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Abstract: The coupling of three-level giant atoms with one-dimensional waveguides can show

interesting phenomena of transmission and reflection. Since the non-waveguide mode can cause

the dissipation of external atoms, we consider the effect of the dissipation rate on the scattering of

single photons in the system with giant atom–waveguide coupling. We find that as the dissipation

rate of giant atoms increases, the transmission rate of a single photon increases and the reflection

rate decreases. In addition, by varying the phase difference and decay rate, the giant atoms are able

to achieve perfect transmission and total reflection over the entire frequency range. We also find

and show the conditions for the conversion of the optimal frequency. When the cumulative phase of

photons reaches a certain value, the system can achieve perfect transmission, which is independent

of frequency. This model of coupling giant atoms with waveguides has a promising application in

quantum communication and quantum information processing.

Keywords: giant atom; scattering properties; dissipation rate; one-dimensional waveguide; the

total reflection

1. Introduction

A giant atom is an artificial atom that is essentially a superconducting circuit. Similar
to natural atoms, the giant atom can obtain electrons, get excited, and then give off their
energy by emitting light. And the main novelty of the giant atom is that the interference
effects generated by multiple coupling points are not present in the quantum optics of
ordinary small atoms. Since the size of the radius of the natural atom is negligible compared
to the wavelength of the waveguide mode, in general, the natural atom can be regarded as
a point when coupled to the waveguide. However, when superconducting transmission
qubits are designed to interact with surface acoustic waves (SAWs) through multiple
coupling points, the separation distances of these coupling points can be much greater than
the wavelength of SAWs [1]. So, the “giant atom” theory was mainly developed to describe
this case [2]. Since the first theoretical study in 2014 [3], the giant atom scheme has been
extensively studied by superconducting qubits [4–8], coupled waveguide arrays [9], and
cold atoms [10]. Through the non-local coupling scheme, a series of tantalizing quantum
phenomena have been demonstrated, including frequency-dependent relaxation rates and
Lamb shifts [3,7,11], non-exponential atomic decay [4,5], decoherence-free interatomic
interactions [7,12,13], singular bound states [6,14], and modified topological effects [15].
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Giant atoms have emerged as a new paradigm for quantum optics that could promote a
more complete understanding of physics.

Waveguide quantum electrodynamics (QED) studies the interactions between atoms
and one-dimensional waveguide modes, and it is an important system for studying the
interaction between light and matter. Waveguide QED system can not only be used to
construct remote interaction and engineer large-scale quantum networks [16–20] but can
also be a good platform for manipulating single-photon transmission [21–26]. Typical
methods for implementing waveguide QED systems include quantum dots coupled to
photonic crystal waveguides [27,28], superconducting qubits coupled to transmission
lines [29,30], and ultracold atoms coupled to optical fibers [31,32]. Traditional waveguide
QED mainly studies the interaction between small atoms and waveguides. However, with
the emergence of giant atoms, it has been found that giant atoms can have multiple nodes
coupled with waveguides, resulting in a series of interesting phenomena different from
small atoms, such as multiple reflections and transmission of photons among multiple
coupling points.

In previous works, Chen et al. [33] have reported the coupling of two-level giant atoms
to one-dimensional waveguides, Du et al. [34] have studied the coupling of three-level
giant atoms and one-dimensional waveguides, and ref. [12] has shown that when two
woven giant atoms are coupled with a waveguide, there is decoherence-free interatomic
interaction. In addition, Cai et al. [11] studied the coupling of a giant atom to a one-
dimensional waveguide at multiple points. In this work, the scattering properties of
a single photon, including the total reflection and perfect transmission, are studied by
coupling a giant Λ-type atom with a waveguide. On the basis of the coupling model of
a single giant atom and a one-dimensional waveguide, we add the dissipative and local
coupling phases to study the scattering characteristics of a single photon and study the
frequency conversion of single photons under the interference of three-level giant atoms.

The structure of this paper is as follows. In Section 2, we introduce the model and
the Hamiltonian and give a strict calculation process. In Section 3, we analyze the model
in detail and give a large number of results on the transmission and reflection of single
photons. In Section 4, we summarize this work and analyze the application prospect of
this work.

2. Model and the Hamiltonian

As shown in Figure 1, we consider a large Λ-type three-level atom coupled with
a single one-dimensional waveguide at two points. |g ⟩ ↔ |e ⟩ and | f ⟩ ↔ |e ⟩ are the
two kinds of transformation of the atoms, and the waveguide is coupled through two
coupling points located at x1 = −d/2 and x2 = d/2, where |g ⟩, | f ⟩, and |e ⟩ are ground
state, intermediate state, and excited state, respectively. The atom–waveguide coupling
coefficients are g1eiθ1 and g2eiθ2 , respectively. The locally coupled phases θ1 and θ2 and
the coupling intensities g1 and g2 can produce some interesting interference effects on
the scattering properties, which will be discussed below. We can use superconducting
quantum devices, and the locally coupled phase can be introduced through Josephson rings
of external flux threads [35].

Under rotating wave approximation (RWA), the real-space Hamiltonian of the model
can be written as (ℏ = 1)

H = Hω + Ha + HI ,

Hω =
∫ +∞

−∞
dx

[

a†
L(x)

(

ω0 + ivg
∂

∂x

)

aL(x) + a†
R(x)

(

ω0 − ivg
∂

∂x

)

aR(x)

]

,

Ha = ω f | f ⟩⟨ f | + (ωe − iγ) |e ⟩⟨ e| ,

HI =
∫ +∞

−∞
dxP(x)

{

g1eiθ1

[

a†
R(x) + a†

L(x)
]

|g ⟩⟨ e| + g2eiθ2

[

a†
R(x) + a†

L(x)
]

| f ⟩⟨ e| + H.c.
}

, (1)
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where P(x) = δ(x + d/2) + δ(x − d/2), Hω represents the free Hamiltonian of the waveg-
uide mode, and vg is the group velocity of the photons in the waveguide. In addition, aR,L

(a+R,L) are the boson annihilation (production) operators of the right and left photons in the
waveguide, respectively. ω0 is the frequency of the waveguide [1,36]. Ha is the Hamiltonian
of the atom, where ω f is the frequency between the ground state |g ⟩ and intermediate
state | f ⟩ transition, ωe is the frequency between the ground state |g ⟩ and excited state

|e ⟩ transition. γ is the rate of external atomic dissipation due to non-waveguide modes
in the environment. HI describes the interaction between atoms and waveguides, where
the Dirac functions δ(x + d/2) and δ(x − d/2) indicate that the atom–waveguide coupling
occurs at x = −d/2 and x = d/2, respectively. In addition, there is an accumulated photon
phase between two coupling points φ1 = kd and φ2 = qd, where k and q are renormalized
wave vectors that satisfy the linearized dispersion relationship, and E = ω0 + kvg.

where 𝑃(𝑥)  =  𝛿(𝑥 +  𝑑/2)  +  𝛿(𝑥 −  𝑑/2) , 𝐻𝜔  represents the free Hamiltonian of the 
waveguide mode, and 𝑣𝑔 is the group velocity of the photons in the waveguide. In addi-
tion, 𝑎𝑅,𝐿 (𝑎𝑅,𝐿+ ) are the boson annihilation (production) operators of the right and left pho-
tons in the waveguide, respectively. 𝜔0 is the frequency of the waveguide [1,36]. 𝐻𝑎 is 
the Hamiltonian of the atom, where 𝜔𝑓 is the frequency between the ground state |𝑔⟩ 
and intermediate state |𝑓⟩ transition, 𝜔𝑒 is the frequency between the ground state |𝑔⟩ 
and excited state |𝑒⟩ transition. 𝛾 is the rate of external atomic dissipation due to non-
waveguide modes in the environment. 𝐻𝐼 describes the interaction between atoms and 
waveguides, where the Dirac functions 𝛿(𝑥 +  𝑑/2)  and 𝛿(𝑥 −  𝑑/2)  indicate that the 
atom–waveguide coupling occurs at 𝑥 = −𝑑/2  and 𝑥 = 𝑑/2 , respectively. In addition, 
there is an accumulated photon phase between two coupling points 𝜙1 = 𝑘𝑑 and 𝜙2 =𝑞𝑑, where 𝑘 and 𝑞 are renormalized wave vectors that satisfy the linearized dispersion 
relationship, and 𝐸 =  𝜔0 + 𝑘𝑣𝑔.

Figure 1. Structure diagram of a three-level giant atom coupled at 𝑥 = −𝑑/2 and 𝑥 = 𝑑/2, with 
separate local coupling phases 𝜃1 and 𝜃2 and coupling intensities 𝑔1 and 𝑔2. The blue one-way 
arrows indicate that the photons may be transmitted or reflected when it is incident from the left.

Due to the conservation of the total excitation number in RWA, the eigenstates of the 
system can be represented as|𝜓⟩ = ∑ ∫ 𝑑𝑥[𝑅𝛼(𝑥)𝑎𝑅†(𝑥)|0, 𝛼⟩ + 𝐿𝛼(𝑥)𝑎𝐿†(𝑥)|0, 𝛼⟩] + 𝑢𝑒|0, 𝑒⟩+∞−∞𝛼=𝑔,𝑓 , (2)

where 𝑅𝛼(𝑥) [𝐿𝛼(𝑥)] is in the position of 𝑥 waveguide to create the probability ampli-
tude of the right-moving (left-moving) photons, and the atoms are in the state |𝛼⟩ even-
tually. In addition, 𝑢𝑒 is the probability amplitude of excited atoms. By solving the Schrö-
dinger equation 𝐻|𝜓⟩  =  𝐸|𝜓⟩, we can obtain the following probability amplitude equa-
tion: 𝐸𝑅𝑔(𝑥) = (𝜔0 − 𝑖𝑣𝑔 𝜕𝜕𝑥) 𝑅𝑔(𝑥) + 𝑔1𝑒𝑖𝜃1𝑃(𝑥)𝑢𝑒 

𝐸𝐿𝑔(𝑥) = (𝜔0 − 𝑖𝑣𝑔 𝜕𝜕𝑥) 𝐿𝑔(𝑥) + 𝑔1𝑒𝑖𝜃1𝑃(𝑥)𝑢𝑒 

𝐸𝑅𝑓(𝑥) = (𝜔𝑓 − 𝑖𝑣𝑔 𝜕𝜕𝑥) 𝑅𝑓(𝑥) + 𝑔2𝑒𝑖𝜃2𝑃(𝑥)𝑢𝑒 

𝐸𝐿𝑓(𝑥) = (𝜔𝑓 − 𝑖𝑣𝑔 𝜕𝜕𝑥) 𝐿𝑓(𝑥) + 𝑔2𝑒𝑖𝜃2𝑃(𝑥)𝑢𝑒 

Figure 1. Structure diagram of a three-level giant atom coupled at x = −d/2 and x = d/2, with

separate local coupling phases θ1 and θ2 and coupling intensities g1 and g2. The blue one-way arrows

indicate that the photons may be transmitted or reflected when it is incident from the left.

