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Abstract
The interest in the study of physical systems characterized by negative and effective negativemasses
and their behaviour has been a subject of investigation by several researchers. The focus of themajority
of these studies is experimental in nature. Inspired by the same, we have solved the Schrodinger
equation for complexMorse potential with negative and complexmasses and obtained its exact
solution. The normalized eigenfunction and eigenvalues are obtained and the condition for
admissibility of the reality of eigenvalue spectrum for the ground state of complexMorse potential has
been discussed. This study establishes that it is indeed feasible for such negativemasses proposed in
the literature for various physical systems to be bound together by complexMorse potential. Further,
we propose that atomswith complex and negativemassesmay bind together under the action of
complexMorse-like potentials and formmolecular structures.

1. Introduction

Although the theories and discussion on the admissibility of negativemasses in physical systems [1–19] date
back to the 19th century particularly in thefield of cosmology and condensedmatter physics, recent studies
suggest that theUniverse comprisemasses that are negative that can explainmany existingmysteries of the
physical world. These findings suggest that the understanding of ourUniverse requires a superseding theory
based on negativemasses and effective negativemasses.

Themysterious nature of dark energy and darkmatter that constitute 95%of the observable Universe has yet
tofind satisfactory explanations using conventional Cosmological theories. The issue of negativemasswas
brought forth in cosmology by the discovery of the accelerated cosmological expansion and its associationwith
mysterious dark energy and the cosmological constant [20, 21]. The negative-mass cosmologies attempt to
explain dark energy as a repulsive formof gravity an extension of general relativity with positive and negative
mass distributions. Researchers have proposed a cosmology that incorporated positive-massmatter into a sea of
negative-mass anti-matter [10, 22, 23]. There has been an attempt to construct a cosmologicalmodel based on
modifiedΛCDMcosmology to incorporate both dark phenomena into a single negativemassfluid [24] that
proposes continuous-creation of negativemasses which resemble the cosmological constant and canflatten the
rotation curves of galaxies. Efforts have also beenmade to construct themodel with negative gravitationalmass
in the context ofNewtonian gravity [25] that reproduces the features of the so-calledDirac-MilneUniverse, a
matter-antimatter symmetric universe that was recently proposed as an alternative cosmological scenario [23].

The recent advances in the development ofmetamaterials with negative effectivemass have demonstrated
the efficacy of negativemasses in real physical systems [26–28]. These negativemassmaterialsfind numerous
applications in acoustic tunneling through narrow channels, control of the radiationfield, transmission through
sharp corners, and power splitting [29]. Elastic wave control and seismic wave protectionwith acoustic
metamaterials possessing the negativemass (density) are also proposed in the literature [30].

The emergence of position-dependentmass, quantummechanics has renewed interest in investigating the
same forMorse-like potentials in the real domain. The exact solutions of the Schrödinger equation characterized
by position-dependent effectivemass via point canonical transformations [31] for theMorse andMorse-like
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potentials are obtained. These studies have been extended to obtain the solutions of the three-dimensional
Schrodinger equation by applying the Laplace transforms combiningwith the point canonical transforms [32]
for the position-dependentmass profile which obeys a key condition. Studies have also delved into analyzing the
numerical solution of the time-independent fractional Schrödinger equation forMorse potential [33] and the
quantumoscillator potential in one dimension. Thewave functions in the case of hydrogen chloride and
hydrogenfluoridemolecules are calculated for a certain value of the fractional parameter of the space-dependent
fractional Schrödinger equation. For the realMorse potential, the eigensolutions of the Schrödinger equation
coming from the hypergeometric differential equation are used to show the relationship that exists between the
Morse potential and a class ofmultiparametric exponential‐type radial (MER) potential [34]. In the realmof
nanophysics, a new generalizedMorse potential functionwith an additional parameterm is proposed to
calculate the cohesive energy of nanoparticles that are used to predict experimental values for the cohesive
energy of nanoparticles [35]. The non-analyticity at the origin for a class of symmetricMorse potential is
explored by solving the Schrödinger equation for potential which are piecewise analytic and piecewise solvable
in terms of special functions [36].

Historically, runawaymotion of positive and negativemasses put forth by Bondi and Bonnor [4–6] and
Forward [9]which suggested that negativemass repels both other negativemasses and positivemasseswas the
primary hindrance in acceptance of negativemass theories for physical systems. In this study, we investigate the
complexMorse potential for the bond formation of systemswith negativemasses and effective negativemasses
of particles to suggest that it is theoretically possible for the said potential under certain specified constraints to
admit real eigenvalues in theQuantumdomain.

