systems,
this obviously gives the well-known characterization of orthogonal states in terms
of pairs of antipodal Bloch vectors on the unit sphere.

2.3 Boundaries and convex subsets
In the following, the study of the structure of the set of physical states is contin-
ued, focusing on its boundaries and convex subsets. In fact, besides the definition
and characterization of boundaries and the corresponding interiors which will be
needed later on, features of convex subsets of the state space regarding the decom-
position of elements into pure states are considered.

According to the standard procedure, a boundary of the state space ∂‖·‖S(H)
with respect to some norm ‖·‖ is defined as

∂‖·‖S(H) = {ρ ∈ S(H) | ∀ε > 0 : B̂(p)
ε (ρ) ∩ S(H)c 6= ∅} , (2.17)

where S(H)c ≡ E1(H) \ S(H) denotes the relative complement of S(H) with re-
spect to the set of Hermitian operators with unit trace E1(H) = {A ∈ B(H) | A =
A†, Tr{A} = 1} . Moreover, B̂ε(ρ) = {σ ∈ S(H) | ‖ρ−σ‖ ≤ ε} describes the closed
ball relative to the considered norm which is centered at ρ . Note that it is irrele-
vant which norm is chosen as long as the Hilbert space is not infinite-dimensional
since all norms on finite-dimensional vector spaces are equivalent (Rudin, 1991).
As clarified in Sec. 2.2 , the set of Hermitian matrices indeed represents a finite-
dimensional vector space over the reals, so this result indeed applies here. It is
worth noticing that one has ∂‖·‖S(H) ⊂ S(H) by definition.

To determine the boundary explicitly, one must, of course, first fix a norm. A
convenient choice is given by the Schatten p-norm5 (Schatten and von Neumann,
1946),

‖A‖p =




dimH∑

j=1
sj(A)p




1/p

=
(
Tr{|A|p}

)1/p
, p ∈ [1,∞] , (2.18)

where sj(A) denote the eigenvalues of the positive operator |A| =
√
A†A as-

sociated with A which are also referred to as singular values. For a normal
operator A admitting a spectral decomposition with eigenvalues aj and eigen-
states |ψj〉 (cf. Eq. (2.2)), the modulus of such an operator is simply given by

5Note that the Schatten p-norm for p =∞ is determined by ‖A‖∞ = supj sj(A). It equals the
operator norm which is typically defined as the supremum of ‖A|ψ〉‖H over the set of unit vectors
|ψ〉 .
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|A| = ∑n
j=1 |aj ||ψj〉〈ψj | . Note that the second equality sign in Eq. (2.18) is a sim-

ple consequence of the functional calculus. Due to positivity of states, the third
condition on states, i.e. Tr{ρ} = 1 (cf. Eq. (2.1)), can thus be written in terms of
the Schatten 1-norm, the so-called trace norm (see Sec. 2.4.1), as ‖ρ‖1 = 1 show-
ing that these norms represent a natural choice. Hence, the state space defines
a particular subset of the trace class operators being characterized by finite trace
norms.

To get a better understanding of the associated boundary, it is advantageous to
determine a characterization of its elements in terms of their spectral properties.
For finite-dimensional systems, it can be shown that the boundary is determined
by ∂‖·‖pS(H) = {ρ ∈ S(H) | 0 ∈ spec(ρ)} for any p ∈ [1,∞) where spec(ρ) refers to
the spectrum of the state (Wißmann, 2012). The boundary comprises, thus, exactly
those states that have zero eigenvalues corresponding to a rank deficiency of the
boundary’s elements (Bengtsson and Zyczkowski, 2007). Due to this, orthogonal
states are located on the boundary and, moreover, pure states completely determine
the boundary of a two-level system which agrees with the basic intuition gathered
from the Bloch representation (see Sec. 2.2). This characterization is, however,
only true for finite systems. Quite remarkably, all states are part of the boundary
for infinite-dimensional Hilbert spaces implying that the interior is empty, i.e.
S̊(H) = ∅ (Wißmann, 2012).

The convex structure of the state space itself gives yet rise to a boundary
∂S(H) . In convex analysis one defines a boundary of a convex set, which is referred
to as the relative boundary, as follows (Rockafellar, 1972): A state ρ ∈ S(H) is on
the boundary of the convex set S(H) if and only if there exists a state σ ∈ S(H)
such that for any real number λ > 1 the operator ρλ = (1−λ)σ+λρ (cf. Eq. (2.4))
is not contained in S(H) . That is, the set of states defining the boundary of the
state space ∂S(H) is given by

∂S(H) = {ρ ∈ S(H) | ∃ σ ∈ S(H), s.t. ρλ /∈ S(H) for anyλ > 1} . (2.19)

Having in mind the precise meaning of convexity, an inner point has thus the prop-
erty that any line terminating in this point can be extended. However, the exten-
sion of the convex combination ρλ to values λ > 1 fails for points on the boundary
(cf. Fig. 2.1). This illustration also applies to the boundaries based on norms since
the relative boundary is in fact equivalent to those boundaries, regardless of the
dimension of the underlying Hilbert space (Wißmann et al., 2012; Wißmann, 2012).

After this introduction of boundaries of the state space along with the spectral
properties of the states representing the boundary, one now considers the eigenbases
of states defining a convex subset of the state space which will be relevant for a
link of quantum non-Markovianity to its classical counterpart as will be shown
in Sec. 4.4.2 . In fact, to render such a link rigorous, the question is important
whether or not the eigenbases corresponding to the states found in the images
of dynamical maps (see Sec. 3.2), which define convex subsets of the state space,
actually provide all possible orthonormal bases of the Hilbert space.

As a result of this thesis, it is shown in the following that any orthonormal
basis of a finite-dimensional Hilbert space indeed defines the eigenbasis of some
state of a convex subset of the state space if and only if the maximally mixed state



16 Chapter 2. States, the state space and operations thereon

Figure 2.1 – Illustration of the definition of the boundary ∂S(H) . While the state
ρ is on the boundary and, therefore, rank deficient, the state σ defines an inner
point.

is contained in it, too. Clearly, if the subset includes the maximally mixed state,
the statement trivially follows from the fact that any orthonormal basis {|ψj〉}
defines a resolution of identity6, i.e. one has ∑j |ψj〉〈ψj | = 1H . To prove the
converse implication, one uses the Hahn-Banach separation theorem for normed
vector spaces (Rudin, 1991). Note that the state space is embedded in the set
of finite Hermitian matrices which represents a normed vector space. In fact, it
defines even a Hilbert space with respect to the Hilbert-Schmidt scalar product so
that Riesz’ representation theorem applies (see, e.g., Rudin (1991)). That is, any
continuous linear functional on the set of Hermitian matrices can be represented
by a Hermitian operator.

Lemma 2.1. Let dimH = N < ∞ and denote by C ⊂ S(H) a nonempty and
convex subset of the state space. Then, any orthonormal basis {|ψj〉} of H defines
the eigenbasis of some quantum state ρ ∈ C if and only if 1

N 1N ∈ C .

Proof. The ’if’ statement is obviously true since any orthonormal basis defines a
resolution of identity as mentioned before.

To show the reverse, suppose that 1
N 1N /∈ C . According to the Hahn-Banach

separation theorem, there exists a continuous real-valued linear functional ϕY sep-
arating the two disjoint nonempty and convex sets C and { 1

N 1N} . That is, one
has

ϕY ( 1
N 1N ) < γ ≤ ϕY (ρ) (2.20)

for some γ ∈ R and all ρ ∈ C . Due to the Riesz representation theorem (see,
e.g., Rudin (1991)), the functional can be written as ϕY (X) = Tr{XY } for some
Hermitian operator Y . Moreover, one may assume that the operator Y is traceless
as replacing Y by Y ′ ≡ Y − Tr{Y }1N only leads to a constant shift – given by
Tr{Y } – of the functional ϕY for all states.

6This fact is, of course, also true for infinite-dimensional Hilbert space. However, neither the
identity operator nor any nonzero scalar multiple of it are trace class operators in this case.
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It then follows that the set XY ≡ {X ∈ B(H)|X = X†,Tr{X} = 1, ϕY (X) =
0}, describing a hyperplane, contains the maximally mixed state and separates it
from the convex set C . Now, let the spectral decomposition of Y be given by

Y =
N−1∑

j=0
λj |λj〉〈λj | , (2.21)

where the eigenvalues satisfy ∑j λj = 0 as Y is traceless. To prove the claim,
one shows that there exists an orthonormal basis {|ψk〉} of the Hilbert space H
where each of its elements is part of XY . Clearly, for any unitary operator U on
H the vectors |ψk〉 ≡ U |λk〉 = ∑N−1

j=0 ujk|λj〉 where ujk = 〈λj |U |λk〉 define an
orthonormal basis. Moreover, one finds

Tr{Y |ψk〉〈ψk|} = 〈ψk|Y |ψk〉 =
N−1∑

j=0
|ujk|2λj , (2.22)

which vanishes if one has |ujk| = c for all 0 ≤ j, k ≤ N − 1. This condition is, for
example, satisfied by the Vandermonde matrix, introduced by Sylvester (1867) and
known from discrete Fourier transforms, whose coefficients obey ujk = (1/

√
N)ωj·kN

where ωN = exp[−2πi/N ] and, therefore, c = 1/
√
N . The associated operator

U = 1√
N

N−1∑

j,k=0
ωj·kN |j〉〈k| (2.23)

is indeed unitary as one readily obtains (1/N)∑N−1
j=0 exp[−2πim · j/N ] = δk,l for

all m ∈ Z using the finite geometric series ∑N−1
j=0 qj = (1− qN )/(1− q) for q 6= 1.

Thus, the set {|ψk〉} defines an orthonormal basis satisfying |ψk〉〈ψk| ∈ XY for
all k . By linearity of the functional ϕY , all states with spectral decomposition
given by ∑k pk|ψk〉〈ψk| are contained in XY , too, implying that there does not
exist a quantum state ρ ∈ C with eigenbasis given by {|ψk〉} .

Clearly, the Vandermonde operator remains unitary if one multiplies each col-
umn or row by a phase factor exp[iφk] where φk ∈ [0, 2π) for all 0 ≤ k ≤ N − 1
which, of course, does not change the modulus of the entries. Hence, the proof
reveals also that an infinite set of orthonormal bases is actually contained in the
hyperplane XY defined by the real-valued functional associated with the Hermitian
matrix Y .

This result can be easily illustrated with the help of the two-dimensional case.
Employing the Bloch representation (see Sec. 2.2 for details), convex subsets of the
state space are mapped to convex subsets of the unit ball in R3. If the maximally
mixed state, which is represented by the origin, is not contained in a convex set
C , there then exist two-dimensional planes that do not touch C but intersect the
maximally mixed state and, thus, comprise opposite lying points of the boundary
(cf. Fig. 2.2). However, states corresponding to opposing points on the boundary
define pure and orthogonal states which hence define an orthonormal basis of C2.
It also follows from this illustration that an infinite set of orthonormal bases is en-
countered within a single plane. The intersection of the plane with the boundary
of the state space defines a circle on the unit sphere which thus contains infinitely
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Figure 2.2 – Two-dimensional cut of a hyperplane in the Bloch representation of a
two-level system separating the two disjoint nonempty and convex sets { 1

212} and
C . As the plane contains the maximally mixed state its intersection with the state
space, that is, the unit ball comprises an infinite set of pure and orthogonal states
on the unit sphere defining orthonormal bases of C2 (cf. Fig. 3 in Wißmann et al.
(2015)).

many pairs of opposing points, that is, orthogonal states. Note that lemma 2.1 has
no counterpart in infinite dimensions since the identity as well as all of its non-zero
multiples are not trace class, making the statement ill-defined in this case.

2.4 Operations and functionals on the state space

Operations on the state space including endomorphisms of and functionals on the
state space are important for several tasks in quantum physics. While the former
are used to describe the effect of quantum measurements, the latter play a role in
ensemble discrimination, parameter estimation and the detection and classification
of correlations. In fact, correlations in composite systems feature a link between
these two seemingly different classes of maps on the state space. To be appro-
priate, such maps must, of course, have certain properties which will be deduced
in the following. In addition to the introduction of basic concepts in quantum
physics such as entanglement and completely positive and trace preserving maps,
four distinguished distance measures on the state space are stated along with their
properties which will be used later on to detect initial correlations in composite
quantum systems (see Sec. 3.5.2) and to quantify non-Markovian behavior in open
quantum systems (see Sec. 4.3). Finally, a particular quantifier for the entangle-
ment in a bipartite state, the so-called concurrence, will be introduced in Sec. 2.4.3
and discussed for special states which will be needed later on for a thorough analysis
of the study concerning initial correlations and nonlocal memory effects (see Ch. 5).

Clearly, a map that transforms states to states7 must leave the trace invariant
and has to assign positive operators to positive operators in accordance with the

7The input and output spaces do not necessarily be the same. That is, the state spaces may
be associated with Hilbert spaces having different dimensions.
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conditions on states (see Eq. (2.1)). This amounts to require that a map Λ satisfies
Tr{Λ(X)} = Tr{X} for any linear operator X with finite trace, and Λ(Y ) ≥ 0 for
any positive operator Y ≥ 0 which one abbreviates by calling Λ trace preserving
and positive, respectively. However, these conditions do not suffice, in general,
due to correlations in bipartite quantum systems (Horodecki et al., 1996). Before
turning to this issue, one observes that physical requirements additionally force
the map to be affine8. That is, for any collection of states ρj and nonnegative real
numbers pj ≥ 0 satisfying ∑j pj = 1, the map obeys

Λ
(∑

j

pjρj
)

=
∑

j

pjΛ(ρj) . (2.24)

The map’s image thus inherits the convex structure of the state space. This con-
dition can even be motivated in the broader context of positive maps that do not
necessarily preserve the trace but satisfy 0 ≤ Tr{Λ(ρ)} ≤ 1 for any state. In this
case, the coefficients p(Λ) ≡ Tr{Λ(ρ)} can still be interpreted as the probability
describing the likelihood that the map Λ was applied to the state ρ . Clearly, the
operator p(Λ)−1Λ(ρ) is positive and has unit trace.

Moreover, if the initial state is interpreted as an ensemble ρ = ∑
j pjρj of states

ρj that are prepared with probabilities pj , it is natural to expect this to be true
also for the state p(Λ)−1Λ(ρ) . That is, the final state should be a mixture of the
single output states Tr{Λ(ρj)}−1Λ(ρj) and their associated probabilities p(j|Λ)
which implies the following relation

p(Λ)−1Λ(ρ) =
∑

j

p(j|Λ)Tr{Λ(ρj)}−1Λ(ρj) . (2.25)

The conditional probability p(j|Λ) represents the probability that the state ρj has
been prepared given that the map Λ was applied to the quantum system. According
to Bayes’ rule, it can be rewritten as

p(j|Λ) = p(Λ|j) pj
p(Λ) = Tr{Λ(ρj)}

pj
Tr{Λ(ρ)} , (2.26)

so that Eq. (2.25) eventually reduces to relation (2.24). It is worth stressing that
any affine map has a unique linear extension to the underlying linear vector space
(Hayashi, 2006) which is given by the set of bounded linear operators B(H) in this
case. Henceforth, affine maps on the state space are identified with their linear
extensions and, therefore, referred to as being linear. As a consequence of the
linearity, an appropriate map on the state space must indeed be positive and trace
preserving.

However, taking a closer look, one recognizes that positivity does actually not
suffice as dilations of such maps to bipartite Hilbert spaces occur in quantum
physics. More specifically, one may face the situation where a positive map Λ acts
nontrivially only on one part of a composite Hilbert spaceHAB ≡ HA⊗HB whereas
the second factor of the tensor product remains unchanged. Due to the particular
type of correlations in quantum theory, this dilation of a positive map to a bipartite

8The term convex linear is frequently used for this property in the literature, too (see, e.g.,
Nielsen and Chuang (2000), Breuer and Petruccione (2002)).
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system fails to be positive. To introduce this peculiar fact in more detail, one first
recalls that states of a bipartite system HAB which can be approximated in trace
norm (cf. Eq. (2.18) for p = 1) by states of the form

ρAB =
∑

j

pjρA,j ⊗ ρB,j , (2.27)

where ρA,j and ρB,j refer to states of the subsystems corresponding to the Hilbert
spaces HA and HB, respectively, and one has pj ≥ 0 satisfying ∑j pj = 1 as
before, are conventionally said to be separable9. Being separable is the complement
of being entangled, so entangled states cannot be approximated by such states,
extending the well-known concept of entanglement for pure states to the full state
space. Clearly, one recovers the characterization in terms of the number of nonzero
Schmidt coefficients αj for pure states described by

|ψ〉AB =
∑

j

αj |χj〉A ⊗ |φj〉B (2.28)

for some orthonormal bases {|χj〉A} and {|φj〉B} , that is, a state |ψ〉AB is said to
be entangled if and only if there are more than two nonzero Schmidt coefficients.
Note that one speaks of a maximally entangled state if the coefficients obey αj =
1/
√

minK=A,B NK for all j where NK ≡ dimHK .
As shown by Horodecki et al. (1996), the operator (Λ ⊗ IB)(ρAB), where IB

denotes the identity map on HB , may be nonpositive if ρAB defines an entangled
state, even though the linear map Λ is positive. Here, the operator Λ ⊗ IB is
defined as the linear tensor extension of the map (Λ⊗ IB)(X ⊗Y ) = Λ(X)⊗Y for
bounded linear operators X and Y on the Hilbert spaces HA and HB , respectively.
Complete positivity of a map warrants, however, that this straightforward dilation
of a positive linear map to arbitrary Hilbert spaces is indeed positive again.

Definition 2.1. A linear map Λ is said to be completely positive if and only if the
dilated map

Λ?n ≡ Λ⊗ In : B(HA)⊗Mn(C)→ B(HA)⊗Mn(C) (2.29)

is positive for all n ∈ N where Mn(C) refers to the set of complex-valued n × n-
matrices. In particular, Λ is called n-positive if Λ?n is positive

It thus follows that (Λ⊗ IB)(ρAB) ≥ 0 for any Hilbert space HB and state ρAB
of the joint system if the linear map Λ is completely positive. Hence, completely
positive linear maps are insensitive to the particular structure of correlations in
quantum systems. Note that the action of Λ?n can also be written as

Λ?n
(
(Xjk)

)
=
(
Λ(Xjk)

)
(2.30)

for (Xjk) ∈ Mn
(B(HA)

)
if one identifies B(HA) ⊗Mn(C) with the C∗-algebra

Mn
(B(HA)

)
of n×n-matrices with entries in B(HA). This characterization of the

dilation has the advantage that it also applies to nonlinear maps (Ando and Choi,
1986).

9The presented definition of separable states is due to Werner (1989) who called them classically
correlated states because of their similarity to classical probability measures.



2.4. Operations and functionals on the state space 21

It is also worth noticing that the concept of n-positivity is evidently hierarchical,
that is, n-positivity of Λ implies that the map is also k-positive for all 1 ≤ k ≤ n
(Choi, 1972; Blackadar, 2006) where 1-positivity is obviously equivalent to the
map being positive. However, the converse is not true in general (Choi, 1972;
Stinespring, 1955; Arveson, 1969). This relation is summarized as

P1
(B(HA)

)
) P2

(B(HA)
)
) · · · ) P∞

(B(HA)
)
, (2.31)

where Pn
(B(HA)

)
denotes the set of n-positive linear endomorphisms of B(H). For

an NA-dimensional quantum system, it has been shown that complete positivity
is equivalent to NA-positivity and, therefore, PNA

(B(HA)
)

= Pk
(B(HA)

)
for all

k ≥ NA (Choi, 1975).
An alternative characterization of completely positive maps is given by the so-

called Kraus representation (Kraus, 1983). It was shown by Choi (1975) that a
linear map Λ : B(HA) → B(HA) is completely positive if and only if there exist
operators Ωj on the Hilbert space HA such that Λ can be written as

Λ(X) =
∑

j

ΩjXΩ†j (2.32)

for any X ∈ B(HA). Because the map is similarly described by any set of Kraus
operators {Ω̃j} satisfying Ω̃j = ∑

k UjkΩk for some unitary U = (Ujk) , it fol-
lows that at most N2

A Kraus operators are required to represent any such map on
an NA-dimensional Hilbert space (Breuer and Petruccione, 2002). Employing the
cyclicity of the trace, one easily shows that the map is trace preserving if and only
if the Kraus operators obey∑j Ω†jΩj = 1HA . Completely positive linear maps that
do not increase the trace are nevertheless important in quantum theory (see, e.g.,
Nielsen and Chuang (2000)). In fact, quantum measurements are described by so-
called quantum operations which refer to sets {Λk}k∈M of completely positive and
linear maps whose Kraus operators satisfy ∑j,k Ω†k,jΩk,j = 1HA that one assigns
to the possible outcomesM⊂ R of a measurement. The effects Ek ≡

∑
j Ω†k,jΩk,j

thus define a resolution of identity (cf. Sec. 2.3) which is typically not be projec-
tive. While the map Λk specifies the state change caused by a measurement with
outcome k , the associated effect Ek determines the probability for the occurrence
of this outcome in a state ρ according to Tr{Ekρ} . Note that the map k 7→ Ek de-
fines a positive operator-valued measure which is abbreviated as POVM (Nielsen
and Chuang, 2000). It is furthermore worth stressing that the probabilities are
unaffected by unitary transformations of the Kraus operators, at variance with the
quantum operations itself which are determined by the details of the measurement
setup.

Summarizing the previous discussion, completely positive (CP) and trace pre-
serving (T) linear maps, which are henceforth abbreviated asCPT-maps, represent
the class of maps transforming states to states that are consistent with quantum
theory. In particular, the structure of correlations in quantum physics led to some
of these significant constraints. To detect and quantify entanglement, function-
als on the state space are typically used in quantum theory10. Given a distance

10Of course, a positive but not 2-positive map already provides the basis for an entanglement
witness (Peres, 1996; Horodecki et al., 1996) just as the violation of Bell’s inequalities (Bell, 1987).
However, they typically fail to detect all entangled states as they define solely witnesses (Gisin,
1996).
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measure D : S(HAB)× S(HAB)→ R , the deduced quantity

ED(ρ) ≡ inf
σ∈S̃(HAB)

D(ρ, σ) , (2.33)

where S̃(HAB) denotes the set of separable states (cf. Eq. (2.27)), provides, for ex-
ample, a means to quantify the amount of entanglement contained in an arbitrary
state. Such quantifiers are referred to as geometric measures of entanglement. To
obtain proper entanglement measures which are also called entanglement mono-
tone, it suffices, for example, to require that used distance measure defines a metric
and that it is unitarily invariant and contractive under CPT-maps11. That is, it
must obey

D(Uρ1U
†, Uρ2U

†) = D(ρ1, ρ2) , (2.34)
D(Λ(ρ1),Λ(ρ2)

) ≤ D(ρ1, ρ2) (2.35)

for any pair of states, unitary operator U and CPT-map Λ where a distance mea-
sure D : S(H)× S(H)→ R+ clearly defines a metric if and only if it satisfies

D(ρ1, ρ2) = D(ρ2, ρ1) , (2.36)
D(ρ1, ρ2) = 0⇔ ρ1 = ρ2 , (2.37)
D(ρ1, ρ2) ≤ D(ρ1, ρ3) +D(ρ2, ρ3) (2.38)

for any states ρ1, ρ2 and ρ3 . Note that positivity of the range of D directly follows
from these three properties.

Another particular property of a distance measure is given by the so-called
subadditivity, i.e.

D(ρ1 ⊗ σ1, ρ2 ⊗ σ2) ≤ D(ρ1, ρ2) +D(σ1, σ2) . (2.39)

Distance measures having all these four features define witnesses for arbitrary ini-
tial correlations between open quantum system and their environments as will be
shown in Sec. 3.5 . In the following, several frequently used distance measures
are introduced along with a thorough discussion about their properties and in-
terpretations. Apart from their use for geometric measures of entanglement (cf.
Eq. (2.33)), they are frequently employed, for example, in quantum information
and estimation theory as well as in the study of dynamics of open quantum sys-
tems. To give an overview and motivate the distance measures properly, these
quantifiers are introduced by means of their classical counterparts, defined on the
space of classical probability distributions.

2.4.1 The trace distance

Foremost, the trace distance defines a particular distance measure on the state
space that does not only satisfy all of the previously mentioned properties but
admits a significant physical interpretation, too. Due to these features, one may

11See the work by Vedral et al. (1997) and Vedral and Plenio (1998) for a detailed list of
requirements on entanglement monotones.
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use it to quantify non-Markovian behavior of open quantum systems as will be
shown in Sec. 4.3. Note that additional properties and most of the proofs of the
stated properties can be found in the works by Nielsen and Chuang (2000), Fuchs
and van de Graaf (1999) and Hayashi (2006).

The trace distance is proportional to the metric induced by the trace norm (cf.
Sec. 2.3), i.e., it is defined as

DT (ρ1, ρ2) = 1
2‖ρ1 − ρ2‖1 . (2.40)

In addition to the metric property, the trace distance also inherits unitary invari-
ance from the Schatten 1-norm (2.18). Its range is the unit interval [0, 1] where
the upper bound is attained for orthogonal states, i.e.

DT (ρ1, ρ2) = 1 ⇔ ρ1 ⊥ ρ2 , (2.41)

and the lower bound is obviously realized if the states are equal due to the metric
property. Furthermore, the trace distance is contractive under CPT-maps, in con-
trast to the Hilbert-Schmidt norm (Ozawa, 2000) for example, and even the larger
class of positive trace preserving linear maps actually define contractions for this
distance measure (Ruskai, 1994). That is, one has

DT
(
Υ(ρ1),Υ(ρ2)

) ≤ DT (ρ1, ρ2) (2.42)

for any positive, trace preserving linear map Υ which are consistently called PT-
maps. Note that the trace distance obeys the characterizations

DT (ρ1, ρ2) = max
0≤E≤1

Tr{E(ρ1 − ρ2)} , (2.43)

where the maximizing positive operator is given by the projection Π{ρ1−ρ2≥0} onto
the subspace spanned by the eigenvectors that correspond to positive eigenvalues
of the Hermitian operator ρ1 − ρ2 .

The trace distance can be seen as the generalization of the Kolmogorov dis-
tance12 which represents a frequently used tool for classical probability distribu-
tions. For P1 = {p1,j}j∈I and P2 = {p2,j}j∈I over an index set I ⊂ N satisfying
pk,j ≥ 0 and ∑j∈I pk,j = 1, the Kolmogorov distance is given by (see, e.g., Nielsen
and Chuang (2000))

dK(P1, P2) = 1
2‖P1 − P2‖`1 = 1

2
∑

j∈I
|p1,j − p2,j | , (2.44)

which obviously defines a metric on the set of probability distributions. Clearly,
Eq. (2.44) represents the special instance obtained for Dirac measures of the general
measure theoretic formulation of the Kolmogorov distance. As the Kolmogorov dis-
tance can also be characterized as dK(P1, P2) = maxS⊂I |

∑
j∈S
(
p1,j − p2,j

)| where
S refers to any subset of the index set I , it thus quantifies the maximal difference
between the probabilities P1 and P2 that may be observed for an event. In the fol-
lowing, it is shown that its quantum generalization obeys a similar interpretation
with respect to the discrimination of states.

12In the literature, one also encounters the name (total) variational distance for this quantity
(see, e.g., Hayashi (2006)).
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Ensemble discrimination Based on the representation (2.43), it can be shown
that the trace distance defines a measure for the distinguishability of two states
relying on an operational meaning that is similar to the findings for the Kolmogorov
distance.

Consider a so-called one-shot, two-state discrimination problem where a sender
(Alice) and a receiver (Bob) have the tasks to prepare and to discriminate two
states by a single measurement, respectively (Hayashi, 2006). Alice prepares one
out of two quantum states ρ1,2 with corresponding probability p1,2 6= 1 and sends
it to Bob who performs a single generalized measurement (see above) in order to
infer which one of the two states he had received. As Bob has only a single try, it
might happen that it is impossible to distinguish the pair of states with certainty.
To guess best the state from a measurement with possible outcomes Ω ⊂ R , Bob
defines two sets of possible results, R and Ω\R , and assigns the state to be ρ1 if
the measurement outcome is in R and ρ2 if a value in Ω\R occurs. This strategy
effectively results in a two-valued POVM {ER, 1 − ER} where ER refers to the
collection of effects corresponding to outcomes in R . The probability for correct
state discrimination according to this strategy is then given by

Psuccess = p1Tr{ERρ1}+ p2Tr{(1− ER)ρ2}
= p2 + Tr{∆ER} , (2.45)

where the operator ∆ is defined as ∆ ≡ p1ρ1 − p2ρ2 . Clearly, the probability is
maximized by the projection Π{∆≥0} onto the positive part this operator. Employ-
ing that Tr{|X|} = Tr{X(Π{X≥0} − Π{X<0})} and 1H = Π{X≥0} + Π{X<0} holds
for any Hermitian operator X , one shows that the maximal success probability for
correct discrimination is given by (Hayashi, 2006)

Pmax
success = max

0≤ER≤1
Psuccess = 1

2 (1 + ‖∆‖1) . (2.46)

For an unbiased a prior distribution, i.e. p1 = p2 = 1/2, this eventually reduces to

P̃max
success = 1

2
(
1 +DT (ρ1, ρ2)

)
, (2.47)

so the trace distance defines the bias in favor for correct state identification es-
tablishing its interpretation as a measure for the distinguishability of two states
(Holevo, 1982; Hayashi, 2006; Helstrom, 1976). Note that the optimal measure-
ment strategy is given by a two-valued observable with eigenspaces {ρ1 − ρ2 ≥ 0}
and {ρ1 − ρ2 < 0} , which clearly depends on the pair of states.

2.4.2 Classical and quantum f-divergences

Another relevant class of distance measures that are inspired by classical quantities,
serving for the important task of comparison of probability measures, is provided
by generalizations of the so-called f-divergences which were introduced by Csiszár,
Marimoto, Ali and Silvey (see the work by Österreicher and Vajda (2003) and
references therein). In the following, particular f-divergences and their quantum
mechanical counterparts, the quantum Hellinger distance, the Bures metric and
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the quantum Jensen-Shannon divergence are considered.

Following Österreicher and Vajda (2003), one defines the intervals R+ = [0,∞)
and R0 = R+\{0} and denotes by F the set of convex functions f : R+ → R ∪∞
which are finite on RO and continuous on R+ . Note that the function f∗ defined
by f∗(x) = x · f(1/x) for x ∈ R0 is convex and continuous for any f ∈ F , too,
and one obtains x · f∗(y/x) = y · f(x/y) for all x, y ∈ R+ and f ∈ F by setting
0 · f(v/0) equal to zero if v = 0 and 0 · f(v/0) = v · f∗(0) for v > 0.
Definition 2.2. Let Pk = {pk,j}j∈I for k = 1, 2 denote two discrete13 probability
distributions over the same index set I ⊂ N . For f ∈ F the functional

df (P1, P2) =
∑

j∈I
p1,jf

(
p2,j
p1,j

)
(2.48)

is called the f -divergence14.

The well-known relative entropy (Kullback and Leibler, 1951) defines, for ex-
ample, the f -divergence associated with the convex function f(x) = x · ln x which
is typically denoted as H(P1 ‖ P2) (see, e.g., Nielsen and Chuang (2000)). Clearly,
an f -divergence typically fails to be symmetric and, therefore, to define a metric.
However, if the convex function is strictly convex at 1 and satisfies f(1) = 0 as
well as f∗(x) = f(x) for all x ∈ R ∪∞ , the associated f -divergence is symmetric
as well as positive semidefinite and nondegenerate as proven by Österreicher and
Vajda (2003). It is yet more complicate to warrant that the triangle inequality
holds. For the class of convex functions

fβ(x) =





1
1− 1

β

[
(1 + xβ)

1
β − 2

1
β−1(1 + x)

]
if β ∈ R0\{1} ,

(1 + x) ln 2 + x ln x− (1 + x) ln(1 + x) if β = 1
(2.49)

on R+ , it is indeed satisfied by the quantities (Österreicher and Vajda, 2003)

d̃fβ (P1, P2) = dfβ (P1, P2)min(β,12 ) . (2.50)

As the functions fβ also obey the other conditions mentioned before, these function-
als thus represent metrics. The distance measures corresponding to the parameters
β = 1/2 and β = 1 are of particular interest as they provide the basis for important
quantifiers on the state space. More precisely, the functionals

dH(P1, P2) ≡
√

1
2df1/2(P1, P2) , (2.51)

d∗J(P1, P2) ≡ 1
2df1(P1, P2) (2.52)

are called the Hellinger distance (Hellinger, 1909) and the Jensen-Shannon diver-
gence (Wong and You, 1985; Lin and Wong, 1990), respectively, where

df1/2(P1, P2) =
∑

j∈I

(√
p1,j −√p2,j

)2
, (2.53)

df1(P1, P2) = H
(
P1 ‖ 1

2(P1 + P2)
)

+H
(
P2 ‖ 1

2(P1 + P2)
)
. (2.54)

13One may similarly define f -divergences in the general framework of probability measures on
some measure space (Endres and Schindelin, 2003).

14Note that the name f-relative entropy is also used in the literature (see, e.g., Hayashi (2006)).



26 Chapter 2. States, the state space and operations thereon

Both quantities are obviously symmetric supporting the common attribution that
the Jensen-Shannon divergence defines the symmetric version of the relative en-
tropy. While dH defines a metric15, the Jensen-Shannon divergence is the square
of a metric on the space of probability distributions according to the previous
result (see also Endres and Schindelin (2003)). Note that the fβ-divergence in
the limit β → ∞ is half of the Kolmogorov distance (2.44) as one easily verifies
that limβ→∞ fβ(x) = 1

2 |1− x| . In the following, the quantum counterparts of the
Hellinger distance and the Jensen-Shannon divergence are introduced.

The Hellinger distance Besides the relative entropy, the Hellinger distance
represents a fundamental distance between two probability distributions that al-
lows to express the Fisher information (Hayashi, 2006), well-known from parameter
estimation (Helstrom, 1976). To generalize it to the quantum regime, one first ob-
serves that the Hellinger distance may be rewritten in terms of the `2-norm, i.e.,

dH(P1, P2) =
√

1
2‖
√
P1 −

√
P2‖`2 . (2.55)

Replacing this norm by the Hilbert-Schmidt norm ‖·‖2 (see Eq. (2.18)), when pass-
ing from classical probability distributions to quantum states, one obtains the
distance measure

DH(ρ1, ρ2) ≡
√

1
2 ‖
√
ρ1 −

√
ρ2‖2 =

√
1
2Tr

{
(√ρ1 −

√
ρ2)2} , (2.56)

which will be called quantum Hellinger distance16. Using the cyclic property of
the trace and the normalization of quantum states, one may rewrite Eq. (2.56) as

DH(ρ1, ρ2) =
√

1−A(ρ1, ρ2) , (2.57)

where A(ρ1, ρ2) ≡ Tr{√ρ1
√
ρ2} is referred to as the affinity (Luo and Zhang,

2004) which obviously coincides with the classical fidelity, defined as f(P1, P2) =∑
j∈I(p1,jp2,j)1/2 (Nielsen and Chuang, 2000), for commuting operators. The quan-

tum Hellinger distance is clearly symmetric and, in addition, nondegenerate (2.37).
Its range is given by the unit interval where the upper limit is attained if and only if
the states are orthogonal. Moreover, by means of a theorem by Schoenberg (1938),
one may prove the triangle inequality (see, e.g., Mendonça et al. (2008)) showing
that the quantum Hellinger distance indeed defines a metric on the state space.

Apart from defining a metric, this distance measure is also shown to be invariant
under unitary transformations, subadditive and contractive under CPT-maps (cf.
Eqs. (2.34), (2.39) and (2.35), respectively) (Luo and Zhang, 2004) as required in
the beginning of this section. Clearly, unitary invariance is simply inherited from
the Schatten p-norms, and the subadditivity follows from the fact that the affinity
is multiplicative (Luo and Zhang, 2004), i.e.,

A(ρ1 ⊗ σ1, ρ2 ⊗ σ2) = A(ρ1, ρ2)A(σ1, σ2) . (2.58)
15The fact that the Hellinger distance satisfies the triangle inequality can also be shown by

means of an elementary proof (see, e.g., Hayashi (2006)).
16Note that Luo and Zhang (2004) defined the quantum Hellinger distance as twice the given

distance measure.
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In fact, similarly to the proof given for the Bures metric in (Wißmann et al.,
2013), the subadditivity is obtained by considering the real-valued function Q :
[0, 1]× [0, 1]→ R defined by

Q(x, y) =
√

1−√x+
√

1−√y −
√

1−√xy , (2.59)

which is readily shown to be nonnegative. As the affinity satisfies 0 ≤ A(ρ1, ρ2) ≤ 1
for any two states, the function Q

(
A(ρ1, ρ2), A(σ1, σ2)

)
is thus nonnegative for any

four quantum states which may be rewritten as
√

1−
√
A(ρ1, ρ2)A(σ1, σ2) ≤

√
1−

√
A(ρ1, ρ2) +

√
1−

√
A(σ1, σ2) . (2.60)

It is easily seen that this inequality is equivalent to the subadditivity of the quan-
tum Hellinger distance (2.39) employing its definition (2.57) and the multiplicativ-
ity of the affinity.

Finally, it is worth remarking that the quantum Hellinger distance is bounded
from below by its classical counterpart just as the trace distance (cf. Sec. 2.4.1).
That is, one finds DH(ρ1, ρ2) ≥ dH(P1, P2) for any probability distribution Pk ={
Tr{Ejρk}

}
associated with the measurement of a POVM {Ej} in the state ρk .

The Bures metric There exists yet another possibility to generalize the classical
Hellinger distance to the quantum realm. According to Hayashi (2006), a quantum
version is provided by

DB(ρ1, ρ2) ≡ min
U unitary

√
1
2Tr

{
(√ρ1 −

√
ρ2U)(√ρ1 −

√
ρ2U)†

}
, (2.61)

defining a symmetric functional on the state space, too. By means of the charac-
terization Tr{|X|} = maxU Tr{UX} , this quantity is rewritten as

DB(ρ1, ρ2) =
√

1− Tr{|√ρ1
√
ρ2|} =

√
1−

√
F (ρ1, ρ2) , (2.62)

which is the well-known Bures metric17 (Bures, 1969; Bengtsson and Zyczkowski,
2007). The fidelity18 F (ρ1, ρ2) =

(
Tr
{√√

ρ2ρ1
√
ρ2
})2, which was introduced by

Uhlmann (1976) in order to generalize the Berry phase (Berry, 1984; Simon, 1983)
to mixed states as it extends the notion of a transition probability, is obviously
very similar to the affinity. In fact, these two quantities equal the classical fidelity
for commuting states, they are multiplicative (cf. Eq. (2.58)) and range from 0 to
1 where the lower and upper bounds are attained if and only if ρ1 ⊥ ρ2 or ρ1 = ρ2
holds, respectively (Nielsen and Chuang, 2000; Luo and Zhang, 2004).

Hence, the very same proof as for the quantum Hellinger distance applies to
the Bures metric proving that it is subadditive (2.39), too, as shown in (Wißmann

17Note that the frequently present factor
√

2 in the definition of the Bures metric (2.62) is
omitted in order to restrict its range to the unit interval. It appears that this quantity is referred
to as the sine distance in the literature (see, e.g., Mendonça et al. (2008)).

18Unfortunately, the square root of F (ρ1, ρ2) is also termed “fidelity” in the literature (see, e.g.,
Nielsen and Chuang (2000)).
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et al., 2013). And similarly, one has 0 ≤ DB(ρ1, ρ2) ≤ 1 where DB(ρ1, ρ2) = 1 holds
if and only if the states are orthogonal. Note that the Bures metric dominates
the quantum Hellinger distance, that is, one has DH(ρ1, ρ2) ≤ DB(ρ1, ρ2) where
equality holds for any pair of commuting quantum states. Finally, as the name
already suggests, the Bures metric DB defines indeed a metric on the state space
(see Gilchrist et al. (2005) and Mendonça et al. (2008) for a proof) as well as a
contraction with respect to CPT-maps (Nielsen and Chuang, 2000).

The Bures metric is particularly interesting because it is contractive under
CPT-maps and, in addition, Riemannian. That is, its infinitesimal form repre-
sents a Riemannian metric (Bengtsson and Zyczkowski, 2007) which actually is
the quantum Fisher information (see (Hübner, 1992, 1993) and (Braunstein and
Caves, 1994)). The quantum Fisher information is well-known from quantum pa-
rameter estimation (Helstrom, 1976; Holevo, 1982) as its inverse defines a sharp
lower bound for the variance of an unbiased estimator for parameters characteriz-
ing quantum states. The (infinitesimal) Bures metric is thus part of the quantum
version of a Cramér-Rao inequality (Braunstein and Caves, 1994).

The Jensen-Shannon divergence To define a quantum version of the classical
Jensen-Shannon divergence, one first observes that the classical distance measure
d∗J (cf. Eq. (2.52)) may be rewritten, as for the Hellinger distance before. In fact,
one finds

d∗J(P1, P2) = H
(1

2(P1 + P2)
)− 1

2

2∑

j=1
H(Pj) , (2.63)

where the Shannon entropy19 for a discrete probability distribution Pk = {pk,j}j∈I
reads

H(Pk) = −
∑

j∈I
pk,j ln pk,j , (2.64)

so that the range of the Jensen-Shannon divergence is found to be 0 ≤ d∗J(P1, P2) ≤
ln 2 (Majtey et al., 2005). Based on the representation (2.63), one may also gen-
eralize this distance measure to multiple probability distributions over the same
index set with weights πk . The so-called general Jensen-Shannon divergence (Lin,
1991)

d∗J,gen({Pk}, {πk}) ≡ H
(∑

k

πkPk
)
−
∑

k

πkH(Pk) (2.65)

has a wide range of applications including biological tasks and graph theory theory
(see Briet and Harremoës (2009) and references therein). Obviously, the initially
considered quantity d∗J is recovered when comparing only two probability distribu-
tions with unbiased weights which provides both the lower and upper bounds to
Bayes’ probability of error (Lin, 1991) and can be related to the mutual information
(Grosse et al., 2002).

19Note that this quantity is also frequently defined with respect to other logarithms, mainly to
base 2 (see, e.g., Helstrom (1976) and Holevo (1982)).
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The quantum counterpart of this distance measure is then obtained by replacing
the Shannon entropy with the von-Neumann entropy S(ρ) ≡ −Tr{ρ ln ρ} (see, e.g.,
Nielsen and Chuang (2000)). The quantum Jensen-Shannon divergence is thus
given by

D∗J(ρ1, ρ2) ≡ S
(

1
2(ρ1 + ρ2)

)
− 1

2

2∑

i=1
S(ρi) , (2.66)

which is symmetric, bounded and well-defined employing the convention 0·ln 0 = 0.
In fact, it obeys 0 ≤ D∗J(ρ1, ρ2) ≤ ln 2 for any pair of quantum states, where the
extremal values are again obtained for identical and orthogonal states as before
(Majtey et al., 2005). Just as its classical version, the quantum Jensen-Shannon
divergence clearly represents a smoothed and symmetric version of the quantum
counterpart of the relative entropy. Moreover, it is evident that it represents a
special instance (choosing πj = 1/2 for j = 1, 2) of the quantum counterpart of
Eq. (2.65)

D∗J,gen({ρk}, {πk}) ≡ S
(∑

k

πkρk
)
−
∑

k

πkS(ρk) , (2.67)

which is known as the Holevo χ quantity, used in quantum information theory to
quantify the maximally retrievable amount of classical information encoded by the
quantum states {ρk} with the a priori probability distribution {πk} (Holevo, 1973,
1977).

To define a metric, it remains to verify that the triangle inequality holds for
the quantum Jensen-Shannon divergence. Unfortunately, the validity of this prop-
erty has not yet been proven in general. It could, however, be shown that the
square root of D∗J satisfies the triangle inequality for two-level systems (Briet and
Harremoës, 2009) and, in addition, if restricted to pure states of arbitrary Hilbert
spaces (Lamberti et al., 2008). Note that Lamberti et al. (2008) obtained, in addi-
tion, numerical evidence that the triangle inequality is indeed true on the full set
of quantum states for any Hilbert space.

It is worth stressing that the quantum Jensen-Shannon divergence and, thus, its
square root is contractive under CPT-maps and invariant under unitary transfor-
mations (cf. Eqs. (2.35) and (2.34), respectively), but satisfies solely the restricted
additivity (Majtey et al., 2005)

D∗J(ρ1 ⊗ σ, ρ2 ⊗ σ) = D∗J(ρ1, ρ2) , (2.68)

at variance with the distance measures introduced before. Henceforth, the quantity

DJ(ρ1, ρ2) ≡
√
D∗J(ρ1, ρ2) , (2.69)

will be referred to as the quantum Jensen-Shannon divergence which thus defines
a contractive, with respect to CPT-maps, and unitarily invariant metric for two-
level systems satisfying20 0 ≤ DJ(ρ1, ρ2) ≤

√
ln 2. For convenience, the addendum

quantum for the quantum counterparts of the various distance measures presented
in this section will be omitted in the sequel if no confusion can arise.

20Note that it was erroneously claimed in Wißmann et al. (2013) that DJ is upper bounded
by unity which does, however, not change the results presented therein (cf. Sec. 3.5). Clearly,
replacing the natural logarithm by that to the base 2, one indeed obtains the bounds 0 ≤ DJ ≤ 1.
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2.4.3 Entanglement of formation

Besides geometric measures of entanglement as defined in Eq. (2.33), there exist, of
course, other measures for entanglement in bipartite systems such as the negativity
or those based on entropic quantifiers measuring how entangled a given bipartite
quantum state ρAB is by means of the distribution of the eigenvalues of its associ-
ated reduced states ρA or ρB . Clearly, a maximally entangled state (cf. Eq. (2.28))
yields maximally mixed reduced states whereas one obtains pure states if a pure
bipartite state is separable which thus may, for example, be distinguished using the
von-Neumann entropy introduced in the preceding section. The so-called entangle-
ment of formation indeed quantifies entanglement of arbitrary bipartite quantum
states in this way, generalizing the entanglement entropy quantifying pure state
entanglement. A related quantifier is given by the so-called concurrence which is
easily evaluated for two-qubit systems and will therefore be used to examine the
detection of initial correlations in open quantum system and the effect of nonlocal
memory effects later on in Sec. 3.5.2 and Ch. 5, respectively.

As argued before, the entanglement in pure bipartite states ρAB ∈ S(HA⊗HB)
may be quantified by Slog2(TrB{ρAB}), where the von Neumann entropy is to the
base 2, which one calls entanglement entropy (Nielsen and Chuang, 2000). This
quantifier is then extended to arbitrary quantum states by means of a convex
roof construction. That is, the entanglement of formation is defined according to
(Bennett et al., 1996)

EF (ρAB) = min
{(pj ,ρAB,j)}

∑

j

pjSlog2(TrB{ρAB,j}) , (2.70)

where the minimum21 is thus taken over all ensembles22 of pure states representing
the state ρAB , i.e. ρAB = ∑

j pjρAB,j . By construction, the entanglement of
formation reduces to the entanglement entropy and it describes the least expected
entanglement of any ensemble of pure states providing a decomposition of the state.
In this sense, it basically specifies the amount of entanglement that needs to be
shared in advance in order to create the state by means of local operations. Note
that the entanglement of formation is invariant under local unitary operations and
nonincreasing under local operations and classical communication (Bennett et al.,
1996).

Despite of its attractive interpretation, the entanglement of formation is typi-
cally hard to determine as the convex roof construction defines a high dimensional
optimization problem. Surprisingly, there exists an analytic expression for a bi-
partite system consisting of two-level systems. In fact, Wootters (1998) has shown
that the entanglement of formation for states ρAB ∈ S(C2 ⊗ C2) reads (see also
Hill and Wootters (1997))

EF (ρAB) = h
(1

2(1 +
√

1− C2(ρAB)2 ) , (2.71)

21Note that the minimum must, in fact, be replaced by the infimum as it may not be attained
in general.

22The quantity is unchanged if the minimization is extended to any ensemble of states repre-
senting ρAB as the minimal value is always attained for pure states ρAB,j (Hayashi, 2006).
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where the binary entropy h is given by h(x) = −x log2 x− (1− x) log2(1− x) and
C2 refers to the previously mentioned concurrence which is defined as

C2(ρ) = max{0, λ1 −
4∑

j=2
λj} . (2.72)

Here, the nonnegative real numbers λj refer to the eigenvalues of the operator23

(√ρρ̃√ρ)1/2 in decreasing order, i.e. λ1 ≥ · · · ≥ λ4 , where ρ̃ ≡ σ2 ⊗ σ2ρ∗σ2 ⊗ σ2
defines the so-called spin flipped state. The operator σ2 refers to the usual Pauli
spin operator24 (cf. Sec. 2.2) and the complex conjugate ρ∗ is defined with respect
to the standard computational basis for qubit systems {|j, k〉 = |j〉⊗|k〉 | j, k = 0, 1}
where {|j〉} denotes the eigenbasis of σ3 , i.e. one has σ3|j〉 = (−1)j+1|j〉 . Note that
the spin flipped state is similarly obtained by complex conjugation with respect to
the so-called “magic basis” (2.78)–(2.81) (Wootters, 1998).

It is readily shown that the concurrence takes values in the unit interval, where
product states have zero concurrence and it attains its maximal value if a state
is maximally entangled. Because the entanglement of formation as a function
of the concurrence is strictly monotonic on the interval [0, 1], the concurrence
defines a measure of entanglement in its own right25 (Coffman et al., 2000). For
a pure two-qubit state ρ = |ψ〉〈ψ| so that one has ρ̃ = |ψ̃〉〈ψ̃| with |ψ̃〉 = σ2 ⊗
σ2
∑
j,k〈ψ|j, k〉 |j, k〉 , the concurrence simply reads

C2(|ψ〉〈ψ|) = |〈ψ|ψ̃〉| , (2.74)

as the only possibly nonzero eigenvalue of the operator (√ρρ̃√ρ)1/2 = |〈ψ|ψ̃〉| |ψ〉〈ψ|
is given by |〈ψ|ψ̃〉| . This can, of course, be rewritten as

C2(|ψ〉) =
√

2
(
1− Tr{ρ2

A}
)
, (2.75)

where ρA ≡ TrB{|ψ〉〈ψ|} denotes the reduced, single qubit state associated with
|ψ〉 ∈ C2 ⊗ C2. This characterization defines the starting point for a generaliza-
tion of the concurrence to pure states of arbitrary systems (Rungta et al., 2001;
Albeverio and Fei, 2001) which may, in turn, be extended to any state by a convex
roof construction just as the entanglement of formation (2.70) (Chen et al., 2005).
Hence, for a bipartite state ρAB ∈ S(HA⊗HB) of a NA×NB-dimensional system
the concurrence is defined by

Cgen(ρAB) = min
{pj ,|ψj〉AB}

∑

j

pjCgen(|ψj〉AB) , (2.76)

23One may also show that they define the square roots of the eigenvalues of the non-Hermitian
operator ρρ̃ (Hayashi, 2006).

24Employing the representatives λj,k , λ̃j,k and λ′l of the SU(2)-generators (cf. Eq. (2.6)) along
with the assignment (σ1, σ2, σ3) ≡ (λ0,1, λ̃0,1, λ

′
0), one obtains the common representation

σ1 = ( 0 1
1 0 ) , σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.73)

of the Pauli spin operators if the basis {|j〉 | 0 ≤ j ≤ 1} , used to construct the generators, is
associated with the canonical basis of R2.

25Note that the square of the concurrence characterizes obviously entanglement, too. In the
literature, the square of C2 is referred to as the tangle (see, e.g., Adesso (2006)).
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where any ensemble {pj , |ψj〉AB} again provides a decomposition of the bipartite
state ρAB , i.e. ρAB = ∑

j pj |ψj〉AB〈ψj | . Moreover, one has

Cgen(|ψ〉AB) ≡
√

2
(
1− Tr{ρ2

A}
)
, (2.77)

for any pure states |ψ〉AB ∈ HA ⊗ HB with ρA = TrB{|ψ〉AB〈ψ|} in analogy to
Eq. (2.75). Obviously, the concurrence vanishes for pure product states |ψ〉AB =
|ψ〉A⊗ |ψ′〉B , whereas a maximally entangled state yields Cgen =

√
2(1− 1/NA) as

one has ρA = 1
NA
1NA in this case. However, as for the entanglement of formation,

the convex roof makes it difficult to determine the concurrence explicitly, in general.
A special class of states for which the concurrence has an explicit and re-

markably simple form, is given by Bell diagonal states. They are defined as
ρBell = ∑3

j=0 pj |Ψj〉〈Ψj | where {pj} refers to a probability distribution and the
pure states |Ψj〉 are defined as

|Ψ0〉 = 1√
2

(|1, 1〉+ |0, 0〉) , (2.78)

|Ψ1〉 = i√
2

(|0, 1〉+ |1, 0〉) = iσ1 ⊗ 12|Ψ0〉 , (2.79)

|Ψ2〉 = i√
2

(|0, 1〉 − |1, 0〉) = σ2 ⊗ 12|Ψ0〉 , (2.80)

|Ψ3〉 = 1√
2

(|1, 1〉 − |0, 0〉) = σ3 ⊗ 12|Ψ0〉 , (2.81)

thus denoting the Bell states with particular phases which is known as the “magic
basis” (Bennett et al., 1996). Employing that ρ∗Bell = ρBell as well as σ2⊗σ2ρBellσ2⊗
σ2 = ρBell holds for any probability distribution {pj} (Hayashi, 2006), one shows
that the concurrence is given by (Bennett et al., 1996; Hill and Wootters, 1997)

C2(ρBell) = max{0, 2 max
j
pj − 1} . (2.82)

In addition, one may show that the concurrence is determined by the coherence
factor for any Bell state ρΨj = |Ψj〉〈Ψj | subject to decoherence. In fact, focusing
on ρΨ1 without loss of generality, one recognizes that the time-evolved state

ρΨ1(t) = 1
2




0 0 0 0
0 1 κ(t) 0
0 κ(t)∗ 1 0
0 0 0 0


 , (2.83)

can be rewritten as ρΨ1(t) = Ut⊗12ρBellU
†
t ⊗12 where the probability distribution

characterizing the Bell state is given by p0,3 = 0 and pj = 1
2(1 − (−1)j |κ(t)|) for

j = 1, 2. Moreover, the unitary obeys Ut = eiϕ(t)|1〉〈1|+ |0〉〈0| with an phase factor
ϕ(t) = arg

(
κ(t)

)
. Since one has σ2U∗t = e−iϕ(t)Utσ2 , the relation
√√

ρ1(t)ρ̃Ψ1(t)
√
ρ1(t) =

√
Ut ⊗ 12ρ2

BellU
†
t ⊗ 12 (2.84)

is readily proven so that Eq. (2.82) applies which finally leads to

C2
(
ρΨ1(t)

)
= 2 · 1

2(1 + |κ(t)|)− 1 = |κ(t)| , (2.85)
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as the coherence factor satisfies 0 ≤ |κ(t)| ≤ 1 for all times t . Note that Chruściński
and Kossakowski (2010) have shown that the concurrence of any so-called X state

ρX(t) =




ρ11(t) 0 0 ρ14(t)
0 ρ22(t) ρ23(t) 0
0 ρ32(t) ρ33(t) 0

ρ41(t) 0 0 ρ44(t)


 (2.86)

is determined by

C2
(
ρX(t)

)
= 2 ·max{c1, c2, 0} , (2.87)

where the parameters cj are defined as c1 = |ρ23(t)| −
√
ρ11(t)ρ44(t) and c2 =

|ρ14(t)|−
√
ρ22(t)ρ33(t) . One immediately recognizes that this reduces to Eq. (2.85)

for ρX(t) = ρΨ1(t). Due to this result, the nonlocal memory effects of a two-qubit
open quantum system presented in Ch. 4 can be associated with the revivals of
entanglement.

2.5 Gaussian states in bosonic systems
In quantum physics, the complexity of tasks such as the previously touched char-
acterization and quantification of correlations scales, in general, polynomially or
even exponentially with the dimension of the underlying Hilbert space. It thus
seems unlikely that one is able to deal effectively with continuous variable systems
describing ubiquitous quantized physical systems like opto- or nanomechanical os-
cillators for example. Quite remarkably, there exists, however, a distinguished
class of states in infinite-dimensional systems that refutes this conjecture: Gaus-
sian states allow for a feasible characterization and quantification of entanglement
in terms of the covariance matrix of the canonical operators. From a theoretical and
practical point of view, they are also interesting as Gaussian states approximate
the peculiar state containing infinite entanglement that was considered by Ein-
stein et al. (1935) in order to demonstrate the incompleteness of quantum theory.
Because their production and manipulation is also routinely and reliably done in
the lab nowadays, these states are of great practical relevance for implementations
of quantum information tasks and quantum communication protocols (Weedbrook
et al., 2012).

2.5.1 Continuous variable systems

The Hilbert space of a bosonic many-particle system, describing indistinguishable
particles on a Hilbert space H , is given by the infinite-dimensional Fock space

F+(H) =
∞⊕

n=0
S+
( n⊗

k=0
H) , (2.88)

which is the closure of the infinite direct sum of the symmetrized n-fold tensor
power of the single-particle mode space H of the system. The Fock space is thus
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stacked according to the particle number. In the one-dimensional case, that is, H =
C for example, it is represented by the set of Lebesgue square-integrable functions
over the reals, i.e. F+(C) = L2(R) (Fannes, 2015). The natural isomorphism26

U : F+(H1 ⊕ H2) → F+(H1) ⊗ F+(H2) then allows to construct the Fock space
corresponding to any single-particle Hilbert space by means of the single mode
factors F+(C). In particular, one obtains F+(Cn) = ⊗n

k=1 L2(R) which in turn can
be identified with L2(Rn) according to Fubini’s theorem (Elstrodt, 2009).

A Hilbert space basis for the single mode Fock space L2(R) is given by the
so-called number basis {|m〉}m∈N0 , where N0 ≡ N∪{0} , defining eigenstates of the
number operator b̂†b̂ . Here, b̂ and b̂† refer to the Fock annihilation and creation
operators for F+(C) , respectively, which thus satisfy [b̂, b̂†] = 1 and [b̂, b̂] = [b̂†, b̂†] =
0. Defining |0〉 to be the so-called vacuum state which is annihilated by b̂ , i.e. it
satisfies b̂ |0〉 = 0, one determines the other elements of the number basis using the
relations b̂†|m〉 =

√
m+ 1|m + 1〉 and b̂ |m〉 =

√
m|m − 1〉 for all m ∈ N0 . With

respect to the position representation, these operators satisfy

〈x|b̂|ψ〉 = 1√
2
{
xψ(x) + i

d
dxψ(x)

}
, (2.89)

〈x|b̂†|ψ〉 = 1√
2
{
xψ(x)− i d

dxψ(x)
}

(2.90)

for |ψ〉 ∈ L2(R) where ψ(x) ≡ 〈x|ψ〉 and the vacuum state is given by ψ0(x) =
(1/π1/4) exp[−(1/2)x2] (Schrödinger, 1926; von Neumann, 1931; Fannes, 2015).

An n-mode bosonic system F+(Cn) is accordingly spanned by the sets of num-
ber bases {|m〉k}m∈N0 corresponding to each mode of the modes k , i.e. the so-
called Fock basis is given by

{⊗n
k=1 |m〉k |m ∈ N0

}
. Note that the creation and

annihilation operators of the different modes commute, that is, they satisfy the
fundamental commutation relations

[b̂j , b̂†k] = δjk , [b̂j , b̂k] = [b̂†j , b̂
†
k] = 0 , (2.91)

which in terms of the dimensionless canonical position and momentum operators27

q̂j ≡
1√
2

(b̂j + b̂†j) , p̂j ≡
−i√

2
(b̂j − b̂†j) (2.92)

are given by [q̂j , p̂k] = iδjk and [q̂j , q̂k] = [p̂j , p̂k] = 0. Grouping the position and
momentum operators into a 2n-component operator-valued vector

X̂ = (q̂1, p̂1, . . . , q̂n, p̂n)T , (2.93)

these relations may be compactly written as

[X̂j , X̂k] = i(Ωn)jk , (2.94)
26Note that for one-dimensional fermionic systems, which are described by the antisymmetrized

Fock spaces F−(C) = C
2, the natural isomorphism U between F−(Cn) and C

2n is called the
Jordan-Wigner transform, connecting fermionic mode operators and the Pauli spin operators
known from the study of spin chains (Sachdev, 2011).

27It is worth emphasizing that in quantum optics one typically uses a different convention
regarding the prefactor of q̂j and p̂j . The quantum optical convention corresponds to a prefactor
1/2, thus defining the quadrature components of b̂j .
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where the matrix Ωn obeys

Ωn =
n⊕

k=1
ω with ω =

(
0 1
−1 0

)
. (2.95)

This skew-symmetric and invertible matrix is also well-known in classical Hamil-
ton mechanics as it induces an alternating28 and nondegenerate bilinear form on
R2n that allows to write the Poisson bracket on classical phase space in a com-
pact way (Arnold, 1997; Dragt, 2005). In addition, the 2n× 2n-matrices that are
characterized by the relation

SΩnS
T = Ωn (2.96)

represent canonical transformations of the classical variables leaving Hamilton’s
equation of motion invariant. The so-called symplectic matrices define a group (in
fact even a Lie group, see Appendix A) which actually is the defining representation
of the real symplectic group Sp(2n,R) (Simon et al., 1994).

Elements of Sp(2n,R) are, however, not only relevant in classical physics but
also in quantum theory. A linear transformations X̂ ′ = SX̂ of the canonical
operators specified by a 2n×2n-matrix S is said to be canonical if X̂ ′ obeys the same
commutation relations as X̂ . It is easily shown that this yields Eq. (2.96), implying
that canonical linear transformations are in one-to-one correspondence with the
real symplectic group. On account of the Stone-von Neumann theorem (Stone,
1930, 1932; von Neumann, 1932a, 1931), it follows that these transformations of
the canonical operators are unitarily implementable. For each S ∈ Sp(2n,R) there
thus exists a unitary operator US acting on L2(R2n) such that

X̂ ′j =
∑

k

SjkX̂k = U †SX̂jUS , (2.97)

where the phase of the unitaries US , which is initially free, can be narrowed down
to a sign ambiguity. The general composition law, which follows from the irre-
ducibility of X̂ ′ , thus reads29

USUS′ = ±USS′ . (2.98)

This unitary representation is eventually generated by the set of Hermitian oper-
ators that are quadratic in the canonical operators (Arvind et al., 1995; Ma and
Rhodes, 1990). Note that the Hermitian operators that are quadratic at maximum,
i.e., (Ferraro et al., 2005)

H =
n∑

k

αk b̂
† +

n∑

l>k=1
βklb̂

†
k b̂l +

n∑

k,l=1
γklb̂

†
k b̂
†
l + h.c. , (2.99)

with complex-valued constants αk , βkl and γkl , generate the unitary representation
of the affine symplectic group ISp(2n,R) , describing transformations X̂ → SX̂+ ~d .

28A bilinear form b : V ×V → F on a vector space V over the field F is said to be alternating if
it obeys b(v, v) = 0 for all v ∈ V . It is moreover called nondegenerate if b(v, w) = 0 for all w ∈ V
implies v = 0.

29The two-valued unitary representation actually defines a faithful unitary representation of the
metaplectic group Mp(2n) which is a two-fold covering of Sp(2n,R) (Arvind et al., 1995).
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One easily recognizes that the second term leaves the total number of quanta
unchanged, which is referred to as passive device, whereas the first and third term
change the amount of quanta, thus being called an active apparatus. Examples
for these kinds of devices are provided by beam splitters and (non)degenerate
amplifiers in quantum optics (Ferraro et al., 2005).

Another important issue concerning the symplectic group is the diagonalization
of real symmetric and not indefinite matrices. Clearly, any real symmetric matrix
is diagonalizable by an element of the orthogonal group according to the spectral
theorem. If a 2n×2n-matrix is either positive or negative definite, it can, however,
also be diagonalized using symplectic matrices. The so-called symplectic diagonal-
ization follows from Williamson’s theorem (Williamson, 1936; Arnold, 1997) which
states that there exists a symplectic matrix S ∈ Sp(2n,R) for any real symmetric,
positive-definite (negative-definite) 2n× 2n-matrix V > 0 (V < 0) such that

SV ST = DV = diag(κ1, κ1, . . . , κn, κn) . (2.100)
The parameters κj , being called symplectic eigenvalues, are strictly positive (neg-
ative) and characterize the spectrum of the matrix ΩnV completely according to
spec(ΩnV ) = {±iκj |j = 1, . . . , n} (Olivares, 2012; Arvind et al., 1995). Note that
the symplectic matrix S and the Williamson normal form of V , that is, DV are
solely unique up to a permutation of the symplectic eigenvalues (Ferraro et al.,
2005).

2.5.2 Mathematical description of Gaussian states

Having introduced the formalism used to describe continuous variable systems in
quantum physics, one now focuses on the previously mentioned Gaussian states for
such systems. In complete analogy to Gaussian distributions in classical probability
theory (van Kampen, 2007), these states are fully characterized by the first two
moments of an operator, implying that the associated characteristic function is
Gaussian. In fact, a state of a continuous variable system ρ ∈ S(L2(Rn)

)
is said to

be an n-mode Gaussian state if and only if for all ~x, ~y ∈ Rn the observable

Ŷ =
n∑

j=1
(xj p̂j − yj q̂j) (2.101)

has a normal distribution on the real line in the state ρ (Parthasarathy, 2010).
Equivalently, the characteristic function χtρ(~x + i~y) ≡ 〈exp[−itŶ ]〉ρ of Ŷ in the
state ρ obeys (Olivares, 2012; Weedbrook et al., 2012; Parthasarathy, 2010)

χtρ(~z ) = exp
[
−it~vTΩn〈X̂〉ρ −

t2

2 ~v
TΩnσX̂,ρΩ

T
n~v

]
, (2.102)

where ~v = (x1, y1, . . . , xn, yn)T and 〈 · 〉ρ = Tr{ρ · } denotes the quantum mechanical
expectation values. Clearly, the exponential of Ŷ is related to the famous Weyl
or (n-mode) displacement operator D(~z) for ~z ∈ Cn (Parthasarathy, 2010; Scully,
1997) according to

exp[−itŶ ] = D
( t√

2
~z
)

= exp
[
t√
2

n∑

j=1
(zj b̂†j − z∗j b̂j)

]
. (2.103)
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The moments of the canonical operators can be determined by the derivatives
of χtρ with respect to the variables xj and yj at the origin just as in the classical
case. Note that the characteristic function is well-defined for any operator and
any state, even if the moments actually do not exist. One shows that the 2n-
dimensional real vector 〈X̂〉ρ is composed of the mean position 〈p̂j〉ρ and momenta
〈q̂j〉ρ , as its notation already suggests, whereas the 2n × 2n-matrix σX̂,ρ denotes
the covariance matrix of the operator X̂ = (q̂1, p̂1, . . . , q̂n, p̂n)T whose components
are specified by

(
σX̂,ρ

)
jk

= 1
2〈{X̂j , X̂k}〉ρ − 〈X̂j〉ρ〈X̂k〉ρ . (2.104)

While the diagonal elements yield the variances 〈〈X̂j〉〉ρ ≡ 〈X̂2
j 〉ρ − 〈X̂j〉2ρ of the

canonical operators, the off-diagonal terms characterize the correlation coefficient
of these operators, i.e.,

KX̂j ,X̂k(ρ) ≡
1
2〈{X̂j , X̂k}〉ρ − 〈X̂j〉ρ〈X̂k〉ρ√

〈〈X̂j〉〉ρ〈〈X̂k〉〉ρ
=

(
σX̂,ρ

)
jk√(

σX̂,ρ
)
jj

(
σX̂,ρ

)
kk

. (2.105)

Note that the correlation coefficient ranges from −1 to +1 and the covariance
matrix is positive apart from being real and symmetric, as is known from classical
probability distributions over a classical phase space (Simon et al., 1994).

Positivity of quantum states and the noncommutative structure of quantum
mechanics in opposition to classical physics sets, however, some further restrictions
on the covariance matrix. Indeed, the canonical commutation relations impose the
constraint

σX̂,ρ + i

2Ωn ≥ 0 (2.106)

on the covariance matrix of the canonical operators of any, generally non-Gaussian,
continuous variable state ρ (Simon et al., 1994). This inequality follows from the
fundamental Schrödinger uncertainty relation (Schrödinger, 1930; Griffiths, 2004)
and Williamson’s theorem (cf. Eq. (2.100)) as is demonstrated in Appendix B.

Summarizing, a state ρ ∈ S(L2(Rn)
)
is Gaussian with mean momenta and posi-

tion given by the elements of 〈X̂〉ρ and a covariance matrix σX̂,ρ if its characteristic
function obeys (2.102). However, does really any tuples of elements in R2n and real
symmetric and positive 2n × 2n-matrices that satisfy relation (2.106) correspond
to a Gaussian state? The answer is “yes” which can be shown using the theory of
positive definite kernels and quantum Bochner’s theorem.

Theorem 2.1. (Parthasarathy, 2010) Given ~r ∈ R2n and let V ∈ M2n(R) be a
real symmetric and positive-definite 2n× 2n-matrix. The function

gt(~x+ i~y) = exp
[
−it~vTΩn~r − t2

2 ~v
TΩnV ΩT

n~v
]

(2.107)

with ~v = (x1, y1, . . . , xn, yn)T defines the characteristic function of an n-mode
Gaussian state with mean position and momenta given by 〈X̂〉ρ = ~r and covariance
matrix σX̂,ρ = V if and only if the matrix V satisfies

V + i

2Ωn ≥ 0 . (2.108)
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In particular, there are no constraints imposed on the mean position and mo-
menta for Gaussian states. They can even be removed without changing the covari-
ance matrix because the characteristic function transforms under a Weyl transform,
leading to a state ρ′ ≡ D(~α)ρD(~α)†, according to

χtρ′(~z) = χtρ(~z) exp
[
2i t√

2
∑

k

Im(α∗kzk)
]
. (2.109)

Obviously, such a transformation does not alter the terms that are quadratic in ~z
which correspond to the covariance matrix. Due to this. choosing ~α ∈ Cn such that
Re(αj) = − 1√

2〈q̂j〉ρ and Im(αj) = − 1√
2〈p̂j〉ρ , the transformed Gaussian state ρ′ has

zero means while its covariance matrix equals that of ρ , i.e., one has 〈X̂〉ρ′ = 0 and
σX̂,ρ′ = σX̂,ρ . One may thus always assume that a Gaussian state has zero means
when studying solely properties of the covariance matrix.

