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We explore the features of the U A(1) and chiral symmetry breaking of the Nambu–Jona-Lasinio model 
without the Kobayashi–Maskawa–’t Hooft determinant term in the presence of a parallel electromagnetic 
field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate 
and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. 
In order to characterize the strength of the U A(1) symmetry breaking, we evaluate the susceptibility 
associated with the U A(1) charge. The result shows that the susceptibility contributed from the chiral 
anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic 
excitations are also studied.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

As is well known, the Lagrangian of the quantum chromodynamics (QCD) for light flavors (u, d quarks) has approximate SU A(2)

chiral symmetry and U A(1) axial symmetry. However, the U A(1) symmetry will be violated by the chiral anomaly due to the nontrivial 
topological configurations of the gluon fields [1–3]. The remained SU A(2) chiral symmetry is also broken spontaneously in vacuum by 
chiral condensate 〈ψ̄ψ〉 �= 0 which gives rise to three (pseudo) Goldstone modes identified as pions.

The chiral symmetry breaking and the U A(1) symmetry breaking are closely related. For example, it was argued that the order and the 
critical properties of the chiral phase transition are sensitive to the fate of the U A(1) symmetry at the chiral critical temperature Tc [4]. 
But it is still unclear whether the U A(1) symmetry is effectively restored at and above Tc . As The nontrivial gluon-field configurations 
produce both the chiral anomaly and the topological susceptibility, one can use the latter to quantify the strength of the U A(1) symmetry 
breaking in both the quenched and the unquenched cases [5,6]. It was found in both cases that the topological susceptibility always drops 
down above Tc but the topological charge itself still keeps an obvious deviation from zero, which indicates partial restoration of the U A(1)

symmetry and is consistent with the simulation using the instanton model [7] and other effective model [8]. Recently, there were also 
important progresses from the lattice QCD simulations, we refer the readers to the Refs. [9–12] for more details.

In addition to the temperature and density, the electromagnetic (EM) field provides another way to explore the features of the chiral 
symmetry breaking and restoration in quark–gluon matter [13]. This kind of study is important because it is relevant to the environments 
in the compact stars [14,15], the heavy-ion collisions [16–19], and the early universe [20] where very strong magnetic fields can exist. 
Usually, the presence of the magnetic field enhances the chiral condensate in vacuum which is called the magnetic catalysis effect [21,
22]; but the interplay between the magnetic field and the temperature demonstrates the inverse magnetic catalysis effect near Tc , the 
underlying mechanism of which is still not fully understood [23–28]. The effect of the electric field was found always to restore the chiral 
symmetry because it tends to break the scalar quark–antiquark pairs [29–31]. Furthermore, various chiral-anomaly induced quantum 
phenomena are also closely related to the EM field, including the chiral magnetic effect [32,33], the chiral magnetic wave [34], the 
chiral separation effect [35,36], the chiral electric separation effect [37,38], the anomalous magnetovorticity coupling [39], the chiral 
electrodynamics [40], etc; see recent reviews [41–44].
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In Ref. [45], the effect of EM chiral anomaly (which should not be confused with the chiral anomaly due to gluons) on the chiral 
symmetry breaking and restoration was investigated in the parallel EM field (i.e., the EM field configuration with parallel electric and 
magnetic fields) and the isospin-triplet neutral pseudo-scalar π0 condensate was found to increase with the second Lorentz invariant 
I2 = E · B (without loss of generality, we will assume I2 ≥ 0) and to saturate at a critical Ic

2. This finding was also confirmed by the 
calculations using the Wigner function formalism [46,47]. As the isospin-singlet neutral pseudo-scalar η meson (more precisely, the 
two-flavor counterpart of the η meson) has the same quantum numbers as π0 meson except for isospin, one can expect that η would 
also condensate in parallel EM field via the EM chiral anomaly, which would then give rise to a macroscopic U A(1) current divergence 
via m0〈ψ̄ iγ 5ψ〉. The purpose of the present paper is to give a detailed study of the properties of the chiral symmetry breaking and 
U A(1) symmetry breaking under a parallel EM field. We will adopt the Nambu–Jona-Lasinio (NJL) model with U L (2) ⊗ U R(2) symmetric 
interactions in the following discussions, which allows us to illuminate how the sole parallel EM field breaks the U A(1) symmetry. The 
vacuum properties and the mesonic fluctuations will be both investigated. Here, it is proper to mention a recent work [48] which studies 
the generation of chiral density due to Schwinger mechanism and its feedback to the thermodynamic properties of the NJL model. As the 
feedback is small for a reasonable relaxation time, especially at lower temperatures, we will not discuss such a effect in out study. Our 
main focus will be the pseudo-scalar η and π0 channels which were not discussed in Ref. [48].