In this paper, an attempt ismade tofind the solution of the Schrodinger equation for the one-dimensional
complexMorse potential as

= -- -V x V e e a2 1ax ax
0

2( ) [ ] ( )

whereV0 is thewell depth, x is the internuclear distance (bond length) and a is related to the vibrational constant
υe and the reducedmassμ of the system is

pu
m

=a
V

b
2

1e
0

( )

It is worthmentioning here that any negative or complex value of these parameters V0 andμ turns parameter a
into a complex quantity which implies that theMorse potential is a complex quantity. In general, the parameters
V0 and a are considered complex as the aimof the study is to investigate the bonding between two particles of
negative or complexmasses. The arrangement of the paper is as follows.

In section 2, a general formulation for the solution of the Schrodinger equation for a general class of complex
potential is enumerated. In section 3, the exact solution of the Schrodinger equation is obtained for the general
class of one-dimensional ComplexMorse potential and its eigenvalues and eigenfunction are computed. The
admissibility of real eigenvalues is discussed in section 4. The normalization of eigenfunction is investigated in
section 5. A general discussion on the results and future scope of such studies are carried forward in section 6.

2. Complex phase space Approach to schrodinger quantummechanics

An extended complex phase space formulation of SchrodingerQM [37–42] has been employed to study the
complex potentials and gain insight into understanding the quantumdynamics ofNon-HermitianHamiltonian
(NHH) systems. For this purpose, we use a definition of complex x and p [43] as

= + = + -x x idp p p id x; 21 2 1
1

2 ( )

In this paper, we choose d= 1 and exploit the analyticity property of the eigenfunctionψ(x) to obtain the
solution of the Schrodinger equation

y y=H x p x E x a, , 3ˆ ( ) ( ) ( ) ( )

where

= -
¶
¶

+H x p
x

V x b,
1

2
, 3

2

2
( ) ( ) ( )

andV(x) is a complex potential. In the quantum context, since  - ¶
¶
p i

x
which implies

 - ¶
¶

¶
¶

p x, ,
p x1 2

2 1
the analyticity ofH(x,p) gets translated into that of the complex potential functionV(x).

Using (2) andwriting
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y y y= +x x p i x p, , , 4r i1 2 1 2( ) ( ) ( ) ( )

Equation (3a) is separated into a pair of coupled PDEs forψr andψi, we obtain their quasi-exact solutions for
complex potentials using the ‘eigenfunction-ansatzmethod’[44]. TheASE (3a) is expressed as a pair of coupled
PDE’s bywritingψ(x) enumerated in (4) and the complex quantitiesV(x) andE in the form

= + = +V x V x p iV x p E E iE, , ; 5r i r i1 2 1 2( ) ( ) ( ) ( )

where the subscripts r and i respectively denote the real and imaginary parts of the corresponding physical
quantity. Likewise, the additional subscripts to some of these quantities separated by a commadenote the partial
derivatives of the concerned physical quantity. Thus, using (2) and (5) in ASE (3) and separating the real and
imaginary parts in the resultant expression, one obtains the following pair of coupled PDEs:

y y y y y y y- - + + - = -V V E E a
1

2
2 , 6r x x r p p i x p r r i i r r i i, , , ,1 1 2 2 1 2

( ) ( )

y y y y y y y- - - + + = +V V E E b
1

2
2 . 6i x x i p p r x p i r r i r i i r, , ,1 1 2 2 1 2

( ) ( )

Using the analyticity property of thewave functionψ(x) in terms of theCauchy-Riemann conditions, namely

y y y y= = -; , 7r x i p r p i x, , , ,1 2 2 1 ( )

Equations(6a) and (6b) is reduced in a simpler form as

y y y y y- + - = -V V E E a2 , 8r x x r r i i r r i i, 1 1 ( )

y y y y y- + + = +V V E E b2 , 8i x x i r r i r i i r, 1 1 ( )

The ansatz for the solution of equation (3) is chosen of the form

y j=x x g xexp , 9( ) ( ) [ ( )] ( )

wherej(x) and g(x) are polynomial functions of the complex variable x and can again be expressed as

j j j= +
= +

x x p i x p

g x g x p ig x p

, , ;

, , 10
r i

r i

1 2 1 2

1 2 1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

These forms ofj(x)and g(x) lead to

y j j
y j j

= -
= +

x p e g g

x p e g g

, cos sin ;

, cos sin , 11
r

g
r i i i

i
g

i i r i

1 2

1 2

r

r

( ) ( )
( ) ( ) ( )

