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Abstract

The interest in the study of physical systems characterized by negative and effective negative masses
and their behaviour has been a subject of investigation by several researchers. The focus of the majority
of these studies is experimental in nature. Inspired by the same, we have solved the Schrodinger
equation for complex Morse potential with negative and complex masses and obtained its exact
solution. The normalized eigenfunction and eigenvalues are obtained and the condition for
admissibility of the reality of eigenvalue spectrum for the ground state of complex Morse potential has
been discussed. This study establishes that it is indeed feasible for such negative masses proposed in
the literature for various physical systems to be bound together by complex Morse potential. Further,
we propose that atoms with complex and negative masses may bind together under the action of
complex Morse-like potentials and form molecular structures.

1. Introduction

Although the theories and discussion on the admissibility of negative masses in physical systems [1-19] date
back to the 19th century particularly in the field of cosmology and condensed matter physics, recent studies
suggest that the Universe comprise masses that are negative that can explain many existing mysteries of the
physical world. These findings suggest that the understanding of our Universe requires a superseding theory
based on negative masses and effective negative masses.

The mysterious nature of dark energy and dark matter that constitute 95% of the observable Universe has yet
to find satisfactory explanations using conventional Cosmological theories. The issue of negative mass was
brought forth in cosmology by the discovery of the accelerated cosmological expansion and its association with
mysterious dark energy and the cosmological constant [20, 21]. The negative-mass cosmologies attempt to
explain dark energy as a repulsive form of gravity an extension of general relativity with positive and negative
mass distributions. Researchers have proposed a cosmology that incorporated positive-mass matter into a sea of
negative-mass anti-matter [10, 22, 23]. There has been an attempt to construct a cosmological model based on
modified ACDM cosmology to incorporate both dark phenomena into a single negative mass fluid [24] that
proposes continuous-creation of negative masses which resemble the cosmological constant and can flatten the
rotation curves of galaxies. Efforts have also been made to construct the model with negative gravitational mass
in the context of Newtonian gravity [25] that reproduces the features of the so-called Dirac-Milne Universe, a
matter-antimatter symmetric universe that was recently proposed as an alternative cosmological scenario [23].

The recent advances in the development of metamaterials with negative effective mass have demonstrated
the efficacy of negative masses in real physical systems [26—28]. These negative mass materials find numerous
applications in acoustic tunneling through narrow channels, control of the radiation field, transmission through
sharp corners, and power splitting [29]. Elastic wave control and seismic wave protection with acoustic
metamaterials possessing the negative mass (density) are also proposed in the literature [30].

The emergence of position-dependent mass, quantum mechanics has renewed interest in investigating the
same for Morse-like potentials in the real domain. The exact solutions of the Schrodinger equation characterized
by position-dependent effective mass via point canonical transformations [31] for the Morse and Morse-like
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potentials are obtained. These studies have been extended to obtain the solutions of the three-dimensional
Schrodinger equation by applying the Laplace transforms combining with the point canonical transforms [32]
for the position-dependent mass profile which obeys a key condition. Studies have also delved into analyzing the
numerical solution of the time-independent fractional Schrédinger equation for Morse potential [33] and the
quantum oscillator potential in one dimension. The wave functions in the case of hydrogen chloride and
hydrogen fluoride molecules are calculated for a certain value of the fractional parameter of the space-dependent
fractional Schrodinger equation. For the real Morse potential, the eigensolutions of the Schrodinger equation
coming from the hypergeometric differential equation are used to show the relationship that exists between the
Morse potential and a class of multiparametric exponential-type radial (MER) potential [34]. In the realm of
nanophysics, a new generalized Morse potential function with an additional parameter m is proposed to
calculate the cohesive energy of nanoparticles that are used to predict experimental values for the cohesive
energy of nanoparticles [35]. The non-analyticity at the origin for a class of symmetric Morse potential is
explored by solving the Schrédinger equation for potential which are piecewise analytic and piecewise solvable
in terms of special functions [36].

Historically, runaway motion of positive and negative masses put forth by Bondi and Bonnor [4-6] and
Forward [9] which suggested that negative mass repels both other negative masses and positive masses was the
primary hindrance in acceptance of negative mass theories for physical systems. In this study, we investigate the
complex Morse potential for the bond formation of systems with negative masses and effective negative masses
of particles to suggest that it is theoretically possible for the said potential under certain specified constraints to
admit real eigenvalues in the Quantum domain.