The paper is organized as follows. In Sec. 2, we develop a formalism to evaluate several neutral condensates in a parallel EM field 
within the chosen NJL model. Section 3 is composed of three parts. We first introduce the topological charge to describe the U A(1)

symmetry breaking in Sec. 3.1, then the corresponding susceptibility is evaluated to show the strength of U A(1) symmetry breaking in 
Sec. 3.2, and pole masses of mesonic excitation modes are shown in Sec. 3.3. A summary will be given in Sec. 4.

2. Neutral condensates in parallel electromagnetic field

As our aim is to study how the parallel EM field influences the U A(1) and chiral symmetry, we will adopt a two-flavor NJL model 
without the Kobayashi–Maskawa–’t Hooft (KMT) determinant term so that the Lagrangian density preserves the U L (2) ⊗ U R(2) symmetry. 
The Lagrangian in Euclidean space is given by the following form [30,49,50],

LNJL = ψ̄(i /D − m0)ψ + G[(ψ̄τψ)2 + (ψ̄ iγ 5τψ)2], (1)

where τ = (τ0, τ ) (τ0 is the unit matrix and τ are Pauli matrices in flavor space), ψ = (u, d)T represents the two-flavor quark fields, 
m0 is the current mass of quarks, and G is the four-fermion coupling constant. The parallel EM field is introduced through the covariant 
derivative Dμ = ∂μ + i Q Aμ with the vector potential chosen as Aμ = (iEz, 0, −Bx, 0) (E, B ≥ 0) and the quark charge matrix Q =
diag(2/3, −1/3)e. Note that the presence of the EM field explicitly breaks the symmetry of LNJL to U A(1) ⊗ U V (1).

In order to explore the ground state in this case, we introduce eight auxiliary boson fields, σ = −2Gψ̄ψ, a = −2Gψ̄τψ , η = −2Gψ̄ iγ 5ψ

and π = −2Gψ̄ iγ 5τψ , via the Hubbard–Stratonavich transformation. Then, by integrating out the quark degrees of freedom, the action is 
bosonized to the following form:

SNJL =
∫

d4x
σ 2 + a2 + η2 + π2

4G
− Tr ln

[
i /D − m0 − σ − τ ·a − iγ 5η − iγ 5τ ·π

]
. (2)

As the charged condensates are energetically unfavored in the EM field [51], it is enough only to consider the following four neutral 
condensates: 〈σ 〉 ≡ m − m0, 〈a3〉 ≡ δm, 〈η〉 ≡ η and 〈π0〉 ≡ π0. The corresponding gap equations can be obtained by minimizing the 
thermodynamic potential with respect to these order parameters, that is, ∂
/∂x = 0 (x = m, δm, η, π0), which give the following forms:

m − m0

2G
− 1

βV
Tr SA(x) = 0, (3)

δm

2G
− 1

βV
Tr SA(x)τ3 = 0, (4)

η

2G
− 1

βV
Tr SA(x)iγ 5 = 0, (5)

π0

2G
− 1

βV
Tr SA(x)iγ 5τ3 = 0. (6)

Here the fermion propagator in the constant EM field is defined as SA(x) = − 
[
i /D − m − δmτ3 − iγ 5η − iγ 5π0τ3

]−1
which is diagonal in 

flavor space. For brevity and convenience which will be illuminated later, we define mu/d = m ± δm, σu/d = σ ± δm, and π0
u/d = π0 ±η. By 

following the same procedure as in Ref. [31], the propagator of f (= u, d) favor quark can be written out explicitly in energy-momentum 
space as

Ŝf(p) =
∞∫

0

ds exp
{

− [m2
f + (π0

f )2]s − tan(qf Es)

qf E
(p2

4 + p2
3) − tanh(qf Bs)

qf B
(p2

1 + p2
2)
}

[
mf − i sgn(qf)γ

5π0
f − γ 4(p4 − tan(qf Es)p3) − γ 3(p3 + tan(qf Es)p4) − γ 2(p2 − i tanh(qf Bs)p1)

−γ 1(p1 + i tanh(qf Bs)p2)
][

1 − iγ 5 tan(qf Es) tanh(qf Bs) − iγ 1γ 2 tanh(qf Bs) + γ 4γ 3 tan(qf Es)
]
, (7)
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where the Schwinger phase has been dropped because it does not change any conclusion in this work. In order to simplify the discussions, 
we choose the field strengths as in Ref. [45] where the first Lorentz invariant of the EM field I1 = B2 − E2 = 0. Substituting this explicit 
form back to the gap equations Eq. (3)–(6), we find

m − m0

2G
= Nc

∑
f=u,d

1

4π2

∞∫
0

ds

s2
e−(m2

f +(π0
f )2)s mf(qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− Nc

4π2

∑
f=u,d

sgn(qf)π
0
f (qf

√
I2)

2

m2
f + (π0

f )2
, (8)

δm

2G
= Nc

∑
f=u,d

1

4π2

∞∫
0

ds

s2
e−(m2

f +(π0
f )2)s sgn(qf)mf(qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− Nc