The second derivatives ofψr andψi needed in equation (8) can be obtained from (10) and (11) and the same can
be recast in the forms

y = -e B g A g acos sin , 12r x x
g

i i, i
r

1 ( ) ( )

y = +e A g B g bcos sin . 12i x x
g

i i, r
1 1 ( ) ( )

where A andB are given by

j j j j j

j j j

= - + + +

+ + +

A g g g g

g g g g a
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2 , 13
i x x i i x i r x r x i x i x r x

r r x i x i r x x r i x x
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j j j j j
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Using the results of equations, (11), (12a) and (12b) in (8a) and (8b) one obtains

j j
j j

+
+ + - =B A E V a

2
0, 14

r i
r i r r2 2

( ) ( ) ( )

j j
j j

+
- + - =A B E V b

2
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which, after substituting the expressions for A andB from (13), reduce to the following forms:

j j
j j j j

j j j j
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Further, rearrangement of terms in equations (15), immediately leads to

j j
j j j j j j j j= -

+
+ - + + +

- + -
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Thus, the real and imaginary parts of the eigenvalue spectrum for the ground and excited state of the system are
obtained by taking a suitable degree of the polynomialf(x).The imaginary part of the eigenvalue is explicitly
determined for a given formofV(x), which is not so trivial [2] in othermethods [3–6]. Further, as a special case,
the results for the ground state can be obtained just by setting,j(x)=constant (say unity) in the ansatz (9). This
will lead [7] to the form

y j= = +x x exp g x g x p ig x pexp , , , 17r i1 2 1 2( ) ( ) ( ( )) ( ( ) ( )) ( )

while equations (16a) and (16b) are transformed as

- + + - =g g g E V
1

2
0, 18r x x i x r x r r, ,

2
,

2
1 1 1 1

( ) ( ) ( ) ( )

+ + - =g g g E V2
1

2
0. 19i x x i x r x i i, , ,1 1 1 1

( ) ( )

where the following analyticity condition is applied:

= = -g g g g; . 20r x i p r p i x, , , ,1 2 2 1
( )

3. ComplexMorse potential

In this section, the solution of ASE (3) for the complexMorse potential

= -- -V x V e e V a complex a2 , , 22ax ax
0

2
0( ) [ ]( ) ( )

is calculated. In terms of the parameters of extended phase space, equation (22a) is given by

= - + -

= - - -

- - - -

- - - -

V x p V e Y e Y V e Y e Y

V x p V e Y e Y V e Y e Y b

, cos 2 2 cos sin 2 2 sin ,

, cos 2 2 cos sin 2 2 sin , 22
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X X
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i i
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r
X X
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2
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whereX=arx1−aip2; Y= aix1+arp2;V0=V0r+iV0i and a=ar+iai are used. For the ansatz of the
eigenfunction, we take

b a b

a b b

= - +

= + -

-

-

g x p x p e Y

g x p x p e Y

, cos

, sin 23
r

X

i
X

1 2 1 1 1 2 3

1 2 1 1 1 2 3

( )
( ) ( )

which again conform to conditions (17). Using these forms ofVr,Vi, gr and gi in equations (18) and (19), we
rationalize the resultant expressions and obtain the following set of non-repeating equations:

a b= -E a2 , 24r 1
2

1
2( ) ( )

b b b a- - + + =V a a a a b2 4 4 0, 24i r i i r0 3 3 1 1( ) ( )

b b b a- - - - =V a a a a c2 2 4 0, 24r i r r i0 3
2 2

3 1 1( ) ( ) ( )

b- =V a a d4 0, 24i i r0 3
2 ( )

b- - - =V a a e2 0, 24r i r0 3
2 2 2( ) ( )
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b a= -E f4 . 24i 1 1 ( )

While equations (24d) and (24e) yields values ofβ3 as

b b=  = 
-

V

a a

V

a a
a

4
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i r
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( )

which provide us constraining relation among the potential parameters, namely,

- + =V a a V a a b2 0. 25i i r r i r0
2 2

0( ) ( )

Further, equation (24b) and (24c) can be solved forβ1 andα1 to give

b
b
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1

2
. 26i i r r i1

3
2 0 0∣ ∣
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Using these results forβ1 andα1 in (24a), (24f), and (23), oneobtains the expressions for the energy eigenvalues as

b b
= - - - - - - +E a a

V

a
V V a a V V a a a
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2
4 , 27r r i
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and for the eigenfunction as

y
b

b= + + -x a
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a
x xexp
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Important deductions
The equations (25)when analyzed provide important information regarding the admissibility of the exact
solution for the complexMorse potential. They can be summarized as follows:

From equation (27), it is observed that for the energy eigenvalues to befinite,β3 has to be non-zero. This
implies that exact solutions are possible iff

¹ ¹ ¹a a a a0, 0, 29r i r i ( )

The value of ¹V 0i0 implies that thewell depth ofComplexMorse Potential and the bond length are constrained
to be complex quantities to admit exact solutions.

