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field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate
and isospin-singlet pseudo-scalar 1 condensate and thus modifies the chiral symmetry breaking pattern.
In order to characterize the strength of the U (1) symmetry breaking, we evaluate the susceptibility
associated with the U, (1) charge. The result shows that the susceptibility contributed from the chiral
anomaly is consistent with the behavior of the corresponding 1 condensate. The spectra of the mesonic
excitations are also studied.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

As is well known, the Lagrangian of the quantum chromodynamics (QCD) for light flavors (u,d quarks) has approximate SU,(2)
chiral symmetry and U4 (1) axial symmetry. However, the U, (1) symmetry will be violated by the chiral anomaly due to the nontrivial
topological configurations of the gluon fields [1-3]. The remained SU4(2) chiral symmetry is also broken spontaneously in vacuum by
chiral condensate (/1) £ 0 which gives rise to three (pseudo) Goldstone modes identified as pions.

The chiral symmetry breaking and the U,4(1) symmetry breaking are closely related. For example, it was argued that the order and the
critical properties of the chiral phase transition are sensitive to the fate of the U4 (1) symmetry at the chiral critical temperature T, [4].
But it is still unclear whether the U,4(1) symmetry is effectively restored at and above T.. As The nontrivial gluon-field configurations
produce both the chiral anomaly and the topological susceptibility, one can use the latter to quantify the strength of the U, (1) symmetry
breaking in both the quenched and the unquenched cases [5,6]. It was found in both cases that the topological susceptibility always drops
down above T, but the topological charge itself still keeps an obvious deviation from zero, which indicates partial restoration of the U,(1)
symmetry and is consistent with the simulation using the instanton model [7] and other effective model [8]. Recently, there were also
important progresses from the lattice QCD simulations, we refer the readers to the Refs. [9-12] for more details.

In addition to the temperature and density, the electromagnetic (EM) field provides another way to explore the features of the chiral
symmetry breaking and restoration in quark-gluon matter [13]. This kind of study is important because it is relevant to the environments
in the compact stars [14,15], the heavy-ion collisions [16-19], and the early universe [20] where very strong magnetic fields can exist.
Usually, the presence of the magnetic field enhances the chiral condensate in vacuum which is called the magnetic catalysis effect [21,
22]; but the interplay between the magnetic field and the temperature demonstrates the inverse magnetic catalysis effect near T, the
underlying mechanism of which is still not fully understood [23-28]. The effect of the electric field was found always to restore the chiral
symmetry because it tends to break the scalar quark-antiquark pairs [29-31]. Furthermore, various chiral-anomaly induced quantum
phenomena are also closely related to the EM field, including the chiral magnetic effect [32,33], the chiral magnetic wave [34], the
chiral separation effect [35,36], the chiral electric separation effect [37,38], the anomalous magnetovorticity coupling [39], the chiral
electrodynamics [40], etc; see recent reviews [41-44].
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In Ref. [45], the effect of EM chiral anomaly (which should not be confused with the chiral anomaly due to gluons) on the chiral
symmetry breaking and restoration was investigated in the parallel EM field (i.e., the EM field configuration with parallel electric and
magnetic fields) and the isospin-triplet neutral pseudo-scalar 7° condensate was found to increase with the second Lorentz invariant
I =E-B (without loss of generality, we will assume I > 0) and to saturate at a critical I§. This finding was also confirmed by the
calculations using the Wigner function formalism [46,47]. As the isospin-singlet neutral pseudo-scalar n meson (more precisely, the
two-flavor counterpart of the 7 meson) has the same quantum numbers as 7% meson except for isospin, one can expect that 1 would
also condensate in parallel EM field via the EM chiral anomaly, which would then give rise to a macroscopic U, (1) current divergence
via mo(iy>y). The purpose of the present paper is to give a detailed study of the properties of the chiral symmetry breaking and
Ua(1) symmetry breaking under a parallel EM field. We will adopt the Nambu-Jona-Lasinio (NJL) model with U} (2) ® Ug(2) symmetric
interactions in the following discussions, which allows us to illuminate how the sole parallel EM field breaks the U4(1) symmetry. The
vacuum properties and the mesonic fluctuations will be both investigated. Here, it is proper to mention a recent work [48] which studies
the generation of chiral density due to Schwinger mechanism and its feedback to the thermodynamic properties of the NJL model. As the
feedback is small for a reasonable relaxation time, especially at lower temperatures, we will not discuss such a effect in out study. Our
main focus will be the pseudo-scalar 7 and g channels which were not discussed in Ref. [48].