4π2

∑
f=u,d

π0
f (qf

√
I2)

2

m2
f + (π0

f )2
, (9)

η

2G
= Nc

∑
f=u,d

1

4π2

∞∫
0

ds

s2
e−(m2

f +(π0
f )2)s sgn(qf)π

0
f (qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
+ Nc

4π2

∑
f=u,d

mf(qf
√

I2)
2

m2
f + (π0

f )2
, (10)

π0

2G
= Nc

∑
f=u,d

1

4π2

∞∫
0

ds

s2
e−(m2

f +(π0
f )2)s π0

f (qf
√

I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
+ Nc

4π2

∑
f=u,d

sgn(qf)mf(qf
√

I2)
2

m2
f + (π0

f )2
, (11)

where I2 = E B . It is easy to see that Eq. (8)±Eq. (9) and Eq. (11)±Eq. (10) split the four coupled gap equations to two independent sets of 
gap equations for u and d quarks, separately. Thus, the thermodynamic potential can be derived consistently by combining the integration 
over m of Eq. (8), the integration over δm of Eq. (9), the integration over η of Eq. (10) and the integration over π0 of Eq. (11). The result 
is


 =
∑

f=u,d

[
(mf − m0)

2 + (π0
f )2

4G
+ Nc

8π2

∞∫
0

ds

s3

e−(m2
f +(π0

f )2)s(qf
√

I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− Nc

4π2
sgn(qf) tan−1

(π0
f

mf

)
(qf

√
I2)

2

]
. (12)

Using the same regularization scheme as in Ref. [31,45], the gap equations and the thermodynamic potential become

mf − m0

2G
= NcmfMf

2π2

[
�
(

1 + �2

M2
f

)1/2 − Mf ln
( �

Mf
+
(

1 + �2

M2
f

)1/2)]+ Nc

4π2

∞∫
0

ds

s2
e−M2

f sm f

[
(qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− 1

]

− Nc

4π2

sgn(qf)π
0
f

M2
f

(qf

√
I2)

2, (13)

π0
f

2G
= Ncπ

0
f Mf

2π2

[
�
(

1 + �2

M2
f

)1/2 − Mf ln
( �

Mf
+
(

1 + �2

M2
f

)1/2)]+ Nc

4π2

∞∫
0

ds

s2
e−M2

f sπ0
f

[
(qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− 1

]

+ Nc

4π2

sgn(qf)mf

M2
f

(qf

√
I2)

2, (14)


 =
∑

f=u,d

{
(mf − m0)

2 + (π0
f )2

4G
− Nc M3

f

8π2

[
�
(

1 + 2�2

M2
f

)(
1 + �2

M2
f

)1/2 − Mf ln
( �

Mf
+
(

1 + �2

M2
f

)1/2)]

+ Nc

8π2

∞∫
0

ds

s3
e−M2

f s

[
(qf

√
I2s)2

tan(qf
√

I2s) tanh(qf
√

I2s)
− 1

]
− Nc

4π2
sgn(qf) tan−1

(π0
f

mf

)
(qf

√
I2)

2

}
, (15)

where Mf = [m2
f + (π0

f )2]1/2.
It is easy to check from Eq. (13) and Eq. (14) that

π0
f = sgn(qf)

Nc G

π2m0
(qf

√
I2)

2 = sgn(qf)
Ncm∗

2π2m2
π f 2

π

(qf

√
I2)

2, (16)

where we have used the Gell-Mann–Oakes–Renner relation in NJL model, m2
π f 2

π = m0m∗(2G)−1 with m∗ the quark mass in vacuum. Thus, 
the following model parameter independent results can be extracted,

η = Ncm∗

4π2m2
π f 2

π

[
(qu

√
I2)

2 + (qd

√
I2)

2
]
, (17)

π0 = Ncm∗

4π2m2
π f 2

π

[
(qu

√
I2)

2 − (qd

√
I2)

2
]
, (18)

which can also be obtained from Eqs. (8)–(10) without explicitly solving them (in the I2 region where mf > 0). As discussed in Ref. [45], 
the above η and π0 condensates are consequence of the EM chiral anomaly as shown in Fig. 1. Moreover, the above results show that the 
η condensate is always larger than π0 condensate under given I2.



276 L. Wang et al. / Physics Letters B 780 (2018) 273–282
Fig. 1. The triangle diagram that is responsible for the π0 and η condensations in a parallel EM field.

Fig. 2. The constitute quark masses mu/d , neutral pion condensates π0
u and −π0

d as functions of the second Lorentz invariant I2 for the case of E = B in the NJL model.

By fixing the model parameters as G = 4.93 GeV−2, � = 0.653 GeV and m0 = 5 MeV [52], the numerical results by solving the coupled 
gap equations Eq. (13) and Eq. (14) for E = B are shown in Fig. 2. The solutions to each equation set f = u or d, i.e., mu and π0

u or md
and π0

d , show the same features as those found in Ref. [45], though the critical points Ic
2 at which mf = 0 are different for different flavor. 