Due to the conservation of the total excitation number in RWA, the eigenstates of the
system can be represented as

|ψ ⟩ = ∑
α=g, f

∫ +∞

−∞
dx

[

Rα(x)a†
R(x) |0, α ⟩+ Lα(x)a†

L(x) |0, α ⟩
]

+ ue |0, e ⟩, (2)

where Rα(x) [Lα(x)] is in the position of x waveguide to create the probability amplitude
of the right-moving (left-moving) photons, and the atoms are in the state |α ⟩ eventually.
In addition, ue is the probability amplitude of excited atoms. By solving the Schr?dinger
equation H |ψ ⟩ = E |ψ ⟩, we can obtain the following probability amplitude equation:

ERg(x) =

(

ω0 − ivg
∂

∂x

)

Rg(x) + g1eiθ1 P(x)ue

ELg(x) =

(

ω0 − ivg
∂

∂x

)

Lg(x) + g1eiθ1 P(x)ue

ER f (x) =

(

ω f − ivg
∂

∂x

)

R f (x) + g2eiθ2 P(x)ue

EL f (x) =

(

ω f − ivg
∂

∂x

)

L f (x) + g2eiθ2 P(x)ue

Eue = (ωe − iγ)ue + g1e−iθ1 P(x)
[

Rg(x) + Lg(x)
]

+ g2e−iθ2

[

R f (x) + L f (x)
]

, (3)
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We first assume that the wave vector k(k > 0) of a single photon from the left of the
waveguide, and the atom is initialized in the ground state |g ⟩. The wave function can be
written as

Rg(x) = eikx

{

Θ

(

−x − d

2

)

+ A

[

Θ

(

x +
d

2

)

− Θ

(

x − d

2

)]

+ t1Θ

(

x − d

2

)}

,

Lg(x) = e−ikx

{

r1Θ

(

−x − d

2

)

+ B

[

Θ

(

x +
d

2

)

− Θ

(

x − d

2

)]}

,

R f (x) = eiqx

{

M

[

Θ

(

x +
d

2

)

− Θ

(

x − d

2

)]

+ t2Θ

(

x − d

2

)}

,

L f (x) = e−iqx

{

r2Θ

(

x − d

2

)

+ N

[

Θ

(

x +
d

2

)

− Θ

(

x − d

2

)]}

, (4)

where q = k − ω f /vg, and Θ(x) is the Heaviside step function. In addition, A and B (M
and N) are the probability amplitudes of a right-moving photon and a left-moving photon
in the x1 < x < x2 region, respectively. Finally, the atoms are in the state |g ⟩ ( | f ⟩). For
cases where the frequency is fixed (i.e., the final state of the atom is |g ⟩), we define t1

and r1 as the transmission and reflection amplitudes of the input photons, respectively.
For frequency conversion conditions (i.e., the final state of the atom is | f ⟩), we define
t2 and r2 as the conversion amplitudes of the output photons of the wave vectors q and
−q, respectively.

We substitute Equation (4) into Equation (3) and obtain the following equations:

0 = −ivg(A − 1)e−ikd/2 + g1eiθ1 ue

0 = −ivg(t1 − A)eikd/2 + g1eiθ1 ue

0 = −ivg(r1 − B)eikd/2 + g1eiθ1 ue

0 = −ivgBe−ikd/2 + g1eiθ1 ue

0 = −ivg Me−iqd/2 + g2eiθ2 ue

0 = −ivg(t2 − M)eiqd/2 + g2eiθ2 ue

0 = −ivg(r2 − N)eiqd/2 + g2eiθ2 ue

0 = −ivgNe−iqd/2 + g2eiθ2 ue

0 = g1
2 e−iθ1

[

(A + B + 1)e−ikd/2 + (A + B + t1 + r1)e
ikd/2

]

+
g2
2 e−iθ2

[

(M + N)e−iqd/2 + (M + N + t2 + r2)e
iqd/2

]

− (∆ + iγ)ue,
(5)

Next, we simplify the equations above and obtain

A = 1 +
g1eiθ1 ue

ivge−iφ1/2

t1 = 1 +
g1eiθ1 ue

ivgeiφ1/2
+

g1eiθ1 ue

ivge−iφ1/2

r1 =
g1eiθ1 ue

ivgeiφ1/2
+

g1eiθ1 ue

ivge−iφ1/2

B =
g1eiθ1 ue

ivge−iφ1/2
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M =
g2eiθ2 ue

ivge−iφ2/2

t2 =
g2eiθ2 ue

ivgeiφ2/2
+

g2eiθ2 ue

ivge−iφ2/2

r2 =
g2eiθ2 ue

ivgeiφ2/2
+

g2eiθ2 ue

ivge−iφ2/2

N =
g2eiθ2 ue

ivge−iφ2/2

ue =
2g1e−iθ1 cos(φ1/2)

∆ + iγ + 2iΓ1

(

1 + eiφ1
)

+ 2iΓ2

(

1 + eiφ2
) , (6)

where ∆ = E−ωe is the frequency detuning between the incident photon and the frequency
of the atomic transition ( |g ⟩ ↔ |e ⟩ ). Then, by solving Equation (6), the transmission
amplitude can be obtained as (see Appendix A for more details)

t1 =
∆ + iγ − 2Γ1sinφ1 + 2iΓ2

(

1 + eiφ2
)

∆ + iγ + 2iΓ1

(

1 + eiφ1
)

+ 2iΓ2

(

1 + eiφ2
) , (7)

where φ1 = kd and φ2 = qd are the accumulated phase of photons transmitted between
the two coupled points by the wave vectors k and q, respectively. Here, Γ1 = g2

1/vg

(Γ2 = g2
2/vg) is the radiative decay rate from the excited state |e ⟩ to a lower-energy state

|g ⟩ ( | f ⟩) contributed from each atom–waveguide coupling point [34]. When d = 0, the
transmission amplitude in Equation (6) can be simplified as

t1 =
∆ + iγ − 2Γ1sinφ1

∆ + iγ + 4iΓ1 + 4iΓ2
. (8)

It restores the energy of a small Λ-type atom [37]. Because there are two coupling
points, the radiation decay rate here is quadrupled. In addition, the transmission ampli-
tude becomes

t1 =
∆ + iγ + 4iΓ2

∆ + iγ + 2iΓ1

(

1 + eiφ1
) . (9)

In the case of Γ2 = 0 (i.e., g2 = 0), this is exactly the same as a giant two-level atom [38].
Similarly, we can obtain the other scattering amplitudes

r1 =
−iΓ1(2cos(φ1/2))2

∆ + iγ + 2iΓ1

(

1 + eiφ1
)

+ 2iΓ2

(

1 + eiφ2
) (10a)

t2 = r2 =
−i

√
Γ1Γ2(2cos(φ1/2))(2cos(φ2/2))e−iθ

∆ + iγ + 2iΓ1

(

1 + eiφ1
)

+ 2iΓ2

(

1 + eiφ2
) , (10b)

where θ = θ1 − θ2 is the phase difference between the two atomic waveguide coupling
channels. Similarly, when d = 0 and Γ2 = 0, the amplitude in Equations (10a,b) can
be reduced to the amplitude of the small Λ atom and that of the large two-level atom,

respectively. Obviously, photon number is conserved (i.e., |t1|2 + |r1|2 + |t2|2 + |r2|2 = 1),

and the model has internal symmetry (i.e., |t2|2 ≡ |r2|2). Now, we define T1 = |t1|2 and

R1 = |r1|2, where T1 and R1 are the transmission rate and reflection rate, respectively, and

the conversion efficiency is Tc = |t2|2 + |r2|2.

3. Result Analysis

We first investigate the dependence of the scattering probabilities on φ1 and
∆φ = φ1 −φ2, both of which can be adjusted experimentally. Figure 2 is a three-dimensional
plot of the scattering probability with detuning ∆ and phase difference ∆φ. In Figure 2,
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we can see that the position and minimum (maximum) of T1 (R1 and Tc) with ∆φ vary
periodically with a period of 2π. We find that the transmission rate T1 varies periodically
with ∆φ, and the period is just 2π. Similarly, the reflection rate R1 and the conversion
efficiency Tc also have these properties.

we can see that the position and minimum (maximum) of 𝑇1 (𝑅1 and 𝑇𝑐) with ∆𝜙 vary 
periodically with a period of 2𝜋. We find that the transmission rate 𝑇1 varies periodically 
with ∆𝜙, and the period is just 2𝜋. Similarly, the reflection rate 𝑅1 and the conversion 
efficiency 𝑇𝑐 also have these properties.

Figure 2. The effect of phase on the transmission rate 𝑇1, reflection rate 𝑅1, and conversion effi-
ciency 𝑇𝑐 with different detuning Δ/𝛤1 and phase difference Δ𝜙. (a,d) The transmission rate 𝑇1, 
(b,e) the reflection rate 𝑅1 , (c,f) conversion efficiency 𝑇𝑐 . We set the phase 𝜙1  =  0  in (a−c) and 𝜙1  =  𝜋/2 in (d−f). Other parameters are 𝜂 = 1, 𝛾/𝛤1 = 0, 𝜃 = 0.

