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We describe the internal composition of a topologically stable monopole carrying a magnetic charge 
of 6π/e that arises from the spontaneous breaking of the trinification symmetry SU (3)c × SU (3)L ×
SU (3)R (G). Since this monopole carries no color magnetic charge, a charge of 6π/e is required by the 
Dirac quantization condition. The breaking of G to the Standard Model occurs in a number of steps 
and yields the desired topologically stable monopole (“magnetic baryon”), consisting of three confined 
monopoles. The confined monopoles (“magnetic quarks”) each carry a combination of Coulomb magnetic 
flux and magnetic flux tubes, and therefore they do not exist as isolated states. We also display a more 
elaborate configuration (“fang necklace”) composed of these magnetic quarks. In contrast to the SU (5)

monopole which is superheavy and carries a magnetic charge of 2π/e as well as color magnetic charge, 
the trinification monopole may have mass in the TeV range, in which case it may be accessible at the 
LHC and its planned upgrades.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Magnetic Monopole Ninety Years Later

1. Introduction

Grand unification theories (GUTs) based on a single gauge cou-
pling such as SU (5) [1] predict the existence of a topologically 
stable magnetic monopole which carries one quantum (2π/e) of 
Dirac magnetic charge [2,3]. In contrast to the ‘t Hooft-Polyakov 
monopole [4], the SU (5) monopole also carries an appropriate 
amount of color magnetic flux that is screened because of color 
electric confinement.

Unification models based on product groups such as SU (4)c ×
SU (2)L × SU (2)R [5] predict the existence of a topologically stable 
monopole that carries two quanta (4π/e) of magnetic charge [6]. 
One straightforward way to see this is by noting that the under-
lying group allows the existence of color singlet states that carry 
electric charges ±e/2 and colored triplets with charges ±e/6. A 
more explicit realization of this doubly charged monopole was 
demonstrated in Ref. [7], where it was shown to arise from the 
merger of two distinct (“confined”) monopoles, with each one car-
rying some Coulomb flux and a magnetic flux tube. This demon-
stration also reveals the existence of “magnetic dumbbells” in a 
variety of unified theories.
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Very interestingly, following Ref. [7], Volovik has shown [8] how 
topological structures similar to the doubly charged construction 
in Ref. [7] may arise in superfluid 3He. Furthermore, the exis-
tence of a class of topological structures called “walls bounded by 
strings” [9] was verified in experiments with superfluid 3He [10]. 
Motivated by these recent developments and especially the inter-
play between topological structures in high energy and condensed 
matter physics, we explore some interesting topological structures 
that arise in the framework of the trinification gauge symmetry 
G = SU (3)c × SU (3)L × SU (3)R [7,11]. In contrast to SU (5) and 
SU (4)c × SU (2)L × SU (2)R , the topologically stable monopole in 
the trinification model is purely electromagnetic in nature with 
no color magnetic field accompanying it. It carries three quanta 
of magnetic charge (6π/e) in order to satisfy the Dirac quanti-
zation condition, and its mass may be light enough to make it 
accessible in high energy colliders. To identify the variety of topo-
logical substructures potentially associated with this monopole, we 
assume that the trinification symmetry breaking to the Standard 
Model (SM) proceeds through a series of steps. This deconstruc-
tion procedure allows us to identify the building blocks that make 
up the triply charged monopole. The latter, it turns out, consists 
of three distinct constituent monopoles which are bound together 
by flux tubes. We may thus refer to the triply charged monopole 
as a “magnetic baryon,” and its confined constituent components 
as “magnetic quarks.” It is clear that other bound states such as 
“magnetic mesons” are also present in this trinification model. We 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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display an example of a somewhat more elaborate topological con-
figuration referred to as a “fang necklace.”

2. Triply charged monopole

The trinification symmetry G is a well known subgroup of E6
[12], and a variety of topological structures that arise when the 
latter breaks to the SM have been discussed in Ref. [7]. In this pa-
per we do not insist on this relationship between the two groups, 
which allows us to contemplate the spontaneous breaking of G
at scales lying in the TeV range. Because G implements electric 
charge conservation, its spontaneous breaking to the SM and sub-
sequently to SU (3)c × U (1)em yields a topologically stable mag-
netic monopole that carries three quanta of Dirac magnetic charge, 
namely 6π/e [11].