The critical Ic
2 for u quark corresponds to the peak of |δm| while the one for d quark corresponds to the peak of η. At large enough I2, 

all the condensates vanish because the strong electric field breaks the mesonic pairs. However, we note that the U A(1) symmetry is not 
completely restored at any I2 because the triangle anomaly is always finite in parallel EM field.

As we have stated in the introduction, the electric field and the magnetic field have opposite effects on the chiral condensate at zero 
temperature. For the case of E = B , Fig. 2 shows that not only mf but also Mf decreases with increasing I2 which indicates that the 
electric restoration effect takes over the magnetic catalysis effect. This is actually consistent with the previous result in Ref. [29] where 
similar anti-catalysis effect of I2 on the chiral condensate was observed. To understand this I2 dependence of Mf , we first note that the 
decreasing of mf in the region I2 < Ic

2 is mainly due to the chiral rotation effect induced by EM chiral anomaly [45], but at the same time 
the electric field slightly reduces Mf . For I2 > Ic

2, the scalar condensate vanishes, so let us focus on the pseudoscalar condensate π0
f . In 

this case (note that E = B), the gap equation for π0
f can be rewritten as

1

2G
= F (π0

f ) + Nc

4π2

∞∫
0

ds

s2
e−(π0

f )2s

[( qf Es

tan(qf Es)
− 1
) qf Bs

tanh(qf Bs)
+ qf Bs

tanh(qf Bs)
− 1

]
, (19)

with

F (π0
f ) = Nc

π0
f

2π2

[
�
(

1 + �2

(π0
f )2

)1/2 − π0
f ln
( �

π0
f

+
(

1 + �2

(π0
f )2

)1/2)]
(20)

being a monotonically decreasing function of π0
f . The terms originate from the magnetic field in the integrand of Eq. (19) can be reex-

pressed in terms of the Landau levels by using

1

tanh(|qf B|s) =
∞∑

n=0

(2 − δn0)e−2n|qf B|s. (21)

For large I2, we can take the lowest Landau level approximation and Eq. (19) will just be reduced to the gap equation in a pure elec-
tric field. Thus, the behavior of π0

f at large I2 would be similar to the case with a pure electric field which favors chiral symmetry 
restoration [30]. In a word, it is the Landau levels induced by magnetic field that make the effect of I2 more like electric field.
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3. U A(1) susceptibility and collective excitations

3.1. Chiral current and U A(1) charge

In the absence of the EM field, the Lagrangian density Eq. (1) has the symmetry U A(1) ⊗U V (1) ⊗ SU L(2) ⊗ SU R (2) in chiral limit m0 = 0. 
However, in the presence of the EM field, the symmetry SU L(2) ⊗ SU R(2) reduces to U L(1) ⊗ U R(1) with the neutral transformations 
exp
(

i 1±γ 5

2 τ3θ
)

, because u and d quarks have different charges. The U A(1) symmetry is still expected to be exact in the chiral limit at 
classical level, but for finite current quark mass m0 and nonvanishing E · B, this symmetry is broken with the divergence of chiral current 
given by

∂μ Jμ5 = 2iψ̄m0γ
5ψ + Nc

q2
u + q2

d

2π2
E · B, (22)

where Jμ5 = ψ̄γ μγ 5ψ . In equilibrium state, the expectation value 〈 Jμ5 〉 must be uniform in spacetime and thus the divergence ∂μ〈 Jμ5 〉 = 0. 
This gives 〈ψ̄ iγ 5ψ〉 = −Nc(q2

u + q2
d)E · B/(4m0π

2) which is nothing but Eq. (17). Similarly, we can consider the current J 3μ
5 = ψ̄γ μγ 5τ 3ψ . 

The vanishing of its divergence at equilibrium can give us the π0 condensate which is identical to Eq. (18). Therefore, the mean field 
relations Eq. (17) and Eq. (18) have their wholly origins from the EM chiral anomaly at equilibrium with the effective coupling G just 
giving the definitions of η and π0.

We now turn to study the fluctuations on top of the mean-field solutions. The first quantity that we want to describe is the U A(1) sus-
ceptibility which characterizes the fluctuation of the U A(1) charge (which will be defined soon) and the strength of the U A(1) symmetry 
breaking. The starting point is the mean-field Lagrangian for quarks

LMF = ψ̄(i /D − m − iγ 5η − δmτ3 − iγ 5τ3π
0)ψ, (23)

in which the condensates m, η, δm, π0 are all uniform, i.e., they are not dynamical fields. Then one can derive the divergence of the axial 
current which reads

∂μ Jμ5 = 2iψ̄m0γ
5ψ + Nc

q2
u + q2

d

2π2
E · B + 2N f Q A, (24)

where (N f = 2)