In Figure 2a, we find that the minimum value of 𝑇1 occurs at ∆ = 0 (i.e., 𝑇1(∆=  0) = 0) when 𝜙1  =  0 and ∆𝜙 =  𝜋 or 3𝜋. In addition, for a fixed value ∆𝜙, as the value of |∆/𝛤1| increases, the value of the transmission rate 𝑇1 increases.
In Figure 2b, the maximum point of 𝑅1 occurs at ∆=  0 and ∆𝜙 =  𝜋 or 3𝜋, where 𝑅1(∆ = 0) = 1. Different from the transmission rate 𝑇1, the reflection rate 𝑅1 gradually 

decreases with an increase in |∆/𝛤1| at a given value of ∆𝜙. In Figure 2c, we find that the 
conversion efficiency 𝑇𝑐 ≡  0, which is regardless of the change in the value of ∆/𝛤1 when  𝜙1  =  0 and ∆𝜙 =  𝜋 or 3𝜋. Additionally, when 𝑇𝑐(∆=  0) =  0.5, this case also occurs at ∆𝜙 =  0 or 2𝜋. Comparing Figure 2a−c, we find that the total reflection is achieved at ∆ = 0  when 𝜙1  =  0  and ∆𝜙 =  𝜋  or 3𝜋 . Similarly, when the phase 𝜙1  increases to 𝜋/2 
and  ∆𝜙 =  3𝜋/2 or 5𝜋/2, as shown in Figure 2d−f, the total reflection point deviates, 
occurring at ∆=  2𝛤1. In fact, we find that the reflection rate, transmission rate, and con-
version efficiency all change with a period of 2𝜋 at different phases.

To more intuitively observe the transmission rate 𝑇1, reflection rate 𝑅1, and conver-
sion efficiency 𝑇𝑐, we plot the variation trends of these values with detuning Δ and we 
choose the phase difference ∆𝜙 = 0, 𝜋/2, 𝜋, 3𝜋/2 (see Figure 3).

Figure 3a shows the transmission rate with detuning Δ at phase 𝜙1  =  0. Obviously, 
the transmission rate curve is convex downward. The minimum value of the transmission 
rate occurs at ∆=  0 and ∆𝜙 =  𝜋, which is 0. Figure 3b,c show the values of the reflection 
rate and conversion efficiency curves with detuning Δ for phase 𝜙1  =  0, respectively. In 
contrast, in Figure 3a−c, we find 𝑇1(∆ =  0) =  0 , 𝑅1(∆ =  0) =  1 , and 𝑇𝑐(∆=  0) =  0 
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case, the transition of |𝑔⟩  ↔  |𝑒⟩ is completely suppressed due to the destructive interfer-
ence of the two corresponding decay channels, i.e., 𝛤2[1 +  𝑒𝑥𝑝(𝑖𝜙2)]  =  0 . Thus, the 
model can be reduced to the two-level atom coupled with the one-dimensional wave-
guide, where the resonant incident photon is fully reflected. For 𝜙1  =  (2𝑚 +  1/2)𝜋, the 
total reflection condition is ∆𝜙 =  3𝜋/2, ∆=  2𝛤1, as shown in Figure 3d−f.

In fact, as long as 𝜙2  =  𝜙1 − ∆𝜙 =  (2𝑚 +  1)𝜋, we can observe the total reflection. 
More interestingly, when 𝜙1  =  (2𝑚 +  1)𝜋, no matter how the value of ∆𝜙 changes, the 
system achieves frequency-independent perfect transmission (FIPT), i.e., 𝑇1(∆) ≡ 1 and 

Figure 2. The effect of phase on the transmission rate T1, reflection rate R1, and conversion efficiency

Tc with different detuning ∆/Γ1 and phase difference ∆φ. (a,d) The transmission rate T1, (b,e) the

reflection rate R1, (c,f) conversion efficiency Tc. We set the phase φ1 = 0 in (a–c) and φ1 = π/2 in

(d–f). Other parameters are η = 1, γ/Γ1 = 0, θ = 0.

In Figure 2a, we find that the minimum value of T1 occurs at ∆ = 0 (i.e., T1(∆ = 0) = 0)
when φ1 = 0 and ∆φ = π or 3π. In addition, for a fixed value ∆φ, as the value of |∆/Γ1|
increases, the value of the transmission rate T1 increases.

In Figure 2b, the maximum point of R1 occurs at ∆ = 0 and ∆φ = π or 3π, where
R1(∆ = 0) = 1. Different from the transmission rate T1, the reflection rate R1 gradually
decreases with an increase in |∆/Γ1| at a given value of ∆φ. In Figure 2c, we find that
the conversion efficiency Tc ≡ 0, which is regardless of the change in the value of ∆/Γ1

when φ1 = 0 and∆φ = π or 3π. Additionally, when Tc(∆ = 0) = 0.5, this case also occurs
at ∆φ = 0 or 2π. Comparing Figure 2a–c, we find that the total reflection is achieved at
∆ = 0 when φ1 = 0 and ∆φ = π or 3π. Similarly, when the phase φ1 increases to π/2 and
∆φ = 3π/2 or 5π/2, as shown in Figure 2d–f, the total reflection point deviates, occurring
at ∆ = 2Γ1. In fact, we find that the reflection rate, transmission rate, and conversion
efficiency all change with a period of 2π at different phases.

To more intuitively observe the transmission rate T1, reflection rate R1, and conversion
efficiency Tc, we plot the variation trends of these values with detuning ∆ and we choose
the phase difference ∆φ = 0, π/2, π, 3π/2 (see Figure 3).

Figure 3a shows the transmission rate with detuning ∆ at phase φ1 = 0. Obviously,
the transmission rate curve is convex downward. The minimum value of the transmission
rate occurs at ∆ = 0 and ∆φ = π, which is 0. Figure 3b,c show the values of the reflection
rate and conversion efficiency curves with detuning ∆ for phase φ1 = 0, respectively. In
contrast, in Figure 3a–c, we find T1(∆ = 0) = 0, R1(∆ = 0) = 1, and Tc(∆ = 0) = 0 when
φ1 = 2mπ and ∆φ = π. These results show that total reflection occurs. In this case, the
transition of |g ⟩ ↔ |e ⟩ is completely suppressed due to the destructive interference of
the two corresponding decay channels, i.e., Γ2[1 + exp(iφ2)] = 0. Thus, the model can
be reduced to the two-level atom coupled with the one-dimensional waveguide, where
the resonant incident photon is fully reflected. For φ1 = (2m + 1/2)π, the total reflection
condition is ∆φ = 3π/2, ∆ = 2Γ1, as shown in Figure 3d–f.
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𝑅1(∆) =  𝑇𝑐(∆) ≡ 0. In addition, based on the pink dotted curves in Figure 3c,f, we can see 
that no matter how the value of ∆𝜙 changes, 𝑇1 + 𝑅1 + 𝑇𝑐 ≡ 1. This phenomenon actually 
comes from the conservation of the number of photons in the system.

 

Figure 3. The changing process of transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with different detuning Δ/𝛤1 at different phases. (a,d) The transmission rate 𝑇1, (b,e) the reflec-
tion rate 𝑅1, (c,f) the conversion efficiency 𝑇𝑐. We set the phase 𝜙1  =  0 in (a−c) and 𝜙1  =  𝜋/2 in 
(d−f). Other parameters are 𝜂 = 1, 𝛾/𝛤1 = 0, 𝜃 = 0.

We further change the phase difference [∆𝜙 ∈ [0,2𝜋)] and investigate the change in 
the transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with the change 
in ∆𝜙 (see Figure 4).
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conversion efficiency 𝑇𝑐 with different phase differences Δ𝜙. (a) The phase is set to be 𝜙1  =  0, (b) 𝜙1  =  𝜋/2, (c) 𝜙1  =  𝜋, and (d) 𝜙1  =  3𝜋/2. Other parameters are 𝜂 = 1, 𝛾/𝛤1 = 0, 𝜃 = 0.

In Figure 4a, we find that when 𝜙1  =  0 and ∆𝜙 =  𝜋, the minimum value of the 
transmission rate 𝑇1 is 0, the maximum value of the reflection rate 𝑅1 is 1, and the maxi-
mum value of the conversion efficiency 𝑇𝑐  is 0. The results indicate that the system 
achieves total reflection. When the phase 𝜙1 increases to 𝜋/2 [see Figure 4b], the total 
reflection occurs at ∆𝜙 = 3 𝜋/2. With 𝜙1 increasing to 𝜋 [see Figure 4c], the minimum 
value of the transmission rate 𝑇1 is 1, the maximum value of the reflection rate 𝑅1 is 0, 
and the maximum value of the conversion efficiency 𝑇𝑐 is 0. They do not change with ∆𝜙. 
And we find that when 𝜙1  =  (2𝑚 +  1)𝜋, the transmission rate of the system is always 1 
and the reflection rate is always 0. This shows that the incident photon is completely 

Figure 3. The changing process of transmission rate T1, reflection rate R1, and conversion efficiency

Tc with different detuning ∆/Γ1 at different phases. (a,d) The transmission rate T1, (b,e) the reflection

rate R1, (c,f) the conversion efficiency Tc. We set the phase φ1 = 0 in (a–c) and φ1 = π/2 in (d–f).

Other parameters are η = 1, γ/Γ1 = 0, θ = 0.

In fact, as long as φ2 = φ1 − ∆φ = (2m + 1)π, we can observe the total reflection.
More interestingly, when φ1 = (2m + 1)π, no matter how the value of ∆φ changes, the
system achieves frequency-independent perfect transmission (FIPT), i.e., T1(∆) ≡ 1 and
R1(∆) = Tc(∆) ≡ 0. In addition, based on the pink dotted curves in Figure 3c,f, we can see
that no matter how the value of ∆φ changes, T1 + R1 + Tc ≡ 1. This phenomenon actually
comes from the conservation of the number of photons in the system.

We further change the phase difference [∆φ ∈ [0, 2π)] and investigate the change in
the transmission rate T1, reflection rate R1, and conversion efficiency Tc with the change in
∆φ (see Figure 4).

