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To measure matrix elements involving heavy quarks on the lattice, including 
b and the B meson decay constant, the dependence on the heavy quark mass must 
&St be extracted analytically. We present the resulting continuum effective field 
theory action and illustrate its utility by calculating the one-loop renormalization of 
em arbitrary heavy-light biinear. We also discuss the limits of the approximation. 
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For several matrix elements of interest, including those which determine fs and 

the B parameter, the large rest energy of the b quark is not deposited into lighter 

hadrons. For these matrix elements it ought to be possible to find an effective field 

theory in which all the dependence on the large rest mass of the heavy quark has 

been removed analytically. The effective field theory will be an expansion in the 

heavy quark’s spatial momentum or kinetic energy over its rest energy, termed the 

l/m expansion. Not only is this effective field theory a useful analytical tool for 

extracting dependences on the heavy quark mass, for several matrix elements all 

the remaining scales in the problem are small enough that they can be numerically 

calculated on the lattice. 

Indeed, doing calculations at the zeroth order in this expansion has already 

been used as a basis for deriving heavy quark potentials[l]. The approximation 

to the heavy quark propagator was written down in position space for an external 

gauge field. In this rather singular limit, whatever the momentum the heavy quark is 

created with, it doesn’t move at all. In position space the propagator is proportional 

to 6s(y-x). In an external gauge field it comes multiplied by phase which is just the 

Wilson line. Thus it looks somewhat like a static source and the approximation has 

been called the static approximation. However, the reader should not be mislead by 

the name as the color of the the heavy quark is not fixed, momentum is conserved 

at vertices involving the heavy quark, and 1/ m corrrections are possible to include 

perturbatively. 

This approximation for the propagator has also been used to calculate the 

logarithmic corrections to h and the B parameter[2] already obtained in the full 

theory[3]. The discretized version of the position space propagator for numerical 

simulations[rl] has been used by two lattice gauge theory groups to obtain fn[5], 

and the relationship between the time component of the axial current defined on 

the lattice in this appoximation to its continuum counterparts has been studied 

previously[6]. 

All of these calculations, including those in reference [2] where the language 

of effective field theories is used, have taken as a starting point the position space 

expression for the propagator in an external gauge field and gone to considerable 

effort to avoid doing perturbation theory in momentum space. We write down 

the effective field theory action from which the propagator can be obtained, take 

this as our starting point, and confront the minor technicalities of working with 

the theory in momentum space. Calculations in this framework are substantially 

simpler than previous calculations. Actually the propagator previously used differs 

from the propagator we obtain in that it was for a four-component field that tried 
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to describe the propagation of both heavy quarks and heavy anti-quarks and had 

a trivial but annoying remaining dependence on the heavy quark mass. We phrase 

the effective field theory in terms of a two-component field which is more natural 

and the dependence on the heavy quark mass is eliminated. 

While we believe we have clarified the static effective field theory, we are deal- 

ing mostly with issues already sorted out by &swell and Lepage in non-relativistic 

QED[7], an effective field theory in which they have done calculations of stunning 

accuracy. Their starting point is an action valid to first order in the l/m expansion. 

The ultraviolet behavior of the propagator in the non-relativistic effective field the- 

ory is completely different from the propagator in the static effective field theory, 

just as both of these propagators behave completely differently from the propagator 

in the full theory. There are differences in the infrared behavior of the two theories 

as well; the rather singular nature of the static approximation makes the static ef- 

fective theory invalid as a starting point for some problems, including some where 

the non-relativistic effective field theory is an acceptable first approximation. 

It should also be noted that it is just conjectured, not demonstrated, that these 

are approximately renormalizable effective field theories[8]; no proof analagous to 

the one given for the four-Fermi effective theory of the weak interactions[Q] has 

been given, even for a limited class of Green’s functions. On the other hand, it 

has been shown in the full theory that when external momenta are restricted to 

values where the l/m expansion should be applicable, that the regions of loop 

integration which contribute after renormalization are regions where one can use 

the non-relativistic approximation for the heavy quark[lO]. We will not worry more 

about this important subject here. 

