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Abstract: The coupling of three-level giant atoms with one-dimensional waveguides can show
interesting phenomena of transmission and reflection. Since the non-waveguide mode can cause
the dissipation of external atoms, we consider the effect of the dissipation rate on the scattering of
single photons in the system with giant atom-waveguide coupling. We find that as the dissipation
rate of giant atoms increases, the transmission rate of a single photon increases and the reflection
rate decreases. In addition, by varying the phase difference and decay rate, the giant atoms are able
to achieve perfect transmission and total reflection over the entire frequency range. We also find
and show the conditions for the conversion of the optimal frequency. When the cumulative phase of
photons reaches a certain value, the system can achieve perfect transmission, which is independent
of frequency. This model of coupling giant atoms with waveguides has a promising application in
quantum communication and quantum information processing.

Keywords: giant atom; scattering properties; dissipation rate; one-dimensional waveguide; the
total reflection

1. Introduction

A giant atom is an artificial atom that is essentially a superconducting circuit. Similar
to natural atoms, the giant atom can obtain electrons, get excited, and then give off their
energy by emitting light. And the main novelty of the giant atom is that the interference
effects generated by multiple coupling points are not present in the quantum optics of
ordinary small atoms. Since the size of the radius of the natural atom is negligible compared
to the wavelength of the waveguide mode, in general, the natural atom can be regarded as
a point when coupled to the waveguide. However, when superconducting transmission
qubits are designed to interact with surface acoustic waves (SAWSs) through multiple
coupling points, the separation distances of these coupling points can be much greater than
the wavelength of SAWs [1]. So, the “giant atom” theory was mainly developed to describe
this case [2]. Since the first theoretical study in 2014 [3], the giant atom scheme has been
extensively studied by superconducting qubits [4-8], coupled waveguide arrays [9], and
cold atoms [10]. Through the non-local coupling scheme, a series of tantalizing quantum
phenomena have been demonstrated, including frequency-dependent relaxation rates and
Lamb shifts [3,7,11], non-exponential atomic decay [4,5], decoherence-free interatomic
interactions [7,12,13], singular bound states [6,14], and modified topological effects [15].
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Giant atoms have emerged as a new paradigm for quantum optics that could promote a
more complete understanding of physics.

Waveguide quantum electrodynamics (QED) studies the interactions between atoms
and one-dimensional waveguide modes, and it is an important system for studying the
interaction between light and matter. Waveguide QED system can not only be used to
construct remote interaction and engineer large-scale quantum networks [16-20] but can
also be a good platform for manipulating single-photon transmission [21-26]. Typical
methods for implementing waveguide QED systems include quantum dots coupled to
photonic crystal waveguides [27,28], superconducting qubits coupled to transmission
lines [29,30], and ultracold atoms coupled to optical fibers [31,32]. Traditional waveguide
QED mainly studies the interaction between small atoms and waveguides. However, with
the emergence of giant atoms, it has been found that giant atoms can have multiple nodes
coupled with waveguides, resulting in a series of interesting phenomena different from
small atoms, such as multiple reflections and transmission of photons among multiple
coupling points.

In previous works, Chen et al. [33] have reported the coupling of two-level giant atoms
to one-dimensional waveguides, Du et al. [34] have studied the coupling of three-level
giant atoms and one-dimensional waveguides, and ref. [12] has shown that when two
woven giant atoms are coupled with a waveguide, there is decoherence-free interatomic
interaction. In addition, Cai et al. [11] studied the coupling of a giant atom to a one-
dimensional waveguide at multiple points. In this work, the scattering properties of
a single photon, including the total reflection and perfect transmission, are studied by
coupling a giant A-type atom with a waveguide. On the basis of the coupling model of
a single giant atom and a one-dimensional waveguide, we add the dissipative and local
coupling phases to study the scattering characteristics of a single photon and study the
frequency conversion of single photons under the interference of three-level giant atoms.

The structure of this paper is as follows. In Section 2, we introduce the model and
the Hamiltonian and give a strict calculation process. In Section 3, we analyze the model
in detail and give a large number of results on the transmission and reflection of single
photons. In Section 4, we summarize this work and analyze the application prospect of
this work.

2. Model and the Hamiltonian

As shown in Figure 1, we consider a large A-type three-level atom coupled with
a single one-dimensional waveguide at two points. |g) <> |e) and |f) <> |e) are the
two kinds of transformation of the atoms, and the waveguide is coupled through two
coupling points located at x; = —d/2 and xp, = d/2, where |g), |f), and |e) are ground
state, intermediate state, and excited state, respectively. The atom-waveguide coupling
coefficients are g1e® and g,e'®, respectively. The locally coupled phases 6; and 6, and
the coupling intensities g; and g, can produce some interesting interference effects on
the scattering properties, which will be discussed below. We can use superconducting
quantum devices, and the locally coupled phase can be introduced through Josephson rings
of external flux threads [35].