Recall that in the presence of fractionally charged quarks, say 
d or s, one naively expects the magnetic monopole to carry this 
amount (6π/e) of magnetic charge from the Dirac quantization 
condition (qg/4π = n/2, where q, g denote the electric and mag-
netic charges respectively and n is an integer) [13]. However, the 
topologically stable magnetic monopole in SU (5) carries just a sin-
gle quantum (2π/e) of magnetic charge. This is compatible with 
the Dirac quantization condition because the monopole also car-
ries an appropriate amount of color magnetic charge [3]. In the 
trinification case this is not the case and so the magnetic charge 
carried by the monopole is 6π/e. A simple way to see this is to 
note that G allows, in principle, color singlet states in the repre-
sentations (1,3,1) + h.c., which carry electric charge ±1/3, and 
therefore the magnetic monopole must carry a magnetic charge 
of 6π/e. (Fractionally charged color singlet states accompanied by 
multiply charged monopoles also appear in string theories [14].) 
Recall that the observed quarks and leptons reside in bifunda-
mental representations of G such as (1, 3̄,3), etc. The discussion 
regarding the monopole charge is a bit more subtle if G is embed-
ded in E6 but the outcome remains intact [7,11]. The monopole 
is topologically stable because the second homotopy group of the 
vacuum manifold π2(G/H) = Z = {n = 0, ±1, ±2, ±3, ...}, with G
being the trinification group and H = SU (3)c × U (1)em .

We now turn to the breaking of G to SU (3)c × SU (2)L ×
U (1)Y L × SU (2)R × U (1)Y R at an intermediate scale, which can 
approach the TeV scale if desired. This is achieved by the vac-
uum expectation values (VEVs) of the (1,8,1) and (1,1,8) compo-
nents of a Higgs 78-plet under E6. (It is sometimes convenient 
to follow the E6 notation.) Recall that the SU (3)L(R) octet un-
der the SU (2)L(R) × U (1)Y L (Y R ) subgroup is decomposed as follows 
8 = 10 + 30 + 23 + 2−3 , where the subscripts denote the charges 
with respect to the generator T 8

L(R) ≡ diag(1, 1, −2) of U (1)Y L (Y R ) . 
We can further break SU (2)R to U (1)R by a VEV along the 30
component of the SU (3)R octet. The generator of U (1)R is T 3

R =
diag(1, −1). The unbroken subgroup is then SU (3)c × SU (2)L ×
U (1)Y L × U (1)R × U (1)Y R .

To be a bit more explicit, the potential for the breaking of 
SU (3)R to SU (2)R × U (1)Y R , assuming a discrete symmetry φ →
−φ, with φ being the scalar octet, is given by

V = −1

2
m2Trφ2 + a

4
Tr(φ2)2 + b

2
Trφ4, (1)

where m is a mass parameter and a, b dimensionless parameters. 
The 3 × 3 matrix φ j

i can be diagonalized by an SU (3)R rotation, 
and for suitable choices of a and b, φ acquires a VEV

〈φ〉 ∝
⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ , (2)
2

which breaks SU (3)R to SU (2)R × U (1)Y R . With a second scalar 
octet, it is then straightforward to break SU (2)R to U (1)R . More 
details will not be provided here.