The paper is organized as follows. In Sec. 2, we develop a formalism to evaluate several neutral condensates in a parallel EM field
within the chosen NJL model. Section 3 is composed of three parts. We first introduce the topological charge to describe the U (1)
symmetry breaking in Sec. 3.1, then the corresponding susceptibility is evaluated to show the strength of U, (1) symmetry breaking in
Sec. 3.2, and pole masses of mesonic excitation modes are shown in Sec. 3.3. A summary will be given in Sec. 4.

2. Neutral condensates in parallel electromagnetic field

As our aim is to study how the parallel EM field influences the U (1) and chiral symmetry, we will adopt a two-flavor NJL model
without the Kobayashi-Maskawa-"t Hooft (KMT) determinant term so that the Lagrangian density preserves the U (2) ® Ug(2) symmetry.
The Lagrangian in Euclidean space is given by the following form [30,49,50],

L= (D —mo)¥ + Gl Ty)? + Wiy ty)?, (1)

where T = (1p, T) (7o is the unit matrix and T are Pauli matrices in flavor space), ¥ = (u,d)” represents the two-flavor quark fields,
mg is the current mass of quarks, and G is the four-fermion coupling constant. The parallel EM field is introduced through the covariant
derivative D, = 9, +iQ A, with the vector potential chosen as A, = (iEz,0, —Bx,0) (E,B > 0) and the quark charge matrix Q =
diag(2/3, —1/3)e. Note that the presence of the EM field explicitly breaks the symmetry of Ly to Ua(1) ® Uy (1).

In order to explore the ground state in this case, we introduce eight auxiliary boson fields, 0 = —2Gy/v, a= —2Gy Ty, n = —2Gyiy
and ™ = —2G iy T, via the Hubbard-Stratonavich transformation. Then, by integrating out the quark degrees of freedom, the action is
bosonized to the following form:

o’+a’+n*+n?
S = | d*
e

—Trln [il,'/)—mo—o—r-a—iysn—iysr-n}. (2)

As the charged condensates are energetically unfavored in the EM field [51], it is enough only to consider the following four neutral
condensates: (o) =m — my, (a3) = &m, (n) = n and (7% = 0. The corresponding gap equations can be obtained by minimizing the
thermodynamic potential with respect to these order parameters, that is, 3$2/9x =0 (x =m, §m, n, ©%), which give the following forms:

m—mo 1
— —TrS4(x) =0, 3
2C 5V A(X) (3)
M 1 SaTs =0 (4)
2c gy roAwn =0,
n 1 5
— — —TrSs(x)iy”> =0, 5
2C BV ATy (5)
0
T 1
— — ——TrSa(x)iy’t3 =0. 6
2C BV ARy T3 (6)
Here the fermion propagator in the constant EM field is defined as Sa(x) = —[il} —m — émt3 —iy°n — i;/5710173]71 which is diagonal in

flavor space. For brevity and convenience which will be illuminated later, we define my ;g =m4dém, 0y,q = 0 +6m, and nl?/d =m%+n. By
following the same procedure as in Ref. [31], the propagator of f (=u, d) favor quark can be written out explicitly in energy-momentum
space as

tan(qgfEs)
qrE

tanh(q¢Bs)

St(p) =/ds eXp{ —[mZ + (P)%1s (p3+p3) — 3 (p? + p%)}
g qr

[ms — i sgn(@ny° 7 — y*(pa — tan(qsEs)p3) — v >(p3 + tan(qEs) pa) — y* (p2 — i tanh(g¢Bs) p1)
—y!(p1 + itanh(geBs)p2) ] [1 — iy° tan(g¢Es) tanh(q¢Bs) — iy 'y ? tanh(q¢Bs) + y4y> tan(qus)], (7)
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where the Schwinger phase has been dropped because it does not change any conclusion in this work. In order to simplify the discussions,
we choose the field strengths as in Ref. [45] where the first Lorentz invariant of the EM field I; = B2 — E2 = 0. Substituting this explicit
form back to the gap equations Eq. (3)-(6), we find