Under rotating wave approximation (RWA), the real-space Hamiltonian of the model
can be written as (h = 1)

H=H,+ H,+ Hy,

Ho = [ axfat (0 (w0 o3 Jau ) + a2 (wn — - Jaw),

Ho = wr|f)(f + (we —i7)[e)(el,

Hi= [ axP(o){gie® [ah(x) +af ()] Ig) ] + 826 [ak () + al ()] If el + e}, M
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where P(x) = 0(x +d/2) + 6(x —d/2), Hy, represents the free Hamiltonian of the waveg-
uide mode, and v, is the group velocity of the photons in the waveguide. In addition, ag |
(a;g 1) are the boson annihilation (production) operators of the right and left photons in the
wa;/eguide, respectively. wy is the frequency of the waveguide [1,36]. H; is the Hamiltonian
of the atom, where wy is the frequency between the ground state |g) and intermediate
state |f) transition, w, is the frequency between the ground state |g¢) and excited state
le) transition. v is the rate of external atomic dissipation due to non-waveguide modes
in the environment. H; describes the interaction between atoms and waveguides, where
the Dirac functions d(x + d/2) and 6(x — d/2) indicate that the atom-waveguide coupling
occurs at x = —d/2 and x = d/2, respectively. In addition, there is an accumulated photon
phase between two coupling points ¢y = kd and ¢, = qd, where k and g are renormalized
wave vectors that satisfy the linearized dispersion relationship, and E = wy + kvg.

” _ > )
elf1 — i0
g‘ : ¢, = kd AN

v ¢2 = qd v

e

-— —

Port 1 Port 2
x=—d/2 x =dJ2

Figure 1. Structure diagram of a three-level giant atom coupled at x = —d/2 and x = d/2, with

separate local coupling phases 6; and 6, and coupling intensities g; and g». The blue one-way arrows
indicate that the photons may be transmitted or reflected when it is incident from the left.

Due to the conservation of the total excitation number in RWA, the eigenstates of the
system can be represented as

=T [ ax[Re)ak(0)10,0) + Lo(x)al () 0.0)] +weloe), @
a=g,

where Ry (x) [Ly(x)] is in the position of x waveguide to create the probability amplitude
of the right-moving (left-moving) photons, and the atoms are in the state |« ) eventually.
In addition, u, is the probability amplitude of excited atoms. By solving the Schr?dinger
equation H i) = E |¢), we can obtain the following probability amplitude equation:

.0 0
ERq(x) = (wo - zvgax)Rg(x) + 916" P(x) e

+ Le(x)] + 82672 Rp(x) + Ly(x)],  3)
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We first assume that the wave vector k(k > 0) of a single photon from the left of the
waveguide, and the atom is initialized in the ground state |g). The wave function can be
written as

Ry(x) = Eikx{@)(—x— g) +A[@(x+ ‘21) —®<x— ‘21)] +t1@(x— g) }
co-efooo- ) offend)-o(s-9)
i =eo{uffo+ ) (-] -9}
Ly(x) = eiqx{rz@<x _ ‘21) +N[@<x+ g) - @(x _ g)} } @)

where g = k — wy/vg, and O(x) is the Heaviside step function. In addition, A and B (M
and N) are the probability amplitudes of a right-moving photon and a left-moving photon
in the x; < x < x; region, respectively. Finally, the atoms are in the state |g) (|f)). For
cases where the frequency is fixed (i.e., the final state of the atom is |g)), we define t;
and r; as the transmission and reflection amplitudes of the input photons, respectively.
For frequency conversion conditions (i.e., the final state of the atom is |f)), we define
ty and ry as the conversion amplitudes of the output photons of the wave vectors g and
—q, respectively.
We substitute Equation (4) into Equation (3) and obtain the following equations:

0= —ivg(A— 1)e /2 1 g ey,

0= —ivg(t — A)eikd/2 + gleiel Up
0= —ivg(r; — B)eikd/2 +glei91ue

—ikd/2 | gle’glug

0 = —ivgBe
0= —ivgMe 11/2 1 gre'®2yy,
0= —ivg(tr — M)eiqd/2 + gzeigzue
0 = —ivg(rp — N)e/2 4 gre'®2y,
0 = —ivgNe 11/2 4 greff2yy,
0=23le [(A +B+1)e * /24 (A+ B+t + rl)eikd/z} +
Ge (M + N)e /2 4 (M + N + by +r2)e#/2] — (A +i7)ue,

Next, we simplify the equations above and obtain

eielu
A=14818 T
+ iv e~ i1/2
I3
o1 e et

ivgelP /2~ jve=idr/2

g1eue  g1e®u,
r = : :
! ivgelP1/2 ~ jv e=id1/2

91 ei91 Ue

B = 5
. . /2
ivge~'h1
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 ivge i92/2
t _ gzelezue gzelezue
2 ivgeif2/2  jvge=id2/2
L 82 goe®u,
2 ivgeif2/2 ~ jy e~id2/2
. 22021,
" ivgei92/2
8
2g1e 1cos (1 /2) ©)

ue:A+47+2ﬂul+é%)+2Jﬂ1+é%y

where A = E — w, is the frequency detuning between the incident photon and the frequency
of the atomic transition ( [g) <> |e)). Then, by solving Equation (6), the transmission
amplitude can be obtained as (see Appendix A for more details)

A+ iy — 2[singy + 2i5 (1 + ¢'2)