Q A ≡ 1

N f
ψ̄[iγ 5(σ + δmτ3) − (η + π0τ3)]ψ. (25)

One can check that in the ground state specified by the mean-field solutions, the expectation value of Q A vanishes. In Eq. (24), the 
quantity Q A is defined in an analogous way as the topological charge in QCD. In QCD, the topological charge represents the violation of 
the U A(1) symmetry due to the instanton effects and its susceptibility measures the strength of the violation; see Refs. [53,54] for the 
NJL model mimic of the QCD topological charge. In Eq. (24), Q A represents the violation of the U A(1) symmetry by the appearance of 
the condensates σ , δm, π0, η and we will use its susceptibility to quantify the strength of such violation. In this sense, the Q A term in 
Eq. (24) can be regarded to express a “spontaneous breaking of U A(1) symmetry” by the condensates σ , δm, π0, η, especially induced 
by I2. Thus, Q A has very different meaning from the topological charge and we will therefore call it the U A(1) charge (should not be 
confused with the axial charge J 0

5).

3.2. The U A(1) susceptibility

The topological susceptibility in QCD is a fundamental correlation function and is the key to understand many distinctive dynamics 
in the U A(1) channel. In this section, in order to quantify the strength of the “spontaneous U A(1) symmetry breaking”, we calculate the 
analogous susceptibility by using the U A(1) charge density Q A . The U A(1) susceptibility χ can be regarded as the zero energy-momentum 
limit of the Fourier transformation of the correlation function 〈T Q A(x)Q A(0)〉C , that is,

χ =
∫

d4x〈T Q A(x)Q A(0)〉C

= lim
k→0

∫
e−ikxd4x〈T Q A(x)Q A(0)〉C . (26)

Here, T denotes the time-ordering operator and the subscript C means to pick out only the connected diagrams. Then, by substituting the 
charge Eq. (25) into Eq. (26), we can get the explicit form of U A(1) susceptibility,

χ = 1

4

∑
f=u,d

Tr
∫

d4x〈0|[ψ̄f(x)(iγ 5σf − sgn(qf)π
0
f )ψf(x)ψ̄f(0)(iγ 5σf − sgn(qf)π

0
f )ψf(0)]|0〉C , (27)

where ψu(x) and ψd(x) stand for u and d quark fields, respectively. It is much more convenient to work in energy-momentum space:
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χ = χ1 + χ2 + χ3,

χ1 = −1

4

∑
f=u,d

(π0
f )2Tr

∫
d4 p

(2π)4
Ŝf(p)Ŝf(p), (28)

χ2 = −1

4

∑
f=u,d

(σf)
2Tr
∫

d4 p

(2π)4
Ŝf(p)iγ 5Ŝf(p)iγ 5, (29)

χ3 = 1

2

∑
f=u,d

sgn(qf)σfπ
0
f Tr
∫

d4 p

(2π)4
Ŝf(p)iγ 5Ŝf(p), (30)

which are closely related to the mesonic polarization functions as will be shown in the next section.
To evaluate χ numerically, we need to regularize the above equations as they are divergent. We choose a three-momentum cutoff �

to make the regularization. The regularized susceptibilities, χ r
i i = 1, 2, 3, can be decomposed in the following way,

χ r
i (B, E) = [χi(B, E) − χi(0,0)] + χ�

i , (31)

where the parts in the square bracket are finite and independent of � and the � dependent parts, χ�
i , are independent of the EM field. 

Their expressions are

χ1(B, E) =
∑

f=u,d

Ncq2
f I2

16π2
(π0

f )2

∞∫
0

sds e−M2
f s

[
2sgn(qf)mfπ

0
f + 1/s − 2m2

f

tan(qf
√

I2s) tanh(qf
√

I2s)

]
, (32)

χ2(B, E) =
∑

f=u,d

Ncq2
f I2

16π2
(σf)

2

∞∫
0

sds e−M2
f s

[
− 2sgn(qf)mfπ

0
f + 1/s − 2(π0

f )2

tan(qf
√

I2s) tanh(qf
√

I2s)

]
, (33)

χ3(B, E) =
∑

f=u,d

Ncq2
f I2

8π2
σfπ

0
f

∞∫
0

sds e−M2
f s

[
sgn(qf)(m

2
f − (π0

f )2) + 2mfπ
0
f

tan(qf
√

I2s) tanh(qf
√

I2s)

]
, (34)

χ�
1 = Nc

4π2

∑
f=u,d

(π0
f )2

�∫
0

p2dp
m2

f + p2

(M2
f + p2)3/2

, (35)

χ�
2 = Nc

4π2

∑
f=u,d

(σf)
2

�∫
0

p2dp
(π0

f )2 + p2

(M2
f + p2)3/2

, (36)

χ�
3 = Nc

2π2

∑
f=u,d

�∫
0

p2dp
mfσf(π

0
f )2

(M2
f + p2)3/2

, (37)

The numerical results for the total U A(1) susceptibility χ , the one induced by π0
f condensations, χ1, and the one generated by σf

condensations, χ2, are illuminated in Fig. 3 for the case E = B . As we can see, χ2 always decreases with increasing I2 due to both the 
chiral rotation in σ − π0 plane and the tendency of chiral restoration as we have analyzed in last section; but χ1 increases with I2 for 
not too large EM field because of the chiral rotation [45]. The total susceptibility χ always decreases with I2. Thus, with increasing I2 not 
only the chiral symmetry tends to be restored, the U A(1) symmetry is also effectively restored in terms of χ .