In what follows we describe the static effective field theory and illustrate it’s use 

and the technicalities encountered by doing some one-loop calculations, including 

a calculation which reproduces the logarithmic corrections to the matrix element 

determining fB[2][3]. Our method allows us to obtain the full order as contributions 

to the effective theory-full theory matching of an arbitrary heavy-light bilinear. It 

reproduces corrections for the time component of the axial current which can be 

extracted from work applying this theory to the lattice[6]. We conclude by giving 

an example of a process which illustrates the limits of the static approximation. 

The static approximation is the zeroth order approximation in the expansion 

in p*/m, where m is the heavy quark mass, and we have removed (m, 0) from the 

momentum of the heavy quark. So the approximation is that the heavy quark is 

nearly at rest and nearly on shell. Whenever an operator creates a heavy quark we 

will have removed (m, 0) from what we call the momentum inserted at the operator, 
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and whenever an operator annihilates a heavy quark we will have added this in to 

what we call the inserted momentum. This removes the last trivial dependence 

in the static effective field theory on the heavy quark mass. The only remaining 

dependence comes from matching the static theory to the full theory at the heavy 

quark mass. It is important to note that for the matching to work, not only must 

the external momenta be in the regime of validity of the static appoximation, the 

amputated Green’s function has to be sandwiched between spinors describing a 

heavy quark with this momentum. 

The static effective field theory Lagrangian in Minkowski space is 

&,f = bt (it&, + gA,,) b. (1) 

The b field annihilates heavy quarks and its hermitian conjugate creates them. A 

completely independent field would have to be introduced to describe processes 

involving heavy anti-quarks. The b field is a two-component field, so there is a 

supressed two-by-two identity in the action as well as in the free propagator. We 

will denote this propagator with a double line. Incoming particles will always appear 

on the right and outgoing on the left so that in problems with heavy quarks and 

heavy anti-quarks, you can distinguish them by whether the arrow on the line 

points from incoming to outgoing or from outgoing to incoming, respectively. The 

free propagator in Minkowski space is 

The ic prescription is there so that the heavy quark propagates forward in time. In 

position space the propagator from I to y is 

e(Y0 - zo)6yY - 4. 

The ic prescription is necessary even in Euclidean space. If the first order term in the 

l/m expansion had been kept, the prescription wouldn’t be necessary in Euclidean 

space since the pole in the propagator would have been pushed off to -ips/2m. 

While our answers will depend on the fact that they have an ie prescription as 

opposed to a -ie prescription, they will not depend on c as c + 0. 

Although the matching between the full theory and the effective theory is best 

done in Minkowski space, our perturbative calculations are done in Euclidean space 

so we will quote all our conventions there. The Euclidean static effective field theory 

is obtained by the following procedure: First the comparison between the effective 

theory and the full theory is made in Minkowski space. Then a Wick rotation to 
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the Euclidean static effective field theory is done. Finally, for lattice applications, 

a discretized version of the theory is chosen. 

With our conventions, the heavy quark part of the Lagrangian in Euclidean 

space is 

,& = bt (& + gAo) b. (4) 

In the Euclidean funtional integral, bt and b are independent fields. The propagator 

in momentum space is 
1 

po. (5) 

The Feynman rule for heavy quark-gauge field interaction is a gauge group generator 

times -g. Only the zeroth component of the gauge field participates, and the matrix 

in spin space is just the identity. 

Here we are interested in comparing operators defined in the effective theory 

and the full theory. When comparing operators, it is important to calculate an 

unambiguous and gauge invariant quantity especially if one is interested in more 

than the leading logarithms in the heavy quark mass. We will take a matrix element 

of the heavy-light bilinear between an incoming light quark and an outgoing heavy 

quark. For calculational convenience, we will set the light quark mass to zero. The 

light quark propagator in our conventions is then l/# and all four rfi are hermitian. 

Our mass shell point will have the incoming and outgoing momenta set to 

zero. The infrared divergences at this point are eliminated by giving the gluon 

a mass, X, which is acceptable because all of our diagrams are QED-like. All X 

dependence, as well as light quark mass dependence were we to have included it, 

should drop out of the difference of the matrix elements defined in the two different 

theories. A more satisfying procedure than introducing a gluon mass would be to 

demonstrate the local cancellation in the difference of the low momentum parts of 

the loop integration. 