In Figure 4a, we find that when φ1 = 0 and ∆φ = π, the minimum value of the
transmission rate T1 is 0, the maximum value of the reflection rate R1 is 1, and the maximum
value of the conversion efficiency Tc is 0. The results indicate that the system achieves total
reflection. When the phase φ1 increases to π/2 [see Figure 4b], the total reflection occurs at
∆φ = 3π/2. With φ1 increasing to π [see Figure 4c], the minimum value of the transmission
rate T1 is 1, the maximum value of the reflection rate R1 is 0, and the maximum value of
the conversion efficiency Tc is 0. They do not change with ∆φ. And we find that when
φ1 = (2m + 1)π, the transmission rate of the system is always 1 and the reflection rate is
always 0. This shows that the incident photon is completely transmitted and the system
achieves perfect transmission, which is independent of frequency (FIPT). In Figure 4d,
when φ1 = 3π/2 and ∆φ = π/2, the minimum value of the transmission rate T1 is 0, the
maximum value of the reflection rate R1 is 1, and the maximum value of the conversion
efficiency Tc is 0. Total reflection occurs at ∆φ = 3π/2.

Previous studies have shown that in the case of small atoms, the scattering probability
is completely determined by the decay ratio η = Γ2/Γ1 [37,39]. However, in the case of giant
atoms, the scattering probability is not only determined by the decay ratio η = Γ2/Γ1 but is
also dependent on phase. Therefore, we will continue to plot the scattering probability with
respect to the decay ratio η = Γ2/Γ1 and the phase difference ∆φ = φ1 − φ2 (see Figure 5).

Figure 5 depicts the scattering probability as a function of detuning ∆ and decay
rate η. In Figure 5a, we find that when ∆φ = 0 and η = 0, the minimum point of the
transmission rate occurs at ∆ = 0 (i.e., T1(∆ = 0) = 0). In addition, when η is a fixed value,
the transmission rate T1 increases with an increase in |∆/Γ1|. In Figure 5b, the maximum of
the reflection rate occurs at ∆ = 0 and η = 0. At this time, the system has R1(∆ = 0) = 1.
Different from the transmission rate T1, the reflection rate R1 decreases with an increase in

|∆/Γ1| when η is fixed. In Figure 5c, we find that the best frequency transition (Tc = 0.5)
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occurs at ∆ = 0 and η = 1. The phenomenon is the same as that of the small atoms. In
addition, with an increase in |∆/Γ1|, the conversion efficiency Tc decreases gradually.

𝑅1(∆) =  𝑇𝑐(∆) ≡ 0. In addition, based on the pink dotted curves in Figure 3c,f, we can see 
that no matter how the value of ∆𝜙 changes, 𝑇1 + 𝑅1 + 𝑇𝑐 ≡ 1. This phenomenon actually 
comes from the conservation of the number of photons in the system.

Figure 3. The changing process of transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with different detuning Δ/𝛤1 at different phases. (a,d) The transmission rate 𝑇1, (b,e) the reflec-
tion rate 𝑅1, (c,f) the conversion efficiency 𝑇𝑐. We set the phase 𝜙1  =  0 in (a−c) and 𝜙1  =  𝜋/2 in 
(d−f). Other parameters are 𝜂 = 1, 𝛾/𝛤1 = 0, 𝜃 = 0.

We further change the phase difference [∆𝜙 ∈ [0,2𝜋)] and investigate the change in 
the transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with the change 
in ∆𝜙 (see Figure 4).
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conversion efficiency 𝑇𝑐 with different phase differences Δ𝜙. (a) The phase is set to be 𝜙1  =  0, (b) 𝜙1  =  𝜋/2, (c) 𝜙1  =  𝜋, and (d) 𝜙1  =  3𝜋/2. Other parameters are 𝜂 = 1, 𝛾/𝛤1 = 0, 𝜃 = 0.
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mum value of the conversion efficiency 𝑇𝑐  is 0. The results indicate that the system 
achieves total reflection. When the phase 𝜙1 increases to 𝜋/2 [see Figure 4b], the total 
reflection occurs at ∆𝜙 = 3 𝜋/2. With 𝜙1 increasing to 𝜋 [see Figure 4c], the minimum 
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and the maximum value of the conversion efficiency 𝑇𝑐 is 0. They do not change with ∆𝜙. 
And we find that when 𝜙1  =  (2𝑚 +  1)𝜋, the transmission rate of the system is always 1 
and the reflection rate is always 0. This shows that the incident photon is completely 
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conversion efficiency Tc with different phase differences ∆φ. (a) The phase is set to be φ1 = 0,

(b) φ1 = π/2, (c) φ1 = π, and (d) φ1 = 3π/2. Other parameters are η = 1, γ/Γ1 = 0, θ = 0.

transmitted and the system achieves perfect transmission, which is independent of fre-
quency (FIPT). In Figure 4d, when 𝜙1  =  3𝜋/2 and ∆𝜙 = 𝜋/2, the minimum value of the 
transmission rate 𝑇1 is 0, the maximum value of the reflection rate 𝑅1 is 1, and the maxi-
mum value of the conversion efficiency 𝑇𝑐 is 0. Total reflection occurs at ∆𝜙 = 3 𝜋/2.

Previous studies have shown that in the case of small atoms, the scattering probabil-
ity is completely determined by the decay ratio 𝜂 =  𝛤2/𝛤1 [37,39]. However, in the case 
of giant atoms, the scattering probability is not only determined by the decay ratio 𝜂 = 𝛤2/𝛤1 but is also dependent on phase. Therefore, we will continue to plot the scattering 
probability with respect to the decay ratio 𝜂 =  𝛤2/𝛤1 and the phase difference Δ𝜙 = 𝜙1 −𝜙2 (see Figure 5).

 

Figure 5. The effect of phase difference on the transmission rate 𝑇1, reflection rate 𝑅1, and conver-
sion efficiency 𝑇𝑐 with different detuning Δ/𝛤1 and decay rate 𝜂. (a,d,g) The transmission rate 𝑇1, 
(b,e,h) the reflection rate 𝑅1, (c,f,i) the conversion efficiency 𝑇𝑐. We set the phase difference ∆𝜙 = 0 in (a−c), ∆𝜙 =  𝜋/2 in (d−f), and ∆𝜙 =  𝜋 in (g−i). Other parameters are 𝜙1 = 0, 𝛾/𝛤1 = 0, 𝜃 =0.

Figure 5 depicts the scattering probability as a function of detuning ∆ and decay rate 𝜂. In Figure 5a, we find that when ∆𝜙 =  0 and 𝜂 =  0, the minimum point of the trans-
mission rate occurs at ∆=  0 (i.e., 𝑇1(∆=  0) =  0). In addition, when 𝜂 is a fixed value, the 
transmission rate 𝑇1 increases with an increase in |∆/𝛤1|. In Figure 5b, the maximum of 
the reflection rate occurs at ∆=  0 and 𝜂 =  0. At this time, the system has 𝑅1(∆=  0) = 1. Different from the transmission rate 𝑇1, the reflection rate 𝑅1 decreases with an in-
crease in |∆/𝛤1| when 𝜂 is fixed. In Figure 5c, we find that the best frequency transition 
(𝑇𝑐 =  0.5) occurs at ∆=  0 and 𝜂 =  1. The phenomenon is the same as that of the small 
atoms. In addition, with an increase in |∆/𝛤1| , the conversion efficiency 𝑇𝑐  decreases 
gradually.

When the phase difference Δ𝜙 increases to 𝜋/2, the minimum of the transmission 
rate occurs at ∆=  0 and 𝜂 =  0 [see Figure 5d], and the value is 0. In addition, the trans-
mission rate 𝑇1 increases with an increase in |∆/𝛤1|. In Figure 5e, we find that the maxi-
mum of the reflection rate (i.e., 𝑅1 =  1) also occurs at ∆=  0 and 𝜂 =  0. As in the case of ∆𝜙 =  0, the minimum value of the transmission rate and maximum value of the reflection 
rate of the system occur at ∆=  0 and 𝜂 =  0. The difference is that the optimal frequency 

Figure 5. The effect of phase difference on the transmission rate T1, reflection rate R1, and conver-

sion efficiency Tc with different detuning ∆/Γ1 and decay rate η. (a,d,g) The transmission rate T1,

(b,e,h) the reflection rate R1, (c,f,i) the conversion efficiency Tc. We set the phase difference ∆φ = 0 in

(a–c), ∆φ = π/2 in (d–f), and ∆φ = π in (g–i). Other parameters are φ1 = 0, γ/Γ1 = 0, θ = 0.

When the phase difference ∆φ increases to π/2, the minimum of the transmission rate
occurs at ∆ = 0 and η = 0 [see Figure 5d], and the value is 0. In addition, the transmission
rate T1 increases with an increase in |∆/Γ1|. In Figure 5e, we find that the maximum of the
reflection rate (i.e., R1 = 1) also occurs at ∆ = 0 and η = 0. As in the case of ∆φ = 0, the
minimum value of the transmission rate and maximum value of the reflection rate of the
system occur at ∆ = 0 and η = 0. The difference is that the optimal frequency conversion
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of the system has deviated. The best transition of the frequency occurs at ∆ = −4Γ1 and
η = 2 [see Figure 5f].

When ∆φ = π [see Figure 5g–i], we find that the transmission rate T1, reflection rate
R1, and conversion efficiency Tc are independent of η. This phenomenon indicates that the
frequency conversion is completely suppressed.

In order to more intuitively observe the variation trends of the transmission rate T1,
reflection rate R1, and conversion efficiency Tc with respect to detuning ∆ and decay rate η,
we set η to 0, 1, 2, and 3, respectively, and draw Figure 6.

conversion of the system has deviated. The best transition of the frequency occurs at ∆= −4𝛤1 and 𝜂 =  2 [see Figure 5f].
When ∆𝜙 =  𝜋 [see Figure 5g−i], we find that the transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 are independent of 𝜂. This phenomenon indicates that 

the frequency conversion is completely suppressed.
In order to more intuitively observe the variation trends of the transmission rate 𝑇1, 

reflection rate 𝑅1 , and conversion efficiency 𝑇𝑐  with respect to detuning Δ  and decay 
rate 𝜂, we set 𝜂 to 0, 1, 2, and 3, respectively, and draw Figure 6.