3.3. Collective excitations

We now consider the collective mesonic excitations on top of the mean-field ground state. Comparing to the case of pion superfluidity 
at large isospin chemical potential or color superconductivity at large baryon chemical potential, the parallel EM field will develop mixing 
among the flavor collective modes σ̂ , ̂a0, π̂0 and η̂ in the neutral sector rather than in the charged π̂± or color diquark sectors. In the 
following, we are going to calculate the pole masses of the eigen collective charge-neutral excitations. For the charged modes such as 
π̂±, ̂a± , the masses can be evaluated similarly by neglecting the overall Schwinger phases. However, these charged modes are not the 
focus of the present paper and we thus will not consider them. Expanding the action Eq. (2) to quadratic order of the fluctuation fields 
which is known as the random phase approximation (RPA), the polarization functions in the neutral sector can be generally written as

�MM∗(q) =
∫

d4 p

(2π)4
Tr Ŝf(q + p)�M Ŝf(p)�M∗ , (38)

where the interaction vertices are given by
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Fig. 3. The U A(1) susceptibility χ and its constitute parts χ1 and χ2 as functions of the second Lorentz invariant I2 for E = B in the NJL model.

�M = �M∗ =

⎧⎪⎪⎨
⎪⎪⎩

I, M = σ̂ ;
τ3, M = â0;
iγ5, M = η̂ ;

iγ5τ3, M = π̂0.

(39)

The pole masses of the collective excitations are obtained by setting q4 = imM and qi �=4 = 0 in the corresponding Euclidean propagators. 
We preserve the lengthy derivations of the polarization functions in Appendix A. In the matrix form, the polarization function can be 
represented as the following:

�(q4) =

⎛
⎜⎜⎝

�σ̂σ̂ (q4) �σ̂ â0
(q4) �σ̂ η̂(q4) �σ̂ π̂0

(q4)

�â0σ̂ (q4) �â0â0
(q4) �â0η̂(q4) �â0π̂0

(q4)

�η̂σ̂ (q4) �η̂â0
(q4) �η̂η̂(q4) �η̂π̂0

(q4)

�π̂0σ̂ (q4) �π̂0â0
(q4) �π̂0η̂(q4) �π̂0π̂0

(q4)

⎞
⎟⎟⎠ . (40)

Then, the inverse of the effective mesonic propagator in the matrix form is given by

G−1(q4) = 1

2G
− �(q4). (41)

By diagonalizing G−1, we obtain the inverse propagator of the mass eigen modes which we denote as �u, �d, �0
u, and �0

d:

G−1
�u

= 1

2G
+ �r

σ̂uσ̂u
+ �r

π̂0
u π̂0

u
+
√

(�r
σ̂uσ̂u

− �r
π̂0

u π̂0
u
)2 + 4(�r

σ̂uπ̂
0
u
)2,

G−1
�0

u
= 1

2G
+ �r

σ̂uσ̂u
+ �r

π̂0
u π̂0

u
−
√

(�r
σ̂uσ̂u

− �r
π̂0

u π̂0
u
)2 + 4(�r

σ̂uπ̂
0
u
)2,

G−1
�d

= 1

2G
+ �r

σ̂dσ̂d
+ �r

π̂0
d π̂0

d
+
√

(�r
σ̂dσ̂d

− �r
π̂0

d π̂0
d
)2 + 4(�r

σ̂dπ̂
0
d
)2,

G−1
�0

d
= 1

2G
+ �r

σ̂dσ̂d
+ �r

π̂0
d π̂0

d
−
√

(�r
σ̂dσ̂d

− �r
π̂0

d π̂0
d
)2 + 4(�r

σ̂dπ̂
0
d
)2, (42)

where σ̂u/d = (σ̂ ± â)/2 and π̂0
u/d = (π̂0 ± η̂)/2. One should notice that these eigen modes are linear combinations of the original modes 

σ , a0, η, π0 and are diagonal in flavor space. The fields �u and �d are dominated by the σ sector while the fields �0
u and �0

d are 
dominated by the π0 sector for small I2, but the dominations exchange around the end of chiral rotation. Finally, the pole masses of these 
modes can be obtained by setting G−1

M (q4 = imM) = 0 (M = �u, �d, �0
u, �0

d) and the numerical results are shown in Fig. 4.