At this stage, we have the generation of three types of inter-
mediate scale magnetic monopoles. Two of them result from the 
breaking of SU (3)L and SU (3)R to SU (2)L × U (1)Y L and SU (2)R ×
U (1)Y R and carry one unit of Coulomb magnetic flux along the 
generators T 3

L /2 + T 8
L /2 and T 3

R/2 + T 8
R/2 respectively, where 

T 3
L(R) ≡ diag(1, −1). This is because the (−1, −1) ∈ SU (2)L(R) ×

U (1)Y L (Y R ) coincides with the identity element as it leaves all 
the representations of SU (3)L(R) unchanged. Consequently, a ro-
tation by 2π along the generator T 3

L(R)/2 + T 8
L(R)/2, which inter-

polates between (1,1) and (-1,-1), is a closed loop generating the 
second homotopy group π2(SU (3)L(R)/SU (2)L(R) × U (1)Y L (Y R ) =
π1(SU (2)L(R) × U (1)Y L (Y R )) = Z of the vacuum manifold. The 
breaking of SU (2)R to U (1)R generates a third monopole which 
carries one unit of T 3

R magnetic flux corresponding to a 2π rota-
tion along this generator.

We should further break U (1)Y L × U (1)R × U (1)Y R to U (1)Y , 
where Y = T 3

R/2 + (T 8
L + T 8

R)/6 is the weak hypercharge. (The 
electric charge operator is given by Q = T 3

L /2 + Y .) First con-
sider the breaking of U (1)Y L × U (1)Y R to U (1)B−L , where B − L =
(T 8

L + T 8
R)/3 is the baryon minus lepton number. This symmetry 

breaking is achieved by a Higgs field in the fundamental represen-
tation of E6,

27 = (1, 3̄,3) + (3,3,1) + (3̄,1, 3̄) ≡ λ +Q+Qc, (3)

where

λ =

⎛
⎜⎜⎜⎝

hu ec

hd νc

l N

⎞
⎟⎟⎟⎠ (4)

with the rows being 3̄’s of SU (3)L and the columns 3’s of SU (3)R , 
and

Q =
⎛
⎝

q

g

⎞
⎠ and Qc = (

uc, dc, gc
)

(5)

denote an SU (3)L triplet and an SU (3)R antitriplet respectively. 
For simplicity, we use here for the various components of the 
Higgs 27-plet the same symbols as for the corresponding compo-
nents of the fermion 27-plets which contain the ordinary quarks 
and leptons. The reader should keep this in mind to avoid any con-
fusion. The Higgs 27-plet acquires a VEV along its N component 
which is an SU (3)c × SU (2)L × SU (2)R singlet and has T 8

L = 2, 
T 8

R = −2. Consequently, the generator T 8
L + T 8

R = 3(B − L) remains 
unbroken [7]. A rotation by 2π/4 along the orthogonal broken gen-
erator

B ≡ T 8
L − T 8

R (6)

leaves the VEV of N invariant. Consequently, the cosmic string gen-
erated by the breaking of U (1)B is a tube with magnetic flux 
corresponding to this rotation, namely it carries magnetic flux 
(T 8

L − T 8
R)/4.

We next consider the breaking U (1)R × U (1)B−L to U (1)Y , 
where Y = T 3

R/2 + (B − L)/2 is the SM weak hypercharge, by a VEV 
along the νc component of the Higgs 27-plet which has T 3

R = −1
and B − L = 1. The normalized generators corresponding to T 3

R and 
(B − L) are T 3

R/2 and 
√

3/8(B − L) and, thus, the orthogonal bro-
ken generator is
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2T 3
R − 3(B − L). (7)

This generator is unbroken by the VEV of N , but breaks by the 
VEV of νc . However, the charges of νc imply that a rotation by 
2π/5 along this generator remains unbroken and the associated 
string carries magnetic flux

2

5
T 3

R − 3

5
(B − L). (8)

Revisiting the tube with magnetic flux (T 8
L − T 8

R)/4, we see that 
as we go around it the VEV of νc acquires a factor exp(2iπ/4)

since its relevant charges are T 8
L = 2, T 8

R = 1. To cancel this fac-
tor, we should add along the tube an additional magnetic flux 
(1/4){2T 3

R/5 − 3(B − L)/5} so that νc acquires an extra factor 
exp(−2iπ/4). This additional flux does not affect the VEV of N
since its relevant charges are T 3

R = 0, B − L = 0. In conclusion, we 
obtain a tube with a combined magnetic flux

1

4
(T 8

L − T 8
R) + 1

4
{2

5
T 3

R − 3

5
(B − L)}. (9)