Figure 6. The changing process of transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐  with different detuning Δ/𝛤1  at different phase differences. (a,d,g) The transmission rate 𝑇1 , 
(b,e,h) the reflection rate 𝑅1, (c,f,i) the conversion efficiency 𝑇𝑐. We set the phase difference ∆𝜙 = 0 in (a−c), ∆𝜙 =  𝜋/2 in (d−f), and ∆𝜙 =  𝜋 in (g−i). Other parameters are 𝜙1 = 0, 𝛾/𝛤1 = 0, 𝜃 =0.

Figure 6 shows the curves of scattering rate with detuning Δ at different phase dif-
ferences ∆𝜙. In Figure 6a, the minimum value of the transmission rate occurs at ∆=  0 
and 𝜂 =  0, which is 0. Figure 6b,c show the variation trend of the reflection rate and con-
version efficiency with detuning Δ at phase difference ∆𝜙 =  0, respectively. In Figure 
6c, we find that the optimal transition frequency of the system occurs at ∆=  0 and 𝜂 = 1  (dashed green lines). In contrast, in Figure 6a−c, when the ∆𝜙 =  0  and 𝜂 =  0 , we 
found that 𝑇1(∆=  0) =  0, 𝑅1(∆=  0) =  1, 𝑇𝑐(∆=  0) =  0. The results show that total re-
flection occurs.

Figure 6d−f show the curves of scattering rate with detuning Δ at different phase 
differences ∆𝜙 . When ∆𝜙 =  𝜋/2 , the minimum system transmission rate (𝑇1 = 0 ) ap-
pears at ∆=  0 and 𝜂 = 0 [see solid blue line in Figure 6d]. In Figure 6e, we find that the 
maximum value of the system reflection rate (𝑅1 = 1) also occurs at ∆=  0 and 𝜂 =  0. 
This phenomenon shows that the total reflection of the system occurs under the conditions ∆=  0 and 𝜂 =  0 when ∆𝜙 =  𝜋/2. However, unlike those in the case of ∆𝜙 = 0, the op-
timal frequency conversion of the system occurs at ∆=  −4𝛤1 and 𝜂 =  2 [see red dashed 

Figure 6. The changing process of transmission rate T1, reflection rate R1, and conversion efficiency

Tc with different detuning ∆/Γ1 at different phase differences. (a,d,g) The transmission rate T1, (b,e,h)

the reflection rate R1, (c,f,i) the conversion efficiency Tc. We set the phase difference ∆φ = 0 in (a–c),

∆φ = π/2 in (d–f), and ∆φ = π in (g–i). Other parameters are φ1 = 0, γ/Γ1 = 0, θ = 0.

Figure 6 shows the curves of scattering rate with detuning ∆ at different phase dif-
ferences ∆φ. In Figure 6a, the minimum value of the transmission rate occurs at ∆ = 0
and η = 0, which is 0. Figure 6b,c show the variation trend of the reflection rate and
conversion efficiency with detuning ∆ at phase difference ∆φ = 0, respectively. In Figure 6c,
we find that the optimal transition frequency of the system occurs at ∆ = 0 and η = 1
(dashed green lines). In contrast, in Figure 6a–c, when the ∆φ = 0 and η = 0, we found that
T1(∆ = 0) = 0, R1(∆ = 0) = 1, Tc(∆ = 0) = 0. The results show that total reflection occurs.

Figure 6d–f show the curves of scattering rate with detuning ∆ at different phase
differences ∆φ. When ∆φ = π/2, the minimum system transmission rate (T1 = 0) appears
at ∆ = 0 and η = 0 [see solid blue line in Figure 6d]. In Figure 6e, we find that the
maximum value of the system reflection rate (R1 = 1) also occurs at ∆ = 0 and η = 0.
This phenomenon shows that the total reflection of the system occurs under the conditions
∆ = 0 and η = 0 when ∆φ = π/2. However, unlike those in the case of ∆φ = 0, the optimal
frequency conversion of the system occurs at ∆ = −4Γ1 and η = 2 [see red dashed line in
Figure 6f]. In addition, based on the pink dotted curves in Figure 6c,f,i, we can see that no
matter how the value of ∆φ changes, T1 + R1 + Tc ≡ 1.
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In fact, the best frequency conversion (Tc = 0.5) occurs at ∆ = 0 and η = 1 when
φ1 = 2mπ and ∆φ = 0 [see Figure 6a–c]. It is the same as the behaviors of small atoms. With
an increase in |∆/Γ1|, the conversion efficiency Tc decreases gradually. When φ1 = 2mπ and
∆φ = π [see Figure 6g–i], the frequency conversion is completely suppressed. The incoming
photons of the system are completely reflected. In this case, all scattering probabilities are
independent of η. When φ1 = 2mπ and ∆φ = π/2 (see Figure 6d–f), the best frequency
conversion (Tc = 0.5) appears in the ∆ = −4Γ1 and η = 2.

We further change the decay ratio and study the changes of transmission rate T1,
reflection rate R1, and conversion efficiency Tc with η values changing [see Figure 7]. In
Figure 7a, we find that the minimum of the transmission rate T1 is monotonically increasing
when φ1 = 0 and ∆φ = 0. Its minimum value occurs at η = 0, which is 0. The maximum
value of the reflection rate R1 and the maximum value of the conversion efficiency Tc are
monotone decreasing curves. Both of the maximums occur at η = 0 and the values are 1.
However, when the phase difference ∆φ increases to π/2 [see Figure 7b], the minimum of
the transmission rate T1 has a constant value of 0 no matter how the value of η changes.
The maximum value of the reflection rate R1 is a monotone decline curve, and its maximum
value occurs at η = 0, which is 1.

line in Figure 6f]. In addition, based on the pink dotted curves in Figure 6c,f,i, we can see 
that no matter how the value of ∆𝜙 changes, 𝑇1 + 𝑅1 + 𝑇𝑐 ≡ 1.

In fact, the best frequency conversion (𝑇𝑐 =  0.5) occurs at ∆=  0 and 𝜂 =  1 when 𝜙1  =  2𝑚𝜋 and ∆𝜙 =  0 [see Figure 6a−c]. It is the same as the behaviors of small atoms. 
With an increase in |∆/𝛤1|, the conversion efficiency 𝑇𝑐 decreases gradually. When 𝜙1  = 2𝑚𝜋 and ∆𝜙 =  𝜋 [see Figure 6g−i], the frequency conversion is completely suppressed. 
The incoming photons of the system are completely reflected. In this case, all scattering 
probabilities are independent of 𝜂. When 𝜙1  =  2𝑚𝜋 and ∆𝜙 =  𝜋/2 (see Figure 6d−f), 
the best frequency conversion (𝑇𝑐 =  0.5) appears in the ∆=  −4𝛤1 and 𝜂 =  2.

We further change the decay ratio and study the changes of transmission rate 𝑇1, 
reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with 𝜂 values changing [see Figure 7]. In 
Figure 7a, we find that the minimum of the transmission rate 𝑇1 is monotonically increas-
ing when 𝜙1  =  0 and ∆𝜙 = 0. Its minimum value occurs at 𝜂 = 0, which is 0. The max-
imum value of the reflection rate 𝑅1 and the maximum value of the conversion efficiency 𝑇𝑐 are monotone decreasing curves. Both of the maximums occur at 𝜂 = 0 and the values 
are 1. However, when the phase difference ∆𝜙 increases to π/2 [see Figure 7b], the mini-
mum of the transmission rate 𝑇1 has a constant value of 0 no matter how the value of 𝜂 
changes. The maximum value of the reflection rate 𝑅1 is a monotone decline curve, and 
its maximum value occurs at 𝜂 = 0, which is 1.

 

Figure 7. The effect of phase difference on the extreme values of transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 with different decay rates 𝜂. (a) The phase difference is set to be ∆𝜙 =  0, (b) ∆𝜙 =  𝜋/2, (c) ∆𝜙 =  𝜋, and (d) ∆𝜙 =  3𝜋/2. Other parameters are 𝜙1 = 0, 𝛾/𝛤1 = 0, 𝜃 = 0.

When ∆𝜙 continues to increase to π [see Figure 7c], the minimum of the transmis-
sion rate 𝑇1 is always 0. The maximum value of the reflection rate 𝑅1 is always 1. And 
the maximum value of the conversion efficiency 𝑇𝑐 is always 0, i.e.,  (𝑇𝑐)max ≡ 0. They do 
not change with a change in 𝜂, and the system shows the total reflection phenomenon, 
which is independent of the value of 𝜂. In Figure 7d,  (𝑇1)min is monotonically increasing 
when 𝜙1  =  0 and ∆𝜙 = 3 𝜋/2. There is a minimum value  (𝑇1)min occurring at 𝜂 = 0. (𝑅1)max and (𝑇𝑐)max are monotone decreasing curves, and the curves reach their maxi-
mum value at 𝜂 = 0, which is 1.

We plot the scattering probability with detuning ∆ and dissipation rate 𝛾 for phase 𝜙1 = 0 and decay rate 𝜂 = 1. In Figure 8a, we find that there is a minimum value of trans-
mission rate, which occurs at 𝛾 =  0 and ∆=  0. In addition, for the fixed value of 𝛾, the 
transmission rate 𝑇1 increases with an increase in the value of |∆/𝛤1|. In Figure 8b, the 
maximum of the reflection rate occurs at ∆=  0 and 𝛾 =  0. Different from the transmis-
sion rate 𝑇1, the reflection rate 𝑅1 decreases with an increase in |∆/𝛤1| when 𝛾 is fixed. 
In Figure 8c, we find that the optimal frequency conversion (𝑇𝑐 =  0.5) occurs at ∆=  0 and 

Figure 7. The effect of phase difference on the extreme values of transmission rate T1, reflection rate

R1, and conversion efficiency Tc with different decay rates η. (a) The phase difference is set to be

∆φ = 0, (b) ∆φ = π/2, (c) ∆φ = π, and (d) ∆φ = 3π/2. Other parameters are φ1 = 0, γ/Γ1 = 0,

θ = 0.