— , , 7
A+ iy 4 2017 (1 + eiP) + 2i15 (1 + ei2)” @)

5]

where ¢; = kd and ¢, = gd are the accumulated phase of photons transmitted between
the two coupled points by the wave vectors k and g, respectively. Here, I7 = g7/vg
(I =g3/ vg) is the radiative decay rate from the excited state |e) to a lower-energy state
|g) (|f)) contributed from each atom—waveguide coupling point [34]. When d = 0, the
transmission amplitude in Equation (6) can be simplified as

A+ iy — 2I7singy

= . 8
VT AT iy + 4l + 4D ®

It restores the energy of a small A-type atom [37]. Because there are two coupling
points, the radiation decay rate here is quadrupled. In addition, the transmission ampli-

tude becomes ) )
A+iy+4ilp

T Atiy 2 (14+en)
In the case of I; = 0 (i.e., g2 = 0), this is exactly the same as a giant two-level atom [38].
Similarly, we can obtain the other scattering amplitudes

)

5]

_ —il7 (2cos(¢1/2))?
ne A+ iy + 2011 (1 + ei1) + 2i15 (1 + €'92) (10a)
b= 1y = —iy/T112(2cos(¢1/2))(2cos(¢p /2))e™ ™ (10b)

T Aty 42l (14 ) 4200 (1 + e92)
where 0 = 6; — 0, is the phase difference between the two atomic waveguide coupling
channels. Similarly, when d = 0 and I; = 0, the amplitude in Equations (10a,b) can
be reduced to the amplitude of the small A atom and that of the large two-level atom,
respectively. Obviously, photon number is conserved (i.e., |t1]* + |r1|* + |t2|* + |r2]* = 1),
and the model has internal symmetry (i.e., |t2|* = |r2]%). Now, we define Ty = |t;|*> and
Ri=|n |2, where T7 and R are the transmission rate and reflection rate, respectively, and
the conversion efficiency is Te = |t2|* + |r2|*

3. Result Analysis

We first investigate the dependence of the scattering probabilities on ¢; and
A¢p = ¢1 — ¢, both of which can be adjusted experimentally. Figure 2 is a three-dimensional
plot of the scattering probability with detuning A and phase difference A¢. In Figure 2,
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we can see that the position and minimum (maximum) of Tj (R; and T;) with A¢ vary
periodically with a period of 271. We find that the transmission rate T varies periodically
with A¢, and the period is just 277. Similarly, the reflection rate Ry and the conversion
efficiency T; also have these properties.

T1 R1
(a)4 (b)4 (c)4 !1
E >$<
<2 2 2 10.5
e & "
0 : 0 0 0
-10 0 10 -10 0 10 -10 0 10
(d)4 (e)4 (f)4 1
E E, a :
<2 2 2 ;
3 /:
0 — 0 0 0
-10 0 10 -10 0 10 -10 0 10
A/I‘1 A/I‘1 AIT

1

Figure 2. The effect of phase on the transmission rate T, reflection rate Ry, and conversion efficiency
T, with different detuning A /I and phase difference A¢. (a,d) The transmission rate Ty, (b,e) the
reflection rate Ry, (c,f) conversion efficiency T.. We set the phase ¢; = 0in (a—) and ¢; = /2 in
(d—f). Other parametersarey = 1,v/I7 =0,6 = 0.

In Figure 2a, we find that the minimum value of Ty occurs at A = 0 (i.e., T1 (A = 0) = 0)
when ¢ = 0 and A¢ = 7 or 37. In addition, for a fixed value A¢, as the value of |A/I7 ]|
increases, the value of the transmission rate T; increases.

In Figure 2b, the maximum point of Ry occurs at A = 0 and A¢ = 7 or 377, where
Ri(A = 0) = 1. Different from the transmission rate Tj, the reflection rate Ry gradually
decreases with an increase in |[A/I}| at a given value of A¢. In Figure 2¢, we find that
the conversion efficiency T, = 0, which is regardless of the change in the value of A/}
when ¢; = 0 andA¢ = 7 or 371. Additionally, when T, (A = 0) = 0.5, this case also occurs
at A¢ = 0 or 27r. Comparing Figure 2a—c, we find that the total reflection is achieved at
A = 0when ¢y = 0 and A¢ = 7 or 37r. Similarly, when the phase ¢, increases to 7r/2 and
A¢ = 37/2 or 571/2, as shown in Figure 2df, the total reflection point deviates, occurring
at A = 2I7. In fact, we find that the reflection rate, transmission rate, and conversion
efficiency all change with a period of 27 at different phases.

To more intuitively observe the transmission rate T7, reflection rate Ry, and conversion
efficiency T, we plot the variation trends of these values with detuning A and we choose
the phase difference A¢ = 0, t/2, 7r,37t/2 (see Figure 3).