In Ref. [7], it has been shown that the only intermediate scale 
topological defect which survives in this model, where the symme-
try breaking employs the νc component of a Higgs 27-plet rather 
than the νcνc component of a Higgs 351′ , is a triply charged 
(6π/e) magnetic monopole. Therefore, one expects that the three 
types of intermediate scale monopoles and the two types of mag-
netic flux tubes mentioned above must combine to generate this 
monopole. Indeed, when the trinification group is broken to the 
SM gauge group, the magnetic flux T 3

R/2 + T 8
R/2 emerging from 

the SU (3)R monopole splits into two parts, one equal to minus 
the flux in Eq. (9) which forms a tube and one Coulomb flux equal 
to 6Y /5. Similarly, the magnetic flux T 3

R of the SU (2)R monopole 
forms a tube with flux given in Eq. (8) and a Coulomb magnetic 
field with flux 6Y /5. This tube is absorbed by an SU (3)L monopole 
with flux T 3

L /2 + T 8
L /2, which also emits the tube with magnetic 

flux as in Eq. (9) terminating on the SU (3)R monopole. The re-
maining magnetic flux T 3

L /2 + 3Y /5 forms a Coulomb magnetic 
field emerging from the SU (3)L monopole. At this point, it is con-
venient – for reason to become apparent in the next paragraph 
– to add to the Coulomb fields of the SU (3)R and the SU (2)R

monopoles and subtract from the magnetic field of the SU (3)L

monopole a magnetic flux T 3
L . This is legitimate since a rotation 

by 2π around T 3
L is homotopically trivial. The sum of the Coulomb 

magnetic fluxes emerging from the three monopoles is then

3

2
T 3

L + 3Y = 3Q , (10)

where Q is the electric charge operator. Consequently, the three 
constituent magnetic monopoles (magnetic quarks) are pulled to-
gether by the strings to create a triply charged (6π/e) magnetic 
monopole.

Next we consider the effect of the electroweak symmetry 
breaking on the two tubes with magnetic fluxes given in Eqs. (8)
and (9). The relevant charges of the VEVs 〈hu〉 and 〈hd〉 of the 
electroweak doublets hu and hd , which couple to the up-type and 
down-type quarks, are T 3

L = −1, T 3
R = 1, T 8

L = −1, T 8
R = 1, and 

T 3
L = 1, T 3

R = −1, T 8
L = −1, T 8

R = 1, respectively. Consequently, as 
we go around the string with magnetic flux as in Eq. (9), the phase 
of 〈hu〉 changes by (−2/5)2π and that of 〈hd〉 by (−3/5)2π . The 
tube must then acquire an extra magnetic flux −2T 3

L /5 so that the 
phase of 〈hd〉 changes by −2π and 〈hu〉 remains constant around 
the string. Similarly, as we go around the string with magnetic flux 
as in Eq. (8), the phases of 〈hu〉 and 〈hd〉 change by (2/5)2π and 
(−2/5)2π respectively. Thus, we must add an extra magnetic flux 
3

Fig. 1. Emergence of the topologically stable triply charged monopole from the sym-
metry breaking G → SU (3)c × SU (2)L × U (1)Y L × U (1)Y R × U (1)R → SU (3)c ×
SU (2)L × U (1)Y → SU (3)c × U (1)em . An SU (2)R (green) monopole is connected 
by a flux tube to an SU (3)L (blue) monopole which, in turn, is connected to an 
SU (3)R (red) monopole by a superconducting flux tube. The constituent monopoles 
are pulled together to form the triply charged monopole. The fluxes along the tubes 
and around the monopoles are indicated.