When ∆φ continues to increase to π [see Figure 7c], the minimum of the transmission
rate T1 is always 0. The maximum value of the reflection rate R1 is always 1. And the
maximum value of the conversion efficiency Tc is always 0, i.e., (Tc)max ≡ 0. They do not
change with a change in η, and the system shows the total reflection phenomenon, which
is independent of the value of η. In Figure 7d, (T1)min is monotonically increasing when
φ1 = 0 and ∆φ = 3π/2. There is a minimum value (T1)min occurring at η = 0. (R1)max
and (Tc)max are monotone decreasing curves, and the curves reach their maximum value
at η = 0, which is 1.

We plot the scattering probability with detuning ∆ and dissipation rate γ for phase
φ1 = 0 and decay rate η = 1. In Figure 8a, we find that there is a minimum value of
transmission rate, which occurs at γ = 0 and ∆ = 0. In addition, for the fixed value of
γ, the transmission rate T1 increases with an increase in the value of |∆/Γ1|. In Figure 8b,
the maximum of the reflection rate occurs at ∆ = 0 and γ = 0. Different from the
transmission rate T1, the reflection rate R1 decreases with an increase in |∆/Γ1| when γ
is fixed. In Figure 8c, we find that the optimal frequency conversion (Tc = 0.5) occurs at
∆ = 0 and γ = 0. In addition, with an increase in |∆/Γ1|, the conversion efficiency Tc

decreases gradually.
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Figure 8. The effect of phase difference on the transmission rate 𝑇1, reflection rate 𝑅1, and conver-
sion efficiency 𝑇𝑐 with different detuning Δ/𝛤1 and dissipation rate 𝛾. (a,d,g) The transmission rate 𝑇1 , (b,e,h) the reflection rate 𝑅1 , (c,f,i) the conversion efficiency 𝑇𝑐 . We set the phase difference ∆𝜙 =  0 in (a−c), ∆𝜙 =  𝜋/2 in (d−f), and ∆𝜙 =  𝜋 in (g−i). Other parameters are 𝜙1 = 0, 𝜂 = 1, 𝜃 = 0.

When the phase difference Δ𝜙 increases to 𝜋/2, the minimum of the transmission 
rate occurs at ∆=  −2𝛤1 and 𝛾 =  0 [see Figure 8d]. Compared with Figure 8a, we find 
that the minimum of transmission rate decreases with an increase in phase difference. 
However, when 𝛾 is the fixed value, the transmission rate 𝑇1 still increases with an in-
crease in |∆/𝛤1|. Correspondingly, the maximum reflection rate increases with an increase 
in phase difference, and the maximum occurs at ∆=  −2𝛤1 and 𝛾 =  0 [see Figure 8e]. At 
this time, the system does not have an optimal frequency conversion, i.e., 𝑇𝑐 <  0.5 [see 
Figure 8f].

When ∆𝜙 =  𝜋, we find that the transmission rate 𝑇1 obtains a minimum value of 0 
at ∆=  0 and 𝛾 =  0 [see Figure 8g]. The reflection rate 𝑅1 obtains a maximum value of 1 at ∆=  0 and 𝛾 =  0 [see Figure 8h]. And the conversion efficiency 𝑇𝑐 is independent 
of 𝛾 and ∆, and its value is always 0 [see Figure 8i]. This phenomenon indicates that the 
photons are completely reflected in the system.

In order to more intuitively observe the transmission rate 𝑇1, reflection rate 𝑅1, and 
conversion efficiency 𝑇𝑐 with respect to detuning Δ and dissipation rate 𝛾, we take 𝛾 as 0,10,20,30 and draw Figure 9.

In Figure 9a, we find that the minimum transmission rate for phase difference ∆𝜙 = 0 occurs at ∆=  0 and 𝛾 =  0, which is 0.25. The minimum transmission rate increases 
with an increase in dissipation. Figure 9b,c show the reflection rate and conversion effi-
ciency with detuning Δ at phase difference ∆𝜙 =  0, respectively. In Figure 9b, the max-
imum reflection rate occurs at ∆=  0 and 𝛾 =  0, which is 0.25. Unlike the transmission 
rate, the maximum reflection rate decreases with an increase in dissipation. In Figure 9c, 

Figure 8. The effect of phase difference on the transmission rate T1, reflection rate R1, and conversion

efficiency Tc with different detuning ∆/Γ1 and dissipation rate γ. (a,d,g) The transmission rate T1,

(b,e,h) the reflection rate R1, (c,f,i) the conversion efficiency Tc. We set the phase difference ∆φ = 0 in

(a–c), ∆φ = π/2 in (d–f), and ∆φ = π in (g–i). Other parameters are φ1 = 0, η = 1, θ = 0.

When the phase difference ∆φ increases to π/2, the minimum of the transmission
rate occurs at ∆ = −2Γ1 and γ = 0 [see Figure 8d]. Compared with Figure 8a, we find
that the minimum of transmission rate decreases with an increase in phase difference.
However, when γ is the fixed value, the transmission rate T1 still increases with an increase
in |∆/Γ1|. Correspondingly, the maximum reflection rate increases with an increase in
phase difference, and the maximum occurs at ∆ = −2Γ1 and γ = 0 [see Figure 8e]. At
this time, the system does not have an optimal frequency conversion, i.e., Tc < 0.5 [see
Figure 8f].

When ∆φ = π, we find that the transmission rate T1 obtains a minimum value of 0 at
∆ = 0 and γ = 0 [see Figure 8g]. The reflection rate R1 obtains a maximum value of 1 at
∆ = 0 and γ = 0 [see Figure 8h]. And the conversion efficiency Tc is independent of γ and
∆, and its value is always 0 [see Figure 8i]. This phenomenon indicates that the photons are
completely reflected in the system.

In order to more intuitively observe the transmission rate T1, reflection rate R1, and
conversion efficiency Tc with respect to detuning ∆ and dissipation rate γ, we take γ as
0, 10, 20, 30 and draw Figure 9.

In Figure 9a, we find that the minimum transmission rate for phase difference ∆φ = 0
occurs at ∆ = 0 and γ = 0, which is 0.25. The minimum transmission rate increases with
an increase in dissipation. Figure 9b,c show the reflection rate and conversion efficiency
with detuning ∆ at phase difference ∆φ = 0, respectively. In Figure 9b, the maximum
reflection rate occurs at ∆ = 0 and γ = 0, which is 0.25. Unlike the transmission rate, the
maximum reflection rate decreases with an increase in dissipation. In Figure 9c, we find
that the system has an optimal frequency transition, and the optimal frequency transition
occurs at ∆ = 0 and γ = 0 (solid blue line).
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transition occurs at ∆=  0 and 𝛾 =  0 (solid blue line).

 

Figure 9. The change process of transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐  with different detuning Δ/𝛤1  at different phase differences. (a,d,g) The transmission rate 𝑇1 , 
(b,e,h) the reflection rate 𝑅1, (c,f,i) the conversion efficiency 𝑇𝑐. We set the phase difference ∆𝜙 = 0 in (a−c), ∆𝜙 =  𝜋/2 in (d−f), and ∆𝜙 =  𝜋 in (g−i). Other parameters are 𝜙1 = 0, 𝜂 = 1, 𝜃 = 0.

Figure 9d−f show the scattering rate with detuning Δ at phase difference ∆𝜙 =  𝜋/2. 
At this time, the minimum of the transmission rate occurs at ∆ =  −2𝛤1 and 𝛾 =  0, and 
its value is 0.1111 [see the blue solid line in Figure 9d]. In Figure 9e, we find that the 
maximum of the reflection rate also occurs at ∆ =  −2𝛤1  and 𝛾 =  0 , which is 0.4444. 
These indicate that there is no total reflection in the system when ∆𝜙 =  𝜋/2. And unlike 
the case of ∆𝜙 = 0, there is no optimal frequency conversion, i.e., 𝑇𝑐 <  0.5 [see Figure 
9f].

Figure 9g−i show the scattering rate with detuning Δ at phase difference ∆𝜙 =  𝜋. At 
this time, the minimum of the transmission rate appears at ∆ =  0  and 𝛾 =  0 , and its 
value is 0 [see the blue solid line in Figure 9g]. In Figure 9h, we find that the maximum of 
the reflection rate also occurs at ∆ =  0 and 𝛾 =  0, which is 1. These show that the total 
reflection occurs when ∆𝜙 =  𝜋, and the conditions for the total reflection are ∆=  0 and 𝛾 =  0. At this time, there is no optimal frequency conversion in the system [see Figure 
9f].

In fact, the optimal frequency conversion (𝑇𝑐 =  0.5 ) occurs at ∆ =  0  and 𝛾 =  0 
when 𝜙1  =  2𝑚𝜋 and ∆ =  0. This phenomenon shows that when there is no atomic dis-
sipation in the system, the system can achieve the optimal transmission rate of photons, 
which is 0.25. With an increase in dissipation, the number of transmitted photons de-
creases. When 𝜙1  = (2𝑚 + 1)𝜋 and ∆𝜙 =  𝜋, if there is no dissipation, the incident pho-
ton can be completely reflected and the photon cannot pass through the system.

We further change the dissipation rate and study the extreme values of transmission 
rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 as 𝛾 changes [see Figure 10]. In 
Figure 10a, we find that the minimum of the transmission rate 𝑇1  is monotonically 

Figure 9. The change process of transmission rate T1, reflection rate R1, and conversion efficiency Tc

with different detuning ∆/Γ1 at different phase differences. (a,d,g) The transmission rate T1, (b,e,h)

the reflection rate R1, (c,f,i) the conversion efficiency Tc. We set the phase difference ∆φ = 0 in (a–c),

∆φ = π/2 in (d–f), and ∆φ = π in (g–i). Other parameters are φ1 = 0, η = 1, θ = 0.