Figure 3a shows the transmission rate with detuning A at phase ¢; = 0. Obviously,
the transmission rate curve is convex downward. The minimum value of the transmission
rate occurs at A = 0 and A¢ = 7, which is 0. Figure 3b,c show the values of the reflection
rate and conversion efficiency curves with detuning A for phase ¢; = 0, respectively. In
contrast, in Figure 3a—c, we find T; (A = 0) = 0, R;(A =0) =1, and T, (A = 0) = 0 when
¢1 = 2mm and A¢ = . These results show that total reflection occurs. In this case, the
transition of |g) <> |e) is completely suppressed due to the destructive interference of
the two corresponding decay channels, i.e., I3[1 4+ exp(i¢p)] = 0. Thus, the model can
be reduced to the two-level atom coupled with the one-dimensional waveguide, where
the resonant incident photon is fully reflected. For ¢; = (2m + 1/2), the total reflection
condition is A¢p = 371/2, A = 2I73, as shown in Figure 3d—f.
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Figure 3. The changing process of transmission rate Tj, reflection rate Ry, and conversion efficiency
T, with different detuning A /I7 at different phases. (a,d) The transmission rate Ty, (b,e) the reflection
rate Ry, (¢,f) the conversion efficiency T.. We set the phase ¢; = 0 in (a—c) and ¢; = 71/2 in (d—f).
Other parametersarey =1,y/I71 =0,0 = 0.

In fact, as long as ¢ = ¢ — A¢p = (2m + 1)71, we can observe the total reflection.
More interestingly, when ¢; = (2m + 1)7, no matter how the value of A¢ changes, the
system achieves frequency-independent perfect transmission (FIPT), i.e., T;(A) = 1 and
R1(A) = T, (A) = 0. In addition, based on the pink dotted curves in Figure 3c,f, we can see
that no matter how the value of A¢ changes, T; + R; + T; = 1. This phenomenon actually
comes from the conservation of the number of photons in the system.

We further change the phase difference [A¢ € [0,277)] and investigate the change in
the transmission rate T7, reflection rate Ry, and conversion efficiency T, with the change in
A¢ (see Figure 4).

In Figure 4a, we find that when ¢; = 0 and A¢ = 7, the minimum value of the
transmission rate T; is 0, the maximum value of the reflection rate R; is 1, and the maximum
value of the conversion efficiency T is 0. The results indicate that the system achieves total
reflection. When the phase ¢, increases to 71/2 [see Figure 4b], the total reflection occurs at
A¢p = 371t/2. With ¢ increasing to 7t [see Figure 4c], the minimum value of the transmission
rate Tp is 1, the maximum value of the reflection rate R; is 0, and the maximum value of
the conversion efficiency T¢ is 0. They do not change with A¢. And we find that when
¢1 = (2m + 1), the transmission rate of the system is always 1 and the reflection rate is
always 0. This shows that the incident photon is completely transmitted and the system
achieves perfect transmission, which is independent of frequency (FIPT). In Figure 4d,
when ¢ = 37/2 and A¢ = 71/2, the minimum value of the transmission rate T is 0, the
maximum value of the reflection rate Ry is 1, and the maximum value of the conversion
efficiency T is 0. Total reflection occurs at A¢ = 37/2.

Previous studies have shown that in the case of small atoms, the scattering probability
is completely determined by the decay ratio 7 = I,/ I3 [37,39]. However, in the case of giant
atoms, the scattering probability is not only determined by the decay ratio 7 = I /I3 butis
also dependent on phase. Therefore, we will continue to plot the scattering probability with
respect to the decay ratio # = I, /I and the phase difference Ap = ¢1 — ¢ (see Figure 5).

Figure 5 depicts the scattering probability as a function of detuning A and decay
rate . In Figure 5a, we find that when A¢ = 0 and # = 0, the minimum point of the
transmission rate occurs at A = 0 (i.e., Ty (A = 0) = 0). In addition, when 7 is a fixed value,
the transmission rate T; increases with an increase in |A/I7|. In Figure 5b, the maximum of
the reflection rate occurs at A = 0 and 7 = 0. At this time, the system has R;(A =0) = 1.
Different from the transmission rate Tj, the reflection rate R; decreases with an increase in
|A/I7| when 7 is fixed. In Figure 5c, we find that the best frequency transition (T, = 0.5)
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occurs at A = 0 and 7 = 1. The phenomenon is the same as that of the small atoms. In
addition, with an increase in |A/I7|, the conversion efficiency T. decreases gradually.

—min(T,)
_..max(R‘)

— max(TC)

0 7.'/2 T 3n/2 27 0 w2 T 3n/2 27

—min(T1)

—-‘max(R1)

Figure 4. The effect of phase on the extreme values of transmission rate T}, reflection rate Ry, and
conversion efficiency T, with different phase differences A¢. (a) The phase is set to be ¢ = 0,
(b) p1 = /2, (c) 1 = m, and (d) ¢; = 371/2. Other parametersareny =1,y/I71 =0,0 = 0.

(&) pgrgmm ()¢ (0)4 1
=2 2 2 los
- "
910‘ 0 J']() (-)10 (-)10 0 10 ¢
(d)* dgrznse I1
=2 \ 10.5
"
(-)10L 0 10 ¢
1
I
i

0 10
A/l‘1

Figure 5. The effect of phase difference on the transmission rate T1, reflection rate Ry, and conver-
sion efficiency T, with different detuning A/I7 and decay rate 7. (a,d,g) The transmission rate Tt
(b,e,h) the reflection rate Ry, (¢, f,i) the conversion efficiency T,. We set the phase difference A¢ = 0 in
(a—c), Ap = 11/2 in (d-f), and A¢p = 7 in (g—i). Other parameters are ¢, =0, y/I1 = 0,6 = 0.