It is also worth noticing that the famous Wigner function (Wigner, 1932;
Glauber, 1963; Cahill and Glauber, 1969)

Wρ,n(~v) ≡ 1
(2π)n

∫

Rn
dn~u e−i~yT ~u〈~x+ 1

2~u|ρ|~x− 1
2~u〉 (~ = 1) (2.110)

is related30 to the characteristic function (2.102) for t = 1. More precisely, the
quasi-probability distribution Wρ,n and the characteristic function are connected
by means of a Fourier transformation, i.e.,

Wρ,n(~v) = 1
(2π2)n

∫

R2n
d2n ~w ei~v

T ~w χt=1
ρ (Ωn ~w) , (2.111)

χt=1
ρ (Ωn ~w) =

∫

R2n
d2n~v e−i ~w

T~vWρ,n(~v) , (2.112)

where Ωn ~w is associated with ~z ∈ Cn according to zj = (Ωn ~w)2j−1 + i(Ωn ~w)2j . For
~w = (x1, y1, . . . , xn, yn)T one thus finds zj = yj − ixj . As a Fourier transformation
maps Gaussian distributions onto Gaussian distributions (see Eq. (C.41)), one may
similarly characterize Gaussian states by Gaussian Wigner functions (Weedbrook
et al., 2012). In fact, performing the Fourier transform explicitly, Eq. (2.102) is
shown to be equivalent to

Wρ,n(~w) = 1
πn
√

det
(
σX̂,ρ

) exp
[
−1

2(~w − 〈X̂〉ρ)Tσ−1
X̂,ρ

(~w − 〈X̂〉ρ)
]
. (2.113)

Note that the ordering of the canonical operators in the operator-valued vector
X̂ is crucial for the exact form of the relation (2.106). Another convenient choice
is given by X̂ ′ = (p̂1, . . . , p̂n, q̂1, . . . , q̂n)T which then corresponds to the inequality
(Ferraro et al., 2005)

S ± i

2βn ≥ 0 , where βn ≡
(

0 1n

−1n 0

)
, (2.114)

30The characteristic function can similarly be related to the Husimi Q-function (Husimi, 1940)
and the P -representation (Glauber, 1963; Sudarshan, 1963) which thus provide further descrip-
tions of Gaussian states.
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as one easily deduces from the original form (2.106) using the orthogonal transfor-
mation induced by the permutation matrix P mapping X̂ onto X̂ ′ . The charac-
teristic function transforms accordingly to

χtρ(~z) = exp
[
−it(lT~x−mT~y)− t2

2 (−~xT , ~yT )σX̂′,ρ

(
−~x
~y

)]
, (2.115)

where one has lj = 〈p̂j〉ρ and mj = 〈q̂j〉ρ .

2.5.3 Correlations in two-mode Gaussian states

As outlined in the introduction to this section, Gaussian states allow for a fea-
sible quantification of correlations. For two-mode Gaussian states for instance,
entanglement is characterized by a relation for the state’s covariance matrix that
is similar to Eq. (2.106). The covariance matrix determines also the quantum dis-
cord for this kind of continuous variable systems as shown by Giorda and Paris
(2010) and by (Adesso and Datta, 2010). This fact should actually not surprise
since Gaussian states are completely characterized by the first two moments, but
the first moments can be removed by local operations (cf. Eq. (2.109)) which thus
cannot be relevant for correlations.

In the following, the Peres-Horodecki criterion at the level of second moments is
introduced verifying entanglement in two-mode Gaussian states. First, recall that
the Peres-Horodecki criterion employs the fact that positive but not completely
positive maps might yield nonpositive states if applied to entangled states. Of
course, at first glance, this doesn’t seem to be advantageous compared to direct
attempts finding convex combinations that decompose a given state, character-
izing separability (see Eqs. (2.27)). Fortunately, a single positive map suffices in
some cases to reveal entanglement unambiguously. In fact, it can be shown that
positivity of the partial transpose ρTKAB , which refers to the state obtained due to
matrix transposition with respect to one subsystem only (K = A or B), provides
a necessary31 and sufficient condition for ρAB being separable for finite systems of
dimension 2× 2 and 2× 3 (Horodecki et al., 1996) as well as Gaussian states32 (Si-
mon, 2000). The positivity under partial transpose (PPT) which is also known as
Peres-Horodecki-criterion represents one of the most powerful tools in the context
of quantum entanglement known so far.

The validity of the PPT criterion for two-mode Gaussian states relies basi-
cally on the necessary and sufficient condition (2.106) on the covariance matrix of

31Clearly, the partial transpose of separable states of any kind of system is always positive (Peres,
1996). Positivity under partial transposition is, however, not sufficient in general. Entangled states
with positive partial transpose are known as bound entangled states (Horodecki, 1997). For finite
systems of dimension 2× 2 and 2× 3 it turns out to be sufficient, too, since any positive map on
C

2 can be decomposed as Λ1 + Λ2T where Λ1 and Λ2 refer to completely positive maps, whereas
T denotes the transpose (Strømer, 1963; Horodecki et al., 1996).

32The PPT criterion defines a necessary and sufficient condition for all (1 +N)-mode Gaussian
states under 1×N bipartitions (Werner and Wolf, 2001) as well as M ×N Gaussian states which
are invariant under local mode permutations in theM -mode an N -mode partitions (Serafini et al.,
2005; Adesso, 2006). Other necessary and sufficient conditions for bipartite entanglement were,
e.g., derived by Giedke et al. (2001, 2003b).
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quantum states. As Simon (2000) observed, the operation of transposition trans-
lates to a mirror reflection33 in the phase space, described by a sign change of
the momentum variables, so that the partial transposition (say, of the first subsys-
tem) transforms the canonical operators X̂ = (q̂1, p̂1, q̂2, p̂2)T of a two-mode system
according to X̂ → X̂(1) = ∆1X̂ where

∆1 ≡ diag(1,−1)⊕ 12 . (2.116)

The covariance matrix of a generic two-mode state ρ thus changes to σX̂(1),ρ =
∆1σX̂,ρ∆1 which must satisfy inequality (2.106), too, if the partial transpose of the
state is supposed to be positive. Hence, the Peres-Horodecki criterion at the level
of second moments reads

∆1σX̂,ρ∆1 + i

2Ωn ≥ 0 , (2.117)

which is satisfied by definition by any separable two-mode state. However, for
Gaussian states, Simon (2000) has proven that separability of a state also follows
from this inequality.

A convenient and manifestly Sp(2,R)⊕Sp(2,R) invariant form of this constraint,
which was actually used to prove that inequality (2.117) is indeed sufficient for a
state to be separable and allows for a direct characterization of many states, is
obtained using the four quantities

I1 = det(A) , I2 = det(B) , I3 = det(C) , I4 = det(σX̂,ρ) , (2.118)

associated with the covariance matrix

σX̂,ρ =
(
A C
CT B

)
. (2.119)

Clearly, these four quantities are invariant under any transformation induced by
Sloc =

(
S1 0
0 S2

)
∈ Sp(2,R)⊕Sp(2,R) . In terms of these invariants the PPT criterion

(2.117) can be written as

I1 + I2 − 2I3 ≤ 4I4 + 1
4 , (2.120)

which, in fact, directly follows from the representation of the necessary and suffi-
cient constraint on covariance matrices (2.106) (Simon, 2000)

I1 + I2 + 2I3 ≤ 4I4 + 1
4 , (2.121)

as all but I3 are also invariant under the partial mirror reflection, changing I3
to −I3 . As a consequence of this characterization, it is immediately clear that
Gaussian states with I3 ≥ 0 are separable (Simon, 2000). Moreover, two-mode
Gaussian states having zero discord34 obey I3 = 0 as zero discord is equivalent to

33This is explained by the fact that the transpose of a Hermitian operator is equivalent to its
complex conjugate which corresponds to a time reversal transformation.

34Even though a bipartite state is not entangled, there can sill be quantumness in the correla-
tions which is quantified by the so-called quantum discord (Ollivier and Zurek, 2001; Henderson
and Vedral, 2001). Zero discord states, containing solely classical correlations, are characterized
by separable states of the form ρAB =

∑
j
pj |χj〉A〈χj |⊗ρB,j where {|χj〉A} defines an orthonormal

basis of HA .
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C = 0. Thus, all but completely uncorrelated Gaussian states have nonclassical
correlations (Giorda and Paris, 2010; Adesso and Datta, 2010).

Common tools to quantify entanglement are given by the so-called negativity
and logarithmic negativity (Vidal and Werner, 2002) which measure the degree to
which the partially transposed state fails to be positive. For two-mode Gaussian
states the logarithmic negativity is for example defined as

E(σX̂,ρ) = max{0,− ln(2κ(1)
− )} , (2.122)

representing a monotonically decreasing function of the symplectic eigenvalues of
the partially mirrored covariance matrix σX̂(1),ρ . Note that one obtains for the
symplectic eigenvalues of a two-mode state in terms of the symplectic invariants
Ij (Serafini et al., 2004)

κ± =
[1

2
{
I1 + I2 + 2I3 ±

√
(I1 + I2 + 2I3)2 − 4I4

}]1/2
. (2.123)

Besides the logarithmic negativity, one can also use the entanglement of formation
(2.70) for symmetric Gaussian states as is shown by Giedke et al. (2003b).

It is worth noticing that the standard or normal form of covariance matrices
associated with two-mode states is given by (Botero and Reznik, 2003; Giedke
et al., 2003a,b)

σX̂,ρ =




a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b


 , (2.124)

where the diagonalization of the blocks A , B and C is achieved by local sym-
plectic transformations (Botero and Reznik, 2003; Giedke et al., 2003a). Clearly,
a pure35 two-mode Gaussian state requires a = b since the von Neumann en-
tropies of the two subsystems, which are determined by SV (ρ1,2) = f(

√
I1,2 ) where

f(x) = (x+ 1
2) ln(x+ 1

2)− (x− 1
2) ln(x− 1

2) , must be equal (Olivares, 2012).

2.5.4 Two classes of Gaussian states

The basic definition of Gaussian states for bosonic systems is now illustrated by
means of two important classes of these states which are obtained from thermal
states using symplectic transformations. Later on, these two classes will be used
to characterize the type of correlations needed to obtain nonlocal memory effects
(see Sec. 5.2).

It is easily proven that an n-mode thermal state

ρ
(n)
th =

n⊗

j=1

e−~ωj/(kBT )b̂†j b̂j

Tr
{
e−~ωj/(kBT )b̂†j b̂j

}

=
n⊗

j=1

1
Nj + 1

∞∑

m=0

(
Nj

Nj + 1

)m
|m〉j〈m| (2.125)

35The purity, i.e., P (ρ) = Tr{ρ2} is given by P (ρ) = [22n det(σX̂,ρ)]
−1/2 for Gaussian states

(Olivares, 2012). Hence, a two-mode Gaussian state is pure if and only if one has I4 = (1/16).
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at temperature T with frequencies {ωj | j = 1, . . . , n} defines a zero-mean Gaussian
state with diagonal covariance matrix σ

X̂,ρ
(n)
th

. More precisely, one finds for the
associated covariance matrix

σ
X̂,ρ

(n)
th

= diag(κ1, κ1, . . . , κn, κn) , (2.126)

where κj = Nj + 1/2 and Nj ≡ 〈b̂†j b̂j〉ρ =
{
exp[~ωj/(kBT )]− 1

}−1 defines the aver-
age number of photons in the jth mode (Olivares, 2012; Ferraro et al., 2005) whose
associated number basis is denoted by {|m〉j} . Obviously, the coefficients κj satisfy
κj ≥ 1/2 where equality holds if and only if the vacuum state is chosen, correspond-
ing to Nj = 0 for all modes. Hence, thermal states are Gaussian with covariance
matrices that are already in the Williamson normal form (2.100). Williamson’s
theorem thus shows that any n-mode Gaussian state ρ can be obtained from a
thermal state ρ(n)

th by means of a unitary transformation US corresponding to a
symplectic matrix S ∈ Sp(2n,R) which are generated by Hamilton operators that
are linear and quadratic in the creation and annihilation operators (see Eq. (2.99)).
That is, one has

ρ = USρ
(n)
th U

†
S (2.127)

for any n-mode Gaussian state whose symplectic eigenvalues are determined by
κj = Nj + 1/2 for some coefficients Nj ∈ R .

In the following, the so-called squeezed thermal and mixed thermal states, defin-
ing two particular classes of two-mode Gaussian states, are introduced and dis-
cussed.

Squeezed thermal states By means of the unitary operator

U
(2)
STS(ζ) = exp

[
ζb̂†1b̂

†
2 − ζ∗b̂1b̂2

]
, (2.128)

one obtains so-called squeezed thermal states when applied to ρ(n)
th (Kim et al., 1989;

Olivares, 2012). Here, ζ = r exp[iφ] is called the squeezing parameter where r ∈ R+
and φ ∈ [−π, π) are denoted squeezing factor and angle, respectively. Values about
r = 2 can, for example, be realized with a Josephson parametric amplifier (Zhong
et al., 2013). Note that this unitary corresponds to the symplectic matrix

S
(2)
STS(ζ) =

(
cosh(r)12 Rr,φ
Rr,φ cosh(r)12

)
(2.129)

with Rr,φ = sinh(r)
(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)
and, therefore, the covariance matrix of a two-

mode thermal state with mean photon number Nj is shown to transform to (see,
e.g., Marian et al. (2003))

σSTS
X̂,r,φ,Nj

=
(
a12 C
C b12

)
, (2.130)
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where C = c
(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)
and one has

a = 1
2 cosh(2r) +N1 cosh2(r) +N2 sinh2(r) , (2.131)

b = 1
2 cosh(2r) +N2 cosh2(r) +N1 sinh2(r) , (2.132)

c = 1
2(1 +N1 +N2) sinh(2r) . (2.133)

Obviously, for a real-valued squeezing parameter ζ corresponding to φ = 0,−π ,
the block matrix C is diagonal and, thus, the covariance matrix is in standard form
(2.124). For convenience, one describes this case by setting φ = 0 and assuming
that the squeezing factor can also be negative, i.e. one has r ∈ R .

It is worth mentioning that the squeezing operator U (2)
STS(r, φ) describes an

active device meaning that it adds energy to the thermal states. The difference
in the mean occupation number b̂†1b̂1 − b̂†2b̂2 is, however, conserved implying that
the squeezing operator shifts excitations between the two modes (Olivares, 2012).
Moreover, employing the PPT criterion (2.117), one deduces that a two-mode
squeezed thermal state is separable if and only if the squeezing factor satisfies the
following inequality (Marian et al., 2003)

cosh2(r) ≤ cosh2(rent) ≡
(N1 + 1)(N2 + 1)
N1 +N2 + 1 . (2.134)

Hence, for a sufficiently strong squeezing with respect to fixed mean occupation
numbers N1 and N2, specifying the threshold rent , positivity under partial trans-
position is violated so that σSTS

X̂,r,φ,Nj
describes an entangled two-mode Gaussian

state.
A special squeezed thermal state for a real-valued squeezing parameter is given

by the two-mode squeezed vacuum. As one has N1 = N2 = 0, it is clearly sym-
metric, i.e., one has a = b (cf. Eqs. (2.131) and (2.132)) and, in addition, it shows
perfect correlations in the photon numbers for which reason it is also referred to
as twin-beam state (Ferraro et al., 2005). The covariance matrix is thus given by

σEPR
X̂,r

≡ σSTS
X̂,r,φ=(0,π),Nj=0 = 1

2

(
cosh(2r)12 sinh(2r)σ3
sinh(2r)σ3 cosh(2r)12

)
, (2.135)

where r ∈ R and σ3 denotes the usual Pauli spin operator. By comparison with
Eq. (2.134), one recognizes immediately that this Gaussian state is entangled if and
only if r 6= 0. This is also readily understood by looking at the state’s representa-
tion in the Fock basis (Giedke et al., 2003b)

|ψu〉 ≡ U (2)
STS(ζ)|0〉 ⊗ |0〉 =

√
1− u2

∞∑

n=0
un|n〉 ⊗ |n〉 , (2.136)

where u = tanh(r) (see Appendix C). In the limit |r| → ∞ , this state represents the
analog of the maximally entangled Bell states (2.78)–(2.81) for continuous variable
systems and may therefore be seen as the physical realization of the model used
by Einstein, Podolski and Rosen in their famous Gedankenexperiment (Einstein
et al., 1935). Due to this, the two-mode squeezed vacuum is also called EPR
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state (Weedbrook et al., 2012). The strong correlations or anti-correlations in the
particle positions are clearly seen by looking at the position representation

ψu(x, y) = 1√
π

exp
[
−1

4
1− u
1 + u

(x+ y)2 − 1
4

1 + u

1− u(x− y)2
]
. (2.137)

For r → +∞ , the exponent is dominated by the second term yielding a wave
function with strongly correlated particle positions, whereas the opposite limit
(r → −∞) leads to a wave function describing strong anti-correlations of the
positions of the particles. Hence, ψu(q1, q2) approximates a delta function δ(q1∓q2)
for r → ±∞ . This implies in particular that this state approaches an eigenstate
of the operator

Â∓ = q̂1 ∓ q̂2 (2.138)

in the appropriate limit which accordingly leads to a vanishing variance, i.e., it
leads to 〈〈Â∓〉〉|ψu〉 → 0 for r → ±∞ .

The basic intuition gathered from Eq. (2.136) concerning the dependence of
the strength of bipartite correlations on the squeezing factor is supported by the
concurrence (2.77) which is fount to be given by

Cgen(|ψu〉) =
√

2
(
1−

√
1−Kq̂1,q̂2(|ψu〉)2) (2.139)

for the EPR state where the correlation coefficient (2.105) obeys

Kq̂1,q̂2(|ψu〉) = c+√
ab

= tanh(2r) . (2.140)

Hence, the squeezing factor indeed determines the amount of entanglement. Note
that any pure two-mode Gaussian state can be transformed into a two-mode
squeezed vacuum by virtue of local symplectic operations which means that the
EPR states’ orbit under local symplectic groups contains all pure two-mode Gaus-
sian states. Note that this result generalizes also to arbitrary pure 2n-mode Gaus-
sian states (Botero and Reznik, 2003; Giedke et al., 2003a). As the purity of |ψu〉 ,
determining Cgen(|ψu〉), is given by the local symplectic invariant I1 defined in
Eq. (2.118) (see Appendix B), one directly concludes that the generalized concur-
rence for any pure two-mode Gaussian state is given by Eq. (2.139).

Finally, it is worth noticing that two-mode squeezing can be realized by means
of single-mode squeezing and the action of beamsplitters. More precisely, the two-
mode squeezing operator (2.128) can be represented as

U
(2)
STS(ζ) = U

(2)
MTS(π4 e

iθ)U (1)
STS,1(ζeiθ)⊗ U (1)

STS,2(−ζe−iθ)U (2)
MTS(π4 e

iθ)† , (2.141)

where

U
(2)
MTS(χ) = exp[χb̂†1b̂2 − χ∗b̂1b̂†2] (2.142)

describes the action of a beam splitter on two modes of the electromagnetic field and
U

(1)
STS,j(ζeiθ) = exp

[1
2(ζ(b̂†j)2− ζ∗(b̂j)2)

]
defines the single mode squeezing operator

(Ferraro et al., 2005).
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Mixed thermal states If the mixing unitary U (2)
MTS(χ) is not accompanied by

the single-mode squeezing, then one obtains mixed thermal states, defining the
second important class of zero-mean two-mode Gaussian states. The symplectic
matrix corresponding to the linear mixing of modes reads

S
(2)
MTS(χ) =

(
cos(τ)12 R̃τ,θ
R̃Tτ,θ cos(τ)12

)
, (2.143)

where χ = τ exp[iθ] with θ ∈ [0, 2π) and τ ∈ R+ , as well as

R̃τ,θ = sin(τ)
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (2.144)

One readily shows that this operation does not entangle a thermal state and that
the total number of quanta in the two modes is unchanged, implying that the two-
mode vacuum is invariant under this transformation. If it represents the action
of a beam splitter, then the coupling χ is proportional to the interaction length
and the linear susceptibility of the linear optical medium. Moreover, the quantity
cos2(τ) is typically referred to as the transmissivity of the beam splitter (Ferraro
et al., 2005).

For a real-valued parameter χ , the covariance matrix of a two-mode thermal
state ρ(2)

th with mean occupation numbers N1 and N2 is then transformed to

σMTS
X̂,τ,Nj

=
(

(cos2(τ)N1 + sin2(τ)N2 + 1
2) 12 sin(τ) cos(τ)(N2 −N1) 12

sin(τ) cos(τ)(N2 −N1) 12 (cos2(τ)N2 + sin2(τ)N1 + 1
2) 12

)
,

defining a covariance matrix that is in standard form for any possible values of τ
and the mean occupation numbers. Moreover, for non-vacuum states these states
are obviously mixed as a direct calculation of the purity shows.

A representation that is similar to the EPR state’s covariance matrix is obtained
by assuming a perfect beam splitter, characterized by cos2(τ) = 1/2, and mean
occupation numbers N1 = 0 as well as N2 = cosh(2r) − 1 with r ∈ R . For this
configuration, the previous covariance matrix reads

σMTS
X̂,r

= 1
2

(
cosh(2r)12 {cosh(2r)− 1}12

{cosh(2r)− 1}12 cosh(2r)12

)
, (2.145)

which is symmetric and describes a separable two-mode Gaussian state since the
2×2-matrix in the upper right corner is obviously positive definite for any nonzero
value of r (cf. Eq. (2.120)). Hence, these states indeed represent separable but
correlated two-mode Gaussian states. Comparing the covariance matrices of the
mixed thermal state (2.145) to those of the EPR state (2.135), it is clear that the
relative sign of the cross-covariances 〈q̂1q̂2〉ρ and 〈p̂1p̂2〉ρ discriminates these two
types of symmetric Gaussian states along with the type of correlations described
by them.

To complete the analysis of this particular kind of mixed thermal state, one
considers its position representation which is obtained by means of the Weyl trans-
form representing the inverse of the Wigner transform (see Appendix D). In fact,
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one finds for the density matrix ρσMTS
X̂,r

(~x, ~y) ≡ 〈~x|ρσMTS
X,r
|~y〉 with ~x, ~y ∈ R2

ρσMTS
X̂,r

(~x, ~y) = 1
π

√
1

2 cosh(2r)− 1 exp
[
−1

4(~x− ~y)TB(~x− ~y)
]

· exp
[
−1

4(~x+ ~y)TB−1(~x+ ~y)
]
, (2.146)

where
B =

(
cosh(2r) cosh(2r)− 1

cosh(2r)− 1 cosh(2r)

)
. (2.147)

The inverse is approximately given by B−1 ≈ 1
2

(
1 −1
−1 1

)
for r � 1 so that the

diagonal elements of the density matrix obey

ρσMTS
X̂,r

(~x, ~x) ≈ 1
π

√
1

2 cosh(2r)− 1 exp
[
−1

2(x1 − x2)2
]
, (2.148)

representing a Gaussian distribution with constant variance with respect to differ-
ence in the particle positions. Hence, these states have a nonzero second moment
of the operator Â− = q̂1 − q̂2 (cf. Eq. (2.138)) which converges to unity for r � 1
as one easily shows. This fact is in contrast to the behavior for the EPR state
(2.137) where the diagonal elements in the position representation are increasingly
correlated in the particle positions with corresponding variance exp[−2r] for posi-
tive squeezing parameters, thus approaching a delta function.



Chapter 3

Open quantum systems

Having introduced the state space along with some results concerning its structure,
the current chapter is dedicated to open systems and their dynamics providing the
framework for the description of almost every quantum physical system of practi-
cal relevance. Indeed, the interaction of a quantum system with an environment
is ubiquitous in any realistic physical system necessitating a proper and efficient
description of the arising, irreversible dynamics of the quantum system. The the-
ory of open quantum system offers numerous methods such as projection operator
techniques (Nakajima, 1958; Zwanzig, 1960; Prigogine, 1962; Hashitsumae et al.,
1977; Shibata et al., 1977; Chaturvedi and Shibata, 1979; Shibata and Arimitsu,
1980), influence functional and path integral techniques (Grabert et al., 1988)
achieving this task. In addition, it provides advanced methods such as quantum
Monte Carlo methods and stochastic wave function techniques (Breuer et al., 1999;
Piilo et al., 2008) to simulate the Feynman-Vernon path integral and to determine
the solution of master equations, respectively. By means of the mentioned tech-
niques, an effective description of actual systems present in various experiments is
in fact possible. In the following the fundamental concepts used in the theory of
open quantum systems, such as dynamical maps and quantum master equations,
are reviewed and the exactness of the second order time-convolutionless projection
operator technique is discussed. Finally, the implication of nonfactorizing initial
conditions for the open system dynamics and their possible detection by means of
distance measures are studied. As a result of this thesis employing two exactly
solvable models, the trace distance is shown to represent a much more sensitive
means to witness initial correlations in comparison to the other measures intro-
duced in Sec. 2.4.2.

3.1 Microscopic approach to open systems

The concept of open quantum systems applies to the setup of joint, interacting
physical systems where only a description for a part of the total system is requested.
The open system S is comprised of the relevant degrees of freedom which are in
contact with its environment E referring to the remaining degrees of freedom of
the total system. When performing the splitting of the total system’s Hilbert
space HSE into the two subsystems HS and HE associated with the open system

47
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and the environment, respectively, it is typically assumed that the environment is
sufficiently large so that the total system is closed. That is, the time evolution of
any of its states ρ ∈ S(HSE) is presumably governed by the Liouville-von Neumann
equation (in the Schrödinger picture) (Breuer and Petruccione, 2002)

d
dtρSE(t) = −i[H(t), ρSE(t)] ≡ L(t)ρSE(t) , (3.1)

where Planck’s constant ~ is again set to unity, and H(t) refers to the possibly
time-dependent Hamiltonian of the total system. In fact, one may actually assume
that the Hamiltonian is time-independent if the system is sufficiently large. A con-
venient approach in the theory of open quantum systems i to split the Hamiltonian
into two parts

H(t) = H0(t) +HI(t) , (3.2)

separating the free evolution of the open system and its environment, which is
represented by H0(t) = HS(t) ⊗ 1E + 1S ⊗ HE(t) , from the interaction between
them which is described by HI(t). Employing the notation of the Liouville-von
Neumann equation (3.1) in terms of the Liouvillian superoperator L(t) , the formal
solution of Eq. (3.1) for a state ρSE(t0) at some initial time t0 is given by

ρSE(t) = G(t, t0)ρSE(t0) , (3.3)

where the propagator G obeys

G(t, t0) = T← exp
[∫ t

t0
dsL(s)

]
. (3.4)

It obviously satisfies d
dtG(t, t0) = L(t)G(t, t0) with initial condition G(t0, t0) = I ,

where I denotes the identity on the level of superoperators. Note that T← refers to
the chronological time-ordering meaning that the superoperators are ordered with
decreasing time arguments from left to right. Correspondingly, T→ describes the
anti-chronological time-ordering of operators.

The actual state of the open system at time t is finally determined by averaging
over the environmental degrees of freedom which is described by the partial trace
over the Hilbert space HE of the time-evolved total state ρSE(t) , i.e.,

ρS(t) = TrE{G(t, t0)ρSE(t0)} . (3.5)

One may equivalently write this as

ρS(t) = TrE{U(t, t0)ρSE(t0)U †(t, t0)} , (3.6)

where the unitary operator U(t, t0) defines the solution of the differential equation

d
dtU(t, t0) = −iH(t)U(t, t0) (3.7)

for the initial condition U(t0, t0) = 1SE . For time-independent Hamiltonians
Eq. (3.7) gives rise to the one-parameter family of operators U(t, t0) = exp[−i(t−
t0)H] .
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Despite the clear and elegant formulation of the dynamics of an open quantum
system, the determination of the propagator still represents the challenging major
difficulty. Even in the simple case of time-independent Hamiltonians, the open
system’s dynamics is not easily solved in general. An objective of the theory of
open quantum systems is exactly to tackle this issue by providing an analytically
or numerically feasible formulation of the dynamical evolution of the open system
(Breuer and Petruccione, 2002). Most of the strategies developed within this en-
deavor are defined in the interaction picture removing the free evolution of the
open system and the environment. The Liouville-von Neumann equation in this
picture reads

d
dtρSE(t) = −i[H̃I(t), ρSE(t)] ≡ L̃(t)ρSE(t) , (3.8)

where H̃I(t) refers to the interaction picture representation of the Hamiltonian
HI(t) which is given by

H̃I(t) = U †0(t, t0)HI(t)U0(t, t0) , (3.9)

Here, U0(t, t0) solves the differential equation (3.7) for H0(t) generating the free
evolution. Based on these preliminaries, some of the concepts and descriptions
used in the theory of open quantum systems are introduced in the subsequent sec-
tion.

3.2 Quantum dynamical maps

Before turning to the efficient description for the reduced dynamics provided by the
time-convolutionless projection operator technique, the fundamental mathematical
properties of the dynamical evolution defined by Eq. (3.6) are considered. Clearly,
if one assigns a reduced state ρS(t0) to the “initial” total system state ρSE(t0) ,
Eq. (3.6) defines a closed equation for the time evolution of the reduced state.
Assuming that such an assignment can be established for any reduced state, this
results in a map which completely characterizes the dynamical evolution of the
open system. Indeed, upon introducing the so-called assignment map A : S(HS)→
S(HSE), which assigns a unique total system state to any given state of the open
system, the so-called quantum dynamical map Φt,t0 : S(HS) → S(HS) is defined
by

Φt,t0(·) = TrE{U(t, t0)A(·)U †(t, t0)} , (3.10)

so that one has ρS(t) = Φt,t0

(
ρS(t0)

)
. Clearly, Φt0,t0 represents the identity oper-

ator for t0 . Since it determines the open system state ρS(t) at time t according
to the action of the dynamics for any initial state ρS(t0) , it is actually referred
to as the quantum dynamical map corresponding to time t with initial time t0 .
Obviously, this map combines the three parts in which the microscopic treatment
(3.6) for the reduced dynamics can be split up: the assignment of a state of the
total system, a subsequent unitary evolution and, finally, the partial trace over the
environment.
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To define a proper map on the state space, the dynamical maps for any initial
time must be trace preserving and completely positive as discussed in Sec. 2.4. It
follows from the structure of a dynamical map that these constraints boil down
to the very same requirements on the assignment map. Moreover, to ensure that
Φt0,t0 is the identity operator, it must additionally be consistent, i.e., it has to
satisfy

ρS(t0) = TrE{A
(
ρS(t0)

)} . (3.11)

Clearly, factorizing initial conditions corresponding to A(ρS) = ρS ⊗ ρE for a fixed
environmental state ρE are one possibility for an assignment map which obeys these
constraints. In addition to the mentioned necessary properties of an assignment
map, this particular approach is also linear and, thus, leads to a linear dynamical
map. As shown by Pechukas (1994) and Jordan et al. (2004), any assignment map
A that is not only positive and consistent but also convex linear (cf. Eq. (2.24))
on S(HS) corresponds already to factorizing initial conditions (see also Lindblad
(1996)). That is, there is no other type of assignment map than A(ρS) = ρS ⊗ ρE
obeying all these constraints.

The rather drastic assumption of factorizing initial conditions is consequently
the only possibility to obtain a linear dynamical map defined on the entire state
space unless, e.g., either the trivial action for t = 0 or linearity of the map is aban-
doned (Pechukas, 1994, 1995; Alicki, 1995). This means that there exist assignment
maps that are not consistent or linear which still lead to a description of the open
system dynamics in terms of completely positive and trace preserving maps. One
may just as well restrict the domain of the maps, which is equivalent to aban-
don positivity of the assignment map, in order to obtain a CPT-dynamics1 in the
presence of initial correlations in the total state (Masillo et al., 2011; Rodríguez-
Rosario et al., 2010, 2008). Table 3.1 summarizes the properties of assignment
maps in the presence of different kinds of initial correlations in the total state.
Due to the structure of the state space and the reduced dynamics, it is, however,
rather natural to require consistency and linearity for any dynamical map so that
factorizing initial conditions indeed represent the most reasonable ansatz2.

Now, assuming a factorizing assignment map associated with a fixed initial
environmental state ρE(t0) , the dynamical map (3.10) reads

Φt,t0

(
ρS(t0)

)
= TrE{U(t, t0)ρS(t0)⊗ ρE(t0)U †(t, t0)} , (3.12)

which obviously defines a linear map on the state space S(HS) at any time t (see
Fig. 3.1 for an illustration of the definition of Φ). The lack of correlations in

1The fundamental requirement of complete positivity may be questioned since one may raise
the objections that there is either no entangled ancillary system, as it is part of the environment,
or the simple dilation of the dynamical process to the compound system of the open system and
ancilla provides an incorrect description of the dynamics of the joint system which may thus cause
unphysical results if complete positivity is not given (Dominy and Lidar, 2016).

2A more general approach achieving this type of subdynamics is based on restricting not only
the set of admissible open system states but also the applied unitary evolutions which might result
in (physically valid but) non-CP evolutions (Dominy et al., 2016; Dominy and Lidar, 2016). The
constraints imposed on the unitaries ensure that two different total states with the same reduced
state evolve in the same way which may fail in general (see, e.g., Štelmachovič and Bužek (2001,
2003)). The case of a factorizing assignment map is recovered within this ansatz if no constraints
on the set of unitaries are imposed.
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type of correlations assignment map
consistent linear positive

none X X X
classical − X X
quantum X X −

Table 3.1 – Properties of assignment maps for different types of system-
environment correlations in the associated total states (cf. Tab. 1 in Rodríguez-
Rosario et al. (2010)). Note that classical and quantum correlations are defined
with respect to quantum discord (Ollivier and Zurek, 2001; Henderson and Ve-
dral, 2001). Classically correlated states, having zero discord, are represented as
ρAB =

∑
j pj |χj〉A〈χj | ⊗ ρB,j for some orthonormal basis {|χj〉A} of HA , whereas

states having nonzero discord are said to have quantum correlations which is not
necessarily given by entanglement.

the initial total system state can, for example, be realized by measuring the open
system at the initial time t0 . Of course, one can also imagine that the open system
is first brought into contact with the environment at time t0 , ensuing that the two
subsystems are statistically independent before. Note that one typically obtains
different dynamical maps by changing the environmental state whereas the total
system still evolves due to the same unitary dynamics.

It is directly proven that the above dynamical map preserves the trace and
Hermiticity, and is completely positive, i.e. one has

TrS{Φt,t0(X)} = TrS{X} , (3.13)
Φt,t0(X)† = Φt,t0(X†) , ∀ X ∈ B(HS) (3.14)

and

(Φt,t0)?n(Y ) ≥ 0 , ∀ 0 ≤ Y ∈ B(HS)⊗Mn(C) , (3.15)

for any n ∈ N (cf. definition 2.1), respectively. The latter property can, for exam-
ple, be confirmed by a direct calculation of the Kraus representation (2.32). Upon
inserting the spectral decomposition of the environmental state ρE = ∑

j λj |j〉〈j|
in Eq. (3.12) and performing the partial trace, one obtains

Φt,t0

(
ρS(t0)

)
=
∑

j,k

Ωj,kρS(t0)Ω†j,k , (3.16)

Figure 3.1 – Commutative diagram that uniquely defines the linear CPT-map
(3.12) associated with a factorizing assignment map.
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where the Kraus operators obey Ωj,k =
√
λk〈j|U(t, t0)|k〉 . In summary, any re-

duced dynamics based on a microscopic approach, associated with a unitary dy-
namics of the joint system of the open system and the environment, as well as
factorizing initial conditions is described by a linear CPT-map.

It is worth noticing that Stinespring’s dilation theorem (Stinespring, 1955)
provides somewhat of the reverse statement. In fact, it states that any linear CPT-
map between states of any Hilbert spaces is precisely of the kind of Eq. (3.12). That
is, given a linear CPT-map Λ on S(HS) , there exists an auxiliary system HA and
a unitary operator U on HS ⊗HA such that the CPT-map may be written as

Λ(ρS) = TrA(UρS ⊗ ρAU †) (3.17)

for all ρS ∈ S(HS), where ρA refers to some state on HA . The auxiliary system’s
Hilbert space can be chosen such that dimHA ≤ (dimHS)2. Note that the rep-
resentation is only unique up to unitary equivalence and can also be extended to
output Hilbert spaces that are different from HS (Hayashi, 2006). However, it is
an open problem whether the Stinespring dilation of a quantum dynamical process
given by the one-parameter family of dynamical maps associated with the initial
time t0 , i.e.,

Φ = {Φt,t0 | t ≥ t0, Φt0,t0 = IS} , (3.18)

results in a one-parameter group of unitary operators {U(t, t0) | t ≥ t0 , U(t0, t0) =
1SA} describing an ordinary unitary evolution of the open system and some fixed,
auxiliary system.

Clearly, the one-parameter family of dynamical maps (3.18) provides full infor-
mation about the time evolution of any state of the open system as it determines
the reduced state at any time for any initial state. It is generally assumed that
any quantum dynamical process of an open quantum system may be described by
such a family of maps. Properties of the open system dynamics such as quan-
tum non-Markovianity (see Ch. 4) then correspond to particular features of the
one-parameter family of maps. Henceforth, one sticks to the convention that a
dynamical map defines a linear CPT-map if not stated differently.

3.3 General master equation

The formal description of the dynamical evolution of the open quantum system in
terms of dynamical maps is obviously of no help if the exact dynamics must be
determined. To this end, one still needs to determine a solution to the Liouville-
von Neumann equation (3.1). This task may, for example, be accomplished using
several theoretical and numerical approaches that are formally exact but allow for
feasible approximations of the exact dynamics. In fact, the projection operator
techniques (Nakajima, 1958; Zwanzig, 1960) provides a famous example of such an
approach leading to an exact description for the dynamical evolution of the open
quantum system in terms of a so-called quantum master equation (see Sec. 3.3.1).
Before turning to the details of this method, the commonly used characteriza-
tion based on time-local quantum master equations is introduced along with a
discussion on general features of this representation arising from the fundamental
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properties of dynamical maps.

Similar to the Liouville-von Neumann equation, a quantum master equation
describes the dynamics of an open quantum system by a first-order differential
equation. That is, one has

d
dtρS(t) = KtρS(t) , (3.19)

where the generator Kt must obviously preserve Hermiticity and the trace to gen-
erate a physical evolution which is equivalent to the relations

{KtX
}† = KtX and TrS{KtX} = 0 , (3.20)

that must be satisfied for all t and any Hermitian operators X on HS . One may
show that these two constraints imply that the generator has the general form
(Gorini et al., 1976; Breuer, 2012a)

KtρS(t) =− i[H ′S(t), ρS(t)]

+
∑

j

γj(t)
[
Aj(t)ρS(t)A†j(t)− 1

2{A
†
j(t)Aj(t), ρS(t)}

]
, (3.21)

where Aj(t) denote arbitrary bounded linear operators on HS which are called
generalized Lindblad operators describing the various decay channels of the system
with associated decay rates given by γj(t) . Note that the Hermitian operatorH ′S(t)
does typically not coincide with the free Hamiltonian of a microscopic approach
(3.2). In fact, it may contain additional terms due to the interaction of the open
system with its environment. Looking at the structure of the generator, it is clear
that a time-local master equation extends the description provided by a Liouville-
von Neumann equation: while the first term of Kt is an ordinary Liouville-von
Neumann contribution, which thus represents the reversible, Hamiltonian evolution
of the open system – even though with respect to the altered Hamiltonian H ′S(t)
–, the second term induces irreversible effects like dissipation. The latter term
is accordingly referred to as the dissipator (see, e.g., Ingarden and Kossakowski
(1975)).

It is clear that the dynamics generated by such a differential equation must
be completely positive, too. Unfortunately, this property is not guaranteed by
the very structure of the generator, so further constraints must be imposed. A
sufficient condition is given by positivity of the decay rates, that is, if γj(t) ≥ 0 for
all j and t ≥ t0 , the generated dynamical map is indeed completely positive (see
theorem 3.2). However, the most general constraints on the components of the
generator (3.21) leading to a completely positive and trace preserving dynamics
are not known yet.

A particular generator of CPT-dynamics is provided by choosing positive and
time-independent rates as well as Lindblad operators which thus leads to a gener-
ator

KLρS(t) = −i[H ′S , ρS(t)] +
∑

j

γj
[
AjρS(t)A†j − 1

2{A
†
jAj , ρS(t)}

]
, (3.22)
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representing the famous Lindblad form (Gorini et al., 1976; Lindblad, 1976). This
kind of generator deserves special attention as the induced dynamics has the par-
ticular feature of being described by a one-parameter semigroup3 of dynamical
maps. This means that the concatenation of two maps for times t and s gives the
dynamical map at the later time t+ s , i.e., one has

Φt+s,t0 = Φt,t0 ◦ Φs,t0 (3.23)

for any t, s ≥ t0 . The exact form of the solution for the initial time t0 = 0, which
is given by

Φt,0 = exp [KLt] , (3.24)

already suggests, for example, that the semigroup property holds.
Due to the universal action of the dynamical maps on the states’ evolution, one

may consider such dynamical processes as being memoryless. Indeed, the map’s
effect on a state is independent of the point in time when it is applied which
directly reflects the neglect of any kind of memory effects. Dynamical evolutions
which are governed by a completely positive semigroup are thus called Markovian
in the style of the notion for stochastic processes (see Sec. 4.1). Note that the
processes obtained from generators Kt with time-dependent but positive rates are
usually referred to as a time-dependent Markovian process which can be motivated
by the fact that the associated generators are still in Lindblad form (3.22) at any
instance of time t .

It is rather obvious that there are dynamical processes which do not satisfy the
drastic property required for a one-parameter semigroup. Conversely, one might
ask whether all such particular dynamical processes are generated by time-local
master equations in Lindblad form. The answer is “yes”: first, under very gen-
eral mathematical conditions 4, one shows that any semigroup has an infinitesimal
generator and, thus, any element of the semigroup is given by the exponential of
the generator as, e.g., in Eq. (3.24). Secondly, the popular Gorini-Kossakowski-
Sudarshan-Lindblad theorem (Gorini et al., 1976; Lindblad, 1976) establishes the
one-to-one connection between the Lindblad form (3.22) of the generator and the
existence of semigroups of completely positive and trace preserving maps (see the-
orem 3.2). Thus, time-local master equations with a generator in Lindblad form
provide the prototype of an admissible dynamics explaining their intensive use for
phenomenological approaches to open system dynamics.

However, employing several rather drastic assumptions assisting the memory-
less character, it is also possible to obtain such a master equation from a micro-
scopic approach for the total system (Breuer and Petruccione, 2002): assuming that
the coupling between system and environment is weak, one expands the Liouville-
von Neumann equation in the interaction picture (3.8) up to second order in the
interaction strength and applies the Born approximation, which supposes the state
of the composite system factorizes, yielding a second-order differential equation for
the open system density operator. Before using the rotating wave approximation,

3The term semi indicates that the family of dynamical maps typically defines not a group as
the parameter t is restricted to values larger than t0 .

4The semigroup must be continuous with respect to some topology. For example, one can
require limt→0‖Φt,0A − A‖∞ = 0 for every A ∈ B(HS), where ‖·‖∞ denotes the operator norm
(see, e.g., Rudin (1991)).



3.3. General master equation 55

which erases the rapidly oscillating terms in the differential equation, the so-called
Markov approximation is invoked which presupposes a separation of the intrinsic
time scales of the system and environment. That is, the system’s relaxation time
τS must be much larger than the correlation time of the environment τE , i.e., one
must have τE � τS which means that the degrees of freedom of the open system
are slow compared to those of the environment. Similarly, the rotating wave ap-
proximation is reliable if the time scale of the intrinsic evolution of the open system
τI is much smaller than the system’s relaxation.

These approximations clearly support the attribution of a lack of memory ef-
fects for a semigroup evolution, which is considered to define the prototype of a
memoryless, that is, Markovian dynamics. Although there are many examples
of physical interest for which these assumptions result in very good approxima-
tions of the exact dynamics, its validity is not ensured in general. Strong system-
environment couplings or an environment at low temperatures typically lead to
drastic deviations from the semigroup dynamics (Breuer and Petruccione, 2002).
It is widely believed that such a “non-Markovian” dynamics can only be properly
described by a master equation which is non-local in time due to the fundamen-
tal understanding that only a non-trivial memory kernel accounts for memory
effects as the term already suggests. However, one readily proves the existence
of a time-local master equation for the evolution of an open system, even in the
presence of memory effects: Assuming a sufficiently smooth time dependence of
the one-parameter family of CPT-maps Φ describing the open system’s evolution,
one obtains a time-local master equation upon differentiating ρS(t) = Φt,t0(ρS(t0))
with respect to the parameter t if the dynamical evolution is invertible. More
precisely, one finds

d
dtρS(t) = Φ̇t,t0 ◦ Φ−1

t,t0

(
ρS(t)

)
. (3.25)

where Φ−1
t,t0 denotes the inverse of the dynamical map Φt,t0 within the algebra of

superoperators acting on bounded linear operators on HS . Note that the exis-
tence of the left-inverse, requiring injectivity of the maps Φt,t0 , would actually be
sufficient to establish such a time-local master equation.

Unfortunately, the dynamics is not invertible for all times in general as, e.g.,
the damped Jaynes-Cummings model on resonance (Breuer and Petruccione, 2002;
Laine et al., 2010b; Breuer et al., 2016) or instances of quantum semi-Markov pro-
cesses show (Vacchini et al., 2011). Nevertheless, one can show (Štelmachovič and
Bužek, 2001, 2003) that the inverse and, therefore, the generator Kt = Φ̇t,t0Φ−1

t,t0
exists apart from isolated singularities if the time dependence is analytic. In the
intermediate time intervals, the reduced dynamics can thus be described by a time-
local master equation (see, e.g., Laine et al. (2010b)). It is worth stressing that
the inverse Φ−1

t,t0 is not required to be completely positive and it indeed satisfies
neither this property nor positivity in general. Note that the exact features of
the inverse map influence the dynamical process’ property of being divisible (see
Sec. 3.4) which will be important in the discussion on a proper definition of quan-
tum non-Markovianity later on.
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3.3.1 The TCL projection operator method

As shown in the preceding section, a time-local master equations may indeed be
used to describe dynamical systems even in the presence of strong memory effects.
A systematic and efficient approach to obtain the time-local master equation as-
sociated with a certain microscopic model is given by the time-convolutionless
projection operator technique (Prigogine, 1962; Nakajima, 1958; Zwanzig, 1960).
This technique relies on the idea that the ignorance of the environmental degrees
of freedom, which is implemented by taking the partial trace, can be regarded as
the formal action of a projection superoperator P on the total state space which
singles out the relevant part of the information on the open system. A convenient
choice of this superoperator is given by

PρSE = TrE{ρSE} ⊗ ρE , (3.26)

where ρE refers to some fixed state of the environment. Clearly, PρSE contains all
the relevant information allowing to reconstruct the reduced state ρS of the open
quantum system. The remaining degrees of freedom, defining the irrelevant part,
are accordingly determined by the superoperator Q ≡ ISE −P where ISE refers to
the identity map on the joint state space HS ⊗HE . The basic properties of these
superoperators are summarized by the relations

P2 = P , Q2 = Q PQ = QP = 0 , (3.27)

where, in addition, P +Q = ISE obviously holds.
To obtain a closed and exact equation for the reduced density operator ρS(t) =

TrE{ρSE(t)} , one applies the projection superoperators P and Q to the Liouville-
von Neumann equation (3.1) and, finally, separates the emerging coupled partial
differential equations for the relevant and irrelevant part. Following Breuer and
Petruccione (2002), one introduces a dimensionless expansion parameter α in the
total time-independent Hamiltonian (3.2), i.e. H = H0 +αHI , so that one obtains
the equations

d
dtP ρ̃SE(t) = αPL̃(t)P ρ̃SE(t) + αPL̃(t)Qρ̃SE(t) , (3.28)
d
dtQρ̃SE(t) = αQL̃(t)P ρ̃SE(t) + αQL̃(t)Qρ̃SE(t) , (3.29)

when working in the interaction picture (cf. Eq. (3.8)). The formal solution of the
equation of motion for the irrelevant part (3.29) for a given initial state ρ̃SE(t0)
reads

QρSE(t) = G̃Q(t, t0)Qρ̃SE(t0) + α

∫ t

t0
ds G̃Q(t, s)QL̃(s)P ρ̃SE(s) , (3.30)

where

G̃Q(t, s) = T← exp
[
α

∫ t

s
ds′QL̃(s′)

]
(3.31)

defines the propagator of the irrelevant part in the interaction picture. Upon
inserting the formal solution (3.30) into the equation for the relevant part (3.28),
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one arrives at the so-called Nakajima-Zwanzig equation

d
dtP ρ̃SE(t) = αPL̃(t)G̃Q(t, t0)Qρ̃SE(t0) + αPL̃(t)P ρ̃SE(t)

+ α2
∫ t

t0
dsPL̃(t)G̃Q(t, s)QL̃(s)P ρ̃SE(s) . (3.32)

Obviously, Eq. (3.32) represents a closed and exact equation for the relevant part
which, however, is nonlocal and therefore difficult to treat. This practical disadvan-
tage is, of course, not cured when a perturbative expansion of the memory kernel
PL̃(t)G̃Q(t, s)QL̃(s)P in the parameter α is employed even though this approach
already simplifies the derivation and the solution of the equations of motion. Note
that the Nakajima-Zwanzig equation is typically said to account for non-Markovian
time evolutions due to the time convolution contained in it.

To remove the nonlocality, resulting in a time-local master equation, one uses
the method known as time-convolutionless projection operator technique (Shibata
et al., 1977; Chaturvedi and Shibata, 1979; Shibata and Arimitsu, 1980). Following
Breuer and Petruccione (2002), one eliminates the convolution by virtue of the
backward propagator

G̃†(t, s) = T→ exp
[
−α

∫ t

s
ds′ L̃(s′)

]
, (3.33)

allowing to express the density matrix at time s by ρ̃SE(s) = G̃†(t)(t, s)(P +
Q)ρ̃SE(t). The irrelevant part’s solution (3.30) may then be written as

Qρ̃SE(t) = G̃Q(t, t0)Qρ̃SE(t0)

+ α

∫ t

t0
ds G̃Q(t, s)QL̃(s)PG̃†(t, s)(P +Q)ρ̃SE(t) , (3.34)

which is equivalent to

[ISE − Σ(t, t0)]Qρ̃SE(t) = G̃Q(t, t0)Qρ̃SE(t0) + Σ(t, t0)P ρ̃SE(t) , (3.35)

using the superoperator

Σ(t, t0) ≡ α
∫ t

t0
ds G̃Q(t, s)QL̃(s)PG̃†(t, s) , (3.36)

which obviously satisfies Σ(t0, t0) = 0 and Σ(t, t0)|α=0 = 0. Due to this, ISE −
Σ(t, t0) is invertible for sufficiently small couplings α and in any case for a small
difference t− t0 . Assuming that one of these conditions is met, the irrelevant part
Qρ̃SE(t) can thus be expressed as a function of the relevant part at time t and
the initial condition Qρ̃SE(t0). By virtue of this representation of Qρ̃SE(t) and
the idempotence of the projection superoperators, one finally deduces the following
exact time-convolutionless master equation for the relevant part from Eq. (3.28):

d
dtP ρ̃SE(t) = K(t, t0)P ρ̃SE(t) + I(t, t0)Qρ̃SE(t0) . (3.37)

Here, the time-local generator, which is known as TCL generator, is given by

K(t, t0) = αPL̃(t)[ISE − Σ(t, t0)]−1P , (3.38)
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and the so-called inhomogeneity obeys

I(t, t0) = αPL̃(t)[ISE − Σ(t, t0)]−1G̃Q(t, t0)Q . (3.39)

Note that the second term of Eq. (3.37) vanishes for factorizing initial conditions
because Qρ̃S(t0) ⊗ ρ̃E(t0) = 0. However, the treatment is not limited to this
particular situation.

The TCL generator as well as the inhomogeneity are still complicated objects
but, fortunately, they provide the starting point for a systematic perturbative
expansion which is formally exact. As both superoperators rely on the existence
of the inverse of ISE − Σ(t, t0) , one may assume that it indeed exists and may be
written as a geometric series

[ISE − Σ(t, t0)]−1 =
∞∑

n=0
[Σ(t, t0)]n . (3.40)

Upon expanding the forward and backward propagators G̃Q and G̃† in powers of
the coupling strength α , the superoperator Σ(t, t0) admits a decomposition into a
power series

Σ(t, t0) =
∞∑

k=1
αkΣk(t, t0) , (3.41)

which finally allows to write the TCL generator as

K(t, t0) =
∞∑

n=1
αnKn(t, t0) . (3.42)

A similar treatment naturally applies to the inhomogeneity, too. The first to third
order contributions to the generator K(t, t0) are shown to be given by

K1(t, t0) = PL̃(t)P , (3.43)
K2(t, t0) = PL̃(t)Σ1(t, t0)P , (3.44)

K3(t, t0) = PL̃(t)
{

[Σ1(t, t0)]2 + Σ2(t, t0)
}
P , (3.45)

where one has

Σ1(t, t0) =
∫ t

t0
ds QL̃(s)P , (3.46)

Σ2(t, t0) =
∫ t

t0
ds
∫ s

t0
ds′

{
QL̃(s)QL̃(s′)P −QL̃(s′)PL̃(s)

}
. (3.47)

It is worth noticing that several contributions such as [Σ1(t, t0)]2 are eliminated due
to the orthogonality of the projection superoperators P and Q (cf. Eq. (3.27)). A
further drastic simplification of the contributions Kn(t, t0) is achieved for particular
choices of the interaction Hamiltonian H̃I(t) and the reference state associated with
P (cf. Eq. (3.26)). More precisely, choosing ρE such that the odd moments of the
interaction Hamiltonian H̃I(t) vanish, i.e.

TrE{H̃I(t1)H̃I(t2) · · · H̃I(t2n+1)ρE} = 0 (3.48)
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for n ∈ N0 , the Liouvillian satisfies the relation

PL̃(t1)L̃(t2) · · · L̃(t2n+1)P = 0 . (3.49)

This implies that the first and third order contributions (cf. Eqs. (3.43) and (3.45))
to the TCL generator vanish, whereas K2(t, t0) (cf. Eq. (3.44)) is simply given by

K2(t, t0) =
∫ t

t0
ds PL̃(t)L̃(s)P . (3.50)

Note that one speaks of a TCL n master equation if solely contributions up to
nth order in α of the TCL generator are taken into account. The second-order
time-convolutionless master equation is the most prominent and frequently used
representative of this stack of approximations which thus reads

d
dt ρ̃S(t) = −α2

∫ t

t0
ds TrE

{
[H̃I(t), [H̃I(s), ρ̃S(t)⊗ ρE ]]

}
(3.51)

in case of factorizing initial conditions and a reference state ρE that implies con-
dition (3.49).

3.3.2 Exactness of TCL 2
The perturbative expansion of the TCL master equation defines a convenient way
to describe the open system dynamics, but it cannot be hoped to yield the exact
dynamics. However, there are instances where these approximate master equa-
tions are exact (Ban et al., 2010; Doll et al., 2008). In fact, the second-order
time-convolutionless master equation for an open quantum system that is linearly
coupled to a thermal bath, described by a collection of bosonic modes in a Gaus-
sian state with zero-means, represents such a specific physical model where TCL
2 determines the exact solution. This kind of systems are frequently considered in
physics due to their relevance for modelling decoherence in which case the dynam-
ics is even exactly solvable (Breuer and Petruccione, 2002). In summary, the total
Hamiltonian corresponding to these models obeys

H =HS ⊗ 1E + 1S ⊗HE + Ŝ ⊗
∑

k

(
gk b̂
†
k + g∗k b̂k

)
, (3.52)

where Ŝ refers to a Hermitian operator on HS and the free Hamiltonian of the
bath is assumed to be given by HE = ∑

k ωk b̂
†
k b̂k , omitting the vacuum energy.

The strength of the coupling between the system and the kth bath mode is deter-
mined by the coefficient gk which is typically chosen to be real-valued. Since the
interaction Hamiltonian is linear in the creation and annihilation operators, the
odd moments of the interaction picture interaction Hamiltonian

H̃I(t) = ˆ̃S(t)⊗
∑

k

(
gke

iωktb̂†k + g∗ke
−iωktb̂k

)
, (3.53)

vanish in a zero-mean Gaussian state (cf. Sec. 2.5.2). Note that the interaction pic-
ture representation of HI is deduced using exp[itHE ]b̂k exp[−itHE ] = exp[−iωkt]b̂k
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where ˆ̃S(t) refers to the interaction picture representation of the open system op-
erator Ŝ, i.e. ˆ̃S(t) = exp[itHS ]Ŝ exp[−itHS ] .

Due to these properties, the TCL 2 master equation for this model is indeed
given by Eq. (3.51) where one has α = 1 and ρE refers to a zero-mean Gaussian
state. As a result of this thesis, it is shown that the criterion on the exactness for
TCL 2 master equations corresponding to Hamilton operators (3.52) which was
derived by Ban et al. (2010) for thermal environmental states actually extends to
arbitrary zero-mean environmental Gaussian states.

Theorem 3.1. The second-order TCL master equation associated with the Hamil-
tonian (3.52) and a zero-mean environmental Gaussian state is exact if and only
if

[ ˆ̃S(t), ˆ̃S(t′)] = 0 (3.54)

holds for all times t and t′.

Proof. As said, for the particular choice of a thermal reference state (2.125) the
statement has been proven by Ban et al. (2010) (see also Doll et al. (2008) for the
sufficiency of Eq. (3.54)). However, the very same proof applies to any Gaussian
state with vanishing means since the structure of the TCL 2 master equation as
well as that of the characteristic function does not change. More specifically, one
observes that the characteristic function (2.102) of an arbitrary zero-mean Gaussian
state at zj = −i ∫ t0 dt′ α(t′)g∗j exp[iωjt′] for some complex-valued function α(t) ∈ C
obeys

χt=
√

2
ρE

(~z ) = exp
[
−
∫ t

0
dt′
∫ t′

0
dt′′ α(t′)α(t′′)CR(t′, t′′)

]
. (3.55)

Here, CR(t, s) defines the real part of the two-point reservoir correlation function
〈X̂(t)X̂(s)〉ρE where the operator is defined as X̂(t) = ∑

k gke
iωktb̂k + g∗ke

−iωktb̂†k .
Note that the imaginary part of the correlation function is given by CI(t, s) =
−∑k |gk|2 sin

(
ωk(t− s)

)
, irrespective of the choice of zero-mean Gaussian state.

Since Eq. (3.55) as well as the structure of the TCL 2 master equation are the
only parts in the proof by Ban et al. (2010) where their particular choice of the
environmental state enters, all arguments used by Ban et al. (2010) indeed apply
for any zero-mean Gaussian state, too, which completes the proof.

Note that the Eq. (3.54) provides a necessary and sufficient condition indepen-
dent of the dimension of the open system’s Hilbert space. It is obviously satisfied
if [HS , Ŝ] = 0 holds, corresponding to a dynamics describing pure decoherence.
As shown by Ban et al. (2010), this is yet not the full story – at least for infinite-
dimensional open quantum systems. In fact, for dimHS =∞ there exist dissipative
dynamics such that [ ˆ̃S(t), ˆ̃S(t′)] vanishes for all times t and t′ as a consequence of
the canonical commutation relation (2.91). For finite systems, a vanishing com-
mutator can indeed only be achieved for nondissipative dynamics as is shown by
the following result of this thesis, providing a concise criterion for the exactness of
TCL 2.
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Lemma 3.1. Let HS and Ŝ be two Hermitian operators acting on a Hilbert space
HS of dimension NS < ∞ . The Heisenberg operator ˆ̃S = exp[itHS ]Ŝ exp[−itHS ]
satisfies

[ ˆ̃S(t), ˆ̃S(t′)] = 0 (3.56)

for all times t and t′ if and only if

[HS , Ŝ] = 0 . (3.57)

Proof. Clearly, if one has [HS , Ŝ] = 0, then ˆ̃S(t) = ˆ̃S(0) = Ŝ for all t ∈ R so
that the constraint (3.56) is trivially satisfied. It thus remains to show the con-
verse. Suppose that [ ˆ̃S(t), ˆ̃S(t′)] = 0 holds for all t, t′ ∈ R . As a consequence, the
operator X̂t ≡ ˆ̃S(t) ˆ̃S(0) is Hermitian for all times t and, therefore, the family of
antihermitian operators

∆X̂t ≡ X̂t − X̂†t (3.58)
vanishes. This is equivalent to the fact that the characteristic polynomial p∆X̂t(λ) =
(−1)NS∑NS

k=0 ck(t)λNS−k (cf. Eq. (2.11)) of these finite-dimensional operators obeys
p∆X̂t(λ) = (−1)NSλNS for all t ∈ R . Recall that the coefficients of the character-
istic polynomial are recursively determined by (cf. Eq. (2.12))

k · ck(t) = −
k∑

j=1
ck−j(t)Tr{(∆X̂t)j} (3.59)

for k ≥ 1 where c0 = 1. Apart from the coefficient of the leading monomial, all
other coefficients are thus linear combinations of terms Tr{(∆X̂t)j} where, how-
ever, Tr{∆X̂t} vanishes for all t due to the cyclic property of the trace. Employing
the Cauchy Schwartz inequality for the Hilbert-Schmidt scalar product, one fur-
thermore shows for5 j ≥ 3 the relation

|Tr{(∆X̂t)j}| = |Tr{(∆X̂t)j−1(−∆X̂t)†}|

≤
√

Tr{(−∆X̂t)(−∆X̂t)†}
√

Tr{(∆X̂t)j−1(∆X̂t)j−1†}

=
√
−Tr{(∆X̂t)2}

√
Tr{∆X̂t)j−1(−∆X̂t)j−1} , (3.60)

where the real-valued square roots are well-defined due to the antihermiticity
of ∆Xt . It follows that Tr{(∆X̂t)j} = 0 for all j ≥ 2 if and only if one has
Tr{(∆X̂t)2} = 0. It thus suffices to find the constraints on HS and Ŝ imposed by
the relation Tr{(∆X̂t)2} = 0 for all times t in order to obtain ck(t) = 0 for any
k ≥ 1 and all times t .

Note that ck(t)|t=0 = 0 for all k ≥ 1 by the very definition. Looking at the
derivatives of Tr{(∆X̂t)2} with respect to time t at t = 0, one finds

(−1
2) · d

dtTr{(∆X̂t)2}
∣∣∣
t=0

= 0 , (3.61)

(−1
2) · d2

dt2 Tr{(∆X̂t)2}
∣∣∣
t=0

= Tr{H2
SŜ

4}+ 3Tr{HSŜ
2HSŜ

2}

− 4Tr{HSŜHSŜ
3} , (3.62)

5One has j ≥ 3 if and only if NS ≥ 3 implying that the characteristic polynomial is at least of
third order.
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where the first derivative is zero as the trace is cyclic. The second derivative (3.62)
can be expressed as

(−1
2) · d2

dt2 Tr{(∆X̂t)2}
∣∣∣
t=0

=
∑

j>k

|〈j|HS |k〉|2(sj − sk)4 , (3.63)

employing the spectral decomposition of the operator Ŝ, i.e.,

Ŝ =
nS∑

k=1
sk|k〉〈k| . (3.64)

Since all contributions to the second derivative (3.63) are positive, each term must
vanish separately in order to agree with ck(t) = 0 for all k and t . If the eigenvalues
of Ŝ are pairwise different, i.e., Ŝ has a nondegenerate spectrum, the transition
matrix elements 〈j|HS |k〉 must be zero for all integers j 6= k . This implies that
HS is diagonal6 in the basis {|j〉} , too, which directly leads to the conclusion that
Eq. (3.57) is satisfied. For a degenerate spectrum, there also exists a joint eigenbasis
leading to [HS , Ŝ] = 0 since one has the freedom to change the basis spanning the
degenerate subspaces so that HS is diagonal in this case and, therefore, Eq. (3.57)
is satisfied.

By virtue of lemma 3.1 and theorem 3.1 one arrives at the following charac-
terization for the exactness of TCL 2 master equations for finite-dimensional open
quantum systems as a result of the present thesis.

Corollary 3.1. For an open quantum system characterized by a Hilbert space
HS with dimHS < ∞, the second-order TCL master equation associated with the
Hamiltonian (3.52) and a zero-mean environmental Gaussian state is exact if and
only if

[HS , Ŝ] = 0 . (3.65)

As condition (3.65) implies that the mean energy of the open quantum system
is conserved, corollary 3.1 shows that the TCL 2 master equation is exact if and
only if there is no exchange of energy with the bath corresponding to pure dephas-
ing dynamics. However, there might still exist decoherence free subspaces, i.e.,
subspaces which are unaffected by the dynamics if the operator Ŝ is degenerate.
The popular phase-noise models, describing pure decoherence (DiVincenzo, 1995;
Palma et al., 1996; Breuer and Petruccione, 2002), thus provide the sole finite-
dimensional examples where the associated TCL 2 master equations are exact.
Unfortunately, there is no immediate advantage as these models can also be solved
exactly. In fact, if Eq. (3.65) holds, implying ˆ̃S(t) = Ŝ , the commutator of H̃I(t)
and H̃I(t′) (see Eq. (3.53)) for any two times t and t′ obeys

[H̃I(t), H̃I(t′)] = −2iŜ2∑

k

|gk|2 sin
(
ωk(t− t′)

)
, (3.66)

6Clearly, defining H ′S ≡ HS −
∑

j
ΠjHSΠj where Πj = |j〉〈j| , one has 〈j|H ′S |k〉 = 0 for all j, k

which is equivalent to H ′S = 0, showing that HS is diagonal with respect to basis {|j〉} .
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that is, it is essentially proportional to the identity operator on the environmental
Hilbert space. Due to this, the Baker-Campbell-Hausdorff formula can be used to
eliminate the time-ordering in the propagator

ŨI(t) = T← exp
[
−i
∫ t

0
ds H̃I(s)

]
(3.67)

associated with the interaction Hamiltonian (cf. Eq. (3.8)). One thus obtains for
the propagator (Breuer and Petruccione, 2002)

ŨI(t) = exp
[
−1

2

∫ t

0
ds
∫ t

0
ds′ [H̃I(s), H̃I(s′)]Θ(s− s′)

]

· exp
[
−i
∫ t

0
ds H̃I(s)

]
, (3.68)

where Θ denotes the Heaviside step function. While the first term yields solely a
phase factor with respect to the bosonic environment as one deduces

exp
[
−1

2

∫ t

0
ds
∫ t

0
ds′ [H̃I(s), H̃I(s′)]Θ(s− s′)

]
= exp

[
iŜ2φ(t)

]
, (3.69)

where φ(t) ≡ ∫ t0 ds
∫ s

0 ds′∑k |gk|2 sin
(
ωk(s− s′)

) ∈ C , the second contribution can
be written in terms of the Weyl displacement operator (2.103)

exp
[
−i
∫ t

0
ds H̃I(s)

]
= D(Ŝ~z(t)) (3.70)

which is evaluated at

zk(t) = (−i) ·
∫ t

0
ds gk exp[iωks] = gk

1− exp[iωkt]
ωk

. (3.71)

Taking the free evolution of the open system into account and assuming factorizing
initial conditions, one finds for the time evolution of the open quantum system with
respect to the eigenbasis {|m〉} of the system Hamiltonian HS = ∑

mEm|m〉〈m|
(cf. Doll et al. (2008))

〈m|ρS(t)|n〉 = e−i(Em−En)t 〈m|TrE{ŨI(t)ρS(0)⊗ ρEŨ †I (t)}|n〉
= %mn e

−i(Em−En)t ei(S
2
m−S2

n)φ(t)〈D†(Sn~z(t))D(Sm~z(t))〉ρE
= %mn e

−i(Em−En)t ei(S
2
m−S2

n)φ(t)χ
√

2
ρE

(
(Sm − Sn) · ~z(t)) , (3.72)

where %mn ≡ 〈m|ρS(t)|n〉 . To obtain this result, one employs the two relations
D(~y)D(~z) = D(~y+~z) ·exp[i∑k Im(ykz∗k)] and D†(~z) = D(−~z) for the displacement
operator, where the additional phase factor of the former vanishes later on as the
eigenvalues Sm are real-valued. One readily recognizes that the diagonal elements
ρmm are constant, whereas the dynamics of the coherences in the energy eigenbasis
is mainly governed by the characteristic function χ

√
2

ρE
of the environmental state

ρE (cf. Eq. (2.102)).
As indicated previously, the set of dynamics for which TCL 2 is exact is in gen-

eral larger than this simple dephasing dynamics. This is due to the fact that there
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exist operators whose commutator is nonvanishing and proportional to the iden-
tity operator, i.e., one may have [HS , Ŝ] = a1HS 6= 0. In this case the Heisenberg
operator ˆ̃S differs by a time-dependent shift proportional to the identity opera-
tor from its counterpart in the Schrödinger picture for which reason Eq. (3.56) is
trivially satisfied. However, such a commutation relation cannot be established in
finite dimensions due to the cyclic property of the trace, implying that any nonzero
commutator must have vanishing trace.

3.4 Divisibility of dynamical processes

The semigroup property (3.23) defines a very strong assumption so that most
one-parameter families of CPT-maps, defining dynamical processes, usually do
not satisfy it. The notion of divisibility of a dynamical map extends the strict
condition of a semigroup by allowing the intermediate maps in Eq. (3.23) to be
arbitrary completely positive and trace preserving maps that do not need to be
part of the family of dynamical maps. The relaxation of complete positivity to
just positivity of the intermediate maps provides a further generalization of the
notion of divisibility. These concepts have recently received some attention in the
classification of dynamical evolutions in terms of (non-)Markovian dynamics as is
reviewed in Ch. 4.