Before we illustrate a loop calculation we should do the tree level matching of 

an arbitrary bilinear in the full and effective theories. Consider the operator in the 

full theory @q where q is the light quark field. Take its matrix element between an 

incoming light quark with a spinor ‘IL and an outgoing heavy quark with a spinor 

u’. The spinor u’ is a four component spinor in the full theory. It is normalized to 

satisfy i?v = 2772. At zeroth order in the l/m expansion, it is 

72 = l/G U’ 
( > 0 ’ 

where U’ is the non-relativistic spinor normalized to satisfy U’t U’ = 1. Parametrize 
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the arbitrary matrix I? in the operator by two by two blocks, 

The tree level matrix element of this operator is then ?i’I’u which simplifies to 

xlzm(ap)u (8) 

at zeroth order in the l/m expansion. Clearly the only operator in the static 

effective field theory that has the same matrix element for arbitrary U’ and u is 

What we need to do an order as comparison of the matrix elements of the 

full theory and effective theory operators is the vertex corrections in the full theory 

and the effective theory, the wave function renormalization of a heavy quark in the 

full theory, and the wave function renormalization of a quark treated in the static 

approximation. The light quark is treated the same way in the effective theory and 

the full theory so it’s wave function renormalization drops out of the difference of 

the matrix elements of the operators. 

In the full theory, the one loop correction to the vertex is (ga/12nz)r times 

The only subtlety in getting this result is that to zeroth order in the l/m expansion, 

when r. is next to z’, we used that the spinor u’ describes a heavy quark nearly at 

rest and replaced ~0 by the identity. We have used modified minimal subtraction to 

eliminate the l/e--ye +ln4~ that comes with the logarithm of $, and we have had 

to introduce H defined by HI’ = ~,,I’y, and G defined by GI’ = Tol?ro. H’ is the 

derivative with respect to d of H in d dimensions. In a particular case of interest, 

r = ~O~s, and with the extension of the gamma matrix algebra that yS commutes 

with r,, when 4 < p 5 d we find H = 2 and H’ = G = -1. Eqn. (10) simplifies to 

If we had taken ^(s to anticommute with all r,, we would have H’ = 1 and the 

constant in (11) would be 1. 

The integral for the corresponding effective field theory graph, figure 1, is the 

tree graph times 

(12) 
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Except for the fact that only the time component of the gauge field interacts with 

the heavy quark and the unusual form of the heavy quark propagator, the factors 

are familiar. The loop momentum is 1, and the momentum of the incoming light 

quark, Ic, and the outgoing heavy quark, p, we promptly set to zero (remember 

(m, 0) has been removed from p). 

This integral is particularly easy. After setting the momentum to zero and 

rationalizing the light quark propagator, we have / in the numerator. The vec- 

tor part of (is odd leaving us with lsye. Thus we don’t have to worry about the 

pole prescription and the integral simplifies to a standard covariant dimensionally 

regularized integral. The result is fi(g2/12a2)(o! p) times 

The result doesn’t depend on the matrix at the vertex, in contrast to the result in 

the full theory. However, notice that the coefficient of the logarithm of X2 in (10) 

is the same for any I’ and will drop out of the difference with equation (13). This 

is a non-trivial check on the validity of the effective theory. 

In the full theory, the one loop self energy graph gives a contribution to the 

wave function renormalization of the heavy quark of g* /12n* times 

The integral for the corresponding effective field theory graph, figure 2, is 

4, d41 

Sg (2T)4~o+~o+ir~*-t~*~ I 
05) 

The evaluation of this integral will illustrate how to deal with the non-covariant 

poles. The trick will be to isolate the pole in au integrand which one subtracts 

and adds to the original integraud. In the difference, the singularity cancels. The 

integral added back in is chosen to be easily doable. 