For clarity, we choose the range of I1/4
2 from 0 to 0.2 GeV where U A(1) susceptibility is the largest. In this region, all the pole masses 

of collective excitations evolve slowly with I2, but the masses of �u and �0
u drop a bit faster than those of �d and �0

d due to the larger 
charge of u quark than that of d quark. To understand the decreasing features with respect to I2, we can consider the small I2 limit. In 
this case, the masses of the lighter modes �0

u and �0
d are

m�0
u
≈ mπ

(
1 − Nc

48π2

g2
πqq

m∗4
q2

u I2

)
, m�0

d
≈ mπ

(
1 − Nc

48π2

g2
πqq

m∗4
q2

d I2

)
, (43)

where the slops are negative and proportional to q2, which are then qualitatively consistent with the numerical results.
f
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Fig. 4. The pole masses of the eigen collective excitations as functions of I2 in the case of E = B . The upper panel shows the � sector and the lower one shows the � sector.

4. Summary

In this paper, we study the NJL model with a U L(2) ⊗ U R(2) symmetry under a parallel EM field at zero temperature and quark 
chemical potential. In particular, we focus on the breaking and restoration of the chiral symmetry and the U A(1) symmetry as the second 
Lorentz invariant I2 varies. This study extends the previous work [45] to include both isospin singlet η condensation and mass splitting 
δm between different flavors. In such a way, the four coupled gap equations Eq. (8)–(11) can be split into two independent equation sets 
for u and d quarks, respectively.

Our first finding is that the EM chiral anomaly induces not only the isospin triplet π0 condensation but also the isospin singlet η
condensation. The result is presented in Fig. 2. Although the quark masses mf and neutral pion condensate π0 show quite similar features 
as the previous work [45], the η and mass splitting δm behave differently. Actually, the critical I2 for u and d quarks correspond to the 
peaks of δm and η condensates, respectively. In order to show the strength of U A(1) symmetry breaking in the parallel EM field, we 
calculate the susceptibility by defining a U A(1) charge in analogue to the topological charge in QCD. The total susceptibility χ decreases 
with I2 indicating an effective decrement of the U A(1) symmetry breaking. At last, we explore the eigen excitation modes, the pole masses 
of which all decrease with I2 as shown in Fig. 4.

Finally, we comment about the stability of the π0 and η condensed vacuum. Under the exertion of the electric field, the charged 
particle-antiparticle pairs (mostly π± in the confined phase) can be induced through the Schwinger mechanism and may drive the 
vacuum unstable. However, as discussed in Ref. [45], for a parallel EM field with the configuration of E = B , such a pair production rate 
is strongly suppressed due to the enhancement of the charged pion mass by the magnetic field. Therefore, we are eligible to consider the 
“equilibrium” property of the vacuum.

Most recently, this work has been extended to the case with finite temperature and quark chemical potential [55]. In the future, this 
work can also be extended to three-flavor NJL model with the KMT determinant. Then the effect of the interplay between QCD anomaly 
represented by KMT determinant and QED anomaly induced by parallel EM field on both the ground state and meson properties can be 
studied.
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Appendix A. Polarization functions

In this appendix, we derive the polarization functions involved in the neutral sector by adopting the imaginary proper time presenta-
tions for the quark propagators [30] and finally regularize them as in Ref. [45]. In this way, the proper time integrations are well defined 
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and the pole masses of collective excitations can be estimated numerically. The polarization function of π0 with transformation energy q4

nonzero can be evaluated as the following,

�π̂0π̂0(B, E,q4) ≡
∫

d4 p

(2π)4
Tr Ŝ(p + q4)iγ5τ3 Ŝ(p)iγ5τ3

= −Nc

∑
f=u,d

∞∫
0

ds

∞∫
0

ds′
∫

d4 p

(2π)4
exp

{
i

[
− M2

f (s + s′) − (
tan(qf Bs)

qf B
+ tan(qf Bs′)

qf B
)(p2

2 + p2
1) − tanh(qf Es′)

qf E
(p2

4 + p2
3) −

tanh(qf Es)

qf E
((p4 + q4)

2 + p2
3)

]}
tr[mf − sgn(qf)iγ5π

0
f − γ 4((p4 + q4) − i tanh(qf Es)p3) − γ 3(p3 + i tanh(qf Es)(p4 + q4))

−γ 2(p2 + tan(qf Bs)p1) − γ 1(p1 − tan(qf Bs)p2)][1 + iγ5 tanh(qf Es)tan(qf Bs) + γ 1γ 2tan(qf Bs) + iγ 4γ 3 tanh(qf Es)]iγ5

[mf − sgn(qf)iγ5π
0
f − γ 4(p4 − i tanh(qf Es′)p3) − γ 3(p3 + i tanh(qf Es′)p4) − γ 2(p2 + tan(qf Bs′)p1)