To define this notion properly, suppose that the maps Φt,t0 comprising a dy-
namical process with initial time t0 are invertible for all t ≥ t0 where the inverse
shall be denoted by Φ−1

t,t0 . One then defines a two-parameter family of maps by

Λt,s = Φt,t0 ◦ Φ−1
s,t0 (3.73)

corresponding to any choice of parameters t ≥ s ≥ t0. Clearly, the maps of this
family satisfy Λt,t0 = Φt,t0 and Φt,t0 = Λt,s ◦ Φs,t0 . Divisibility now deals with the
properties of these maps concerning n-positivity (cf. definition 2.1).

Definition 3.1. A dynamical process Φ is called n-divisible if and only if Λt,s
defines an n-positive map for all t ≥ s ≥ t0 . In particular, if Λt,s is (completely)
positive the dynamical process is said to be (C)P-divisible.

If the dynamical process is CP-divisible7 there thus exist CPT-maps connecting
any pair of dynamical maps of the process. Clearly, for a semigroup dynamics
associated with the Lindblad generator KL (cf. Eq. (3.22)), the connecting maps
Λt,s are simply given by

Λt,s = exp [KL(t− s)] , (3.74)
and, therefore, are completely positive. In the general case of a time-dependent
generator Kt as defined in Eq. (3.21), the maps of the two-parameter family read

Λt,s = T←exp
[∫ t

s
dt′ K(t′)

]
, (3.75)

7Note that the present notion of CP-divisibility should not be confused with the identically
called concept for single CPT-maps. Due to Wolf and Cirac (2008), a single CPT-map Λ is said
to be CP-divisible if and only if there exist CPT-maps Λ1 and Λ2 such that Λ = Λ1 ◦ Λ2 , where
neither Λ1 nor Λ2 are unitary since the required decomposition is otherwise trivial.
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but n-divisibility is not guaranteed by the very structure of the generator.
The constraints for divisibility are, of course, trivially satisfied at the marginal

times t = s or s = t0, but for arbitrary t and sthe intermediate maps Λt,s are
generally not n-positive even though the dynamical maps are completely positive
for all times. This is due to the fact that the inverse of a CP-map need not be
positive as already touched upon in Sec. 3.3and, therefore, the above definition
is indeed nontrivial. It is worth stressing though that the concept of divisibility
relies on the existence of the two-parameter family which is limited to processes
for which the inverse Φ−1

t,t0 exists for all times. As already discussed in connection
with time-local master equations (see Eq. (3.25)), this property is not warranted
in general, thus making the concept of divisibility sometimes ill-defined.

Assuming that the inverse does indeed exist, which holds true apart from iso-
lated points, the dynamics may thus be described in terms of a time-local master
equation with generator Kt as was shown before (cf. Eq. (3.21)). As a consequence,
the connecting maps Λt,s are given by Eq. (3.75) and one obtains d

dtΛt,s |t=s= Ks so
that the condition of n-divisibility can then be traced back to features of the gener-
ator. In fact, Φ is n-divisible if and only if Ks generates an n-positive semigroup for
any fixed s ≥ t0 . By means of the famous Gorini-Kossakowski-Sudarshan-Lindblad
theorem (Gorini et al., 1976; Lindblad, 1976) and a result on generators of positive
semigroups by Kossakowski (1972a) (cf. also the works by Kossakowski (1972b)
and Ingarden and Kossakowski (1975)), one finally obtains a complete character-
ization of CP- and P-divisibility in terms of the rates and Lindblad operators of
the generator, defining an important result of this thesis which has already been
published (cf. Wißmann et al. (2015)).
Theorem 3.2. The dynamics generated by a time-local generator Kt as given in
Eq. (3.21)

1. is CP-divisible if and only if γj(t) ≥ 0 holds for all j and t ≥ t0 .
2. is P-divisible if and only if for all n 6= m

∑

j

γj(t)|〈m|Aj(t)|n〉|2 ≥ 0 (3.76)

holds for any orthonormal basis {|n〉} of HS and all t ≥ t0 .
Proof. The first statement is precisely the Gorini-Kossakowski-Sudarshan-Lind-
blad theorem (Gorini et al., 1976; Lindblad, 1976) which was already touched
upon in Sec. 3.3. The second claim can be derived from Kossakowski’s result on
generators of positive semigroups (Kossakowski, 1972a) (see also Ingarden and Kos-
sakowski (1975)) that states: A dynamics generated by a generator K′ is P-divisible
if and only if for any set of projections Π = {Πm}m∈I defining a discrete resolution
of identity, i.e. one has ΠmΠn = δmnΠm and TrS{Πm} < ∞ for all m,n ∈ I
with ∑m∈I Πm = 1HS , the following relations for amn(Π) ≡ Tr{Πm(K′Πn)} are
satisfied:

amm(Π) ≤ 0 , m ∈ I , (3.77)
amn(Π) ≥ 0 , m 6= n ∈ I , (3.78)

∑

m∈I
amn(Π) = 0 , n ∈ I . (3.79)
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It is easily seen that condition (3.79) correspond to trace preservation, which is
always met for a generator of the form (3.21) by its very structure (cf. Eq. (3.20)).
Rearranging terms, one then obtains from Eq. (3.79) the relation

ann(Π) = −
∑

m 6=n
amn(Π) (3.80)

for all n ∈ I , so amn(Π) ≥ 0 for all m 6= n already implies Eq. (3.77). The three
constraints thus reduce to the single relation (3.78) which can additionally be
restricted to sets of rank-one projections Π by virtue of linearity of the generator
Kt . Evaluating amn(Π) for m 6= n and rank-one projections associated with an
orthonormal basis {|n〉} of H , one obtains

amn(Π) = Tr {|m〉〈m|Kt(|n〉〈n|)} =
∑

j

γj(t)|〈m|Aj(t)|n〉|2 , (3.81)

which precisely yields condition (3.76).

Note that condition (3.76) only guarantees that the dynamics generated by Kt
is positive. That is, it does not warrant complete positivity of the dynamics as
required for dynamical maps (cf. Sec. 3.3). It is also worth stressing that the
conditions for P- and CP-divisibility coincide for master equations with a single
decay channel or identical rates for multiple channels (see Eq. (4.91) for an example
of the latter case) as the transition matrix elements of the Lindblad operators are
obviously always positive.

Besides relying on time-local generators, P-divisibility of a process can also be
verified directly by means of the trace norm. As shown by Kossakowski (1972a,b),
a trace preserving linear map Υ is positive if and only if it defines a contraction
for any Hermitian operator X with respect to the trace norm, i.e., one has

‖ΥX‖1 ≤ ‖X‖1 , (3.82)

for all X = X†, in accordance with the previously stated contraction of the trace
distance with respect to PT-maps (see Eq. (2.42)). By virtue of this contraction
property, it is finally possible to link quantum Markovian behavior to P-divisibility
of the underlying dynamical process as is shown in Sec. 4.4.

3.5 Open system dynamics for nonfactorizing initial
conditions

When considering open quantum systems, factorizing initial conditions are typ-
ically assumed leading to the described family of completely positive and trace
preserving linear maps for the open system’s evolution as was shown in Sec. 3.2.
However, the assumption of an open system that is statistically independent of
its environment at the initial time is rather restrictive and clearly has strong in-
fluence on the dynamics of the open system (Romero et al., 2004; Štelmachovič
and Bužek, 2001, 2003; Grabert et al., 1988; Royer, 1996; Smirne et al., 2010), so
one may not assume the absence of initial correlations in general. Since the mere
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detection of correlations in a joint system-environment state is usually impossible
because a full state tomography is far too complicated or the degrees of freedom of
the environment are even inaccessible, the dynamics of an open quantum system
eventually bears good prospects to determine whether or not such a composite
system is correlated or not. In general, the dynamics of an open quantum system
is described by (cf. Eq. (3.6))

ρS(t) = TrE{U(t, t0)ρSE(t0)U †(t, t0)} , (3.83)

where the joint initial state of system and environment is given by ρSE(t0) and a
unitary evolution of the total system is assumed. A lot of work has been spent on
providing a treatment for such dynamics along with the study of its mathematical
properties (see, e.g., Royer (1996), Shaji and Sudarshan (2005), Brodutch et al.
(2013), Shabani and Lidar (2009), Liu and Tong (2014), Lu (2016), Dominy et al.
(2016) and Dominy and Lidar (2016)). As a matter of fact, initial correlations often
lead to a breakdown of complete positivity or even positivity of the subdynamics
which may be employed to detect these correlations. In the following paragraph,
this idea is made precise using distance measures that are contractive with respect
to CPT-maps such as the trace distance, the Hellinger distance as well as the Bu-
res metric and the Jensen-Shannon divergence (see Secs. 2.4.1 and 2.4.2 for their
respective definitions). The results of this thesis presented in Sec. 3.5.2 suggest
that the trace distance is the distance measure among these four quantifiers that
is best suited to witness initial system-environment correlations.

3.5.1 Signatures of initial system-environment correlations

In fact, the distance of two open system states measured with respect to distance
measures that are contractions under CPT-maps might increase above its initial
value witnessing initial correlations or nonidentical reduced environmental states8

as was first shown by Laine et al. (2010a). To obtain this result, one observes that,
independent of correlations in the initial total state, the subdynamics (3.83) repre-
sents the action of a family of linear CPT-maps {Λt,t0} from the total state space
S(HSE) to the state space of the open system, i.e., one has ρS(t) = Λt,t0

(
ρSE(t0)

)

for any time t ≥ t0 . For any distance measure D that is contractive with respect
to CPT-maps (cf. Eq. (2.35)), one then obtains the inequality

D(ρ(1)
S (t), ρ(2)

S (t)
) ≤ D(ρ(1)

SE(t0), ρ(2)
SE(t0)

)
(3.84)

for all times t ≥ t0 and any pair of initial states ρ(1)
SE(t0) and ρ

(2)
SE(t0). That

is, the distance between two time-evolved reduced states is upper bounded by
the distance of their associated initial system-environment states. Note that the
inequality can be tight as has, for example, been shown for the trace distance by
Laine et al. (2010a). In addition, it reduces to the usual contraction property for
dynamical maps associated with factorizing initial conditions, such that one has
ρ

(k)
SE(t0) = ρ

(k)
S (t0)⊗ρE(t0) in Eq. (3.84), if the distance measure is also subadditive

8Another local detection scheme is provided by applying local quantum operations to the open
system and comparing the subsequent dynamics with the original one (Gessner and Breuer, 2011).
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(2.39). When focusing on the variation of the distance of two open system states
relative to their initial value, Eq. (3.84) implies that it may not be larger than

I
(
ρ

(1)
SE(t0), ρ(2)

SE(t0)
)

= D(ρ(1)
SE(t0), ρ(2)

SE(t0)
)−D(ρ(1)

S (t0), ρ(2)
S (t0)

)
, (3.85)

which can be interpreted as quantifying the initial information lying outside the
open system (Breuer et al., 2016). This interpretation is particularly valid if the
trace distance is employed having a clear operational meaning as a quantifier of
the distinguishability of two states as was shown in Sec. 2.4.1.

The special role of initial correlations for a potential increase of the distance is
most clearly revealed if the second state is chosen as ρ(2)

SE(t0) = ρ
(1)
S (t0) ⊗ ρ(1)

E (t0)
where ρ(1)

S (t0) = TrE{ρ(1)
SE(t0)} and ρ(1)

E (t0) = TrS{ρ(1)
SE(t0)} denote the marginals

of the other initial total state. For this choice Eq. (3.84) reads

D(ρ(1)
S (t), ρ(2)

S (t)
) ≤ D(ρ(1)

SE(t0), ρ(1)
S (t0)⊗ ρ(1)

E (t0)
)
, (3.86)

where the right-hand side determines how far apart the initial total state and its
completely uncorrelated counterpart are, quantifying the amount of correlations in
the system-environment state ρ(1)

SE(t0) . Because the initial open system states are
the same by construction, any nonzero distance of their time-evolved counterparts
indicates the presence of initial correlations in ρ

(1)
SE(t0). Moreover, the maximal

increase is upper bounded by the amount of correlations measured by the distance
of the initial total state to its completely uncorrelated counterpart.

In the general case, a similar inequality showing the effect of initial correlations
in the total states can be derived if the distance measure is subadditive (2.39) and
satisfies the triangle inequality (2.38). As was shown before, these properties are,
e.g., satisfied by the trace distance (2.40), the Hellinger distance (2.56) and the
Bures metric (2.62), whereas the Jensen-Shannon divergence (2.69) does not obey
the triangle inequality in general so that the following treatment does not hold for
this quantifier. Assuming that the triangle inequality and the subadditivity holds
for the distance measure D , one derives an upper bound for I

(
ρ

(1)
SE(t0), ρ(2)

SE(t0)
)

by applying the former twice and then using the subadditivity. In fact, this finally
yields the inequality

D(ρ(1)
S (t), ρ(2)

S (t)
)−D(ρ(1)

S (t0), ρ(2)
S (t0)

)

≤
2∑

k=1
D(ρ(k)

SE(t0), ρ(k)
S (t0)⊗ ρ(k)

E (t0)
)

+D(ρ(1)
E (t0), ρ(2)

E (t0)
)
, (3.87)

showing that an increase of the distance of the reduced states above their initial
distinguishability implies that there must be either correlations in at least one
initial total state or the environmental states must be different initially. To exclude
the latter case, one may compare the time evolution of an open system state
ρ

(1)
S (t0) = TrE{ρ(1)

SE(t0)} to a reference state that is obtained by performing a local
CPT-map on the total state ρ(1)

SE(t0) so that the second reduced state is defined as
ρ

(2)
S (t0) ≡ TrE{(Λ⊗ IE)

(
ρ

(1)
SE(t0)

)
(Laine et al., 2010a). Due to the local character

of the quantum operation, the generated state ρ(2)
SE(t0) is uncorrelated if ρ(1)

SE(t0) is
uncorrelated. Note that the reverse direction is not true in general as there exist,
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e.g., local operations transforming zero discord states to states with nonvanishing
discord as was shown by Gessner et al. (2012).

It is worth repeating that the stated treatment is independent of the chosen
distance measure as long as it is contractive with respect to CPT-maps while sub-
additivity and the triangle inequality are additionally needed in order to arrive at
relation (3.87). Despite this generality, most of the studies so far concerned the
trace distance (see, e.g., Mazzola et al. (2012); Smirne et al. (2010) and Laine et al.
(2010a)). Extending the comparative study of the performance of various distance
measures given by Dajka et al. (2011), it will be shown that the trace distance has
indeed a special status pertaining to the detection of initial system-environment
correlations.

3.5.2 Detection of initial correlations: Performance of different
distance measures

Motivated by the study of Dajka et al. (2011), the performance of the trace
distance, the Bures metric (2.62), the Hellinger distance (2.56) and the Jensen-
Shannon divergence (2.69) regarding the detection of initial system-environment
correlations of the trace distance (2.40) is compared on the basis of two model
systems. In fact, the frequency of an increase above the initial value for the dif-
ferent distance measures is determined for a spin star model with Heisenberg XY
interaction and the pure dephasing dynamics (3.72) for a two-level system and ini-
tial states with tunable system-environment correlations where one of these states
is chosen to be completely uncorrelated. As a consequence of this configuration
of the considered states, the associated environmental states are nonequal unless
both states are uncorrelated, implying a CPT-dynamics. However, the unambigu-
ous connection of initial correlations and nonidentical environmental states still
allows to infer the presence of the former from an increase of a contractive dis-
tance measure above its initial value. The present results of this thesis indicate
that the trace distance is indeed the best choice for a distance measure to witness
initial system-environment by virtue of the dynamics of the reduced states.

To start with, one considers a two-level system subject to decoherence as de-
scribed by the coupling to a single-mode bosonic environment (cf. Eq. (3.52)) with
free Hamiltonian HS = εσ3 and coupling Ŝ = σ3. More specifically, the dynamics
of for initial system-environment states

|Ψλ
V (0)〉SE = b1V |1〉 ⊗ |0〉E + b0V |0〉 ⊗ |Ωλ〉E (3.88)

is studied, where the parameter λ obeys 0 ≤ λ ≤ 1 and the complex-valued weights
bj satisfy |b1|2 + |b0|2 = 1. Moreover, the pure state |1〉 (|0〉) refers to the excited
(ground) state of the two-level system as before and V represents a unitary operator
on the Hilbert space C2. The field state |Ωλ〉E is given by the coherent superposition
of the vacuum state |0〉E and a coherent state |y ∈ C〉E of the bosonic field, i.e.

|Ωλ〉E = C−1
λ {(1− λ)|0〉E + λ|y〉E} (3.89)
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with normalization Cλ =
√

(1− λ)2 + λ2 + 2λ(1− λ)Re
(
E〈0|y〉E

)
, where that the

scalar product of two coherent states reads E〈x|y〉E = exp[−(|x|2 + |y|2−2x∗y)/2].
Clearly, if |b1,0| /∈ {0, 1} , any nonzero value of the parameter λ results in an entan-
gled and, therefore, correlated initial state |Ψλ

V (0)〉SE . Furthermore, the correla-
tions are monotonically increasing with respect to this parameter when quantified
by the concurrence (2.77) as is, for example, shown by the black line in Fig. 3.4
for states corresponding to V = 12. Due to these features, one may assign the
meaning of a correlation parameter to this quantity.

As the total system evolves according to the unitary dynamics that is generated
by the Hamiltonian

H =HS ⊗ 1E + 1S ⊗HE + σ3 ⊗ g(b̂† + b̂) , (3.90)

with HS = εσ3 and HE = ωb̂†b̂ (cf. Eq. (3.52)), leading to unitaries

U(t) = e−iεσ3teiφ(t)D(σ3z(t)) , (3.91)

where z(t) = (g/ω)(1 − exp[iωt]) and φ(t) =
∫ t

0 ds
∫ s
0 ds′g2 sin

(
ω(s − s′)

)
(cf.

Eq. (3.68)), the time-evolved total state |Ψλ
V (t)〉SE is found to obey

|Ψλ
V (t)〉SE = eiφ(t)

1∑

m=0

{
b1Vm1e

i(−1)mεt|m〉 ⊗D((−1)mz(t)
)|0〉E (3.92)

+ b0Vm0e
i(−1)mεt|m〉 ⊗D((−1)mz(t)

)|Ωλ〉E
}
.

Note that Vmn is defined as Vmn = 〈m|V |n〉 . Employing that the displace-
ment operator applied to an arbitrary coherent state |y〉E yields D(z ∈ C)|y〉E =
exp[iIm(zy∗)]|z + y〉E , the reduced state of the open quantum system at time t is
given by

ρλS(t) =
(

p e−2iεtBλ
V (t)

e+2iεtBλ
V (t)∗ 1− p

)
, (3.93)

with respect to its energy eigenbasis. Here, the time-independent population p
satisfies

p = |b1|2|V11|2 + |b0|2|V10|2

+ 2C−1
λ Re

(
b1b
∗
0V11V

∗
10
[
1− λ+ λE〈y|0〉E

])
, (3.94)
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whereas the coherence factor Bλ
V (t) is given by9

Bλ
V (t) = E〈−z(t)|z(t)〉E ·

·
{
|b1|2V11V

∗
01 +

(|b0|C−1
λ (1− λ)

)2
V10V

∗
00

+ C−1
λ (1− λ)

[
V11V

∗
00b1b

∗
0 + V10V

∗
01b
∗
1b0
]}

+ E〈−z(t)|y + z(t)〉E · λC−1
λ A(t)V10

·
{
|b0|2C−1

λ (1− λ)V ∗00 + b∗1b0V
∗

01
}

+ E〈y − z(t)|y + z(t)〉E ·
(
λC−1

λ A(t)|b0|
)2
V10V

∗
00

+ E〈y − z(t)|z(t)〉E · λC−1
λ A(t)V ∗00

·
{
|b0|2C−1

λ (1− λ)V10 + b1b
∗
0V11

}
(3.95)

and the time-dependent function A(t) is defined by A(t) = exp[(z(t)y∗−z∗(t)y)/2].
Note that the reduced dynamics is periodic with period given by 2π/ω due to
the single-mode environment. In the special case of V = 12 , the cumbersome
expression for the coherence factor reduces to

Bλ
12(t) = b1b

∗
0C
−1
λ e−R(t) ·

{
1− λ+ λe−2iΛ(t)+S(t)

}
, (3.96)

where

R(t) = 4(g/ω)2 · {1− cos(ωt)
}
, (3.97)

S(t) = 2(g/ω) |y| · {cos(ϕ)− cos(ωt− ϕ)
}− 1

2 |y|2 , (3.98)
Λ(t) = (g/ω) |y| · {sin(ϕ) + sin(ωt− ϕ)

}
, (3.99)

using the definition y = |y| ·exp[iϕ] (cf. the expression given by Dajka et al. (2011)
where a minus sign in the second sine function of the phase factor Λ(t) is, however,
missing).

To compare the sensitivities of the trace distance DT , the Hellinger distance
DH , the Bures metric DB and the Jensen-Shannon divergence DJ regarding the
detection of initial system-environment correlations, the time evolution of the re-
spective distance measures for reduced states associated with an uncorrelated, cor-
responding to λ = 0, and a λ-correlated initial total state is considered as already
mentioned in the introduction to this section. Note that one easily shows that
the environmental state associated with the pure state |Ψλ

V (0)〉SE depends on the
parameter λ . Thus, the two states differ not only in terms of system-environment
correlations but also with respect to the marginal states describing the environ-
ment so that the upper bound (3.87), which is valid for the first three of the above
distance measures, has actually two nonvanishing contributions. However, as cor-
relations and nonidentical environmental states are unambiguously linked for this
setup, one may still assign an increase of the distance measures above their initial
value to the presence of initial correlations. Hence, if

∆Dk(λ, t) ≡ Dk
(
ρλS(t), ρ0

S(t)
)−Dk

(
ρλS(0), ρ0

S(0)
)

(3.100)
9Note that there is a typo in the expression of the coherence factor in (Wißmann et al., 2013).

Similarly, the states |Ψλ
VS

(0)〉SE and |Ψλ
VX

(0)〉SE (cf. Eqs. (3.103) and (3.104)) are erroneously
defined therein.
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is positive for some time t and (nonzero) value of λ , the corresponding measure is
interpreted to be able to reveal initial correlations in the total state |Ψλ

V (0)〉SE in
the relative evolution of the reduced states ρλS and ρ0

S .
Before turning to the generic case, the dynamics of the four quantities Dk for

a subclass of initial states characterized by the unitary operator V = 12 and the
choice of weights b1 = b2 = 1/

√
2 is studied. Without loss of generality, the energy

splitting of the system, the frequency of the bosonic mode as well as the interaction
strength of the linear coupling are set to ε = 1, ω = 1 and g = 0.1, respectively,
in the sequel. In addition, one chooses the coherent state contained in the field
state |Ωλ〉E (cf. Eq. (3.89)) to be given by |y = 1〉E . The time evolutions10 of the
quantities Dk(λ, t) for parameters λ = 0.1, 0.3, 0.6 and λ = 1 are shown in Fig. 3.2.
Surprisingly, the Bures metric and the Hellinger distance never increase above their
initial values for the considered parameters λ and are thus not able to detect the
initial correlations present in one of the total states. The same holds true for large
values of λ for the two other distance measures. However, for sufficiently small λ ,
the trace distance and the Jensen-Shannon divergence increase above their initial
values indicating the existing initial correlations. The transition is observed for
values λTcrit. ≈ 0.4 and λJcrit. ≈ 0.2 for the trace distance and the Jensen-Shannon
divergence, respectively.

This behavior is indeed universal meaning that it is solely related to the general
structure of the initial state |Ψλ

12(0)〉SE rather than to the particular choice of
the weights of the superposition. One concludes this by recording the relative
frequency for the occurrence of a positive value of ∆Dk(λ, t) for randomly sampled
pairs of amplitudes {b1, b2} ∈ C2 such that ∑j |bj |2 = 1 holds. In fact, the fraction
of 5 × 104 randomly generated pairs of weights, for which the distance measures
increase above their initial values for at least a single time interval [tki , tkf ] , is
presented in Fig. 3.3 (a) as a function of λ where a binning of size 0.01 with respect
to this parameter, starting from λini = 10−5, has been used. The sampled data
gives strong numerical evidence that the Bures metric and the Hellinger distance
never increase above their respective initial values for any choice of amplitudes and
values of λ . On the contrary, the Jensen-Shannon divergence and the trace distance
indeed witness initial correlations if they are sufficiently weak. More specifically,
they reveal the initial system-environment correlations almost with certainty for
small parameters λ but fail to do so for larger values. While the transition from
fJ,T ≈ 1 to fJ,T = 0 as a function of the correlation parameter λ is very smooth for
the Jensen-Shannon distance, it drops rapidly at λTtrans ≈ 0.4 for the trace distance
in accordance with the behavior found for the weights b1 = b2 = 1/

√
2.

In summary, the present study provides strong numerical evidence that the Bu-
res metric and the Hellinger distance cannot detect the initial system-environment
correlations present in any state |Ψλ

12(0)〉SE in general contradicting the statement
of Dajka et al. (2011). Note that the close relation of these quantifiers is not
surprising due to their definitions (cf. Sec. 2.4.2). However, their complete insen-
sitivity to initial correlations in the pure state |Ψλ

12(0)〉SE astonishes, in particular,
since the trace distance, which satisfies the same properties such as the triangle
inequality and subadditivity, increases almost with certainty above its initial value

10Note that the plots provided by Dajka et al. (2011) differ substantially from the time evolutions
shown in Fig. 3.2. Dajka et al. (2011) apparently plotted the absolute value of ∆Dk(λ, t).
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Figure 3.2 – Plot of ∆Dk(λ, t) (cf. Eq. (3.100)) for k = B,H, J and T (from (a) to
(d)) as a function of time t for four particular values of the correlation parameter
λ and an open system state obtained from the time-evolved pure state |Ψλ

12(0)〉SE
(cf. Eq. (3.92)) corresponding to the weights b1 = b2 = 1/

√
2 and the coherent state

|y = 1〉E used to define |Ωλ〉E (see Eq. (3.89)). Note that time is dimensionless due
to the choice of the other parameters which are set to ε = 1, ω = 1 and g = 0.1 (cf.
Fig. 1 in Wißmann et al. (2013)).

for some time and sufficiently weak correlations. For large values of the correla-
tion parameter, the trace distance and, similarly, the Jensen-Shannon divergence
surprisingly loose their capability to witness initial correlations even though the
strength of the initial correlations is monotonically increasing with respect to λ as
is, for example, shown by means of the concurrence (cf. Fig. 3.4).

It is worth stressing that the transition of the trace distance cannot be explained
in a satisfactory way by the lower and upper bounds for the change of this measure
for two reduced states ρ1 and ρ2 at times t and s derived by Mazzola et al. (2012),
Rodríguez-Rosario et al. (2012) and Smirne et al. (2013b). Only for very small
values, these criteria provide some information indicating an increase of the trace
distance above its initial value.

An intuitive understanding of the transition is, however, obtained by looking
at the concurrence (2.77) of the total states. In fact, Fig. 3.4 shows this quantifier
for bipartite entanglement of the pure state |Ψλ

12(t)〉SE associated with weights
b1 = b2 = 1/

√
2, revealing a similar threshold with respect to λ which in ad-
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dition is close to the one found for the trace distance. More precisely, the blue
line visualizes the change of behavior from an increasing concurrence from time
zero to a monotonically decreasing dynamics from the initial time to t = π . This
means that bipartite entanglement is solely increased during the time evolution for
small values of λ, whereas it cannot be enhanced for parameters λ ≥ λcrit. ≈ 0.34
causing the concurrence’s decrease. Since the initial entanglement is monoton-
ically increasing11 as indicated by the black line in Fig. 3.4, this effect can be

11Note that the concurrence Cgen does not reach unity for λ = 1 at t = 0 because coherent states
of a bosonic field are only approximately orthogonal (with an exponentially damped overlap) and,
therefore, states |Ψλ=1

V (t)〉SE for b1 = b0 = 1/
√

2 do not define the Schmidt decomposition of a
maximally entangled state of a two-level system and a single bosonic mode.
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Figure 3.3 – Plot of the frequency of an increase fk(λ) above the initial value of
the distance measures Dk (k = B,H, J, T ) for reduced states that correspond to
|Ψλ

12(t)〉SE (a), |Ψλ
VS

(t)〉SE (b) (cf. Eq. (3.103)), |Ψλ
VX

(t)〉SE (c) (cf. Eq. (3.104))
and |Ψλ

V (t)〉SE (d) (see Eq. (3.92)). The lines show the fraction of states corre-
sponding to 5 × 104 randomly sampled superposition amplitudes bj , for which a
positive quantity ∆Dk(λ, t) occurred for each fixed λ in a binning with increment
0.01 and for at least one point in time t ∈ [0, 2π) . For |Ψλ

V (t)〉SE the sampling does
not only comprise the weights but also the unitaries V that are distributed with
respect to the Haar measure (cf. Figs. 2 and 3 in Wißmann et al. (2013)).
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understood invoking the concept of entangling power of the unitary dynamics
(Wißmann et al., 2013). That is, the higher the initial entanglement the more
unlikely the unitary dynamics can yield a target state which is more entangled
than the initial one. In accordance with this intuitive idea, one observes that the
maximal amount of correlations created by the dynamics, i.e., the largest value
of Cgen(|Ψλ

12(t)〉SE) − Cgen(|Ψλ
12(0)〉SE) for some time t ∈ [0, π) is obtained if λ is

equal to zero which corresponds to a factorizing initial state. Due to this, it is
reasonable to assume that the detected transition for the concurrence as well as
the trace distance is attributed to the competition between initial entanglement
and dynamically created correlations. One summarizes that the weaker the entan-
gling power of the unitary dynamics the less frequently the trace distance will be
capable to witness the initial system-environment correlations as only little further
correlations are generated in time if they are yet not even diminished.
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0.5

1

0
2

4
6

0

0.25

0.5

0.75

1

λ

t

Figure 3.4 – Plot of the concurrence Cgen(|Ψλ
12(t)〉SE) (cf. Eq. (2.77)), quantifying

the system-environment entanglement in |Ψλ
12(t)〉SE (see Eq. (3.92)) with b1 = b2 =

1/
√

2, as a function of the correlation parameter λ and time t . The blue line
indicates the transition where the concurrence never increases above its initial value
during the time evolution (cf. Fig. 4 in Wißmann et al. (2013)).

The remarkable difference between the four distance measures regarding the
capability of witnessing initial correlations in the present model is also observed for
other types of initial total states associated with different unitaries V . Considering
for example the initial states corresponding to the unitaries

VS = σ1 =
(

0 1
1 0

)
(3.101)

VX = 1√
2(σ1 + σ3) = 1√

2

(
1 1
1 −1

)
, (3.102)

one still concludes that the Jensen-Shannon divergence and the trace distance are
far better suited to detect initial correlations when performing exactly the same
analysis for these types of states as done for the pure state |Ψλ

12(t)〉SE before (see
Fig. 3.3 (b) and (c)). Note that the two unitaries specify superpositions that are
characterized by contributions with very different mean energies in case of VS , and
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a completely different preparation of the two-level system for VX which results in
entanglement in the initial total state with respect to the eigenbasis of the Pauli
spin operator σ1 . In fact, one finds

|Ψλ
VS

(0)〉SE = b1|0〉 ⊗ |0〉E + b0|1〉 ⊗ |Ωλ〉E (3.103)

and

|Ψλ
VX

(0)〉SE = b1|1σ1〉 ⊗ |0〉E + b0|0σ1〉 ⊗ |Ωλ〉E , (3.104)

where |1σ1〉 and |0σ1〉 refer to the eigenstates of σ1 , i.e., these states satisfy σ1|jσ1〉 =
(−1)j+1|jσ1〉 . While the Bures metric and the Hellinger distance are also com-
pletely insensitive to initial correlations in the states |Ψλ

VS
(0)〉SE , they are able to

witness correlations for the other class of states. Nevertheless, the Jensen-Shannon
divergence and the trace distance still increase more reliably above their initial
values. More specifically, the frequency of an increase for the trace distance is
constantly about unity for both classes of states, thus featuring no threshold as for
the states |Ψλ

12(0)〉SE , whereas the Jensen-Shannon divergence shows a monotonic
increase of its capability to witness the initial correlations for the states |Ψλ

VX
(0)〉SE

as well as |Ψλ
VS

(0)〉SE . For the former the frequency fJ is close to unity already for
very weak correlations as is shown in Fig. 3.3 (c).

Note that the concept of entanglement capacity can also be used to explain
the behavior for the states corresponding to the unitary VS , whereas it fails to
describe the findings for the states characterized by VX as the concurrence is shown
to decrease for all values of λ in the interval [0, π] in this case. However, this does
not sound the death knell for this intuitive concept as the initial state |Ψλ

VX
(0)〉SE

for b0 = b1 = 1/
√

2 reads

|Ψλ
VX

(0)〉SE = 1
2
{
|1〉 ⊗ (|0〉E + |Ωλ〉E) + |0〉 ⊗ (|0〉E − |Ωλ〉E)

}
, (3.105)

which yields a reduced state with vanishing coherences with respect to the basis
{|j〉 | j = 0, 1} for all values of λ as the environmental states |0〉E + |Ωλ〉E and
|0〉E − |Ωλ〉E are orthogonal for the chosen coherent state |y = 1〉E as one easily
verifies. Clearly, states of a two-level system with fixed populations are most
entangled if their coherences vanish (cf. the concurrence’s definition for pure states
(2.77)). As the unitary dynamics results in a pure dephasing process for the open
system with respect to the eigenbasis of the Pauli matrix σ3 , coherences are created
by the dynamics leading to a decrease of the entanglement. The initially saturated
concurrence may thus only decrease for such a state.

Finally, the observed behavior for the second class of states (3.104) seems to
represent the generic situation concerning the capability to witness initial correla-
tions for the four measures as Fig. 3.3 (d) shows. Sampling not only the weights
of the superposition but at the same time the unitary V from the set of unitaries
distributed with respect to the Haar measure, the recorded relative frequency of
increasing distance measures follows closely the behavior obtained for these states.
Hence, the dynamics obtained for states |Ψλ

V (0)〉SE with unitaries V = 12 and
V = VS may be seen as an exceptional case. Nonetheless, the results for arbitrary
unitaries V still confirm that the trace distance and the Jensen-Shannon distance
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are better suited to detect initial correlations in the present model for the consid-
ered initial states |Ψλ

V (t)〉SE in comparison with the Bures metric and the Hellinger
distance.

The same observation is made if the bosonic environment is replaced by a spin
bath. More specifically, let the open system’s environment be given by N spin-1

2
particles labeled by the index k with associated Pauli operators σ(k)

j . Assuming
that they couple to the open system via a uniform Heisenberg XY interaction
(Prokof’ev and Stamp, 2000), which has been found to provide an effective de-
scription for quantum dots (Imamoglu et al., 1999) and cavity QED (Zheng and
Guo, 2000), the system is thus described by the Hamiltonian

H = g
N∑

k=1

{
σ+σ

(k)
− + σ−σ

(k)
+
}
, (3.106)

where a free evolution of the system and the environment is omitted. Here, the
interaction strength g is supposed to be real-valued and the operators σ+(−) and
σ

(k)
+(−) define the raising (lowering) operators of the central spin and the kth bath

spin, respectively. This type of system is referred to as spin star model where
the central spin now defines the open system. In the context of initial system-
environment correlation, this exactly solvable model (see Appendix E) was first
considered by Laine et al. (2010a). To perform the same study for the spin star
model as for the single-mode bosonic bath before, one considers the pure states

|ξλV (0)〉SE ≡ b1V |1〉 ⊗ |χ+〉E + b0V |0〉 ⊗ |Ω̃λ〉E , (3.107)

where the environmental state is given by

|Ω̃λ〉E = C̃−1
λ {(1− λ)|χ+〉E + λ|χ−〉E} , (3.108)

with C̃λ = {λ2 + (1− λ)2}1/2 and

|χ+〉E =
N⊗

k=1
|1〉 , |χ−〉E = i√

N

N∑

k=1
σ

(k)
− |χ+〉E , (3.109)

defining initial total states with system-environment correlations that are con-
trolled by the parameter λ . Note that the states |χ±〉E define joint eigenstates of
the total spin angular momentum of the bath ~J 2 and its 3-component J3 where
~J = 1

2
∑N
k=1 ~σ

(k) with ~ = 1. In fact, one shows12 that these two states are given
by |χ+〉E = |N2 , N2 〉 and |χ−〉E = i|N2 , N2 − 1〉 , respectively, so they are orthogonal
at variance with the states contributing to the state |Ωλ〉E used for the bosonic
environment (cf. Eq. (3.89)).

The detection of initial correlations with respect to the previously defined dis-
tance measures is then studied in the same way as for the first model. That is, the
relative frequency fk of the occurrence of a positive quantity

∆D̃k(λ, t) ≡ Dk
(
ρ̃λS(t), ρ̃0

S(t)
)−Dk

(
ρ̃λS(0), ρ̃0

S(0)
)
, (3.110)

12Unfortunately, there is another typo in Ref. (Wißmann et al., 2013): the imaginary unit i in
the definition of |χ−〉E has been omitted in the mentioned published work.
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Figure 3.5 – Plot of the frequency of increase f̃k(λ) of the considered distance mea-
sures (k = B,H, J and T ) for the marginals of the states |ξλV (t)〉E (cf. Eq. (3.107))
with 5× 104 randomly sampled superposition amplitudes bj and unitaries V which
have been distributed with respect to the Haar measure (cf. Fig. 5 in Wißmann
et al. (2013)).

where ρ̃λS(t) = TrE{|ξλV (t)〉SE〈ξλV V (t)|} refers to the central spin’s reduced state, is
determined for 5 × 104 random realizations of the weights bj and the unitary V .
Figure 3.5 shows that the trace distance is again best suited to detect the initial
system-environment correlations present in these states as ∆D̃T (λ, t) is almost al-
ways positive at some time t > 0. However, the difference between the distance
measures is diminished and, contrary to the first model (cf. Fig. 3.3 (d)), strong
initial correlations, corresponding to large values of the parameter λ , are less reli-
ably witnessed by all the distance measures even though the decrease for the trace
distance is only tiny.

In summary, the results of the thesis presented is this section indicate that the
trace distance represents the distance measure that is best suited to detect initial
correlations in the joint state of an open quantum system and its environment
in comparison to the Hellinger distance, the Bures metric as well as the Jensen-
Shannon divergence.



Chapter 4

Non-Markovianity in the quantum regime

Over the past decades the notion of non-Markovian behavior has been frequently
used in quantum mechanics to indicate the presence of memory effects in the time
evolution of an open quantum system. The connotation of memory effects was
rather loose though, without any strict definition, referring to the well-known con-
cept of classical Markovian stochastic processes which are also interchangeably
termed memoryless stochastic processes. However, the classical concept cannot be
transferred to the quantum regime since it relies on the Kolmogorov hierarchy of
n-point probability distributions which does not exist in quantum theory. Before
turning to the different attempts to properly define quantum non-Markovianity,
the classical concept is revisited and the impossibility for a transfer to quantum
theory is highlighted.

4.1 Classical Markovian stochastic processes

Markovian processes in classical probability theory define a particular subclass of
the set of stochastic processes which represent a one-parameter family of random
variables where the parameter usually refers to time. More specifically, a stochastic
process Y(t) is given by

Y(t) = f(X , t) , (4.1)

where X refers to a random variable and f denotes an ordinary function depending
on the realization of the stochastic process as well as the parameter t (van Kampen,
2007). Upon inserting a possible value x of the random variable X , one thus
obtains an ordinary function Yx(t) = f(x, t) representing a so-called realization
of the process. Recall that a random variable X is a measurable function from a
probability space Ξ = (I,Σ, ν) – characterized by the triple of a set I , a σ-algebra
over the sample space I and a probability measure1 ν on Σ – to a measurable
space (I ′,Σ′) . For convenience, one assumes the sample space I ′ to be discrete
with elementary events in the associated σ-algebra Σ′ in the following.

1In addition to the properties of a measure ν : Σ → [0, 1] which satisfies ν(∅) = 0 and σ-
additivity, i.e. ν(

⋃∞
j=1 σj) =

∑∞
j=1 ν(σj) for any countable collection {σj}∞j=1 of pairwise disjoint

elements of the σ-algebra Σ, a probability measure is characterized by the property ν(I) = 1.

79
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The probability distribution that the stochastic process takes on values yj at
time tj for j = 1, . . . , n is then given by

Pn(yn, tn; . . . ; y1, t1) =
∑

x∈I′

n∏

m=1
δym,Yx(tm) ν

(X−1({x})) , (4.2)

as µ = ν◦X−1 represents the probability measure2 induced by the random variable
on its image. The joint probability Pn can be seen as describing the fraction of
realizations with values yj at times tj weighted by their occurrence. To support
this interpretation, one typically assumes an ordered sequence of times 0 ≤ t1 <
t2 < · · · < tn .

The hierarchy of these n-point probability distributions Pn completely charac-
terizes the stochastic process since all averages may be determined from it according
to

〈YX (tn) · · · YX (t1)〉 =
n∏

j=1

∑

yj∈f(I′,tj)
yjPn(yn, tn; . . . ; y1, t1) . (4.3)

Clearly, the n-point probability distributions of any such hierarchy are positive and
normalized, i.e.,

Pn(yn, tn; . . . ; y1, t1) ≥ 0 , (4.4)
∑

y1∈f(I′,t1)
P1(y1, t1) = 1 , (4.5)

and satisfies the consistency relation
∑

ym∈f(I′,tm)
Pn(yn, tn; . . . ; ym, tm; . . . ; y1, t1) = Pn−1(yn, tn; . . . ; y1, t1) (4.6)

for any index 1 ≤ m ≤ n linking the n-point and the (n − 1)-point probability
distributions. Quite interestingly, these constraints do not only provide necessary
but also sufficient conditions, disregarding some mathematical subtleties, to specify
a stochastic process as Kolmogorov (1956) has proven (see also Gardiner (2004)
and van Kampen (2007)): any hierarchy of n-point probability distributions Pn
with sample space I ′ obeying Eqs. (4.4)–(4.6) determines a stochastic process Y(t) .
The determination of the precise random variable and the function f (cf. Eq. (4.1))
corresponding to a given hierarchy is, however, challenging which is why stochastic
processes are typically specified solely in terms of the probability distributions.

As a consequence of the consistency relation (4.6), one may omit any finite
number of distributions without loosing information on the process. A Markovian
stochastic process allows for an even more drastic reduction of the hierarchy. In-
deed, a stochastic process Y(t) with values in I is said to be Markovian if and only
if any conditional probability distribution

P1|n−1(yn, tn|yn−1, tn−1; . . . ; y1, t1) ≡ Pn(yn, tn; yn−1, tn−1; . . . ; y1, t1)
Pn−1(yn−1, tn−1; . . . ; y1, t1) (4.7)

2This is due to the fact that X is measurable, that is, for any σ′ ∈ Σ′ one has X−1(σ′) ∈ Σ.
Note that the induced probability measure is also frequently denoted as µ = lawX or µ = X#ν,
where the latter highlights that the measure on (I ′,Σ′) can be seen as the push-forward of the
random variable X .
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satisfies the relation (van Kampen, 2007)

P1|n−1(yn, tn|yn−1, tn−1; . . . ; y1, t1) = P1|1(yn, tn|yn−1, tn−1) . (4.8)

For a Markovian process, the n-point probability distribution is then determined
by

Pn(yn, tn; . . . ; y1, t1) =
n−1∏

j=1
P1|1(yj+1, tj+1|yj , tj)P1(y1, t1) (4.9)

for n ≥ 2, where the 1-point probability distribution obviously satisfies

P1(y2, t2) =
∑

y1∈I
P1|1(y2, t2|y1, t1)P1(y1, t1) , (4.10)

due to the very definition of the conditional probability (4.7) and the consistency
relation (4.6). Thus, the full hierarchy is completely determined by the 1-point
probability distribution and the so-called transition probability P1|1 which obvi-
ously simplifies the description of a stochastic process substantially. Apart from
this implication, the classical Markov condition motivates the attribute the term
memoryless to such a stochastic process. In fact, according to Eq. (4.8), the prob-
ability for a stochastic process Y(t) to take on the value yn at time tn , given that
the values yj have been observed at the earlier times tj for 1 ≤ j ≤ n− 1, depends
on the preceding value only and not on the remaining past. If the present state
of the stochastic process is known, the past and the future are thus independent
signifying a lack of memory. It is worth stressing that the Markov condition (4.8)
holds for any value n ≥ 2, imposing an infinite number of constraints on the condi-
tional probabilities which is typically impossible to check for all practical purposes
rendering it an abstract mathematical tool. Obviously, it does not suffice to con-
sider some low-order distributions in order to verify the Markov condition (van
Kampen, 2007).

For increasingly ordered times t1 ≤ t2 ≤ t3 , one derives the following relation
for the transition probability from Eq. (4.9)

P1|1(y3, t3|y1, t1) =
∑

y2∈I
P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1) , (4.11)

which is known as the Chapman-Kolmogorov equation. Just as Eqs. (4.4)–(4.6) for
stochastic processes, this equation along with Eq. (4.10) for the 1-point probabili-
ties completely characterize the 1-point and the transition probability3 of a Markov
process. That is, any two nonnegative functions satisfying Eqs. (4.10) and (4.11)
unambiguously define a Markov process.

It is worth stressing that this does not mean that the Markovianity of a stochas-
tic process is fully entailed by these equations providing a sufficient criterion and,
thus, a reduction of the full Markov property. There are indeed stochastic pro-
cesses that are not Markovian4 but obey Eq. (4.11) (see Rivas et al. (2014) and

3Clearly, any transition probability must also be positive and satisfy
∑

z
P1|1(z, t|y, s) = 1 for

any value y and times t and s .
4Stochastic processes with transition probabilities satisfying Eq. (4.11) are called P-divisible

(see, e.g., Vacchini et al. (2011)).
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Vacchini et al. (2011) for some examples). However, defining the full hierarchy
associated with a stochastic process by means of Eq. (4.9) for these 1-point and
transition probabilities, one obviously obtains a Markovian process that has the
same 1-point and transition probabilities as the original non-Markovian process.
Note that the Chapman-Kolmogorov equation may similarly be written as

d
dtP1|1(y, t|x, s) =

∑

z∈I

[
Wyz(t)P1|1(z, t|x, s)−Wzy(t)P1|1(y, t|x, s)

]
, (4.12)

provided the transition probability is differentiable with respect to time t (see,
e.g., van Kampen (2007)). Here, Wyz(t) denotes the transition probability per
unit time which is nonnegative and represents the probability for a transition to
y given the classical state at time t was z . The differential Chapman-Kolmogorov
equation, which is also called master equation (van Kampen, 2007), thus describes
a loss and gain equation for the transition probabilities. It is clear that it solely
characterizes the transition probability P1|1 , but a similar equation can be derived
for the 1-point probability distribution

d
dtP1(y, t) =

∑

z∈I

[
Wyz(t)P1(z, t)−Wzy(t)P1(y, t)

]
, (4.13)

which is referred to as the Pauli master equation.
The main difficulty regarding an implementation of this well-established con-

cept in quantum theory is given by the Kolmogorov consistency relation (4.6). It
is, of course, possible to define a joint probability describing any sequence of mea-
surement outcomes on a quantum system. However, these n-point distributions
typically fail to satisfy the Kolmogorov condition (4.6). To illustrate this, assume
for simplicity that a POVM {Ey} with single Kraus operators Ωy corresponding to
these effects (see Sec. 2.4) is measured at the consecutive times tn ≥ · · · ≥ t1 ≥ 0
on a closed system in the state ρSE(0) which evolves according to the unitary op-
erators U(t) . Applying Born’s rule, the joint probability to obtain the sequence of
outcomes yj at tj is then given by

P ′n(yn, tn; · · · ; y1, t1) = TrSE{SΩynSU(tn−tn−1) · · ·SΩy1SU(t1)ρSE(0)} , (4.14)

where the notationSXρ = XρX† has been employed. It is readily shown that P ′n is
nonnegative and normalized for n = 1 (cf. Eqs. (4.4) and (4.5)). However, unless
the POVM {Ey} defines a quantum non-demolition measurement (QND) which
is characterized by the property ∑y1 Tr{SΩy2SΩy1ρSE(0)} = Tr{SΩy2ρSE(0)} for
any state ρSE(0) (Breuer and Petruccione, 2002), one typically has

∑

ym

P ′n(yn, tn; . . . ; ym, tm; . . . ; y1, t1) 6= P ′n−1(yn, tn; . . . ; y1, t1) (4.15)

for any 1 ≤ m < n . Hence, there does not exist a hierarchy of n-point probability
distributions corresponding to measurements of quantum systems in general.

The violation of the Kolmogorov consistency relation may be summarized by
the statement that any gain of information about a quantum system, realized by a
measurement of it, typically disturbs the system, resulting in a fundamental change
of its subsequent evolution (see Ch. 6 for a detailed discussion on this topic). The
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effect of intermediate measurements is most easily observed when the POVM is
assumed to describe a projective measurement with one-dimensional projections.
In this case, the measurement completely removes quantum coherences and, there-
fore, erases quantum interference effects (Breuer et al., 2016). Moreover, if the
one-dimensional projections act only on the open system, the system-environment
correlations are also fully eliminated by such a measurement which strongly influ-
ences the subsequent dynamics as already discussed in Sec. 3.5.

4.2 Concepts for quantum non-Markovianity

Since a hierarchy of n-point probability distribution functions, as used for the
definition of a classical Markov process, does not exist for quantum systems, the
fundamental questions emerge how to properly characterize memory effects in the
dynamics of an open quantum systems, and how to quantify them. As a starting
point for any attempt trying to answer these questions, one agrees on the facts
that the property of a quantum process being Markov represents a fundamental
feature of the open system dynamics which must be satisfied by any dynamics
resulting from a master equation in Lindblad form (3.22), providing the proto-
type of a Markovian, memoryless dynamics. In particular, this means that the
quantum Markov property cannot depend on the mathematical representation of
the dynamics, such as a description in terms of a time-local master equation, but
rather on features of the open system evolution which is completely described by
a one-parameter family of dynamical maps (see Sec. 3.2). Advocating the open
system point of view, memory effects should thus be based on the dynamics of
individual open system states.

The last decade was shaped by an intense debate about the origin and the
characterization of memory effects for quantum systems, following more or less the
prescribed guideline. It culminated in several proposals for a definition of quantum
non-Markovianity which can be approximately grouped into four different classes:
first, proposals that rely on the divisibility (see Sec. 3.4) of the quantum dynamical
process (Rivas et al., 2010; Hou et al., 2011; Chruściński and Maniscalco, 2014;
Hall et al., 2014), secondly, those which employ the concept of an information
flow quantified by the distinguishability of states (Breuer et al., 2009; Laine et al.,
2010b; Vasile et al., 2011; Chruściński et al., 2011; Chruściński and Kossakowski,
2012; Wißmann et al., 2015), thirdly, the category of approaches which depend
on the nonmonotonic behavior of other quantities invoking mostly concepts from
quantum information theory (Rivas et al., 2010; Lu et al., 2010; Rajagopal et al.,
2010; Chruściński and Kossakowski, 2012; Luo et al., 2012; Lorenzo et al., 2013;
Bylicka et al., 2014; Fanchini et al., 2014; Haseli et al., 2014; Song et al., 2015;
Dhar et al., 2015; Souza et al., 2015) and, fourthly, the class directly quantifying
deviations from semigroup dynamics (Wolf et al., 2008; Ali et al., 2015; Hou et al.,
2015).

The hitherto most promoted approaches are certainly given by the first two
classes. The first category is motivated by the fact that the notion of CP-divisibility
may be interpreted as the direct generalization of the semigroup property (see
Sec. 3.4) as well as the Chapman-Kolmogorov equation (4.11). More precisely,
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defining matrices Λt,r whose elements are given by the transition probabilities, i.e.
(Λt,r)yx ≡ P1|1(y, t|x, r) , the Chapman-Kolmogorov equation can be written as

Λt,r = Λt,sΛs,r , t ≥ s ≥ r ≥ t0 , (4.16)

which obviously has the same structure as the divisibility property for a dynamical
process (cf. definition (3.1)). Clearly, this would suggest P-divisibility for an
algebraic definition of quantum non-Markovianity in the first instance. However,
since complete positivity is the relevant property for maps on quantum systems (cf.
Sec. (2.4)), one may thus regard the replacement of the stochastic5 matrices Λt,s by
completely positive maps as the natural quantum analog of the necessary condition
(4.16) of a classical Markov process (Rivas et al., 2014; Breuer et al., 2016). This
approach obviously respects quantum processes arising from a Lindblad master
equation as prototypes of Markovian dynamics.

The usage of the concept of divisible quantum processes for the definition of
quantum non-Markovianity has been first suggested by Rivas et al. (2010). In
order to check the divisibility of the process, one would initially assume that the
intermediate maps Λt,s (cf. Eq. (3.73)) must be exactly known requiring the ability
to perform process tomography. Knowing the full process, one may also determine
the associated time-local master equation and check complete positivity by virtue
of theorem 3.2. Besides the opportunity of a full process tomography, one can
also limit resources to simple state tomography at the cost of being capable to
prepare entangled states: the so-called Choi matrix (Λt,s⊗IA)(|Ψ〉SA〈Ψ|) is positive
if and only if Λt,s is completely positivity (Choi, 1975), where |Ψ〉SA refers to a
maximally entangled state between the open system and an ancilla describing a
quantum system with Hilbert space dimension greater or equal than dimHS . The
apparent advantage of state tomography on an extended system is disproved by a
close inspection of the scaling with respect to the Hilbert space dimension which
is shown to be the same for both methods (Breuer et al., 2016). The strength of
the negativity of the Choi matrix (Rivas et al., 2010) or the rates of the associated
time-local master equation (Hall et al., 2014), which exist whenever the notion
of divisibility is well defined as was argued in Sec. 3.4, finally provide tools to
measures the degree of non-Markovianity of a dynamical process as described by
this criterion.

Returning to the first proposal for a “quantization” of the Chapman-Kolmogorov
equation (4.16), that is, replacing the positive matrices Λt,s by maps on the open
system’s state space that are at least positive, the quantum counterpart of equa-
tion (4.16) would accordingly be given by P-divisibility. This property is actually
equivalent to a monotonically decreasing generalized trace distance and leads to
rate equations for the eigenvalues of open system states that can be interpreted as
Pauli master equations (4.13) of a classical Markov process, describing major re-
sults of this thesis which are presented in Sec. 4.4 (see also Wißmann et al. (2015)).
In addition to providing an intrinsic definition of quantum non-Markovianity, the
first characterization already has a classical analog which captures the features of
a classical Markov process at the level of 1-point probability distributions. In fact,

5A positive semidefinite matrix A = (ajk) is said to be stochastic if any of its columns sums
to one, i.e., if one has

∑
j
ajk = 1 for all k . If the sum of any column and, in addition, any row

is equal to unity, one speaks of a bistochastic matrix.
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for any pair of 1-point probability distributions P (k)
1 (r) = {P (k)

1 (x, r)} (k = 1, 2)
over the same sample space, which evolve according to P (k)

1 (y, t) = Λt,rP
(k)
1 (x, r),

one has

‖q1P
(1)
1 (t)− q2P

(2)
1 (t)‖`1 ≤ ‖q1P

(1)
1 (s)− q2P

(2)
1 (s)‖`1 (4.17)

for any binary probability distribution {qj} and any indices t ≥ s ≥ r , if and only
if the maps Λt,r obey the Chapman-Kolmogorov equation (4.16) (Breuer et al.,
2016). The lack of nonstochastic intermediate maps Λt,s , being detected by a non-
monotonic behavior of the generalized Kolmogorov distance (4.17), may therefore
be used to quantify non-Markovian behavior of classical processes at the level of
1-point probability distributions as proposed by Smirne et al. (2013c).

However, a nonmonotonic behavior of the generalized trace distance can ad-
ditionally be interpreted as a backflow of information due to the relation of this
functional to ensemble discrimination which was pointed out in Sec. 2.4.1. The
appealing idea that memory effects in the dynamics show up as a backflow of in-
formation into the open system also applies to any other distance measure that
is contractive with respect to CPT-maps and invariant under unitary transforma-
tions, as the total information quantified by such measures is then preserved and
they provide reasonable quantifiers for the distinguishability of quantum states,
even though not in an operational setting in general such as the trace norm does
(Breuer et al., 2009; Laine et al., 2010b; Vasile et al., 2011; Chruściński et al., 2011;
Chruściński and Kossakowski, 2012). This sets the basis for the second category of
approaches to quantum non-Markovianity which was brought up by Breuer et al.
(2009) who studied the dynamical behavior of the trace distance. The details of
this first attempt, combining a clear physical and operational interpretation and
an intrinsic characterization of memory effects, are given in the next section along
with a study of the associated measure.

To finish the introduction, the geometrical characterization of non-Markov-
ianity is worth mentioning as it is also connected to P-divisibility of the process.
Lorenzo et al. (2013) assign non-Markovian behavior to an intermediate growth of
the volume of the open system state space, which is determined with respect to the
parametrization obtained from the generalized Bloch representation (cf. Sec. 2.2).
Another line of thought pursued in the third category is based on the evolution of
correlations such as entanglement (Rivas et al., 2010; Fanchini et al., 2014; Haseli
et al., 2014) or the dynamics of the mutual information (Luo et al., 2012) between
the open system and an auxiliary system. While other concepts from quantum
estimation and information theory like the quantum Fisher information (Lu et al.,
2010; Song et al., 2015), the infometric power (Dhar et al., 2015; Souza et al.,
2015) or means measuring the capacity of quantum channels (Bylicka et al., 2014)
have additionally been proposed, there is also the most strict school advocating
the classification in terms of deviations from signatures of the semigroup such as
the quantum regression theorem (Ali et al., 2015) or the snapshot method (Wolf
et al., 2008).
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4.3 Quantum non-Markovianity and the information
flow

The trace distance, as well as its generalization, defines a measure for the dis-
tinguishability of quantum states equipped with an operational meaning as was
shown in Sec. 2.4.1. It is therefore natural to interpret a dynamical change of
the trace distance of two open system states as a flow of information between the
open system and its environment. This interpretation is supported by the obser-
vation that the trace distance’s contractivity for positive, trace preserving linear
maps (see Eq. (2.42)) yields an upper bound for the distinguishability of two states
ρ

(1,2)
S (t) evolving with respect to a dynamical process Φ = {Φt,t0 | t ≥ t0} . In fact,

one obtains

DT
(
ρ

(1)
S (t), ρ(2)

S (t)
) ≤ DT

(
ρ

(1)
S (t0), ρ(2)

S (t0)
)

(4.18)

and the preservation of distinguishability in closed systems due to the unitary
invariance of the trace norm reinforces the suggested interpretation, too. Note that
the Eq. (4.18) does not prohibit a nonmonotonic behavior of the distinguishability
but bounds the maximal gain of information. Indeed, the distinguishability cannot
exceed its initial value. The loss of information, ascribed to a decrease of the
distinguishability, may thus be accompanied by revivals of trace distance that are
interpreted as a backflow of information from the environment to the open system.

It is worth stressing that the swap of information refers to the information which
is accessible by measurements on the open quantum system’s degrees of freedom
only. Thus, information can also be carried by system-environment correlations.
This can, for example, be seen by virtue of the quantities

Iint(t) = DT (ρ(1)
S (t), ρ(2)

S (t)
)
, (4.19)

and

Iext(t) = DT (ρ(1)
SE(t), ρ(2)

SE(t)
)−DT (ρ(1)

S (t), ρ(2)
S (t)

)
, (4.20)

where the latter has already been introduced in general terms in the study of
initial system-environment correlations given in Sec. 3.5.1. Following the previous
discussion, Iint(t) represents the distinguishability of the open system at time t ,
whereas Iext(t) describes the gain of information when the total system is accessible
instead of the open system only. Both quantities are positive and the unitary
invariance of the trace norm along with the factorization of the initial total states
implies that DT (ρ(1)

SE(t), ρ(2)
SE(t)

)
= DT (ρ(1)

S (t0), ρ(2)
S (t0)

)
holds for all times t ≥ t0

and, therefore, one has Iext(t0) = 0. The internal and external information thus
obey (Breuer et al., 2016)

Iint(t) + Iext(t) = Iint(t0) , (4.21)

which clearly expresses the idea of an exchange of information between the open
system and the environment as an increase of Iext necessarily forces Iint to decrease.
Employing the upper bound (3.87), system-environment correlations must be build
up or the environmental states have to be different in order to achieve Iext > 0.
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This clearly shows that the lost information is inaccessible by measurements on
the open system and, moreover, the recovery of lost information, corresponding to
an intermediate increase of Iint , is due to the existence of correlations or different
environmental states at some point of the evolution (Breuer et al., 2016).

In view of the previous considerations, one now defines non-Markovianity in the
following way: a dynamical process given by a one-parameter family of dynamical
maps Φ = {Φt,t0 | t ≥ t0} is said to be non-Markovian if and only if there exists a
pair of initial states ρ(1)

S (t0) and ρ(2)
S (t0) such that

σ(t, ρ(j)
S ) ≡ d

dtDT
(
ρ

(1)
S (t), ρ(2)

S (t)
)
> 0 (4.22)

for some time t > t0 , where the time-evolved states read ρ(j)
S (t) = Φt,t0

(
ρ

(j)
S (t0)

)
.

Hence, non-Markovian behavior can be experimentally witnessed if state tomo-
graphic measurements of different initial states at different times can be realized
as will be demonstrated for a photonic setup in Sec. 4.3.2. Because memory ef-
fects should define an intrinsic feature of the dynamical process, whose existence
is basically the only prior information one requires, a state independent quantifier
for the information flow must be established. An obvious solution for this problem
is to sum up all revivals of the trace distance, that is, to sum up all contributions
for which one has σ > 0, and to maximize over all pairs of initial states.

Definition 4.1. A measure N (Φ) for the degree of memory effects of a quantum
process Φ is given by

N (Φ) = max
ρ

(1,2)
S ∈S(HS)

∫

σ>0
dt σ(t, ρ(j)

S ) ∈ [0,∞] . (4.23)

A quantum process Φ is called non-Markovian if and only if N (Φ) > 0 (Breuer
et al., 2009; Laine et al., 2010b).

Clearly, this definition of a measure for non-Markovianity is in prefect accor-
dance with semigroup dynamics leading to a continuous loss of distinguishability
just as any P-divisible quantum process. However, the converse is not true, that
is, non-P-divisible processes Φ may still yield N (Φ) = 0 (see, e.g., Mazzola et al.
(2010), Chruściński et al. (2011), Chruściński and Wudarski (2013) and Hall et al.
(2014) for explicit examples). Summarizing, the lack of P-divisibility is just nec-
essary but not sufficient for non-Markovianity.

As a P-divisible quantum process is not necessarily CP-divisible, it is evident
that this concept is fundamentally different from the approaches based on CP-
divisibility. Chruściński et al. (2011) proposed an approach reconciling the idea of
an information flow with CP-divisibility which also inspired the generalization of
definition 4.1 to a measure enjoying the interpretation of non Markovianity in terms
of an information flow and equivalence to P-divisibility, which will be introduced
in Sec. 4.4.

It is worth stressing that the maximum in Eq. (4.23) does not exist in general,
independent of the dimension of the Hilbert space of the open quantum system. Of
course, infinite systems describe the generic case where no maximizing pair exists,
but also the integration which formally ranges to infinity is problematic in this
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respect. To deal with these mathematical subtleties, the maximum must actually
be replaced by the supremum so that there is a sequence of state pairs approaching
N (Φ). Apart from this problem, the maximization by itself is challenging as the
concerned set S(HS)× S(HS) is of dimension 2(dimHS)2 − 2 and, thus, increases
rapidly with the size of the Hilbert space. Significant progress concerning this
difficulty is made by characterizing the set of maximizing states which, moreover,
leads to a advantageous, local representation of the measure as will be shown in
the following section.

4.3.1 Pairs of optimal states and the local representation

A pair of states ρ(1)
S and ρ(2)

S of the open quantum system is said to be optimal if
and only if the maximum in Eq. (4.23) is attained for this pair, i.e., if it satisfies

N (Φ) =
∫

σ>0
dt σ(t, ρ(j)

S ) . (4.24)

Of course, it may happen that there exist several maximizing pairs such as for the
models leading to pure decoherence which were discussed in Sec. 3.3.2, or that
the set of optimal states is empty. In addition, it is clear that the definition of
optimal states is only reasonable if the dynamics is non-Markovian as for Markovian
processes any pair of states is optimal by definition. Obviously, the states of an
optimal pair, assuming its existence, must also be unequal.

Now, assuming that an optimal pair indeed exists, one shows that the optimal
states must be orthogonal (Wißmann et al., 2012) employing the Jordan-Hahn
decomposition6 (cf. lemma G.1). Optimal states, featuring a maximal backflow of
information, thus obey the natural guess of having initially a maximal information
content due to their perfect distinguishability at the initial time. Note that the
result concerning optimality of states relies solely on the linearity of the dynamical
maps, and therefore applies to open quantum systems of arbitrary dimension. The
measure for quantum non-Markovianity thus reads

N (Φ) = max
ρ

(1)
S ⊥ρ

(2)
S

∫

σ>0
dt σ(t, ρ(j)

S ) . (4.25)

Besides orthogonality of the states maximizing the backflow of information, no
further characterization, such as their purity, is possible a priori. While the or-
thogonality of states indeed implies the purity of optimal states for two-level sys-
tems, this conclusion is in general wrong as was shown in Wißmann et al. (2012)
by means of an example.

The orthogonality of optimal states may, however, be used to derive a local rep-
resentation of the measure for quantum non-Markovianity for finite-dimensional
systems as indicated before. By virtue of the Jordan-Hahn decomposition, one
shows that the set of orthogonal states can be represented by states of an appro-
priate set and an arbitrary but fixed reference state of the state space’s interior.

6An alternative proof for finite-dimensional open quantum systems is based on the joint trans-
latability of two quantum states by traceless, Hermitian operators if they are not orthogonal
(Wißmann, 2012).
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(a) (b)

Figure 4.1 – Illustration of an enclosing surface with curved boundary (a) and of
a hemispherical enclosing surface (b) for an inner point ρS (cf. Fig. 1 in Wißmann
et al. (2015)).

The restriction to finite systems is readily understood as the interior is empty if
one has dimHS =∞ (cf. Sec. 2.3). Because infinite quantum systems can often be
accurately described by finite-dimensional Hilbert spaces for most practical pur-
poses, this limitation is yet not as drastic as supposed. Apart from resolving the
point of criticism that the maximization includes pairs of states, this representa-
tion highlights that non-Markovianity quantified by the measure N is a universal
and intrinsic feature of the dynamical process appearing everywhere in the state
space.

To establish the local representation, one first characterizes the mentioned, ap-
propriate set of states over which the maximization has to be performed. Denoting
the set of nonzero, Hermitian and traceless operators on the Hilbert space HS by

E0(HS) = {Y ∈ B(HS) | Y 6= 0, Y = Y †, Tr{Y } = 0} , (4.26)

one defines the following subset of the state space associated with an arbitrary
reference state ρS ∈ S̊(HS) (Liu et al., 2014; Wißmann, 2012):

Definition 4.2. Let ρS ∈ S̊(HS) be an interior point of a finite-dimensional state
space S(HS) . A set ∂U(ρ0) ⊂ S(H) not containing ρS is called an enclosing
surface of ρS if and only if for any operator Y ∈ E0(H) there exists a real number
µ > 0 such that

ρS + 2µY ∈ ∂U(ρS) . (4.27)

An illustration of the definition is provided in Fig. 4.1 (a) . Clearly, one has
ρS /∈ ∂U(ρS) and ∂U(ρS) ⊂ S(HS) by construction and the denomination is
chosen as, according to the generalized Bloch representation (cf. Sec. 2.2), the
set E0(HS) is isomorphic to the perforated Euclidean space RN2

S−1 \ {0} given an
NS-dimensional open quantum system, so that the inner point ρS is completely
covered by any of its corresponding enclosing surfaces. The most simple instance of
such a set is clearly given by a sphere contained in S(HS) which is centered around
~vS specifying the inner point’s Bloch vector. It is worth stressing that an enclosing
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surface ∂U(ρS) can be of any shape even though the previous example shows the
existence of enclosing surfaces in general. In fact, by the very definition of the
interior of the state space (cf. Sec. 2.3), there always exist such a sphere which
thus proves that any inner point has an enclosing surface. Similarly, it follows that
one cannot define such a set for any state on the boundary ∂S(HS) (cf. Eq. (2.17))
of the state space. Using this definition, one may prove the following theorem
establishing the local representation (see Wißmann (2012) or Liu et al. (2014) for
the proof):

Theorem 4.1. For any dynamical process Φ for a finite-dimensional open quantum
system, the measure for quantum non-Markovianity N defined in Eq. (4.1) admits
a local representation, i.e., it can be determined as

N (Φ) = max
ρ

(2)
S ∈∂U(ρ(1)

S )

∫

σ̄>0
dt σ̄(t, ρ(j)

S ) (4.28)

with

σ̄(t, ρ(j)
S ) ≡ σ(t, ρ(j)

S ) · DT (ρ(1)
S , ρ

(2)
S )−1 , (4.29)

where ρ(1)
S ∈ S̊(HS) is any fixed state of the state space’s interior and ∂U(ρ(1)

S )
refers to an arbitrary enclosing surface of ρ(1)

S .

The non-Markovianity can thus be obtained by determining the information
backflow of the trace distance between an arbitrary fixed state from the interior
and the states of any of its enclosing surfaces at the cost of rescaling the information
flux by the initial distinguishability. Considering a two-dimensional open quantum
system for which the clear illustration in terms of the Bloch ball is available, one
can easily understand this. In this case, the maximization in the original definition
of N can be restricted to all pairs of antipodal states of the sphere due to the
required orthogonality of optimal states as mentioned before. For a fixed point of
the open unit ball and a set which encloses it – corresponding to an inner point
ρS and an enclosing surface ∂U(ρS) , respectively – the straight line connecting
states %S ∈ ∂U(ρS) and ρS can be moved by parallel translation to be centered at
the origin of the Bloch ball leaving the trace distance of the two states unaffected.
Stretching the line by the inverse trace distance of the two involved states ρS and
%S , the endpoints of the line correspond two antipodal points on the surface of the
Bloch ball. Conversely, any pair of antipodal points can obviously be transformed
in the same way to define the inner point ρS and a state of an enclosing surface
∂U(ρS) .