In this paper, an attempt is made to find the solution of the Schrodinger equation for the one-dimensional
complex Morse potential as

V(x) = Vole ™ — 2¢7%] (1a)

where Vy is the well depth, x is the internuclear distance (bond length) and a is related to the vibrational constant
v, and the reduced mass p of the system is

a= mu, 21 (1b)
Vo
Itis worth mentioning here that any negative or complex value of these parameters V and x4 turns parameter a
into a complex quantity which implies that the Morse potential is a complex quantity. In general, the parameters
Vyand a are considered complex as the aim of the study is to investigate the bonding between two particles of
negative or complex masses. The arrangement of the paper is as follows.

In section 2, a general formulation for the solution of the Schrodinger equation for a general class of complex
potential is enumerated. In section 3, the exact solution of the Schrodinger equation is obtained for the general
class of one-dimensional Complex Morse potential and its eigenvalues and eigenfunction are computed. The
admissibility of real eigenvalues is discussed in section 4. The normalization of eigenfunction is investigated in
section 5. A general discussion on the results and future scope of such studies are carried forward in section 6.

2. Complex phase space Approach to schrodinger quantum mechanics

An extended complex phase space formulation of Schrodinger QM [37-42] has been employed to study the
complex potentials and gain insight into understanding the quantum dynamics of Non-Hermitian Hamiltonian
(NHH) systems. For this purpose, we use a definition of complex x and p [43] as

x=x +idp,; p=p, +id % )

In this paper, we choose d = 1 and exploit the analyticity property of the eigenfunction 1/(x) to obtain the
solution of the Schrodinger equation

A, p)(x) = E(x), (3a)
where
1 02

and V(x) is a complex potential. In the quantum context, since p — —i ha% which implies

P — — %, X — Bix’ the analyticity of H(x,p) gets translated into that of the complex potential function V(x).
Using (2) and writing
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’(/J(x) = ¢7(X1, pz) + iwi(xb p2)’ 4)

Equation (3a) is separated into a pair of coupled PDEs for 1), and v);, we obtain their quasi-exact solutions for
complex potentials using the ‘eigenfunction-ansatz method’[44]. The ASE (3a) is expressed as a pair of coupled
PDE’s by writing ¢(x) enumerated in (4) and the complex quantities V(x) and E in the form

V(X) - ‘/r(xl) pz) + i‘/i(Xb P2)§ E - Er + lEl (5)

where the subscripts rand i respectively denote the real and imaginary parts of the corresponding physical
quantity. Likewise, the additional subscripts to some of these quantities separated by a comma denote the partial
derivatives of the concerned physical quantity. Thus, using (2) and (5) in ASE (3) and separating the real and
imaginary parts in the resultant expression, one obtains the following pair of coupled PDE:s:

> Wi = Y, + Wisnn) + Vit = Viti = Bty — Eit (6a)
> Winn = Vigyp, = Hp) + by + Vit = Bt + B, (6b)
Using the analyticity property of the wave function #(x) in terms of the Cauchy-Riemann conditions, namely
Vry = Vip Vrp, = — Vi )
Equations(6a) and (6b) is reduced in a simpler form as
— 25 + Vit — Vit = Exby — Eity, (8a)
=2 + Vitr + Vithi = E, ) + Eithy, (8b)

The ansatz for the solution of equation (3) is chosen of the form
Y (x) = p(x)exp[g(0)], C)
where ((x) and g(x) are polynomial functions of the complex variable x and can again be expressed as

(,O(X) = Qpr(xla pz) + i‘pi(xlr P2)§
g(x) = gr(xl) pz) + ig,‘(xl) p2) (10)

These forms of ¢(x)and g(x) lead to

Yr(x1, p,) = €8, cos g; — ¢, sin g,);
Yi(x, p,) = €8 (p; cos g, + @, sin g,), (11)

The second derivatives of ¢, and ¢); needed in equation (8) can be obtained from (10) and (11) and the same can
be recast in the forms

Urxx; = €& (B cosg, — Asing), (12a)
Vixx = €% (A cos g, + Bsin g). (12b)
where A and B are given by

A=y = P8+ 08 ) + 2018 T 2608 x,
+ zwrgr,xfgi,xl + wigr,xlxl + Sprgi,xlxl’ (13a)

B = (pr,xlxl - (pr(gi,xl)z + @r(gr,xl)z - 2(pi,x1gi,x1 + 2<pr,x1gr,x|
= 2038 58, — Piix T Prrn (13b)

Using the results of equations, (11), (12a) and (12b) in (8a) and (85) one obtains
2