2T 3
L /5 along this tube so that both 〈hu〉 and 〈hd〉 remain constant 

around the string. This choice is energetically favored since it min-
imizes the magnetic energy along the strings – see Ref. [7]. The 
Coulomb magnetic fluxes emerging from the SU (3)R and SU (2)R
monopoles are (6/5)(T 3

L /2 +Y ) = 6Q /5 each, and from the SU (3)L

monopole this flux is equal to (3/5)(T 3
L /2 + Y ) = 3Q /5, in total 

3Q – see Fig. 1.
The Coulomb magnetic charges accompanying the SU (3)R , 

SU (3)L , and SU (2)R constituent magnetic monopoles are, re-
spectively, (6/5)2π/e, (3/5)2π/e, and (6/5)2π/e. These magnetic 
charges, by construction, are compatible with the Dirac quantiza-
tion condition because of their accompanying magnetic flux tubes. 
(Magnetic monopoles carrying a mixture of Coulomb magnetic flux 
and Z -magnetic flux have been considered in the past [6,15]. For 
a recent discussion see Refs. [7,16].)

Clearly, each of the three types of constituent magnetic
monopoles (magnetic quarks) can alternatively be connected to 
its own magnetic antiquark by the appropriate flux tube(s) to pro-
duce a magnetic meson in the case of the SU (2)R and SU (3)R
monopoles with a single flux tube connecting it to its anti-
monopole, or a new type of magnetic mesons in the case of the 
SU (3)L magnetic quark with two flux tubes connecting it to its 
magnetic antiquark. In all three cases, the magnetic quarks and 
antiquarks eventually annihilate by being pulled together.

Let us briefly discuss the mass of the triply charged magnetic 
monopole. This mass depends, of course, on the breaking scale M
of the trinification symmetry. Since the latter is not a grand uni-
fied theory without additional assumptions such as gauge coupling 
constant unification, there is nothing, in principle, that prevents 
the scale M to lie in the TeV range, in which case the magnetic 
monopole mass also is of order M or somewhat larger. This would 
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make the topologically stable trinification monopole accessible at 
the LHC [17] and its planned upgrades. For completeness, let us 
note that the size of the core of each magnetic monopole is de-
termined by gM−1, where g and M denote the relevant gauge 
coupling constant and symmetry breaking scale. Also, the mass per 
unit length of the magnetic flux tubes is of order μ2, with μ be-
ing the corresponding symmetry breaking scale. These flux tubes 
are practically stable with a relatively small hierarchy between M
and μ.

Finally, some remarks regarding the observability of this topo-
logically stable triply charged monopole at the LHC are in order 
here. It has been recognized for quite some time now that the 
production cross section of a composite coherent quantum state 
such as this monopole is expected to be exponentially suppressed 
in Drell-Yan processes involving elementary particles – for a recent 
review and additional references, see Ref. [18]. This is somewhat 
analogous to the exponential suppression encountered in tunneling 
phenomena in quantum mechanics. This suppression of monopole 
production in Drell-Yan production does not depend on whether 
the semi-classical monopole solution is spherically symmetric or 
not. More recently, it has been suggested that this challenge may 
be overcome at colliders by exploiting the magnetic analogue of 
the Schwinger mechanism. In the presence of adequately strong 
magnetic fields the (dual) Schwinger mechanism may lead to an 
observable cross section for monopole pair production in heavy 
ion collisions – for a recent discussion and additional references, 
see Ref. [19]. It is fair to state that the production mechanisms in 
colliders of more complex topological structures such as necklaces 
requires additional studies well beyond the scope of this paper.

3. Strings and necklaces

Around the string that connects the SU (3)L and SU (3)R

monopoles, 〈hu〉 remains constant implying that there are no 
transverse zero modes in the up-type quark sector. However, the 
phases of 〈hd〉 and 〈N〉 change by −2π and 2π respectively. The 
masses of the down-type quarks can be written as

Md = (
gc, dc

)
⎛
⎝

〈N〉 , 0

〈
νc

〉
, 〈hd〉

⎞
⎠

⎛
⎝

g

d

⎞
⎠ . (11)