M~ Mo =N, Z 1 d_sef(m%(nf“)z)s me(qsv/T25)? N Z sgn(qp) 7 (qe/12)> )
26 f=u,d 4 0 s? tan(ge/T25) tanh(qe/T2s) 42 = m2 + (0)2
o.¢]
om =N, Z L/ d_se—(m§+(nf°)2)s sgn(q@nms(qrv/T25)* Z 7@V 12)* (qff) o)
26 St ) s tan(qsy/125) tanh(qgy/125) 4712 m? + ()
=, 0
o0
TN Y 1 [ miap)s_ SE0@DTGryTas)? Z mi(ge/T5)? o
26 o 472 J 52 tan(qg/T25) tanh(gey/T25) 4712 mf +(m m2 + (79)2’
oo
TN Y [ ety Tas) Ne 5~ sen@mi@n/T)” (11)
26 f—ud 4r? 5 s? tan(qgy/I25) tanh(gey/Izs) — 4m? = m? + (10)?2

where I, = EB. It is easy to see that Eq. (8)%+Eq. (9) and Eq. (11)%Eq. (10) split the four coupled gap equations to two independent sets of
gap equations for u and d quarks, separately. Thus, the thermodynamic potential can be derived consistently by combining the integration
over m of Eq. (8), the integration over m of Eq. (9), the integration over 1 of Eq. (10) and the integration over w° of Eq. (11). The result
is

2 042 x® —(m24+0)?)s 2 0
(mf —mo)* + (77¢) ds e M) (qe/158) N¢ T 5
o=y TRELLEY . (Ch)ai)? |- (12)
o 4G 81 s® tan(qs+/125) tanh(ge/125) 4rm my
Using the same regularization scheme as in Ref. [31,45], the gap equations and the thermodynamic potential become
NemgM AZ\172 A A2z Ne [d JT2s)?
mg—m m s s
f—mo _ Nc f2 f A(l " _2) ~ M¢In <_+ (1 +_2> ) n Cz _Ze_Mgsmf (grv/125) 1
2G 2 Mg Mg Mg 4 S tan(qs+/I25) tanh(gg/125)
0
N¢ Sgn(qf)n
a2 @v/12)%, (13)
0 0 2 2 * 2
T Nere M A“N\1/2 A A“N\1/2 N ds V1S
_f:C—ff A(1+—) —Mfln(—+(1+—) ) + C c /_efM?snfO (Qf 28) 1
2G 272 M? Mg M? 472 2 tan(gs+/T25) tanh(gea/T25)
0
N SgH(CIf)mf
14
taz gz vl 2%, (14)
(mf—m0)2+(nf°)2 NeM? 242 A%\1/2 A A%\1/2
1 225) (122" -+ 1+ 2) )
2 { 4G 872 LYy e My U
f=u,d f f f
Ne [d (qry/T25)? Ne 0
c S _M2s dsv/ 125 ( f ) 2
+ —e 7t -1 ——sgn tan” " ( — V1 , 15
82 ) s3 |:tan(qf./lzs) tanh(g/125) ] 428 @0 my @rv12) (15)
0

where Mg = [m? + (0)%]1/2.
It is easy to check from Eq. (13) and Eq. (14) that

<qff )2 = sgn(@n) ——s—5

! —sgn(qf> o f ~(@r/12)%, (16)

where we have used the Gell-Mann-Oakes-Renner relation in NJL model, mf, f% =mem*(2G)~! with m* the quark mass in vacuum. Thus,
the following model parameter independent results can be extracted,

[@uv/12? + @av/12?), (17)
szfz @2 - @avD)?]. (18)

which can also be obtained from Eqgs. (8)-(10) without explicitly solving them (in the I, region where ms > 0). As discussed in Ref. [45],
the above n and 79 condensates are consequence of the EM chiral anomaly as shown in Fig. 1. Moreover, the above results show that the
n condensate is always larger than 7° condensate under given I,.