When the phase difference A¢ increases to 77/2, the minimum of the transmission rate
occurs at A = 0 and # = 0 [see Figure 5d], and the value is 0. In addition, the transmission
rate T7 increases with an increase in |A/I7|. In Figure 5e, we find that the maximum of the
reflection rate (i.e., R = 1) also occurs at A = 0 and 17 = 0. As in the case of A¢ = 0, the
minimum value of the transmission rate and maximum value of the reflection rate of the
system occur at A = 0 and # = 0. The difference is that the optimal frequency conversion
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of the system has deviated. The best transition of the frequency occurs at A = —4I7 and
n = 2 [see Figure 5f].

When A¢ = 7 [see Figure 5g—i], we find that the transmission rate T}, reflection rate
R1, and conversion efficiency T, are independent of #. This phenomenon indicates that the
frequency conversion is completely suppressed.

In order to more intuitively observe the variation trends of the transmission rate Ty,
reflection rate Ry, and conversion efficiency T, with respect to detuning A and decay rate 7,
we set 77 to 0, 1, 2, and 3, respectively, and draw Figure 6.

0 0
-10 0 10 -10 0 10 -10 0 10

AT, AT, A/I’1

Figure 6. The changing process of transmission rate Ty, reflection rate Ry, and conversion efficiency
T, with different detuning A /I at different phase differences. (a,d,g) The transmission rate T, (b,e h)
the reflection rate Ry, (¢ f,i) the conversion efficiency T.. We set the phase difference A¢ = 0 in (a—c),
A¢ = /2 in (d—f), and A¢ = 7 in (g-i). Other parameters are ¢; =0,/I7 =0,6 = 0.

Figure 6 shows the curves of scattering rate with detuning A at different phase dif-
ferences A¢. In Figure 6a, the minimum value of the transmission rate occurs at A = 0
and # = 0, which is 0. Figure 6b,c show the variation trend of the reflection rate and
conversion efficiency with detuning A at phase difference A¢ = 0, respectively. In Figure 6c,
we find that the optimal transition frequency of the system occurs at A = Oand 7 =1
(dashed green lines). In contrast, in Figure 6a—c, when the A¢ = 0 and # = 0, we found that
T1(A=0)=0,Ri(A=0)=1,T.(A =0) = 0. The results show that total reflection occurs.

Figure 6d—f show the curves of scattering rate with detuning A at different phase
differences A¢p. When A¢p = 71/2, the minimum system transmission rate (17 = 0) appears
at A = 0 and 7 = 0 [see solid blue line in Figure 6d]. In Figure 6e, we find that the
maximum value of the system reflection rate (R; = 1) also occurs at A = 0 and r = 0.
This phenomenon shows that the total reflection of the system occurs under the conditions
A = 0and y = 0 when A¢ = 7t/2. However, unlike those in the case of A¢ = 0, the optimal
frequency conversion of the system occurs at A = —4I7 and 57 = 2 [see red dashed line in
Figure 6f]. In addition, based on the pink dotted curves in Figure 6¢ f,i, we can see that no
matter how the value of A¢ changes, T; + Ry + T, = 1.
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In fact, the best frequency conversion (T, = 0.5) occurs at A = 0 and # = 1 when
¢1 = 2mm and A¢ = 0 [see Figure 6a—c]. It is the same as the behaviors of small atoms. With
an increase in |A /I |, the conversion efficiency T, decreases gradually. When ¢; = 2m and
A¢ = 7 [see Figure 6g—i], the frequency conversion is completely suppressed. The incoming
photons of the system are completely reflected. In this case, all scattering probabilities are
independent of . When ¢ = 2m7m and A¢ = /2 (see Figure 6d—f), the best frequency
conversion (T, = 0.5) appears in the A = —4I7 and n = 2.

We further change the decay ratio and study the changes of transmission rate Tj,
reflection rate Ry, and conversion efficiency T, with 5 values changing [see Figure 7]. In
Figure 7a, we find that the minimum of the transmission rate T7 is monotonically increasing
when ¢; = 0 and A¢ = 0. Its minimum value occurs at 7 = 0, which is 0. The maximum
value of the reflection rate R; and the maximum value of the conversion efficiency T, are
monotone decreasing curves. Both of the maximums occur at 7 = 0 and the values are 1.
However, when the phase difference A¢ increases to /2 [see Figure 7b], the minimum of
the transmission rate T; has a constant value of 0 no matter how the value of # changes.
The maximum value of the reflection rate R; is a monotone decline curve, and its maximum
value occurs at # = 0, which is 1.

s ap=0 U .r ¥z 74
s W (a) S (b) =)
E Ny Y]
E_05f N ~« 0.5~ = 2 _ jrm—
b e
]_~ T i s -~ -_— T te ) - max(T,)
1 e —— 0
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LI e 18 40 =
s | ap=n (©) o= anes (d)] lmmmerry
=_05 S
l_E max(T )
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Figure 7. The effect of phase difference on the extreme values of transmission rate Ty, reflection rate
R1, and conversion efficiency T, with different decay rates 5. (a) The phase difference is set to be
Ap =0, (b) Ap = /2, (c) A¢p = 7, and (d) A¢ = 37/2. Other parameters are ¢1 = 0, v/I7 =0,
0 =0.