— @B+ gA) + (B~ V) =0, (14a)
sDr + SDi

2
——— (@A —¢gB)+ (Ei— V) =0, (14b)
(pr + (pi

which, after substituting the expressions for A and B from (13), reduce to the following forms:

1
gr,xlxl - (gi,xl)2 + (gr,x1)2 + ﬁ{sar(sor,xlxl + Z@r,xlgr,xl - zwi,xlgi,xl)
e, + ¢;

r 1

1
+ 0(Ginn T 20080 T 2008 x) T E(Er - V) =0, (15a)
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1
gi>X1X1 + zgr,xlgi,xl + 2 {@r(@i,xlxl + zgor,xlgi,xl + Z@i,xlgr,xl)

o+ @

r 1

1
+ <)01'(_L)01',)c1x1 + Zwi,xlgi,xl - Zsor,x,-gr,x])} + E(El - Vl) =0 (15b)

Further, rearrangement of terms in equations (15), immediately leads to

2

E’ = Vr - 2 2 {sof(sor,qu + zsor,xlgr,xl - Z@i,mgi,xl) + @i(gpi,xlxl + zspr,aqgi,xl + Z@i,x,gr,xl)}
o7 + ¢
=28 T 2080 — 28,5 (16a)
2
Ei=Vi— 2 2 {spf(wf,xlxl + zspr,xlgi,xl + Z@i,xlgr,xl) + cpi(_(pr,xlxl + 2<Pi,xlgi,x1 - 290r,x1g,,x1)}
o + @
- z(gi,xlxl + zgr,xlgi,xl)' (16b)

Thus, the real and imaginary parts of the eigenvalue spectrum for the ground and excited state of the system are
obtained by taking a suitable degree of the polynomial ¢(x). The imaginary part of the eigenvalue is explicitly
determined for a given form of V(x), which is not so trivial [2] in other methods [3—6]. Further, as a special case,
the results for the ground state can be obtained just by setting, ¢o(x) = constant (say unity) in the ansatz (9). This
willlead [7] to the form

P(x) = (x)exp(g(x)) = exp (g, (x1, p,) + ig;(x1, p,))» 17)
while equations (16a) and (16b) are transformed as
1
gr,qu - (gi,x1)2 + (gr,xl)z + E(Er - ‘/r) = 0) (18)
1
gi)xlxl + 2gi)x1g,)xl + E(El - ‘/1) =0. (19)

where the following analyticity condition is applied:

gr,xl = gi,pz; gr,pz = _gi,xl' (20)

3. Complex Morse potential

In this section, the solution of ASE (3) for the complex Morse potential
V(x) = Vple™2* — 2e7*](V,, a complex), (22a)
is calculated. In terms of the parameters of extended phase space, equation (224) is given by
Vi(x1, p,) = Vor[e" X cos 2Y — 2e7X cos Y] + Vpi[e X sin 2Y — 2 sin Y],
Vi(xi, p,) = Voile X cos 2Y — 2% cos Y] — Vo [e X sin 2Y — 2¢ X sin Y], (22b)

where X = ax,—a;p,; Y =ax,+a,pr; Vo = Vo, + iVy;anda = a, + ia;are used. For the ansatz of the
eigenfunction, we take

8, (x1, p,) = Pixi — aup, + fBze X cos Y
g (x1, py) = cuxy + Bip, — Bze X sinY (23)

which again conform to conditions (17). Using these forms of V,, V;, g,and g; in equations (18) and (19), we
rationalize the resultant expressions and obtain the following set of non-repeating equations:

E, =2(a} — BD), (24a)

—2Voi — 4Bsa,a; + 4083(a; B + a,oq) = 0, (24b)
2Vo, — 2Bs(a} — a}) — 4B3(a, B — a;an) = 0, (24c¢)
Voi — 4a;a, 33 =0, (24d)

—Vor — 2B3@af — a}) =0, (24e)

4
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El‘ = *4/61 Qaj. (24f)
While equations (244) and (24¢) yields values of 3; as

1
@:i( Voi )2 and B; = +

4611'617

1
Vor 2
o 25a
2(“3 - aiz):l (230

which provide us constraining relation among the potential parameters, namely,
Voi(a? — af) + 2Voraja, = 0. (25b)
Further, equation (24b) and (24¢) can be solved for 3, and « to give