712 2f2

0_
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Fig. 2. The constitute quark masses my 4, neutral pion condensates ng and —ng as functions of the second Lorentz invariant I, for the case of E = B in the NJL model.

By fixing the model parameters as G = 4.93 GeV~2, A = 0.653 GeV and mg =5 MeV [52], the numerical results by solving the coupled
gap equations Eq. (13) and Eq. (14) for E = B are shown in Fig. 2. The solutions to each equation set f=u or d, i.e., m, and 713 or my
and nc?. show the same features as those found in Ref. [45], though the critical points I at which m=0 are different for different flavor.
The critical I§ for u quark corresponds to the peak of |§m| while the one for d quark corresponds to the peak of 7. At large enough I,
all the condensates vanish because the strong electric field breaks the mesonic pairs. However, we note that the U4 (1) symmetry is not
completely restored at any I, because the triangle anomaly is always finite in parallel EM field.

As we have stated in the introduction, the electric field and the magnetic field have opposite effects on the chiral condensate at zero
temperature. For the case of E = B, Fig. 2 shows that not only ms but also M¢ decreases with increasing I, which indicates that the
electric restoration effect takes over the magnetic catalysis effect. This is actually consistent with the previous result in Ref. [29] where
similar anti-catalysis effect of I, on the chiral condensate was observed. To understand this I, dependence of My, we first note that the
decreasing of my in the region I; < I§ is mainly due to the chiral rotation effect induced by EM chiral anomaly [45], but at the same time
the electric field slightly reduces My. For I > IS, the scalar condensate vanishes, so let us focus on the pseudoscalar condensate nfo. In
this case (note that E = B), the gap equation for nfo can be rewritten as

o0

1 N ds Es Bs Bs

— =Fx?) + C2/5—2e<”?>25[( a 1) = 1]
0

— — 19
2G 4 tan(qfEs) tanh(qsBs)  tanh(g¢Bs) (19)
with
0 A% (172 A A% 172
Frd)=Ne— | A(14+ —— —2lIn(— 1+ —— 20
() =N ( +(nf°)2) s n(nf‘)+< +(7rf°)2) ) (20)

being a monotonically decreasing function of nfo. The terms originate from the magnetic field in the integrand of Eq. (19) can be reex-
pressed in terms of the Landau levels by using

1 o0
— =Y (2 — 8pp)e 2MarBls, (21)
tanh(|g¢B|s) ;, "

For large I, we can take the lowest Landau level approximation and Eq. (19) will just be reduced to the gap equation in a pure elec-
tric field. Thus, the behavior of 7Tf0 at large I, would be similar to the case with a pure electric field which favors chiral symmetry
restoration [30]. In a word, it is the Landau levels induced by magnetic field that make the effect of I, more like electric field.
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3. U4 (1) susceptibility and collective excitations
3.1. Chiral current and U 4 (1) charge

In the absence of the EM field, the Lagrangian density Eq. (1) has the symmetry U4 (1)®@Uy (1)®SU(2) ® SUR(2) in chiral limit mg = 0.
However, in the presence of the EM field, the symmetry SU;(2) ® SUg(2) reduces to Ur(1) ® Ug(1) with the neutral transformations

5
exp (i H[Tyl'g@), because u and d quarks have different charges. The U, (1) symmetry is still expected to be exact in the chiral limit at
classical level, but for finite current quark mass mg and nonvanishing E - B, this symmetry is broken with the divergence of chiral current

given by
e +4;
272

o )Y = 2igmoy >y + N E-B, (22)

where ]é‘ = ¥ y*y>y. In equilibrium state, the expectation value (]é‘) must be uniform in spacetime and thus the divergence BM(]Q) =0.
This gives (Yiy>y) = —Nc(q% + q3)E - B/(4mom?) which is nothing but Eq. (17). Similarly, we can consider the current ]535“ =yyHryi3y.
The vanishing of its divergence at equilibrium can give us the 7% condensate which is identical to Eq. (18). Therefore, the mean field
relations Eq. (17) and Eq. (18) have their wholly origins from the EM chiral anomaly at equilibrium with the effective coupling G just
giving the definitions of n and 7°.