Figure 9d–f show the scattering rate with detuning ∆ at phase difference ∆φ = π/2.
At this time, the minimum of the transmission rate occurs at ∆ = −2Γ1 and γ = 0, and its
value is 0.1111 [see the blue solid line in Figure 9d]. In Figure 9e, we find that the maximum
of the reflection rate also occurs at ∆ = −2Γ1 and γ = 0, which is 0.4444. These indicate that
there is no total reflection in the system when ∆φ = π/2. And unlike the case of ∆φ = 0,
there is no optimal frequency conversion, i.e., Tc < 0.5 [see Figure 9f].

Figure 9g–i show the scattering rate with detuning ∆ at phase difference ∆φ = π.
At this time, the minimum of the transmission rate appears at ∆ = 0 and γ = 0, and its
value is 0 [see the blue solid line in Figure 9g]. In Figure 9h, we find that the maximum
of the reflection rate also occurs at ∆ = 0 and γ = 0, which is 1. These show that the total
reflection occurs when ∆φ = π, and the conditions for the total reflection are ∆ = 0 and
γ = 0. At this time, there is no optimal frequency conversion in the system [see Figure 9f].

In fact, the optimal frequency conversion (Tc = 0.5) occurs at ∆ = 0 and γ = 0 when
φ1 = 2mπ and ∆ = 0. This phenomenon shows that when there is no atomic dissipation
in the system, the system can achieve the optimal transmission rate of photons, which
is 0.25. With an increase in dissipation, the number of transmitted photons decreases.
When φ1 = (2m + 1)π and ∆φ = π, if there is no dissipation, the incident photon can be
completely reflected and the photon cannot pass through the system.

We further change the dissipation rate and study the extreme values of transmission
rate T1, reflection rate R1, and conversion efficiency Tc as γ changes [see Figure 10]. In
Figure 10a, we find that the minimum of the transmission rate T1 is monotonically increas-
ing when φ1 = 0 and ∆φ = 0. Its minimum value occurs at γ = 0, which is 0.25. The
maximum of reflection rate R1 is the monotone decline curve, and its maximum value
occurs at γ = 0, which is 0.25. The maximum of conversion rate Tc is the monotone decline
curve with the maximum value of 0.5 at γ = 0. At this time, the system has the optimal
frequency conversion. When the phase difference ∆φ increases to π/2 [see Figure 10b], the
minimum transmission rate T1 is a monotonically increasing curve. Its minimum value
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occurs at γ = 0, which is 0.1111. The maximum of reflection rate R1 is a monotonically
declining curve, and its maximum value occurs at γ = 0, which is 0.4444. The maximum of
conversion rate Tc is a monotonically declining curve, and its maximum value occurs at
γ = 0, which is 0.4444 < 0.5. There is no optimal frequency conversion in the system.

increasing when 𝜙1  =  0  and ∆𝜙 = 0 . Its minimum value occurs at 𝛾 =  0 , which is 
0.25. The maximum of reflection rate 𝑅1 is the monotone decline curve, and its maximum 
value occurs at 𝛾 =  0, which is 0.25. The maximum of conversion rate 𝑇𝑐 is the mono-
tone decline curve with the maximum value of 0.5 at 𝛾 =  0. At this time, the system has 
the optimal frequency conversion. When the phase difference ∆𝜙 increases to 𝜋/2 [see 
Figure 10b], the minimum transmission rate 𝑇1 is a monotonically increasing curve. Its 
minimum value occurs at 𝛾 =  0, which is 0.1111. The maximum of reflection rate 𝑅1 is 
a monotonically declining curve, and its maximum value occurs at 𝛾 =  0 , which is 
0.4444. The maximum of conversion rate 𝑇𝑐 is a monotonically declining curve, and its 
maximum value occurs at 𝛾 =  0, which is 0.4444 < 0.5. There is no optimal frequency 
conversion in the system.

 

Figure 10. The effect of phase difference on the extreme values of transmission rate 𝑇1, reflection 
rate 𝑅1, and conversion efficiency 𝑇𝑐 with different dissipation rates 𝛾. (a) The phase difference is 
set to be ∆𝜙 =  0, (b) ∆𝜙 =  𝜋/2, (c) ∆𝜙 =  𝜋, and (d) ∆𝜙 =  3𝜋/2. Other parameters are 𝜙1 = 0, 𝜂 = 1, 𝜃 = 0.

When ∆𝜙 continues to increase to 𝜋 [see Figure 10c], the minimum of the transmis-
sion rate 𝑇1 appears at 𝛾 =  0, which is 0. The maximum of the reflection rate 𝑅1 appears 
at 𝛾 =  0 , and its value is 1. The maximum of the conversion rate 𝑇𝑐  is always 0, i.e., (𝑇𝑐)max ≡ 0. At this time, the system has the total reflection at 𝛾 =  0. Figure 10d shows 
the variation in the extreme values of the transmission rate 𝑇1, reflection rate 𝑅1, and con-
version efficiency 𝑇𝑐 with 𝛾 at ∆𝜙 =  3𝜋 /2. In Figure 10d, we can see that the extreme 
values of the transmission rate 𝑇1, reflection rate 𝑅1, and conversion efficiency 𝑇𝑐 are the 
same as those of the case of ∆𝜙 =  𝜋/2.

According to Equations (7) and (10), the transmission rate 𝑇1 and reflection rate 𝑅1 
are independent of the local coupling phase 𝜃. Therefore, the effects of the locally coupled 
phase 𝜃 on the transmission rate and reflection rate are not discussed here. We analyze 
the changes in the conversion efficiency 𝑇𝑐 with respect to detuning Δ and locally cou-
pled phase 𝜃  [see Figure 11(a1−c1)]. In Figure 11(a1), there is a maximum transmission 
rate when Δ = 0. The value of the maximum is 0. In Figure 11(b1), the reflection rate ob-
tains a maximum of 0.4444 at Δ = −2𝛤1 no matter how the value of 𝜃 changes. In Figure 
11(c1), the conversion efficiency 𝑇𝑐 is always 0 regardless of the value of 𝜃.

Figure 11(a2−c2) shows the conversion efficiency 𝑇𝑐  with respect to detuning  Δ 
when ∆𝜙 is 0, 𝜋/2, 𝜋, respectively. Obviously, the conversion efficiency 𝑇𝑐 is independ-
ent of the local coupling phase no matter how ∆𝜙 varies [see Figure 11(a2)−(c2)]. When ∆𝜙 = 0, conversion efficiency 𝑇𝑐 obtains a maximum value of 0.5 at Δ = 0 [see Figure 
11(a2)]. When ∆𝜙 =  𝜋/2, conversion efficiency 𝑇𝑐 obtains a maximum value of 0.4444 at 𝛥 = −2𝛤1 [see Figure 11(b2)]. When ∆𝜙 =  𝜋, the conversion efficiency is always 0, i.e., 𝑇𝑐 ≡ 0 [see Figure 11(c2)].

Figure 10. The effect of phase difference on the extreme values of transmission rate T1, reflection rate

R1, and conversion efficiency Tc with different dissipation rates γ. (a) The phase difference is set to be

∆φ = 0, (b) ∆φ = π/2, (c) ∆φ = π, and (d) ∆φ = 3π/2. Other parameters are φ1 = 0, η = 1, θ = 0.

When ∆φ continues to increase to π [see Figure 10c], the minimum of the transmission
rate T1 appears at γ = 0, which is 0. The maximum of the reflection rate R1 appears at γ = 0,
and its value is 1. The maximum of the conversion rate Tc is always 0, i.e., (Tc)max ≡ 0. At
this time, the system has the total reflection at γ = 0. Figure 10d shows the variation in the
extreme values of the transmission rate T1, reflection rate R1, and conversion efficiency Tc

with γ at ∆φ = 3π/2. In Figure 10d, we can see that the extreme values of the transmission
rate T1, reflection rate R1, and conversion efficiency Tc are the same as those of the case of
∆φ = π/2.

According to Equations (7) and (10), the transmission rate T1 and reflection rate R1

are independent of the local coupling phase θ. Therefore, the effects of the locally coupled
phase θ on the transmission rate and reflection rate are not discussed here. We analyze
the changes in the conversion efficiency Tc with respect to detuning ∆ and locally coupled
phase θ [see Figure 11(a1–c1)]. In Figure 11(a1), there is a maximum transmission rate
when ∆ = 0. The value of the maximum is 0. In Figure 11(b1), the reflection rate obtains a
maximum of 0.4444 at ∆ = −2Γ1 no matter how the value of θ changes. In Figure 11(c1),
the conversion efficiency Tc is always 0 regardless of the value of θ.

Figure 11(a2–c2) shows the conversion efficiency Tc with respect to detuning ∆ when
∆φ is 0, π/2, π, respectively. Obviously, the conversion efficiency Tc is independent of
the local coupling phase no matter how ∆φ varies [see Figure 11(a2–c2)]. When ∆φ = 0,
conversion efficiency Tc obtains a maximum value of 0.5 at ∆ = 0 [see Figure 11(a2)].
When ∆φ = π/2, conversion efficiency Tc obtains a maximum value of 0.4444 at ∆ = −2Γ1

[see Figure 11(b2)]. When ∆φ = π, the conversion efficiency is always 0, i.e., Tc ≡ 0 [see
Figure 11(c2)].
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Figure 11. (a1−c1) The effect of phase difference on conversion efficiency 𝑇𝑐 with different detuning Δ/𝛤1 and local coupling phases 𝜃. (a2−c2) The change process of conversion efficiency 𝑇𝑐 with dif-
ferent detuning Δ/𝛤1 at different phase differences. We set the phase difference ∆𝜙 =  0 in (a1,a2), ∆𝜙 =  𝜋/2 in (b1,b2), ∆𝜙 =  𝜋 in (c1,c2). Other parameters are 𝜙1 = 0, 𝜂 = 1, 𝛾/𝛤1 = 0.