When A¢ continues to increase to 7 [see Figure 7c], the minimum of the transmission
rate T is always 0. The maximum value of the reflection rate R; is always 1. And the
maximum value of the conversion efficiency T¢ is always 0, i.e., (T;),,., = 0. They do not
change with a change in 7, and the system shows the total reflection phenomenon, which
is independent of the value of 7. In Figure 7d, (T}),,;,, is monotonically increasing when
¢1 = 0and Ap = 37/2. There is a minimum value (T1),,;, occurring at 7 = 0. (Rq),.x
and (T¢) . are monotone decreasing curves, and the curves reach their maximum value
aty = 0, whichis 1.

We plot the scattering probability with detuning A and dissipation rate  for phase
¢1 = 0 and decay rate 7 = 1. In Figure 8a, we find that there is a minimum value of
transmission rate, which occurs at v = 0 and A = 0. In addition, for the fixed value of
7, the transmission rate Tj increases with an increase in the value of |A/I;|. In Figure 8b,
the maximum of the reflection rate occurs at A = 0 and v = 0. Different from the
transmission rate Tj, the reflection rate Ry decreases with an increase in |A/I7| when 7y
is fixed. In Figure 8c, we find that the optimal frequency conversion (T, = 0.5) occurs at
A = 0 and v = 0. In addition, with an increase in |A/I7]|, the conversion efficiency T,
decreases gradually.
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Figure 8. The effect of phase difference on the transmission rate T7, reflection rate R1, and conversion
efficiency T. with different detuning A/I7 and dissipation rate . (a,d,g) The transmission rate Tq,
(b,e/h) the reflection rate Ry, (¢ f,i) the conversion efficiency T.. We set the phase difference A¢ = 0in
(a—c), Ap = 1t/2 in (d—f), and A¢p = 7t in (g-i). Other parametersare ¢; =0,y = 1,6 = 0.

When the phase difference A¢ increases to 7r/2, the minimum of the transmission
rate occurs at A = —2I7 and v = 0 [see Figure 8d]. Compared with Figure 8a, we find
that the minimum of transmission rate decreases with an increase in phase difference.
However, when v is the fixed value, the transmission rate T; still increases with an increase
in |A/I|. Correspondingly, the maximum reflection rate increases with an increase in

phase difference, and the maximum occurs at A = —2I7 and ¢ = 0 [see Figure 8e]. At
this time, the system does not have an optimal frequency conversion, i.e., T < 0.5 [see
Figure 8f].

When A¢ = 7, we find that the transmission rate T; obtains a minimum value of 0 at
A = 0and v = 0 [see Figure 8g]. The reflection rate R; obtains a maximum value of 1 at
A = 0and y = 0 [see Figure 8h]. And the conversion efficiency T, is independent of 7y and
A, and its value is always 0 [see Figure 8i]. This phenomenon indicates that the photons are
completely reflected in the system.

In order to more intuitively observe the transmission rate T3, reflection rate Ry, and
conversion efficiency T, with respect to detuning A and dissipation rate vy, we take <y as
0,10,20,30 and draw Figure 9.

In Figure 9a, we find that the minimum transmission rate for phase difference A¢p = 0
occurs at A = 0 and y = 0, which is 0.25. The minimum transmission rate increases with
an increase in dissipation. Figure 9b,c show the reflection rate and conversion efficiency
with detuning A at phase difference A¢ = 0, respectively. In Figure 9b, the maximum
reflection rate occurs at A = 0 and ¢ = 0, which is 0.25. Unlike the transmission rate, the
maximum reflection rate decreases with an increase in dissipation. In Figure 9¢c, we find
that the system has an optimal frequency transition, and the optimal frequency transition
occurs at A = 0 and v = 0 (solid blue line).
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Figure 9. The change process of transmission rate Ty, reflection rate Ry, and conversion efficiency T,
with different detuning A /I at different phase differences. (a,d,g) The transmission rate Ty, (b,e/h)
the reflection rate Ry, (¢ f,i) the conversion efficiency T.. We set the phase difference A¢ = 0 in (a—c),
A¢p = /2 in (d—f), and A¢ = 7 in (g-i). Other parametersare p; =0,y =1,6 = 0.

Figure 9d—f show the scattering rate with detuning A at phase difference A¢ = /2.
At this time, the minimum of the transmission rate occurs at A = —2I7 and v = 0, and its
value is 0.1111 [see the blue solid line in Figure 9d]. In Figure 9e, we find that the maximum
of the reflection rate also occurs at A = —2I7 and v = 0, which is 0.4444. These indicate that
there is no total reflection in the system when A¢ = 7r/2. And unlike the case of A¢ =0,
there is no optimal frequency conversion, i.e., T < 0.5 [see Figure 9f].