−γ 1(p1 − tan(qf Bs′)p2)][1 + iγ5 tanh(qf Es′)tan(qf Bs′) + γ 1γ 2tan(qf Bs′) + iγ 4γ 3 tanh(qf Es′)]iγ5

= Nc

∑
f=u,d

qf Eqf B

8π2

∞∫
0

tdt

1∫
−1

du exp

{
− i[M2

f t + tanh(qf E t(1+u)
2 ) tanh(qf E t(1−u)

2 )

qf E(tanh(qf E t(1+u)
2 ) + tanh(qf E t(1−u)

2 ))
q2

4

]}

[
− 2sgn(qf)mfπ

0
f + q2

4 tanh(qf E t(1+u)
2 ) tanh(qf E t(1−u)

2 )sinh−2(qf Et)

(tanh(qf E t(1+u)
2 ) + tanh(qf E t(1−u)

2 ))tan(qf Bt)
+ 1

tanh(qf Et)tan(qf Bt)

( i

t
+ 2(π0

f )2 − q2
4

1

2
csch(qf Et)

(u sinh(qf Etu) − coth(qf Et) cosh(qf Etu) + csch(qf Et))
)]

, (A.1)

where we’ve used partial integral to remove sin−2(qf Bt) in the last step due to the non-overlapping condition [56]. Similarly, the σ -mode 
polarization function and the corresponding mixing term can be given as the following:

�σ̂σ̂ (B, E,q4) ≡
∫

d4 p

(2π)4
Tr Ŝ(p + q4) Ŝ(p)

= Nc

∑
f=u,d

qf Eqf B

8π2

∞∫
0

tdt

1∫
−1

du exp

{
− i

[
M2

f t + tanh(qf E t(1+u)
2 ) tanh(qf E t(1−u)

2 )

qf E(tanh(qf E t(1+u)
2 ) + tanh(qf E t(1−u)

2 ))
q2

4

]}

[
2sgn(qf)mfπ

0
f + q2

4 tanh(qf E t(1+u)
2 ) tanh(qf E t(1−u)

2 )sinh−2(qf Et)

(tanh(qf E t(1+u)
2 ) + tanh(qf E t(1−u)

2 ))tan(qf Bt)
+ 1

tanh(qf Et)tan(qf Bt)

( i

t
+ 2m2

f − q2
4

1

2
csch(qf Et)

(u sinh(qf Etu) − coth(qf Et) cosh(qf Etu) + csch(qf Et))
)]

, (A.2)

�σ̂π̂0(B, E,q4) = �π̂0σ̂ (B, E,q4) ≡
∫

d4 p

(2π)4
Tr Ŝ(p + q4)iγ5τ3 Ŝ(p)

= −Nc

∑
f=u,d

qf Eqf B

8π2

∞∫
0

tdt

1∫
−1

du exp

{
− i

[
M2

f t + tanh(qf E t(1+u)
2 ) tanh(qf E t(1+u)

2 )

qf E(tanh(qf E t(1+u)
2 ) + tanh(qf E t(1+u)

2 ))
q2

4

]}

[
m2

f − (π0
f )2 + 2sgn(qf)mfπ

0
f

tan(qf Bt) tanh(qf Et)

]
, (A.3)

and the other polarization functions can be easily obtained by modifying the three equations Eq. (A.1)–(A.3). Then, by following the 
“vacuum regularization” scheme as in Ref. [31,45], the regularized forms of the polarization functions can be written as

�r
MM∗(q4) =

[
�MM∗(B, E,q4) − lim

B,E→0
�MM∗(B, E,q4)

]
+ ��

MM∗(q4), (A.4)

where ��
MM∗(q4) are the polarization functions with vanishing EM field which can be regularized by three momentum cutoff � as

��
π̂0π̂0 = Nc

∫
d4 p

(2π)4

[
8
(
m2

f − (π0
f )2 + p2

1 + p2
2 + p2

3 + p4(p4 + q4)
)

(
m2

f + (π0
f )2 + p2

1 + p2
2 + p2

3 + p2
4

) (
m2

f + (π0
f )2 + p2

1 + p2
2 + p2

3 + (p4 + q4)2
)
]

= Nc

�∫
p2dp

8
(
m2

f + p2
)

π2
√

m2 + p2 + (π0)2
(
4m2 + 4p2 + 4(π0)2 + q2

) , (A.5)
0 f f f f 4
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��
σ̂ σ̂ = Nc

�∫
0

p2dp
8
(
(π0

f )2 + p2
)

π2
√

m2
f + p2 + (π0

f )2
(
4m2

f + 4p2 + 4(π0
f )2 + q2

4

) , (A.6)

��
π̂0σ̂

= −Nc

�∫
0

p2dp
8π0

f mf

π2
√

m2
f + p2 + (π0

f )2
(
4m2

f + 4p2 + 4(π0
f )2 + q2

4

) . (A.7)
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