We now turn to study the fluctuations on top of the mean-field solutions. The first quantity that we want to describe is the U4 (1) sus-

ceptibility which characterizes the fluctuation of the U, (1) charge (which will be defined soon) and the strength of the U4(1) symmetry
breaking. The starting point is the mean-field Lagrangian for quarks

Ly =¥ (D —m—iy°n —smr3 — iy r3n)y, (23)

in which the condensates m, n, ém, 70 are all uniform, i.e., they are not dynamical fields. Then one can derive the divergence of the axial
current which reads

~ q2 +q2
duJ§ =2iYmoy>y + Ne=2—59E-B+2N;Qa. (24)
where (Nf =2)
1 -
Qa= N—fw[zysw +8mt3) — (7 + 7013)1y. (25)

One can check that in the ground state specified by the mean-field solutions, the expectation value of Q4 vanishes. In Eq. (24), the
quantity Q4 is defined in an analogous way as the topological charge in QCD. In QCD, the topological charge represents the violation of
the Ua(1) symmetry due to the instanton effects and its susceptibility measures the strength of the violation; see Refs. [53,54] for the
NJL model mimic of the QCD topological charge. In Eq. (24), Q4 represents the violation of the Ua(1) symmetry by the appearance of
the condensates o, 8m, w%, 1 and we will use its susceptibility to quantify the strength of such violation. In this sense, the Q 4 term in
Eq. (24) can be regarded to express a “spontaneous breaking of Us(1) symmetry” by the condensates o,8m, %, n, especially induced
by I». Thus, Q4 has very different meaning from the topological charge and we will therefore call it the U4(1) charge (should not be
confused with the axial charge | (5)).

3.2. The U4 (1) susceptibility

The topological susceptibility in QCD is a fundamental correlation function and is the key to understand many distinctive dynamics
in the U4 (1) channel. In this section, in order to quantify the strength of the “spontaneous U, (1) symmetry breaking”, we calculate the
analogous susceptibility by using the U (1) charge density Q 4. The U4 (1) susceptibility x can be regarded as the zero energy-momentum
limit of the Fourier transformation of the correlation function (T Q 4(x)Q 4 (0))¢, that is,

X = / d*x(TQa(x)Q4(0))c

= lim e % (TQA(X)Qa(0))c. (26)

Here, T denotes the time-ordering operator and the subscript C means to pick out only the connected diagrams. Then, by substituting the
charge Eq. (25) into Eq. (26), we can get the explicit form of U, (1) susceptibility,

1 - -
X=7 2T / d*x(0|[¥(x) iy ot — sgn(@n) )i ¥ (0) (iy *or — sgn(@n ) ¥ (0)]10)c, (27)
f=u,d

where ¥ (x) and v4(x) stand for u and d quark fields, respectively. It is much more convenient to work in energy-momentum space:
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X=X1+X2+X3,

=— Z(nf>2Tr / - PSS, (28)
ff ,d (27)
2 Y / S S Sw)iy. (29)
f u,d
Z sgn(qp oy Tr f o )4Sf(P)lVSSf(p) (30)
f_ud

which are closely related to the mesonic polarization functions as will be shown in the next section.
To evaluate x numerically, we need to regularize the above equations as they are divergent. We choose a three-momentum cutoff A
to make the regularization. The regularized susceptibilities, ¥/ i =1, 2, 3, can be decomposed in the following way,

x{ (B,E) =[xi(B, E) — xi(0,0)] + x{*, (31)

where the parts in the square bracket are finite and independent of A and the A dependent parts, X,-Av are independent of the EM field.
Their expressions are

o
Neatly 2/ a2 1/s —2m?