Figure 9g-i show the scattering rate with detuning A at phase difference A¢ = 7.
At this time, the minimum of the transmission rate appears at A = 0 and v = 0, and its
value is 0 [see the blue solid line in Figure 9g]. In Figure 9h, we find that the maximum
of the reflection rate also occurs at A = 0 and v = 0, which is 1. These show that the total
reflection occurs when A¢ = 7, and the conditions for the total reflection are A = 0 and
v = 0. At this time, there is no optimal frequency conversion in the system [see Figure 9f].

In fact, the optimal frequency conversion (T, = 0.5) occurs at A = 0 and y = 0 when
¢1 = 2mm and A = 0. This phenomenon shows that when there is no atomic dissipation
in the system, the system can achieve the optimal transmission rate of photons, which
is 0.25. With an increase in dissipation, the number of transmitted photons decreases.
When ¢; = (2m + 1) and A¢ = 7, if there is no dissipation, the incident photon can be
completely reflected and the photon cannot pass through the system.

We further change the dissipation rate and study the extreme values of transmission
rate Tq, reflection rate Ry, and conversion efficiency T, as 7y changes [see Figure 10]. In
Figure 10a, we find that the minimum of the transmission rate T; is monotonically increas-
ing when ¢; = 0 and A¢ = 0. Its minimum value occurs at v = 0, which is 0.25. The
maximum of reflection rate Ry is the monotone decline curve, and its maximum value
occurs at v = 0, which is 0.25. The maximum of conversion rate T, is the monotone decline
curve with the maximum value of 0.5 at y = 0. At this time, the system has the optimal
frequency conversion. When the phase difference A¢ increases to 71/2 [see Figure 10b], the
minimum transmission rate T is a monotonically increasing curve. Its minimum value
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occurs at y = 0, which is 0.1111. The maximum of reflection rate R; is a monotonically
declining curve, and its maximum value occurs at v = 0, which is 0.4444. The maximum of
conversion rate T, is a monotonically declining curve, and its maximum value occurs at
v = 0, which is 0.4444 < 0.5. There is no optimal frequency conversion in the system.

a1

S( ) A¢ =0 —min(T,)
@
E

tc 0 5 _-max(Rx)
E

.4___. - - max(T )

0- LT S —— 0- r T T el
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Figure 10. The effect of phase difference on the extreme values of transmission rate Ty, reflection rate
R1, and conversion efficiency T, with different dissipation rates <. (a) The phase difference is set to be
Ap =0, (b) Ap = /2, (c) Ap = 7, and (d) A¢p = 377/2. Other parametersarep; = 0,77 = 1,6 = 0.

When A¢ continues to increase to 7t [see Figure 10c], the minimum of the transmission
rate T7 appears at y = 0, which is 0. The maximum of the reflection rate Ry appearsaty =0,
and its value is 1. The maximum of the conversion rate T. is always 0, i.e., (T;) . = 0. At
this time, the system has the total reflection at y = 0. Figure 10d shows the variation in the
extreme values of the transmission rate T, reflection rate Ry, and conversion efficiency T,
with y at A¢ = 37r/2. In Figure 10d, we can see that the extreme values of the transmission
rate T, reflection rate R;, and conversion efficiency T are the same as those of the case of
Ap =m/2.

According to Equations (7) and (10), the transmission rate T; and reflection rate R;
are independent of the local coupling phase 6. Therefore, the effects of the locally coupled
phase 6 on the transmission rate and reflection rate are not discussed here. We analyze
the changes in the conversion efficiency T, with respect to detuning A and locally coupled
phase 6 [see Figure 11(al—cl)]. In Figure 11(al), there is a maximum transmission rate
when A = 0. The value of the maximum is 0. In Figure 11(b1), the reflection rate obtains a
maximum of 0.4444 at A = —2I7 no matter how the value of 0 changes. In Figure 11(c1),
the conversion efficiency T is always 0 regardless of the value of 6.

Figure 11(a2—2) shows the conversion efficiency T, with respect to detuning A when
A¢ is 0, 71/2, 7T, respectively. Obviously, the conversion efficiency T, is independent of
the local coupling phase no matter how A¢ varies [see Figure 11(a2—c2)]. When A¢ = 0,
conversion efficiency T, obtains a maximum value of 0.5 at A = 0 [see Figure 11(a2)].
When A¢ = 71/2, conversion efficiency T, obtains a maximum value of 0.4444 at A = —2I7
[see Figure 11(b2)]. When A¢ = 7, the conversion efficiency is always 0, i.e., T, = 0 [see
Figure 11(c2)].
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Figure 11. (al—c1) The effect of phase difference on conversion efficiency T. with different detuning
A/I7 and local coupling phases 6. (a2—c2) The change process of conversion efficiency T, with
different detuning A/I7 at different phase differences. We set the phase difference A¢ = 0in (al,a2),
A¢ = /2 in (b1,b2), Ap = 7 in (c1,c2). Other parametersare p; = 0,7 =1, /17 =0.