1 1
=Za, + ———(Vo;a; + Vira,), 26a
ﬂl 2 r Zﬂslﬂlz( 01 Or r) ( )
o = la' + #(V-a — Vora;) (26b)
1 2 i 2ﬁ3|a|2 0:tr 0rti).
Using these results for §; and «; in (24a), (24f), and (23), one obtains the expressions for the energy eigenvalues as
1 \% 1
E, = —E(ﬂf - (11'2) - % - W{(V& - V(i')(arz - aiz) + 4V Voraiar}, (27a)
E— g 2V 1 _ 2 2 2 2\
i=—aija, — — + 2—4{V01V()r(ai —a;) + Vs, — Voaia,}, (27b)
Bs  PBslal
and for the eigenfunction as
1 Vo
Y(x) =exp| —|a+ — |x + Bzexp(—x) |, (28)
2 53[1

Important deductions
The equations (25) when analyzed provide important information regarding the admissibility of the exact
solution for the complex Morse potential. They can be summarized as follows:
From equation (27), it is observed that for the energy eigenvalues to be finite, 5 has to be non-zero. This

implies that exact solutions are possible iff

a,=0,a; =0, a, = a; (29)
The value of Vj; = 0 implies that the well depth of Complex Morse Potential and the bond length are constrained
to be complex quantities to admit exact solutions.

4. Condition for the reality of spectrum

The main advantage of solving the Schrodinger equation using this method lies in the fact that the imaginary part
of all physical quantities including the eigenvalues and the eigenfunction can be deduced explicitly.

Equation (24f) mandates that the energy eigenvalue admitted by the complex Morse potential is real for the
ground state when

ar = 0or B, =0,

Case(i)a; =0

In this case, putting the expression in (260) equal to zero and rearrangement of terms yields
D+ P2 =4 (30a)
0i
while the constraining relation (25b) can be recast as

1 1
p=3{t-7) o
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where

D= &and p= 2o (30c¢)

Voi ao;

Putting value of 35 from (25¢) and D from (300), equation (30a) can be recast as
b VOi = 4£1r2 (3 1‘1)
Along with the condition for the reality of the eigenvalue spectrum, viz.,

Voi = 4a,a;; Vor = 2(a} — a}); B3 = £1 (31b)

Case(ii)3;, = 0

This implies equating the expression in (26a) equal to zero and rearrangement of terms yielding
lal?B5b = —Voi(1 + Db) (32a)

Using the constraining relation (300), the second condition for the reality of the spectrum is obtained in the
form,

4 da 3 1

V=== =V =21 - G| g = = (32b)

b a, a; a,
Itis thus proved that the complex Morse potential can admit real eigenvalues with the values of potential
parameters enumerated in equations (31b0) and (32b). Note that parameter a is the measure of reduced mass of
the particles acted upon by the potential. Using Vo = Vi, + iVy;, the condition of the reality of the
eigenspectrum can also be expressed in the form

Vo = 2a? (33a)
and
2\
Vi = 2(—) (33b)
ar

5. Normalization of the eigenfunction

The eigenfunction obtained for the complex Morse potential is expressed by equation (28). In the domain of the
extended complex plane enumerated by equation (2), the eigenfunction is expressed as

¢(x13 pz) — eBei(x1+bp2) exp [ﬁgecei(“ix1+“'1’2)] (34)

B= %(ai + /%)(xl + bp,)and C = (a;p, — a,x)

The complex conjugate of the eigenfunction can be derived as

P (0, py) = ePe i) exp [BeCe it e (35)

Where

Using equations (34) and (35), the expression for probability density ¥*(x1, p2)¢)(x1, p,) comes out in the form
¥, p) Y (%1, py) = e2Bexp[2F cos(aix; + a,p,)] (36)

where the value of Fis given by F = (sexp(a;p,—a,x1). Note that the value of the expression in equation (36) is
entirely real and integrable in two real dimensions. Hence the two-dimensional integral

fj;oo V*(x, p) U (X1, py)dxidp, = constant (37)

That proves that the eigenfunction admitted by the complex Morse potential is integrable in the domain
characterized by (xy, p,).