4. Discussion
Firstly, for the arbitrary changes in the parameters in our model simulation, such as 𝜃1/𝜃2, 𝑔1/𝑔2, and 𝜙1/𝜙2, we provide the following explanation. On one hand, we believe 

that changes in phase and coupling strength are very common in physical models. On the 
other hand, in ref. [35], it is mentioned that with superconducting quantum devices, the 
local coupling phases 𝜃1  and 𝜃2  can be introduced with Josephson loops threaded by 
external fluxes, and the coupling points can be encoded with different local phases. Ref. 
[33] has also studied single-photon scattering characteristics by changing the local cou-
pling phase. From this perspective, the local coupling phase can be changed. In addition, 
Ref. [34] showed that when a three-level giant atom is coupled with a one-dimensional 
waveguide, 𝑔1  and 𝑔2  are the coupling strengths of transitions |𝑔⟩  ↔  |𝑒⟩  and |𝑓⟩  ↔ |𝑒⟩ with the waveguide modes, respectively. We believe that the coupling strengths 𝑔1 
and 𝑔2 can change with the transformation of |𝑔⟩  ↔  |𝑒⟩ and |𝑓⟩  ↔  |𝑒⟩ in real experi-
ments. It is mentioned in ref. [18] that both 𝜙1 and ∆𝜙 can be tuned within [0, 2𝜋] read-
ily by adjusting the external parameters such as the voltages and currents or the electric 
and magnetic fields.

Secondly, we compare our results with previous works. In ref. [33], Chen et al. cou-
pled two-level giant atoms with one-dimensional waveguides, and they found that the 
dissipation rate and local coupling phase have some interesting effects on the transmission 
rate and reflection rate of QED systems in giant atomic waveguides. In addition, their 
study of the non-trivial single-photon scattering properties of giant atomic waveguide 
QED systems provided an excellent platform for achieving nonreciprocal and chiral quan-
tum optics. In ref. [12], Kockum et al. coupled multiple two-level giant atoms to one-di-
mensional waveguides and further showed that setups with giant atoms can be imple-
mented in superconducting circuits. They also found that when two braided giant atoms 
were coupled to a waveguide, there was a decoherence-free interaction between the at-
oms. In ref. [34], Du et al. coupled three-level giant atoms with one-dimensional wave-
guides to study single-photon scattering. However, they did not consider the effects of the 
dissipation rate and the local coupling phase of the relative scattering rate of the system. 
In contrast, the scattering characteristics of three-level giant atoms coupled with one-di-
mensional waveguides are studied in more detail in our work, and the limit phenomena 
of the system are observed more clearly by drawing extreme value images.

In addition, we would like to make an outlook on our work. Giant atoms are emerg-
ing as a new, interesting field of quantum optics. We learned that excitons are quasi-par-
ticles that can transmit energy through solid materials and exhibit both atomic and solid 

Figure 11. (a1–c1) The effect of phase difference on conversion efficiency Tc with different detuning

∆/Γ1 and local coupling phases θ. (a2–c2) The change process of conversion efficiency Tc with

different detuning ∆/Γ1 at different phase differences. We set the phase difference ∆φ = 0 in (a1,a2),

∆φ = π/2 in (b1,b2), ∆φ = π in (c1,c2). Other parameters are φ1 = 0, η = 1, γ/Γ1 = 0.

4. Discussion

Firstly, for the arbitrary changes in the parameters in our model simulation, such as
θ1/θ2, g1/g2, and φ1/φ2, we provide the following explanation. On one hand, we believe
that changes in phase and coupling strength are very common in physical models. On
the other hand, in ref. [35], it is mentioned that with superconducting quantum devices,
the local coupling phases θ1 and θ2 can be introduced with Josephson loops threaded by
external fluxes, and the coupling points can be encoded with different local phases. Ref. [33]
has also studied single-photon scattering characteristics by changing the local coupling
phase. From this perspective, the local coupling phase can be changed. In addition, Ref. [34]
showed that when a three-level giant atom is coupled with a one-dimensional waveguide,
g1 and g2 are the coupling strengths of transitions |g ⟩ ↔ |e ⟩ and | f ⟩ ↔ |e ⟩ with the
waveguide modes, respectively. We believe that the coupling strengths g1 and g2 can
change with the transformation of |g ⟩ ↔ |e ⟩ and | f ⟩ ↔ |e ⟩ in real experiments. It is
mentioned in ref. [18] that both φ1 and ∆φ can be tuned within [0, 2π] readily by adjusting
the external parameters such as the voltages and currents or the electric and magnetic fields.

Secondly, we compare our results with previous works. In ref. [33], Chen et al. coupled
two-level giant atoms with one-dimensional waveguides, and they found that the dissipa-
tion rate and local coupling phase have some interesting effects on the transmission rate
and reflection rate of QED systems in giant atomic waveguides. In addition, their study of
the non-trivial single-photon scattering properties of giant atomic waveguide QED systems
provided an excellent platform for achieving nonreciprocal and chiral quantum optics.
In ref. [12], Kockum et al. coupled multiple two-level giant atoms to one-dimensional
waveguides and further showed that setups with giant atoms can be implemented in super-
conducting circuits. They also found that when two braided giant atoms were coupled to a
waveguide, there was a decoherence-free interaction between the atoms. In ref. [34], Du
et al. coupled three-level giant atoms with one-dimensional waveguides to study single-
photon scattering. However, they did not consider the effects of the dissipation rate and the
local coupling phase of the relative scattering rate of the system. In contrast, the scattering
characteristics of three-level giant atoms coupled with one-dimensional waveguides are
studied in more detail in our work, and the limit phenomena of the system are observed
more clearly by drawing extreme value images.

In addition, we would like to make an outlook on our work. Giant atoms are emerging
as a new, interesting field of quantum optics. We learned that excitons are quasi-particles
that can transmit energy through solid materials and exhibit both atomic and solid char-
acteristics. The Rydberg atom, which can lift an electron to a very large orbit, is a kind of
giant atom. In ref. [40], Hu et al. found a Rydberg moiré exciton, which is the counterpart
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of the solid Rydberg atom. Rydberg moiré excitons have similar properties to Rydberg
atoms and are more compatible with modern semiconductor technology. Thus, there is a
certain similarity between giant atoms and excitons. We believe that someday, excitons
may be an appropriate achievement of artificial giant atoms. The limit phenomena studied
in our paper, such as the total reflection and frequency-independent perfect transmission
(FIPT), have potential applications in single-photon quantum communication and quan-
tum information processing [34]. And the giant atomic waveguide QED system may be
able to be used in the following projects: superradiance, ultrastrong coupling, generating
nonclassical light, Matryoshka atoms, and chiral quantum optics [2].

5. Conclusions

We have considered the coupling of a giant Λ-type atom to a waveguide at two sepa-
rate points and investigated the scattering of single photons on this atom. A single input
photon can be transmitted directly through the waveguide and can also be inelastically
scattered when the frequency is switched. In the case of small atoms, ref. [32] has shown
that the scattering behavior of photons is determined only by the ratio of the radiation
decay rates induced by the two waveguides. The results of this work have shown that the
phase factors also affect the elastic and inelastic scattering of single photons in the giant
atom model, where the phase factors are related to the frequency of the two transitions
and the separation between the two coupling points. The presence of these two coupling
points will produce a series of phase-dependent interference effects. The interference effect
affects the scattering behavior by changing the transition frequency and decay rate of the
atom. We found that by adjusting the phase, the giant atoms can exhibit phenomena such
as perfect transmission and total reflection, where, as long as φ2 = φ1 − ∆φ = (2m + 1)π,
total reflection can be observed. More interestingly, when φ1 = (2m + 1)π, the system
achieves frequency-independent perfect transmission (FIPT) no matter how the value of
∆φ changes. And due to the conservation of photon number, the sum of the transmission
rate, reflection rate, and conversion efficiency is always 1 (i.e., T1 + R1 + Tc ≡ 1). When
φ1 = 2mπ and ∆φ = 0, the optimal frequency conversion (Tc = 0.5) occurs at the decay
ratio η = 1. It is the same with small atoms. And when φ1 = 2mπ and ∆φ = π/2, the
optimal frequency conversion (Tc = 0.5) occurs at ∆ = −4Γ1 and η = 2. The phenomenon
shows how giant atoms differ from small atoms. In addition, we found that as the dissipa-
tion rate of giant atoms increases, the transmission rate of a single photon increases and
the reflection rate decreases. The results of this work have potential application value in
single-photon quantum communication and quantum information processing.
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Appendix A

The derivation of t1 from Equation (6) to Equation (7) is as follows

t1 = 1 +
g1eiθ1 ue

ivgeiφ1/2
+

g1eiθ1 ue

ivge−iφ1/2
, (A1)
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ue =
2g1e−iθ1 cos(φ1/2)

∆ + iγ + 2iΓ1

(

1 + eiφ1
)

+ 2iΓ2

(

1 + eiφ2
) , (A2)

We substitute Equation (A2) into Equation (A1), and obtain the following equations

t1 = 1 + g1eiθ1

ivg

(

1
eiφ1/2 +

1
e−iφ1/2

)

ue

= 1 + g1eiθ1 ·2cos(φ1/2)
ivg

ue

= 1 + g1eiθ1 ·2cos(φ1/2)
ivg

(

2g1e−iθ1 cos(φ1/2)

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)

)

= 1 + i·g1eiθ1 ·2cos(φ1/2)
i2vg

(

2g1e−iθ1 cos(φ1/2)

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)

)

= 1 +
−4ig2

1cos2(φ1/2)

vg(∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2))
,

Make Γ1 = g2
1/vg, and it follows from cos2

(

φ1
2

)

= 1+cos(φ1)
2

t1 = 1 + −2iΓ1(1+cos(φ1))

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)

=
∆+iγ−2iΓ1cos(φ1)+2iΓ1eiφ1+2iΓ2(1+eiφ2)

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)

=
∆+iγ−2iΓ1cos(φ1)+2iΓ1[cos(φ1)+isin(φ1)]+2iΓ2(1+eiφ2)

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)

=
∆+iγ−2Γ1sin(φ1)+2iΓ2(1+eiφ2)

∆+iγ+2iΓ1(1+eiφ1)+2iΓ2(1+eiφ2)
.

The derivation of r1, t2 and r2 is analogous.
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