4. Discussion

Firstly, for the arbitrary changes in the parameters in our model simulation, such as
01/02, g1/ g2, and ¢1/ ¢, we provide the following explanation. On one hand, we believe
that changes in phase and coupling strength are very common in physical models. On
the other hand, in ref. [35], it is mentioned that with superconducting quantum devices,
the local coupling phases 8; and 6, can be introduced with Josephson loops threaded by
external fluxes, and the coupling points can be encoded with different local phases. Ref. [33]
has also studied single-photon scattering characteristics by changing the local coupling
phase. From this perspective, the local coupling phase can be changed. In addition, Ref. [34]
showed that when a three-level giant atom is coupled with a one-dimensional waveguide,
g1 and g are the coupling strengths of transitions |¢) <> |e) and |f) <> |e) with the
waveguide modes, respectively. We believe that the coupling strengths g; and g, can
change with the transformation of |g) <> |e) and |f) <> |e) in real experiments. It is
mentioned in ref. [18] that both ¢; and A¢ can be tuned within [0, 277] readily by adjusting
the external parameters such as the voltages and currents or the electric and magnetic fields.

Secondly, we compare our results with previous works. In ref. [33], Chen et al. coupled
two-level giant atoms with one-dimensional waveguides, and they found that the dissipa-
tion rate and local coupling phase have some interesting effects on the transmission rate
and reflection rate of QED systems in giant atomic waveguides. In addition, their study of
the non-trivial single-photon scattering properties of giant atomic waveguide QED systems
provided an excellent platform for achieving nonreciprocal and chiral quantum optics.
In ref. [12], Kockum et al. coupled multiple two-level giant atoms to one-dimensional
waveguides and further showed that setups with giant atoms can be implemented in super-
conducting circuits. They also found that when two braided giant atoms were coupled to a
waveguide, there was a decoherence-free interaction between the atoms. In ref. [34], Du
et al. coupled three-level giant atoms with one-dimensional waveguides to study single-
photon scattering. However, they did not consider the effects of the dissipation rate and the
local coupling phase of the relative scattering rate of the system. In contrast, the scattering
characteristics of three-level giant atoms coupled with one-dimensional waveguides are
studied in more detail in our work, and the limit phenomena of the system are observed
more clearly by drawing extreme value images.

In addition, we would like to make an outlook on our work. Giant atoms are emerging
as a new, interesting field of quantum optics. We learned that excitons are quasi-particles
that can transmit energy through solid materials and exhibit both atomic and solid char-
acteristics. The Rydberg atom, which can lift an electron to a very large orbit, is a kind of
giant atom. In ref. [40], Hu et al. found a Rydberg moiré exciton, which is the counterpart
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of the solid Rydberg atom. Rydberg moiré excitons have similar properties to Rydberg
atoms and are more compatible with modern semiconductor technology. Thus, there is a
certain similarity between giant atoms and excitons. We believe that someday, excitons
may be an appropriate achievement of artificial giant atoms. The limit phenomena studied
in our paper, such as the total reflection and frequency-independent perfect transmission
(FIPT), have potential applications in single-photon quantum communication and quan-
tum information processing [34]. And the giant atomic waveguide QED system may be
able to be used in the following projects: superradiance, ultrastrong coupling, generating
nonclassical light, Matryoshka atoms, and chiral quantum optics [2].

5. Conclusions

We have considered the coupling of a giant A-type atom to a waveguide at two sepa-
rate points and investigated the scattering of single photons on this atom. A single input
photon can be transmitted directly through the waveguide and can also be inelastically
scattered when the frequency is switched. In the case of small atoms, ref. [32] has shown
that the scattering behavior of photons is determined only by the ratio of the radiation
decay rates induced by the two waveguides. The results of this work have shown that the
phase factors also affect the elastic and inelastic scattering of single photons in the giant
atom model, where the phase factors are related to the frequency of the two transitions
and the separation between the two coupling points. The presence of these two coupling
points will produce a series of phase-dependent interference effects. The interference effect
affects the scattering behavior by changing the transition frequency and decay rate of the
atom. We found that by adjusting the phase, the giant atoms can exhibit phenomena such
as perfect transmission and total reflection, where, as long as ¢» = ¢ — Ap = 2m + 1),
total reflection can be observed. More interestingly, when ¢ = (2m + 1), the system
achieves frequency-independent perfect transmission (FIPT) no matter how the value of
A¢ changes. And due to the conservation of photon number, the sum of the transmission
rate, reflection rate, and conversion efficiency is always 1 (i.e.,, T; + Ry 4+ Tc = 1). When
¢$1 = 2mm and A¢ = 0, the optimal frequency conversion (T; = 0.5) occurs at the decay
ratio 7 = 1. It is the same with small atoms. And when ¢; = 2mm and Ap = 7t/2, the
optimal frequency conversion (T, = 0.5) occurs at A = —4I7 and 17 = 2. The phenomenon
shows how giant atoms differ from small atoms. In addition, we found that as the dissipa-
tion rate of giant atoms increases, the transmission rate of a single photon increases and
the reflection rate decreases. The results of this work have potential application value in
single-photon quantum communication and quantum information processing.
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Appendix A
The derivation of #; from Equation (6) to Equation (7) is as follows

g1eu, g1,
ivgelf1/2  jyee=itr/2’

=1+ (A1)
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We substitute Equation (A2) into Equation (A1), and obtain the following equations
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The derivation of 71, t; and r, is analogous.
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