The ground state wavefunction corresponding to real eigenvalues enumerated in the conditions (310) and
(33a)is deduced in the form

3 .
Y (x, py) = e?aexp[iece—l(“i"lﬂrl’z)] (38a)
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Figure 1. Plot of V versus a; for Carbon, Nitrogen and He molecules.

and
(x1, py) = e_%exp[iece‘i(“f"1+“fpz)] (38b)
which gives the value of the probability density \*(x;, p,)(x;, p,) respectively as
¥ (x5, py) Y (X1, p,) = €3 exp[2e© cos (aix; + a;p,)] (39a)
And
V¥ (1, PP (1, Py) = e *rexp [2e€ cos (aixi + arpy)] (39b)

The plot of probability density eigenfunction (39) in figure 2 reveals that it is periodic in nature. Similarly, the
expression of the ground-state wavefunction for a real set of eigenvalues corresponding to the condition (32b)
and (33b) takes the form

1

Y(x, py) = e*;(li“r)exp [ :tiecei(“fxl+”r1’z)] (40)

a,
along with the following value of probability density function

(1, Po)Y (1, py) = e 050 exp [2¢C cos (aixi + ap,)] (41)

The wavefunctions can be normalized by inserting the value of the probability density function deduced in
equations (39) and (41). Although the integrals are complicated, they can be computed using computational
software MATLAB. We shall present the computed normalized eigenfunction and plot it in the next section.

6. Result and discussion

As evident from the constraining relations deduced in equation (29), the Schrodinger equation admits the exact
solution for the complex Morse potential only when both parameters V,and ‘a’ turn out to be complex
quantities. This is an important deduction as it foretells that these quantities are necessarily complex for the
eigenvalues and eigenfunction to be admitted for the Complex Morse potential. The relative values of a;and Vy;
for the Carbon, Nitrogen, and Helium molecules are demonstrated in figure 1.

Itis evident from the results obtained in section 5 that the complex Morse potential admits eigenfunctions
and eigenvalues for negative and complex masses. Hence there is a strong probability that the negative masses
constituting the dark matter and other physical systems are bound by the complex Morse potential. The said
statement is reinforced by the fact that the complex Morse potential can admit real eigenvalues under the
conditions enumerated in equations (31b) and (32b). Further, the eigenfunctions admitted for the said real
eigenvalues are completely normalizable using the normalization condition prescribed in equation (37) as the
probability functions (39) and (41) derived for the said eigenfunctions are periodic and completely integrable.

For the sake of completeness, the probability density function computed in equation (36) is plotted for the
case of Helium, Carbon, and Nitrogen atoms and demonstrated in figures 3—5.

7
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Figure 2. Surface plot of Probability density function of ground state for real eigenvalue.
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Figure 3. Surface plot of normalized probability density function for C-C bond.

Itis conspicuous that the probability density is having a marked peak indicating that the resultant molecules
are localized in a finite space under the action of complex Morse potential. This suggests that the atoms are
confined in a potential well.

To gather insight about the nature of eigenvalues admitted by the molecules like Carbon, Nitrogen, and
Helium, the real and imaginary parts of the eigenfunctions are plotted with respect to the imaginary value of
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Figure 6. Plot of real and imaginary part of energy E and a; for the C-C bond.
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Figure 7. Plot of real and imaginary part of energy E and a; for the N-N bond.
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Figure 8. Plot of real and imaginary part of energy E and a; for the N-N bond.

parameter a. It is conspicuous from figures 6-8 that the real part of the eigenvalue is parabolic while the
imaginary partis a decreasing linear function when plotted with respect to the imaginary value of parameter ‘a’.
Itis evident that the eigenvalue is real for that value of a; where E; cuts the abscissa.

To conclude, this study has conclusively established that complex Morse potential characterized by complex
and negative masses do admit eigenvalues and normalized eigenfunctions in the quantum domain. Under
certain values of parameters as derived in this study, the eigenvalues can admit real values for the ground state of
the considered potential which point to the fact that bonding of such masses is indeed a physical possibility. This
points to the fact the molecules in the dark matter can bind together under the action of complex Morse-like
potentials and form molecular structures. This has been demonstrated by taking plots of eigenfunctions for the
real case of eigenspectrum of elements including carbon, nitrogen, and helium which are abundant in the
Universe.

Itis beyond doubt that the understanding of electromagnetism, quantum theory, and their underlying
effects remain incomplete without the incorporation of negative mass. The present study has proved that it is
indeed theoretically possible for the negative masses to form a quantum system with real eigenvalue and
normalized eigenfunction under the effect of complex Morse potential. This suggests that there are interactions

10



10P Publishing

J. Phys. Commun. 5(2021) 065006 P Sarathi and N K Pathak

present in the position space and phase space that can counter the electrostatic repulsive forces among the
negative masses to form an interacting quantum system capable of acting as molecules that can constitute dark
matter. The formation of bonds between such negative masses to form matter can thus become a physical reality
and lend credence to various negative mass theories in cosmology and other branches of science.
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