B,E)= d 512 32
R N e T T 52
pod.p)= Y Al / sds 55| _ 2sgnigomd S~ 200)° (33)

T Gy em? 7 tan(grv/T25) tanh(gs/Ts)
qf12 —M2s 2 0\2 2mgrry
x3(B.E) = - /dse £°| sgn(qp) (mf — (r¢)") + , (34)
fgd ) FT T an(gry/Ts) tanh(gryT2s)
2, 2
0 mg +p
& 4 2fX:d(ij) [ (M%+P2)3/2’ (35)
=u
7))’ +p?
2
12 4712 2 (@’ / dp(MZ p2)3/2° (36)
f=u.d
N myog(2)?
A c 2 f

= o2 d , 37
X3 =53 qu:dfp p(M?+p2)3/2 (37)

=u.dp

The numerical results for the total U4 (1) susceptibility x, the one induced by 7tf0 condensations, xi, and the one generated by of
condensations, x», are illuminated in Fig. 3 for the case E = B. As we can see, x» always decreases with increasing I, due to both the
chiral rotation in o — 70 plane and the tendency of chiral restoration as we have analyzed in last section; but y; increases with I, for
not too large EM field because of the chiral rotation [45]. The total susceptibility x always decreases with I,. Thus, with increasing I, not
only the chiral symmetry tends to be restored, the U4 (1) symmetry is also effectively restored in terms of .

3.3. Collective excitations

We now consider the collective mesonic excitations on top of the mean-field ground state. Comparing to the case of pion superfluidity
at large isospin chemical potential or color superconductivity at large baryon chemical potential, the parallel EM field will develop mixing
among the flavor collective modes &, dg, 7o and # in the neutral sector rather than in the charged 7% or color diquark sectors. In the
following, we are going to calculate the pole masses of the eigen collective charge-neutral excitations. For the charged modes such as
7%, 6%, the masses can be evaluated similarly by neglecting the overall Schwinger phases. However, these charged modes are not the
focus of the present paper and we thus will not consider them. Expanding the action Eq. (2) to quadratic order of the fluctuation fields
which is known as the random phase approximation (RPA), the polarization functions in the neutral sector can be generally written as

d4 N n
My (q) = f ﬁn 8¢ + p)TwSs(p) e, (38)

where the interaction vertices are given by
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Fig. 3. The U, (1) susceptibility x and its constitute parts x; and x, as functions of the second Lorentz invariant I, for E = B in the NJL model.
I, M=6¢6;
3, M = do:
F'y=Tpy+= . A (39)
iys, M=1;
i)/s 3, M = 1.

The pole masses of the collective excitations are obtained by setting g4 = imy and gjx4 = 0 in the corresponding Euclidean propagators.

We preserve the lengthy derivations of the polarization functions in Appendix A. In the matrix form, the polarization function can be
represented as the following:

aa( 4) aag (qa) Tlsp(qa)  Tlsz,(qa)

| Haps@a) Tagao(qa)  Tayn(qa)  goz,(qa)
Mge) = 3500 noaf @) Tp@s) Tosoqa) | (40)

Mi06(qa) Mzoa,(@a) Miip(qa) iz, (qa)

Then, the inverse of the effective mesonic propagator in the matrix form is given by
1(@a) = 5 — 14a). 41)
44 2 44

By diagonalizing G~!, we obtain the inverse propagator of the mass eigen modes which we denote as T, Zq, Hg. and l'[g:

1
-1 r r 2 2
Gr, = 56 Mous + Magag +y oy, — Migag? +4(T 02

L1
Grg = 3¢ + Mous + Magap =/ Moy, — Mag)? + 4T 1002,

2G

ad Ud

1
Gg) ==+ Mg 5+ nio ot \/(l‘[ H;gﬁgﬂ +4(nrddﬁ3)2,

1
-1_ r r _ sy 2 r 2
9ng = 3¢ T Mawsa T Magag \/ (M50 ~ Moz0)° T4 50)%, (42)

where 6, /d = (6 +£a)/2 and rru /4= = (7% 4 #)/2. One should notice that these eigen modes are linear combinations of the original modes

0,a9,n, % and are diagonal in flavor space. The fields £, and 4 are dominated by the ¢ sector while the fields 1'[?1 and I"[g are
dominated by the 7% sector for small I, but the dominations exchange around the end of chiral rotation. Finally, the pole masses of these
modes can be obtained by setting _C;Aj,] (qa =impy) =0 (M = 2y, Xy, l'[0 l'IO) and the numerical results are shown in Fig. 4.