An inner point and any of its enclosing surfaces thus contain all directions
covered by the difference of orthogonal states. However, the information provided
by an inner point along with an enclosing surface is actually still overcomplete as
the two-dimensional example already shows. First, the trace norm is not altered
when the sign of the operator is changed, i.e., one has ‖Y ‖1 = ‖Z‖1 for any operator
Y where Z is defined according to Z ≡ −Y . And, secondly, the existence of a single
parameter λ > 0 for any element in E0(HS) in definition 4.2 actually suffices to
deduce the non-Markovianity according to Eq. (4.28). Hence, theorem 4.1 can be
rephrased in terms of hemispherical enclosing surfaces of an inner point which are



4.3. Quantum non-Markovianity and the information flow 91

defined according to (see Fig. 4.1 (b) for an illustration): A set ∂Ũ(ρS) ⊂ S(H)
not containing ρS is said to be a hemispherical enclosing surface of an inner point
ρS if and only if for any Y ∈ E0(HS) there exists exactly one real number λ > 0
such that either ρS + λY ∈ ∂Ũ(ρS) or ρS − λY ∈ ∂Ũ(ρS) holds (Wißmann, 2012;
Liu et al., 2014).

Clearly, enclosing as well as hemispherical surfaces need neither be smooth nor
connected which makes the local representation particularly convenient for noisy
experiments. Apart from technical improvements for the precise determination of
the measure for quantum non-Markovianity, this representation shows that it suf-
fices to sample states locally and that the non-Markovianity of a dynamical process
quantified by an information backflow defines a universal feature. The information
about the non-Markovianity is thus contained and can be revealed in any part of
the state space supporting the intuitive idea that quantum memory effects rep-
resent an intrinsic property of the dynamics. In the following section, the local
representation and its functioning is illustrated by means of an all-optical setup,
where the sampling conception as well as the data analysis and their representation
represents a major result of this thesis.

4.3.2 The local representation in an all-optical setup

In order to highlight the relevance and feasibility of the local representation for
experiments, it is applied to a photonic process (Liu et al., 2014). The open
quantum system is provided by the polarization degree of freedom of a single photon
which is coupled to its frequency degree, representing the environment, by virtue of
birefringent quartz plates. Unlike in many system-environment models, the system
and the environment are thus not assigned to two physical entities but to different
degrees of freedom of the same particle. Such a situation is in fact not uncommon
for open quantum systems. The electronic degree of freedom of a trapped ion that
is coupled to its motional degree of freedom provides another example (Gessner
et al., 2014b). Apart from the overall theoretical concept, the sampling conception
as well as the data analysis of the experimental results obtained for the photonic
process and, finally, their representation constitute the major achievement of this
thesis that contributed to the work by Liu et al. (2014).

An all-optical setup has the distinguished features that it allows for a controlled
system-environment interaction and, in addition, a selective and well-controlled
state preparation. Due to this, such a system constitutes an ideal testbed for
the study of fundamental aspects of the theory of open quantum systems. In the
present experiment, the polarization state undergoes a dephasing process due to
the insertion of birefringent quartz plates in the optical path. The differing propa-
gation speed across the quartz plates leads to a coupling between the polarization
and frequency degrees of freedom of the photon which finally results in the de-
phasing of superpositions of vertical and horizontal polarization states. In fact,
the dephasing strongly depends on the structure of the frequency spectrum which
can be efficiently manipulated by tilting a Fabry-Pérot cavity inserted into the op-
tical path producing a bimodal spectrum as was considered by Liu et al. (2011) in
the study of non-Markovianity. In the experiment memory effects are thus due to a
structured environment representing a typical cause for non-Markovian behavior.
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Figure 4.2 – Experimental setup for the studied photonic process. Key to the
components: HWP – half-wave plate, QWP – quarter-wave plate, FP – Fabry-Pérot
cavity, IF – interference filter, QP – quartz plate, (P)BS – (polarizing) beamsplitter,
SPD – single photon detector (cf. Fig. 2 in Liu et al. (2014)).

A 0.1mm thick, fused silica plate (layered with a partial reflecting coating of
approximately 80% reflectivity at 780 nm) now serves as the Fabry-Pérot cavity
(FP) in the experiment which is additionally mounted on a rotator enabling to tilt
it. The cavity and a consecutively placed interference filter (IF) (FWHM about
3 nm) single out two peaks near 780 nm of width σ = 7.7× 1011 Hz each, which are
separated by ∆ω = 7.2×1012 Hz corresponding to distances of 0.25 nm and 2.34 nm,
respectively. While the relative amplitude Aα of the two peaks characterizing the
bimodal spectrum depends on the tilt angle α significantly, the other quantities are
approximately constant (see Liu et al. (2011)). The experimental setup is depicted
in Fig. 4.2.

The entanglement source, producing the state (|H,V 〉− |V,H〉)/
√

2 where |H〉
and |V 〉 denotes the horizontal and vertical polarization states, is given by a pulsed,
frequency doubled and mode-locked Ti:sapphire laser (central wavelength 780 nm,
pulse duration 2 − 3 ps with a repetition rate of 76MHz) that pumps two 1mm
thick β-barium borate (BaB2O4 – abbr.: BBO) crystals which are located next to
each other. The optic axis of the crystals are in the horizontal plane, but mutually
twisted by 180◦ around the pump direction, so that they make an angle of 48.3◦
with the pump beam (Niu et al., 2008; Kim, 2003). This special orientation of each
of the crystals is also referred to as beamlike type-II phase-matching condition,
yielding the particular type-II spontaneous parametric downconversion (SPDC)
in any of the crystals (Kurtsiefer et al., 2001; Takeuchi, 2001) where signal-idler
photon pairs are emitted as two circular beams rather than two diverging cones
as for usual type-II downconversion7 (cf. Fig. 4.3). It thus follows that beamlike

7Such a process is obtained for the slightly larger angle θPO = 49.2◦ between the optic axis
and the pump beam.
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(a) (b)

Figure 4.3 – The emission profile, viewed from the top, for type-II (a) and beam-
like type-II (b) spontaneous downconversion processes in single and double crystal
configuration, respectively. While the former, corresponding to an angle of 49.2◦
between the pump beam and the optical axis of the crystal, creates a double cone
spatial emission profile of the downconverted photons, the latter emits the signal-
idler photon pairs as two circular beams due to type-II phase matching θPO = 48.3◦
for each crystal.

type-II downconversion features a better pair detection efficiency since no small
apertures selecting the intersections of the cones are required as for ordinary type-II
and type-I SPDC which reduces the brightness of the source (Kim, 2003).

The concatenation of two crystals is then necessary to obtain maximally en-
tangled photon states as a horizontally polarized pump beam only generates polar-
ization product states. More precisely, one obtains photon pairs |H,V 〉 or |V,H〉
depending on whether the first or the second crystal alone are pumped. Removing
possible spatial and time information by means of suitable compensators, the pho-
tons created by the two concatenated crystals are solely distinguishable by their
polarization, thus yielding the entangled state (|H,V 〉+ |V,H〉)/

√
2. By virtue of

additional phase retarders such as (tiltable) half-wave plates or quarter-wave plates,
any of the four maximally entangled two-qubit Bell state (cf. Eqs. (2.78)–(2.81))
may finally be prepared (Kim, 2003). Note that the generation of nonmaximally
entangled states is difficult in this setup since, contrary two type-I downconver-
sion, the weighting factors for each amplitude |H,V 〉 and |V,H〉 cannot be simply
adjusted by changing the polarization of the pump pulse.

The entangled two-photon state is used in the experiment to have a trigger for
the single photon in arm II whose polarization and frequency degrees of freedom
ultimately constitute the open quantum system and its environment. A direct
detection of the photon in arm I using a single photon detector (SPD) causes
photon II to be described by the maximally mixed state which represents the
basic input for the creation of arbitrary polarization states via the optical setup in
part a , b and c (see Fig. 4.2) needed for the sampling process. In fact, any single
pure photon polarization state may be obtained in arm IIc using a polarizing
beam splitter (PBS), a half-wave plate (HWP) and a tiltable quarter-wave plate
(QWP) (Kwiat et al., 1999). The transmitted part of photon II is again split by a
beamsplitter (BS) to generate another pure state (IIa) which is finally recombined
with the maximally mixed state (IIb) and the pure polarization state from arm IIc
by virtue of several BS. Several tunable attenuators in each arm enable to adjust
the relative amplitudes of the three different states. To ensure that the mixture of
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Figure 4.4 – Dynamics of the magnitude of the coherence factor κ(t) (cf. Eq. (4.31))
as a function of the effective path difference c∆n·t in units of the central wavelength
of the FP cavity for three different relative amplitudes of the peaks. The vertical
lines indicate 175λ and 318λ which approximately define the minimum and the
maximum for all considered values of Aα , respectively.

the three parts is classical, the path difference between each arm is set to about
25mm, corresponding to a delay of 0.1 ns which is long compared with the single
photon coherence length but, of course, shorter than the pulse spacing of the pump
laser. The described setup conveniently allows to prepare any reference states as
a result of the arms IIa and IIb together with arbitrary enclosing surfaces whose
exact form is controlled by the attenuation of the pure states from arm IIc relative
to the reference state. It is worth pointing out that the enclosing surfaces thus
contain only mixed states unless the mixture is trivial.

After the preparation, photon II finally passes through birefringent quartz
plates of variable thickness which finally cause the dephasing of superpositions
of polarization states as was already discussed in the beginning of this section.
The actual state is analyzed by standard single photon polarization state tomog-
raphy8 which is indicated by several phase retarders and an SPD at the end of
arm II in Fig. 4.2. The errors of the state estimation for the experimental data
are determined using Monte Carlo methods which depend on the photo counting
rate and the integration time (Liu, 2014).

In the polarization basis {|H〉, |V 〉} , the dynamics of the polarization state is
found to obey (Liu et al., 2011) (see also Appendix H)

ρ(t) =
(

ρV V (0) κ(t)ρV H(0)
κ(t)∗ρHV (0) ρHH(0)

)
, (4.30)

where the coherence factor is given by the Fourier transform of the photon’s fre-
quency distribution which can be well approximated by a sum of two Gaussians

8The polarization state of a photon can be reconstructed by maximum likelihood estimation
from the photon counts measuring the four polarization bases |H〉 , |V 〉 , |D〉 = (|H〉 − |V 〉)

√
2,

|R〉 = (|H〉 − i|V 〉)
√

2 (James et al., 2001). These bases single out linearly polarized photons in
horizontal, vertical, diagonal (45◦) and right-circular sense.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5 – Experimental results for the increase of the trace distance between
175λ and 318λ for a relative amplitude Aα = 0.64 and states on the enclosing surface
of reference state ρ(1)

0 (a), ρ(2)
0 (b) as well as pairs of orthogonal states (c) . The

experimental errors, not shown, are of the order of 2×10−2 . The corresponding φloc-
averaged increase with respect to local spherical coordinates (φloc, θloc) is displayed
in (d), (e) and (f) where the error bars show the standard deviations (cf. Fig. 3 in
Liu et al. (2014)).

corresponding to the peaks singled out by the FP cavity. One thus obtains for the
modulus of the coherence factor (Liu et al., 2011)

|κ(t)| =
exp

[
−1

2σ
2(∆n · t)2

]

1 +Aα

√
1 +A2

α + 2Aα cos(∆ω∆n · t) , (4.31)

where the birefringence ∆n of the quartz used in the experiment is given by
8.9 × 10−3 at 780 nm. Note that the interaction time is related to the thickness
L of the quartz plates according to well-known relation t = L/c where c denotes
the speed of light. Figure 4.4 shows the dynamics of the modulus of the coherence
factor in terms of the effective path difference L∆n in units of the central wave-
length of the FP cavity (λ = 780 nm) for the three relative amplitudes Aα = 0.64,
0.22 and 0.01, ranging from non-Markovian to Markovian evolutions (see below).
It is clear that the experimental setup only allows to scan discrete evolution times
as the thickness of the quartz plates cannot be adjusted arbitrarily. The simu-
lated evolution times are finally fixed to 0λ , 75λ , 175λ , 275λ and 318λ where
the modulus of the coherence factor increases from 175λ to 318λ for Aα = 0.64
and 0.22 which, in addition, define good estimates of the minimal and maximal
value of the modulus (cf. Fig. 4.4). It is thus reasonable to associate the degree
of non-Markovianity of the three dynamics, which is determined experimentally
employing the local representation, to the change of the trace distance between
these two lengths of the quartz plates.

The local representation is finally applied to two reference states for the three
dynamics characterized by the specified relative amplitudes, and the results are
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compared with the outcome for pairs of orthogonal initial states. The two reference
states ρ(1)

0 and ρ(2)
0 are characterized by

r(1)
0 =

(
0.20, 1

2π,
13
50π

)
, r(2)

0 =
(
0.88, 8

50π,
13
50π

)
, (4.32)

employing the Bloch representation (cf. Sec. 2.2) which allows for a parametriza-
tion of the set of polarization states in terms of spherical coordinates r = (r, θ, φ) .
Reference state ρ(1)

0 is thus located inside the equatorial plane, whereas the second
reference state lies in the northern hemisphere close to the boundary. As indicated
previously, the enclosing surfaces are determined by mixing the reference states
and any pure state ρ prepared in arm IIc . The convex combination used in the
experiment is set to 0.3 · ρ(1,2)

0 + 0.7 · ρ and, moreover, a total of 5000 pure states
for each reference state are prepared. The associated azimuthal and polar angles
(θ and φ , respectively), characterizing the pure states completely, are chosen to be
on a lattice with equal spacing of 2π/100 (Liu et al., 2014).

(a) (b) (c)

(d) (e) (f)

Figure 4.6 – The same as Fig. 4.5 for a relative amplitude Aα = 0.22 (cf. Fig. 4
in Liu et al. (2014)).

The outcomes of the measurements are presented in Figs. 4.5, 4.6 and 4.7,
where the increase of the trace distance between 175λ and 318λ for any state
on the enclosing surface for the two reference states is shown in Figs. 4.5 (a)–
4.7 (a) and 4.5 (b)–4.7 (b) using color coding and omitting the experimental errors,
which are of the order of 2× 10−2 . Note that the colored surfaces in these figures
are neither spherical nor centered at the origin. By contrast, Figs. 4.5 (c)–4.7 (c)
show ordinary Bloch spheres representing the measurement outcomes for pairs of
orthogonal initial states. The photon count rate and integration time used to
measure the reference states as well as orthogonal states and the states of the
enclosing surfaces are summarized in Tabs. F.1 and F.2 in Appendix F.

A major result of this thesis is the representation of the experimental data for
the reference states with respect to local spherical coordinates. In fact, denoting
the spherical coordinates which are defined with respect to local coordinate sys-
tems centered at the position of the two reference states by rloc = (rloc, θloc, φloc) ,
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(a) (b) (c)

(d) (e) (f)

Figure 4.7 – The same as Fig. 4.5 for a relative amplitude Aα = 0.01 (cf. Fig. 5
in Liu et al. (2014)).

one recovers the polar symmetry present for pairs of orthogonal states as one may
see by looking at Figs. 4.5 (a)-(c) . In this case, it makes sense to average the out-
comes over the polar angle φloc along lines of latitude in order to obtain a proper
estimate for the degree of non-Markovianity of the process. As the local azimuthal
angles are not uniformly distributed with respect to rotations around the z-axis,
one must first introduce an appropriate binning on the z-axis before determining
the average value. The average increase in any bin is then assigned to the azimuthal
angle θloc associated with the mean z-value in the bin. In addition, one allocates
the standard deviation to each of the averaged outcomes which is typically much
larger than the averaged experimental errors. The resulting data are depicted in
Figs. 4.5 (d)–4.7 (d) and 4.5 (e)–4.7 (e), showing the same characteristics as the
φ-averaged increase of pairs of orthogonal states displayed in Figs. 4.5 (f)–4.7 (f) .
From these plots one also nicely sees the directional dependence of the trace dis-
tance, i.e., the bare dependence on traceless, Hermitian operators corresponding
to vectors in Euclidean space.

The maximal increase of the trace distance for the two reference states obtained
from the φloc-averaged data as well as for pairs of orthogonal states are given in
Tab. 4.1. These values are in very good agreement with the predictions of the
theoretical model, which is given by the value of |κ(175λ/(c∆n)|− |κ(318λ/(c∆n)|
for the specified parameters, demonstrating the experimental feasibility and the
accuracy of the method. Thus, the local representation of the measure can indeed
be efficiently applied to an arbitrary neighborhood of a fixed state in the interior of
the state space. In particular, apart from illustrating the locality and the univer-
sality of the derived representation, the photonic experiment shows that optimal
quantum states, featuring the maximal backflow of information, can always be
represented by mixed states.
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Aα Ntheo N(a) N(b) N(c)

0.64 0.59 0.59± 0.01 0.59± 0.02 0.59± 0.02
0.22 0.21 0.21± 0.01 0.21± 0.02 0.21± 0.02
0.01 0 0.001± 0.013 −0.005± 0.008 −0.0002± 0.0015

Table 4.1 – The degree of quantum non-Markovianity measured by N for the
three dynamics obtained from the averaged experimental data in comparison to the
theoretical value determined by |κ(175λ/(c∆n)| − |κ(318λ/(c∆n)| for the specified
parameters (cf. Tab. 1 in Liu et al. (2014)).

4.4 Generalization of the trace-distance-based measure
This section focuses on the previously mentioned generalization of the trace-dis-
tance-based measure for quantum non-Markovianity, representing another major
result of the present thesis which was already published in (Wißmann et al., 2015).
This extension of the previous approach to non-Markovianity features the very
same interpretation as the original trace-distance based measure and provides, in
addition, a clear-cut connection to classical Markovian stochastic processes. Fur-
thermore, the associated measure has mathematical features and representations
similar to those found for the original approach. That is, optimal initial states for
non-Markovian dynamics must again be orthogonal, and the measure also admits
an equivalent local representation. The generalized criterion thus combines a phys-
ical interpretation of quantum non-Markovianity, an intrinsic definition, showing
locality and universality of memory effects, and a relation to the well-known clas-
sical definition. A similar approach was already proposed by Chruściński et al.
(2011), but focusing on divisibility in terms of completely positive maps rather
than P-divisibility which turns out to be equivalent to the definition considered
here (see Sec. 4.4.1). Hence, CP-divisibility yields only a sufficient condition for
this approach to quantum Markovianity, too.

The generalized trace-distance-based approach basically relies on the follow-
ing natural and interesting generalization of the trace distance: interpreting the
prefactor of the trace norm in DT (ρ1, ρ2) = 1

2‖ρ1 − ρ2‖1 as unbiased probability
distribution, one generalizes the trace distance by allowing for arbitrary probability
distributions {pj} , i.e., instead of the trace distance one considers the quantity

‖p1ρ1 − p2ρ2‖1 = Tr{|p1ρ1 − p2ρ2|} , (4.33)

which was first considered by Chruściński et al. (2011) in the context of non-
Markovian dynamics. The Hermitian operator ∆ = p1ρ1 − p2ρ2 is known as Hel-
strom matrix (Helstrom, 1976; Holevo, 1972) and its trace norm describes the bias
in favor for correct state discrimination in a one-shot, two state discrimination
problem for states ρ1 and ρ2 with a priori probabilities p1 and p2 , respectively, as
was proven in Sec. 2.4.1. Thus, ‖∆‖1 defines a measure for the distinguishability
of the two states, too.

Apart from this interpretation, the trace norm of Helstrom matrices has further
properties in common with the trace distance such as the contraction under dy-
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namical maps as well as the pairs of states yielding the minimal and maximal value
of this quantifier. Clearly, linearity of dynamical maps Φt,t0 along with the fact
that (C)PT-maps define contractions for the trace norm (cf. Eq. (3.82)) implies
that

‖p1Φt,t0(ρ1)− p2Φt,t0(ρ2)‖1 ≤ ‖p1ρ1 − p2ρ2‖1 (4.34)

holds for all t and any pair of states. Furthermore, applying the triangle inequality
to the trace norm, one finds

|p1 − p2| ≤ ‖∆‖1 ≤ p1 + p2 = 1 , (4.35)

where the bounds are attained for ρ1 = ρ2 and ρ1 ⊥ ρ2 , respectively. This is
directly shown by means of the characterization

‖∆‖1 = 2 max
Π

Tr{Π∆}+ p2 − p1 , (4.36)

where the maximum is taken over all projection operators Π (see Appendix G for
the proof).

A generalized criterion, which still relies on the concept of an information
flow, is then obtained by adapting the previous characterization for quantum non-
Markovianity (Wißmann et al., 2015; Breuer et al., 2016):

Definition 4.3. A quantum process Φ = {Φt,t0 |t ≥ t0} is said to be Markovian
if ‖p1Φt,t0

(
ρ

(1)
S (t0)

) − p2Φt,t0

(
ρ

(2)
S (t0)

)‖1 is a monotonically decreasing function of
t ≥ 0 for all sets {pj , ρ(j)

S (t0)} with pj ≥ 0 so that p1 +p2 = 1 , and states ρ(j)
S (t0) ∈

S(HS) .

The associated measure is accordingly given by the summed maximal increase
of a Helstrom matrix’s trace norm, i.e., it reads

Ñ (Φ) = max
{pj ,ρ(j)

S }

∫

σ̃>0
dt σ̃(t, pj , ρ(j)

S ) (4.37)

with

σ̃(t, pj , ρ(j)
S ) ≡ d

dt‖p1Φt,t0

(
ρ

(1)
S (t0)

)− p2Φt,t0

(
ρ

(2)
S (t0)

)‖1 , (4.38)

where the integration is again constrained to all intervals in which the distinguisha-
bility increases. By definition, a process Φ is then said to be non-Markovian (with
respect to the generalized criterion) if and only if Ñ (Φ) > 0.

The previously developed explanation to substantiate the interpretation of
quantum memory effects as an information backflow from the environment to the
system (cf. Sec. 4.3) also applies here. Similarly to the quantities Iint(t) and Iext(t)
(cf. Eqs. (4.19) and (4.20) for their definition), one may define

Ĩint(t) = ‖p1ρ
(1)
S (t)− p2ρ

(2)
S (t)‖1 (4.39)

and

Ĩext(t) = ‖p1ρ
(1)
SE(t)− p2ρ

(2)
SE(t)‖1 − Ĩint(t) , (4.40)
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representing the distinguishability of the open system at time t and the information
on the total system which is not accessible by measurements on the open system
only, respectively. By the very same argument for the original approach, one shows
that these quantities satisfy

Ĩint(t) + Ĩext(t) = Ĩint(t0) = const . (4.41)

However, the upper bounds for the external information Ĩext(t) do not allow for a
clear interpretation in terms of formation of correlations between system and en-
vironment and changes in the environmental states as proven for the trace distance.

4.4.1 Equivalence to P-divisibility

The generalized criterion, still admitting an interpretation in terms of an infor-
mation flux, has the nice feature that Markovianity is equivalent to P-divisibility
of a quantum process as will be shown in the following. By contrast, this feature
was only sufficient in the original definition. To show the equivalence, one first
recognizes that the set of all Helstrom matrices is isomorphic to the real projective
space of Hermitian operators. That is, any Hermitian operator can be written as
scalar multiple of a Helstrom matrix.

Lemma 4.1. For any Hermitian operator X , there exists a real number λ > 0
and a Helstrom matrix ∆ such that X = λ∆ .

Proof. Let X = X† be given. As the zero operator defines a Helstrom matrix, the
trivial case, i.e. X = 0, is obviously satisfied for any choice of λ . Moreover, if
X ≥ 0, then ρ1 = (Tr{X})−1X defines a state so that for λ = Tr{X} the Helstrom
matrix associated with p1 = 1, p2 = 0 and arbitrary second state ρ2 proves the
claim. Interchanging the roles of ρ1 and ρ2 then allows to treat the case X ≤ 0,
too.

Hence, suppose that X is indefinite. Employing the Jordan-Hahn decompo-
sition (cf. lemma G.1), one thus obtains two nonzero and orthogonal operators
Y1, Y2 ≥ 0 such that X = Y1 − Y2 which yields Tr{|X|} = Tr{Y1} + Tr{Y2} > 0.
The operators ρj = (Tr{Yj})−1Yj associated with Yj clearly represent states and
obey

X = λ(p1ρ1 − p2ρ2) , (4.42)

for λ = Tr{|X|} where the parameters pj are defined as pj = λ−1Tr{Yj} . In fact,
these parameters are positive and sum to one by definition, thus, representing a
probability distribution which concludes the proof.

Since dynamical maps Φt,t0 as well as the trace norm are homogeneous with
respect to real positive numbers, i.e., one finds ‖Φt,t0(X)‖1 = λ‖Φt,t0(∆)‖1 for
any Hermitian operator X , it thus suffices to apply Kossakowski’s characteriza-
tion of positivity given by Eq. (3.82) to Helstrom matrices which finally yields the
equivalence of the generalized criterion to P-divisibility.

Theorem 4.2. If the dynamical maps defining a process Φ are bijective, then Φ is
Markovian if and only if it is P-divisible.
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Proof. One first notes that p1Φt,t0

(
ρ

(1)
S (t0)

)− p2Φt,t0

(
ρ

(2)
S (t0)

)
= Φt,t0(∆) holds for

any probability distribution {pj} and pair of states ρ(j)
S due to linearity. The study

of quantum Markovianity thus amounts to consider the time evolution of Helstrom
matrices.

Suppose Φ is P-divisible (see definition 3.1). By definition of the intermediate
maps Λt,s (cf. Eq. (3.73)) and their positivity, it follows that

‖Φt,t0(∆)‖1 = ‖Λt,s
(
Φs,t0(∆)

)‖1 ≤ ‖Φs,t0(∆)‖1 (4.43)

holds for all t ≥ s ≥ t0 and Helstrom matrices ∆. Hence, ‖Φt,t0(∆)‖1 is a mono-
tonically decreasing function of time for any ∆ showing that the process Φ is
Markovian.

In order to prove the converse, one first notes that the inverse Φ−1
t,t0 exists for

all t ≥ t0 as the dynamical maps are bijective on the set of Hermitian operators
by assumption. One thus concludes that the intermediate maps Λt,s exists for all
t ≥ s ≥ t0 . Now, let the process be Markovian, i.e., one obtains ‖Φt,t0(∆)‖1 ≤
‖Φs,t0(∆)‖1 for all t ≥ s ≥ t0 and Helstrom matrices ∆. This inequality may be
rewritten as

‖Λt,s
(
Φs,t0(∆)

)‖1 ≤ ‖Φs,t0(∆)‖1 , (4.44)

from which positivity of Λt,s follows employing Kossakowski’s criterion (3.82).
More specifically, since Φt,t0 is bijective for all times t , lemma 4.1 along with
the homogeneity of dynamical maps and the trace norm pertaining to positive
numbers shows that Λt,s defines a contraction with respect to the trace norm for
any Hermitian operator. Kossakowski’s criterion (3.82) then implies that Λt,s is
positive and, therefore, Φ is P-divisible.

The generalized definition of Markovianity is thus equivalent to P-divisibility of
a dynamical process Φ consisting of bijective maps. However, the associated mea-
sure (4.37) may be evaluated for any dynamical process independent of the fact that
the notion of divisibility may be ill-defined, showing its great benefit. Chruściński
et al. (2011) introduced a slightly different definition of quantum Markovianity
employing Helstrom matrices of a dilated system, given by the open and an an-
cillary system. They thus considered the dilated process Φt,t0 ⊗ IHA in the same
framework so that the definition suggested by Chruściński et al. (2011) is equiva-
lent to CP-divisibility. But divisibility of quantum processes in terms of positive
maps has a clear-cut connection to classical Markovian stochastic processes as will
be shown in the subsequent section, representing an important result of this thesis.

4.4.2 Connections to the classical notion

P-divisible quantum processes provide the distinct feature of having a direct con-
nection to classical Markov processes which can be established employing the char-
acterization of P-divisible processes given in theorem 3.2. To show the connection,
suppose that ρS(t) denotes the solution of the time-local master equation

d
dtρS(t) = KtρS(t) (4.45)
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with initial state ρS(t0) where the generator Kt is in generalized Lindblad form (see
Eq. (3.21)). Of course, the time-evolved state admits an instantaneous spectral
decomposition

ρS(t) =
∑

m

pm(t)|φm(t)〉〈φm(t)| (4.46)

for any t ≥ t0 where {|φm(t)〉} defines an orthonormal basis on HS and {pm(t)}
represents a classical probability distribution. By virtue of the orthonormality of
the eigenvectors, one shows that the eigenvalues pm(t) = 〈φm(t)|ρ(t)|φm(t)〉 obey
the closed differential equation

d
dtpm(t) =

∑

n

[
Wmn(t)pn(t)−Wnm(t)pm(t)

]
, (4.47)

where the term with m = n obviously drops out and the rates are given by

Wmn(t) =
∑

j

γj(t)|〈φm(t)|Aj(t)|φn(t)〉|2 . (4.48)

Given a solution of a quantum master equation, one thus obtains a classical
jump process (cf. Eq. (4.13)). In fact, a quantum master equation and an initial
state of the open quantum system uniquely determine a classical time-dependent
master equation for the 1-point probability distribution given by the spectrum of
the time-evolved state ρS(t). Note that the resulting classical equation typically
depends on the full information contained in the initial state. That is, the initial
eigenbasis {|φm(t0)〉} as well as the initial probability distribution {pm(t0)} influ-
ence the rates Wmn(t) in general since the solution of the master equation (4.45) is
usually not convex. However, for a Lindblad master equation (3.22) obtained in the
weak coupling limit with a nondegenerate Hamilton operator H ′S = ∑

m εm|m〉〈m| ,
there exists a distinguished basis such that the populations of any state with re-
spect to this basis obey the same differential equation. Indeed, the dynamics of the
coherences and the populations with respect to the eigenbasis of H ′S is decoupled,
leading to a closed equation9 for the populations 〈m|ρS(t0)|m〉 for any initial open
system state ρS(t0) (Breuer and Petruccione, 2002).

By comparison of Eq. (4.47) with the evolution equations for classical Markov
processes, one concludes that it can be interpreted as Pauli master equation (4.13)
for the 1-point probability distribution over the set I = {1, . . . ,dimHS} specified
by spectrum of the open system states ρS(t) if and only if

Wmn(t) =
∑

j

γj(t)|〈φm(t)|Aj(t)|φn(t)〉|2 ≥ 0 (4.49)

holds for all t ≥ t0 and m 6= n . By virtue of Eq. (3.76), it follows that P-divisibility
of the quantum process describes a sufficient condition to warrant positivity of the
rates Wmn(t) and, therefore, quantum non-Markovianity defined with respect to
the generalized trace-distance-based approach allows for a connection to classical
Markovian stochastic processes. Indeed, to any P-divisible dynamics, given as the

9This equation is also called Pauli master equation in the literature (see, e.g., Breuer and
Petruccione (2002)).
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solution of a time-local master equation generated by Kt of the form of Eq. (3.21)
with Lindblad operators and rates satisfying constraint (3.76) for an initial state
ρS(t0), one associates a classical Markov process that is determined by the solution
of the classical master equation (4.47) with transition rates given by Eq. (4.48) and
initial condition specified by the eigenvalues of ρS(t0).

As a matter of fact, P-divisibility of a quantum process even becomes neces-
sary for the positivity of the rates Wmn(t) if the quantum master equation has the
property that the eigenbases {|φn(t)〉} of the time-evolved states ρS(t) run over all
orthonormal bases when varying the initial state ρS(t0) . This means that all pos-
sible bases are encountered in the definition of the rates Wmn(t) (cf. Eq. (4.48))
whose positivity is thus equivalent to the process being P-divisible according to
theorem 3.2. For finite-dimensional open quantum systems, this condition is obvi-
ously satisfied if the maximally mixed state is in the image of the dynamical map
Φt,t0 as any eigenbasis defines a resolution of identity. However, lemma 2.1, which
could be proven in Sec. 2.3 of this thesis, also applies in this case since the image of
a dynamical map ImΦt,t0 = {Φt,t0

(
ρS(t)

) | ρS(t0) ∈ S(HS)} represents a nonempty,
convex and compact10 set for any finite-dimensional Hilbert space due to linearity
of Φt,t0 and convexity of the state space. It follows that (1/NS)1NS ∈ ImΦt,t0

where NS = dimHS is not only sufficient but also necessary to the requirement
that any orthonormal basis represents an eigenbasis of some open system state
at fixed time t . This is clearly true for the particular class of unital dynamical
processes which are characterized by Φt,t0

(
(1/NS)1NS

)
= (1/NS)1NS for all t ≥ t0 .

However, due to continuity of a process and because Φt0,t0 = INS holds by defi-
nition, any quantum process actually satisfies this constraint for sufficiently small
times.

Given that (1/NS)1NS ∈ ImΦt,t0 holds for all t ≥ t0 , one thus concludes that
all classical processes derived from the quantum master equation are Markovian if
and only if the quantum process is P-divisible. Hence, quantum non-Markovianity
with respect to the generalized trace-distance-based measure merges the interpre-
tation in terms of an information flow with a strict relation to divisibility which
additionally allows for a clear-cut connection to classical Markovian stochastic
processes for the first time. Due to these features, this ansatz for a definition of
non-Markovianity is of great relevance for the study of quantum memory effects in
the field of complex quantum systems and quantum information. Moreover, its ex-
perimental accessibility is further improved by the findings presented in the section.

4.4.3 Expressions for the generalized measure

Having stated the generalized definition for quantum non-Markovianity along with
its interpretation and implications, the current section focuses on the expression
of the associated measure. More specifically, its mathematical and physical fea-
tures are addressed in the sequel. To begin with, one considers the maximization
procedure contained in the quantifier for non-Markovianity (4.37) which, contrary
to the original definition (Breuer et al., 2009), now even requires to sample over

10Note that compactness follows from the fact that the state space for any finite-dimensional
Hilbert space is compact and the fundamental result that the image of compact sets under con-
tinuous maps is again compact. However, this property is not required for lemma 2.1 .
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binary probability distributions. Fortunately, as a result of this thesis, a similar
characterization of pairs of states maximizing Eq. (4.37) can be proven and yet
a local representation is obtained simplifying the sampling significantly (see also
Wißmann et al. (2015)).

Similarly as for the original definition (cf. Sec. 4.3.1), one first introduces the
notion of optimality. In fact, one calls a set {pj , ρ(1,2)

S } , where ρ(1)
S and ρ(2)

S refer to
states and {pj} defines a binary probability distribution, optimal if the maximum
in Eq. (4.37) is attained for it. Again, the quantum states of an optimal set are
necessarily nonequal as the dynamics of the trace norm of a nonindefinite Helstrom
matrix under any dynamical map is trivial due to trace preservation and positivity
of the map. Note that the reference to the initial time t0 of a dynamical process is
henceforth omitted for convenience. In addition, for a dynamical process consisting
of dynamical maps Φt,t0 , the time-evolved initial state ρ(j)

S will be denoted as
ρ

(j)
S (t) = Φt,t0(ρ(j)

S ).

Theorem 4.3. The states of an optimal set must be orthogonal, i.e.

Ñ (Φ) = max
{pj ,ρ(1)

S ⊥ρ
(2)
S }

∫

σ̃>0
dt σ̃(t, pj , ρ(j)

S ) . (4.50)

Proof. Suppose {pj , ρ(1,2)
S } is optimal but ρ(1)

S 6⊥ ρ
(2)
S . Along the lines of the proof

of lemma 4.1, one then obtains a probability distribution {qj} and two orthogonal
states %(1,2)

S such that

p1ρ
(1)
S − p2ρ

(2)
S = λ(q1%

(1)
S − q2%

(2)
S ) (4.51)

holds, where the real-valued constant λ is given by λ = ‖p1ρ
(1)
S − p2ρ

(2)
S ‖1 . As

one has ρ(1)
S 6⊥ ρ

(2)
S by assumption and states of an optimal set are nonequal

by definition, it follows from Eq. (4.35) that the parameter’s range is given by
0 < λ < 1. By means of linearity of the dynamical maps Φt,t0 and homogeneity of
the trace norm with respect to positive numbers, one thus finds

‖q1%
(1)
S (t)− q2%

(2)
S (t)‖1 = 1

λ
‖p1ρ

(1)
S (t)− p2ρ

(2)
S (t)‖1 (4.52)

for all t ≥ t0 where λ−1 > 1. This shows that any increase of ‖p1ρ
(1)
S (t)−p2ρ

(2)
S (t)‖1

is exceeded by the increase of ‖q1%
(1)
S (t) − q2%

(2)
S (t)‖1 . Hence, the set {qj , %(1,2)

S }
yields a non-Markovianity strictly larger than {pj , ρ(1,2)

S } contradicting its optimal-
ity.

As for the original trace-distance-based approach, states that feature a maximal
backflow of information must initially be perfectly distinguishable, thus having a
maximal information content, as a consequence of this result. By virtue of this
property, one may moreover establish the analogous local representation for the
generalized measure. To this end, one must, however, first prove the following
characterization of enclosing surfaces (cf. definition 4.2) (see also Wißmann et al.
(2015)).
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Lemma 4.2. Let dimHS < ∞ . A set ∂U(ρS) ⊂ S(HS) defines an enclosing
surface for an inner point ρS ∈ S̊(HS) if and only if for any nonzero, Hermitian
and indefinite operator X there exists a real number λ > 0 such that λ|Tr{X}| < 1
holds and one has

1
p−

{
p+ρS − sgn(Tr{X})λX} ∈ ∂U(ρS) , (4.53)

where p± ≡ 1
2
(
1± λ|Tr{X}|) and

sgn(x) =
{
−1 , if x ≤ 0
+1 , else

(4.54)

Proof. First, assume that ∂U(ρS) denotes an enclosing surface of an inner point
ρS ∈ S̊(HS) . Given a nonzero, Hermitian and indefinite operator X ,

Y ≡ sgn(Tr{X})[(Tr{X}) ρS −X
]

(4.55)

defines a nonzero, Hermitian and traceless operator. By definition of an enclosing
surface, there thus exists a real number µ > 0 such that

%S ≡ ρS + 2µY ∈ ∂U(ρS) . (4.56)

One then defines a real number λ by means of the relation

µ = λ

1− λ|TrX| , (4.57)

so that λ = µ/(1 + µ|Tr{X}|) > 0 holds which clearly satisfies λ|Tr{X}| < 1.
Defining p± = 1

2(1± λ|Tr{X}|) , one finally obtains

%S = ρS + 2λ
1− λ|Tr{X}| ·

{
sgn(Tr{X})[(Tr{X})ρS −X

]}

= ρS −
λ

p−
sgn(Tr{X})X + p+ − p−

p−
ρS

= 1
p−

{
p+ρS − sgn(Tr{X})λX} , (4.58)

which is Eq. (4.53).
Conversely, suppose that the states in ∂U(ρS) are characterized by Eq. (4.53).

For a nonzero, indefinite and Hermitian operator X one thus finds a real number
λ > 0 such that λ|Tr{X}| < 1 holds along with

%S ≡
1
p−

{
p+ρS − sgn(Tr{X})λX} ∈ ∂U(ρS) , (4.59)

where one has p± = 1
2(1± λ|Tr{X}|) . Now, consider the map

ΘρS (X) ≡ sgn(Tr{X})[(Tr{X}) ρS −X
]
, (4.60)

being defined on the set of nonzero, Hermitian and indefinite operators. An oper-
ator Y = ΘρS (X) is obviously traceless and Hermitian and, in addition, nonzero



106 Chapter 4. Non-Markovianity in the quantum regime

as one has Y = 0 if and only if (Tr{X}) ρs = X contradicting the fact that X
is indefinite. Upon inserting the definition of the probabilities p±, one rewrites
Eq. (4.59), using µ ≡ λ/(2p−) > 0, as

%S = 1
p−

{
p+ρS − λ

[|Tr{X}|ρS − Y
]}

= p+ − λ|Tr{X}|
p−

ρS + λ

p−
Y

= ρS + 2µY , (4.61)

which is the form used to define enclosing surfaces. To complete the proof, it
remains to show that ΘρS defines a surjection on the set of nonzero, Hermitian
and traceless operators. However, this is obviously true as any traceless, nonzero
and Hermitian operator Y is necessarily indefinite and ΘρS acts trivially on these
operators, i.e. it satisfies ΘρS (Y ) = Y . Hence, the set ∂U(ρS) indeed defines an
enclosing surface.

In order to derive the local representation for the generalized trace-distance-
based measure, it actually suffices that an enclosing surface obeys the characteri-
zation (4.53) in terms of nonzero, Hermitian and indefinite operators as is shown
now.

Theorem 4.4. The generalized measure of quantum non-Markovianity Ñ admits
a local representation, i.e.

Ñ (Φ) = max
{pj}, ρ(2)

S ∈∂U(ρ(1)
S )

∫

˜̄σ>0
dt ˜̄σ(t, pj , ρ(j)

S ) (4.62)

with

˜̄σ(t, pj , ρ(j)
S ) ≡ 1

‖p1ρ
(1)
S − p2ρ

(2)
S ‖1

· d
dt‖p1ρ

(1)
S (t)− p2ρ

(2)
S (t)‖1 , (4.63)

where ρ(1)
S ∈ S̊(HS) is any fixed inner point of the state space and ∂U(ρ(1)

S ) refers
to an arbitrary enclosing surface of this state.

Note that ˜̄σ(t, pj , ρ(j)
S ) is well-defined for any state ρ(2)

S ∈ ∂U(ρ(1)
S ) and prob-

ability distribution {pj} because one has ρ(2)
S 6= ρ

(1)
S by definition of an enclosing

surface and, therefore, 0 < ‖p1ρ
(1)
S − p2ρ

(2)
S ‖1 according to Eq. (4.35).

Proof. Let ∂U(ρ(1)
S ) be an enclosing surface of an inner point ρ(1)

S . Following
the proof of theorem 4.3, one shows that the corresponding local representation
is smaller than or equal to the original definition (4.50). That is, for a state
ρ

(2)
S ∈ ∂U(ρ(1)

S ) and a probability distribution {pj} there exist two orthogonal
states %(1)

S ⊥ %
(2)
S along with a probability distribution {qj} such that

p1ρ
(1)
S − p2ρ

(2)
S = λ(q1%

(1)
S − q2%

(2)
S ) (4.64)



4.4. Generalization of the trace-distance-based measure 107

holds with λ = ‖p1ρ
(1)
S − p2ρ

(2)
S ‖1 > 0, employing the Jordan-Hahn decomposition

(cf. lemma G.1). It then follows that one has

˜̄σ(t, pj , ρ(j)
S ) = σ̃(t, pj , %(j)

S ) (4.65)

for all times t ≥ t0 due to linearity of dynamical maps, and homogeneity of the
trace norm and the derivative. One concludes that the right-hand side of Eq. (4.62)
yields a value smaller than or equal to Ñ (Φ) as defined in Eq. (4.50).

Conversely, let %(1)
S ⊥ %

(2)
S be two orthogonal states and denote by {qj} a

binary probability distribution. The Helstrom matrix ∆ = q1%
(1)
S − q2%

(2)
S defines a

nonzero, Hermitian and indefinite operator with ‖∆‖1 = 1 (see Eq. (4.35)). Thus,
according to the characterization of an enclosing surface given in lemma 4.2, there
exists a real number λ > 0 such that λ|Tr{∆}| < 1 holds and one obtains

p+ρ
(1)
S − p−ρ

(2)
S = cλ∆ (4.66)

for some quantum state ρ(2)
S ∈ ∂U(ρ(1)

S ) of the enclosing surface and the probabil-
ities p± = 1

2(1 ± λ|Tr{∆}|) , where the parameter c is given by c = sgn(Tr{∆}).
As |c| = 1 = ‖∆‖1 , one finds ‖p+ρ

(1)
S − p−ρ

(2)
S ‖1 = λ > 0 so that

˜̄σ(t, p±, ρ(j)
S ) = σ̃(t, qj , %(j)

S ) (4.67)

follows from linearity of dynamical maps along with homogeneity of the trace norm
and the derivative. This shows that the original definition of Ñ given in Eq. (4.50)
leads to a value that is smaller than or equal to the right-hand side of Eq. (4.62)
which concludes the proof.

The maximization over an enclosing surface with an information flux rescaled
by the initial distinguishability thus reproduces the memory effects present in pairs
of orthogonal states. Based on the careful reformulation of an enclosing surface
provided by lemma 4.2, one establishes an equivalent local representation of the
generalized trace-distance-based measure showing that the novel characterization
of quantum non-Markovianity is also a universal feature that is present everywhere
in state space. Clearly, the local representation is indeed completely analogous to
that for the original approach (cf. Eq. (4.28), simply replacing the trace distance
by the trace norm of the associated Helstrom matrix as one readily sees.

Note that, again, no assumption on the enclosing surface concerning for ex-
ample the shape or the smoothness is needed implying a great benefit for the
analytical, numerical and experimental determination of the generalized measure.
Moreover, reviewing the proof of lemma 4.2, one observes that it suffices if the
defining relation for an enclosing surface, i.e. Eq. (4.53), holds for exactly one
µ > 0 as λ is uniquely determined by this parameter given a nonzero, Hermi-
tian and indefinite operator. The further reduction to hemispherical surfaces (cf.
Fig. 4.1 (b)), which was shown to be possible for the local representation of the
original definition, cannot be deduced from the lemma’s proof though. Apparently,
biased probability distributions break the simple symmetry which is at the heart
of hemispherical surfaces.
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4.4.4 A paradigmatic model

The generalized definition is finally illustrated by means of examples which show
the difference to the original characterization and other approaches to quantum
non-Markovianity. Summarizing the results on the extended measure, the most
important feature is that P-divisibility defines no longer solely a sufficient criterion
for Markovianity. This fact is particularly apparent when uniform translations of
states are encountered in the dynamics which do not describe positive maps but
leave the trace distance unchanged (Liu et al., 2013b). However, this insensitivity
is cured choosing unequal weights pj for the states, thus making it possible to
expose this property of a dynamical process by virtue of the generalized definition.

To illustrate this effect, one considers a two-level open quantum system, i.e.
HS = C2, undergoing the two-stage dynamics that is composed of an isotropic
contraction of the state space followed by a uniform translation along the z-axis
employing the Bloch representation (see Fig. 4.8). This kind of dynamics, which
is assumed to range from t0 to t2 where the latter might be infinite, is described
by a time-local master equation such as Eq. (4.45) with a generator Kt obeying

KtρS(t) =
3∑

j=1

γ(t)
4 [σjρS(t)σj − ρS(t)] (4.68)

for t0 ≤ t ≤ t1 < t2 and

KtρS(t) =−b(t)2
[
σ−ρqS(t)σ+ − 1

2{σ+σ−, ρS(t)}
]

+ b(t)
2
[
σ+ρS(t)σ− − 1

2{σ−σ+, ρS(t)}
]

(4.69)

if t1 < t ≤ t2 holds. Here, σ+(−) refers to the usual raising (lowering) operator with
respect to the eigenstates |j = 0, 1〉 of the Pauli spin operator σ3 , and the rates
γ(t) and b(t) are chosen to be positive for all t in their respective domains. Thus,
the second phase of the process is neither CP- nor P-divisible. More specifically, for
the eigenstates |j〉 one finds (b(t)/2) · {|〈0|σ+|1〉|2 − |〈0|σ−|1〉|2} = −b(t)/2 < 0 for
any t ≥ t0 thus violating condition (3.76) for P-divisibility11 according to theorem
3.2. It is worth mentioning that this two-staged dynamical process exhibits the
essential feature of the generalized amplitude damping channel studied by Liu et al.
(2013b).

Returning to the Bloch representation, the present master equation is equiva-
lently described by the following differential equation for the Bloch vector,

d
dt~v(t) =

{
A(t)~v(t) , t0 ≤ t ≤ t1 < t2
~b(t) , t1 ≤ t ≤ t2

(4.70)

where one has A(t) = diag
(−γ(t),−γ(t),−γ(t)

)
and ~b(t) =

(
0, 0, b(t)

)T . Hence,
during the process’ first phase the Bloch ball B1 = {~v | ‖~v‖ ≤ 1} is isotropically
contracted to the smaller ball Br = {~v | ‖~v‖ ≤ r} with radius

r = exp
[
−
∫ t1

t0
ds γ(s)

]
∈ (0, 1) , (4.71)

11Obviously, the process is already not CP-divisible as a rate of Kt for t ≥ t1 is negative.
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Figure 4.8 – Bloch sphere representation of the action of the dynamical map
generated by the time-local generator Kt given in Eqs. (4.68) and (4.69) for the
three times t = t0, t1 and t2 (cf. Fig. 2 in (Wißmann et al., 2015)).

which clearly is CP-divisible and therefore Markovian. Finally, the Bloch vectors
are mapped to ~v(t1) 7→ ~v(t1) + ~a(t) in the subsequent second phase where

~a(t) ≡ (0, 0, a(t)
)T

, with a(t) =
∫ t

t1
ds b(s) > 0 , (4.72)

thus corresponding to a uniform translation of the shrunk Bloch ball along the
positive z-axis as mentioned before. Note that one must require a(t2) ≤ 1 − r in
order to maintain positivity of the dynamical map (cf. Fig. 4.8). It is easily shown
that this condition is also necessary and sufficient for complete positivity of the
process.

For two quantum states ρ(1,2)
S = 1

2(12 + ~v1,2 · ~σ) evolving according to the
described dynamical map, the trace norm of the Helstrom matrix ∆ = p1ρ

(1)
S −

p2ρ
(2)
S at time t is found to obey

‖∆(t)‖1 = 1
2
{|p1 − p2 + ‖~w(t)‖ |+ |p1 − p2 − ‖~w(t)‖ |} , (4.73)

where ~w(t) = p1~v1(t) − p2~v2(t) . If the probability distribution is chosen as p1 =
p2 = 1/2, then one has ‖∆(t)‖1 = 1

2‖~v1(t) − ~v2(t)‖ , from which it is immediately
clear that the original definition is unable to detect the non-Markovianity of the
process resulting from the uniform translation.

Without loss of generality, one may assume p1 ≥ p2 so that the trace norm of
the Helstrom matrix is given by

‖∆(t)‖1 =
{
p1 − p2 , if p1 − p2 > ‖~w(t)‖
‖~w(t)‖ , if p1 − p2 ≤ ‖~w(t)‖ .

(4.74)

Due to theorem 4.3, one may furthermore restrict considerations to orthogonal
states corresponding to antipodal unit vectors. That is, the Bloch vectors obey
~v1 = −~v2 with ‖~v1‖ = 1 which implies

~w(t) =
{
~v1(t) , if t0 ≤ t ≤ t1
~v1(t1) + (p1 − p2)~a(t) , if t1 < t ≤ t2

(4.75)
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as p1 +p2 = 1. It follows that ‖∆(t)‖1 is a monotonically decreasing function of t if
the probability distribution is such that p1 − p2 ≥ ‖~w(t)‖ holds for all t1 ≤ t ≤ t2 .
However, if this is not true so that in particular ‖~v1(t1)‖ ≤ p1−p2 < ‖~w(t2)‖ holds,
then one deduces

∫

σ̃>0
dt σ̃(t) = ‖~w(t2)‖ − (p1 − p2) > 0 , (4.76)

indicating non-Markovianity. The change of the trace norm is shown to increase
with decreasing difference p1 − p2 , attaining its maximal value for p1 − p2 = r =
‖~v1(t1)‖ . In addition, the change of the trace norm for p1 − p2 ≤ r is given by

‖∆(t2)‖1 − ‖∆(t1)‖1 = ‖~v1(t1) + (p1 − p2)~a(t2)‖ − ‖~v1(t1)‖ , (4.77)

which is maximized if p1 − p2 = r and ~v1(t1) is parallel to ~a(t2), i.e., if one has
~v1(t1) = c~a(t2) for some12 c > 0, leading to

‖∆(t2)‖1 − ‖∆(t1)‖1 = r · a(t2) . (4.78)

Obviously, the constraint on the probability distribution can only be satisfied by
choosing {pj} = {p± = 1

2(1±r)} and the maximizing Bloch vector is given by ~v1 =
(0, 0, 1)T as the associated state must be pure. This simple example thus shows
that, unlike the original definition, the generalized trace-distance-based measure is
able to capture memory effects arising from uniform translations contained in the
dynamical process.

The dynamics generated by Kt for t0 ≤ t ≤ t1 (see Eq. (4.68)) for arbitrary final
time t1 provides yet the basis for a process highlighting the persistent difference be-
tween the trace-distance-based approach and its generalization compared to those
that rely on CP-divisibility. Choosing the rates according to γ1(t) = γ2(t) = 1
and γ3(t) = − tanh(t) as proposed by Hall et al. (2014), the associated dynamical
process is not CP- but P-divisible. Clearly, the former is not true due to theo-
rem 3.2 as γ3 is negative. In particular, there exists even no single interval for
which CP-divisibility is restored as one has γ3(t) < 0 for all t > t0 motivating the
nomination “eternal non-Markovianity” (cf. Hall et al. (2014)). Another example
featuring this property has been found by Vacchini et al. (2011). However, the
dynamics is always P-divisible since

( 1∑

j=0
|〈m|σj |n〉|2

)
− tanh(t)|〈m|σ3|n〉|2 (4.79)

is shown to be larger or equal to zero for all times t ∈ [t0, t1] and unequal indices
m 6= n which is condition (3.76) of theorem 3.2. Hence, the trace-distance-based
measure as well as its generalization are equal to zero for this dynamics, whereas
measures for non-Markovianity that rely on CP-divisibility such as the proposals
of Rivas et al. (2010), Chruściński et al. (2011) and Hall et al. (2014) do not vanish.
This random unitary evolution (Vacchini, 2012; Chruściński and Wudarski, 2013)
thus illustrates the persisting and significant difference between these two major
approaches for the characterization of quantum non-Markovianity.

12From the relation ~v1(t1) = c~a(t2) and ‖~v1(t1)‖ = r , one obtains c = r/a(t2) which amounts
to c ≥ r/(1− r) since the function a(t) must satisfy a(t2) ≤ 1− r .
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4.5 Non-Markovianity of mixtures of dynamical pro-
cesses

After having defined Markovian or non-Markovian dynamics leading to a partition-
ing of dynamical processes, it is natural to address the properties of the respective
sets of processes which improves the understanding of memory effects. In partic-
ular, the convexity of these sets is an interesting problem as usual in quantum
theory and because it proves or disprove the intuitive idea of the effect of mixing
processes with or without memory. That is, one assumes, e.g., the convex mixture
of two processes Φ and Φ′ lacking memory to yield another Markovian process as
there is no reason at first glance to interpret the mixing as a creation of mem-
ory effects. The study of convexity of the sets of Markovian and non-Markovian
dynamical processes has already been addressed by Chruściński and Wudarski
(2015) and Wudarski and Chruściński (2016). In fact, it has been shown by these
authors by means of two examples that the mixing of CP-divisible processes may
result in a solely P-divisible process (Chruściński and Wudarski, 2015) and that a
CP-divisible dynamical process can be created out of the convex combination of
non-P-divisible processes (Wudarski and Chruściński, 2016). As a result of this
thesis, it is furthermore demonstrated that the mixture of CP-divisible processes
may surprisingly result in a non-P-divisible process, too, thus showing that memory
effects with respect to the generalized trace-distance-based approach can indeed
be created by mixing Markovian dynamics. In the following, the three examples
demonstrating the mentioned properties, i.e., that the set of CP-divisible processes
is not convex with respect to P-divisible and non-P-divisible processes which, in
addition, is shown to be neither convex by itself, are presented. For convenience,
they are enumerated by 1 , 2 and 3 , respectively.

1 By means of a model closely related to the particular random unitary evolu-
tion studied in the preceding section, Chruściński and Wudarski (2015) have shown
that CP-divisible processes are not convex with respect to the set of P-divisible
maps (see also Wudarski and Chruściński (2016)). In fact, the unbiased convex
combination of the semigroup dynamics for two-level systems generated by

K(j)
L ρS(t) = γ

2
(
σjρS(t)σj − ρS(t)

)
(4.80)

with a positive rate γ , yields a dynamical map Φt,0 ≡ (1/2) · {Φ(1)
t,0 + Φ(2)

t,0 } that is
given by

Φt,0(ρS) = 1 + e−γt

2 ρS + 1− e−γt
4

(
σ1ρSσ1 + σ2ρSσ2) . (4.81)

These dynamical maps are readily seen to describe the dynamics induced by the
generator (4.68) for rates γ1(t) = γ2(t) = γ/2 and γ3(t) = −(γ/2) tanh(γt) ex-
hibiting “eternal non-Markovianity” (Wudarski and Chruściński, 2016). However,
the results of the previous section may also be applied directly, showing that this
dynamical process is again P- but not CP-divisible.

2 As indicated before, the convex combination of two semigroup dynamics
may also result in a dynamical process that is even not P-divisible as is shown as
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a result of this thesis, implying that the set of P-divisible and thus of Markovian
processes is not convex. In fact, consider again a two-dimensional open quantum
system along with two dynamical processes described by the generators in Lindblad
form

K̃(k)
L ρS(t) = −i

[λk
2 σ3, ρS(t)

]
+ γk

2
(
σ3ρS(t)σ3 − ρS(t)

)
(4.82)

for an arbitrary real-valued constant λk and positive rates γk . The corresponding
dynamical processes for initial time t0 = 0 are given by

Φ̃(k)
t,0 = µk(t)IS +

(
1− µk(t)

) 1∑

j=0
S|j〉〈j| , (4.83)

where µk(t) = exp[−(γk + iλk)t] and S|j〉〈j| defines the projection superopera-
tor on the eigenstate |j〉 of the Pauli spin operator σ3 , i.e., it obeys S|j〉〈j|ρS =
|j〉〈j|ρS |j〉〈j| . This process describes a spiraling damping towards the z-axis in the
Bloch picture with oscillation frequency λk , whereas the damping rate is given by
γk . The convex combination Φ̃t,0 ≡ pΦ̃(1)

t,0 + (1 − p)Φ̃(2)
t,0 for 0 ≤ p ≤ 1 then leads

to the time evolution of an open system state ρS = (ρS,jk = 〈j|ρS |k〉) ∈ S(C2)
according to

Φ̃t,0(ρS) =
(

ρS,11 κ(t)ρS,10
κ∗(t)ρ∗S,10 ρS,00

)
, (4.84)

where κ(t) = pµ1(t) + (1 − p)µ2(t). As Fig. 4.9 shows, the coherence factor κ(t)
has an oscillating modulus for certain choices of the parameters λk and γk , indi-
cating an increasing trace distance13 and, thus, non-Markovian dynamics. The
necessary violation of P-divisibility also follows from theorem 3.2 as the rate
γ(t) = −Re

(
κ̇(t)/κ(t)

)
of the corresponding time-local generator, having the form

(4.82) with 14 λ(t) = −Im
(
κ̇(t)/κ(t)

)
, is temporarily negative as can, e.g., be seen

in Figs. 4.9 (c) and (d) . Hence, one concludes that memory effects can apparently
be created by mixing two Markovian processes disproving the basic intuition about
non-Markovianity.

3 Finally, Wudarski and Chruściński (2016) have shown that the set of non-
P-divisible processes is not convex which one can easily imagine as the information
backflow of two non-Markovian dynamics could be compensated when mixing two
processes, thus resulting in a Markovian dynamics. In order to obtain an example
showing this effect, Wudarski and Chruściński (2016) considered a set of projec-
tions Π = {Πm}m∈I′ defining a discrete resolution of identity. The associated
superoperator ŜΠ ≡

∑
m∈I′ SΠm is completely positive and satisfies Ŝ2

Π = ŜΠ . In
addition, it may be used to define a generator in Lindblad form according to

KΠ
LρS(t) =

[
ŜΠ − IS

]
ρS(t) =

∑

m∈I′
ΠmρS(t)Πm − ρS(t) , (4.85)

13Note that the trace distance of an orthogonal pair of states that is part of the equatorial plane
in the Bloch picture is given by |κ(t)| .

14The shorthand logogram κ̇(t) represents the derivative with respect to t , i.e. κ̇(t) ≡ d
dtκ(t) .
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Figure 4.9 – The convex combination of two semigroup dynamics Φ̃(k)
t,0 defined by

Eq. (4.83) yields a non-P-divisible dynamics as demonstrated by a nonmonotonic
behavior of the modulus of the coherence factor κ(t) or, equivalently, the (temporal)
negativity of the rates γ(t) = −Re

(
κ̇(t)/κ(t)

)
for γ1=0.1 (a)& (c) and γ1 = 1

(b)& (d) for several values of p . The other parameters are given by γ2 = 0.1,
λ2 = 2π and λ1 = 0 in all plots.

having a single decay rate equal to unity for all channels. The dynamical semigroup
that are generated by γKΠ

L for some positive rate γ is found to be given by

Φ̂t,0 = exp
[
γtKΠ

L

]
= e−γtIS + (1− e−γt)ŜΠ , (4.86)

which can be written as convex combination (0 < p < 1)

Φ̂t,0 = p Φ̂(1)
t,0 + (1− p)Φ̂(2)

t,0 (4.87)

of two dynamical maps Φ̂(k)
t,0 induced by time-local generators γk(t)KΠ

L with time-
dependent rates as Wudarski and Chruściński (2016) have shown. In fact, to
warrant complete positivity of Φ̂(k)

t,0 = µk(t)IS + [1 − µk(t)]ŜΠ , the integrated
rates Γk(t) =

∫ t
0 ds γk(s) must be positive which is equivalent to 0 < µk(t) ≡

exp[−Γk(t)] ≤ 1. Clearly, rates γk(t) that are temporarily negative may also satisfy
this condition thus yielding processes that are neither CP- nor P-divisible since
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Figure 4.10 – Plot of the decay rates γ1 (solid) and γ2 (dotted) (cf. Eq. (4.91))
for g(t) given by Eq. (4.90) with γ = 1 and several values of p and ε . The rates for
p = 0.9 with ε = 0.9 and ε = 0.3 are depicted in (a) whereas (b) corresponds to
p = 0.3 for values ε = 0.9 and ε = 0.3 (see also Fig. 1 in Wudarski and Chruściński
(2016) for a different choice of the parameters).

there is only a single decay rate (cf. theorem 3.2). From the convex combination
(4.87) one obtains the relation

e−γt = pµ1(t) + (1− p)µ2(t) , (4.88)

which is for example satisfied by (Wudarski and Chruściński, 2016)

µk(t) =




e−γt , t ∈ [0, t∗]
e−γt 1+(−1)k{1−2g(t)}

1+(−1)k(1−2p) , t > t∗
(4.89)

where t∗ = (−1/γ) ln(1− p) and the function g(t) obeys

g(t) = p
[
1− ε sin2(γ(t− t∗)

)
Θ(t− t∗)

]
(4.90)

for 0 < ε < 1 and Θ denotes the Heaviside step function. Note that µk(0) = 1
follows from Φ̂(k)

0,0 = IS and the exponential decay for t ≤ t∗ finally guarantees that
0 < µ2(t) ≤ 1 holds as one has g(t) ∈ (0, p] . The corresponding decay rates are
easily shown to be given by

γk(t) ≡ −
µ̇k(t)
µk(t)

= γ + (−1)k ġ(t)
1
2 + (−1)k{1

2 − g(t)} , (4.91)

which can be negative for some time and particular choices of parameters indicating
non-Markovian behavior, irrespective of whether CP- or solely P-divisibility is used
to define quantum Markovianity (see Fig. 4.10). In fact, choosing ε = p = 0.9 and
γ = 1, both rates γk(t) are negative for some interval in time which shows that
the semigroup dynamics Φ̂ (cf. Eq. (4.87)) can be obtained by mixing two non-P-
divisible processes.
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Figure 4.11 – Illustration of the set of dynamical processes and its subsets updating
the schematic picture given by Breuer et al. (2016) (cf. Fig. 4 therein).

Summarizing, the set of non-Markovian processes characterized by Ñ (Φ) > 0
as well as that of Markovian processes with its subset of CP-divisible dynamics are
nonconvex as there exist examples showing that the convex combination of two

1 CP-divisible processes gives a P-divisible but non-CP-divisible process.

2 CP-divisible processes gives a non-P-divisible process.

3 non-P-divisible processes gives a CP-divisible process.

This is schematically depicted in Fig. 4.11 providing an update in view of the re-
sults 1 and 2 of the illustration of the set of dynamical processes given by Breuer
et al. (2016) (cf. Fig. 4 therein). It remains open whether the mixing of P-divisible
but not CP-divisible processes may also yield a non-Markovian process Ñ (Φ) > 0
as indicated in Fig. 4.11. Further studies on this topic might clear this question.





Chapter 5

Nonlocal memory effects

The preceding section has shown that memory effects may be obtained by mixing
two memoryless dynamical processes and, similarly, the convex combination of
two non-Markovian dynamics can result in a process without memory. Apart from
mixing dynamical processes, the additivity of memory effects with respect to the
number of particles defining the open quantum system is an interesting topic.
The influence of scaling up the number of particles is for example a central task
in quantum information processing. Concerning quantum non-Markovianity, this
question was studied by Addis et al. (2013, 2014) and Fanchini et al. (2013) for
several approaches to quantify memory effects on the basis of particular models.

Here, the closely related problem of non-Markovian behavior for bipartite open
quantum system obtained via local interactions is considered. That is, one studies
the dynamics of a composite system which is described by

ρ
(12)
S (t) = Φ(12)

t,t0

(
ρ

(12)
S (t0)

)

= TrE
{
U

(12)
SE (t, t0)ρ(12)

S (t0)⊗ ρ(12)
E (t0)U (12)

SE

†
(t, 0)

}
, (5.1)

where the joint unitary operator obeys U (12)
SE (t, t0) = U

(1)
SE(t, t0) ⊗ U (2)

SE(t, t0) with
local unitaries U (j)

SE(t, t0) representing the local interaction between the open system
Sj and its environment Ej . If this dynamical process factorizes, i.e., if one has
Φ(12)
t,t0 = Φ(1)

t,t0 ⊗Φ(2)
t,t0 for all times t ≥ t0 where the dynamical map Φ(1(2))

t,t0 is defined
by tracing over system S2(1) in Eq. (5.1), the dynamical process of the joint system
S1S2 obviously inherits the non-Markovianity from its local parts, that is, that
of the open systems S1 and S2 , respectively. In general, the global dynamics
is, however, not completely determined by the local subsystems and may thus
display dynamical properties which are locally absent. Clearly, Eq. (5.1) represents
a factorizing process if the initial environmental state ρ(12)

E (t0) is described by the
tensor product of two states for each local environment. Thus, correlations give
rise to nonlocal processes of the global system. It is worth stressing though that
this condition is only sufficient for a factorizing dynamics (see Appendix H for an
example on the basis of the polarization dynamics employed in Sec. 4.3.2).

In the following, the appearance of memory effects in the global dynamics
for locally Markovian processes is discussed by means of a generic model that
additionally allows to address the question about the relevance of entanglement
for this particular feature of bipartite open quantum systems. One considers two

117
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qubits subject to pure decoherence due to the interaction with multimode bosonic
fields. This type of non-Markovian process with memoryless local dynamics was
first studied by Laine et al. (2012, 2013) along with a second model that was
realized experimentally by Liu et al. (2013a) using a photonic system. Note that
the phenomenon of nonlocal memory effects is rather surprising as it is in contrast
to the standard situation in which a dynamical processes changes from being non-
Markovian to Markovian when the open system is enlarged (cf. the study of
Martinazzo et al. (2011) for the usual behavior) which is also observed for classical
stochastic processes. Indeed, any non-Markovian process can be embedded in a
Markovian one by suitably enlarging the number of random variables (see, e.g.,
van Kampen (2007)).

As previously indicated, the hitherto known dynamics leading to nonlocal mem-
ory effects are nondissipative processes for two qubits defining the open quantum
system. That is, the bipartite open system state evolves according to (cf. Sec. 3.3.2)

ρ
(12)
S (t) =




%11,11 κ2(t) %11,10 κ1(t) %11,01 κ12(t) %11,00
%10,10 Λ12(t) %10,01 κ1(t) %10,00

%01,01 κ2(t) %01,00
c.c. %00,00


 , (5.2)

resulting from local dephasing dynamics described by U (j)
SE where the coefficients

%mn,rs are determined as %mn,rs = 〈mn|ρ(12)
S (0)|rs〉 and the free Hamiltonians are

assumed to satisfyH(j)
S ∼ σ

(j)
3 . The local unitaries U (j)

SE thus obey [U (j)
SE(t, t0), σ(j)

3 ] =
0 for all times t ≥ t0 . For such a process nonlocal memory effects show up as re-
viving nonlocal coherence factors κ12 or Λ12 , whereas all other quantities decay
monotonically. Hence, such an open system can recover bipartite entanglement
that has been lost in the meantime as all other quantum properties which fol-
lows from the characterization of the concurrence (2.85) shown in Sec. 2.4.3. The
detrimental effect of the dephasing dynamics is thus reduced which has immediate
application in noisy quantum information protocols, such as high fidelity quantum
teleportation of mixed states (Laine et al., 2014) and entanglement distribution
(Xiang et al., 2014), providing a hint of the usefulness of memory effects for quan-
tum information tasks.

The generic model used to study nonlocal memory effects is derived from the
nondissipative dynamics considered in the context of exact TCL 2 master equa-
tions (cf. Sec. 3.3.2). Describing each of the locally coupled qubits by the total
Hamiltonian (3.52) with operators Ŝ(j) = σ

(j)
3 and H(j)

S = εjσ
(j)
3 for some εj ∈ R ,

the total system’s dynamics is governed by the Hamiltonian

H
(12)
tot =

2∑

j=1
H

(j)
S +H

(j)
E + χj(t)σ(j)

3 ⊗
∑

k

(
g

(j)
k b̂

(j)†
k + g

(j)∗
k b̂

(j)
k

)
, (5.3)

where the free Hamiltonian of the environment reads H(j)
E = ∑

k ω
(j)
k b̂

(j)†
k b̂

(j)
k . The

real-valued function χj(t) characterizes the turning-on and -off of the presumably
independently switchable interactions, i.e., one has

χj(t) = Θ(t− tsj)Θ(tfj − t) =
{

1 , t ∈ [tsj , t
f
j ]

0 , else
(5.4)
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Figure 5.1 – Schematic picture of two qubit systems that are coupled to a correlated
multimode environment with independently tunable local interactions. Later on,
the initial state of the environment is assumed to be given by the product state of
two-mode Gaussian states correlating pairs of modes of the two baths (cf. Fig. 1 in
Wißmann and Breuer (2014)).

modelling a local interaction of subsystem j with its environment from time tsj to t
f
j .