Three of the four 3 × 3 blocks in the mass matrix are of the order 
of 〈N〉, 

〈
νc

〉
, and 〈hd〉 as indicated with constant unsuppressed co-

efficients. The fourth block is suppressed by powers of the Planck 
mass since the relevant direct trilinear Yukawa coupling is forbid-
den by E6. Applying the results of Ref. [20], we then see that there 
exist nine right-moving and nine left-moving zero modes (one for 
each family and color). A very similar analysis can be done for the 
charged leptons. We conclude that these strings are superconduct-
ing. In contrast, the string that connects the SU (2)R and SU (3)L

monopoles is not superconducting since 〈N〉, 〈hu〉, and 〈hd〉 remain 
constant as we go around it. It is worth mentioning that the fact 
that the phase of 

〈
νc

〉
changes by −2π around this string does not 

imply the existence of zero modes in this case. In order to see this, 
we employ a theorem given in Ref. [20] which states that, if a par-
ticular mass matrix element remains constant around the string, 
we can remove from the mass matrix the row and the column that 
contain it when calculating the number of transverse zero modes. 
In our case 〈N〉 and 〈hd〉 remain unaltered around the string, so all 
rows and columns can be removed and no zero modes appear.

Let us now turn to the alternative case where the symmetry 
breaking of E6 employs the νcνc component of a Higgs 351′ . In 
this case, intermediate scale Z2 topologically stable strings are 
produced [7,21] in addition to the superheavy Dirac and the in-
termediate scale triply charged monopoles. A rotation by 2π/10
4

Fig. 2. Necklace configuration with alternating SU (3)L (blue) and SU (2)R (green) 
monopoles from the symmetry breaking G → SU (3)c × SU (2)L × U (1)Y L × U (1)Y R ×
U (1)R → SU (3)c × SU (2)L × U (1)Y × Z2 → SU (3)c × U (1)em × Z2. These are con-
nected by half flux tubes along the necklace as indicated. Each SU (3)L (blue) 
monopole in the necklace is also connected by a flux tube with an SU (3)R (red) 
monopole hanging outside the necklace. We display explicitly only the Coulomb 
magnetic flux of three of the constituent monopoles and the flux along two of the 
tubes.

around the generator in Eq. (7) is now left unbroken by the VEV 
of νcνc since its relevant charges are T 3

R = −2, B − L = 2. Conse-
quently, the flux tube from the SU (2)R to SU (3)L monopole splits 
into two equivalent tubes with magnetic flux

2

10
T 3

R − 3

10
(B − L). (12)

After the electroweak symmetry breaking, this tube acquires an ex-
tra magnetic flux T 3

L /5 so that 〈hu〉, 〈hd〉 remain constant around 
it. One can show that this “half flux tube” is not superconducting. 
The combined flux tube though is not affected. We can imagine 
that we break one of the two strings from the SU (2)R to SU (3)L
monopole which leaves the two monopoles connected by one 
string and two “loose” strings attached to the two monopoles. One 
can then connect these latter strings to other similar monopole-
string structures in series to form “fang necklaces” – see Fig. 2. 
More complex fang necklaces can be contemplated where each 
SU (3)L monopole (antimonopole) in the necklace is connected by 
a half tube either to its own antimonopole or an SU (2)R monopole 
(antimonopole), and each SU (2)R monopole (antimonopole) ei-
ther to its own antimonopole or to an SU (3)L monopole (anti-
monopole). Each SU (3)R monopole (antimonopole) in the neck-
lace is also connected by a flux tube to an SU (3)R monopole 
(antimonopole) hanging outside the necklace or to its own anti-
monopole which participates in a different necklace.

4. Conclusions

The trinification group SU (3)c × SU (3)L × SU (3)L implements 
charge quantization and predicts the existence of a topologically 
stable monopole of magnetic charge 6π/e. The trinification sym-
metry breaking to the SM may occur in a number of steps, and we 
have discussed a scenario in which this monopole may be regarded 
as a magnetic baryon, in rough analogy with the QCD baryon. It is 
composed of three confined monopoles (magnetic quarks), where 
the latter monopoles carry some Coulomb magnetic flux accompa-
nied by a magnetic flux tube. These confined monopoles can yield 
more elaborate topological configurations and we display one such 
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example consisting of a fang necklace. In contrast to the super-
heavy GUT monopoles the trinification monopole discussed here 
may be accessible at high energy colliders.
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