A preliminary step whose utility will become clear momentarily is to sym- 

metrize the integral under Is -+ -lo. The symmetrized integral is 

The integrand now has poles at ct(po + is). Replace the gauge field propagator by 

1 1 1 
12 + A* - p; + 12 + X2 

+ pi + 12 + A* * 
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The difference has zeroes at 10 = f(p,, + ;c) so in the difference we simplify naively, 

cancel the poles and take the derivative with respect to pO at zero to obtain wave 

function renormalization. The result is 9*/12x* times 

The poles are isolated in the integral we have added back in. This integral is 

simple because it factors into the product of an 10 integral and a d - l-dimensional 

1 integral. Notice that this integral would be poorly defined if we had done the 

pole isolation procedure without first symmetrizing. One does the 10 integral by 

contour integration and shortly discovers that the result is even under ps + -po 

(contrary to the integral’s naive appearance) and so it doesn’t contribute to wave 

function renormalization. Equation (18) is the entire answer. Again, notice that 

it’s dependence on X is the same as in the full theory, equation (14). While it is not 

necessary for the order ‘+s renormalization of a heavy-light bilinear, we note that 

the same techniques show that the graph of figure 2 gives no contribution to mass 

renormalisation in dimensional regularisation. 

The ratio of the matrix elements of the operator in the full theory to the 

operator in the effective theory is given by (10) minus (13) plus one half of (14) 

minus one half of (18). In the case of most interest, P = uses, it is 

1+L 
12x2 ( 

2-iln$ 
> 

We have not resunnned the logarithms to extend the range of validity of this com- 

parison as the non-logarithmic corrections which we have obtained would be only 

one of the comparable non-leading corrections in the extended range of validity. 

Boucaud, Lin and P&e studied the renormalization of the time component of 

the sxial current in the static approximation for application to the lattice[6]. They 

did a position space calculation of the correlator of the time component of the axial 

current with itself. If we use the other extension of the gamma matrix algebra noted 

below equation (ll), the constant in (19) is changed to -2 and then agrees with 

the result extacted from equations (2.10) and (2.30) of their work. 

We conclude by examining a process where the static effective field theory 

breaks down. Consider the scattering of two heavy quarks at one loop. There 

are two graphs, one where the gluon lines don’t cross and one where they do. 

Concentrate on the one where they don’t cross (the other graph is well behaved). 

The bad behavior we are about to illustrate occurs at any mass shell point, so for 
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simplicity take it to be all momenta zero. The integral for the graph contains 

J d41 1 1 1 -__ 
(2n)4 20 + ic -10 + ic (12 + A*)*. 

Already one can see the problem as the ie prescription has placed the poles so they 

pinch the 10 integration. To isolate this we replace the gluon propagators by 

(12 :x2)* - (12 :x2)2 + (12 :A*)*. 
(21) 

In the difference, we can simplify without worrying about the pole prescription. 

The term added back in factors into the product of an 10 integration and a d - 1 

dimensional 1 integral. The result of the lo integration is a pole in e. If we were 

using the less singular non-relativistic effective field theory, instead of having e in 

the denominator of the result, we would have lr/2m, which is integrable. 

In general, for processes involving two (or more) heavy quarks in a state, the 

results of the static approximation can be invalid and care must be used in choosing 

the quantities to be computed. For example, in a heavy quark-antiquark system, the 

potential is the quantity that can be computed using the static approximation[l]. 

The sign that a quantity is sensitive to the approximation is c dependence as e -+ 0. 

Physically, the problem is that the contribution of intermediate states with two 

heavy quarks whose total energy is near their combined rest energy is incorrect 

because the energy difference is neglected in the static approximation. In these 

circumstances one cannot start at zeroth order in the l/m expansion and evaluate 

l/m corrections perturbatively. One must include the kinetic energy in the heavy 

quark propagator and use the non-relativistic effective field theory of Caswell and 

Lepage[7]. 

To summarize, we have calculated the full order o.s contributions to the renor- 

malization of an arbitrary heavy-light bilinear. We have clarified the basis of the 

static effective field theory and illustrated the simplicity of momentum space calcu- 

lations using the static approximation once a prescription for defining and isolating 

the poles is supplied. In this framework, perturbation theory beyond one loop and 

calculations of l/m corrections will be systematic and tractable. Similar simplifi- 

cation is possible in the calculation of the corrections to the value of fB measured 

on the lattice[6][11]. 

BH would like to thank Ben Grinstein and G. Peter Lepage for valuable discus- 

sions. We also thank Oscar Her&idea for checking the calculations while applying 

this theory to the measurement of fB with Kogut-Susskind fermions[l2]. 
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Figure Captions 

Fig. 1: Effective Theory Vertex Correction 

Fig. 2: Effective Theory Self-Energy Correction 