4. Condition for the reality of spectrum

Themain advantage of solving the Schrodinger equation using thismethod lies in the fact that the imaginary part
of all physical quantities including the eigenvalues and the eigenfunction can be deduced explicitly.
Equation (24f)mandates that the energy eigenvalue admitted by the complexMorse potential is real for the
ground state when

a b= =or0 0,1 1

Case (i)α1=0

In this case, putting the expression in (26b) equal to zero and rearrangement of terms yields

b
+ =D a

V
b a30

i

2 3

0

∣ ∣ ( )

while the constraining relation (25b) can be recast as

= -D b
b

b
1

2

1
30⎛

⎝
⎞
⎠

( )
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where

= =D
V

V
b

a

a
cand 30r

i

r

i

0

0

0

0

( )

Putting value ofβ3 from (25c) andD from (30b), equation (30a) can be recast as

=bV a a4 31i r0
2 ( )

Alongwith the condition for the reality of the eigenvalue spectrum, viz.,

b= = - = V a a V a a b4 ; 2 ; 1 31i r i r r i0 0
2 2

3( ) ( )

Case (ii)β1=0

This implies equating the expression in (26a) equal to zero and rearrangement of terms yielding

b = - +a b V Db a1 32i
2

3 0∣ ∣ ( ) ( )

Using the constraining relation (30b), the second condition for the reality of the spectrum is obtained in the
form,

b= = = - = V
b

a

a
V

a

a a
b

4 4
; 2 1 ;

1
32i

i

r
r

i

r r
0 0

2

2 3⎜ ⎟
⎛
⎝

⎞
⎠

( )

It is thus proved that the complexMorse potential can admit real eigenvalues with the values of potential
parameters enumerated in equations (31b) and (32b). Note that parameter a is themeasure of reducedmass of
the particles acted upon by the potential. UsingV0=V0r+iV0i, the condition of the reality of the
eigenspectrum can also be expressed in the form

=V a a2 330
2 ( )

and

=V
a

a
b2 33

r
0

2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

5.Normalization of the eigenfunction

The eigenfunction obtained for the complexMorse potential is expressed by equation (28). In the domain of the
extended complex plane enumerated by equation (2), the eigenfunction is expressed as

y b= + +x p e e e e, exp 34B i x bp C i a x a p
1 2 3

i r1 2 1 2( ) [ ] ( )( ) ( )

Where

= + + = -B a
V

b
x bp C a p a x

1

2
andi

i
i r

0
1 2 2 1⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )

The complex conjugate of the eigenfunction can be derived as

y b= - + - +x p e e e e, exp 35B i x bp C i a x a p
1 2 3

i r1 2 1 2*( ) [ ] ( )( ) ( )

Using equations (34) and (35), the expression for probability densityψ*(x1, p2)ψ(x1, p2) comes out in the form

y y = +x p x p e a x a p, , exp 2F cos 36B
i r1 2 1 2

2
1 2*( ) ( ) [ ( )] ( )

where the value of F is given by F=β3exp(aip2−arx1). Note that the value of the expression in equation (36) is
entirely real and integrable in two real dimensions. Hence the two-dimensional integral

ò ò y y =
¥

x p x p dx dp constant, , 37
0

1 2 1 2 1 2*( ) ( ) ( )

That proves that the eigenfunction admitted by the complexMorse potential is integrable in the domain
characterized by (x1, p2).

The ground state wavefunction corresponding to real eigenvalues enumerated in the conditions (31b) and
(33a) is deduced in the form

y =  - +x p e exp e e a, 38
a C i a x a p

1 2

3
2 i r1 2( ) [ ] ( )( )
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and

= - - +x p e exp e e b, 38
a C i a x a p

1 2 2 i r1 2( ) [ ] ( )( )

which gives the value of the probability density y yx , p x , p1 2 1 2*( ) ( ) respectively as

y y = + ax , p x , p e exp 2e cos a x a p 391 2 1 2
3a C

i 1 r 2
r*( ) ( ) [ ( )] ( )

And

y y = +- bx , p x , p e exp 2e cos a x a p 391 2 1 2
a C

i 1 r 2
r*( ) ( ) [ ( )] ( )