Because the duration as well as the starting time tsj can be varied independently
for both subsystems, this setup allows to tune continuously from simultaneous
to a successive application of the interactions. This is inspired by the idea of
controllable quantum sensors which are brought in contact with a complex quantum
system for some time, thereby acting as a quantum probe for properties of the
complex system (see Ch. 6 for a further discussion on this topic).

Clearly, the choice of the total Hamiltonian H(12)
tot leads to a reduced dynamics

of the two qubits given by Eq. (5.1) which can be solved exactly if ρ(12)
E (t0) defines

a Gaussian state (cf. Eq. (2.102)) as a result of this thesis which corrects and
generalizes the results obtained by Laine et al. (2012) (cf. Laine et al. (2013)).
Without loss of generality it is henceforth assumed that ts1 ≤ ts2 holds and that the
coupling strengths are real-valued, i.e. one has gjk ∈ R for j = 1, 2 and any mode
k . Finally, the source of nonlocal memory effects in this particular instance of the
spin-boson model is studied for an initial state of the environment given by the
tensor product of two-mode Gaussian states correlating pairs of modes.

5.1 Coherence factors for two-mode Gaussian states

In order to determine the reduced dynamics of the two qubits obtained for the
Hamiltonian H

(12)
tot (cf. Eq. (5.3)) and factorizing initial conditions, one simply

employs the results of the preceding considerations on the exactness of a TCL 2
master equation (see Sec. 3.3.2). In fact, they obviously apply here as the an-
nihilation and creation operators of the modes of the two bosonic baths satisfy
the familiar commutation relation, i.e., these operators obey [b̂(i)k , b̂

(j)†
l ] = δklδij

and [b̂(i)k , b̂
(j)
l ] = [b̂(i)†k , b̂

(j)†
l ] = 0 (cf. Eq. (2.91)). According to Eq. (3.72), the time
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evolution of the two two-level systems is characterized by1

〈mn|ρ(12)
S (t)|rs〉 =%mn,rs · eit{[(−1)m−(−1)r]ε1+[(−1)n−(−1)s]ε2} (5.5)

· χ
√

2
ρE

((
[(−1)r − (−1)m]~β (1)(t), [(−1)s − (−1)n]~β (2)(t)

))
,

where the components of ~β (j)(t) read

β
(j)
k (t) = (−i) ·

∫ t

0
ds χj(s)g(j)

k exp[iω(j)
k s]

= g
(j)
k

ω
(j)
k

exp[iω(j)
k tsj ] ·

{
1− exp[iω(j)

k tj(t)]
}
, (5.6)

introducing the effective interaction time tj(t) ≡
∫ t

0 ds χj(s) . By comparison with
Eq. (5.2), it follows that the coherence factors are thus determined as

κ1(t) = e−2iε1t · χ
√

2
ρE

((
2~β (1)(t), 0

))
, (5.7)

κ2(t) = e−2iε2t · χ
√

2
ρE

((
0, 2~β (2)(t)

))
, (5.8)

κ12(t) = e−2it(ε1+ε2) · χ
√

2
ρE

((
2~β (1)(t), 2~β (2)(t)

))
, (5.9)

Λ12(t) = e−2it(ε1−ε2) · χ
√

2
ρE

((
2~β (1)(t),−2~β (2)(t)

))
. (5.10)

For an initial state of the environment ρE that is given by the tensor product of
zero-mean two-mode Gaussian states correlating the kth modes of the two baths (cf.
Sec. 2.5.2), i.e. ρE = ⊗

k ρ
k
G , one may evaluate the coherence factors (5.7)–(5.10)

explicitly, even for a continuum of modes. Clearly, in this case the characteristic
function χρE decomposes into a product of identical characteristic functions for
each pair of modes, i.e., it obeys

χ
√

2
ρE

((
[(−1)r − (−1)m]~β (1)(t), [(−1)s − (−1)n]~β (2)(t)

))

=
∏

k

χ
√

2
ρkG

((
[(−1)r − (−1)m]β (1)

k (t), [(−1)s − (−1)n]β (2)
k (t)

))
, (5.11)

where χ
√

2
ρkG

is given by (cf. Eq. (2.102))

χ
√

2
ρkG

((
γ

(1)
k,rsmn(t), γ(2)

k,rsmn(t)
))

= exp
[
−~µk,rsmn(t)TσX̂k,ρkG~µk,rsmn(t)

]
, (5.12)

with X̂k = (q̂(1)
k , p̂

(1)
k , q̂

(2)
k , p̂

(2)
k )T and

~µk,rsmn(t) =




−Im(γ(1)
k,rsmn(t)

)

Re
(
γ

(1)
k,rsmn(t)

)

−Im(γ(2)
k,rsmn(t)

)

Re
(
γ

(2)
k,rsmn(t)

)



, (5.13)

1Note that the additional phase factor exp[i(S2
m−S2

n)φ(t)] equals unity as the eigenvalues Sm
of the operator Ŝ = σ3 are given by ±1 (cf. Eq. (3.72)).
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employing the definition γ
(j)
k,r1r2m1m2

(t) ≡ [(−1)rj − (−1)mj ]β (j)
k (t). Assuming

moreover that the covariance matrices σX̂k,ρkG are identical for all modes k and
in standard form (2.124), given by the 4× 4-matrix

σ =




a1 0 c1 0
0 a1 0 c2
c1 0 a2 0
0 c2 0 a2


 , (5.14)

one obtains analytic expressions for the coherence factors in the continuum limit
for ohmic spectral densities Jj(ω) = αjω exp[−ω/ωc] with equal cutoff frequency
ωc but arbitrary couplings αj . More precisely, by means of the relations

exp
[
L
{1− cos(yt)

t

}
(s)
]

=
[
1 + y2

s2

] 1
2

, (5.15)

exp
[
L
{

sin(xt)sin(yt)
t

}
(s)
]

=
[

(y + x)2 + s2

(y − x)2 + s2

] 1
4

(5.16)

for the Laplace transform L evaluated at s 6= 0, one shows that the coherence
factors obey (see Appendix I for a detailed derivation)

κ1(t) = e−2iε1t
{

1 + ω2
c t1(t)2

}−4a1α1
, (5.17)

κ2(t) = e−2iε2t
{

1 + ω2
c t2(t)2

}−4a2α2
, (5.18)

κ12(t) = κ1(t)κ2(t)f(t) , (5.19)
Λ12(t) = κ1(t)κ∗2(t)f(t)−1 , (5.20)

where the function f is given by

f(t) =
[{

1 + ω2
c (ts1 − ts2)2} · {1 + ω2

c (t1(t) + ts1 − t2(t)− ts2)2}
{
1 + ω2

c (t1(t) + ts1 − ts2)2} · {1 + ω2
c (ts1 − t2(t)− ts2)2}

]4c2
√
α1α2

·
[{

1 + ω2
c (ts1 + ts2)2} · {1 + ω2

c (ts1 − t2(t)− ts2)2}
{
1 + ω2

c (ts1 − ts2)2} · {1 + ω2
c (ts1 + t2(t) + ts2)2}

·
{
1 + ω2

c (t1(t) + ts1 − ts2)2}
{
1 + ω2

c (t1(t) + ts1 + ts2)2}

·
{
1 + ω2

c (t1(t) + ts1 + t2(t) + ts2)2}
{
1 + ω2

c (t1(t) + ts1 − t2(t)− ts2)2}
]2(c2−c1)√α1α2

. (5.21)

One notes that the modulus of the coherence factors κj solely depend on the
effective interaction time tj(t) and the variances of the position and momentum
operators given by the diagonal elements of the covariance matrix σ . On the
contrary, κ12 and Λ12 are also influenced by the initial times tsj and the off-diagonal
elements c1 and c2 . Clearly, for c1 = c2 = 0, one has f(t) = 1 for all times t so
that the dynamics factorizes. There is strong evidence that f is only equal to unity
if and only if σ has vanishing off-diagonal elements corresponding to a completely
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uncorrelated Gaussian state. Hence, the present bipartite process factorizes solely
for a factorizing environmental state as is commonly expected (see Appendix H for
a factorizing process associated with an correlated environment contradicting the
common expectation).

Note that the present treatment can be easily extended to complex-valued
coupling strengths g(j)

k and covariance matrices that are not in standard form by
means of the techniques stated in Appendix I. Moreover, the scheme may be
generalized to multiple interaction intervals as described by functions

χj(t) =
nj∑

m=1
χj,m(t) , (5.22)

where nj ≥ 1 and χj,m(t) = Θ(t− tsj,m)Θ(tfj,m− t) for times tsj,m and tfj,m satisfying
tfj,m < tsj,m+1 for all m ∈ {1, . . . , nj − 1} and j = 1, 2. Of course, the calculations
are getting more and more involved for all these generalizations.

It is henceforth assumed for convenience that the initial time for subsystem S1
is given by ts1 = 0, implying the second line of Eq. (5.21) is equal to unity which
thus simplifies the expressions for the nonlocal coherence factors. Further implica-
tions of this assumption are discussed below.

5.2 Role of entanglement for nonlocal memory effects

One now considers the non-Markovianity of the dynamics described by the co-
herence factors (5.17)–(5.20) for different two-mode Gaussian states. Focusing on
subsequently applied local interactions of equal length, i.e. one sets tf1 = ts2 and
∆t ≡ tf1 = tf2 − ts2 , one studies the dynamics of the two two-level systems for
squeezed and mixed thermal states which were introduced in Sec. 2.5.4. In partic-
ular, the squeezed vacuum σEPR

X̂,r
(cf. Eq. (2.135)) and the special mixed thermal

states σMTS
X̂,r

(cf. Eq. (2.145)), defining zero-mean two-mode Gaussian states that
are entangled and separable for any value of r , respectively, provide a convenient
tool to study the relevance of entanglement for the occurrence of nonlocal memory
effects.

It is readily observed that the coherence factors κ1(t) and κ2(t) (cf. Eqs. (5.17)
and (5.18), respectively) decay monotonically for any Gaussian state as the vari-
ances aj are always positive. Thus, non-Markovian behavior is exclusively related
to revivals of the nonlocal coherence factors κ12(t) and Λ12(t) (cf. Eqs. (5.19) and
(5.20)), hence describing nonlocal memory effects as discussed before. In fact, only
one of these coherence factors shows revivals for the considered setup. In view of
the previous results about optimal states stated in Sec. 4.3.1, one thus concludes
that the maximum for the measure N (and, similarly, for Ñ ) is attained by one of
the two pairs of Bell states (cf. Eqs. (2.78)–(2.80))

|Ψ0〉 = 1√
2

(|11〉+ |00〉) , |Ψ3〉 = 1√
2

(|11〉 − |00〉) , (5.23)
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or

|Ψ1〉 = i√
2

(|01〉+ |10〉) , |Ψ2〉 = i√
2

(|01〉 − |10〉) , (5.24)

depending on whether κ12 or Λ12 revives, respectively. This is due to the fact that
the trace distance of the time-evolved two-qubit states ρΨj (t) reads

DT
(
ρΨ0(t), ρΨ3(t)

)
= |κ12(t)| , (5.25)

DT
(
ρΨ1(t), ρΨ2(t)

)
= |Λ12(t)| . (5.26)

Since the modulus of the coherence factors describes also the entanglement in ρΨj (t)
quantified by the concurrence C2 as was shown in Eqs. (2.85) and (2.87), the non-
Markovianity measured by a backflow of information is thus linked to revivals of
entanglement of the Bell states subject to the considered dephasing dynamics.

Figure 5.2 shows the resulting dynamics of |Λ12(t)| for the Gaussian states
corresponding to σEPR

X̂,r
and σMTS

X̂,r
for various values of the parameter r . Here, the

time of the interaction ∆t is given by 2.5×10−2 in units of the cutoff frequency ωc
which determines a natural time scale as its inverse defines the correlation time of
the environment. Hence, one considers an interaction that is small compared to the
correlation time of the environment. As will be shown later on, this configuration
indeed needs to be chosen to observe revivals of coherence factors unless the free
evolution of the bath modes is eliminated (see Sec. 5.3.1). For the considered
setup one observes revivals of the coherence factor pointing to nonlocal memory
effects in the considered model for both classes of zero-mean two-mode Gaussian
states. These effects are getting stronger the bigger the parameter r . In fact,
large values of this parameter enhance the decay and the subsequent revival for
a fixed interaction length and coupling strength. Clearly, a boost of the coupling
parameters αj has the same effect, so one may choose them to be equal to unity for
convenience. The most surprising fact exposed by Fig. 5.2 is that the variation of
the coherence factor is enhanced for the mixed thermal states. Hence, one obtains
stronger nonlocal memory effects for the separable Gaussian states characterized
by σMTS

X̂,r
than for the highly entangled EPR state.

It is worth pointing out that the sign of c1 determines which pair of Bell states is
optimal for the two classes of two-mode Gaussian states. As shown by Fig. 5.2, for
a positive cross-covariance c1 , the nonlocal coherence factor Λ12 increases during
the interaction of the second subsystem with its environment whereas κ12 decays
monotonically. In the opposite case, i.e. for a negative value of c1 , the roles of
the two coherence factors are interchanged. By inspection of the cross-variances
of the considered Gaussian states, it is thus clear that the maximal backflow of
information is always given by the Bell states |Ψ1〉 and |Ψ2〉 independent of the sign
of the parameter r for σMTS

X̂,r
. However, this pair determines the non-Markovianity

of the process solely for positive parameters r in the case of squeezed thermal
states. On the contrary, for negative values the coherence factors κ12 increases,
showing that the entanglement evolution of the Bell states |Ψ0〉 and |Ψ3〉 exhibits
memory effects, as is readily understood due to the parity of sinh. Note that the
non-Markovianity is yet independent of the sign of the squeezing parameter as a
change of sign simply implies that the function f(t) (cf. Eq. (5.21)) is inverted and,
therefore, the coherence factors κ12 and Λ12 interchange their roles.
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Figure 5.2 – The time evolution of the modulus of the coherence factor Λ12(t)
(cf. Eq. (5.20)) for environmental states described by σEPR

X̂,r
(a) and σMTS

X̂,r
(b) (cf.

Eqs. (2.135) and (2.145), respectively) in units of the environmental correlation time
ω−1
c . The coupling strengths are chosen as α1,2 = 1, and the subsequently applied

interactions are active for 2.5 × 10−2 units of time whose switch is indicated by
the dashed vertical line. Several values of the parameter r are considered for which
the non-Markovianity N (just as well as Ñ ) is found to be given by: (a) 4× 10−3

(r = 1), 3 × 10−2 (r = 2), 0.22 (r = 3), 0.82 (r = 4), 0.82 (r = 5); (b) 4 × 10−3

(r = 1), 3 × 10−2 (r = 2), 0.22 (r = 3), 0.84 (r = 4), 0.95 (r = 5) (cf. Fig. 2 in
Wißmann and Breuer (2014)).

Nonlocal memory effects also persist for other values of ∆t for the two classes
of Gaussian states – unless the interaction is not too large in comparison with
the environmental correlation time as shown in Fig. 5.3. In addition, the maxi-
mal increase of the coherence factor Λ12 distinguishes a unique interaction length
maximizing the nonlocal memory effects. One observes that a large parameter r
requires a small interaction time ∆t in order to observe a completely decaying and
subsequently reviving nonlocal coherence factor Λ12 . Thus, the optimal time ∆t∗ ,
yielding maximal memory effects, is a decreasing function of the squeezing param-
eter r (cf. Fig. 5.4). In the limit ∆t→ 0 for finite squeezing, the non-Markovianity
obviously tends to zero as the dynamical process gets trivial.

In summary, the strength of nonlocal memory effects in the present model de-
pends on the magnitude of the cross-covariances and the chosen interaction time,
and the optimal time ωc∆t∗ revealing the maximal non-Markovian behavior is a
decreasing function of the magnitude of the former. This observation is confirmed
if one considers truly squeezed thermal states (2.130) characterized by nonvanish-
ing mean occupation numbers Nj and squeezing angles φ = 0 or π . One sees that
the larger the summed mean occupation number NΣ = ∑

j Nj , the stronger the
maximal nonlocal memory effects are and, moreover, the shorter the optimal inter-
action length becomes as the data depicted in Fig. 5.4 clearly shows. By looking
at this figure, one also recognizes that the non-Markovianity of the process is un-
ambiguously connected to the squeezing parameter of arbitrary squeezed thermal
states with known mean occupation numbers. This suggests to use the dynamics
of the open system to determine the squeezing parameter of an environment at
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fixed and known temperature. The two locally interacting two-level systems may
thus serve as a dynamical quantum probe for this environmental property.

To utilize the open system dynamics as a quantum probe experimentally, one
must clearly be able to prepare the system in a state which has nonzero nonlocal
coherences such as the maximally entangled Bell states and to couple it locally to
the multimode field for different times, apart from knowing the mean occupation
numbers. Clearly, there is no full state tomography needed since all the informa-
tion about the squeezing is contained in the dynamics of the coherences which can
be determined by measuring for example the correlations σ(1)

x ⊗ σ(2)
x , σ(1)

y ⊗ σ(2)
y ,

σ
(1)
x ⊗σ(2)

y and σ(1)
y ⊗σ(2)

x on the two-qubit probe. Nonetheless, one must compare
the magnitudes of the nonlocal coherences of a prepared state after the first and the
second local interaction with their initial value for several durations of the inter-
actions. Even though it actually suffices to consider only two different interaction
lengths, the probing scheme thus still requires to measure the four correlations five
times.

The proposed strategy might, however, still be useful for applications such as
the determination of the squeezing in atomic Bose-Einstein condensates (Kuang
et al., 2003; Piovella et al., 2003) by immersed atoms (Haikka et al., 2011, 2013,
2012b) or any other system where no other reliable and easy method for this
task is available. Of course, the generic example is given by the polarization de-
grees of freedom of photons that are used to determine the squeezing of their
frequency states which might, for example, result from a downconversion process
(see Sec. 4.3.2). In fact, the frequency degrees of freedom of downconverted pho-
tons are very well approximated by an EPR state (Lund et al., 2014) if a nonlinear
crystal is subject to a strong pump pulse. Note that this task is, however, rou-

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

ωc∆t

N

(a)

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

ωc∆t

N

r = 1
r = 2
r = 3
r = 4
r = 5

(b)

Figure 5.3 – The degree of non-Markovianity N of the quantum process char-
acterized by Eqs. (5.17)–(5.20) for Gaussian states σEPR

X̂,r
(a) and σMTS

X̂,r
(b) (cf.

Eqs. (2.135) and (2.145), respectively) as a function of the interaction length ωc∆t .
The consecutively applied interactions have again the same length and the couplings
are given by α1,2 = 1. One clearly sees the unambiguous connection of the squeez-
ing parameter and the non-Markovianity as a function of the interaction length (cf.
Fig. 3 in Wißmann and Breuer (2014)).
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Figure 5.4 – The maximal non-Markovianity N obtained for the optimal interac-
tion length ∆t∗ (in units of ω−1

c ) for different values of the summed mean occupation
number NΣ = N1 + N2 and squeezing parameters r for a squeezed thermal states
σSTS
X̂,r,φ=0,Nj

(cf. Eq. (2.130)). The other configurations are the same as in Fig. 5.3.
For the sake of clarity, a stacked plot adding a cumulative offset of 0.1 to each curve
is presented in (a) (cf. Fig. 3 in Wißmann and Breuer (2014)).

tinely and reliably done by directly measuring the covariance matrix in quantum
optical experiments. And, in addition, it is unclear how to establish the interaction
required for the probing strategy (cf. Eq. (5.3)) in this setup.

It is worth mentioning that the unambiguous connection of the environmental
properties and the rephasing of the nonlocal coherences is untouched by an im-
perfect realization of the local interactions, making the proposed probing strategy
indeed applicable for experimental purposes. The topic of dynamical quantum
probes will be further addressed in the second part of this thesis (see Ch. 6).

To complete the study of nonlocal memory effects in this model, it remains
to evaluate the influence of the assumption that the first local interaction starts
at ts1 = 0. That is, what happens if one assumes arbitrary times for the inset
ts1? It can be shown that the dynamics of |Λ12(t)| induced by the mixed thermal
states (2.145) is independent of the instant of time at which the first interaction is
turned on. For squeezed thermal states, the rephasing of the coherence factor is,
however, reduced if the initial time ts1 is nonzero. To explain these observations,
one first notes that Gaussian states remain Gaussian under the free evolution of
the bath modes, solely changing the argument of the characteristic function (2.115)
according to

~z 7→ ~z ′ ≡ (exp[iω1t]z1, . . . , exp[iωnt]zn
)T

, (5.27)

where ωj refers to the frequencies of the modes in the displacement operator
(2.103). For the mixed thermal states (2.145) it is easy to prove that the phase
factors exp[iωjt] cancel out so that the characteristic function is in fact invariant
under the free evolution. However, for squeezed thermal states, this is not true
making the characteristic function depend on the frequencies of the modes and the
elapsed time t prior to the interaction. It thus seems to be important to have iden-
tical Gaussian states for all pairs of modes when the open system starts to interact
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with the bosonic modes in general. By means of this observation, a necessary and
sufficient condition for the occurrence of nonlocal memory effects in general terms
will be presented in the following section.

One finally concludes that there exist strong nonlocal memory effects in the
present model, but entanglement in the initial state of the composite environment
is not necessary to observe this phenomenon. The separable Gaussian states char-
acterized by the covariance matrix σMTS

X̂,r
(cf. Eq. (2.145)) typically induce even

stronger nonlocal memory effects in comparison to squeezed thermal states. Un-
fortunately, the studied system does not allow to reveal the relevance of quantum
correlations in general as any two-mode Gaussian state with nonvanishing cross-
covariances has nonzero quantum discord (cf. Sec. 2.5.3). Hence, the natural
extension of this study, distinguishing the effect of classical and quantum correla-
tions, is impossible on the basis of this model.

5.3 Explaining the nonlocal rephasing

The results presented in the previous section have shown that memory effects with
respect to the revivals of nonlocal coherences are indeed observed in the present
model for appropriately adjusted parameters and entangled as well as separable
Gaussian states. To understand this effect better, an explanation for their occur-
rence in general terms is derived in this part of the thesis. In fact, apart from
studying the main mechanism induced by the local interactions, a general dephas-
ing model is used to derive a necessary and sufficient condition, solely based on
the entries of the covariance matrix, which also explains the occurrence of nonlocal
memory effects in the absence of entanglement. In addition, the correlations the
different subsystems during the different stages of the local interaction dynamics
are examined, also by means of a general model, showing that this effect cannot
be traced back to the intermediate redistribution of bipartite correlations.

5.3.1 General dephasing model and approximate dynamics

The previous discussion has shown that a proper choice of two-mode Gaussian
states along with suitably lasting local interactions are essential for the occurrence
of nonlocal memory effects. For very short-time interactions the interesting coher-
ence factor remains almost constant, whereas it decays irretrievably for long-lasting
ones. Furthermore, the free evolution of the bath modes apparently leads to an ir-
recoverable displacement of the environmental states degrading the effect. In fact,
a gap between the turning-off and on of the two local interactions, i.e. if one has
for tf1 < ts2 , diminishes the revivals of the coherence factors which is also observed
for squeezed thermal states if nonzero starting times of the first interaction are
considered as reported previously.

In addition, the significance of the free evolution is confirmed by the second
model presented by Laine et al. (2012) where the polarization and frequency de-
grees of freedom of a pair of photons define the open system and the environment,
respectively, and the local interactions are again induced by quartz plates (cf. Ap-
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pendix H). Clearly, there is no free evolution incorporated in this model, but one
still observes nonlocal memory effects which, moreover, are amplified by the mag-
nitude of the correlation coefficient K = C12/

√
C11C22 quantifying the frequency

correlations. Here, Cjk = 〈ωjωk〉 − 〈ωj〉〈ωk〉 denotes the entries of the covariance
matrix of the frequency distribution (Laine et al., 2012). One also observes that
the rephasing for subsequent interactions is independent of the actual length and
a possible gap between the local interactions. It is worth noticing that the dynam-
ics of the nonlocal coherence factors featuring revivals is trivial for simultaneously
active interactions and perfectly anticorrelated frequency distributions, i.e. if the
correlation coefficient satisfies K = −1. This is due to the fact that the associated
environmental state defines an eigenstates of the interaction Hamiltonian.

Based on these observations, it suggests itself to explain the occurrence of
nonlocal memory effects in the previous model by a modified ansatz, neglecting
the free evolution of the bath modes. For the two-mode Gaussian states showing
nonlocal memory effects, one thus expects to observe almost perfectly reviving
coherence factors Λ12(t) or κ12(t) for consecutive interactions, while they should
be almost constant if the interactions coexist under the approximate dynamics.

Indeed, erasing the free evolution of the bath modes and assuming a real-
valued coupling strength g(j)

k , the evolution of the kth bath mode is governed by
the Hamiltonian (cf. Eq. (5.3))

HI,k(t) =
√

2
2∑

j=1
g

(j)
k χj(t)σ(j)

3 ⊗ q̂
(j)
k , (5.28)

where q̂(j)
k refers to the canonical position operator corresponding to the kth mode

of subsystem j . Applying this Hamiltonian to the open system state |11〉S1S2 , one
obtains that the dynamics of the environmental degrees of freedoms is described
by the effective Hamiltonian

H
|11〉
I,k (t) =

√
2gk(χ1(t) q̂(1)

k + χ2(t)q̂(2)
k ) , (5.29)

while one has

H
|10〉
I,k (t) =

√
2gk(χ1(t) q̂(1)

k − χ2(t)q̂(2)
k ) , (5.30)

if HI,k(t) is applied to the state |10〉S1S2 and one assumes equal coupling constants
g

(1)
k = g

(2)
k = gk . Similarly, one finds for the other two basis vectors |00〉S1S2 and

|01〉S1S2 ,

H
|00〉
I,k (t) = −H |11〉

I,k (t) , H
|10〉
I,k (t) = −H |01〉

I,k (t) , (5.31)

so the effective Hamiltonian basically depend either on the sum or the difference of
the respective positions of particle 1 and 2 associated with the canonical operators
q̂

(j)
k .

If the unitary dynamics is exclusively generated by the approximated interac-
tion Hamiltonian HI(t) ≡

∑
kHI,k(t), the time evolution of any environmental

state given an open system state |mn〉S1S2 is described by the operator U|mn〉(t)=
exp

[−i∑k

∫ t
0 dsH |mn〉I,k (s)

]
. It then follows that the nonlocal coherence factors
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κ̃12(t) ≡ TrE
{
U|00〉(t)ρEU|11〉(t)†

}
and Λ̃12(t) ≡ TrE

{
U|01〉(t)ρEU|10〉(t)†

}
are de-

termined as

κ̃12(t) = TrE
{

exp
[√

2i
∑

k

2gk
(
t1(t)q̂(1)

k + t2(t)q̂(2)
k

)
]
ρE

}
(5.32)

and

Λ̃12(t) = TrE
{

exp
[√

2i
∑

k

2gk
(
t1(t)q̂(1)

k − t2(t)q̂(2)
k

)
]
ρE

}
. (5.33)

Choosing the environmental state ρE to be again given by the tensor product
of identical zero-mean two-mode Gaussian states, one may apply the results of
Sec. 5.1 to evaluate these expressions explicitly. In fact, for an ohmic spectral
density J(ω) = αω exp[−ω/ωc] with coupling strength α and cutoff frequency ωc ,
the continuum limit results in ∑k g

2
k →

∫∞
0 dωJ(ω) = αω2

c and, therefore, the
coherence factors for the approximate dynamics in this limit read

κ̃12(t) = exp
[
−4αω2

c

{
a1
(
t1(t)2 + t2(t)2)+ 2c1t1(t)t2(t)

}]
, (5.34)

Λ̃12(t) = exp
[
−4αω2

c

{
a1
(
t1(t)2 + t2(t)2)− 2c1t1(t)t2(t)

}]
, (5.35)

where it has been assumed that two-mode Gaussian state is given by the covariance
matrix σ (cf. Eq. (5.14)) as before. Note that κ̃12(t) and Λ̃12(t) are real-valued for
all times t .

Figure 5.5 depicts the dynamics of the nonlocal coherence factor Λ̃12(t) for
successively acting local interactions and two-mode Gaussian states given by the
squeezed vacuum and the particular mixed thermal state. For both classes of
Gaussian states and sufficiently large parameter r , the approximate coherence
factor displays an almost perfect decay and subsequent revival as conjectured. In
particular, comparing the plots with the dynamics for the original model displayed
in Fig. 5.2, the strong enhancement of nonlocal memory effects for an erased free
evolution is obvious. These results clearly show the significance of the free evolution
in the context of nonlocal memory effects.

It remains, however, to explain why large squeezing parameters are needed to
observe substantial nonlocal memory effects in the previous models (cf. Figs. 5.2
and 5.5). To this end, one first studies the following general dephasing model
that also comprises the approximated dynamics studied before: Suppose that the
decoherence function F (t) describing the dephasing process of the open system has
the general structure

F (t) = TrE
{
exp

[
iAt

]
ρE
}
, (5.36)

where A refers to a self-adjoint operator that is linear in the canonical operators.
Clearly, this ansatz neglects any kind of free evolution of the environment and the
open system as it was done for the approximated dynamics before. For a Gaussian
state ρE this decoherence function is then completely characterized by the first
two cumulants 〈A〉ρE = TrE{AρE} and 〈〈A〉〉ρE = 〈A2〉ρE − 〈A〉2ρE , as a cumulant
expansion terminates at second order due to the linearity of A in the canonical
variables. Hence, one finds

F (t) = exp
[
i〈A〉ρE t−

1
2〈〈A〉〉ρE t

2
]
. (5.37)
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Figure 5.5 – The dynamics of the nonlocal coherence factor Λ̃12(t) (cf. Eq. (5.35))
obtained for environmental states given by σEPR

X̂,r
(a) and σMTS

X̂,r
(b) (cf. Eqs. (2.135)

and (2.145), respectively). The parameters are chosen as in Fig. 5.2, that is, one
considers squeezing parameter r = 1, . . . , 5 for a coupling strength α = 1 and
subsequently applied interactions of length 2.5×10−2 in units of the environmental
correlation time ω−1

c (cf. Fig. 4 in Wißmann and Breuer (2014)).

It follows that |F (t)| = 1 holds for all times t if and only if the second cumulant
vanishes, i.e., if one has

〈〈A〉〉ρE = 0 , (5.38)

which can, however, only be fulfilled if the environmental state ρE defines a dis-
persion free ensemble with respect to the operator A . That is, the support of
the environmental state must not comprise elements of different eigenspaces of A .
For a nondegenerate observable A, this results in ρE = Πa, where Πa refers to a
one-dimensional projection onto the eigenspace associated with the eigenvalue a .
Note that this condition is more strict than [A, ρE ] = 0 which thus provides only
a necessary but not sufficient condition for |F (t)| = 1. In fact, it is well-known
that a vanishing commutator implies that A and ρE have a common eigenbasis
{|j〉} and, therefore, their spectral decompositions are given by A = ∑

j aj |j〉〈j|
and ρE = ∑

j pj |j〉〈j| . The decoherence function, however, reads

|F (t)| =
∣∣∣
∑

j

eiajtpj
∣∣∣ (5.39)

for this state which can take any value between zero and one.
Now, adapting this general model to the setup of the original system, one

assumes that the operator A is given by the difference of two local operators A1
and A2 which are linear in the canonical variables and may act independently
of each other. One then distinguishes two cases: First, when both operators are
simultaneously active and, secondly, when they act successively. In the former
situation, one again obtains for the modulus of the coherence factor

|F (t)| = exp
[
−1

2〈〈A〉〉ρE t
2
]

(5.40)
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with A ≡ A1 −A2 , whereas the latter case implies

|F (t)| = exp
[
−1

2〈〈A1〉〉ρE t2
]

(5.41)

during the first interaction.
Summarizing the observations about strong nonlocal memory effects, they oc-

cur within an appropriate time interval [0, t] if and only if the reviving coher-
ence factor is almost constant for simultaneously active interactions and decays
rapidly within the first interaction period for subsequent interactions. Applying
this to Eqs. (5.40) and (5.41), it thus follows that one must have 〈〈A〉〉ρE � 1 and
〈〈A1〉〉ρE � 1 which can be combined leading to the following condition for the
occurrence of strong rephasing effects in the general dephasing model:

〈〈A〉〉ρE � 〈〈A1〉〉ρE . (5.42)

This condition can be rewritten if the second cumulants for the local operators A1
and A2 are equal. More specifically, if one has 〈〈A1〉〉ρE = 〈〈A2〉〉ρE , then Eq. (5.42)
is reformulated as

2 · {〈〈A1〉〉ρE −
(1

2〈{A1, A2}〉ρE − 〈A1〉ρE 〈A2〉ρE
)}� 〈〈A1〉〉ρE , (5.43)

so that one obtains
1−KA1,A2(ρE)� 1

2 (5.44)

in terms of the correlation coefficient KA1,A2(ρE) =
(1

2〈{A1, A2}〉ρE − 〈A1〉ρE ·
〈A2〉ρE

)
/〈〈A1〉〉ρE of the operators A1 and A2 (cf. Eq. (2.105)). In order to satisfy

Eq. (5.44), it follows that the correlation coefficient must be positive and close to
unity, corresponding to strongly correlated observables A1 and A2 in the environ-
mental state ρE .

Note that the choice of a Gaussian state ρE along with environmental coupling
operators Aj that are linear in the canonical observables (and have identical vari-
ances to end up with condition (5.44)) are essential for the distinct condition for
the occurrence of strong nonlocal memory effects in the general dephasing model.
For example for nonlinear couplings or non-Gaussian states, one obtains a more
complicated set of conditions for the rephasing as the cumulant expansion will not
truncate at second order. It is clear, however, that all these requirements are met
for the original as well as the approximated model studied before so that it should
apply in these cases.

To check this, one first observes that the approximated dynamics can indeed be
described in terms of the general model. Clearly, the local interaction times tj(t)
in the exponent of the coherence factors κ̃12 and Λ̃12 are proportional to t for any
time 0 ≤ t ≤ tf1 if one has simultaneously active local interactions corresponding
to ts2 = 0 and tf1 = tf2 . On the other hand, if the interactions act one after the
other, assuming tf1 < tf2 for convenience, one obtains t1(t) = t and t2(t) = 0 for
all t ∈ [0, tf1 ] . It follows that for A1 ≡

√
8∑k gkq̂

(1)
k and A2 ≡ ∓

√
8∑k gkq̂

(2)
k ,

the nonlocal coherence factors κ̃12(t) (for the choice A2 = − . . . ) and Λ̃12(t) (for
A2 = + . . . ) are indeed described by the general dephasing model (5.36) within
the time interval [0, tf1 ] .
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For a Gaussian state ρE that is given by the tensor product of identical two-
mode Gaussian states ρG with vanishing mean and equal diagonal entries such
as the states σEPR

X̂,r
and σMTS

X̂,r
(cf. Eqs. (2.135) and (2.145), respectively), the

correlation coefficient simplifies to KA1,A2(ρE = ⊗
k ρG) = 〈A1A2〉ρE/〈A2

1〉ρE . The
expectation values are found to obey

〈A1A2〉ρE = ∓8
∑

k,k′
gkgk′〈q̂(1)

k q̂
(2)
k′ 〉ρE = ∓8αω2

c c1 , (5.45)

〈A2
1〉ρE = 8

∑

k,k′
gkgk′〈q̂(1)

k q̂
(1)
k′ 〉ρE = 8αω2

ca , (5.46)

in the continuum limit for an ohmic spectral density with cutoff frequency ωc , since
one has 〈q̂(j)

k q̂
(j′)
k′ 〉ρE = δk,k′〈q̂(j)

k q̂
(j′)
k 〉ρG with 〈q̂(1)

k q̂
(2)
k 〉ρG = c1 and 〈(q̂(1)

k )2〉ρG = a for
any Gaussian states with covariance matrix given by Eq. (5.14) where a1 = a2 = a
holds. The correlation coefficient KA1,A2(⊗k ρG) is thus given by the quotient
∓c1/a and, therefore, the necessary and sufficient condition (5.44) reads

1± c1
a
� 1

2 . (5.47)

Hence, one should observe a strong rephasing of Λ̃12(t) if and only if 1−c1/a� 1/2
is satisfied, whereas the approximate nonlocal coherence factor κ̃12(t) should revive
if and only if one has 1 + c1/a� 1/2. Since c1/a determines the correlation coeffi-
cient Kq̂1,q̂2(ρG) between the canonical operators q̂1 and q̂2 for symmetric Gaussian
states, it thus follows that strongly correlated positions, implying Kq̂1,q̂2(ρG) ≈ 1,
should result in the rephasing of Λ̃12(t) within the second interaction period while
anti-correlations of the observables q̂1 and q̂2 are supposed to yield a reviving co-
herence factor κ̃12(t).

Now, for the EPR state with covariance matrix σEPR
X̂,r

(cf. Eq. (2.135)), the
correlation coefficient (2.140) reads

Kq̂1,q̂2(ρ|ψu〉) = c1
a

= tanh(2r) , (5.48)

thus approaching ±1 for r → ±∞ , which indeed explains the occurrence and the
transition of the reviving coherence factor if the sign of the squeezing factor is
changed. Moreover, for the particular two-mode mixed thermal state (2.145), the
correlation coefficient is given by

Kq̂1,q̂2(ρσMTS
X̂,r

) = 1− 1
cosh(2r) , (5.49)

which gets close to +1 for |r| → ∞ coinciding with the previous observations, too.
One concludes that the occurrence of nonlocal memory effects in the approximated
model can indeed be explained by the constraint (5.44), which thus may be seen as
a necessary and sufficient condition for the phenomenon of nonlocal non-Markovian
behavior.

It is worth noticing that the necessary and sufficient condition (5.47) boils down
to a constraint on the amount of entanglement contained in a pure Gaussian state.
In fact, one easily shows that the generalized concurrence Cgen(ρE) (cf. Eq. (2.77))
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for such states can be written as Cgen(ρG)2 = 2
(
1−

√
1−Kq̂1,q̂2(ρG)2 ) , employing

the expression obtained for the EPR state in Eq. (2.139) and the fact that any
pure two-mode Gaussian state is unitarily equivalent to this state (cf. Sec. 2.5.4).
Hence, the more entangled the state, the stronger the nonlocal memory effects are.
However, entanglement is not the only source for reviving nonlocal coherences as
the particular mixed thermal state shows.

To understand the equivalence of entanglement and strong correlations, one
needs to go back to the original version of the necessary and sufficient condition,
i.e. Eq. (5.42). Applying it to the approximate dynamics, one finds

〈(q̂1 ± q̂2)2〉ρG � 〈q̂2
1〉ρG (5.50)

as constraint for the rephasing in terms of the canonical operators. Here, the minus
(plus) sign corresponds to the coherence factor Λ̃12 (κ̃12). Based on the previous
observations that the EPR state approximates an eigenstate of the operator Â∓ ≡
q̂1 ∓ q̂2 for r → ±∞ (cf. Eq. (2.138)) whereas the expectation value of A2

− for the
mixed thermal states is constant (cf. Sec. 2.5.4), it is clear that the two classes
of Gaussian states use different mechanisms leading to nonlocal memory effects.
While the left-hand side of Eq. (5.50) tends to zero for the squeezed vacuum in
the appropriate limit, it remains constant for the mixed thermal states σMTS

X̂,r
. For

either states, however, the right-hand side diverges for |r| → ∞ , so that condition
(5.50) is indeed satisfied.

So far the discussion focused on the approximate dynamics where the dimin-
ishing effect of the free evolution is not taken into account. Due to this, one cannot
hope that the derived criterion (5.47) defines a sufficient2 condition for nonlocal
memory effects in case of the full dynamics. However, for sufficiently short in-
teraction times ωc∆t � 1, the free evolution is almost negligible and, therefore,
the criterion should still be reasonable. This is precisely confirmed by the results
about the maximal non-Markovianity for all considered two-mode Gaussian states
(cf. Figs. 5.3 and 5.4). One concludes that for interactions that are short compared
to the environmental correlation time, Eq. (5.47) provides not only a necessary but
also sufficient condition for the occurrence of nonlocal memory effects for the full
dynamics. The rephasing of a nonlocal coherence factor is thus observed if and
only if one has ωc∆t � 1 and the correlation coefficient of the canonical position
operators satisfies

|Kq̂1,q̂2(ρG)| ≈ 1 . (5.51)

5.3.2 More than entanglement swapping

To extend the understanding of the phenomenon of nonlocal memory effects, it is
worth considering the dynamics of correlations between the different parties for
subsequently applied local interactions. Focusing on the original model showing
nonlocal memory effects, the implication of the local interactions can be nicely
illustrated if one assumes that the environment is given by a single pair of modes

2The necessity of the condition is obviously confirmed by the findings for the original model
(cf. Sec. 5.2).
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in the EPR state |ψu〉E1E2 =
√

1− u2∑∞
n=0 u

n|n, n〉E1E2 (cf. Eq. (2.136)). For this
setup the state of the total system after the first interaction reads

|ΨI〉SE = 1√
2

1∑

j=0
|jj〉S1S2 ⊗

(
V (j) ⊗ 1E2

)
|ψu〉E1E2 , (5.52)

where the unitary V (j) are given by V (j) = D
(
(−1)j+1βE1(t)

)
provided the open

system was initially given by the Bell state |Ψ0〉 (see Eqs. (2.78) and (5.23)). One
then finds for the reduced state of the subsystems S1 and E1

ρS1E1 = TrS2E2 {|ΨI〉SE〈ΨI|}

= 1− u2

2

∞∑

m,n=0

1∑

j=0
γ(j)
m,n|j, n〉S1E1〈j,m| , (5.53)

where γ(j)
m,n = ∑∞

k=0 u
2k〈n|V (j)|k〉〈k|V (j)†|m〉 . It is easily shown that γ(j)

m,n → δm,n
for all j in the limit u → 1 implying that the reduced state ρS1E1 approaches
the maximally mixed state in the limit of infinitely strong squeezing. Thus, one
concludes that there are still strong correlations between the two partitions S1E1
and S2E2 , which agrees with the intuitive understanding that local unitary trans-
formations cannot alter the entanglement in a bipartite system and, therefore, the
initial correlations in the joint state of E1 and E2 cannot be diminished.

As a consequence of this result, one may also conclude that the occurrence
of nonlocal memory effects cannot be explained by a swap of correlations. That
is, the complete dephasing and subsequent rephasing of the Bell states |Ψ0,3〉 or
|Ψ1,2〉 as observed for the dynamics generated by the Hamiltonian (5.3) is not due
to the fact that the first local interaction leads to a state where each subsystem
of the open system is solely correlated with its respective environment and the
second interaction restores the initial configuration of a correlated open quantum
system as well as environment. Obviously, such an effective dynamics would explain
the disappearing and reviving nonlocal coherences factors (see, e.g., Fig. (5.5)).
However, such an ansatz does not apply and can even be shown to do so in general
by means of the following toy model which effectively describes the dynamics of
the original model. Consider a bipartite four-dimensional open quantum system
each interacting locally with the correlated environment according to the unitary
map V as illustrated in Fig. 5.6 where N is arbitrary and may be even infinite
(see below). Focusing initially on finite-dimensional environments, one would thus
require in order to obtain nonlocal memory effects that the local interactions yield
the state transformation

(
V ⊗ 1S2E2

) |Ψ〉S1S2 ⊗ |Φ〉E1E2 = |ζ1〉S1E1 ⊗ |ζ2〉S2E2 (5.54)

and
(
1S1E1 ⊗ V

) |ζ1〉S1E1 ⊗ |ζ2〉S2E2 = |Ψ̃〉S1S2 ⊗ |Φ̃〉E1E2 . (5.55)

Here, the states |Ψ〉S1S2 , |Ψ̃〉S1S2 , |Φ〉S1S2 , |Φ̃〉S1S2 and |ζj〉SjEj are assumed to be
maximally entangled, where one additionally requires that the states |Ψ〉S1S2 and
|Ψ̃〉S1S2 have a common Schmidt decomposition. By means of a detailed analysis of
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Figure 5.6 – Schematic plot of the open system given by two qubits that con-
secutively interact with their local N -dimensional environments described by the
unitary V . The joint initial state of S1 and S2 as well as E1 and E2 is assumed to
be maximally entangled.

the conditions imposed on the unitary V , it is shown in the following that a local
interaction leading to the above state transformations does actually not exist.

First, note that one may assume without loss of generality that the open sys-
tem’s initial state is given by the Bell state |Ψ0〉 since any maximally entangled
state can be obtained by applying a local unitary to this state (Kok and Braun-
stein, 2000). The final maximally entangled state of system S1 and S2 must then
be given by

|Ψ̃〉S1S2 = 1√
2
(
eiφ|11〉S1S2 + |00〉S1S2

)
(5.56)

for some phase φ ∈ [0, 2π) . Similarly, the other maximally entangled states may
be written as

|Φ〉E1E2 = (U ⊗ 1E2)|Φmax〉E1E2 , (5.57)
|Φ̃〉E1E2 = (W ⊗ 1E2)|Φmax〉E1E2 , (5.58)
|ζj〉SjEj = (1Sj ⊗ Vj)|ζmax〉SjEj (5.59)

for unitary operators U ,W and Vj on the N -dimensional environments and generic
maximally entangled states

|Φmax〉E1E2 ≡
1√
N

N−1∑

k=0
|kk〉E1E2 , (5.60)

|ζmax〉SjEj ≡
1√
2

1∑

k=0
|k, k〉SjEj , (5.61)

where {|k〉Ej | 0 ≤ k ≤ N − 1} refers to some orthonormal basis of the environment
Ej . To satisfy Eq. (5.54), the unitaries’ entries must obey

1√
2N

N−1∑

k=0
VrtjkUku = 1

2 (V1)tr (V2)uj (5.62)
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for all indices j, r ∈ {0, 1} and t, u ∈ {0, . . . , N − 1} . This relation is obtained
by expanding the left- and the right-hand side of Eq. (5.54) in the joint basis
{|ij, kl〉SE | 0 ≤ i, j ≤ 1 , 0 ≤ k, l ≤ N − 1} and comparing the coefficients. In the
same way, Eq. (5.55) is found to imply

1
2



N−1∑

k=0

1∑

j=0
Vrtjk

(
V2
)
kj


 (V1

)
sl

= 1√
2N

Wst
(
δr,0 + eiφδr,1

)
, (5.63)

where l, r ∈ {0, 1} and s, t ∈ {0, . . . , N − 1} . One readily observes that Eq. (5.62)
can be written as

UT




Vrtj0
...

Vrtj(N−1)


 =

√
N

2 ·
(
V1
)
tr




(
V2
)
0j

...(
V2
)
(N−1)j


 , (5.64)

where UT refers to the transposed of U with respect to the basis {|k〉E1} , i.e. one
has (UT )jk = 〈k|U |j〉 = Ukj . As U is unitary by assumption, its transpose UT is
unitary, too, with inverse

(
UT
)†

= U∗ . One may then solve the set of equations
(5.64) for Vrtjk which gives

Vrtjk =
√
N

2 ·
(
V1
)
tr

N−1∑

m=0
U∗km

(
V2
)
mj

, (5.65)

where the indices obey j, r ∈ {0, 1} and k, t ∈ {0, . . . , N − 1} . Upon inserting this
expression into Eq. (5.63), one finally obtains

∆N

(
V1
)
tr

(
V1
)
sl

= Wst δl,r
(
δr,0 + eiφδr,1

)
, (5.66)

with l, r ∈ {0, 1} and s, t ∈ {0, . . . , N − 1} as well as

∆N ≡
N

2 ·
N−1∑

k,m=0

1∑

j=0
U∗km

(
V2
)
mj

(
V2
)
kj
. (5.67)

Clearly, ∆N = 0 implies that W =
(
Wst

)
= 0 holds, which does not define a

unitary operator. Therefore, one must have ∆N 6= 0 so that Eq. (5.66) implies
(
V1
)2
tr

= Wtt
1

∆N

(
δr,0 + eiφδr,1

)
(5.68)

for all indices r ∈ {0, 1} and t ∈ {0, . . . , N − 1} . If Wtt 6= 0, it thus follows that(
V1
)
t0 as well as

(
V1
)
t1 are nonzero. However, from Eq. (5.66) one deduces

(
V1
)
t0
(
V1
)
t1 = 0 (5.69)

for any t , which cannot be satisfied for nonvanishing coefficients. Hence, one
concludes that the diagonal elements of W must vanish, i.e. one has Wtt = 0 for
all t ∈ {0, . . . , N − 1} . As this implies

(
V1
)
tr

= 0 for any r ∈ {0, 1} , Eq. (5.66)
gives

Wst
1

∆N

(
δr,0 + eiφδr,1

)
=
(
V1
)
tr

(
V1
)
sr

= 0 (5.70)
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for all indices s, t ∈ {0, . . . , N − 1} from which again W = 0 follows. One thus
concludes that there does not exist a unitary operator V such that the entanglement
swapping characterized by Eqs. (5.54) and (5.55) can be realized.

It is immediately observed that the preceding proof did not make use of the
fact that W is unitary for which is reason this assumption may be relaxed. As
a consequence, the above result extends to arbitrary final states |Φ̃〉E1E2 of the
environment. Moreover, an imperfect rephasing of the open system state described
by a final state

|Ψ̃′〉S1S2 =
√

1− ε |Ψ̃〉S1S2 +
√
ε
{
a0|01〉S1S2 + a1|10〉S1S2

}
(5.71)

for 0 < ε� 1 and |a0|2 + |a1|2 = 1 does neither allow to deduce a unitary operator
V satisfying the sketched scheme for N -dimensional environments E1 and E2 .

Finally, the above consideration may also be extended to initial states of the
environment |Φ〉E1E2 that are obtained from |Φmax〉E1E2 (cf. Eq. (5.60)) by applying
any properly normalized invertible operator U . More precisely, due to the fact that
one has

TrE {|Φ〉E1E2〈Φ|} =
N−1∑

j,k=0
|Ujk|2 , (5.72)

the unitary U in Eq. (5.57) may be replaced by any invertible operator with Frobe-
nius norm equal to unity. Clearly, the unitaries define a proper subset of this set,
thus extending the developed treatment to a bigger class of initial states for the
environment. An example for a state created by an invertible operator with Frobe-
nius norm equal to one is provided by the finite-dimensional analog of the EPR
state (2.136). Defining an operator U by

〈j|U |k〉 = δj,k

√
1− |u|2

1− |u|2N uj (5.73)

for j, k ∈ {0, . . . , N − 1} with parameter u = tanh r ∈ R , one easily verifies that
it is invertible with inverse 〈j|U−1|k〉 = δj,k

√
(1− |u|2N )/(1− |u|2)u−j and has

Frobenius norm equal to one which may be shown using the geometric series. As
the corresponding state |Φ〉E1E2 yields the EPR state in the limit N → ∞ , the
general considerations reflect the previous observations for the original model and
show that the simple ansatz of entanglement swapping for nonlocal memory effects
does not apply in general, that is, independent of the dimension of the environment.

5.4 Nonlocal memory effects for finite environments
The preceding sections have shown that nonlocal memory effects exist for the dy-
namics generated by the Hamiltonian (5.3) with a continuum of bosonic modes
defining the environment, and revealed the conditions for their occurrence as well
as the dynamics of correlations between the different partitions. Another question
in the study of nonlocal memory effects concerns the significance of the environ-
ments. In fact, does the decay and the subsequent revival of a single nonlocal
coherence factor of a bipartite open quantum system where all other coherences
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get arbitrarily small as observed for the original model reflect the infinite dimen-
sions of the bosonic environments? That is, can such a dynamics not be observed if
the bosonic environments are replaced by finite-dimensional systems, thus allowing
to obtain nonlocal memory effects by means of finite-dimensional systems?

To start revealing the role of the environmental dimension, finite-dimensional
counterparts of the original model are considered in general terms in the following
part of this thesis. Choosing the environments to be arbitrary finite-dimensional
systems, the constraints on the local unitaries describing the local interactions are
then determined if nonlocal memory effects are supposed to occur. Surprisingly,
it turns out that the simplest case of environments, described by two-dimensional
Hilbert spaces, is not possible, i.e., the derived constraints cannot be satisfied. For
environments defined by two three-level instead of two-level systems, a solution can,
however, be found but the determined example has the feature that both nonlocal
coherence factors show substantial (intermediate) revivals during the second local
interaction (see Fig. 5.7). In fact, the given example supports the conjecture that
a dynamics where all but a single nonlocal coherence factor decays is obtained in
the limit of an infinite-system. To prove this ultimately, further examinations of
the derived constraints and their possible solutions are, however, necessary and
may be carried out in the future. If the conjecture indeed proves to be true, one
concludes that nonlocal memory effects as observed in the original model as well as
in the second example provided in (Laine et al., 2012) represent a clear signature
of an environment described infinite-dimensional Hilbert spaces, which cannot be
simulated via a finite-dimensional setup and, thus, could be used to probe the
(effective) dimension of an open quantum system’s environment.

As before, one assumes to have two N -dimensional environments E1 and E2
which are given in a state that is maximally entangled (cf. Fig. 5.6). In addition,
the unitary dynamics is viewed as being effectively described by local unitaries
V (j) acting on the environmental Hilbert spaces HEk , so that the two-stage time
evolution of the initial state of the total system |Ψ0〉S1S2 ⊗|Φ〉E1E2 – where |Φ〉E1E2

is given by Eq. (5.57) and |Ψ0〉S1S2 refers to the Bell state (5.23) – is described as

|ΨI〉SE = 1√
2

1∑

j=0
|jj〉S1S2 ⊗

(
V (j) ⊗ 1E2

)
|Φ〉E1E2 , (5.74)

and

|ΨII〉SE = 1√
2

1∑

j=0
|jj〉S1S2 ⊗

(
V (j) ⊗ V (j)

)
|Φ〉E1E2 , (5.75)

where the final state is additionally assumed to have the same structure of corre-
lated bipartitions as the initial state. Due to this, it must be given by

|ΨII〉SE = 1√
2

1∑

j=0
eiφj |jj〉S1S2 ⊗ (W ⊗ 1E2) |Φ〉E1E2 , (5.76)

where W denotes a unitary. That is, the state of the open system as well as the
environment are maximally entangled. Expanding the two expression for |ΨII〉SE



5.4. Nonlocal memory effects for finite environments 139

in the joint basis {|ij, kl〉SE | 0 ≤ i, j ≤ 1 , 0 ≤ k, l ≤ N − 1} as before in Sec. 5.3.2,
one obtains the following relation that determines the operator W :

eiφj 〈m|W |n〉 = 〈m|V (j)UV (j)T |n〉 , (5.77)

for all m,n ∈ {0, . . . , N − 1} where the transpose V (j)T is defined, as before, with
respect to the basis {|j〉Ek | 0 ≤ j ≤ N − 1} . Note that the subscripts Ek have
been omitted as the environments are isomorphic and may thus be identified with
each other. Clearly, the operators e−iφjV (j)UV (j)T are unitary so that there is no
immediate contradiction. It thus remains to find unitaries U and V (j) and phases
φj such that these operators are independent of the index j .

If the first part of the time evolution is supposed to result in a completely
dephased state of the open system, i.e.

ρI
S1S2 = TrE

{|ΨI〉SE〈ΨI|
}

= 1
2

1∑

j=0
|jj〉S1S2〈jj| , (5.78)

then the local unitaries V (j) must additionally satisfy

TrE
{(
V (j 6=k)†V (k) ⊗ 1E2

)|Φ〉E1E2〈Φ|
}

= 0 . (5.79)

Evaluating the left-hand side of Eq. (5.79), this condition is written as

0 = TrE
{(
V (j 6=k)†V (k) ⊗ 1E2

)|Φ〉E1E2〈Φ|
}

= 1
N

N−1∑

m,n,p,q=0
UpqU

∗
mn E1E2〈m,n|V (j 6=k)†V (k) ⊗ 1E2 |p, q〉E1E2

= 1
N

N−1∑

m,p=0

(
N−1∑

n=0
Upnu

∗
mn

)
E1〈m|V (j 6=k)†V (k)|p〉E1

= 1
N

TrE1

{
V (j 6=k)†V (k)

}
. (5.80)

Two unitaries satisfying Eq. (5.80) are for example given by the permutation ma-
trices V (j) = ∑N−1

m=0 |πj(m)〉E1〈m| associated with permutations πj ∈ SN of the set
{0, . . . , N−1} where one has π0(m) 6= π1(m) for any indexm . For two-dimensional
environments, i.e. HEk = C2, the two unitaries

V (0) = i 12 and V (1) = i σ1 (5.81)

provide an explicit example for permutation matrices that obey Eq. (5.79). The
unitary operators W̃j ≡ e−iφjV (j)UV (j)T are then given by

W̃0 = −e−iφ0U , W̃1 = −e−iφ1σ1Uσ1 , (5.82)

which are equal if and only if the relation
(
U00 U01
U10 U11

)
= e−i(φ1−φ0)

(
U11 U10
U01 U00

)
, (5.83)
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holds. This equation is obviously satisfied by U = 12 and φ1 = φ0 + 2πk for
some k ∈ N0 . However, evaluating the reduced state after the first and second
interaction3 for these unitaries and an initial state |Ψini〉SE = ∑1

j,k=0 ajk|jk〉S1S2 ⊗
|Φ〉E1E2 where A = (aij) refers to some 2× 2-matrix with Frobenius norm equal to
unity (cf. Eq. (5.72)), one finds

ρ̃I
S1S2 = TrE

{(
V ⊗ 1S2E2

)|Ψini〉SE〈Ψini|
(
V † ⊗ 1S2E2

)}

=




|a11|2 a11a∗10 0 0
a∗11a10 |a10|2 0 0

0 0 |a01|2 a01a∗00
0 0 a∗01a00 |a00|2


 (5.84)

and

ρ̃II
S1S2 = TrE

{(
V ⊗ V )|Ψini〉SE〈Ψini|

(
V † ⊗ V †)

}

=




|a11|2 0 0 a11a∗00
0 |a10|2 a10a∗01 0
0 a∗10a01 |a01|2 0

a∗11a00 0 0 |a00|2


 , (5.85)

which clearly shows that both nonlocal coherences rephase in contradiction to the
observations for the original model.

To obtain a reduced dynamics that erases all but a single nonlocal coherence
after the second interaction, one must furthermore require that the environmental
states

|Φjk〉E1E2 ≡
N−1∑

m,n,p,q=0
Upq E1〈m|V (j)|p〉E1 E2〈n|V (k)|q〉E2 |mn〉E1E2 (5.86)

satisfy either

E1E2〈Φjk|Φrs〉E1E2 = δj,k δr,s (5.87)

or

E1E2〈Φjk|Φrs〉E1E2 = δj,s δk,r , (5.88)

depending on whether solely the coherences of ρ̃II
S1S2 associated with a11a∗00 or

a10a∗01 should be nonzero (see Eq. (5.85)). That is, condition (5.87) ensures that
the reduced state for |Ψ0(3)〉 (cf. Eq. (5.23)), attributed to κ12 , is invariant under
the dynamics whereas Eq. (5.88) implies that the Bell states |Ψ1(2)〉 (cf. Eq. (5.24))
are preserved, disregarding a shift of the relative phase as incorporated by the
assumption on the final state (cf. Eq. (5.76)).

Without loss of generality, assume that the Bell state |Ψ0(3)〉 revives. Using
that the adjoint is obtained by taking the transpose and complex conjugation for

3Note that the corresponding total unitary dynamics describing these local unitaries reads
V = exp

[
iπ2
{
|0〉〈0| ⊗ 12 + |1〉〈1| ⊗ σx

}]
which defines a CNOT-gate (Nielsen and Chuang, 2000).
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operators on finite-dimensional Hilbert spaces, the associated condition (5.87) can
be rewritten as

N · δj,k δr,s =
N−1∑

m,n=0

(
V (j)UV (k)T

)∗
mn

(
V (r)UV (s)T

)
mn

=
N−1∑

m,n=0

((
V (j)UV (k)T

)†)

nm

(
V (r)UV (s)T

)
mn

=
N−1∑

m,n=0

(
V (k)T †U †V (j)†

)

nm

(
V (r)UV (s)T

)
mn

= Tr
{
V (j)†V (r)UV (s)TV (k)T †U †

}
. (5.89)

In summary, the constraints on the unitaries V (j) and U are thus given by the
three relations

Tr
{
V (1)†V (0)

}
= 0 , (5.90)

Tr
{
V (1)†V (0)UV (0)TV (1)T †U †

}
= N , (5.91)

Tr
{
V (1)†V (0)UV (1)TV (0)T †U †

}
= 0 , (5.92)

as the other equations follow from complex conjugation.
Now, defining unitary operators W1 = V (1)†V (0) and W0 = W †1 , one observes

thatW1 6= 0 due to condition (5.91) but its eigenvalues exp[iθj ] (where θj ∈ [0, 2π))
must sum to zero, i.e., they must obey

N−1∑

j=0
eiθj = 0 , (5.93)

due to Eq. (5.90) . Moreover, since one has X† = X∗T = XT ∗ for operators on
finite-dimensional Hilbert spaces, one finds

V (0)TV (1)T † =
(
V (1)∗TV (0)

)T
= W T

1 = W ∗0 , (5.94)

V (1)TV (0)T † =
(
V (0)∗TV (1)

)T
= W T

0 = W ∗1 , (5.95)

so that Eqs. (5.91) and (5.92) can be rewritten in terms of the operators Rj ≡
W1UW T

j U
† according to

Tr {Rj} = N · δj,1 . (5.96)

Clearly, Rj define unitary operators and, therefore, their eigenvalues λ(j)
k ∈ C are

on the unit circle, i.e. one has |λ(j)
k | = 1 for all k ∈ {0, . . . , N − 1} , and they need

to satisfy ∑N−1
k=0 λ

(j)
k = N · δj,1 due to Eq. (5.96). Taking the real part and using

linearity, one finally obtains

N =
N−1∑

k=0
Re
(
λ

(1)
k

) ≤
N−1∑

k=0
|λ(1)
k | = N , (5.97)
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which implies Im
(
λ

(1)
k

)
= 0 for all k and, therefore, λ(1)

k = 1. Hence, R1 =
W1UW T

1 U
† is the unit operator which means that one has W1U = UW T

1
†. By

means of this relation, the trace of R0 is finally deduced to obey

Tr{R0} = Tr
{
W †1W0

}
= Tr

{
W 2

1
}∗
, (5.98)

where one additionally uses the cyclic property of the trace, its invariance under
transposition, i.e. Tr{AT } = Tr{A}, and the fact that Tr{A†} = Tr{A}∗ holds.
Eq. (5.96) thus implies a second constraint on the eigenvalues of the unitary W1 .
More precisely, they must then obey the two equations

Tr {W1} =
N−1∑

j=0
eiθj = 0 , (5.99)

Tr
{
W 2

1
}

=
N−1∑

j=0
ei2θj = 0 , (5.100)

which cannot be satisfied simultaneously for two-dimensional environments E1 and
E2 . In fact, one concludes from Eq. (5.99) that the eigenvalues obey exp[iθ0] =
− exp[iθ1] so that their squares are equal, i.e. one has exp[i2θ0] = exp[i2θ0]
and, therefore, one obtains ∑1

j=0 exp[i2θj ] = 2 exp[i2θ0] which clearly violates
Eq. (5.100) for any choice of θ0 .

As a consequence, the Hilbert space describing the environments Ek must be
at least three-dimensional in order to observe nonlocal memory effects. Apart
from Eqs. (5.99) and (5.100), the requirement R1 = 1N imposes a condition on the
operator W1, too. If X denotes the unitary diagonalizing W1 with respect to the
basis {|j〉 | 0 ≤ j ≤ N − 1} , i.e. W1 = XDX† where D = ∑

j exp[iθj ] |j〉〈j| , then
the relation W1U = UW T

1
† is found to be equivalent to

Y = DYD , (5.101)

since D as well as Y ≡ XTU †X define unitaries. In particular, this equation
implies

〈j|Y |k〉 = ei(θj+θk)〈j|Y |k〉 (5.102)

for all j, k ∈ {0, . . . , N − 1} . Hence, given a tuple of basis elements |j〉 and |k〉
such that 〈j|Y |k〉 6= 0 holds, Eq. (5.102) is satisfied if and only if one has

θj + θk = 2π · f(j, k) , (5.103)

where f : {0, . . . , N − 1} × {0, . . . , N − 1} → Z defines some integer-valued func-
tion. Clearly, nonzero transition matrix elements 〈j|Y |j〉 yield θj = π · f(j, j)
so that exp[iθj ] = ±1. However, if all of these elements would be nonzero, then
Eq. (5.100) cannot be satisfied. Thus, a finite-dimensional realization of nonlocal
memory effects requires that the unitary operator Y is not diagonal in the basis
with respect to which the maximally entangled state of the environment |Φmax〉E1E2

(cf. Eq. (5.60)) is defined.
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Before determining a unitary operator satisfying Eq. (5.102), one notes that
such an operator on an N -dimensional Hilbert space must have at least N nonzero
transition matrix elements with respect to any orthonormal basis. Clearly, this
is equivalent to the existence of N orthonormal columns and rows which charac-
terizes a unitary matrix. The eigenbasis of a unitary obviously provides such a
basis with minimal amount of nonzero matrix elements. The previously consid-
ered permutation matrices corresponding to a fixed basis and permutation, i.e.
Y = ∑N−1

j=0 |π′(j)〉E1〈j| for π′ ∈ SN , define an example for unitary operators with
at least two bases with minimal amount of nonzero transition matrix elements. To
minimizes the amount of constraints imposed by Eq. (5.102), it is thus convenient to
consider the case that Y is described by such a permutation matrix. If one focuses
on three-dimensional environments, possibly providing the simplest realization of
nonlocal memory effects as two-level systems have been ruled out, one immediately
recognizes that the permutation cannot be cyclic. In fact, any cyclic permuta-
tion defines a closed sequence of integers, e.g. (0, 1) 7→ (1, 2) 7→ (2, 0), so that
Eq. (5.103) yields4 θj = π · g(j) for all j for some function g : {0, . . . , N − 1} → Z .
So the eigenvalues of W1 would again be given by ±1 violating Eq. (5.100).

It follows that the nontrivial permutation must have a fixed point, i.e. it
needs to obey π′(j) = j for one index j ∈ {0, 1, 2} . Assuming π′(2) = 2 so
that Y =

( 0 1 0
1 0 0
0 0 1

)
, one may indeed find phases θj that are in accordance with the

constraints imposed on Y . More specifically, Eq. (5.103) gives θ1 = 2πf(0, 1)− θ0
and θ2 = πf(2, 2) where θ0 and θ2 must in addition satisfy Eqs. (5.99) and (5.100)
which can be written as

eiθ2 + 2 cos(θ0) = 0 , (5.104)
1 + 2 cos(2θ0) = 0 . (5.105)

A solution is given by θ0 = 2π/3 if exp[iθ2] = 1, whereas θ0 = π/3 solves
these equations if one has exp[iθ2] = −1. The triple of phases (θ0, θ1, θ2) =
(2π/3, 4π/3, 0) thus provides a choice of phases satisfying all requirements on the
eigenvalues of W1 . Choosing X = 13 for simplicity, a unitary dynamics where
the interaction on the open system is proportional to σ(j)

3 as in the full model (cf.
Eq. (5.3)), i.e. a dynamics that is described as V (t) = ⊗1

j=0 exp[−i tj(t)σ(j)
3 ⊗H

(j)
I ] ,

is then obtained for the Hamiltonians

H
(j)
I = π

3 |0〉Ej〈0|+
2π
3 |1〉Ej〈1| , (5.106)

which shows nonlocal memory effects if the maximally entangled initial state of
the environment is given by

|Φ〉E1E2 = 1√
3
{|1, 0〉E1E2 + |0, 1〉E1E2 + |2, 2〉E1E2

}
. (5.107)

Figure 5.7 shows the dynamics of the associated coherence factors for subse-
quent interactions of length ∆t = 1. One observes that all but κ′12 are zero at

4For the permutation π′ ∈ S3 which implies the sequence (0, 1) 7→ (1, 2) 7→ (2, 0), Eq. (5.103)
gives θ1 = 2πf(0, 1)− θ0 , θ1 = 2πf(1, 2)− θ2 and θ2 = 2πf(0, 2)− θ0 . This can be solved leading
to θ0 = π{f(0, 1) − f(1, 2) + f(0, 2)} , θ1 = π{f(0, 1) + f(1, 2) − f(0, 2)} and θ2 = π{−f(0, 1) +
f(1, 2) + f(0, 2)} .
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Figure 5.7 – Dynamics of the coherence factors for three-dimensional environ-
ments Ek with initial state |Φ〉E1E2 (cf. Eq. (5.107)) and an interaction described
by V (t) =

⊗1
j=0 exp[−i tj(t)σ(j)

3 ⊗H(j)
I ] with H(j)

I as defined in Eq. (5.106). Here,
the interactions are again subsequently turned on and off for an interval ∆t = 1
indicated by the vertical dashed line.

the end of the stepwise dynamics, but the nonlocal coherence factor Λ′12 has a
revival up to a magnitude of 1/3 during the second interaction at variance with
the original model. The bump’s magnitude immediately suggests a relation to the
dimension of the environmental Hilbert spaces along with a reduction of the in-
termediate increase for higher-dimensional environments, finally approaching zero
in the limit of infinite dimensions. To prove these conjectures, one must obviously
determine solutions for higher-dimensional environments explicitly. However, a
systematic approach to do this is not possible by means of the present ansatz us-
ing a permutation matrix with a single fix point as one easily shows. In fact, for the
analogous permutation matrices with fixed point π′(N − 1) = N − 1, one deduces
that Eqs. (5.99) and (5.100) read 1 +∑N−2

j=0 exp
[
i · (−1)N−2−jα · θ0

] != 0 for α = 1
and α = 2, respectively, which has no joint solution for N > 3.