For clarity, we choose the range of I, 174 from 0 to 0.2 GeV where U A(1) susceptibility is the largest. In this region, all the pole masses

of collective excitations evolve slowly w1th I, but the masses of X, and HS drop a bit faster than those of 4 and I1 due to the larger

charge of u quark than that of d quark. To understand the decreasing features with respect to I, we can consider the small I, limit. In
this case, the masses of the lighter modes 13 and 19 are

2
~ Ne g 2 ~ Ne &rqq >
Mpo ~ My (1 ~ 2872 qul2 |, mng Amy | 1— 2872 el qzl2 |, (43)

where the slops are negative and proportional to q?, which are then qualitatively consistent with the numerical results.
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Fig. 4. The pole masses of the eigen collective excitations as functions of I, in the case of E = B. The upper panel shows the T sector and the lower one shows the IT sector.

4. Summary

In this paper, we study the NJL model with a U;(2) ® Ur(2) symmetry under a parallel EM field at zero temperature and quark
chemical potential. In particular, we focus on the breaking and restoration of the chiral symmetry and the U4 (1) symmetry as the second
Lorentz invariant I varies. This study extends the previous work [45] to include both isospin singlet  condensation and mass splitting
dm between different flavors. In such a way, the four coupled gap equations Eq. (8)-(11) can be split into two independent equation sets
for u and d quarks, respectively.

Our first finding is that the EM chiral anomaly induces not only the isospin triplet 7% condensation but also the isospin singlet n
condensation. The result is presented in Fig. 2. Although the quark masses my and neutral pion condensate 70 show quite similar features
as the previous work [45], the n and mass splitting §m behave differently. Actually, the critical I, for u and d quarks correspond to the
peaks of dm and n condensates, respectively. In order to show the strength of Us(1) symmetry breaking in the parallel EM field, we
calculate the susceptibility by defining a U4 (1) charge in analogue to the topological charge in QCD. The total susceptibility x decreases
with I, indicating an effective decrement of the U (1) symmetry breaking. At last, we explore the eigen excitation modes, the pole masses
of which all decrease with I, as shown in Fig. 4.

Finally, we comment about the stability of the 7° and 1 condensed vacuum. Under the exertion of the electric field, the charged
particle-antiparticle pairs (mostly 7% in the confined phase) can be induced through the Schwinger mechanism and may drive the
vacuum unstable. However, as discussed in Ref. [45], for a parallel EM field with the configuration of E = B, such a pair production rate
is strongly suppressed due to the enhancement of the charged pion mass by the magnetic field. Therefore, we are eligible to consider the
“equilibrium” property of the vacuum.

Most recently, this work has been extended to the case with finite temperature and quark chemical potential [55]. In the future, this
work can also be extended to three-flavor NJL model with the KMT determinant. Then the effect of the interplay between QCD anomaly
represented by KMT determinant and QED anomaly induced by parallel EM field on both the ground state and meson properties can be
studied.
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Appendix A. Polarization functions

In this appendix, we derive the polarization functions involved in the neutral sector by adopting the imaginary proper time presenta-
tions for the quark propagators [30] and finally regularize them as in Ref. [45]. In this way, the proper time integrations are well defined
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and the pole masses of collective excitations can be estimated numerically. The polarization function of 7% with transformation energy q4
nonzero can be evaluated as the following,

d4 A . A
HﬁOﬁO(B,E,(M)E/ o I;4Tr5(p+q4)1y5r35(p)1y5r3

tan(q¢Bs)  tan(g¢Bs') tanh(q¢Es’)
=-Nc Y [ds|d ~M2(s+5)— + Ziph - —n "t -
f_Ud! 3/ S f 2n) eXp[ |: F(s+s)—( 4B 4B )(p3 +p7) — 4iE ( ps + p3)

tanh(q¢Es)

oE ((pa+qa)* + p%)} } tr[m¢ — sgn(gpiysmy — y*((pa +qa) — itanh(qeEs)p3) — y>(p3 +itanh(geEs)(p4 + qa))