The plot of probability density eigenfunction (39) infigure 2 reveals that it is periodic in nature. Similarly, the
expression of the ground-state wavefunction for a real set of eigenvalues corresponding to the condition (32b)
and (33b) takes the form

y = -  - +x p e exp
a

e e,
1

40
a

r

C i a x a p
1 2 2

1 ar i r
1

1 2⎡
⎣⎢

⎤
⎦⎥

( )( ) ( )( )

alongwith the following value of probability density function

y y = +- ex , p x , p exp 2e cos a x a p 41a
1 2 1 2

1 C
i 1 r 2

ar
1* ( )( ) ( ) [ ( )] ( )

Thewavefunctions can be normalized by inserting the value of the probability density function deduced in
equations (39) and (41). Although the integrals are complicated, they can be computed using computational
softwareMATLAB.We shall present the computed normalized eigenfunction and plot it in the next section.

6. Result and discussion

As evident from the constraining relations deduced in equation (29), the Schrodinger equation admits the exact
solution for the complexMorse potential only when both parametersV0 and ‘a’ turn out to be complex
quantities. This is an important deduction as it foretells that these quantities are necessarily complex for the
eigenvalues and eigenfunction to be admitted for theComplexMorse potential. The relative values of ai andV0i

for theCarbon,Nitrogen, andHeliummolecules are demonstrated infigure 1.
It is evident from the results obtained in section 5 that the complexMorse potential admits eigenfunctions

and eigenvalues for negative and complexmasses. Hence there is a strong probability that the negativemasses
constituting the darkmatter and other physical systems are bound by the complexMorse potential. The said
statement is reinforced by the fact that the complexMorse potential can admit real eigenvalues under the
conditions enumerated in equations (31b) and (32b). Further, the eigenfunctions admitted for the said real
eigenvalues are completely normalizable using the normalization condition prescribed in equation (37) as the
probability functions (39) and (41) derived for the said eigenfunctions are periodic and completely integrable.

For the sake of completeness, the probability density function computed in equation (36) is plotted for the
case ofHelium,Carbon, andNitrogen atoms and demonstrated infigures 3–5.

Figure 1.Plot ofV0i versus ai for Carbon,Nitrogen andHemolecules.
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It is conspicuous that the probability density is having amarked peak indicating that the resultantmolecules
are localized in afinite space under the action of complexMorse potential. This suggests that the atoms are
confined in a potential well.

To gather insight about the nature of eigenvalues admitted by themolecules like Carbon,Nitrogen, and
Helium, the real and imaginary parts of the eigenfunctions are plottedwith respect to the imaginary value of

Figure 2. Surface plot of Probability density function of ground state for real eigenvalue.

Figure 3. Surface plot of normalized probability density function forC-Cbond.
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Figure 4. Surface plot of normalized probability density function forN-Nbond.

Figure 5. Surface plot of normalized probability density function forHe-He bond.

Figure 6.Plot of real and imaginary part of energy E and ai for theC-Cbond.
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parameter a. It is conspicuous fromfigures 6–8 that the real part of the eigenvalue is parabolic while the
imaginary part is a decreasing linear functionwhen plottedwith respect to the imaginary value of parameter ‘a’.
It is evident that the eigenvalue is real for that value of aiwhere Ei cuts the abscissa.

To conclude, this study has conclusively established that complexMorse potential characterized by complex
and negativemasses do admit eigenvalues and normalized eigenfunctions in the quantumdomain. Under
certain values of parameters as derived in this study, the eigenvalues can admit real values for the ground state of
the considered potential which point to the fact that bonding of suchmasses is indeed a physical possibility. This
points to the fact themolecules in the darkmatter can bind together under the action of complexMorse-like
potentials and formmolecular structures. This has been demonstrated by taking plots of eigenfunctions for the
real case of eigenspectrumof elements including carbon, nitrogen, and heliumwhich are abundant in the
Universe.

It is beyond doubt that the understanding of electromagnetism, quantum theory, and their underlying
effects remain incomplete without the incorporation of negativemass. The present study has proved that it is
indeed theoretically possible for the negativemasses to form a quantum systemwith real eigenvalue and
normalized eigenfunction under the effect of complexMorse potential. This suggests that there are interactions

Figure 7.Plot of real and imaginary part of energy E and ai for theN-Nbond.

Figure 8.Plot of real and imaginary part of energy E and ai for theN-Nbond.
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present in the position space and phase space that can counter the electrostatic repulsive forces among the
negativemasses to form an interacting quantum system capable of acting asmolecules that can constitute dark
matter. The formation of bonds between such negativemasses to formmatter can thus become a physical reality
and lend credence to various negativemass theories in cosmology and other branches of science.
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