It thus requires further studies of the constraints (5.99), (5.100) and (5.103) in
order to fully reveal the role of the environmental dimension for nonlocal memory
effects. This task is left for future studies.
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Chapter 6

Indirect quantum measurement

Considering the generic situation of an open quantum system which interacts with
its environment, one may ask which information on the environment can be in-
ferred by measuring an observable on the open system at some instant of time?
That is, the open system is used as a probe for the quantum system defining its
environment where some features of the latter are deduced from a measurement of
the former. Of course, the dynamics of an open quantum system may also carry
information on its environment, so the open system bears the prospect of providing
a new type of quantum sensors, allowing to gain information on quantum systems
that may sometimes even be otherwise inaccessible. This investigation is moti-
vated by the findings for the relation of nonlocal memory effects to the squeezing
factor (see Sec. 5.2) and the correlation coefficient of photons (Laine et al., 2012;
Liu et al., 2013a). Moreover, recent studies have highlighted a connection between
non-Markovian behavior of an open system and environmental features such as an-
gular correlations of pairs of entangled photons (Smirne et al., 2013a), the effective
dimension of ultracold bosonic gases (Haikka et al., 2012b, 2013), the criticality
of an Ising spin chain (Haikka et al., 2012a) and a structural phase transition in
an ion crystals (Borrelli et al., 2013). However, there is also evidence that the dy-
namics of open quantum systems signifies other nontrivial environmental features
including, for example, the critical point of a quantum phase transition (Gessner
et al., 2014a).

The inference of properties of a quantum system is generally of paramount in-
terest for any use of quantum systems. Among other things, the theory of quantum
measurements (see, e.g., Braginsky et al. (1992) and Busch et al. (1996)) examines
the general question of how and what kind of information on a quantum system
can be deduced using a quantum “apparatus”, which is measured after some inter-
action to gather information on an object system. After a summary of the most
important results of this theory concerning the information transmission on the ap-
paratus relevant for the setup of an open quantum system which is given in Sec. 6.1,
the study presented in this thesis focuses on means and relations quantifying an
imperfect transmission and the thus-caused disturbance that are introduced and
discussed in Sec. 6.2. The prospects of information extraction encoded into the
dynamics of an open quantum system will later on be addressed in general terms in
Secs. 6.3 and 6.4, completing the examination of open systems as quantum probes
for their environments. In fact, the opportunity to extract information from the
dynamics of the open system is studied on the basis of two approaches due to
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Petersen (2014b) and Pollock et al. (2015) which are additionally generalized and
applied to illustrate their functioning.

6.1 The theory of quantum measurements
The theory of quantummeasurements characterizes in general terms how properties
of observables on a quantum object are determined by means of the measurement
of a second quantum system, the probe, thus defining an indirect measurement of
the object system. In fact, the theory considers the situation presented in Fig. 6.1
where the measurement statistics of an observable A on the quantum object system
is supposed to be deduced by means of a probe on which a von Neumann-Lüders
measurement (von Neumann, 1932b; Lüders, 1950) associated with an observable B
is performed. Of course, the measurement of B is first applied after an appropriate
interaction between the two systems has taken place which is described by a positive
and trace-preserving map Υ. The probe and the object are additionally assumed
to be dynamically and statistically independent prior to that interaction so that
the total initial state factorizes, i.e. one has ρOP = ρO ⊗ ρP .

Clearly, the most prominent example for such a setup, which was already con-
sidered by von Neumann (1932b) (see also Braginsky et al. (1992) and Breuer and
Petruccione (2002)), is certainly given by the measurement of the momentum op-
erator p̂ on a quantum probe HP = L2(R) after a unitary state transformation
corresponding to the interaction Hamiltonian

HI(t) = g(t)A⊗ q̂ (6.1)

has occurred. For a sufficiently strong interaction and a probe state with a narrow
momentum distribution, the measurement statistics of A may be reliably inferred
from the outcomes of the measurement of the probe’s momentum. In the ideal case
of a probe with an arbitrarily sharp momentum distribution, that is, a probe in a
momentum “eigenstate”, the probability distribution of A and p̂ are deterministi-
cally related and, in addition, one may infer the final state of the object from the
measured momentum of the probe (Breuer and Petruccione, 2002).

Figure 6.1 – Illustration of the probing scheme: Information about the quantum
object with associated Hilbert space HO is obtained by coupling it to a second
quantum system, called the probe. The measurement statistics of the observable A
on the object in a state ρO shall be reproduced by an ordinary measurement of an
observable B on HP in the state ρP after an appropriate interaction between the
two quantum systems has taken place that is described by the positive and trace-
preserving map Υ. Typically, this map refers to the unitary dynamics induced by
some interaction Hamiltonian (cf. Eq. (6.1)), which thus is even completely positive.
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In fact, assuming a discrete observable A with spectral decomposition A =∑
j aj |χj〉〈χj | and neglecting the free evolution of quantum object and probe so

that the dynamics is solely governed by the interaction Hamiltonian (6.1), the
probability density corresponding to the measurement of the momentum operator
p̂ at time t∗ > 0 on the probe for a factorizing initial state ρO ⊗ ρP is given by
(Breuer and Petruccione, 2002)

p1(p, t∗) =
∑

j

|φ(p+Gt∗aj)|2〈χj |ρO|χj〉 . (6.2)

Here, Gt∗ =
∫ t∗
0 dt g(t) defines the integrated interaction strength and one has

|φ(p)|2 ≡ 〈p|ρP |p〉 , determining the momentum distribution of the probe’s initial
state. For a sufficiently strong interaction and a probe state having a momentum
distribution concentrated around its mean value, the function

f(p) = 1
Gt∗

{〈p̂〉ρP − p
}

(6.3)

represents a reliable estimator for the outcome of a potential measurement of A on
the object given the probe was found to have momentum p . That is, one assigns
the value a = f(p) to the object if the momentum p is obtained when measuring
the probe.

The associated probability density p′1(a, t∗) = (d/da)P1
(
(−∞, 〈p̂〉ρP−Gt∗a], t∗

)
,

where P1
(
(−∞, x], t

)
denotes the probability to measure a momentum smaller than

or equal to x ∈ R on the probe, is determined by (Breuer and Petruccione, 2002)

p′1(a, t∗) =
∑

j

|Gt∗ | · |φ
(〈p̂〉ρP −Gt∗(a− aj)

)|2〈χj |ρO|χj〉 , (6.4)

which yields the probability density of a measurement of the observable A in the
limit of an arbitrarily sharp momentum distribution of ρP . Indeed, in the limit
|φ(p)|2 → δ(p− 〈p̂〉ρP ) , Eq. (6.4) reduces to

p′1(a, t∗) =
∑

j

δ(a− aj)〈χj |ρO|χj〉 , (6.5)

as the Dirac delta function scales as δ(αx) = |α|−1δ(x), and one finds

p1(f−1(a), t∗) =
∣∣∣ ddaf

−1(a)
∣∣∣ ·
∑

j

δ
(
Gt∗{f

(
f−1(a)

)− aj}
)〈χj |ρO|χj〉

= p′1(a, t∗) (6.6)

for any a ∈ R . Thus, the two probability densities are deterministically related by
means of the estimator (6.3) which therefore may also be called a pointer function
(see below).

A systematic analysis of interactions leading to correlated probabilities is pro-
vided by the theory of quantum measurements (cf. Busch et al. (1996)). As a
basic principle of this theory, measurements of an observable1 A are characterized
by five-tuples 〈HP , B, ρP ,Υ, f〉 satisfying the relation

TrO{EA(X)ρO} = TrP
{
EB
(
f−1(X)

)
TrO{Υ(ρO ⊗ ρP )}} (6.7)

1The consideration is actually not limited to self-adjoint operators but may be extended to
any kind of generalized measurements represented by a POVM (cf. Sec. 2.4).
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for any element X of the Borel σ-algebra B(R) over the real line R and object
state ρO ∈ S(HO) . Here, EK refers to the spectral projections of the observable
K = A and B, that is, one has K =

∫
R
x dEK(x) according to the spectral theorem

(Rudin, 1991) (see also Eq. (6.9) for the spectral projections of discrete observables
A and B). And Υ defines again a positive and trace-preserving map on the joint
Hilbert space HO ⊗ HP which does not necessarily correspond to a unitary dy-
namics. As indicated before, the measurable function f is known as the pointer
function whereas B defines the so-called pointer observable2. By means of a proper
definition, the pointer function may obviously be absorbed in the definition of the
latter. Relation (6.7) is known as probability reproducibility condition and a five-
tuple satisfying it is said to define a premeasurement3 of A (Busch et al., 1996).
By definition, given a five-tuple 〈HP , B, ρP ,Υ, f〉 representing a premeasurement
of A , the measurement of the pointer observable on the probe in the evolved state
TrO{Υ(ρO⊗ρP )} thus allows to fully reproduce the probability measure associated
with the object observable. Note that one distinguishes various types of premea-
surements regarding the induced correlations between quantities of the object and
the probe, and the state change of the object state due to the measurement of the
probe (see, e.g., Busch et al. (1996)).

An explicit construction of a premeasurement of a discrete observable has al-
ready been given by von Neumann (1932b). In general, a premeasurement of such
an observable with spectral decomposition A = ∑NA

j=1
∑nj
k=1 aj |φjk〉〈φjk| , allowing

for degenerate eigenvalues as one may have nj ≥ 1 for any index j , is determined
by the continuous linear or conjugate linear extension of the map4

U : |φjk〉 ⊗ |Φ〉 7→ |ψjk〉 ⊗ |Φj〉 , (6.8)

where the vectors |ψjk〉 are orthonormal with respect to the second index, i.e. one
has 〈ψjk|ψjl〉 = δkl for any index j = 1, . . . , NA (Beltrametti et al., 1990). Here,
the pointer observable reads B = ∑NA

j=1 aj |Φj〉〈Φj | so that the pointer function is
simply given by the identity map. In view of the consideration of open quantum
systems, it is natural to focus on the unitary extension of Eq. (6.8) in the following.
One readily concludes from the definition of the unitary operator that the probe’s
Hilbert space must be larger than or equal to the number of different eigenvalues
of the observable A on the object which is to be determined. As the spectral
projections read

EA(X) =
∑

{j | aj∈X}

nj∑

k=1
|φjk〉〈φjk| , EB(X) =

∑

{j | aj∈X}
|Φj〉〈Φj | , (6.9)

2Note that it does not limit the treatment of (pre)measurements when the pointer observable
is assumed to be a self-adjoint operator rather than a positive operator-valued measurement as
was shown by Ozawa (1984). Moreover, one may restrict considerations to pure states of the
probe without loss of generality.

3To define a measurement of an observable A, the so-called objectification requirement needs,
however, to be satisfied by the five-tuple, too, which refers to the fact a measurement should lead
to an objective, definite result.

4It is worth stressing that any such map U can always be extended by (conjugate) linearity
to a (anti)unitary operator since the sets {|φjk〉 ⊗ |Φ〉} and {|ψjk〉 ⊗ |Φj〉} may be extended to
orthonormal bases on HO ⊗HP (see also Appendix J).
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where the first summation in each expression extends over all indices for which the
associated eigenvalues aj are in the Borel set X, the probability reproducibility
condition5 (6.7) is easily shown to be satisfied for the initial probe state ρP =
|Φ〉〈Φ| and the state transformation ΥU corresponding to the unitary extension of
Eq. (6.8).

Note that the vectors |ψjk〉 need not be orthonormal in general. A particular
and convenient choice of these vectors is clearly given by the set {|φjk〉} which yields
a premeasurement of A that is termed von Neumann-Lüders measurement 6 (Bel-
trametti et al., 1990). The resulting transformation of the object state coincides
with the usual treatment of measurements of a quantum mechanical observable
stated in standard textbooks (see, e.g., Breuer and Petruccione (2002)) which was
first considered by von Neumann (1932b) and in greater detail by Lüders (1950).
As shown in Appendix J, a unitary operator extending the map defined in Eq. (6.8)
in case of a von Neumann-Lüders measurement is, for example, given by

U =
NA∑

j,k=1

ng(j,k)∑

l=1
|φg(j,k)l〉〈φg(j,k)l| ⊗ |Φj〉〈Φ̃k| , (6.10)

where the function g : {1, . . . , NA}2 → {1, . . . , NA} refers to a symmetric func-
tion for which g(·, k) is bijective for any k and that satisfies g(j, k) 6= j and
g(j, k) 6= g(j, l) for all j and pairwise different indices k and l . A possible choice
for the function g is, for example, given by g(j, k) = [j + k − 2]NA where [·]NA
defines the coset with respect to division by NA . Finally, the set {|Φ̃j〉} denotes
an orthonormal basis containing the initial probe state as first element, i.e. one
has |Φ̃1〉 = |Φ〉 .

It is worth pointing out that the unitary (6.10) and, similarly, any extension
of the map (6.8) only characterizes a premeasurement of a discrete observable if
the probe state is initially given by the pure state |Φ〉〈Φ| . Moreover, it should
be clear that applying projections 1O ⊗ |Φj〉〈Φj | to final states UρO ⊗ |Φ̃k〉〈Φ̃k|U †
still implies a collapse of the object’s quantum state. In fact, one easily deduces
that the state of the quantum object is determined by ∑ng(j,k)

l |φg(j,k)l〉〈φg(j,k)l| in
accordance with standard theory of measurements in quantum physics (see, e.g.,
(Breuer and Petruccione, 2002)). Thus, an indirect measurement of an observable
A by means of the quantum probe after the interaction (6.10) does not represent
a noninvasive strategy to gather information on the object system. To study the
impact of an imperfect preparation of the probe, different means to compare the
probability distribution of the pointer observable with that of the object observable
are introduced in the following part of the thesis. In addition, several proposals
for a relation between the gained information and the thus-induced disturbance on
the quantum object are studied.

5Note that the specified premeasurement also satisfies the so-called calibration condition. That
is, the measurement outcome of the probe shows aj with certainty whenever this result was certain
in the initial state of the object system (Busch et al., 1996).

6Some authors such as Busch et al. (1996)) distinguish between a von Neumann and a Lüders
measurement. Instead of considering a coarse grained observable B for the state transformation
(6.8) as Lüders (1950) did, von Neumann (1932b) required that a measurement resolves the
complete eigenbasis {|φjk〉} of the possibly degenerate observable A . Of course, this leads to a
drastically different object states after the measurement of degenerate observables.
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6.2 Information extraction and induced disturbance
As indicated before, a fixed state of the probe is the only choice of an initial state
such that the extensions of the map (6.8) defines the correct state transformation
satisfying the probability reproducibility condition (6.7) for the associated pointer
and object observables. Due to this, one may ask what happens in case of an
imperfect preparation of the probe state or of the state transformation which one
certainly faces in any kind of experimental implementation. This directly leads
to the question how to characterize the performance of an indirect measurement
regarding the information transmission in general, thus taking into account imper-
fections. Clearly, for a given premeasurement 〈HP , B, ρP ,Υ, f〉 of an observable A ,
an imperfect preparation or state transformation yields a final state of the probe
that is different from

ρ̄P ≡ TrO{Υ(ρO ⊗ ρP )} (6.11)

for which the probability reproducibility condition is known to be satisfied. One
thus needs to quantify correlations of the probability measures (cf. Eq. (6.7))

PA,ρO(X) ≡ TrO{EA(X)ρO} , (6.12)
PB,ρ̃P (Y ) ≡ TrP

{
EB(Y )ρ̃P

}
(6.13)

on the Borel σ-algebra over R , where the final probe state ρ̃P results from an
arbitrary state transformation and initial probe state. That is, one considers the
final state to be associated with a state transformation Υ′ and an initial probe
state ρ′P leading to

ρ̃P = TrO{Υ′(ρO ⊗ ρ′P )} , (6.14)

which is generally different from ρ̄P . There exist, of course, several approaches
to determine correlations of these two probability measures. Some of the possible
strategies require, however, that the joint probability distribution after the state
transformation

PA⊗B,ρO,ρ′P (X,Y ) ≡ TrO
{
EA(X)⊗ EB(Y )Υ′(ρO ⊗ ρ′P )

}
, (6.15)

has marginals PA⊗B,ρO,ρ′P (X,R) and PA⊗B,ρO,ρ′P (R, Y ) given by Eqs. (6.12) and
(6.13), respectively. Clearly, this requirement severely limits the possible state
transformations. A transformation satisfying Eq. (6.15) is, for example, given by
the unitary transformation induced by the interaction (6.1) for any evolution time
as the observable A defines a constant of motion by construction.

Apart from the amount of information on the object observable obtained by
measuring the probe, the disturbance of the object state due to the interaction
as well as the measurement of the probe is an interesting quantity. In particular,
one may ask whether the induced disturbance can be related to the amount of in-
formation gained via the indirect measurement. Such an information-disturbance
relation would also clearly demonstrate that this type of information extraction
on a quantum system is certainly not noninvasive as already argued for the state
transformation (6.10) and initial probe states |Φ̃k〉〈Φ̃k| (see above). Therefore, it
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does not disagree with Heisenberg’s intuition of the nonexistence of a disturbance-
free measurement of a quantum system which he illustrated by the well-known
Gedankenexperiment of a γ-ray microscope (Heisenberg, 1927, 1930). Note that
there exist various proposals for a general formulation capturing Heisenberg’s intu-
ition7 (see, e.g., Maccone (2007), Maccone (2006), Buscemi (2007), Buscemi et al.
(2014), Buscemi et al. (2008), Busch et al. (2013), Busch et al. (2014a) and Ozawa
(2004) as well as references therein for different attempts).

Inspired by the works of Buscemi (2007) and Buscemi et al. (2014), entropic
quantifiers are considered in the following that measure statistical correlations be-
tween the random variables (cf. Sec. 4.1) associated with the measurement of
object and probe observables with probability measures given by Eqs. (6.12) and
(6.13), respectively. Unfortunately, none of the information-disturbance relations
given by Buscemi (2007) and Buscemi et al. (2014) can be applied to the dis-
cussed scenario of an indirect measurement as will be shown in this thesis. An-
other method to compare the probability distributions (6.12) and (6.13) employs
the so-called Wasserstein metric which is known from the study of transportation
problems (see, e.g., Villani (2003)). Contrary to the approach based on entropic
quantifiers, the second ansatz is not limited to state transformations that yield a
proper joint probability distribution (6.15). However, an information-disturbance
relation could neither be established in this case so that the quest of establishing
such a relation is generally open and left for future studies.

6.2.1 Entropic quantifiers

A central topic of classical information theory is to quantify the information content
of random variables. Based on the Shannon entropy (2.64), where the logarithm is
to the base 2, several quantifiers such as the mutual information and the conditional
entropy determine how close two random variables are. More specifically, the
Shannon entropy of a random variable X is defined as (Holevo, 1982)

H(X ) = −
∑

x

PX (x) log2 PX (x) , (6.16)

where PX (x) = ν
(X−1({x})) describes the probability to obtain the value x ∈ I ′

for the random variable X from the probability space Ξ = (I,Σ, ν) to the mea-
surable space (I ′,Σ′) (cf. Eq. (4.2)). In information theory the Shannon entropy
is interpreted as to quantify the amount information, measured in bits, acquired
on the random variable if one knows one of its realizations. Equivalently, one may
speak of the uncertainty of the random variable that is measured by H(X ) (Nielsen
and Chuang, 2000).

For a pair of random variables X and Y, one may similarly define the joined
entropy H(X ,Y) which refers to the Shannon entropy of the random variable
Z = (X ,Y) with associated probability distribution PX ,Y(x, y) having marginals

7Heisenberg (1927) only achieved a rigorous relation for the momentum transfer of an electron
due to a position measurement if it is assumed to be in a momentum “eigenstate”. In this case
the measurement-disturbance relation basically follows from the usual uncertainty relation for
canonical operators (see Wiseman (1998)).
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PX (x) and PY(y) . The relation between the information content of the two random
variables is then quantified by the so-called conditional entropy

H(X|Y) ≡ H(X ,Y)−H(X ) (6.17)

as well as the mutual information8

H(X : Y) ≡ H(X )−H(X|Y) (6.18)

in classical information theory. In fact, the former can be interpreted as the av-
erage uncertainty about the value of the random variable X if the value of Y is
known, whereas the latter is said to quantify how much information the two ran-
dom variables have in common (see, e.g., Nielsen and Chuang (2000)). Note that
the mutual information is symmetric in its arguments and satisfies

0 ≤ H(X : Y) ≤ min{H(X ), H(Y)} , (6.19)

where the lower bound is attained if and only if X and Y are statistically indepen-
dent, i.e. one has PX ,Y(x, y) = PX (x)PY(y) for any x and y . On the contrary, the
upper bound is realized if and only if the random variable X is a function of Y mean-
ing that there exists a function f such that X = f(Y) holds (Nielsen and Chuang,
2000). In view of the probability reproducibility condition (6.7), one may call f a
pointer function. Clearly, the conditional entropy satisfies 0 ≤ H(X|Y) ≤ H(X )
where the upper and lower bound now correspond to statistically independent
and deterministically related random variables, respectively. Note that the mutual
information can be written as

H(X : Y) =
∑

x,y

PX ,Y(x, y) log2

(
PX ,Y(x, y)
PX (x)PY(y)

)
, (6.20)

where the right-hand side defines the relative entropy of the joint distribution and
the product of its marginals (Nielsen and Chuang, 2000).

Now, returning to the problem of an indirect measurement, one may use the
conditional entropy or the mutual information to quantify the correlations between
the random variables associated with the measurement of the object and the probe
observables. That is, let PA,ρO({aj}) and PB,ρ̃P ({bj}) (see Eqs. (6.12) and (6.13))
denote the probabilities corresponding to the von Neumann-Lüders measurement
of the observable A in the object state ρO and B on the probe after the inter-
action, respectively, the entropic quantifiers may be used if the joint probability
distribution (6.15) obeys

PA⊗B,ρO,ρ′P
({aj}, spec(B)

)
= PA,ρO({aj}) , (6.21)

PA⊗B,ρO,ρ′P
(
spec(A), {bj}

)
= PB,ρ̃P ({bj}) (6.22)

for all eigenvalues aj and bj , assuming discrete observables A and B for conve-
nience. Note that the second equality is always satisfied by the very definition of

8Nielsen and Chuang (2000) also ascribe the expressions entropy of X conditional on know-
ing Y and mutual information content of X and Y to the conditional entropy and the mutual
information, respectively.
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PB,ρ̃P ({bj}) (see Eq. (6.13)). For an interaction generated by some time-dependent
Hamiltonian HI(t), one easily shows that the first relation implies, however, the
constraint [HI(t), A] = 0 for all times t > 0 which is known as back-action evasion
condition (see, e.g., Breuer and Petruccione (2002)). Note that the Kraus opera-
tors Ωj determining the state change of the object due to the interaction and the
measurement of the observable B = ∑

j bj |Φj〉〈Φj | on the probe with outcome bj
at time t are then determined through the relation (cf. Eq. (2.32))

ΩjρOΩ†j = TrP
{
1O ⊗ EB({bj})U(t)ρO ⊗ ρ′PU †(t)

}
, (6.23)

which yields
Ωj = 〈Φj |U(t)|Φ′〉 ∈ B(HO) (6.24)

in case of a pure probe state ρ′P = |Φ′〉〈Φ′| .
To obtain an information-disturbance relation for the mutual information or

the conditional entropy, it is worth considering the works by Buscemi (2007) and
Buscemi et al. (2014) where such relations have been deduced for these two quanti-
fiers. However, the results were obtained in a different setting which, unfortunately,
is not compatible with the scenario of an indirect measurement as will be shown in
the following. First, Buscemi (2007) considered the information transmission from
a classical-quantum channel (see below) to a probe by means of a measurement of
the latter. He derived the relation (cf. Eq. (5) in Buscemi (2007))

Fe(ρO) ≤ 1− 1
4βH(X : Y) , (6.25)

where
Fe(ρO) ≡ Tr

{|ρO〉〈ρO|(E ⊗ 1)(|ρO〉〈ρO|)
}

(6.26)

is called the entanglement fidelity (Schumacher, 1996; Schumacher and Nielsen,
1996). Here, |ρO〉〈ρO| refers to a purification of the state ρO and E represents
the completely positive and trace-preserving map9 induced by the (generalized)
measurement on the probe, i.e., one has E(ρO) = ∑

j ΩjρOΩ†j for some set of
Kraus operators (cf. Eqs. (2.32) and (6.23)). Note that the entanglement fidelity
is interpreted as measuring how coherently a state is preserved through a quantum
channel E (Schumacher, 1996; Schumacher and Nielsen, 1996), thus defining a
particular quantifier for the disturbance of a state. Clearly, it takes on values in
the unit interval where one has Fe(ρO) ≈ 1 if E acts approximately like the identity
channel on the support of the object state.

The mutual information in relation (6.25) determines the correlations between
the random variables corresponding to the measurement of the probe and the
information encoded into an object state by means of a classical-quantum channel.
That is, a given state ρO is written as convex combination10 of states ρ(j)

O with
probabilities pj , i.e. ρO = ∑

j pjρ
(j)
O , which represents the coding of a classical

alphabet A = {1, . . . , N} with associated a priori probability distribution {pj}
9Note that such a map is typically called a quantum channel in the literature (see, e.g., Nielsen

and Chuang (2000)).
10The convex decomposition can also be motivated by a measurement of a POVM on an ancilla

by means of which the state ρO is purified before the object system is coupled to the probe (see,
e.g., Buscemi et al. (2008)).
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into quantum states according to the mapping j ∈ A 7→ ρ
(j)
O (Holevo, 1977). Such

a setup is known as classical-quantum channel in quantum communication theory
(see, e.g., Helstrom (1976) and Holevo (1982)). The joint probability distribution
is thus defined as

PX ,Y(j, k) = pjTr
{
Ω†kΩkρ

(j)
O

}
, (6.27)

so that the marginals are found to be determined by PX (j) = pj and PY(k) =
Tr{Ω†kΩkρO} . It follows that relation (6.25) can be interpreted as information-
disturbance trade-off for the transmission of information encoded in the state ρO
to the measurement of the probe. It is worth stressing that the disturbance is
independent of the chosen coding scheme (Buscemi, 2007).

In trying to use this relation for the scenario of an indirect measurement of a
constant of motion, one observes that the joint probability for outcomes aj and bk
of a measurement of the object and probe observable at time t (cf. Eq. (6.15) for
a unitary state transformation)

PA⊗B,ρO,ρ′P({aj}, {bk}) = Tr
{
EA({aj})⊗ EB({bk})U(t)ρO ⊗ ρ′PU †(t)

}
(6.28)

can be rewritten as

PA⊗B,ρO,ρ′P({aj}, {bk}) = Tr
{
Ω†kΩkEA({aj})ρOEA({aj})

}
, (6.29)

since one has [EA({aj}), U(t)] = 0 for any index j and times t , where the Kraus
operators are determined through Eq. (6.23). The essential difference between this
expression and Eq. (6.27) is given by the fact that the states ρ(j)

O do not define a
convex decomposition of the initial object state ρO in general. Clearly, one has

ρ
(j)
O = 1

pj
EA({aj})ρOEA({aj}) ∈ S(HO) (6.30)

with pj = Tr{EO({aj})ρO} so that the associated convex combination

ρ′O ≡
∑

j

EO({aj})ρOEO({aj}) (6.31)

defines the final state of a nonselective measurement of A (see, e.g., Breuer and
Petruccione (2002)) which is typically different from ρO unless this state is diagonal
in the eigenbasis of the measured observable. Moreover, the operator ρO − ρ′O is
indefinite in general as can be easily shown.

Lemma 6.1. Let ρO ∈ S(HO) be a quantum state and denote by {Πm}m∈I a set
of orthogonal projections on HO defining a resolution of identity (cf. theorem 3.2)
where [Πm, ρO] 6= 0 for at least one index m ∈ I . Then, the operator

ρO −
∑

m∈I
ΠmρOΠm (6.32)

is indefinite.
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Proof. Let ρO and {Πm}m∈I be given satisfying [Πm, ρO] 6= 0 for at least a single
index m ∈ I. Since the projections define a resolution of identity, i.e. one has∑
m∈I Πm = 1O , it is easily found that the Hermitian operator ρO−

∑
m∈I ΠmρOΠm

has zero trace which may be equivalently written as

Tr
{(
ρO −

∑

m∈I
ΠmρOΠm

)|χ〉〈χ|} = −Tr
{(
ρO −

∑

m∈I
ΠmρOΠm

)
Π⊥
}
. (6.33)

Here, |χ〉 refers to an arbitrary element of HO and Π⊥ denotes the associated
projection on the subspace orthogonal to it, i.e. the projection is defined by Π⊥ =
1O−|χ〉〈χ| . It thus follows that the two terms in Eq. (6.33) have alternating signs if
they do not vanish. However, if the latter would be true for any element |χ〉 ∈ HO,
one concludes that ρO −

∑
m∈I ΠmρOΠm = 0 holds (Rudin, 1991) which implies

[Πm, ρO] = 0 for all indices m in contradiction to the assumption.
Hence, there must exist a vector |χ〉 such that 〈χ|ρO−

∑
m∈I ΠmρOΠm|χ〉 6= 0.

Without loss of generality one may assume that the term is positive. Now, as
the second term cannot vanish, there must exist at least a single pure state |ψ〉 ∈
Im(Π⊥) which yields

〈ψ|ρO −
∑

m∈I
ΠmρOΠm|ψ〉 < 0 , (6.34)

so that Eq. (6.33) is satisfied. Thus, ρO −
∑
m∈I ΠmρOΠm is indeed indefinite.

As a consequence of this lemma, the positive operator Λj ≡ pjρ
−1/2
O ρ

(j)
O ρ
−1/2
O ,

being defined on the support of the state ρO and trivially extended to HO with pj
and ρ(j)

O as given by Eq. (6.30), is shown to have eigenvalues larger than unity so
that one has

1O −
∑

j

Λj � 0 . (6.35)

Positivity of this operator is, however, needed to arrive at inequality (6.25). More
specifically, it is required to achieve a lower bound for the trace distance of two
states by classical probability distributions corresponding to the measurement of a
POVM {Ek} . In fact, the bound follows from the trace distance’s characterization
in terms of the Kolmogorov distance (see Eq. (2.44))

DT (ρ1, ρ2) = max
{Ek}

dK(P1, P2) , (6.36)

where the probability distributions Pj = {pj,k} are determined by pj,k = Tr{Ekρj}
(Nielsen and Chuang, 2000). Even though one could also incorporate sets of posi-
tive operators in Eq. (6.36) that obey∑k Ek < 1O , corresponding to unnormalized
distributions Pj , the characterization of the trace distance may fail if the operator
1O −

∑
k Ek is indefinite.

In summary, inequality (6.25) can only be applied to the scenario of an indirect
measurement if the object state is diagonal in the eigenbasis of the observable A
which is to be estimated. This particular case obviously corresponds to an instance
of the approach considered by Buscemi (2007) as one then has ρO = ∑

j pjρ
(j)
O .
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Clearly, the requirement of a common eigenbasis represents a far reaching con-
straint for the use of the introduced means to quantify statistical correlations and
the disturbance. It is also worth stressing that relation (6.25) is not very tight in
general, since one obtains as a lower bound of the right-hand side

1− 1
4βH(X : Y) ≥ 1− 1

4dO
max
j=O,P

log2 dj , (6.37)

where dO and dP refer to the number of states ρ(j)
O in the convex decomposition of

ρO and the amount of elements of the POVM {Ω†kΩk}, respectively. This follows
from Eq. (6.19) and the facts that the Shannon entropy is bounded from above by
log2 dj , which is obtained for a uniform distribution, and one has β ≤ 1/dO by
definition. Assuming an equal amount of elements of the convex decomposition and
the POVM which is, e.g., realized by the unitary premeasurements (6.8), the right-
hand side of Eq. (6.37) is always larger than 0.9, thus corresponding to quantum
channels that cause only a slight disturbance of the object state measured by the
entanglement fidelity (6.26). A random sampling of channels and states shows,
however, that it is rather unlikely to obtain an entanglement fidelity larger than
0.9 (see Fig. 6.2).
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Figure 6.2 – Distribution of the entanglement fidelity Fe(ρO) (see Eq. (6.26)) for
randomly drawn states ρO ∈ S(HO) and quantum channels for different dimension
NO of the Hilbert space HO . The plot shows the relative frequency f of the values of
the entanglement fidelity with respect to a binning of the unit interval with spacing
1/100 and a sample size of 2.5× 104 ×NO states and channels.

As indicated before, there exists yet another noise-disturbance relation for a
similar setup which employs the relative entropy. In fact, for two nondegenerate
observables A and A′ on an NO-dimensional Hilbert space with spectral decompo-
sitions

A =
NO∑

j=1
aj |φj〉〈φj | , A′ =

NO∑

j=1
a′j |φ′j〉〈φ′j | , (6.38)
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Buscemi et al. (2014) determined the relation

H(X|Y) +H(X ′|Y ′) ≥ −2 log2
(
max
j,k
|〈φ′j |φk〉|

)
, (6.39)

where the relative entropy H(X|Y) is said to quantify the noise while H(X ′|Y ′)
measures the disturbance. More precisely, the former is defined with respect to
the joint probability distribution

PX ,Y(j, k) = 1
NO

Tr{Ek(|φj〉〈φj |)} , (6.40)

where Ek describes the state transformation (cf. Eq. (6.23)) due to the outcome k
for the measurement of the probe, whereas the latter evaluates the correlations in
the distribution

PX ′,Y ′(j, k) = 1
NO

Tr{|φ′j〉〈φ′j |(C ◦ E)(|φ′k〉〈φ′k|)} . (6.41)

Here, C refers to a quantum channel correcting the action of the channel E = ∑
k Ek

associated with the measurement of the probe. The definition of noise is thus
based on how well one is able to guess from the measurement statistics on the
probe the input eigenstate |φj〉 from a uniform distribution. And, similarly, the
conditional entropy H(X ′|Y ′) quantifies to which extent the action of the corrected
measurement channel reduces the information about which of the equally likely
eigenstates |φ′j〉 of the observable A′ was initially chosen.

To use this approach for the scenario of an indirect measurement of a nonde-
generate object observable that defines a constant of motion as considered before,
one first needs to specify the joint probability distributions characterizing the two
conditional entropies. Clearly, the noise may again be simply related to the joint
probability distribution (6.29), but there is a priori no second object observable A′.
In the light of an indirect measurement, a natural choice to quantify the distur-
bance would certainly be given by the perturbation of the eigenbasis of the object
state. That is, one considers the joint probability distribution

PX ′,Y ′(j, k) = µjTr
{|µk〉〈µk|E(|µj〉〈µj |)

}
, (6.42)

where µj and |µj〉 refer to eigenvalues and eigenstates of the initial object state
ρO , respectively. For convenience a correction of the quantum channel E has been
omitted. The channel is induced by the measurement of the observable B on the
probe, i.e., one has E(ρO) = ∑

j ΩjρOΩ†j with Kraus operators characterized by
Eq. (6.23).

It is readily observed that, at variance with the approach by Buscemi et al.
(2014), the marginals PA,ρO({aj}) and PX ′(j) = ∑

k PX ′,Y ′(j, k) of the two prob-
ability distributions (6.29) and (6.42), respectively, do not describe uniform dis-
tributions in general. In fact, this is only true if and only if the initial object
state is maximally mixed. One may, however, show that uniformly distributed
marginals are essential to arrive at a relation similar to inequality (6.39) as the
entropic uncertainty relation due to Maassen and Uffink (1988), which is em-
ployed by Buscemi et al. (2014) to obtain the lower bound in Eq. (6.39), cannot
be used in case of nonuniform distributions. More precisely, it is not possible to
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use Riesz’s theorem11, on which the relation by Maassen and Uffink (1988) is es-
sentially based, for such distributions as a consequence of the indefiniteness of the
operator ρO −

∑
m∈I ΠmρOΠm which has been proven in lemma 6.1 .

One thus concludes that none of the entropic information-disturbance relations
due to Buscemi (2007) and Buscemi et al. (2014) may be used for the scenario of an
indirect measurement in general. Besides the restriction to constants of motion that
are supposed to be measured indirectly on the quantum object, relation (6.25) is
only valid for object observables and states that commute, whereas one even needs
to have a maximally mixed state of the object if inequality (6.39) shall be used to
quantify the amount of gathered information and the thereby induced disturbance
on the object by the measurement of a probe observable. Of course, these negative
results do not imply that there does not exist information-disturbance relations
(for constants of motion) at all. Further studies need, however, to be spent to
derive such a relation, establishing a clear-cut connection between the information
and the thus-caused disturbance by means of an indirect measurement which fi-
nally leads to a thorough understanding of these kind of measurement strategies
for constants of motions.

6.2.2 Comparison of probability measures using the Wasserstein
distance

In the previous section, the performance of indirect measurements has been char-
acterized by means of entropic quantifiers determining how correlated the outcome
distribution of a measurement on the probe and that of a direct measurement of the
sought object observable are in terms of their joint distribution (6.15). Instead of
relying on such a distribution, one could try to compare the measurement outcome
distribution of the probe and the object directly. A prominent means of proximity
of probability measures is given by the so-called Wasserstein α-distance which has
been shown to be useful in probability theory (Villani, 2003; Gibbs and Su, 2002),
in data analysis and pattern recognition (Peleg et al., 1989; Rubner et al., 2000;
Rabin et al., 2012). In addition, it is also closely related to the Monge-Kantorovich
functional12 known from the study of transportation problems (see, e.g., Villani

11Theorem by Riesz (1927): Let x = (x1, . . . , xN ) denote a sequence of complex numbers
and T ∈ B(CN ) an isometry such that

∑
j
|(Tx)j |2 =

∑
j
|xj |2 holds for all x ∈ C

N . Defining
c = maxj,k|Tjk| where (Tx)j =

∑
k
Tjkxk, then one has

c1/b
[∑

j

|(Tx)j |b
]1/b

≤ c1/a
[∑

j

|xj |a
]1/a

, (6.43)

for 1 ≤ a ≤ 2 and 1/a+1/b = 1. The statement remains also valid if the condition on T is relaxed
to
∑

j
|(Tx)j |2 ≤

∑
j
|xj |2 for all x ∈ CN (Riesz, 1927).

12Kantorovich considered the minimization of the functional I ′[κ] ≡
∫

Ω1×Ω2
c(x, y) dκ(x, y) over

the set of joint probability distribution κ with fixed marginals µ and ν where c : Ω1 × Ω2 →
[0,∞) represents a Borel measurable function over the sample spaces Ω1 and Ω2 . This question
generalizes the problem of minimizing I[M ] ≡

∫
Ω1
c(x,M(x)) dµ(x) for a given measurable map

M : Ω1 → Ω2 which was first studied by Gaspard Monge in his work Mémoire sur la théorie des
déblais et des remblais in 1781 (Villani, 2003). In the literature, I ′[M ] is said to represent the
total cost associated with the transference plan κ between µ and ν – describing, e.g., a pile and
the need of sand, respectively – for a cost function c .
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(2003) and Rüschendorf (2005)).
Focusing on probability measures on the Borel σ-algebra over the real line R ,

this distance measure is defined as13 (Villani, 2009; van Gaans, 2011)

d
(α)
W (µ, ν) =

[
inf

κ∈Π(µ,ν)

∫

R×R
|x− y|α dκ(x, y)

]1/α

, (6.44)

where α ∈ N∪{∞} and Π(µ, ν) refers to the set of probability measures onB(R×R)
with marginals µ and ν, that is, one has

κ(X,R) = µ(X) , (6.45)
κ(R, X) = ν(X) (6.46)

for any Borel set X ∈ B(R). Note that the so-called set of couplings Π(µ, ν) is
nonempty for any two measures as the product measure µ⊗ ν, which is defined on
rectangles X × Y ∈ B(R)×B(R) by µ⊗ ν(X,Y ) = µ(X)ν(Y ) and then extended
by Carathéodory’s extension theorem to the Borel σ-algebra B(R × R) (see, e.g.,
Elstrodt (2009)), represents an admissible, though trivial choice for a coupling.
Clearly, definition (6.44) can be directly generalized to probability measures on
RN by inserting the corresponding Euclidean distance in the integral (van Gaans,
2011). The Wasserstein distance may, in general, even be defined for probability
measures on the Borel σ-algebra of arbitrary metric spaces14 (V, d) and, moreover,
it defines a metric for those probability measures for which the right-hand side
of Eq. (6.44) is finite (Vasershtein, 1969). Note that the existence of a coupling
minimizing the right-hand side depends on the structure of the metric space and
the regularity of the probability measures. For Polish spaces15 (V, d) one shows
that there exist an optimal coupling for any pair of probability measures µ and ν on
the associated Borel σ-algebra (Villani, 2003). Any discrete finite and countable
infinite set as well as Rn for any n ∈ N with its natural topology define, for
example, Polish spaces (Elstrodt, 2009) so that this statement applies in particular
to probability measures on the real line.

Even though the right-hand side relies on couplings, this does not mean that a
proper joint probability distribution for the measurement of two quantum observ-
ables (cf. Eq. (6.15)) is needed when trying to use this distance for the problem
of estimating the performance of an indirect measurement. That is, a coupling
does not need to be induced by the projection-valued measure EA(X) ⊗ EB(Y )
associated with observables A and B on the object and the probe in some joint

13Note that this metric is also frequently represented in terms of random variables which induce
the considered probability measures. More precisely, one writes d(α)

W (µ, ν) = infZ E
(
d(X ,Y)

)
where the infimum is taken over all pairs Z = (X ,Y) of random variables X and Y with probability
distributions µ and ν on B(R), respectively (see, e.g., Villani (2003)).

14Interestingly, for an arbitrary metric spaces equipped with the discrete metric, i.e. one has
d(x, y) = δx,y for all x, y ∈ V, one obtains d(α)

W (µ, ν)|α=1 = supX∈B(V) |µ(X) − ν(X)| as was
shown by Dobrushin (1970), which is the Kolmogorov distance (cf. Sec. 2.4.1; see also Nielsen
and Chuang (2000)).

15A Polish space (V, d) represents a separable and completely metrizable topological space.
Here, a space V is called separable if there exists a countable collection of sets which is dense, and
it is completely metrizable if there exists a metric d which induces the topology (i.e. open sets
can be defined as balls with respect to the metric). Finally, completeness refers, as usual, to the
convergence of Cauchy sequences (Elstrodt, 2009; van Gaans, 2011).
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state. As a consequence, one may apply this quantifier to observables A that do
not define constants of motion, too. Moreover, the solution to the minimization
over the convex set of all couplings is known: Vallender (1974) has shown that the
Wasserstein 1-distance of any pair of probability measures µ and ν on the Borel
σ-algebra on R is given by (see also Gibbs and Su (2002))

d
(α)
W (µ, ν)

∣∣
α=1=

∫ ∞

−∞
dx |Fµ(x)− Fν(x)| , (6.47)

where Fµ and Fν denote the cumulative distributions corresponding to the prob-
ability measures µ and ν . That is, one has Fη(x) = η

(
(−∞, x]

)
for any x ∈ R

and probability measure η on B(R) . In the realm of quantum mechanics, this dis-
tance measure was first used by Wiseman (1998) who determined the momentum
transfer of a particle due to a position measurement. Recently, Busch et al. (2013)
also employed it for their rigorous formulation of Heisenberg’s statement concern-
ing the relation between a quantum measurement and the caused disturbance (see
also Busch et al. (2014b)).

Given characterization (6.47) of the Wasserstein 1-distance, it is obvious that
one needs to know the probability distributions for the concerned observables as
well as the pointer function (cf. Eq. (6.7)) if this concept should be applied to
an indirect measurement. That is, it is only reasonable to compare the probabil-
ity measures PA,ρO(X) ≡ Tr{EA(X)ρO} and P fB,ρ̃P (X) ≡ Tr{EB

(
f−1(X

)
ρ̃P } (cf.

Eqs. (6.12) and (6.13), respectively) on the Borel σ-algebra B(R) corresponding to
an object observable A and a pointer observable B with pointer function f (see
Sec. 6.1). This fact does, of course, not represent a drastic requirement as the
pointer function should be known in advance in general. However, for object and
probe observables with finite, discrete spectrum one may also establish a measure
for proximity based on the Wasserstein distance which does not require knowledge
about the pointer function.

Indeed, for discrete probability distributions P1 = {p1,j}j∈I and P2 = {p2,j}j∈I
having a finite number of elements I = {1, . . . , N} , one considers the Wasserstein
α-distance for the probability measures

µj = 1
N

N∑

k=1
δpk,j , (6.48)

where δq denotes the Dirac measure which is defined as δq(A) = 1 if q ∈ A holds,
whereas one has δq(A) = 0 if q is not an element of the set A . The probability
measures (6.48) may thus be considered as random variables that map on a discrete
probability distribution where each realization is equally likely, i.e. they satisfy
µj({pj,k}) = 1/N for any k ∈ I and index j = 1, 2. For such probability measures
the set of couplings Π(µ1, µ2) is given by the set of bistochastic N × N -matrices
BN (see Eq. (4.16)) so that the Wasserstein α-distance is actually given by

d
(α)
W (µ1, µ2)α = 1

N
inf
π∈BN

N∑

j,k=1
πjk|p1,j − p2,k|α , (6.49)

representing a linear minimization problem over the convex set BN which is known
as Birkhoff polytope. The optimization problem is shown to be solved by the
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extremal points of the Birkhoff polytope (Villani, 2003) that are given by the
permutation matrices16 according to the famous Birkhoff-von Neumann theorem
(see, e.g., Villani (2003)). Thus, Eq. (6.49) then reads

d
(α)
W (µ1, µ2)α = 1

N
min
σ∈SN

N∑

j=1
|p1,j − p2,σ(j)|α . (6.50)

Thus, for α = 1 this distance is proportional to the minimal Kolmogorov distance
(cf. Eq. (2.44)) of two discrete probability distributions with respect to reordering
of the entries which represents an intuitive approach to compare discrete distri-
butions. In particular, the distance measure vanishes for two discrete probability
distributions corresponding to random variables that are related via a bijective
map such as those obtained from premeasurements given by Eq. (6.8).

Note that this result actually holds true for arbitrary distance measures and
for any discrete sets Ω1 and Ω2 of general vector spaces. Due to this, it may, e.g.,
be used to compare arbitrary point clouds. In fact, it provides a prominent tool
for the comparison of histograms (see, e.g., Rubner et al. (2000)) as well as for
image synthesis and retrieval (see the work by Rabin et al. (2012) and references
therein). In addition, the optimization in Eq. (6.50) is solved by standard linear
programming algorithms allowing for an efficient treatment (see, e.g., Burkard et al.
(2009)). For a one-dimensional distribution of points, the minimizing solution is,
however, even a priori known: Let σj ∈ SN denote the permutation such that
the probabilities – and similarly for arbitrary one-dimensional point clouds – are
arranged in increasing order, i.e. the permutation leads to pj,σj(k) ≤ pj,σj(k+1) for
all k = 1, . . . , N − 1 and j = 1, 2. The permutation minimizing Eq. (6.50) is then
given by σ∗ ≡ σ2 ◦ σ−1

1 (Rabin et al., 2012), that is, one has

d
(α)
W (µ1, µ2)α = 1

N

N∑

j=1
|p1,j − p2,σ∗(j)|α . (6.51)

Hence, the probabilities p1,j and p2,σ∗(j) are assigned to each other by the quantifier
(6.51). Contrary to the general expression requiring O(N5/2 log(N)

)
operations,

the one-dimensional case can be computed by means of a fast sorting algorithm
which only needs O(N log(N)

)
operations (Rabin et al., 2012).

Now, this quantifier shall be employed to estimate the quality of an indirect
measurement of an observable A = ∑NA

j=1
∑nj
k=1 aj |φjk〉〈φjk| (nj ≥ 1 for all j)

on a finite-dimensional Hilbert space. Assuming that a nondegenerate pointer
observable B = ∑NA

j=1 bj |Φj〉〈Φj | on the probe is to be measured in order to extract
information on the observable A , the quantifier thus determines the proximity of
the probability distributions (cf. Eqs. (6.12) and (6.13))

p1,j ≡ TrO{EA({aj})ρO} , (6.52)
p2,j ≡ TrP

{
EB({bj})ρ̃P

}
, (6.53)

where ρ̃P refers to some probe state. Clearly, if the probe observable B is part of a
five-tuple 〈HP , B, ρP ,ΥU , id〉 defining a premeasurement of the operator A where

16Given a permutation σ ∈ SN , a permutation matrix is defined as the matrix whose entries
are given by πjk = δjσ(k) .
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the state transformation ΥU is induced by a unitary U generated by a Hamilton
operator H, then the probe state (cf. Eq. (6.11))

ρ̃P = TrO{UρO ⊗ ρPU †} (6.54)

leads to perfectly correlated probability distributions {p1,j} and {p2,j} and, there-
fore, a vanishing Wasserstein distance (6.51). As no requirements on the state
transformation needs to be made to employ this quantifier, it is thus possible to
study not only the interesting question how the Wasserstein distance changes if
the initial state ρP is perturbed but also the influence of imperfect unitary state
transformations, leading to final probes states different from Eq. (6.54). A natural
approach to study the impact of an imperfect state transformation is given by an-
alyzing the effect of perturbations of the Hamilton operator H that generates the
unitary U . That is, instead of the unitary U = exp[iH] which characterizes the
ideal state transformation ΥU , one considers transformations ΥU ′ associated with
the unitary U ′ = exp[iH ′] . A convenient choice for the Hermitian operator H ′ is
given by H ′ = H + H̃ , so that the Hermitian operator H̃ can be interpreted as a
perturbation of the ideal generator H .

Figure 6.3 shows the normalized Wasserstein 1-distance

d̃W ({p1,j}, {p2,j}) ≡
1
2

NA∑

j=1
|p1,j − p2,σ∗(j)| (6.55)

of the probability distributions {p1,j} and {p2,j} for final states ρ̃P (cf. Eq. (6.54))
obtained for randomly sampled initial probe states ρ′P (see Fig. 6.3 (b)& (d)) as
well as randomly drawn perturbations H̃ (see Fig. 6.3 (a)& (c)) of the generator
of the perfectly correlating unitary (6.10) (see also Appendix J). More specifically,
the states as well as the Hamilton operators are randomly generated with respect
to the Haar measure. The presented data corresponds to a randomly drawn state
ρO and an arbitrary but fixed nondegenerate object observable A and an associated
five-tuple 〈HP , B, ρP ,ΥU , id〉 for each of the different Hilbert spaces. It is, how-
ever, worth stressing that the displayed pattern has been reproduced for different
choices of the object observable and a premeasurement, thus representing a some-
how generic behavior. To visualize the effect of an improper preparation of the
initial state or the unitary state transformation, the Wasserstein 1-distance (6.55)
has been plotted in Fig. 6.3 as a function of the deviation of the sampled initial
states ρ′P to the ideal state ρP in terms of the trace distance (cf. Eq. (2.40)) and,
similarly, for the Hermitian generators H ′. Moreover, a two-dimensional binning
has been used to represent the 2.5× 105 ×NA sampled configurations.

As shown in Figs. 6.3 (a)& (c), the proximity of the two probability distribu-
tions is only weakly disturbed by small perturbations of the ideal generator so
that one may conclude that a premeasurement is rather stable with respect to
the corresponding imperfection. Surprisingly, the influence of a perturbation of
the generator on the proximity of the probability distributions (6.52) and (6.53)
may also be small for large values of the trace distance and is generically even
smaller for increasing dimension of the Hilbert space. On the contrary, an im-
perfect preparation of the initial probe state leads to large dissimilarities of the
probability distributions which persist independent of the dimension. It is worth
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Figure 6.3 – Plot of the Wasserstein 1-distance d̃W ({p1,j}, {p2,j}) (cf. Eq. (6.55))
as a function of the deviations from the five-tuple 〈HP , B, ρP ,ΥU , id〉 defining a
premeasurement of an arbitrary but fixed object observable A . Here, the ideal
state transformation ΥU is generated by the unitary extending Eq. (6.10). The
proximity of the distributions as a function of the trace distance (cf. Eq. (2.40))
between randomly sampled initial probe states ρ′P and the ideal state ρP is shown
for different Hilbert spaces of the object in (b)& (d). On the contrary, the effect of
an imperfect generation of the ideal unitary state transformation ΥU is depicted in
(a)& (c) where randomly drawn perturbations H̃ of the generator H of the ideal
unitary U (6.10) are considered leading to unitaries U ′ = exp[iH ′] withH ′ ≡ H+H̃ .
For all plots a two-dimensional binning has been used to represent the 2.5×105×NA
sampled states and Hamiltonians, respectively, which are randomly drawn with
respect to the Haar measure.

pointing out that the Wasserstein 1-distance as a function of the trace distance for
two-level systems shows an interesting behavior (cf. Fig. 6.3 (b)). Note that the
proximity of the distributions obtained for initial states with unit trace distance is
easily understood as these states are almost orthogonal to the ideal initial state ρP
and should, therefore, work as initial states for perfect information transmission
by construction of the unitary dynamics (cf. Eq. (J.9)), too. However, the ob-
served sharp bounds as well as the apparent lack of symmetry of the Wasserstein
1-distance with respect to DT (ρP , ρ′P ) is surprising and deserves further attention
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in the future. So far no explanation for this behavior can be given which thus
remains a challenging problem for future studies.

Another interesting task would be to establish a relation quantifying the in-
formation gain for the present approach and the thereby caused disturbance due
to the indirect measurement as has already been tried for entropic quantifiers.
Even though the Wasserstein 1-distance is closely related to Kolmogorov distance,
which suggest the use of the trace distance in order to quantify the disturbance
(cf. Eq. (2.43)), it was not possible to establish such a relation. Nonetheless, the
Wasserstein 1-distance represents a promising tool to approach the question con-
cerning what kind of information on an object system can be extracted by means
of measuring a quantum probe as, contrary to the deployment of entropic quanti-
fiers, no limitations are imposed regarding the (unitary) state transformation. So
far this approach is still in its infancy and far-reaching further studies need to be
performed. Besides the previously mentioned open problems, it might be worth
studying which interaction yields the most reliable and stable information trans-
mission for a given observable on the object system. Moreover, the Wasserstein
1-distance can be used to distinguish the role of interactions for which the object
observable defines a constant of motion. This question is particularly interesting
since there is numerical evidence17 that the perfectly correlating unitary (6.10) is
also generated by a Hermitian operator H that commutes with the target observ-
able on the object system. Future studies will hopefully provide answers to these
questions.

6.3 Nondissipative information extraction

In the preceding sections, the information gathered by an open system on its envi-
ronment was determined on the basis of the measurement statistics of an observable
at an arbitrary but fixed instant of time. In particular, the time evolution of the
outcome statistics has thus not been considered. Due to the findings regarding non-
local memory effects (cf. Sec. 5.2), it is, however, clear that the dynamics of the
probability measures associated with some observables may also contain signatures
of environmental properties. Clearly, as has been argued in Sec. 5.2, the squeezing
factor of two-mode Gaussian states can, for example, be extracted by determining
the probability measures associated with different observables, characterizing the
nonlocal coherences, for (at least) three distinguished instants of time. Besides
looking at the measurement statistics of observables on the open quantum system
for different times, the full dynamics may additionally yield information on further
features of the environment, too. Indeed, a first approach providing a particular,
but nonetheless, systematic study of such a strategy is introduced and discussed
in the following.

As shown by Petersen (2014a,b) for infinite and two-dimensional(!) object
17Numerical testing of the properties of the one-parameter group of unitaries, which are char-

acterized by U(t) = exp[itH] where H refers to the generator of the randomly drawn perfectly
correlating unitary U (see Eq. (6.10)), i.e. one has U = exp[iH] , has shown that the object ob-
servable indeed defines a constant of motion. However, a rigorous proof of this fact, valid for all
unitaries U on arbitrary Hilbert spaces, could not been derived so far.
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systems, the dynamics of an infinite-dimensional quantum system that is equiva-
lent18 to the one-dimensional harmonic oscillator provides information on an object
system when a linear interaction, leading to pure dephasing, is adjusted prop-
erly. More specifically, the time-averaged expectation value of an observable of
the infinite-dimensional probe converges towards the first moment of a traceless
Hermitian operator on the quantum object defining a constant of motion. Such
a behavior is similar to the ergodic properties of stationary stochastic processes,
stating that the time-average of such stochastic processes with appropriate two-
time correlation functions converges to deterministic variables which are given by
the respective means of the processes (Gardiner, 2004) (see below for more details).

The strategy is introduced and demonstrated in the present thesis for object
systems that are described by arbitrary finite-dimensional Hilbert spaces, thus
extending the study of Petersen (2014b) significantly. In addition, further details
concerning the physical requirements of this approach are provided in the sequel.
Since the quantum object may thus have arbitrary dimensions and any traceless
constant of motion can be addressed, this strategy provides an interesting and
powerful tool to gain information about a complex quantum system.

To begin with, one first recalls that for an object with N -dimensional Hilbert
space HO any Hamiltonian HO may be written as (cf. Eq. (2.5))

HO = αH,01N +
N2−1∑

j=1
αH,j σj , (6.56)

employing the fundamental representation of the special unitary group which was
introduced in Sec. 2.2. Note that the coefficients are given by αH,0 = (1/N)Tr{HO}
as well as αH,j =

√
(N − 1)/(2N)Tr{HOσj} . Without loss of generality, one may

also assume that HO is traceless as the contribution proportional to the unit op-
erator solely adjusts the overall energy scale, leading to a global phase for the
dynamics which cannot be observed. Grouping the coefficients αH,j and the repre-
sentatives of the SU(N)-generators σj into vectors ~αH ≡ (αH,1, . . . , αH,N2−1)T and
Σ̂ ≡ (σ1, . . . , σN2−1)T , respectively, Eq. (6.56) is conveniently represented as

HO = ~αTHΣ̂ . (6.57)

Due to the sketched description of the probing strategy, it is clear that the dy-
namics for this probing scheme is conveniently described in terms of the Heisenberg
picture. Moreover, employing the SU(N)-representation and linearity, it obviously
suffices to determine the dynamics of the operator basis Σ̂ in order to deduce the
time evolution of any operator on the object system. Because the interaction con-
sidered later on is assumed to be linear in these operators, too, the time evolution
of the operator basis is indeed sufficient to characterize the dynamics of the N -
dimensional system. Note that the Heisenberg equations of the basis elements with
respect to the Hamiltonian HO can be summarized as (see Appendix K)

d
dt Σ̂(t) = −i[Σ̂(t), HO] = −2Θ(~αH)Σ̂(t) , (6.58)

18The free evolution of the probe must be characterized by a Hamiltonian that is quadratic
in the canonical operators, i.e. HP = (q̂, p̂)R(q̂, p̂)T , where the associated 2 × 2-matrix R is
strictly positive. Such matrices are shown to be related to the one-dimensional quantum harmonic
oscillator, for which one has R = 12, using symplectic transformations (see below).
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since the generators do not explicitly depend on time (Breuer and Petruccione,
2002). Clearly, the commutator is understood component-by-component and the
entries of the (N2− 1)× (N2− 1)-matrix Θ(~αH) are determined by

Θ(~αH)jk =
∑

l

fjklαH,l , (6.59)

where fjkl refers to the structure constants of the representation of SU(N) (cf.
Sec. 2.2) which characterizes the commutation relation of the SU(N)-generators,
i.e. (see Eq. (2.6))

[σj , σk] = 2i
N2−1∑

l=1
fjkl σl . (6.60)

Thus, Θ defines a map from vectors in RN
2−1 to the (N2− 1) × (N2− 1)-matrix

with entries in R , i.e.

Θ : ~x ∈ RN2−1 7→
((∑

l

fjklxl
)
jk

)
∈ R(N2−1)×(N2−1) , (6.61)

that encodes the commutation relation of the SU(N)-generators. Note that this
map obeys Θ(~α)~α′ = −Θ(~α′)~α for any vectors ~α, ~α′ ∈ RN

2−1 as the structure
constants fjkl defines a completely antisymmetric tensor. As a consequence, one
thus has Θ(~α)~α = 0 for any ~α .

The Heisenberg equations of motion for the canonical operators X̂ = (q̂, p̂)T
(see Eqs. (2.92)) may also be represented as a linear differential equation (and
similarly for any number of modes) if the dynamics is generated by a Hamiltonian
that is quadratic in the canonical operators, i.e., it can be written as HP = X̂TRX̂
for a real-valued and symmetric 2× 2-matrix R . Indeed, one deduces the equation
(see Appendix K)

d
dtX̂(t) = −i[X̂(t), HP ] = 2Ω2RX̂(t) , (6.62)

where Ω2 refers to the symplectic form introduced in Sec. 2.5.1 (see Eq. (2.96)).
Clearly, since 2Ω2R defines an element of the Lie algebra sp(2,R) (see Appendix A),
the Hamiltonian HP thus generates a symplectic transformation of the canonical
operators which, of course, preserves the canonical commutations relation.

Now, suppose that information about the expectation value of some observable
A = ~αTAΣ̂ on HO shall be obtained by measuring an operator B = ~β TB X̂ on the
quantum probe (cf. Fig. 6.4). By definition of the representatives of the SU(N)-
generators, the observable A is thus traceless and B represents a linear combination
of the canonical operators q̂ and p̂ . Assuming a linear19 coupling between the
quantum probe and the complex system, i.e. the interaction is represented by
the interaction Hamiltonian HI = ~αTI Σ̂⊗ ~β TI X̂ for arbitrary20 real-valued vectors

19Note that many important models in the theory of open quantum systems are based on linear
interactions between the open system and its environment (cf. the models considered in Secs. 3.3.2
and 6.4.2).

20Note that the vectors ~αI and ~βI may also be complex-valued if the matrix with entries
(~αI ~β TI )jk is still real-valued in order to warrant Hermiticity of the interaction Hamiltonian.



6.3. Nondissipative information extraction 169

Figure 6.4 – Illustration of the setup for a dynamical probe trying to estimate
the expectation value of an observable A on the object quantum system HO by
recording the evolution of the first moment of an observable B . Indeed, the time-
averaged expectation value converges to 〈A〉ρO

if the interaction HI is appropriately
adjusted (see Eq. (6.81)).

~αI ∈ RN
2−1 and ~βI ∈ R2, the evolution of the two interacting systems is thus

governed by the total Hamiltonian

H = ~αTHΣ̂⊗ 1P + 1O ⊗ X̂TRX̂ + ~αTI Σ̂⊗ ~β TI X̂ . (6.63)

The associated Heisenberg operators Σ̂(t) as well as X̂(t), which are understood
as operators on HO ⊗ HP , are then shown to be characterized by the equations
(see Appendix K)

d
dt Σ̂(t) = −i[Σ̂(t), H] = −2

{
Θ(~αH)Σ̂(t) +Θ(~αI)Σ̂(t)

(~β TI X̂(t)
)}
, (6.64)

d
dtX̂(t) = −i[X̂(t), H] = 2Ω2RX̂(t) +

(
~αTI Σ̂(t)

)
Ω2~βI , (6.65)

which leads to the following evolution equations for the observables A and B due
to linearity:

d
dtA(t)− 2

{
~αTAΘ(~αH)Σ̂(t) + ~αTAΘ(~αI)Σ̂(t)

(
βTI X̂(t)

)}
, (6.66)

d
dtB(t) = 2~β TB Ω2RX̂(t) +

(~β TB Ω2~βI
)(
~αTI Σ̂(t)

)
. (6.67)

One immediately recognizes that A defines a constant of motion if the associated
vector satisfies ~αA ∼ ~αH and ~αA ∼ ~αI as a result of the property of the map Θ
shown before. Assuming that this holds true21, the Heisenberg equation for the
observable on the probe simplifies to

d
dtB(t) = 2~β TB Ω2RX̂(t) + µ

(~β TB Ω2~βI
)
A⊗ 1P , (6.68)

where the parameter µ is determined by ~αA = (1/µ)~αI . One easily deduces that
Eq. (6.68) is solved by

B(t) = 1O ⊗ ~β TB e
2Ω2RtX̂ +

{
µ

∫ t

0
ds ~β TB e2Ω2R(t−s)Ω2~βI

}
A⊗ 1P (6.69)

21The solution of the Heisenberg equation (6.65) for an observable A that does not de-
fine a constant of motion of the free evolution but is still proportional to the interaction,
i.e. one has ~αA ∼ ~αI but ~αA � ~αH , is found to be given by X̂(t) = e2Ω2Rt1O ⊗ X̂ +∫ T

0 ds e2Ω2R(t−s)Ω2~βI
(
~αTAe

−2Θ(~αH)sΣ̂
)
⊗ 1P . The subsequent treatment developed for the choice

~αA ∼ ~αH can, however, not be applied in this case.
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if the inverse of R exists which shall be denoted by R−1. The solution may also be
written as

B(t) = 1O ⊗ ~β TB e
2Ω2RtX̂ + 1

2µ
~β TB
{
e2Ω2Rt − 12

}
R−1~βIA⊗ 1P (6.70)

since one has Ω−1
2 = −Ω2 so that one obtains

∫ t

0
ds e2Ω2R(t−s) = 1

2 ·
{
12 − e2Ω2Rt

}
R−1Ω2 . (6.71)

The following lemma shows that the matrix exponential exp[2Ω2Rt] is upper
bounded for all t with respect to the operator norm if the symmetric matrix R is
not only invertible but also strictly positive, i.e. R > 0:

Lemma 6.2. For any strictly positive matrix X ∈ M2n(C) , i.e. X > 0 , the
associated symplectic matrix X ′t ≡ exp[2tΩnX] for arbitrary t ∈ R obeys

‖X ′t‖2 ≤
√
λmax(X)
λmin(X) . (6.72)

Here, λmin(X) and λmax(X) refer to the smallest and largest eigenvalue of X,
respectively, and ‖·‖2 denotes the spectral norm on C2n, i.e.,

‖X ′t‖2 ≡ max
~y∈C2n

‖X ′t~y‖
‖~y‖ , (6.73)

where ‖·‖ refers to the norm induced by the standard scalar product (·, ·) on the
Hilbert space C2n.

Proof. Let ~y ∈ C2n be given and define ~yt ≡ X ′t~y where X ′t ≡ exp[2tΩnX] is
associated with a strictly positive 2 × 2-matrix X. One easily shows that the
derivative of the scalar product (~yt, X~yt) with respect to the parameter t vanishes,
implying that

(~yt, X~yt) = (~y,X~y) (6.74)

holds for all t . Using this and the fact that the operators X − λmin(X)12n and
λmax(X)12n −X are positive by definition, one deduces the relation

λmin(X)‖~yt‖2 ≤ (~yt, X~yt) ≤ λmax(X)‖~y‖2 , (6.75)

which leads to

λmin(X) · ‖X ′t‖22 ≤ λmax(X) , (6.76)

when taking the supremum over all vectors ~y ∈ C2n due to continuity of the square.
Clearly, as X > 0 is equivalent to λmin(X) > 0, the inequality (6.76) may then be
written as

‖X ′t‖2 ≤
√
λmax(X)
λmin(X) , (6.77)

which is exactly Eq. (6.72).
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Employing lemma 6.2, the operator norm of the time-averaged operator (6.71)
for a strictly positive 2× 2-matrix R can thus be bounded as

1
t

∥∥∥
∫ t

0
ds e2Ω2Rt

∥∥∥
2
≤ 1
t

{‖(2Ω2R)−1e2Ω2Rt‖2 + ‖(2Ω2R)−1
12‖2

}

≤ 1
2t‖R

−1Ω2‖2 ·
{‖e2Ω2Rt‖2 + 1

}

≤ 1
2t‖R

−1Ω2‖2 ·
{√

λmax(R)/λmin(R) + 1
}
, (6.78)

using, in addition, the triangle inequality and the fact that the operator norm is
submultiplicative. As a consequence, the operator norm of the time-averaged op-
erator (6.71) can be made arbitrarily small for sufficiently large times t . Note that
this result is independent of the initial time of the time-averaging since lemma 6.2
holds for any choices of the parameter t . More specifically, for 1

∆t
∫∆t+t′
t′ ds e2Ω2Rs

where t′ ∈ R is arbitrary, one similarly deduces

1
∆t
∥∥∥
∫ ∆t+t′

t′
ds e2Ω2Rs

∥∥∥
2
≤ 1

∆t‖R
−1Ω2‖2 ·

√
λmax(R)/λmin(R) , (6.79)

showing that the operator norm can also be made arbitrarily small for nonzero t′ if
the interval ∆t is sufficiently large. Choosing t′ = (−1/2)∆t = −t , one obtains the
operator 1

2t
∫ t
−t ds e2Ω2Rs which resembles the averaged random variable associated

with a stationary stochastic process that is studied with respect to its ergodic
properties (see, e.g., Gardiner (2004) and below for more details).

It is worth stressing that strict positivity of the symmetric square matrix R is
essential for this result. For an invertible but indefinite matrix the operator norm
of the associated time-averaged exponential does not converge to zero. As shown
by Moshinsky and Winternitz (1980), all Hamiltonians of a one-dimensional parti-
cle that are quadratic in the canonical operators with strictly positive symmetric
matrix R are related to the one-dimensional quantum harmonic oscillator by sym-
plectic transformations. More specifically, the Lie algebra sp(2,R) (which is given
by elements of the kind Ω2R, see Appendix A) has three conjugacy classes22 with
respect to the symplectic group Sp(2,R) which correspond to the repulsive har-
monic oscillator, the free particle and the harmonic oscillator, respectively. As the
elements of the Lie algebra corresponding to strictly positive matrices R are shown
to be part of the latter class (see Moshinsky and Quesne (1971) and Moshinsky and
Winternitz (1980)), any such 2× 2-matrix can be represented as R = λΩ2SSTΩT

2
for some symplectic matrix S ∈ Sp(2,R) where the constant λ is determined by
λ = det(R) . This follows from the fact that the inverse of a symplectic matrix
S is given by S−1 = −Ω2STΩ2 (see Appendix A) and the harmonic oscillator is
characterized by Rosc ∼ 12 so that one easily deduces the above expression for
ΩT

2 SΩ2RoscS−1 using the relation Ω−1
2 = −Ω2 = ΩT

2 .
Now, if R is assumed to be strictly positive, the time-averaged expectation

value of B for an initial state ρOP of the quantum object and the probe

〈B(t)〉ρOP ≡
1
t

∫ t

0
ds 〈B(s)〉ρOP , (6.80)

22Note that two elements a, b of a group G are called conjugate if and only if there exists an
element g ∈ G such that gag−1 = b holds. The conjugacy class of a contains all conjugates of this
group element, i.e., it is defined as ConjG(a) = {b | ∃ g ∈ G s.t. b = gag−1} (Bosch, 2009).
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where 〈q̂k〉ρP and 〈p̂k〉ρP with ρP ≡ TrO{ρOP } are assumed to exist, converges to
the first moment of the observable A in the reduced state ρO = TrP {ρOP } on the
object. That is, for any ε > 0 and any total state ρOP with marginal ρP having
finite expectation values for the position and momentum operator, there exists a
time t > 0 such that the time-averaged expectation values 〈B(t)〉ρOP satisfies

∣∣ 〈B(t)〉ρOP − τ〈A〉ρO
∣∣ < ε , (6.81)

where one defines τ = −1
2µ
(~β TBR−1~βI

)
. Indeed, one deduces the inequality

∣∣ 〈B(t)〉ρOP − τ〈A〉ρO
∣∣ ≤

2∑

j=1

∣∣∣
(
~β TB

1
t

∫ t

0
ds e2Ω2Rs

)
j

∣∣∣

·
{∣∣〈X̂j〉ρP

∣∣+
∣∣1
2
(
R−1~βI

)
j
〈A〉ρO

∣∣
}

≤ max
j

∣∣∣
(
~β TB

1
t

∫ t

0
ds e2Ω2Rs

)
j

∣∣∣ (6.82)

·
2∑

k=1

{∣∣〈X̂k〉ρP
∣∣+

∣∣1
2
(
R−1~βI

)
k
〈A〉ρO

∣∣
}
,

where the first factor can be related to the maximum absolute row sum norm23

‖A‖∞ = maxj
∑n
k=1 |ajk| of an m×n-matrix A = (ajk) (Horn and Johnson, 1990).