—y2(p2 + tan(qeBs)p1) — v (p1 — tan(qeBs) p2)1[1 + iys tanh(geEs)tan(qsBs) + y 'y >tan(qeBs) + iy 4y tanh(qeEs)liys
[ms — sgn(qpiysmd — y*(pa — itanh(qrEs')p3) — ¥>(p3 + i tanh(qeEs")pa) — y%(p2 + tan(qeBs')p1)
—yl(p1 - tan(ans’)pz)]n + iys tanh(q¢Es )tan(qeBs') + y ' y?tan(qeBs’) + iy *y > tanh(qeEs') liys

Eq:B tanh E“H”) tanh Et(] L)
=N, Z at qf /tdt/du exp —I[M2 @ e ) @ ”) 2
qrE (tanh(qeE X +“))+tamh(qu ( ”)))

f=U 1
q3 tanh(qeE ") tanh(geE 52 )sinh 2 (q¢Et) 1
(tanh(g¢E t“zﬂ ) + tanh(g¢E “12—” )tan(qeBt) ~ tanh(q¢Et)tan(qeBt)

[ 2sgn(gymery + ( +2()? —q4—csch(qut)

(usinh(q¢Etu) — coth(q¢Et) cosh(qsEtu) + csch(qut)))i|, (A1)

where we've used partial integral to remove sin~2(q¢Bt) in the last step due to the non-overlapping condition [56]. Similarly, the o-mode
polarization function and the corresponding mixing term can be given as the following:

d*p _ - .
&&(B,E’Q4)E/WTTS(P+Q4)5(I?)

:NC ququ /tdt/du expy —i M2 t+ tanh(qﬁ%)tanh(qd:"@) qﬁ
gsE (tanh(gfE @) + tanh(qfE @))

f= ,d
t(1+u) t(1—U) \ i a2 .
0 q4tanh(quT)tanh(quT)smh (qfEt) 1 i 2 21
2sgn(@mer + taTw t—w tanh(qrEt)tan(qBt (_ i~ day cscharEn
(tanh(gfE==-) + tanh(qE “5~))tan(q¢Bt) anh(gsEt)tan(qrBt)
(usinh(q¢Etu) — coth(q¢Et) cosh(qsEtu) + csch(qut)))i|, (A.2)
dp _ . .
Ms70(B, E, qa) = T405 (B, E, qa) = f o ’;4Tr5(p+q4>zysr35(p>

o] 1
EqiB tanh gta+w tanh Fta+uw
=—N, Z gt q; /tdt/du exp M2t + (s Hz ) (qr —ZH) 2
f=u.d 0 1 QfE(tanh(qu%) + tanh(gE & ;—u)))

2sgn(gp)mg
2 f
[ )+ tan(q¢Bt) tanh(q¢Et) } ’ (A3)

and the other polarization functions can be easily obtained by modifying the three equations Eq. (A.1)-(A.3). Then, by following the
“vacuum regularization” scheme as in Ref. [31,45], the regularized forms of the polarization functions can be written as

M+ (qa) = |:HMM*(B, E,q4) — BliEn_1)0 IMpm=(B, E, q4)] + T hy e (qa), (A4)

where H,’Q,M* (q4) are the polarization functions with vanishing EM field which can be regularized by three momentum cutoff A as

oA d*p [ 8( (ﬂf 92 + p2 +p2+p3+p4(p4+q4)) }
ﬁOﬁO - (

Qm)*| (m? + ()2 + pt + p3 + pi +p3) (m? + (w2 + p? + p% + p3 + (P4 + q4)?)
A

8 (m? + p?
=N¢ / pdp (m; + p°) (A.5)
7-[2

Jm? + p? + ())? (4m2 + 4p? +4(nf°)2+q4)

0
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A
8 ((m))? + p?
M3 = Ne f p*dp (€ ) : (A.6)
n2,/m2 + p? + (n0)? (4m? + 4p? + 4())? + q3)
A 470
T Mg
M4, = —Nc f p2dp f . (A7)
J n2 fm? + p? + (w))2 (4m? + 4p? + 4(mP)? + ¢3)
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