It thus follows that

max
j

∣∣∣
(
~β TB

1
t

∫ t

0
ds e2Ω2Rs

)
j

∣∣∣ = max
j

∣∣∣
(
−1
t

∫ −t

0
ds e2Ω2Rs~βB

)
j

∣∣∣

≤
∥∥∥−1

t

∫ −t

0
ds e2Ω2Rs

∥∥∥
∞
· ‖~βB‖∞ , (6.83)

employing the submultiplicativity of the norm ‖·‖∞ . Here, ‖~βB‖∞ refers to the
supremum norm on C2. As all norms on finite-dimensional vector spaces are equiv-
alent (see, e.g., Rudin (1991)), the maximum absolute row sum norm can finally
be related to the operator norm ‖·‖2 studied before. That is, for any matrix
X ∈M2(C) there exists a positive constant r such that one has ‖X‖∞ ≤ r · ‖X‖2 .
Applying this to the right-hand side of Eq. (6.83), one then obtains the following
upper bound for Eq. (6.82):

∣∣ 〈B(t)〉ρOP − τ〈A〉ρO
∣∣ ≤ r

2t‖
~βB‖∞‖R−1Ω2‖2 ·

{‖e2Ω2R(−t)‖2 + 1
}

·
2∑

k=1

{∣∣〈X̂k〉ρP
∣∣+

∣∣1
2
(
R−1~βI

)
k
〈A〉ρO

∣∣} . (6.84)

Obviously, the right-hand side can be made smaller than ε > 0 for sufficiently large
time t as the first moments 〈X̂k〉ρP are assumed to be finite.

As one immediately recognizes, this result is independent of the initial total
state, solely requiring that the marginal state for the probe system has a well-
defined position and momentum. The larger these expectation values, the longer

23This norm should not be interchanged with the operator norm defined via the Schatten p-norm
(see Eq. (2.18) in Sec. 2.3).
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the interval must be over which one must average to approximate the mean of
observable on the object closely. Note that, for factorizing total states ρOP =
ρO ⊗ ρP leading to a dynamical process Φ for the evolution of the probe due
to the interaction with the finite-dimensional quantum object, the time-averaged
expectation value (6.80) may be written as

〈B(t)〉ρO⊗ρP = 1
t

∫ t

0
ds

2∑

k=1
βB,k〈X̂k〉Φs,0(ρP) , (6.85)

due to homogeneity and continuity of the trace. Hence, the time evolution of
the probe’s mean position and momentum provide the complete information to
determine the expectation value of the object observable A on the quantum object.
The pure dephasing dynamics of the probe, resulting from the Hamiltonian (6.63),
may thus be used to estimate any traceless constant of motion of the object system
independent of its initial state.

It is worth emphasizing that no assumption on the strength of the interaction
has to be made, i.e., the vectors ~αI and ~βI may have arbitrary norms. Due to this,
the present strategy can be seen as the opposite limit of the standard approach
used to describe indirect measurements which assumes a strong interaction between
object and probe (see Eq. (6.1)). The speed of convergence depends, however, on
the energy scale of the quadratic Hamiltonian. That is, the larger the eigenvalues
of positive matrix R the faster the convergence is. To illustrate this effect, one
considers again the dynamics of the particular spin-boson model studied in Ch. 5.
The total Hamiltonian is thus given by

H = ε σ3 ⊗ 1P + 12 ⊗ ω(q̂2 + p̂2) + g σ3 ⊗ q̂ (6.86)

for some real-valued and positive parameters ε, ω and g , which clearly describes a
Hamiltonian of the kind given by Eq. (6.63). Indeed, the Hamiltonian H (6.86) is
given by Eq. (6.63) for ~αH = (0, 0, ε)T , R = ω12 , ~αI = (0, 0, g)T and ~βI = (1, 0)T as
one easily verifies. According to the above strategy, the time-averaged expectation
value of an observable B = ~βTBX̂ in a state ρP converges to τ〈εσ3〉ρO where τ
is given by τ =

(−g/(2ω)
) · βB,1 . Figure 6.5 shows the dynamics of the time-

averaged expectation value of B = q̂ in a thermal state ρP = ρth (see Eq. (2.125))
for different energy scales of the harmonic oscillator which are characterized by
the frequency ω . Obviously, the larger this parameter the faster the time-averaged
expectation value converges to multiples of the mean energy of the object.

Note that such an effect is closely related to the ergodic properties of stationary
stochastic processes with appropriately decaying two-point correlation functions.
In fact, let Y(t) denote such a stochastic process (see Sec. 4.1), the associated time-
averaged random variable Ȳ(t) ≡ (1/2t)

∫ t
−t ds Y(t) is shown to have a first moment

identical to that of Y(t) and its variance tends to zero in the limit of t→∞ (see,
e.g., Gardiner (2004)). Thus, limt→∞ Ȳ(t) represents a deterministic variable which
equals 〈Y(t)〉 for any t (due to stationarity), just as the time-averaged observable
〈B(t)〉ρOP converges to the expectation value of the object observable in the limit
of infinite times t . In analogy to the result for stationary process, it thus suffice to
determine the mean of the observable B at successive times in order to reconstruct
the first moment of a Hermitian operator on the object by means of time-averaging.
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Figure 6.5 – The evolution of the time-averaged expectation value 〈q̂(t)〉ρth
in units

of the object mean value 〈εσ3〉ρO
with respect to a thermal state with arbitrary

temperature where the dynamics is induced by the Hamiltonian (6.86) for ω = 1
(a) and ω = 10 (b). Since the coupling strength g is set to unity, the parameter τ
is given by −1/(2ω) to which 〈q̂(t)〉ρth

obviously converges.

To employ this probing strategy for complex quantum system, full knowledge
of the interaction is clearly required. That is, besides being able to measure an
arbitrary but fixed observable on the probe at various times, one needs to know
the linear interaction exactly in order to determine the precise expectation value
of the traceless operator on the object. However, these requirements should not
represent a major challenge for an experimental implementation of this strategy.
A truly challenging task for any experimental use of this strategy is clearly given
by the fact that one needs to perform frequent and close-by measurements of the
observable B in order to determine the time-averaged mean from experimental
data reliably. In particular, one has to prepare the quantum system again and
again so that the observable on the probe system can be measured at successive
times. An appropriate, close-by spacing of the instants of time where measure-
ments are performed is especially important due to the highly oscillating behavior
of the expectation values which one typically observes as the fast drop of the curves
displayed in Fig. 6.5 and their oscillations shows. But, on the basis of the so far
rapidly developing experimental techniques, it seems likely to assume that this task
will be manageable in the nearby future.

6.4 Perturbative addressing of correlation functions

A second approach to gain information about a complex quantum system employ-
ing the dynamics of a quantum probe relies on the measurement of a coupled sensor
system with variable energy splitting. In fact, the method which is presented in
the following is exactly based on the idea that properties of a complex system
are imprinted into the dynamics of a quantum probe to which it is brought into
contact. To reveal the encoded information, it suffices to consider the outcome
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statistics
pt(α, β) ≡ Tr{Mβ ⊗ 1OU(t)ρP (α)⊗ ρOU(t)†} , (6.87)

of the measurement of a POVM {Mβ} on the probe for different times and, addi-
tionally, several energy splittings of the free Hamiltonian, characterizing the quan-
tum probe, which influences the unitary evolution. Clearly, the modulation of the
free Hamiltonian of the probe may be interpreted as resulting from a control field
such as a magnetic field that changes the Zeemann splittings of a particle with
nonzero magnetic moment. To obtain the outcome’s probability distribution, one
must obviously assume that the probe can be brought into contact with the com-
plex system for some period of time and be subsequently measured. Moreover, one
supposes that this procedure can be repeated frequently – also for different energy
splittings.

By varying the splitting, it is possible to separate different contributions of
the measurement statistics (6.87) and, thus, to address the associated information
about the complex system as has been first observed by Pollock et al. (2015) for
two-level probes. Indeed, controlling the probe’s energy splitting by a parameter
λ , the probability distribution of the outcomes may be expanded in a power series
with respect to 1/λ , where the leading order terms are unambiguously determined
by the preparation of the probe state and the measurement operators. That is, one
may control the accessed information on the complex system by properly choosing
the initial probe state ρP (α), parametrized by α , and the applied measurement
for a given interaction. This can be nicely illustrated by looking at the resulting
expansion of pt(α, β) for a two-level probe with energy splitting λε . As shown by
Pollock et al. (2015), disregarding several typos, the probability distribution (6.87)
is expanded as

pt(α, β) = qα,β
2 + a∗0a1b0b

∗
1ζ

(1)(λ)

+ 1
λε

{
a0a
∗
1〈σ3〉β ζ(1)(λ) + b∗0b1

1∑

k=0
(−1)k|ak|2ξ(1)

k (λ)
}

− 1
(λε)2

{1
2〈σ3〉β ·

1∑

k=0
(−1)k|ak|2ξ(2)

k (λ)

− b∗0b1
(
a∗0a1ζ

(2)
0 + a0a

∗
1ζ

(2)
1
)}

+ c.c.

+O(λ−3) (6.88)

for a pure probe state ρP (α) ≡ |α〉〈α| and a projective measurement Mβ ≡ |β〉〈β|
where ak and bk refer to the overlap of |α〉 and |β〉 , respectively, with eigen-
states |πk〉 of the free Hamiltonian of the probe. Hence, one has ak ≡ 〈α|πk〉
and bk ≡ 〈β|πk〉 and, furthermore, the definitions qα,β = |a∗0b0|2 + |a∗1b1|2 and
〈σ3〉β = |b0|2 − |b1|2 are employed. The precise form of the functions ζ(j)(λ) and
ξ

(j)
k (λ) can be found at the end of the subsequent section (see Eqs. (6.112)–(6.117)).
Note that they depend on the free Hamiltonian of the complex system as well as
the used interaction. Moreover, it is worth noticing that the energy splitting must
be sufficiently large in comparison to the typical energies of the object influencing
the probe’s dynamics due to the interaction in order to obtain such an expansion
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of the probability (6.87) in 1/λ . As a consequence, the concerned probabilities
pt(α, β) are typically quite small.

Now, if, for example, neither the preparation nor the measurement of the probe
are made in the energy eigenbasis {|πk〉} of the probe, then the coefficients of the
terms in the first line of Eq. (6.88) are clearly nonzero and, thus, define the leading
order contribution with respect to the energy splitting characterized by λ . On
the contrary, when one prepares and measures an eigenstate of the probe’s free
Hamiltonian, i.e., one chooses |α〉 = |πk〉 and |β〉 = |πk′〉 for some indices k and k′, it
is easily observed that only terms of the probability (6.88) survive that are in second
order with respect to 1/λ . The leading order contribution obtained for different
preparations of ρP (α) and choices of the ensuing measurement is summarized in
Tab. 6.1. In general, any of these terms represents a damped and oscillatory
function of the scaling parameter as is easily seen by looking at Eqs. (6.112)–(6.117)
(see the end of Sec. 6.4.1), i.e., one has

pt(α, β) ' 1
λn
{
a(t) + b(t) cos

(
λεt+ φ(t)

)}
(6.89)

in leading order for sufficiently large energy splitting (cf. Eq. (6.118)). Different
information on the complex system, such as the system’s spectrum as well as its
autocorrelation time and whether or not it is in thermal equilibrium, can then be
deduced from the time evolution of the central value a(t), the amplitudes b(t) and
the phase φ(t) as argued by Pollock et al. (2015). For example, if the central value
of the leading contribution is independent of time for the configuration |α〉 = |πk〉
and |β〉 6= |π0〉, |π1〉 (cf. Tab. (6.2)) and an interaction that is not diagonal in the
probes energy eigenbasis, then one can conclude that the state ρO of the complex
system is in thermal equilibrium.

Summarizing, the method requires to determine the probability (6.87) of a cer-
tain measurement outcome for a specific initial state of the probe as a function
of the interaction time as well as the probe’s energy splitting which finally allows
to deduce the leading order contribution of the probability with respect to 1/λ .
A Fourier decomposition of the leading term then yields information on the ob-
ject system. It is worth emphasizing that different properties can be accessed by
changing the eigenbasis of the probe’s Hamiltonian. The method allows to gain
information by essentially post-processing the measurement statistics obtained for
a given initial probe state and some measurement as, e.g., done in the full counting

|β〉 6= |π0〉, |π1〉 |β〉 = |πj〉

|α〉 6= |π0〉, |π1〉 Re
(
a∗0a1b0b∗1ζ

(0)(λ)
)

Re
(
(−1)ja0a∗1ζ

(1)(λ)
)
/(λε)

|α〉 = |πk〉 Re
(
(−1)kb0b∗1ξ

(1)
k (λ)

)
/(λε) Re

(
(−1)j+k+1ξ

(2)
k (λ)

)
/(λε)2

Table 6.1 – The leading order terms of the probability pt(α, β) with respect to 1/λ
given in Eq. (6.88) for different choices of the preparation (|α〉) and the measurement
(|β〉) where possible constant contributions qα,β have been omitted (cf. Tab. 1 in
Pollock et al. (2015)). The damped oscillatory λ-dependence of these terms is
apparent from the definition of the involved quantities (see Eqs. (6.112)–(6.117)).
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statistics (Guarnieri et al., 2016; Esposito et al., 2009). Note that the method can
also be seen as a generalized spectroscopic tool which is different from process to-
mography as information on quantities of the complex system is gained by varying
the probe’s energy scale for a fixed initial state and measurement.

Clearly, this strategy can similarly be extended to arbitrary measurements and
quantum probes as well as multiple selective measurements. As a result of the
latter, one may ultimately address higher-order contributions with respect to the
inverse scaling 1/λ of the energy splitting, thus extending the work by Pollock
et al. (2015) who solely considered the above setup. In the following section, the
generalization to NP -dimensional probes and arbitrary measurements is derived
as a result of this thesis which eventually provides the basis for an extension to
multiple measurements. From the derived general expressions, the terms for two-
level probes are deduced (cf. Eqs. (6.88) and (6.112)–(6.117)) where some typos in
the work by Pollock et al. (2015) are eventually identified. The prospects of the
present scheme are finally illustrated by showing how the superfluid excitations
in the Bose-Hubbard model can be obtained using this method which will be
contrasted with a strategy suggested by Cosco et al. (2015) (see Sec. 6.4.2).

It must be stressed once more that, besides control over the interaction, the
quantum probe’s initial state and the performed measurement, the energy split-
ting needs to be sufficiently large so that the interaction of the probe with the
quantum object only leads to virtual excitations of the former. Due to this, the
considered transition probabilities (6.87) are typically quite small. Even though no
assumptions on the object’s state are required, the strategy is thus not completely
universal, i.e., it may not be applied to any complex quantum system and inter-
action blindly, and requires a high resolution of the transition probabilities. As
a consequence of the off-resonant coupling, very sensitive measuring devices and
many repetitions are thus needed, imposing challenging requirements on a use of
this strategy in experiments.

6.4.1 The method for NP -dimensional quantum probes

The setup of this method is given by a quantum probe with free, nondegenerate
Hamiltonian HP , whose spectral decomposition reads

HP = λ
NP−1∑

j=0
εj |πj〉P 〈πj | . (6.90)

The probe is eventually coupled to a complex system – the object with associated
Hamiltonian HO – via an interaction HI . Here, all Hamiltonians are assumed to
be time-independent and λ refers, as before, to a dimensionless constant whose
magnitude controls the splitting of the energy levels. Note that the case NP =∞ ,
i.e., a quantum probe that is characterized by an infinite-dimensional Hilbert space
is not excluded in this approach (see Sec. 6.4.2 for an example). The power ex-
pansion of the probability (6.87) in powers of 1/λ , as stated for two-level probes
(cf. Eq. (6.88)), essentially relies on a Dyson expansion of the unitary propagator
in the interaction picture which is defined with respect to the contributions of the
interaction Hamiltonian that are not diagonal in the probe’s energy eigenbasis.
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Hence, the representation of the probability is exact for any pure dephasing dy-
namics. Expanding the total Hamiltonian H = HP ⊗ 1O + 1P ⊗HO + HI in the
eigenbasis {|πj〉P }, i.e.

H = HP ⊗ 1O +
∑

l

Sl ⊗ Tl

= HP ⊗ 1O +
∑

j

{
|πj〉P 〈πj | ⊗Aj +

∑

k 6=j
|πj〉P 〈πk| ⊗Bjk

}
, (6.91)

where one defines Aj ≡
∑
l〈πj |Sl|πj〉Tl and Bjk ≡

∑
l〈πj |Sl|πk〉Tl with

∑
k 6=j denot-

ing the summation over all indices k different from j , one considers the interaction
picture with respect to the Hamiltonian

H0 ≡
1
λ

[
HP ⊗ 1O +

∑

j

|πj〉P 〈πj | ⊗Aj
]
. (6.92)

Clearly, one has A†j = Aj and B†jk = Bkj as Sk and Tk are Hermitian. The interac-
tion picture representation of the nondiagonal part of the interaction Hamiltonian
H ′I ≡ H − λH0 is then found to be given by

H̃ ′I(t) =
∑

j

∑

k 6=j
eit(εj−εk)|πj〉P 〈πk| ⊗ B̃jk(t) , (6.93)

where the operators B̃jk(t) are defined as

B̃jk(t) = exp [(it/λ)Aj ]Bjk exp [(−it/λ)Ak] . (6.94)

One readily observes that the unitary propagator in the Schrödinger picture
associated with H, i.e. U(t) ≡ exp[−itH], can be written as

U(t) = exp
[
−iλt (H0 + 1

λ
H ′I
)]
, (6.95)

so that the dissipative interaction H ′I can be seen as a perturbation of the free
Hamiltonian H0 which is evolved to an effective time λt . The relative scaling of the
two parts is related to the approach concerning the derivation of a weak coupling
master equation proposed by Davies (1976) (see also Pollock et al. (2015)). By
means of the propagator that corresponds to the rescaled interaction Hamiltonian
(1/λ)H̃ ′I(t), the unitary can finally be represented as

U(t) = e−iλtH0 T← exp
[
−i
∫ λt

0
ds 1

λ
H̃ ′I(s)

]

= e−iλtH0
{
1PO + 1

iλ

∫ λt

0
ds H̃ ′I(s)

− 1
λ2

∫ λt

0
ds
∫ s

0
ds′ H̃ ′I(s)H̃ ′I(s′) +O(λ−3)

}
, (6.96)

where the time-ordered exponential is expanded in a Dyson series in the last line.
This expansion provides the starting point to represent the probability (6.87) asso-
ciated with the outcome β , when measuring a POVM {Mβ} on the probe at time
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t for an initial state ρP (α) ⊗ ρO , as a power series in 1/λ . More precisely, upon
inserting the time-ordered exponential (6.96) into Eq. (6.87), one firstly obtains

pt(α, β) = Tr{Mβ ⊗ 1Oe−iλtH0ρP (α)⊗ ρOeiλtH0} (6.97)

+ 1
iλ

∫ λt

0
dsTr{Mβ ⊗ 1Oe−iλtH0

[
H̃ ′I(s), ρP (α)⊗ ρO

]
eiλtH0} (6.98)

+ 1
λ2

∫ λt

0
ds
∫ λt

0
ds′ Tr{Mβ ⊗ 1Oe−iλtH0

· H̃ ′I(s)ρP (α)⊗ ρOH̃ ′I(s′)eiλtH0} (6.99)

− 1
λ2

∫ λt

0
ds
∫ s

0
ds′ Tr{Mβ ⊗ 1O e−iλtH0

(
H̃ ′I(s)H̃ ′I(s′)ρP (α)⊗ ρO

+ ρP (α)⊗ ρOH̃ ′I(s′)H̃ ′I(s)
)
eiλtH0} (6.100)

+O(λ−3) .

The integrals of the three terms (6.98)–(6.100) may, however, additionally be ex-
panded in a power series with respect to the inverse energy scaling 1/λ in the limit
of large energy splittings in comparison to the typical energies of the object that in-
fluence the dynamics of the probe. As the transition matrix elements 〈πk|ρP (α)|πl〉
and 〈πm|Mβ|πn〉 contained in the different terms (6.98)–(6.100) are yet the same
for all contributions to the respective power series and they, together with the
elements of Eq. (6.97), already cover all possible combinations of transition ma-
trix elements (see below), the zeroth order terms of the three integrals along with
Eq. (6.97) characterize the leading order contributions of the probability pt(α, β)
with respect to 1/λ . It is clear that the leading order contribution to the proba-
bility depends again on the chosen initial probe state ρP (α) and the measurement
{Mβ} as transition matrix elements may be zero for some choices (see Tab. 6.2 for
the leading order dependence of pt(α, β)).

In the following, the lowest order contributions to the integrals in Eqs. (6.98)–
(6.100) are explicitly determined in the previously mentioned limit. For the sake
of clarity, the subscript P will be omitted for the Hilbert space elements and their
duals in the sequel. To begin with, one recalls that the first term, i.e., Eq. (6.97)

〈πn|Mβ|πm〉 6= 0 〈πk|ρP (α)|πl〉 6= 0
k = l k 6= l

m = k ∧ n = l Eqs. (6.97)&(6.100) Eq. (6.97)
m 6= k ∧ n = l Eq. (6.98) Eq. (6.98)
m = k ∧ n 6= l Eq. (6.98) Eq. (6.98)
m,n 6= k, l Eq. (6.99) Eq. (6.99)

Table 6.2 – Overview of the leading order dependence of the probability pt(α, β)
defined in Eq. (6.87). Clearly, the roles of m and n may be interchanged in the
above columns. Note that Eq. (6.97) is independent of λ and t if one sets k = l , so
the leading order term of Eq. (6.100) yields the dominating nonconstant term. In
the same way, the lowest order approximations of Eqs. (6.98) and (6.99) characterize
the leading order for the parameters specified in the second to fourth line.
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yields

Tr{Mβ ⊗ 1Oe−iλtH0ρP (α)⊗ ρOeiλtH0}
=
∑

k,l

〈πk|ρP (α)|πl〉Tr{Mβ ⊗ 1Oe−iλtH0 |πk〉〈πl| ⊗ ρOeiλtH0}

=
∑

k,l

〈πk|ρP (α)|πl〉〈πl|Mβ|πk〉e−iλt∆kl〈eitAle−itAk〉ρO , (6.101)

where ∆kl ≡ εk − εl . Thus, this expression comprises constant terms associated
with k = l that specify the survival probability in the eigenstate |πk〉 . Similarly,
upon inserting the definitions of the operators, the second term, i.e., Eq. (6.98)
reads

1
iλ

∫ λt

0
ds Tr{Mβ ⊗ 1Oe−iλtH0 [H̃ ′I(s), ρP (α)⊗ ρO]eiλtH0}

= 1
iλ

∑

k,l

〈πk|ρP (α)|πl〉
[∑

m 6=k
e−iλt∆ml〈πl|Mβ|πm〉

·
∫ λt

0
ds eis∆mkTr{e−itAmB̃mk(s)ρOeitAl}

−
∑

n 6=l
e−iλt∆kn〈πn|Mβ|πk〉

·
∫ λt

0
ds eis∆lnTr{e−itAkρOB̃ln(s)eitAn}

]
, (6.102)

where it now remains to evaluate the integrals. If the spectral decomposition of
Ak is denoted by Ak = ∑

j E
(k)
j |jk〉〈jk| , one deduces, for example,

∫ λt

0
ds eis∆mkTr{e−iτAmB̃mk(s)ρOeitAl}

=
∫ λt

0
ds eis∆mkTr{e−itAmeis/λAmBmke−is/λAkρOeitAl}

=
∑

a,b,c

eit(E
(l)
a −E(m)

b
)〈al|bm〉〈bm|Bmk|ck〉〈ck|ρO|al〉

·
∫ λt

0
ds exp

[
is
(
∆mk + E

(m)
b − E(k)

c

λ

)]
, (6.103)

and the remaining integral gives

∫ λt

0
ds exp

[
is
(
∆mk + E

(m)
b − E(k)

c

λ

)]
= eit(∆mk+E(m)

b
−E(k)

c ) − 1

i∆mk

(
1 + E

(m)
b
−E(k)

c

λ∆mk

) , (6.104)

as one has m 6= k by construction. To obtain a power series in 1/λ , one employs
the Taylor expansion of the function f(x) = 1/(1 + x) at x = 0. The Taylor series
is found to be given by fT (x) = ∑

k≥0(−x)k which converges to the function f
itself for |x| < 1 (Bronstein and Semendjajew, 1996). To apply this result to the
factor in Eq. (6.104), one thus needs to have λ∆mk � E

(m)
b − E(k)

c for all indices
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m, k and b, c for which the transition matrix elements 〈bm|Bmk|ck〉 and 〈ck|ρO|al〉
are nonzero, which leads to the previously mentioned constraint for the strategy.

In fact, by definition of the operator Ak , containing the free Hamiltonian of the
object system, this condition obviously represents a far reaching constraint on the
state or the interaction if the strategy shall be applied to an infinite-dimensional
complex system that is characterized by a Hamiltonian HO with unbounded spec-
trum such as the quantum harmonic oscillator. If no assumption on the state of
the complex system is to be made, the interaction may thus only be weakly dis-
sipative. This means that the interaction, specifying the operators Bmk , solely
concerns states of the complex system that are energetically close compared to
the probe’s energy splitting, thus resulting in a slow change of the probe’s energy
as mentioned before. An example highlighting this property by means of coupled
quantum mechanical oscillators defining the probe as well as the complex system is
given by the superfluid Bose-Hubbard model with a coupled impurity atom that is
studied in Sec. 6.4.2. Note that the constraint on the interaction can, in principle,
always be satisfied for a sufficiently large energy splitting as one may very-well
approximate any coupling by a Hamiltonian having finite support with respect
to the energy eigenbasis of the quantum system. Obviously, a vast splitting also
guarantees the validity of the expansion for any kind of finite-dimensional systems.

If λ∆mk � E
(m)
b − E

(k)
c holds for all indices m, k and b, c associated with

nonzero transition matrix elements, then Eq. (6.103) is approximated as

∫ λt

0
ds eis∆mkTr{e−itAmB̃mk(s)ρOeitAl}

' 1
i∆mk

∑

a,b,c

eit(E
(l)
a −E(m)

b
)〈al|bm〉〈bm|Bmk|ck〉〈ck|ρO|al〉

[
eit(∆mk+E(m)

b
−E(k)

c ) − 1
]

= i

∆mk

[
〈eitAle−itAmBmk〉ρO − eitλ∆mk〈eitAlBmke−itAk〉ρO

]
, (6.105)

employing the zero order approximation of the function 1/(1 + x) which is given
by 1/(1 + x)|x=0 ' 1. Since the higher order corrections of the expansion are
proportional to xn for n ∈ N , the additional terms in Eq. (6.105) are proportional
to powers of 1/λ that do obviously not contribute to the leading order. The
analogous evaluation of the second integral in Eq. (6.102) is abbreviated by the
observation that the integral defines the complex conjugate of Eq. (6.103) if one
additionally interchanges the indices according to k ↔ l and m↔ n . In summary,
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one thus obtains for Eq. (6.98)

1
iλ

∫ λt

0
ds Tr{Mβ ⊗ 1Oe−iλtH0 [H̃ ′I(s), ρP (α)⊗ ρO]eiλtH0}

= 1
λ

∑

k,l

〈πk|ρP (α)|πl〉

·
{∑

m 6=k
〈πl|Mβ|πm〉

1
∆mk

e−iλt∆ml

·
[
〈eitAle−itAmBmk〉ρO − eitλ∆mk〈eitAlBmke−itAk〉ρO

]

+
∑

n6=l
〈πn|Mβ|πk〉

1
∆nl

e+iλt∆nk

·
[
〈BlneitAne−itAk〉ρO − e−itλ∆nl〈eitAlBlne−itAk〉ρO

]}

+O(λ−2) (6.106)

for appropriately adjusted interaction and energy splitting of the probe.
Along the same lines one continues evaluating the other terms (Eqs. (6.99) and

(6.100)) of the probability pt(α, β) . For Eq. (6.99) one finally determines

1
λ2

∫ λt

0
ds
∫ λt

0
ds′ Tr{Mβ ⊗ 1Oe−iλtH0H̃ ′I(s)ρP (α)⊗ ρOH̃ ′I(s′)eiλtH0}

= 1
λ2
∑

k,l

〈πk|ρP (α)|πl〉
∑

m 6=k,n6=l
〈πn|Mβ|πm〉e−iλt∆mn

·
∫ λt

0
ds
∫ λt

0
ds′ eis∆mkeis

′∆ln〈B̃ln(s′)eitAne−itAmB̃mk(s)〉ρO

= 1
λ2
∑

k,l

〈πk|ρP (α)|πl〉
∑

m 6=k,n6=l
〈πn|Mβ|πm〉

1
∆mk∆nl

·
{
eiλt∆nm〈BlneitAne−itAmBmk〉ρO
− eiλt∆nk〈eitAlBlne−itAmBmk〉ρO
− eiλt∆lm〈BlneitAnBmke−itAk〉ρO

+ eiλt∆lk〈eitAlBlnBmke−itAk〉ρO
}

+O(λ−3) . (6.107)

Note that the sum contains terms that are proportional to 〈πk|ρP (α)|πl〉〈πk|Mβ|πl〉
if the indices are chosen as n = k and m = l whenever one has k 6= l . These
terms are, however, already contained in Eq. (6.101) (modulo partial complex con-
jugation, i.e. 〈πk|Mβ|πl〉 ↔ 〈πl|Mβ|πk〉) for which reason these contributions to
Eq. (6.107) are not in leading order and may thus be omitted when considering the
leading contributions to the power expansion with respect to 1/λ (cf. Tab. 6.2).

Last but not least, the fourth term of the probability, i.e., Eq. (6.100) is found
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to be given by

− 1
λ2

∫ λt

0
ds
∫ s

0
ds′ Tr

{
Mβ ⊗ 1Oe−iλtH0

(
H̃ ′I(s)H̃ ′I(s′)ρP (α)⊗ ρO

+ ρP (α)⊗ ρOH̃ ′I(s′)H̃ ′I(s)
)
eiλtH0

}

= − 1
λ2
∑

k,l

〈πk|ρP (α)|πl〉

·
{ ∑

m6=k

∑

o 6=m
〈πl|Mβ|πo〉e−iλt∆ol

·
∫ λt

0
ds
∫ s

0
ds′ eis∆omeis

′∆mk · 〈eitAle−itAoB̃om(s)B̃mk(s′)〉ρO
+
∑

n 6=l

∑

q 6=n
〈πq|Mβ|πk〉e−iλt∆kq

·
∫ λt

0
ds
∫ s

0
ds′ eis∆nqeis

′∆ln〈B̃ln(s′)B̃nq(s)eitAqe−itAl〉ρO
}
. (6.108)

Before starting to evaluate the nested integrals, one first observes that most of the
terms are not in leading order. More specifically, the transition matrix elements
〈πk|ρP (α)|πl〉〈πn|Mβ|πm〉 encountered in Eqs. (6.97)–(6.100) are given by

Eq. (6.97) (cf.Eq. (6.101)) ↔ 〈πl|Mβ|πk〉 1© ,

Eq. (6.98) (cf.Eq. (6.102)) ↔ 〈πl|Mβ|πm6=k〉 2© ∧ 〈πn6=l|Mβ|πk〉 3© ,

Eq. (6.99) (cf.Eq. (6.107)) ↔ 〈πn6=l|Mβ|πm 6=k〉 4© ,

Eq. (6.100) (cf.Eq. (6.108)) ↔ 〈πl|Mβ|πo 6=m(6=k)〉 5© ∧ 〈πq 6=n( 6=l)|Mβ|πk〉 6© ,

where solely the part involving the measurementMβ is listed as the transition ma-
trix element 〈πk|ρP (α)|πl〉 is identical for all terms. Clearly, the contributions 5©
and 6© are equal to those labeled by 2© and 3© if one has o 6= k and q 6= l , respec-
tively, which thus determine the leading order with respect to 1/λ for the associ-
ated transition elements of ρO and Mβ . Moreover, for indices o = k and q = l , the
transition matrix elements 5© and 6© are already encountered within Eq. (6.101).
However, if one additionally has k = l in this case, the corresponding terms of
Eq. (6.101) are constant, so 5© and 6© ultimately characterize the first nonconstant
contributions with respect to λ for the matrix elements 〈πk|Mβ|πk〉〈πk|ρP (α)|πk〉 .
Note that these contributions are of second order and can be related to the quantum
Zeno effect (Misra and Sudarshan, 1977) (cf. Monras et al. (2014)). The present
observations regarding the contributions that characterize the leading order are in
accordance with the summary given in Tab. 6.2.

Considering the contribution to Eq. (6.108) for o = k = l = q , one recognizes
that the nested integrals can be disentangled into a double integral over the square
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ranging from 0 to λt , i.e.

∫ λt

0
ds
∫ s

0
ds′ ei∆km(s−s′)〈B̃km(s)B̃km(s′)†〉ρO

+
∫ λt

0
ds
∫ s

0
ds′ e−i∆km(s−s′)〈B̃km(s′)B̃km(s)†〉ρO

=
∫ λt

0
ds
∫ λt

0
ds′ ei∆km(s−s′)〈B̃km(s)B̃km(s′)†〉ρO . (6.109)

One may then proceed as before in order to determine the leading order contribu-
tion of Eq. (6.108) which finally gives

− 1
λ2
∑

k

〈πk|ρP (α)|πk〉〈πk|Mβ|πk〉
∑

m6=k

∫ λt

0
ds
∫ λt

0
ds′ei∆km(s−s′)〈B̃km(s)B̃km(s′)†〉ρO

=− 1
λ2
∑

k

〈πk|ρP (α)|πk〉〈πk|Mβ|πk〉

·
∑

m6=k

1
∆2
km

{
〈BkmB†km〉ρO

+ 〈eitAkBkmB†kme−itAk〉ρO
− eiλt∆km〈eitAkBkme−itAmB†km〉ρO
− eiλt∆mk〈BkmeitAmB†kme−itAk〉ρO

}

+O(λ−3) . (6.110)

In summary, the probability (6.87) at leading order with respect to the inverse
scaling parameter of the probe’s energy splitting and the transition matrix elements
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is thus given by (cf. Eqs. (6.101), (6.102), (6.107) and (6.110))

pt(α, β) =
∑

k,l

〈πk|ρP (α)|πl〉

·
{
〈πl|Mβ|πk〉e−iλt∆kl〈eitAle−itAk〉ρO

+ 1
λ

[∑

m 6=k
〈πl|Mβ|πm〉

1
∆mk

e−iλt∆ml

· (〈eitAle−itAmB†km〉ρO − eiλt∆mk〈eitAlB†kme−itAk〉ρO
)

+
∑

n6=l
〈πn|Mβ|πk〉

1
∆nl

eiλt∆nk

· (〈BlneitAne−itAk〉ρO − e−iλt∆nl〈eitAlBlne−itAk〉ρO
)]

+ 1
λ2

[ ∑̃

m 6=k,n6=l
〈πn|Mβ|πm〉

1
∆mk∆nl

· [eiλt∆nm〈BlneitAne−itAmB†km〉ρO
− eiλt∆nk〈eitAlBlne−itAmB†km〉ρO
− eiλt∆lm〈BlneitAnB†kme−itAk〉ρO

+ eiλt∆lk〈eitAlBlnB†kme−itAk〉ρO
]

−
∑

m6=k
δlk〈πk|Mβ|πk〉

1
∆2
mk

· [〈BkmB†km〉ρO
+ 〈eitAkBkmB†kme−itAk〉ρO
− eiλt∆km〈eitAkBkme−itAmB†km〉ρO
− eiλt∆mk〈BkmeitAmB†kme−itAk〉ρO

]

+ ζ(2)(λ)
]

+O(λ−3) , (6.111)

where ∑̃m6=k,n6=l refers to the sum over the indices m and n different from k and
l , respectively, if one has k = l , whereas one must have m 6= k, l and n 6= k, l in
case of unequal indices k and l . The function ζ(2)(λ) contains all further terms in
second order in the inverse scaling which, however, do not represent the leading
contributions with respect to the transition matrix elements.

It is readily seen that for a two-level probe with eigenenergies ε0 = −ε1 = ε
in a pure initial state |α〉〈α| and a (nontrivial) projection-valued POVM {|β〉〈β|} ,
Eq. (6.111) is eventually equivalent to expression (6.88) where the functions ζ(j)(λ)
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and ξ(j)
k (λ) are given by

ζ(0)(λ) = e−iλεt〈eitA1e−itA0〉ρO , (6.112)
ζ(1)(λ) = 〈B〉ρO − eiλεt〈eitA0Be−itA1〉ρO , (6.113)

ξ
(1)
0 (λ) = 〈eitA0B†e−itA0〉ρO − eiλεt〈eitA0e−itA1B†〉ρO , (6.114)

ξ
(1)
1 (λ) = 〈eitA1B†e−itA1〉ρO − eiλεt〈B†eitA0e−itA1〉ρO , (6.115)

ξ
(2)
0 (λ) = 〈BB†〉ρO + 〈eitA0BB†e−itA0〉ρO

− eiλεt〈eitA0Be−itA1B†〉ρO − e−iλεt〈BeitA1B†e−itA0〉ρO , (6.116)

ξ
(2)
1 (λ) = 〈B†B〉ρO + 〈eittA1B†Be−itA1〉ρO

− eiλεt〈B†eitA0Be−itA1〉ρO − e−iλεt〈eitA1B†e−itA0B〉ρO . (6.117)

Note that the definitions of ζ(0)(λ), ξ(2)
0 (λ) and ξ

(2)
1 (λ) given by Pollock et al.

(2015) are incomplete.
Returning to the general case, one directly recognizes from Eq. (6.111) that the

leading order contribution of the probability distribution is again characterized by

pt(α, β) ' 1
λn

∑

k,l

{
akl(t) + bkl(t) cos

(
λ∆klt+ φkl(t)

)}
, (6.118)

for sufficiently large energy splitting, describing a damped oscillation with respect
to the parameter λ as for the case of a two-level probe (see Eq. (6.89)). The time-
dependent coefficients akl(t), bkl(t) and the phase φkl(t) then provide information
on features of the complex system which may finally be resolved by fitting the
measured data. Note that the coefficients in zeroth order with respect to 1/λ are,
for example, found to be given by akl(t) = δk,l〈πk|ρP (α)|πk〉〈πk|Mβ|πk〉 along with
bkl(t) = |z(t)| and φkl(t) = − arg(z(t)) where the complex-valued function z(t) is
defined as z(t) ≡ 〈πk|ρP (α)|πl〉〈πl|Mβ|πk〉〈eitAle−itAk〉ρO .

It is worth emphasizing again that the present strategy requires full control
over the quantum probe and the coupling to the complex system, similarly to
the approach presented in the preceding section (see Sec. 6.3). Apart from being
able to prepare arbitrary initial states of the probe for different energy splittings
and to perform measurements on the evolved state, one must ensure that the
typical energy scale of the probe is sufficiently large in comparison with the energy
eigenstates of the complex system that are involved in the interaction in order
to obtain the expansion (6.111). Thus, the probe is operated in a regime where
only virtual excitations due to the coupling to the bath are possible, leading to
small values for the considered probability. While this mode of operation can, in
principle, be always fulfilled, it constrains the possible interactions for all practical
purposes and, therefore, the set of operators Tk (see Eq. (6.91)) that can be probed.
In addition, the strategy is obviously only applicable as long as the perturbative
approach is accurate.

As mentioned before, for a pure dephasing dynamics (see, e.g., Sec. 3.3.2), there
are no constraints and the leading order approximation of the probability (6.111)
yields the exact transition probability, i.e.

pt(α, β)
∣∣∣
deph.

=
∑

k,l

〈πk|ρP (α)|πl〉〈πl|Mβ|πk〉e−iλt∆kl〈eitAle−itAk〉ρO . (6.119)
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In this case one can thus solely extract the dynamics of the so-called Loschmidt
echo 〈eitAle−itAk〉ρO (see, e.g., Goussev et al. (2012)) by means of this method. A
dissipative coupling of the probe to the object is thus required to resolve, e.g., the
spectrum as is highlighted in the subsequent section. In fact, one may reveal the
superfluid excitations of a Bose-Hubbard model measuring an immersed impurity
atom by determining the phases φkl(t), whereas the time-dependent coefficients
allow to obtain the Bose-Einstein distributions and, thus, the temperature of the
condensate as will be illustrated in Sec. 6.4.2.

Extending the present treatment, one may apply it to expand the measure-
ment statistics obtained for multiple, selective measurements on the probe (see
Eq. (4.14)). This means that the previously developed treatment is applied to

pn(βn, tn; · · · ;β1, t1;α) = Tr{SΩβnSU(tn−tn−1) · · ·SΩβ1
SU(t1)ρP (α)⊗ ρO} ,

(6.120)

which represents the joint probability to obtain the sequence of outcomes βj at
times tj when the POVM {Mβ ⊗ 1O} is measured. Here, Ωβ refers to the Kraus
operator associated with the outcome βk of this POVM and the superoperators SX

are defined as SXρ = XρX† (cf. Eq. (4.14)). For projective measurements, it is,
for example, possible to show that all combinations of transition matrix elements
are encountered up to 4th order with respect to the inverse energy splitting for a
total of 2 measurements. The lengthy proof of this statement has, however, been
omitted in the present thesis. Note that the 4th order defines the leading order
contribution to the probability corresponding to nonequal outcomes of successive
measurements where the initial state of the probe additionally needs to define an
eigenstate of the measured observable. There is strong evidence that the mentioned
relationship remains true for an arbitrary number of measurements. That is, all
combinations of transition matrix elements are contained in terms up to (2n)th
order in case of n projective measurements, where the (2n)th order is eventually
addressed for nonequal successive measurement outcomes. A rigorous proof of
this conjecture could, however, not be achieved so far which is thus left for future
studies.

Finally, it should be clear that the described technique, i.e., the particular
Dyson expansion of the unitary propagator may not only be applied to proba-
bility distributions such as Eq. (6.120). A possible and interesting application is,
for example, given by the resonance fluorescence spectrum. More specifically, the
technique may be used to determine signatures of environmental properties in the
two-time correlation function 〈σ+(t)σ−(s) ⊗ 1O〉ρP⊗ρO , specifying the resonance
fluorescence spectrum of a two-level system that is coupled to an environment.
The potential capacity of this application might be an objective of future studies,
too.

6.4.2 Probing a superfluid Bose-Hubbard model

In the present section, the previously introduced probing scheme is applied to a
one-dimensional Bose-Hubbard model in the superfluid phase in order to determine
the frequencies of the Bogoliubov modes that characterize the system. Moreover,
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the probing scheme is compared to the strategy suggested by Cosco et al. (2015) to
extract the Bogoliubov dispersion relation by means of an immersed impurity atom.
Obviously, the complex system in this case is described by an infinite-dimensional
Hilbert space with a free Hamiltonian that is not upper bounded. Nevertheless, this
system can be probed by the introduced strategy as the interaction only concerns
neighboring energy levels of the 1D Bose-Hubbard Hamiltonian as will be shown.

Following Cosco et al. (2015) who suggested a slightly different kind of probing
scheme for the Bogoliubov frequencies (see below), one considers a harmonically
trapped impurity atom which is immersed into an ensemble of bosonic atoms and
coupled to it by a local contact potential. If the bosonic ensemble is trapped in a
one-dimensional lattice and cooled to the lowest Bloch band of the periodic poten-
tial, its dynamics is described by the well-known one-dimensional Bose-Hubbard
model (Jaksch et al., 1998; Sachdev, 2011)

HBH = −J
∑

〈j,k〉
â†j âk + 1

2U
∑

j

â†j â
†
j âj âj − µ

∑

j

â†j âj , (6.121)

where the first sum is restricted to nearest neighbors and â(†)
j refers to local bosonic

annihilation (creation) operator that are assigned to the lattice site j . Here, µ de-
fines the chemical potential as the cold bosonic gas represents a grand-canonical
ensemble. The relation between the hopping constant J and the on-site interac-
tion U characterizes two regimes, differing in the static as well as the dynamical
properties. In fact, the relation J � U characterizes the Mott insulator phase,
whereas the system is in the so-called superfluid phase if J � U holds. In the
latter case, one may apply the Bogoliubov approximation and transformation in
order to diagonalize the Bose-Hubbard Hamiltonian which leads to (see, e.g., van
Oosten et al. (2001))

HBH =
∑

k 6=0
ωk b̂
†
k b̂k , (6.122)

where ~ = 1 has been employed. Here, the energy of the phononic modes cor-
responding to the Bogoliubov annihilation (creation) operators b̂(†)k is given by24

ωk =
√
εk(εk + 2Un0) with the dispersion relation εk = 2J [1 − cos(ka)] . Note

that a denotes the lattice constant and the sum runs over all k-vectors in the first
Brillouin zone different from zero. For an odd25 number of sites NS one thus has

k ∈
{ 2π
aNS

· j
∣∣−(NS − 1)/2 ≤ j ∈ Z ≤ (NS − 1)/2

}
\ {0} . (6.123)

The density fraction of condensed atoms n0 ≡ N0/NS characterizes the relation
between the amount of atoms N0 in the zero-mode Bose-Einstein condensate and
the number of lattice sites.

Assuming a contact potential for the immersed impurity and the cold bosonic
system with coupling strength g , the interaction Hamiltonian for an impurity that
is strongly localized at a site of the lattice is then shown to be given by (Cosco
et al., 2015) (see Appendix L)

HI = g
∑

~m 6=~n∈N3
0

φ~m~n|~m〉〈~n| ⊗
[
n0 +

∑

k 6=0
βk( b̂†k + b̂k)

]
, (6.124)

24This relation is also known as Bogoliubov dispersion relation.
25If NS is even, one obtains k ∈ {(2πj)/(aNS)

∣∣−(NS/2− 1) ≤ j ∈ Z ≤ NS/2} \ {0} .
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where {|~n = (n1, n2, n3)〉} denotes the eigenbasis of the free Hamiltonian HP =∑
~n∈N3

0
ν~n|~n〉〈~n| of the impurity, defining a three-dimensional quantum harmonic

oscillator. Here, the effective coupling φ~m~n between the modes and the impurity is
determined by the overlap of the Wannier functions, describing the condensate at
the different sites, and the impurity wave functions, so that φ~m~n accounts for the
exact shape of the probe’s trapping potential as well as its location with respect
to the lattice (Cosco et al., 2015). In addition, the spectral function26 is given
by βk =

√
n0/NS{|uk| − |vk|} where |uk| and |vk| refer to the modulus of the

coefficients of the Bogoliubov transformation which obey (van Oosten et al., 2001)

|vk|2 = |uk|2 − 1 = 1
2
{εk + Un0

ωk
− 1

}
, (6.125)

and have the same phase (see Appendix L). Note that, placing the impurity between
two sites, the effective coupling as well as the spectral function changes as the
immersed atom then couples to two sites.

The contact potential thus leads to a dissipative coupling between the motional
degrees of freedom of the immersed atom and the Bogoliubov modes, which may
offer interesting information about the Bose-Hubbard model in the superfluid phase
when using the trapped impurity atom as probe system for the probing strategy
introduced in the preceding section. Clearly, the constraint on the energy scales of
the probe and the complex system are not satisfied in general as the Bose-Hubbard
Hamiltonian (6.122) has an unbounded spectrum. However, due to linearity of the
interaction Hamiltonian with respect to the Bogoliubov mode operators, the energy
levels influencing the time evolution of the probe are bounded. In fact, for the total
Hamiltonian H = HP ⊗ 1O + 1P ⊗HBH + HI the operators B~m~n (cf. Eq. (6.91))
read

B~m~n = gφ~m~n
[
n0 +

∑

k 6=0
βk(b̂†k + b̂k)

]
, (6.126)

whereas one finds Ak = HBH for all indices k . It follows that the transition matrix
elements of the operatorsB~m~n with respect to the Fock basis {|~a 〉 | ak ∈ N0, k 6= 0} ,
describing the eigenbasis of the Bose-Hubbard Hamiltonian, obey 〈~a|B~m~n|~b 〉 6= 0
if and only if |~a 〉 = |~b 〉 holds or one has

ak0 = bk0 ± 1 , (6.127)

for some mode k0 . Hence, the energy differences |E(~m)
a − E

(~n)
b | , present in the

leading order approximations (cf. Eq. (6.103)), are upper bounded by the maximal
Bogoliubov frequency ωk which must then be small compared to the transition
frequencies ∆ν~m~n ≡ ν~m−ν~n of the impurity in order to apply the probing strategy
to this setup. Note that the scaling parameter λ , which corresponds to a variable
curvature of the harmonic potential of the impurity, has been absorbed in the
energies ν~m for convenience.

Now, suppose that the curvature of the potential is sufficiently large so that
∆ν~m~n � maxk ωk holds true for any choice of the oscillator occupation “numbers”

26Note that Cosco et al. (2015) used an expression for βk where the minus sign has been replaced
by a plus sign which is, however, incorrect (see Appendix L for the derivation of the interaction
Hamiltonian in terms of the Bogoliubov modes).
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~m and ~n . According to Eq. (6.111), the leading order contribution of the transition
probability pt(~0, ~n) from the ground (associated with ~0) to the excited state ~n at
time t is given by

pt(~0, ~n) = 1
∆ν2

~n~0

[
〈B~0~nB

†
~0~n〉ρO + 〈eitHBHB~0~nB

†
~0~ne
−itHBH〉ρO

− eit∆ν~n~0〈eitHBHB~0~ne
−itHBHB†~0~n〉ρO

− e−it∆ν~n~0〈B~0~neitHBHB†~0~ne
−itHBH〉ρO

]
. (6.128)

Assuming that ρO defines a thermal state at inverse temperature β , i.e. one
has ρO = ρth = e−βHBH/Tr{e−βHBH}, the expectation values may be evaluated
explicitly. First, one obviously has 〈B~0~nB

†
~0~n〉ρth = 〈eitHOB~0~nB

†
~0~ne
−itHO〉ρth which,

in addition, is found to be given by

〈B~0~nB
†
~0~n〉ρth = g2|φ~0~n|2

[
n2

0 +
∑

k 6=0
β2
k

{
1 + 2n(ωk)

}]
, (6.129)

employing the commutation relation [b̂k, b̂†l ] = δk,l and the fact that 〈b̂(†)k 〉ρth = 0
holds for any mode k . Here, n(ωk) ≡ 〈b̂†k b̂k〉ρth = 1/(exp[βωk] − 1) denotes the
Bose-Einstein distribution of the kth mode at inverse temperature β .

The two remaining expectation values in Eq. (6.128) are related by complex
conjugation and one deduces for the third term

〈eitHBHB~0~ne
−itHBHB†~0~n〉ρth

= g2|φ~0~n|2
[
n2

0 +
∑

k

β2
k

{
2 cos(ωkt)n(ωk) + e−iωkt

}]
, (6.130)

as one finds eitHBH b̂ke
−itHBH = e−iωktb̂k . Due to this, the sum of the two last

contributions to Eq. (6.128) can be written as

eit∆ν~n~0〈eitHBHB~0~ne
−itHBHB†~0~n〉ρth + e−it∆ν~n~0〈B~0~neitHBHB†~0~ne

−itHBH〉ρth

= − g2|φ~0~n|2
[
n2

02 cos(∆ν~n~0t) +
∑

k

β2
k

{
4n(ωk) cos(ωkt) cos(∆ν~n~0t)

+ 2 cos((∆ν~n~0 − ωk)t)
}]
. (6.131)

And using the relation cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) one deduces

4n(ωk)
{
1− cos(ωkt) cos(∆ν~n~0t)

}

= 2n(ωk)
{[

1− cos((∆ν~n~0 − ωk)t)
]

+
[
1− cos((∆ν~n~0 + ωk)t)

]}
, (6.132)

by means of which the following expression for the transition probability (6.111)
in leading order is finally obtained:

pt(~0, ~n) = g2|φ~0~n|2
{
n2

0λ(∆ν~n~0, t) +
∑

k

(
Γ̃+
k (∆ν~n~0, t) + Γ̃−k (∆ν~n~0, t)

)}
, (6.133)
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where λ(ω, t) ≡ 2
{
1− cos(ωt)

}
/ω2 and one defines

Γ±k (ω, t) = µ±k (ω)2β2
k λ(ω ± ωk, t) · 1

2{1± 1 + 2n(ωk)} , (6.134)

with µ±k (ω) = (ω ± ωk)/ω .
One directly observes that the transition probability (6.133) defines the high

probe transition frequency approximation of the result given by Cosco et al. (2015).
This is readily understood as, contrary to the previous approach, the probing
scheme of Cosco et al. (2015) relies on observing resonances in the transition prob-
ability of the impurity atom when the associated transition frequency matches that
of a Bogoliubov mode. More specifically, the authors deduced for the transition
probability at time t and at first order with respect to the weak coupling expansion
of the unitary propagator (cf. Eqs. (6) and (7) in the work by Cosco et al. (2015))

p̃t(~0, ~n) = g2|φ~0~n|2
{
n2

0λ(∆ν~n~0, t) +
∑

k

(
Γ̃+
k (∆ν~n~0, t) + Γ̃−k (∆ν~n~0, t)

)}
, (6.135)

where one has

Γ̃+
k (ω, t) = β2

kλ(ω + ωk, t){1 + n(ωk)} , (6.136)
Γ̃−k (ω, t) = β2

kλ̃(ω − ωk, t)n(ωk) , (6.137)

and

λ̃(ω − ν, t) =
{
λ(ω − ν, t) , if ω 6= ν

t2 , if ω = ν .
(6.138)

Clearly, approximating ∆ν~n~0 ± ωk as

∆ν~n~0 ± ωk ≈ ∆ν~n~0 , (6.139)

if ∆ν~n~0 � ωk holds true for all k, one has Γ̃±k (∆ν~n~0, t) ≈ Γ±k (∆ν~n~0, t) showing
the relation between Eqs. (6.133) and (6.135). Contrary to the probability stud-
ied by Cosco et al. (2015), the transition probability (6.133) associated with the
previous probing scheme clearly relies on virtual excitations of the impurity’s mo-
tional degrees, thus leading to small values for the transition probability pt(~0, ~n)
(cf. Fig. 6.7).

To illustrate the probing scheme explicitly, one may, for example, consider
the transition between the oscillator ground state and an excited state that is
characterized by a single nonzero quantum number nj corresponding to a direction
xj orthogonal to the optical lattice with frequency ν(j) . Henceforth, the excited
state shall be simply abbreviated by the nonzero occupation number nj . According
to Cosco et al. (2015) the effective coupling φ~0nj for this configuration is given by

|φ~0nj |
2 = gnjν

(j) , (6.140)

where the constant term gnj depends on the spatial overlap of the impurity’s wave
functions for the different quantum numbers and the Wannier functions at the site
at which the probe is localized. Changing the curvature of the trapping potential
along the direction xj thus alters the effective coupling, too. However, as kth
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Figure 6.6 – The transition probability p̃t(~0, nj = 1) (cf. Eq. (6.135)) as a function
of the trap frequency ν(j) (in units of 2J) for N0 = 65 atoms in the condensate in
a lattice with NS = 33 (a) and NS = 65 (b) sites. The choice of the other
parameters corresponds to that of Cosco et al. (2015). That is, one has J/U = 10
with U = 8.5, β−1 = 1nK and a final time t obeying gnj

t = 0.15/n0 where one has
gnj

= 10−3U (Cosco, 2016). The red triangles depict the approximation (6.141) of
the transition probability at resonance. Note that the nonmonotonic behavior of
the peak’s magnitude as a function of the frequency follows from the competition
between the spectral density β2

k and the Bose-Einstein distribution n(ωk). While
the latter is a decreasing function of the frequency, the former is enhanced for modes
at the boundary of the Brillouin zone (cf. Fig. 2 in the work by Cosco et al. (2015)
which, however, looks different due to the missing minus sign in the definition of βk
– see Eq. (6.124)).

order terms in the power expansion (6.111) are proportional to the kth power of
the effective coupling, this solely results in a reduction of the power of the inverse
energy splitting for all contributions in the power series. Due to this, the probing
scheme indicated before may still be applied to this configuration.

It is worth stressing that the constraints imposed on the number of condensate
atoms in the zero-mode must yet be satisfied when evaluating the probabilities
(6.133) and (6.135) explicitly. That is, to apply the Bogoliubov approximation,
one must have N0 � 1 (see Appendix L). As the interaction HI (cf. Eq. (6.124))
is proportional to the density fraction of the condensate atoms n0 , the magnitude
of the contributions in the power expansion is scaled up if the lattice comprises
only a few sites for a constant number of atoms in the zero-mode. To determine
the leading order contribution experimentally, the energy splitting must be varied
over values that are sufficiently large in comparison with n0 . This practically
limits the use of the probing strategy to rather large lattices as the confinement
of the impurity cannot be reduced arbitrarily. Note that the same conclusion
can be drawn for the probing scheme for the superfluid excitations in the Bose-
Hubbard model introduced by Cosco et al. (2015): The larger the density fraction
of the condensate the stronger the interaction is, limiting the validity of the weak
coupling approximation which has been used to deduce Eq. (6.135) to extremely
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Figure 6.7 – The leading order contribution of the transition probability pt(~0, nj =
1) (cf. Eq. (6.133)) as a function of time (in units of 2J) at an energy splitting
ν(j) = 10 · 2J for N0 = 65 atoms in the condensate and lattices with NS = 33 (a)
and NS = 65 (b) sites. The other parameters are chosen as in Fig. 6.6 .

short interaction times. Thus, possible limitations on the temporal resolution and
control of the impurity-gas coupling then restrict the use of the approach by Cosco
et al. (2015) to large lattices, too.

Figure 6.6 shows the transition probability p̃t(~0, nj) (cf. Eq. (6.135)) from the
vacuum to the excited state characterized by nj = 1 as functions of the transi-
tion frequency ν(j) (in units of 2J). One clearly observes the enhancement for a
transition to the excited state when the confinement of the trap matches a Bo-
goliubov mode for either length of lattices and a condensate of 65 atoms. For
sufficiently large interaction times and a small density fractions, the transition
probability p̃t(~0, nj = 1) at resonance, i.e. for ν(j) = ωk for some mode k , can be
well approximated by

p̃t(~0, nj) ' 2(gnjβkt)2n(ωk)ν(j) , (6.141)

as shown by the red triangles in Figs. 6.6 (a) and (b) for the chosen configuration
(cf. Cosco et al. (2015)). It is worth emphasizing that the peaks are extremely
narrow (of the order of 10−3) so that their detection as suggested in the probing
scheme of Cosco et al. (2015) is experimentally challenging.

Instead of scanning the Bogoliubov modes directly, one may use the probing
strategy developed before and determine the frequencies of the superfluid excita-
tions in the Bose-Hubbard model by means of a Fourier analysis of the leading
order contribution of pt(~0, nj) which is shown for nj = 1 as a function of time
in Fig. 6.7. Clearly, from the Fourier coefficients one may also determine the
Bose-Einstein distribution and, finally, the temperature of the cold gas by a fit
of the exact expression (6.133) to the coefficients. As one can readily see from
Fig. 6.7, the transition probability pt(~0, nj) is quite small (of the order of 10−6)
for frequencies ν(j) that are large compared to the Bogoliubov mode. In addition,
the beat frequency of the leading order contribution is very light, thus requiring a



194 Chapter 6. Indirect quantum measurement

precise determination of the transition probability over a large interval of time in
order to determine the Bogoliubov frequencies by means of a Fourier transform.
Nonetheless, this seems to be feasible so that the present example illustrates the use
of the discussed probing strategy for infinite-dimensional systems and dissipative
couplings.



Chapter 7

Summary and conclusion

The present thesis has reviewed several recently discussed questions underlying the
theory of open quantum systems, such as the role of initial system-environment
correlations, the essence of memory effects in the quantum regime as well as their
occurrence due to correlated environments, and the information content of open
quantum systems regarding properties of the environment.

After an introduction of the basic notions used in the theory of open quan-
tum systems such as dynamical maps and master equations, providing also an
exhaustive and convenient characterization of the exactness of second order time-
convolutionless master equations for zero-mean Gaussian environmental states and
linear couplings, the detection of initial system-environment correlations by means
of open system dynamics was addressed. Previous studies have shown that such
correlations induce an information flow quantified by an increase of the trace dis-
tance of two evolving open systems states above its initial value. This effect essen-
tially relies on the contractivity of the distance measure with respect to completely
positive and trace-preserving linear maps which is, however, not only satisfied by
the trace distance. Motivated by this fact, an extended comparative study, based
on two exactly solvable models and initial states with tunable amount of correla-
tions, of different distance measures on the state space has been performed in this
thesis which indeed brought out a special role of the trace distance, being most
sensitive to initial correlations.

Moreover, for the transfer of the well-established theory of Markovian stochastic
processes to the quantum domain, which cannot be straightforwardly formulated
by simply adapting the classical constraints on the conditional probabilities of the
process due to the particular role of measurements in quantum theory, the trace
distance was shown to be useful to describe memory effects in a physically and
experimentally motivated, intuitive way. Assigning quantum non-Markovianity to
a nonmonotonic behavior of the trace distance between pairs of states, memory
effects may be interpreted as a backflow of information which has been previously
lost, meaning that it was no longer locally accessible on the open system only.
The result on the maximization contained in the associated quantifier measuring
the degree of non-Markovianity has been reviewed along with the measure’s local
representation for finite open quantum systems that highlights the universality and
locality of quantum non-Markovian behavior assigned to an information backflow
in the quantum state space. The functioning and use of this representation has
been demonstrated by means of an all-optical experiment where the measurement
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strategy along with the data analysis and representation was developed as a part
of this thesis. In fact, the photonic experiment has nicely shown that the degree of
non-Markovianity can be efficiently obtained in an arbitrary neighborhood of any
fixed inner state, that its determination solely requires a maximization over a single
input state, and that those quantum states which feature a maximal backflow of
information can just as well be represented by mixed states.

A fruitful extension of the trace-distance-based approach of quantum non-
Markovianity is obtained in this thesis by defining memory effects with respect
to the nonmonotonic dynamics of the trace norm of Helstrom matrices. It has
been shown that this definition combines an interpretation in terms of an informa-
tion flux and a clear-cut connection to classical Markov processes on the level of
the rate equations for 1-point probabilities. Indeed, the extended approach leads
to a definition of quantum Markovianity that has been proven to be equivalent
to P-divisibility which finally ensures that the jump process associated with the
eigenvalues of an evolving open system state is characterized by a Pauli master
equation of a classical Markov process. For dynamical processes that have the
maximally mixed state in their image, P-divisibility has, in addition, be shown
to be not only sufficient but also necessary to warrant the connection of any rate
equation obtained from a quantum master equation to a classical Markov process.
This result mainly follows from an obtained characterization of the eigenbases of
states defining a convex set. It is worth noticing that the generalized approach
may also be applied when the notion of divisibility is ill defined.

Besides having the interpretation and the experimental feasibility in common
with the trace-distance-based approach, the statements about optimal states, fea-
turing a maximal backflow of information, and a local representation could be
shown to hold true for the generalized measure, too. As a result, the analytical,
numerical and experimental determination of the extended definition is drasti-
cally simplified. Moreover, it proves locality and universality of quantum non-
Markovianity defined via the generalized criterion. Despite these nice features,
the generalized approach does not reconcile with the other definitions of quantum
Markovianity. The persisting difference with those approaches that are based on
CP-divisibility has been highlighted by means of a particular model for two-level
systems. Similarly, a paradigmatic model has been used to illustrate the essential
feature of the generalized definition in comparison with the original definition, that
is, the sensitivity to memory effects arising from uniform translations of the state
space.

Addressing the mathematical structure of the space of non-Markovian quantum
dynamical maps, it has been shown in the present thesis that the set of Markovian
processes is not convex. In fact, a non-P-divisible dynamics has been obtained
by mixing two particular CP-divisible processes. In conjunction with the recent
results, obtained by other researchers, that the set of non-Markovian processes
is neither convex and, within the set of Markovian dynamics, the mixing of CP-
divisible processes can result in a process that is solely P-divisible, this provides far
reaching advances in the understanding of the mathematical structure of the set
of dynamical processes. To complete the picture, it remains, however, for future
studies to consider the results of a mixing of P-divisible processes which finally
uncovers the full structure of the sets of Markovian and non-Markovian dynamics.
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This study may also lead to a complete understanding of non-Markovianity in the
quantum domain and, therefore, the physical and mathematical causes of memory
effects. Eventually, this might culminate in a complete theory of non-Markovian
quantum dynamics providing, e.g., necessary and sufficient conditions for time-
local master equations to yield a completely positive dynamics.

Apart from structured or finite reservoirs, low temperatures, and long-lasting,
nonnegligible system-environment correlations, an initially correlated environment
provides a particular source of memory effects which, in addition, typically leads
to the counterintuitive phenomenon that enlarging a system turns the dynamics
from being Markovian to non-Markovian, contrary to the standard situation. The
role of entanglement for this phenomenon has been investigated in this thesis for
a model of two qubits that are locally coupled to an environment being described
by two-mode Gaussian states, leading to a pure dephasing dynamics which can
be solved exactly even in the presence of a continuum of modes with an ohmic
spectral density. For appropriately chosen subsequent local interactions (short
with respect to the environmental correlation time), strong revivals of a nonlocal
coherence factor, corresponding to the renascence of entanglement of a Bell state,
have surprisingly been observed for separable as well as entangled Gaussian states
that are characterized by correlation coefficients of the canonical operators with
unit magnitude. Thus, entanglement in the environment is not the only source for
such nonlocal memory effects.

While the requirement of a short interaction length has been shown to result
from the detrimental effect of the free evolution of the bosonic baths, the con-
straint on the environmental state’s correlation coefficient has been explained by
means of a general pure dephasing dynamics with Gaussian states of the envi-
ronment, from which a necessary and sufficient condition for the occurrence of
nonlocal memory effects in terms of the magnitude of the correlation coefficient as-
sociated with the environmental coupling operators has been deduced. To deepen
the study of nonlocal memory effects, it has been examined, besides the evolution
of correlations between the different subsystems, whether or not they can effec-
tively be observed with finite-dimensional environments in a maximally entangled
state. As a consequence of the thus-obtained conditions on the local unitaries,
each of the two quantum systems constituting the bipartite environment must at
least be three-dimensional in order to find nonlocal memory effects for maximally
entangled environments. A reasoning for the impossibility of two-level systems for
the environments along with a systematic solution and analysis of the constraints
is, however, still missing and remains an interesting task for future studies.

Due to the dependence of nonlocal memory effects for bosonic environments on
the strength of correlations within the environment, it also provides an example
for information on a complex system that can be obtained from the dynamics of
another quantum system. In the last part of the present thesis, the possibilities
and methods on information extraction about a quantum system by means of ob-
serving a second system that is coupled to it has been considered in general terms
using different approaches. Inspired by the concept of premeasurements devel-
oped within the theory of quantum measurements, one approach to this question
has been to compare probability distributions associated with observables on the
probe and the object system. While for target observables on the object defining
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constants of motion, such that a proper joint probability distribution with correct
marginals exists, entropic quantifiers such as the conditional entropy and the mu-
tual information may be used to determine how correlated the two distributions
are, one needs tools for the general case allowing to compare the probability dis-
tributions directly. The Wasserstein distance has been shown to provide, e.g., a
means to do this which has eventually been used for a first study of the fragility of
a premeasurement of an observable on a finite-dimensional Hilbert space against
imperfections. The revealed behavior of the distance as a function of imperfect
state preparations and of perturbations of a perfectly correlating unitary dynam-
ics deserves further studies in the future. Similarly, an interesting problem is given
by the quest for a strict relation between the amount of information that is gained
by measuring the probe system and the thus-induced disturbance on the object.
Such an information-disturbance relation would provide an instance of Heisen-
berg’s intuition on a quantum mechanical uncertainty principle. Several known
tradeoff relations have been shown to be not applicable to the considered setup of
an indirect measurement so that this interesting task is left for future studies.

Besides considering a single measurement, the information gain due to the dy-
namics of a probe system has also been considered on the basis of two general
approaches. On the one hand, it has been shown how a pure dephasing dynamics
of an open quantum system that is equivalent to a harmonic oscillator carries infor-
mation on constants of motion of a finite-dimensional quantum object in the spirit
of ergodic stationary stochastic processes. That is, the time-averaged expectation
value of an observable linear in the canonical observables converges to the expecta-
tion value of a sought object observable for an appropriately adjusted interaction.
On the other hand, for a dissipative coupling, it has been shown how information on
an object system can be obtained from the time-dependent measurement statistics
of a quantum probe having a variable energy splitting. In the limit of an off-
resonant energy splitting, the probability distribution can be expanded in a power
series of the inverse scaling of the energy splitting where each order provides some
information on the object. As the leading terms are unambiguously determined
and addressed by the preparation of the probe state and the applied measurement,
different properties of the quantum object may then be inferred by post-processing
the measurement statistics obtained for various values of the energy splitting. The
prospects of this strategy, which may also be further extended to multiple selective
measurements, have been illustrated by determining the superfluid excitations in
the Bose-Hubbard model using a harmonically trapped impurity atom.

These two general approaches provide a first hint on the potential of such
probing strategies, but a more systematic study needs to be done in the future in
order to fully reveal their capabilities and limitations, finally establishing a new
kind of sensors for complex quantum systems.



Appendix A

The symplectic group

In the present chapter it is shown that the set of symplectic matrices Sp(2n,R) =
{Sn ∈ M2n(R)|SnΩnS

T
n = Ωn} defines a group with respect to ordinary matrix

multiplication which, in addition, is closed under transposition. As Sp(2n,R) rep-
resents a subgroup of the set of invertible matrices GL(2n,R) it also defines a Lie
group, equipped with the standard Lie bracket [A,A′] = AA′−A′A, where the cor-
responding Lie algebra sp(2n,R) is given by matrices satisfying AΩn + ΩnA

T = 0.
Note that the defining property for elements of the Lie algebra is equivalent to
ΩnA + ATΩn = 0 as one has Ω−1

n = −Ωn = ΩT
n , and the exponential map, relat-

ing the Lie algebra to the Lie group, is given by the ordinary matrix exponential
provided the element is sufficiently close to unity (Dragt, 2005).

Recall that a real 2n× 2n-matrix S is called symplectic if and only if

SΩnS
T = Ωn (A.1)

holds where Ωn = ⊕n
j=1 ω and ω =

( 0 1
−1 0

)
(cf. Eq. (2.95)). To show the group

property, one first recognizes that the neutral element of the matrix multiplication,
i.e. 12n = diag(1, . . . , 1) trivially satisfies (A.1) and for two symplectic matrices
S,R ∈ Sp(2n,R) one finds

SRΩn(SR)T = SRΩnR
TST = SΩnS

T = Ωn . (A.2)

Hence, SR ∈ Sp(2n,R) so that the set of symplectic matrices Sp(2n,R) is closed
under matrix multiplication which is obviously associative. To complete the proof
that Sp(2n,R) defines a group, it remains to show that any symplectic matrix is
invertible with an inverse that is symplectic, too. For an element S ∈ Sp(2n,R)
one considers

R ≡ ΩnS
TΩT

n , (A.3)

which obeys

SR = SΩnS
TΩT

n = ΩnΩT
n = 12n , (A.4)

and, therefore, defines the right inverse of the 2n × 2n-matrix S . However, the
existence of left and right inverse goes hand in hand for square matrices as there
are no one-sided inverses for square matrices. One concludes that R = S−1 defines
the unique inverse of S which is also symplectic since one deduces

RΩnR
T = RΩn(ΩnSΩT

n ) = −RSΩT
n = −ΩT

n = Ωn , (A.5)
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which completes the proof that Sp(2n,R) defines a group.
Moreover, the symplectic group Sp(2n,R) is closed with respect to matrix trans-

position, i.e., one has S ∈ Sp(2n,R) if and only if ST ∈ Sp(2n,R) . In fact, given
S ∈ Sp(2n,R) one finds

STΩn(ST )T = −Ω2
nS

TΩnS = ΩnRS = Ωn , (A.6)

so that ST ∈ Sp(2n,R) and the same applies for the converse. Note that the
symplectic group can thus be defined via the equation STΩnS = Ωn , too.

Before turning to the associated Lie algebra, it is shown that symplectic matri-
ces are unimodular, i.e., one has det(S) = +1 for any S ∈ Sp(2n,R). Clearly, it fol-
lows from the symplectic property (A.1) that det(S) = ±1 holds since det(Ωn) = 1
and the determinant is multiplicative and invariant under matrix transposition.
To exclude the case det(S) = −1, one considers the Pfaffian

pf(A)2 = det(A) , (A.7)

that is defined for skew-symmetric matrices. By definition, it describes the square
root of the polynomial representing the determinant of the concerned matrix. Note
that the eigenvalues of skew-symmetric matrices come in pairs ±λ as A and AT

are similar. It follows that the determinant and, thus, the Pfaffian of any odd-
dimensional skew-symmetric matrix vanishes as such a matrix must necessarily
have at least one zero eigenvalue. Another intriguing property of the Pfaffian is
given by the relation

pf(BABT ) = det(B)pf(A) , (A.8)

for any B ∈M2n(R) where A denotes a skew-symmetric 2n×2n-matrix. Applying
this to the skew-symmetric matrix Ωn and elements of the symplectic group S ∈
Sp(2n,R), one obtains

pf(Ωn) = pf(SΩnS
T ) = det(S)pf(Ωn) , (A.9)

which is equivalent to det(S) = +1 as one has pf(Ωn)2 = det(Ωn) = +1.
To conclude the study on the symplectic group, one shows that the Lie algebra

sp(2n,R) associated with it is indeed defined by

sp(2n,R) = {A ∈ GL(2n,R) |AΩn + ΩnA
T = 0} . (A.10)

First, differentiating γ(t)Ωnγ(t)T at t = 0 where γ(t) = exp[At] represents a dif-
ferentiable path for some A ∈ sp(2n,R) satisfying γ(0) = 12n , one finds

d
dtγ(t)Ωnγ(t)T

∣∣∣
t=0

= AΩn + ΩnA
T . (A.11)

Hence, the requirement γ(t)Ωnγ(t)T = Ωn implies AΩn + ΩnA
T = 0. To show the

converse, assume that a 2n × 2n-matrix A satisfies AΩn + ΩnA
T = 0. Then, one
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deduces

exp[At]Ωn =
(
12n +

∞∑

k=0

tk

k!A
k
)
Ωn

= Ωn +
∞∑

k=1

tk

k!A
k−1(−Ωn)AT

...

= Ωn +
∞∑

k=1

(−t)k
k! ΩnA

T k = Ωn exp[−AT t] , (A.12)

which is equivalent to the defining property of the symplectic group and, thus,
completes the proof. Note that any symmetric 2n × 2n-matrix R determines an
element in sp(2n,R) by means of ΩnR or RΩn as one easily shows. Such a matrix
is called Hamiltonian matrix (Dragt, 2005).

As indicated previously, any symplectic matrix S that is sufficiently close to
unity can indeed be written as exp[A] for some unique element A ∈ sp(2n,R)
(Dragt, 2005). As a matter of fact, the matrix exponential is not surjective, but
two factors suffice. That is, any symplectic matrix S can be written as S =
exp[A] exp[A′] for two elements A,A′ ∈ sp(2n,R) due to the polar decomposition
of the real symplectic group (Arvind et al., 1995).





Appendix B

Uncertainty relation for covariance matrices

Here, the necessary and sufficient condition (cf. Eq. (2.106))

σX̂,ρ + i

2Ωn ≥ 0 (B.1)

on the covariance matrix of the canonical operators for an n-mode continuous
variable state ρ is derived. Starting from Schrödinger’s uncertainty relation (see,
e.g., Griffiths (2004)), any pair of operators satisfies

〈〈Â〉〉ρ〈〈B̂〉〉ρ ≥
∣∣∣12〈{Â, B̂}〉ρ − 〈Â〉ρ〈B̂〉ρ

∣∣∣
2

+
∣∣∣ 1
2i〈[Â, B̂]〉ρ

∣∣∣
2
, (B.2)

which for position and momentum operators reads

〈〈q̂〉〉ρ〈〈p̂〉〉ρ ≥
∣∣∣12〈{q̂, p̂}〉ρ − 〈q̂〉ρ〈p̂〉ρ

∣∣∣
2

+ 1
4 . (B.3)

Furthermore, as the anticommutator {q̂, p̂} is Hermitian, this can be conveniently
written as

detσX̂,ρ ≥
1
4 , (B.4)

where σX̂,ρ refers to the single mode covariance matrix whose positivity1 directly
follows from (B.4). Clearly, the well-known Heisenberg uncertainty principle, i.e.,
〈〈q̂〉〉ρ〈〈p̂〉〉ρ ≥ 1

4 is a simple consequence of this relation that actually character-
izes the covariance matrix completely. This means that any 2 × 2-matrix satis-
fying condition (B.4) is physically realizable as the covariance matrix of a state
ρ ∈ S(L2(R)

)
. As symplectic matrices are unimodular2, condition (B.4) is further-

more invariant under symplectic transformations3 so that it can be transformed
1As the covariance matrix is symmetric, it is diagonalizable and, therefore, the determinant is

the product of the eigenvalues. It then follows from Eq. (B.4) that the eigenvalues must have the
same sign. However, as the diagonal entries of the covariance matrix defining the variances are
positive, one concludes that eigenvalues are indeed positive.

2In fact, the determinant of any element of the symplectic group is +1 (see Appendix A).
3Note that the symplectic transformation of the covariance matrix SσX̂,ρS

T = σSX̂,ρ amounts
to the transformation ρ(S) = USρU

†
S of an arbitrary state by the unitary representative US

corresponding to S ∈ Sp(2n,R). That is, one has σX̂,ρ(S) = σSX̂,ρ .
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into det
(
diag(κ, κ)

) ≥ 1
4 by applying Williamson’s theorem (2.100) to the real

symmetric and positive covariance matrix. Obviously, this is equivalent to

κ ≥ 1
2 , (B.5)

since the symplectic eigenvalues are strictly positive by definition.
If Williamson’s theorem is in turn used for the covariance matrix of an n-

mode continuous variable system, one recognizes that this yields uncoupled pairs
of canonical operators. Hence, the general n-mode case reduces simply to n copies
of the single mode example. A real symmetric and positive square matrix V ∈
M2n(R) is thus a bona fide covariance matrix if and only if all of its symplectic
eigenvalues satisfy

κj ≥
1
2 , (1 ≤ j ≤ n) (B.6)

As the eigenvalues of the matrix diag(κ1, κ1, . . . , κn, κn) + (i/2)Ωn are given by
κj± 1

2 for all j, one rewrites condition (B.6) as diag(κ1, κ1, . . . , κn, κn)+(i/2)Ωn ≥
0. Finally, even though symplectic transformations do not represent similarity
transformations in general, they preserve positivity of the concerned matrix be-
cause they are nonsingular (Simon et al., 1994). Any real symmetric 2n×2n-matrix
V is thus a bona fide covariance matrix for an n-mode quantum system if and only
if V + (i/2)Ωn is positive semidefinite which is condition (B.1)

It is worth stressing that Eq. (B.1) implies already V ≥ 0 since the sum of posi-
tive semidefinite matrices remains positive semidefinite, and one has V +(i/2)Ωn ≥
0 if and only if V − (i/2)Ωn ≥ 0 due to the invariance of the spectrum under trans-
position. One observes moreover that states with minimal uncertainty are pure
as the purity for Gaussian states is given by P (ρ) = Tr{ρ2} =

[
2n
√

det(σX̂,ρ)
]−1

(Olivares, 2012).
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Two-mode squeezed vacuum

In the following, a detailed derivation of the position representation and the co-
variance matrix of the two-mode squeezed vacuum (2.135) is provided.

Recall that the state was defined with respect to the number bases as (cf.
Eq. (2.136))

|ψu〉 =
√

1− u2
∞∑

n=0
un|n〉 ⊗ |n〉 (C.1)

with u = tanh(r ∈ R). One readily checks using the geometric series that this
state is normalized. In fact, one obtains

〈ψu|ψu〉 = (1− u2)
∞∑

n,m=0
un+m(〈m|n〉)2 = (1− u2)

∞∑

n=0

(
u2)n = 1 . (C.2)

The position representation is then found to be given by

ψu(x, y) = 1√
π

exp
[
−1

4
1− u
1 + u

(x+ y)2 − 1
4

1 + u

1− u(x− y)2
]
, (C.3)

and the associated covariance matrix of the canonical operators reads

σEPR
X,r = 1

2




cosh(2r) 0 sinh(2r) 0
0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0
0 − sinh(2r) 0 cosh(2r)


 . (C.4)

Lemma C.1. The wave function of the state |ψu〉 is given by ψu(x, y), i.e.

ψu(x, y) = 〈x, y|ψu〉 . (C.5)

Proof. By definition, one has

〈x, y|ψu〉 =
√

1− u2
∞∑

n=0
un〈x|n〉〈y|n〉 , (C.6)

where the position representation of the number states is determined by 〈x|n〉 =
(
√
π2nn!)−1/2Hn(x) exp[−1

2x
2] . Here, Hn denotes the Hermite polynomial (for

~ = 1 and Mω = 1) of degree n which are defined as

Hn(x) = (−1)n exp[x2] dn
dxn exp[−x2] . (C.7)
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Using the Fourier transform of Gaussian functions
∫

R

ds exp
[
isx− s2/p2

]
= p
√
π exp[−1

4p
2x2] , (C.8)

the Hermite polynomials are equivalently written as

Hn(x) = exp[x2]
2
√
π

∫

R

ds (−is)n exp[isx− 1
4s

2] . (C.9)

By virtue of this representation, one explicitly determines the following series which
is also known as Mahler’s formula:

∞∑

n=0
un
Hn(x)Hn(y)

2nn! = ex
2+y2

4π

∫

R

ds
∫

R

dt ei(sx+ty)−1
4 (s2+t2)

∞∑

n=0

1
n!

(
−ust2

)n

= ex
2+y2

4π

∫

R

ds
∫

R

dt ei(sx+ty)−1
4 (s2+t2)−1

2ust . (C.10)

Changing variables to σ ≡ 1√
2(s+ t) and τ ≡ 1√

2(s− t) for which the determinant
of the Jacobian has modulus 1, one finally obtains

∞∑

n=0
un
Hn(x)Hn(y)

2nn! = ex
2+y2

4π

∫

R

dσ e
1√
2 iσ(x+y)−1

4 (1+u)σ2
∫

R

dτ e
1√
2 iτ(x+y)−1

4 (1−u)τ2

= ex
2+y2

4π · 2
√
π√

1 + u
e
− (x+y)2

2(1+u) · 2
√
π√

1− u e
− (x−y)2

2(1−u)

= 1√
1− u2 · exp

[
2u

1 + u
xy − u2

1− u2 (x− y)2
]
. (C.11)

With the help of this identity one can now evaluate (C.6). In fact, employing the
relation

− 1
2(x2 + y2)− u2

1− u2 (x− y)2 + 2u
1 + u

xy

= − 1
4

1− u
1 + u

(x+ y)2 − 1
4

1 + u

1− u(x− y)2 , (C.12)

one finally obtains

〈x, y|ψu〉 =
√

1− u2 · e
−1

2 (x2+y2)
√
π

∞∑

n=0

un

2nn! Hn(x)Hn(y)

= 1√
π

exp
[
−1

2(x2 + y2)− u2

1− u2 (x− y)2 + 2u
1 + u

xy

]

= 1√
π

exp
[
−1

4
1− u
1 + u

(x+ y)2 − 1
4

1 + u

1− u(x− y)2
]
, (C.13)

which is the desired result, i.e. 〈x, y|ψu〉 = ψu(x, y) .
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Note that the converse statement follows from the following identity for Hermite
polynomials (see, e.g., Schleich (2001, p. 126)):

∫

R

dx Hn(λx)e−(x−x0)2 =
√
π (1− λ2)

n
2 Hn

( λ√
1− λ2x0

)
. (C.14)

Lemma C.2. The state with position representation given by Eq. (C.3) is |ψu〉 ,
i.e., one has |ψu〉 =

∫
R

dx
∫
R

dy ψu(x, y)|x, y〉 .

Proof. Employing the completeness of the number basis, one finds
∫

R

dx
∫

R

dy ψu(x, y)|x, y〉 =
∞∑

n,m=0
f(n,m)|n,m〉 , (C.15)

where f(n,m) ≡ ∫
R

dx
∫
R

dy 〈n|x〉〈m|y〉ψu(x, y) can be written as

f(n,m) = 1
π
√

2nn!2mm!

∫

R

dx
∫

R

dy Hn(x)Hm(y)e−y2
e
−
(

x√
1−u2−

uy√
1−u2

)2

, (C.16)

using completion of the square. Changing variables to x̃ ≡ x/
√

1− u2 and employ-
ing identity (C.14) on Hermite polynomials, one retrieves

f(n,m) =
√

1− u2

π
√

2nn!2mm!

∫

R

dyHm(y)e−y2√
πunHn(y) , (C.17)

which can be further evaluated due to orthogonality of the Hermite polynomi-
als with respect to the weight function exp[−y2] . In fact, due to the relation∫
R

dyHm(y)Hn(y)e−y2 = δn,m2nn!
√
π , one finally obtains

f(n,m) =
√

1− u2unδnm . (C.18)

which thus leads to
∫

R

dx
∫

R

dyΨu(x, y)|x, y〉 =
√

1− u2
∞∑

n=0
un|n, n〉 , (C.19)

showing that the position representation of |ψu〉 is indeed given by ψu(x, y).

Due to the fact that the wave function of the two-mode squeezed vacuum is
a Gaussian function, the covariance matrix can easily be calculated directly. One
recalls that the covariance matrix σX̂,ρ in a state ρ of a set of observables X̂ = (X̂j)
is defined as

(
σX̂,ρ

)
jk

= 1
2〈{X̂j , X̂k}〉ρ − 〈X̂j〉ρ〈X̂k〉ρ . (C.20)

For X̂ = (q̂1, p̂1, q̂2, p̂2) where the position representation of the canonical operators
are given by

〈~x|q̂j |~y〉 = δ(~x− ~y)xj , (C.21)

〈~x|p̂j |~y〉 = δ(~x− ~y) (−i~) · ∂

∂xj
, (C.22)
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the associated covariance matrix of the two-mode squeezed vacuum state can be
determined by means of the following Gaussian integrals (Bronstein and Semendja-
jew, 1996): For any vectors ~v, ~w ∈ Rn and any n×n-matrices A,B,D,Λ ∈Mn(R)
where A and B are symmetric and positive definite, one has

∫

Rn
dn~x ~xTD~x exp

[
−~xTA~x+ ~vT~x

]
=
[
~uTD~u+ 1

2Tr{DA−1}
]
M (C.23)

and
∫

Rn
dn~x exp

[
−~xTB~x+ ~wT~x

] (
− ∂

∂x
Λ ∂

∂x

)
exp

[
−~xTA~x+ ~vT~x

]

=
[
2Tr{BΛAC−1}+ 4~zTBΛA~z − 2~zT (BΛ~v +AΛ~w) + ~wTΛ~v

]
M , (C.24)

where one has

M =
√
πn/ det(A) exp

[
1
4~v

TA−1~v
]
, (C.25)

~u = (1/2)A−1~v , (C.26)
C = A+B , (C.27)
~y = ~v + ~w , (C.28)

~z = 1
2C
−1~y . (C.29)

Since the wave function of the two-mode squeezed vacuum may be written as

ψu(x, y) = 1√
π

exp
[
−1

2(x, y)A−(x, y)T
]

(C.30)

with
A± =

(
cosh(2r) ± sinh(2r)
± sinh(2r) cosh(2r)

)
, (C.31)

thus satisfying A−1
− = A+ and det(A±) = 1, one directly concludes from the

absence of linear terms with respect to x and y that it has vanishing means. By
virtue of Eqs. (C.23) and (C.24), the diagonal elements of the covariance matrix
σX̂,|ψu〉 (~ = 1) are eventually determined as

(
σX̂,|ψu〉

)
jj

=
∫

R2
d2~x

1
π
~xTDi~x exp

[
−~xTA−~x

]
= 1

2Tr{DjA+} (C.32)

for j = 1, 3 and

(
σX̂,|ψu〉

)
kk

=
∫

R2
d2~x

1
π

exp
[
−1

2~x
TA−~x

](
− ∂

∂x
Λk

∂

∂x

)
exp

[
−1

2~x
TA−~x

]

= 1
2Tr(A−ΛkA−A+) = 1

2Tr{A−Λk} (C.33)

for the indices k = 2 and 4, where the matrices Dj and Λk are defined as

Dj =
(
δj,1 0
0 δj,3

)
, Λk =

(
δk,2 0
0 δk,4

)
. (C.34)



209

The diagonal entries of the covariance matrix are thus found to be given by
(
σX̂,|ψu〉

)
ll

= 1
2 cosh(2r) , ∀ l = 1, . . . , 4 , (C.35)

and the off-diagonal entries are similarly determined which finally yields
(
σX̂,|ψu〉

)
13

(C.23)= 1
2Tr{CA+} = 1

2 sinh(2r) , (C.36)
(
σX̂,|ψu〉

)
24

(C.24)= 1
2Tr{A−C} = −1

2 sinh(2r) , (C.37)

as C = ( 0 1
0 0 ), whereas the remaining entries are zero. Hence, the covariance matrix

of the EPR state for X̂ = (q̂1, p̂1, q̂2, p̂2) is indeed given by Eq. (C.4).
An alternative approach to obtain the covariance matrix of this two-mode Gaus-

sian state is provided by a direct evaluation of the characteristic function (2.102).
Defining ~z = ~x+ i~y for elements ~x and ~y of R2, one finds for the EPR state for this
function

χt|ψu〉(~z) =
∫

R2
d2~r

∫

R2
d2~s ψu(~r)∗ψu(~s) 〈~r | exp

[
−it

2∑

k=1
(xkp̂k − ykq̂k)

]
|~s 〉 . (C.38)

The transition matrix element can be evaluated by means of the Campbell-Baker-
Hausdorff formula

eX̂+Ŷ = eX̂eŶ e−
1
2 [X̂,Ŷ ] , (C.39)

and the identities eiyq̂|x〉 = eiyx|x〉 and eiyp̂|x〉 = |x − y〉 for some real number y ,
which finally gives

〈~r| exp
[
−it

2∑

k=1
(xkp̂k − ykq̂k)

]
|~s〉

= δ
(
~r − (t~x+ ~s)

) · exp
[
it

2∑

j=1
yjsj + 1

2 it
2

2∑

k=1
xkyk

]
. (C.40)

Employing the result of a Gaussian integral
∫

Rn
dn~λ exp

[
−~λTA~λ+ ~µT~λ

]
=
√

πn

det(A) · exp
[

1
4~v

TA−1~v
]
, (C.41)

as well as AT− = A− , the characteristic function is shown to obey

χt|ψu〉(~z) = 1
π

∫

R2
d2~r

∫

R2
d2~s e−

1
2~r

TA−~r−1
2~s

TA−~sδ(~r − (t~x+ ~s))eit~y
T~s+ 1

2 it
2~y T ~x

= 1
π
e−

1
2 t

2~xTA−~xe
1
2 it

2~yT ~x
∫

R2
d2~s e−~s

TA−~set(i~y
T−(A−~x)T~s)

= exp
[
− t

2

2 (x1, x2, y1, y2)A− ⊕A+(x1, x2, y1, y2)T
]
. (C.42)

An easy transformation of the exponential function’s argument then yields the
common representation of the characteristic function proving that the two-mode
squeezed vacuum is Gaussian with covariance matrix given by Eq. (C.4).





Appendix D

Position representation of two-mode Gaussian
states

Besides the Husimi Q-function (Husimi, 1940) and the P -representation (Glauber,
1963; Sudarshan, 1963), the Wigner function provides another phase-space formu-
lation of operators of a continuous variable system (Wigner, 1932; Glauber, 1963;
Cahill and Glauber, 1969). Its inverse, assigning symmetrically ordered operators
on L2(Rn) to these phase-space distributions, is given by the so-called Weyl trans-
form (Weyl, 1927; Moyal, 1949). Note that the ordering of the operators is an
important feature which corresponds to the quantization rule applied for classical
quantities in quantum theory.

The Weyl transform of an n-mode state ρ , providing the correct order of oper-
ators, is defined by

Wρ(PpX̂, PqX̂) ≡ 1
(2π~)n

∫

Rn
dn~x

∫

Rn
dn~y e+i/~ (~xTPoX̂+~y TPeX̂)χt=1

ρ (~y − i~x) ,

(D.1)

where X̂ = (q̂1, p̂1, . . . , q̂n, p̂n)T and the matrices Pp ≡ diag(0, 1, . . . , 0, 1) and
Pq ≡ diag(1, 0, . . . , 1, 0) single out the canonical momentum and position oper-
ators, respectively. Thus, the function Wρ represents the state ρ in terms of the
canonical operators. Note that the connection to the Wigner function is established
by virtue of Eq. (2.112).

Applying again the Campbell-Baker-Hausdorff formula (C.39), one finds for
the position representation of the Weyl transform (with ~ = 1)

〈~x ′|Wρ|~y ′〉 = 1
(2π)n

∫

Rn
dn~x

∫

Rn
dn~y δ

(
~y − (~y ′ − ~x ′))e

i
2~x

T (2~x ′+~y)χt=1
ρ (~y − i~x)

= 1
(2π)n

∫

Rn
dn~x e

i
2~x

T (~x ′+~y ′)χt=1
ρ

(
~y ′ − ~x ′ − i~x) . (D.2)

Upon inserting the characteristic function corresponding to a two-mode Gaussian
state with vanishing means and covariance matrix in standard form (2.124), which
reads

χt=1
ρ (~x+ i~y) = exp

[
−1

2 ~v
T

(
a12 diag(c1, c2)

diag(c1, c2) b12

)
~v

]
, (D.3)
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where ~v = (−y1, x1,−y2, x2)T , the position representation of the Weyl transform
is finally evaluated to

〈~x ′|Wρ|~y ′〉 = 1
(2π)2 e

−1
2 (~y ′−~x ′)TB2(~y ′−~x ′)

∫

R2
d2~x e

i
2~x

T (~x ′+~y ′)−1
2~x

TB1~x

= 1
(2π)2 exp

[
−1

2(~y ′ − ~x ′)TB2(~y ′ − ~x ′)
]

·
√

(2π)2

det(B1) exp
[
−1

8(~y ′ + ~x ′)TB−1
1 (~y ′ + ~x ′)

]
, (D.4)

using multidimensional Gaussian integration (C.41). Here, the matrices Bj are
defined as

Bj =
(
a cj
cj b

)
, (D.5)

so that its inverse obeys

B−1
j = 1

det(Bj)

(
b −cj
−cj a

)
. (D.6)

For the two-mode squeezed vacuum, the matrices Bj are found to be given by
1
2A(−1)j+1 (cf. Eq. (C.31)) which implies that one has det(Bj) = 1

4 and the inverse
obeys B−1

j = 2A(−1)j . The Weyl transform (D.4) then reads

〈~x ′|Wρ|~y ′〉 = 1
π

exp
[
−1

4
{
(~y ′ − ~x ′)TA+(~y ′ − ~x ′)

+ (~y ′ + ~x ′)TA−(~y ′ + ~x ′)
}]
, (D.7)

which is indeed equal to ψu(~x ′)ψu(~y ′)∗ (cf. Eq. (C.3)).



Appendix E

Dynamics for the spin star model

In the following, the exact dynamics for the initial state (cf. Eq. (3.107))

|ξλV (0)〉SE =b1V |1〉 ⊗ |χ+〉E + b0V |0〉 ⊗ |Ω̃λ〉E , (E.1)

describing the central spin along with the N -particle spin bath is solved and then
used to determine the central spin’s dynamics needed for the studies presented in
Sec. 3.5.2.

Recall that the Hamiltonian for the Heisenberg XY interaction (3.106) can be
written as

H = g{σ+ ⊗ J− + σ− ⊗ J+} (E.2)

for a real-valued coupling g , where J± refer to the raising and lowering operators
of the total spin angular momentum of the bath ~J = 1

2
∑N
k=1 ~σ

(k) (for ~ = 1).
Moreover, the environmental state |Ω̃λ〉E (see also Eq. (3.108)) is chosen to be a
superposition of the states

|χ+〉E = |N2 , N2 〉 , |χ−〉E = i|N2 , N2 − 1〉 , (E.3)

defining joint eigenstates1 |j,m〉 of ~J 2 and J3 with eigenvalues j(j + 1) and m,
respectively. Hence, the Hamiltonian (E.2) basically interchanges |1〉 ⊗ |N2 , N2 − 1〉
and |0〉 ⊗ |N2 , N2 〉, i.e., one finds

H|1〉 ⊗ |N2 , N2 − 1〉 = g
√
N |0〉 ⊗ |N2 , N2 〉 , (E.4)

H|0〉 ⊗ |N2 , N2 〉 = g
√
N |1〉 ⊗ |N2 , N2 − 1〉 , (E.5)

whereas the two other combinations of eigenstates of σ3 and bath states |χ±〉E are
in the kernel of H . Then, it follows that

H2n+1|ξλV (0)〉SE = (g
√
N)2n+1|ξ̃λV (0)〉SE , (E.6)

H2n+2|ξλV (0)〉SE = (g
√
N)2n+2| ˜̃ξλV (0)〉SE , (E.7)

1The assignment of these eigenstates by |j,m〉 is in general incomplete as the dimension of
the eigenspaces corresponding to a given pair (j,m) of quantum numbers is given by n(j,N) =(

N
N
2 −j

)
−
(

N
N
2 −j−1

)
(see, e.g., Breuer et al. (2004)). In the present case where j = N/2, one

thus finds n(N/2, N) = 1 so that no further index labeling the degenerate eigenstates is needed.
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for all n ∈ N0 where

|ξ̃λV (0)〉SE ≡ βλV |0〉 ⊗ |N2 , N2 〉+ αλV |1〉 ⊗ |N2 , N2 − 1〉 , (E.8)

| ˜̃ξλV (0)〉SE ≡ αλV |0〉 ⊗ |N2 , N2 〉+ βλV |1〉 ⊗ |N2 , N2 − 1〉 . (E.9)

Here, the coefficients αλV and βλV are defined as

αλV = b1V01 + b0V00C̃
−1
λ (1− λ) , (E.10)

βλV = ib0V10C̃
−1
λ λ , (E.11)

where Vmn refers to the transition matrix elements of the unitary V with respect
to the eigenbasis of σ3, i.e. one has Vmn ≡ 〈m|V |n〉 . The time-evolved total state
|ξλV (t)〉SE = exp[itH]|ξλV (0)〉SE is thus given by

|ξλV (t)〉SE = |ξλV (0)〉SE − i sin(g
√
Nt)|ξ̃λV (0)〉SE (E.12)

+
[
cos(g

√
Nt)− 1

]| ˜̃ξλV (0)〉SE , (E.13)

so that the reduced state of the central spin is easily shown to obey

ρ̃λS(t) =
(
p c
c∗ 1− p

)
(E.14)

where the populations and the coherences are given by

p = |αλV |2 sin(g
√
Nt)2 + |βλV |2 ·

(
1− cos(g

√
Nt)

)2

+ 2λC̃−1
λ Im(b0V10β

λ
V
∗) · (1− cos(g

√
Nt)

)

+ Im(αλV βλV
∗) · (sin(2g

√
Nt)− 2 sin(g

√
Nt)

)

− 2λC̃−1
λ Re(b0V10α

λ
V
∗) sin(g

√
Nt)

+ |b0V10|2 + |b1V11|2 + 2(1− λ)C̃−1
λ Re(b1b∗0V11V

∗
10) , (E.15)

and

c = cos(g
√
Nt) ·

{
|b1|2V ∗01V11 + |b0|2V ∗00V10

+ (1− λ)C̃−1
λ

(
b1b
∗
0V11V

∗
00 + b∗1b0V

∗
01V10

)}

+ sin(g
√
Nt) · b∗0λC̃−1

λ

{
V ∗10
[
b1V11 + b0(1− λ)C̃−1

λ V10
]

− V00
[
b1V01 + b0(1− λ)C̃−1

λ V00
]}

. (E.16)



Appendix F

Experimental details of the photonic process

Here, a summary of the photon counting rates as well as the integration times
is given that were used in the all-optical experiment discussed in Sec. 4.3.2 to
measure the polarization states. The reference states and, similarly, the initial
polarization states on the enclosing surfaces are more accurately determined due
to their relevance in the local representation (4.28) (cf. Tabs. F.1 and F.2). In
addition, to improve the accuracy of the measured degree of non-Markovianity,
the integration times for states of the enclosing surfaces that are close to the plane
which is parallel to the equatorial plane of the Bloch ball are increased, too.

ρ
(1)
0 ρ

(2)
0 ρ ⊥ %

Aα count rate tint count rate tint count rate tint

0.64 1.25× 106/400 s 400 s 1.13× 106/400 s 400 s 1× 104/2 s 2 s
0.22 1.3× 106/400 s 400 s 1.18× 106/800 s 800 s 1× 104/2 s 2 s
0.01 1.3× 106/400 s 400 s 1.18× 106/800 s 800 s 1× 104/2 s 2 s

Table F.1 – The photon count rate and the integration time tint used to measure
the reference states as well as the orthogonal states for the three different values
of the relative amplitude Aα . The integration time has been increased for the
reference states to improve the accuracy of the experimentally determined degree
of non-Markovianity.
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ρ ∈ ∂U(ρ(1)
0 )

Aα count rate tint tint(0λ) tint(θ = π
50 · x)

0.64 1.4× 104/2 s 2 s 20 s 20 s, x ∈ {22, . . . , 29}
0.22 1.4× 104/2 s 2 s 20 s 20 s, x ∈ {19, . . . , 32}
0.01 1.5× 104/2 s 2 s 20 s 20 s, x ∈ {21, . . . , 30}

ρ ∈ ∂U(ρ(2)
0 )

0.64 9.5× 103/2 s 2 s 20 s 20 s, x ∈ {6, . . . , 14}
0.22 9.7× 103/2 s 2 s 20 s 20 s, x ∈ {1, . . . , 16}
0.01 9.9× 103/2 s 2 s 20 s 20 s, x ∈ {1, . . . , 12}

Table F.2 – The photon count rate and the integration time tint used to measure
the states on the enclosing surfaces, determined by 0.3·ρ(1,2)

0 +0.7·ρ for pure states ρ
that are parametrized by an equidistant grid with respect to the polar angles θ and
φ, for the three different values of the relative amplitude Aα . The integration time
for the initial states tint(0λ) is increased due to the significance of possible errors
for these states. Moreover, the states located close to planes that are parallel to
the equatorial plane are measured more precisely in order to increase the accuracy
of the determined degree of non-Markovianity. The used integration times and the
concerned θ-angles are specified in the last column.



Appendix G

Results on the trace norm

In this section, the representation (4.36) of the Helstrom matrix is proven and it
is shown how one concludes that the upper bound in Eq. (4.35) is attained if and
only if ρ1 ⊥ ρ2 holds. To derive the representation, one needs the so-called Jordan-
Hahn decomposition (Bengtsson and Zyczkowski, 2007; Nielsen and Chuang, 2000),
providing a decomposition of any Hermitian operator, which is, for example, also
employed to show the orthogonality of optimal states (cf. Eq. (4.25) and theorem
4.3) and the local representation of the trace-distance-based measures of quantum
non-Markovianity (cf. theorems 4.1 and 4.4).

Lemma G.1. Let X be a Hermitian operator on a Hilbert space H . Then, there
exist positive operators X+ ≥ 0 and X− ≥ 0 satisfying X+X− = X−X+ = 0 and

X = X+ −X− . (G.1)

This result holds for finite and infinite systems and can be proven by means
of the functional calculus for elements of C∗-algebras (Blackadar, 2006). It is also
known from measure theory where signed measures are decomposed (Elstrodt,
2009).

Theorem G.1. Let {pj} denote a binary probability distribution. For two quantum
states ρ1 and ρ2 , the trace norm of the associated Helstrom matrix ∆ = p1ρ1−p2ρ2
satisfies

‖∆‖1 = 2 max
Π

Tr{Π∆}+ p2 − p1 . (G.2)

Proof. Let Q,S denote the positive and orthogonal operators obtained from the
Jordan-Hahn decomposition of the Helstrom matrix ∆, i.e., one has ∆ = Q − S
and, thus, Tr{∆} = p1 − p2 = Tr{Q} − Tr{S} due to the normalization of states.
Moreover, by definition of the trace norm, it follows that ‖∆‖1 = Tr{Q}+ Tr{S}
holds which can be rewritten as

‖∆‖1 = 2Tr{Q} − (p1 − p2) . (G.3)

For a projection Π, one then finds

Tr{Π∆} = Tr{Π(Q− S)} ≤ Tr{ΠQ} ≤ Tr{Q} = 1
2
(‖∆‖1 + p1 − p2

)
, (G.4)
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where equality holds if and only if Π denotes the projection onto the support of
the operator Q as Q ⊥ S . Thus, one concludes

max
Π

Tr{Π∆} = 1
2
(‖∆‖1 + p1 − p2

)
, (G.5)

which is equivalent to Eq. (G.2).

Based on this representation, one shows that ‖∆‖1 = 1 if and only if ρ1 ⊥ ρ2
(cf. Eq. (4.35)). In fact, if one has ‖∆‖1 = 1 for some states ρ1 and ρ2 along with
a (nontrivial) probability distribution {pj} , it directly follows from Eq. (G.2)

max
Π

Tr{Π∆} = p1 . (G.6)

Hence, the maximizing projection Π satisfies

p1Tr{Πρ1} − p2Tr{Πρ2} = p1 . (G.7)

However, since one has 0 ≤ Tr{Πρ} ≤ 1 for any state ρ and p1,2 6= 1, it is clear that
Eq. (G.7) can only be true if Tr{Πρ1} = 1 and Tr{Πρ2} = 0 hold. While the first
equation implies that Π projects onto a subspace V which contains the support
of ρ1 , the second equation shows that the support of ρ2 must be orthogonal to V
and, therefore, one needs to have ρ1 ⊥ ρ2 .

The converse is readily obtained from the definition of the trace norm. For two
orthogonal states ρ1 ⊥ ρ2 , it follows that

‖∆‖1 = p1Tr{ρ1}+ p2Tr{ρ2} = p1 + p2 = 1 , (G.8)

due to positivity and the normalization of the states.



Appendix H

Factorizing processes despite environmental
correlations

Based on the interaction between the polarization and frequency degrees of freedom
induced by a quartz plate, one may construct a dynamical process which factorizes
despite of an initially correlated state of the environment. The state of a photon
with fixed polarization λ(= H,V ) and frequency ω, traveling through a quartz
plate, is transformed as

UQ(t)|λ〉S ⊗ |ω〉E = eiωnλt|λ〉S ⊗ |ω〉E , (H.1)

where nλ denotes the refraction index for a photon with polarization λ (Liu et al.,
2011). If the state of the frequency degrees of freedom is described by |χ〉E =∫

dω f(ω)|ω〉E with
∫

dω |f(ω)|2 = 1, then the coherence factor κ(t) given by (4.30)
which describes the dephasing of the polarization state is found to obey

κ(t) =
∫

dω |f(ω)|2 · exp[iω∆n · t] , (H.2)

where ∆n ≡ nV − nH .
Now, extending to two photons traveling through quartz plates, one may derive

a factorizing dynamical process for the polarization degrees in the presence of a
correlated environmental state (Breuer, 2012b). More precisely, for a two-photon
frequency state1 |χ′〉E1E2 = ∑1

j,k=0 αjk|ω′j〉E1 ⊗ |ω′k〉E2 with ∑
j,k |αjk|2 = 1 (cf.

Fig. H.1), the reduced dynamics of the joint polarization state obtained for the
interaction U12

SE(t, 0) = UQ(t)⊗ UQ(t) is characterized by

κ1(t) =
1∑

j,k=0
|αjk|2ei∆nω

′
jt , κ12(t) =

1∑

j,k=0
|αjk|2ei∆n(ω′j+ω′k)t , (H.3)

κ2(t) =
1∑

j,k=0
|αjk|2ei∆nω

′
kt , Λ12(t) =

1∑

j,k=0
|αjk|2ei∆n(ω′j−ω′k)t . (H.4)

1Note that the frequency degrees of freedom of photon pairs obtained from a spontaneous
parametric downconversion process are well approximated by |χ〉E1E2 =

∫
d~ω f(ω1, ω2)|ω1〉E1 ⊗

|ω2〉E2 for sufficiently weak laser pulses pumping the nonlinear crystal. For a strong pump pulse
the state of the photons is, however, rather described by an EPR state (2.136) (Lund et al., 2014).
Clearly, choosing f(ω1, ω2) =

∑1
j,k=0 αjkδ(ω1 − ω′j)δ(ω2 − ω′k) in the state |χ〉E1E2 one obtains

|χ′〉E1E2 .
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Figure H.1 – Schematic picture of a two-photon system where each polarization
degree of freedom is coupled locally to the frequency spectrum according due the
action of quartz plates which is described by the unitary UQ (see Eq. (H.1)). As
only two frequencies are supported, the environment effectively defines a two-level
system.

That is, using the notation %λ1λ′1,λ2λ′2
= 〈λ1λ′1|ρ12

S (0)|λ2λ′2〉, the polarization states
evolve according to

ρ12
S (t) =




%V V,V V κ2(t) %V V,V H κ1(t) %V V,HV κ12(t) %V V,HH
%V H,V H Λ12(t) %V H,HV κ1(t) %V H,HH

%HV,HV κ2(t) %HV,HH
c.c. %HH,HH


 . (H.5)

Clearly, the dynamical map factorizes, i.e., one has Φ12
t,0 = Φ1

t,0⊗Φ2
t,0 if and only if

κ12(t) = κ1(t) · κ2(t) and Λ12(t) = κ1(t) · κ2(t)∗ (H.6)

hold which amounts to a factorizing distribution |αjk|. That is, Φ12
t,0 factorizes if

and only if |αjk| satisfies

|αjk|2 = pj · qk , (H.7)

where pj = ∑
k |αjk|2 and qk = ∑

j |αjk|2 for all j, k ∈ {0, 1} as one directly
observes.

On the contrary, the environmental state |χ′〉E1E2 is separable (cf. Eq. (2.28))
if and only if its coefficient matrix α = (αjk) is rank deficient which is equivalent
to detα = 0. Choosing α11 = α00 = 1/2 and α10 = −α01 = 1/2, this constraint is
clearly violated (one readily deduces that detα = 1/2) but the coefficient matrix
still satisfies condition (H.7) as one has |αjk|2 = 1/4 for all indices j and k . Hence,
this choice provides an example for a factorizing dynamics in the presence of an
entangled state of the environment. Note that the associated environmental state
for this example is even maximally entangled.



Appendix I

Coherence factors for nonlocal memory effects

In the following, the derivation of the coherence factors (5.17)–(5.20) is presented
characterizing the dynamics of the model studied concerning nonlocal memory
effects in Ch. 5. Assuming identical zero-mean two-mode Gaussian states with a
covariance matrix

σ =




a1 0 c1 0
0 a1 0 c2
c1 0 a2 0
0 c2 0 a2


 , (I.1)

the characteristic function (5.11) reads

χ
√

2
ρE

((
[(−1)r − (−1)m]~β (1)(t), [(−1)s − (−1)n]~β (2)(t)

))

=
∏

k

χ
√

2
ρG,k

((
γ

(1)
k,rsmn(t), γ(2)

k,rsmn(t)
))

= exp
[
−
∑

k

{
a1|γ(1)

k,rsmn(t)|2 + a2|γ(2)
k,rsmn(t)|2

+ 2c1 Im
(
γ

(1)
k,rsmn(t)

) · Im(γ(2)
k,rsmn(t)

)

+ 2c2Re
(
γ

(1)
k,rsmn(t)

) · Re(γ(2)
k,rsmn(t)

)}]
, (I.2)

where γ(j)
k,r1r2m1m2

(t) ≡ [(−1)rj − (−1)mj ]β (j)
k (t) . Starting from the definition of

β
(j)
k (t) (cf. Eq. (5.6)), one easily deduces that the following expressions

|β(j)
k (t)|2 =

(
g

(j)
k

w
(j)
k

)2

2
{

1− cos
(
ω

(j)
k tj(t)

)}
, (I.3)

Re
(
β

(j)
k (t)

)
=
(
g

(j)
k

w
(j)
k

)2 {
cos
(
ω

(j)
k tsj

)− cos
(
ω

(j)
k (tj(t) + tsj)

)}
, (I.4)

Im
(
β

(j)
k (t)

)
=
(
g

(j)
k

w
(j)
k

)2 {
sin
(
ω

(j)
k tsj

)− sin
(
ω

(j)
k (tj(t) + tsj)

)}
. (I.5)

It directly follows that κ1(t) and κ2(t) (cf. Eqs. (5.7) and (5.8) for their respective
definitions) are determined by

κj(t) = e−2iεjte−4aj
∑

k
|β(j)
k

(t)|2 . (I.6)
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Performing the continuum limit for an ohmic spectral density Jj(ω) = αjω ·
exp[−ω/ωc] with coupling strength αj and cutoff frequency ωc , one finds

∑

k

|β(j)
k (t)|2 → 2αj

∫ ∞

0
dω e−ω/ωc

1− cos
(
ωtj(t)

)

ω

= 2αj L
{

1− cos
(
ωtj(t)

)

ω

}
(1/ωc) , (I.7)

where L denotes the Laplace transform. By means of well-known fact that the
Laplace transform of the function fy(t) =

(
1−cos(yt)

)
/t evaluated at s 6= 0 is given

by L{fy(t)} (s) = 1
2 ln(1 + (y/s)2) (cf. Eq. (5.15)) (Bronstein and Semendjajew,

1996), one finally obtains for the coherence factors κ1(t) and κ2(t) in the continuum
limit

κj(t) = e−2iεjt
{

1 + ω2
c tj(t)2

}−4ajαj
. (I.8)

To evaluate the characteristic function (I.2) for the two remaining coherence
factors κ12(t) and Λ12(t) for a continuum of modes with an ohmic spectral density,
one needs the relations for Laplace transforms of sinus-modulated functions,

L{sin(xt)f(t)}(s) = 1
2i
{
F (s− ix)− F (s+ ix)

}
, (I.9)

as well as the following equation

L{f(t)/t}(s) =
∫ ∞

s
dq F (q) , (I.10)

where F refers to the Laplace transform of the function f , i.e. one has F (·) =
L{f(t)}(·) . Employing that the Laplace transform of sin(yt) at s is known to be
given by y/(s2 + y2), one deduces

L
{sin(yt)

t

}
(s) =

∫ ∞

s
dq y

q2 + y2 =
[
arctan

(q
y

)]∞

s

= arctan
(
y

s

)
, (I.11)

using Eq. (I.10) and the facts that π
2 − arctan (s/y) = arccot (s/y) holds and one

has arccot(z) = arctan(1/z) for any z 6= 0 (Bronstein and Semendjajew, 1996)
which is satisfied here since s = ω−1

c 6= 0. By virtue of Eq. (I.9) and this result, it
is thus found

L
{

sin(xt)sin(yt)
t

}
(s) = 1

2i

[
L
{sin(yt)

t

}
(s− ix)− L

{sin(yt)
t

}
(s+ ix)

]

= 1
2i

[
arctan

(
y

s− ix

)
− arctan

(
y

s+ ix

)]
. (I.12)

Clearly, y/(s ± ix) vanishes if and only if y = 0 and one has Re
(
y/(s ± ix)

)
=

ys/(s2 +x2) 6= 0 for any y 6= 0 because s = ω−1
c 6= 0. Therefore, the representation

of arctan on C in terms of complex logarithms can be used. More precisely, one
has

arctan(z) = i

2
{
ln(1− iz)− ln(1 + iz)

}
, (I.13)
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for any z ∈ C \ {iy| y ∈ R, |y| ≥ 1} where ln refers to some branch of the complex
logarithm. It follows that Eq. (I.12) can be rewritten as

L
{

sin(xt)sin(yt)
t

}
(s) = 1

4 ln
(

(s2 + x2 + xy)2 + (sy)2

(s2 + x2 − xy)2 + (sy)2

)

= 1
4 ln

(
(x+ y)2 + s2

(x− y)2 + s2

)
, (I.14)

Note that the logarithm in Eq. (I.14) refers to the usual real-valued logarithm
obeying the well-known rules for multiplication and division. Choosing in Eq. (I.13)
the principle branch of the logarithm which is defined by ln(z) = ln |z|+ i arg(z) +
2πki for k = 0, the purely imaginary contributions to Eq. (I.14) cancel out as one
has arg(z∗) = − arg(z) .

Now, the coherence factors κ12(t) and Λ12(t), corresponding to + and − in the
expression below, are determined by the characteristic function

χ
√

2
ρE

((
2~β (1)(t),±2~β (2)(t)

))

= exp
[
−4
∑

k

{
a1|β(1)

k (t)|2 + a2|β(2)
k (t)|2 ± 2c1Im

(
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(1)
k (t)

) · Im(β(2)
k (t)

)

± 2c2Re
(
β

(1)
k (t)

) · Re(β(2)
k (t)

)}]
, (I.15)

which, upon inserting Eqs. (I.3)–(I.5) with ω
(1)
k = ω

(2)
k = ωk and employing the

identity cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), reads

χ
√

2
ρE

((
2~β (1)(t),±2~β (2)(t)
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= exp
[
−8
∑

k

{ 2∑
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aj

(
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(j)
k
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)2
{
1− cos

(
ωkt1(t)
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(1)
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(2)
k

ω2
k

[
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j=1

{
sin(wktsj)− sin

(
ωk(tj(t) + tsj)

)}

± c−
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cos
(
wk(ts1 − ts2)

)− 1
}

+
{
1− cos

(
ωk(t1(t) + ts1 − ts2)

)}

+
{
1− cos

(
ωk(t2(t) + ts2 − ts1)

)}

− {1− cos
(
ωk(t1(t)− t2(t) + ts1 − ts2)

)})]

} ]
. (I.16)

If the sum is replaced by the continuum of modes specified by an ohmic spectral
densities J(ω), the exponent will consist of several Laplace transforms of the type
of

L
{1− cos(yt)

t

}
(s) (I.17)
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and

L
{

sin(xt)sin(yt)
t

}
(s) , (I.18)

which have been evaluated in Eqs. (I.7) and (I.14). By means of these results, one
finally obtains the expressions for κ12 and Λ12 that are given in Eqs. (5.19) and
(5.20) in the main text (see also Wißmann and Breuer (2014) for the expressions
in case of ts1 = 0).

Note that, choosing αj = α > 0 and aj = −cj = 1/2 as well as tsj = 0 for
either index j , one recovers the equations stated by Laine et al. (2012) for nonzero
energy splitting εj . In fact, one deduces for the coherence factors in this case

κj(t) =
{
1 + ω2

c tj(t)2}−2α
, (I.19)

κ12(t) = e−2i(ε1+ε2)t{1 + ω2
c

(
t1(t)− t2(t)

)2}−2α
, (I.20)

Λ12(t) = e−4iε2tκ1(t)2κ∗2(t)2κ12(t)−1 . (I.21)

It is, however, easily shown that the corresponding covariance matrix is unphysi-
cal1 as it violates inequality (2.106). Moreover, the additional factors arising for
consecutively applied interactions, implying that one has ts2 > 0, have been ignored
by Laine et al. (2013) leading to a significantly different dynamics.

It is worth stressing that the results are easily extended to complex-valued
coupling strengths g(j)

k and covariance matrices that are not in standard form by
means of the present techniques. In the general case, one encounters terms leading
to the Laplace transform of cosine-modulated functions which are determined by

L{cos(xt)f(t)}(s) = 1
2
{
F (s− ix) + F (s+ ix)

}
. (I.22)

Of course, the expression for the coherence factors comprise more and more terms
making the derivation more involved.

1In fact, any 4× 4-matrix of the form
( 1

2 12 c12

c12
1
2 12

)
is unphysical unless one has c = 0 for which

the dynamics obviously factorizes.



Appendix J

Maximally correlating unitaries

In this part of the thesis, the unitary extension of the map (cf. Eq. (6.8))

U : |φjk〉 ⊗ |Φ〉 7→ |ψjk〉 ⊗ |Φj〉 , (J.1)

which characterizes the state transformation in a premeasurement of an observ-
able A with spectral decomposition A = ∑NA

j=1
∑nj
k=1 aj |φjk〉〈φjk| using a pointer

observable B = ∑NA
j=1 aj |Φj〉〈Φj | (cf. Sec. 6.1), is explicitly determined for a von

Neumann-Lüders measurement, that is, where one has |ψjk〉 = |φjk〉 for any pair
of indices (cf. Eq. (6.10)).

Note that the map (J.1) can be extended to a unitary operator on the joint
Hilbert space HOP = HO⊗HP as {|φjk〉⊗|Φ〉} and {|ψjk〉⊗|Φj〉} are orthonormal
sets which may thus be extended to orthonormal bases of HOP . Any bijective map
U between any two such bases satisfying Eq. (J.1) for all indices j and k can then be
extended uniquely by linearity and continuity to a unitary operator on HOP . Note
that one may similarly extend such a mapping via conjugate linearity leading to an
antiunitary operator (Beltrametti et al., 1990). Clearly, the unitary extension U ′
of U is only unique up to the choice of the orthonormal basis of HOP comprising
the sets {|φjk〉 ⊗ |Φ〉} and {|ψjk〉 ⊗ |Φj〉} .

The unitary may also be considered as resulting from two partial isometries.
That is, the map U ′ on HO ⊗HP is defined through

U ′|W = U , U ′|W⊥ = V , (J.2)

where the closed subspace W of HO ⊗HP is given by W = HO ⊗ span{|Φ〉} and
V defines a partial isometry with initial space W⊥ and final space Im(U)⊥. This
means that V †V defines a projection onto W , whereas V V † projects onto Im(U)⊥
(Conway, 2000). Similarly, U defines a partial isometry with initial space W and
final space given by Im(U) which defines a closed subspace as one may easily
show. Due to this, one has HOP = W ⊕W⊥ = Im(U) ⊕ Im(U)⊥ showing that U
defined by Eq. (J.2) is surjective and satisfies U †U = 1OP which implies that it is
indeed unitary. The nonuniqueness of the unitary extension U ′ can thus also be
understood as arising from the partial isometry V which is arbitrary.

Despite the nonuniqueness, it is rather difficult, in general, to state an explicit
expression for a partial isometry V and, thus, for the unitary extension of the
map given by Eq. (J.1). However, for a von Neumann-Lüders measurement being
characterized by the fact that |ψjk〉 = |φjk〉 holds for any pair of indices, this can
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be done as is shown in the following: Let g : {1, . . . , NA}2 → {1, . . . , NA} refer to
a symmetric function for which g(·, k) is bijective for any index k and, moreover,
it satisfies g(j, k) 6= j and g(j, k) 6= g(j, l) for all j and pairwise different indices
k and l . Introducing the notation {|Φ̃k〉| k = 1 . . . , NA} for the orthonormal basis
{|Φ〉} ∪ {|Φ̃k〉| k = 2, . . . , NA} of the probe Hilbert space HP , the linear operator

V =
NA∑

k=2

NA∑

j=1
Πg(j,k) ⊗ |Φj〉〈Φ̃k| , (J.3)

where Πg(j,k) ≡
∑ng(j,k)
l=1 |φg(j,k)l〉〈φg(j,k)l| so that one has U = ∑NA

j=1 Πj ⊗ |Φj〉〈Φ̃1|,
defines a partial isometry with initial and final space given by Im(U)⊥ and W⊥,
respectively. That is, it obeys V †V = PW⊥ and V V † = PIm(U)⊥ where PX denotes
to the projection onto the closed subspace X . Clearly, one has V |W = 0 and the
projections onto W⊥ and Im(U) read

PW⊥ = 1HO ⊗
NA∑

j=2
|Φ̃j〉〈Φ̃j | , PIm(U) =

NA∑

j=1
Πj ⊗ |Φj〉〈Φj | , (J.4)

as one, e.g., finds

PIm(U)U =
NA∑

j,k=1
ΠkΠj ⊗ |Φk〉〈Φk|Φj〉〈Φ̃1| = U (J.5)

due to the orthogonality of the elements |Φj〉 and the fact that the operators Πk

define projections.
To show that Im(V ) ⊥ Im(U) holds, one first considers the scalar product for

states |φ′〉 ⊗ |ϕ〉 ∈ W⊥ and |φ〉 ⊗ |Φ̃1〉 ∈ W where |φ〉 and |φ′〉 refer to states on
HO and one has |ϕ〉 = ∑NA

k=2 tk|Φ̃k〉 with
∑
k |tk|2 = 1. In fact, one then obtains

〈φ′| ⊗ 〈ϕ|V †U |φ〉 ⊗ |Φ̃1〉 =
NA∑

k=2

NA∑

j,l=1
t∗k〈φ′|Πg(j,k)Πl|φ〉〈Φ̃j |Φl〉

=
NA∑

k=2

NA∑

j=1
t∗k〈φ′|Πg(j,k)Πj |φ〉 = 0 , (J.6)

as one has g(j, k) 6= j for any index k by assumption. Due to linearity of the map V
and the scalar product, this finally implies 〈φ̃′|V †U |φ〉 ⊗ |Φ̃1〉 = 0 for all |φ〉 ∈ HO
and |φ̃′〉 ∈ W⊥ showing that Im(V ) ⊥ Im(U).

Moreover, since g(·, k) defines a bijection for any index k , too, and one has
g(j, k) 6= g(j, l) for any j and pairwise different indices k and l, one deduces

V †V =
NA∑

k,l=2

NA∑

i,j=1
Πg(j,k)Πg(i,l) ⊗ |Φ̃k〉〈Φj |Φi〉〈Φ̃l|

=
NA∑

k=2

NA∑

j=1
Πg(j,k) ⊗ |Φ̃k〉〈Φ̃k|

= 1HO ⊗
NA∑

k=2
|Φ̃k〉〈Φ̃k| = PW⊥ , (J.7)
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and, similarly,

V V † =
NA∑

k,l=2

NA∑

i,j=1
Πg(i,l)Πg(j,k) ⊗ |Φi〉〈Φ̃l|Φ̃k〉〈Φj |

=
NA∑

k=2

NA∑

j=1
Πg(j,k) ⊗ |Φj〉〈Φj |

=
NA∑

j=1
(1HO −Πj)⊗ |Φj〉〈Φj |

= 1HO⊗HP −
NA∑

j=1
Πj ⊗ |Φj〉〈Φj | = PIm(U)⊥ . (J.8)

Hence, one concludes that V defines a partial isometry with initial space W⊥ and
final space Im(U)⊥ . The unitary operator U ′ extending the partial isometry U is
thus given by (cf. Eq. (6.10))

U ′ = U + V =
NA∑

j,k=1
Πg(j,k) ⊗ |Φj〉〈Φ̃k| , (J.9)

which is obviously unitary.
Note that the function g can, for example, be chosen as g(j, k) = [j + k −

2]NA where [·]NA defines the coset with respect to division by NA . Clearly, g(·, k)
represents a bijection for arbitrary k and one has [j + k − 2]NA 6= j as well as
[j + k − 2]NA 6= [j + l − 2]NA for any indices j, k, l ∈ {1, . . . , NA} if k and l are
pairwise different.





Appendix K

Heisenberg equations of motion

Here, the Heisenberg equations of motion for the representatives of the SU(N)-
generators as well as the canonical operators for uncoupled and interacting quan-
tum object and probe are proven (see Eqs. (6.58), (6.62), (6.64) and (6.65)) which
are used in Sec. 6.3 to derive a dynamical probing scheme being characterized by
the convergence of expectation values.

First, consider the evolution of the generators Σ̂ with respect to the free evo-
lution generated by HO = ~αTHΣ̂ . As neither quantity depends explicitly on time,
the dynamical equation of the jth component of Σ̂(t) = exp[itHO]Σ̂ exp[−itHO] ,
which is understood component-by-component, reads

d
dt Σ̂j(t) = −i [Σ̂j(t), ~αTHΣ̂]

= −i
N2−1∑

k=0
eitHO [Σ̂j , αH,kΣ̂k] e−itHO

= 2
N2−1∑

k,l=0
fjkl αH,k Σ̂l(t) = −2

(
Θ(~αH)Σ̂(t)

)
j
, (K.1)

employing the commutation relation (6.60) for the representatives of SU(N)-gene-
rators along with the definition of the mapping Θ (see Eq. (6.61)). Note that due
to the antisymmetric property of the structure constant fjkl of the SU(N)-algebra,
it follows that for any ~α, ~α′ ∈ RN2−1 one has

(
Θ(~α)~α′

)
j

=
N2−1∑

k,l=0
fjklαlα

′
k = −

N2−1∑

k,l=0
fjlkα

′
kαl = −(Θ(~α′)~α

)
j
, (K.2)

which thus implies Θ(~α)~α = 0.
Moreover, for the time evolution of the canonical operators X̂ with respect

to HP = X̂TRX̂ where R refers to a symmetric 2 × 2-matrix over the reals, one

229



230 Appendix K. Heisenberg equations of motion

deduces

d
dtX̂j(t) = −i[X̂j(t), HP ]

= −i
2∑

k,l=1
Rkl e

itHP {X̂jX̂kX̂l − X̂kX̂lX̂j} e−itHP

= −i
2∑

k,l=1
Rkl {i(Ω2)jkX̂l(t)− i(Ω2)ljX̂k(t)}

= 2
(
Ω2RX̂(t)

)
j
, (K.3)

by virtue of the canonical commutation relations [X̂j , X̂k] = i(Ω2)jk (see also
Sec. 2.5.1).

To show Eqs. (6.64) and (6.65), i.e., the evolution equations for the generators
Σ̂ and the canonical operators X̂ when the quantum object and the probe interact,
which is described by the Hamiltonian HI = ~αTI Σ̂ ⊗ ~β TI X̂ for ~αI ∈ RN

2−1 and
~βI ∈ R2, one proceeds as before after having separated the free part and the
interaction of the Hamiltonian. More precisely, one finds

d
dt Σ̂j(t) = −i{[Σ̂j(t), HO ⊗ 1P ] + [Σ̂j(t), HI ]

}

= −2
(
Θ(~αH)Σ̂(t)

)
j
− i

N2−1∑

k=0

2∑

l=1
eitH [Σ̂j , αI,kΣ̂k]⊗ βI,lX̂le

−itH

= −2
{(
Θ(~αH)Σ̂(t)

)
j

+
(
Θ(~αI)Σ̂(t)

)
j

(~β TI X̂(t)
)}
, (K.4)

and, similarly,

d
dtX̂j(t) = −i{[X̂j(t),1O ⊗HP ] + [X̂j(t), HI ]

}

= 2
(
Ω2RX̂(t)

)
j
− i

N2−1∑

k=0

2∑

l=1
eitHαI,kΣ̂k ⊗ [X̂j , βI,lX̂l]e−itH

= 2
(
Ω2RX̂(t)

)
j

+
(
~αTI Σ̂(t)

)(
Ω2~βI

)
j
, (K.5)

which exactly is Eq. (6.64) and (6.65), respectively.



Appendix L

Contact potential for Bogoliubov modes

In this section the interaction Hamiltonian is derived for the coupling of an impurity
atom that is immersed at a specific site of a lattice of cold atoms describing a
Bose-Hubbard model in the superfluid phase. More specifically, the interaction
Hamiltonian (cf. Eq. (6.124))

HI = g
∑

~m 6=~n∈N3
0

φ~m~n|~m〉〈~n| ⊗
[
n0 +

∑

k 6=0
βk(b̂†k + b̂k)

]
, (L.1)

where

βk =
√
n0
NS
{|uk| − |vk|} , (L.2)

|vk|2 = |uk|2 − 1 = 1
2
{
(εk + Un0)/ωk − 1

}
, (L.3)

is deduced, starting from the interaction

H̃I = g
∑

~m 6=~n∈N3
0

NS∑

j,k=1

∫

R3
d~x ψ∗~n(~x)ψ~m(~x)W ∗j (x1)Wk(x1)|~m〉〈~n| ⊗ â†j âk , (L.4)

that represents a density-density coupling of an impurity atom, described by a
three-dimensional harmonic oscillator with eigenstates |~m = (m1,m2,m2)〉 and the
lattice of cold atoms with the assumption of a contact potential and a localized
immersed atom at site j0 as considered by Cosco et al. (2015). Here, ψ~m

(
~x =

(x1, x2, x3)
)

= 〈~x |~m〉 denotes the wave function of the impurity’s energy eigenstate
|~m〉 and Wj(x1) refers to the Wannier function at the jth site of the lattice which
extends along the x1-axis.

Due to the assumption that the impurity is localized at site j0 , the immersed
atom does not couple to sites different from that labeled by j0 . As a consequence,
Eq. (L.4) reads

H̃I = g
∑

~m 6=~n∈N3
0

φ~m~n|~m〉〈~n| ⊗ â†j0 âj0 , (L.5)

where one defines φ~m~n ≡
∫
R3 d~x ψ∗~n(~x)ψ~m(~x) |W ∗j0(x1)|2 . By comparison with

Eq. (L.1), one thus needs to determine the on-site number operator â†j0 âj0 in terms

231



232 Appendix L. Contact potential for Bogoliubov modes

of the Bogoliubov modes characterizing the superfluid phase in order to deduce
the interaction Hamiltonian HI given in Eq. (L.1).

Following van Oosten et al. (2001), one first transforms the on-site creation and
annihilation operators into momentum space. That is, one introduces creation and
annihilation operators ĉ†k and ĉk, respectively, satisfying

âj = 1√
NS

∑

k

ĉke
−ikrj , (L.6)

â†j = 1√
NS

∑

k

ĉ†ke
ikrj , (L.7)

where NS refers to the number of lattice sites (cf. Eq. (L.4)) and rj defines the
coordinate of site j . For a one-dimensional lattice with lattice constant a , one may
thus set rj = j · a so that the k-vectors, running over the first Brillouin zone of the
lattice, are given by

k = 2π
aNS

· j , (L.8)

where the index j obeys

j =
{

0,±1, . . . ,±(NS − 1)/2 , if NS is odd ,
0,±1, . . . ,±(NS/2− 1), NS/2 , if NS is even .

(L.9)

Due to this one has ∑j exp[−i(k − k′)rj ] = NSδk,k′ . Employing the definitions
(L.6) and (L.7), an on-site number operator may be equivalently written as

â†j âj = 1
NS

∑

k,k′
ĉ†k ĉk′e

irj(k−k′) . (L.10)

According to Bogoliubov’s treatment originating from the theory of superfluid-
ity, the Bose-Einstein condensation, which occurs in the mode k = 0 for a perfect
Bose gas, is expected to persist also for sufficiently weak interactions and, therefore,
the most relevant terms in Eq. (L.10) are those containing creation and annihilation
operators associated with the zero mode (see Adams and Bru (2004) and references
therein). This thus leads to

â†j âj '
1
NS

[
ĉ†0ĉ0 +

∑

k 6=0

{
ĉ†k ĉ0e

irjk + ĉ†0ĉke
−irjk}

]
, (L.11)

where the sum extends over all nonzero k-vectors. For a large number of atoms
in the condensate, i.e. N0 = 〈ĉ†0ĉ0〉 � 1, one may furthermore employ the so-
called Bogoliubov approximation, replacing the zero-mode operators by complex
numbers (Adams and Bru, 2004). More specifically, substituting ĉ†0 = ĉ0 =

√
NS

in Eq. (L.11), the on-site number operator reads

â†j âj '
1
NS

[
N0 +

√
N0

∑

k 6=0

{
ĉ†ke

irjk + ĉke
−irjk}

]
. (L.12)
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It remains to apply the Bogoliubov transformation which yields creation and
annihilation operators b̂†k and b̂k, respectively, with respect to which the Bose-
Hubbard Hamiltonian is diagonal. According to van Oosten et al. (2001), these
new bosonic operators are defined by

(
b̂k
b̂†−k

)
=
(
uk vk
v∗k u∗k

)(
ĉk
ĉ†−k

)
≡ B

(
ĉk
ĉ†−k

)
, (L.13)

where the Bogoliubov coefficients must obey |uk|2 − |vk|2 = 1 in order to preserve
the canonical commutation relations (cf. Eq. (2.91)) (see also Landau and Lifschitz
(1992)). The inverse transformation is then clearly given by

(
ĉk
ĉ†−k

)
= B−1

(
b̂k
b̂†−k

)
=
(
u∗k b̂k − vk b̂

†
−k

uk b̂
†
−k − v∗k b̂k

)
, (L.14)

as one has B−1 =
(
u∗k −vk
−v∗k uk

)
. Upon inserting this into Eq. (L.12) and using the

definition n0 ≡ N0/NS , one obtains

â†j âj ' n0 +
√
n0
NS

∑

k 6=0

(
b̂†ke

irjk{uk − v−k}+ b̂ke
−irjk{u∗k − v∗−k}

)
. (L.15)

Note that the Bogoliubov coefficients are independent of the sign of the k-
vector, i.e., they satisfy uk = u−k and vk = v−k , which is easily found by taking
the adjoint of the expression for ĉk and ĉ†−k and changing the index from k to −k .
Moreover, the coefficients are the solution to the equations (~ = 1)

[
(uk)2 + (vk)2

]
Un0 − 2ukvk(εk + Un0) = 0 , (L.16)

[
|uk|2 + |vk|2

]
(εk + Un0)− Un0(u∗kvk + ukv

∗
k) = ωk , (L.17)

which originate from the diagonalization of the Bose-Hubbard Hamiltonian that
amounts to the relation

(B−1)†
(
εk + Un0 Un0
Un0 εk + Un0

)
B−1 =

(
ωk 0
0 ω−k

)
, (L.18)

where εk ≡ 2J [1− cos(ka)] . As, e.g., shown by van Oosten et al. (2001), a solution
to Eqs. (L.16) and (L.17) is given by

ωk =
√
εk(εk + 2Un0) , (L.19)

|vk|2 = |uk|2 − 1 = 1
2
{εk + Un0

ωk
− 1

}
, (L.20)

where one easily deduces for the phases of the Bogoliubov coefficients

arg(uk) = arg(vk) (L.21)

upon inserting Eqs. (L.19) and (L.20) into Eq. (L.17). Because this constraint
is also consistent with Eq. (L.16), one concludes that the coefficients may have
arbitrary but equal phases.
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Thus, choosing arg(uk) = −rj0k and employing that v−k = vk holds, Eq. (L.15)
is ultimately written as

â†j0 âj0 ' n0 +
√
n0
NS

∑

k 6=0
{|uk| − |vk|}( b̂†k + b̂k) , (L.22)

which finally leads to the Hamiltonian (L.1) when inserted into the Hamiltonian
(L.5). Note that Cosco et al. (2015) deduced and used the incorrect expression for
βk =

√
n0/NS{|uk| − |vk|} where the minus sign has been replaced by a plus sign.
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