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Abstract: Kaon condensation in hyperon-mixed matter [(Y+K) phase], which may be

realized in neutron stars, is discussed on the basis of chiral symmetry. With the use of the

effective chiral Lagrangian for kaon–baryon and kaon–kaon interactions; coupled with the

relativistic mean field theory and universal three-baryon repulsive interaction, we clarify

the effects of the s-wave kaon–baryon scalar interaction simulated by the kaon–baryon

sigma terms and vector interaction (Tomozawa–Weinberg term) on kaon properties in

hyperon-mixed matter, the onset density of kaon condensation, and the equation of state

with the (Y+K) phase. In particular, the quark condensates in the (Y+K) phase are obtained,

and their relevance to chiral symmetry restoration is discussed.

Keywords: meson condensation; chiral symmetry; quark condensates; hyperon mixing;

universal three-baryon repulsion

1. Introduction

The possible existence of meson condensation (MC) in dense and hot hadronic matter

has been extensively considered from the viewpoints of particle physics, nuclear physics,

astrophysics, and condensed matter physics. Much attention has been paid mainly to pion

condensation [1–6] and kaon condensation [7–20]. Meson condensation is characterized

as the macroscopic realization of the Nambu–Goldstone (NG) bosons (specifically pions

and kaons) in a strongly interacting system of bosons and baryonic matter. Therefore, the

meson–baryon dynamics associated with underlying chiral symmetry and its spontaneous

or explicit symmetry breaking play an important role in revealing the properties of the

meson-condensed state. In this respect, the meson-condensed system offers a remarkable

contrast to usual condensed matter systems like dilute Bose gases, where formation of the

Bose–Einstein condensation (BEC) occurs as a result of a competition between thermal

fluctuation and quantum statistics.

In relation to the thermal evolution of neutron stars, it has been suggested that extraor-

dinary rapid cooling processes through neutrino emissions may become possible in the

presence of MC [for example, refs. [11,21] for pion condensation (PC) and refs. [8,22–24]

for kaon condensation (KC)]. The relevant weak reactions can be described in a unified

way together with meson (M)–baryon (B) dynamics on the basis of chiral symmetry.

Along with the development of strangeness nuclear physics involving kaons, φ mesons,

and hyperons, a possible existence of KC has been suggested as a novel hadronic phase

with multi-strangeness [7]. It has been shown that the s-wave KC is formulated model-

independently with a framework of current algebra and the partial conservation of axial-

vector current (PCAC) [8] in the context of both the EOS and weak reactions. Subsequently, a
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coexistent phase of KC and hyperon (Y)-mixed matter [(Y+K) phase] has been considered in

the relativistic mean field (RMF) theory [25–27], in the effective chiral Lagrangian for kaon

(K)–baryon (B) interaction [28–30], density-dependent RMF theory [31–33], and an effective

chiral Lagrangian coupled to the RMF and three-baryon repulsion [34–36]. The driving

force of kaon condensation is brought about by both the s-wave K-nucleon (N) scalar

interaction simulated by the KN sigma term ΣKN and the s-wave K–N vector interaction

corresponding to the Tomozawa–Weinberg term. ΣKN not only specifies the scale of explicit

breaking of chiral symmetry, but also is related with the q̄q quark contents in the nucleon.

The onset density of KC, ρB(K
−), has been estimated to be ρB(K

−) = (3–4) ρ0 with the

nuclear saturation density ρ0 (=0.16 fm−3), depending on the value of ΣKN . Beyond the

onset density, the kaon-condensed phase in hadronic matter develops, accompanying the

softening of the equation of state (EOS) at high densities, and it is eventually considered

to move to a chiral-restored phase. Thus, the KC may be regarded as a pathway from

hadronic matter to strange quark matter and may affect properties of the q̄q condensate in

dense matter, which is an order parameter of chiral restoration.

In this paper, we clarify the roles of the quark (q̄q) contents in the baryon and quark

condensates in the (Y+K) phase comprehensively in the context of chiral symmetry and

its spontaneous and explicit breaking. First, we reanalyze the allowable range of the

KB sigma term for baryon B in terms of recent constraints of the π-N sigma term, ΣπN ,

and the strangeness contents inside the nucleon, ⟨s̄s⟩N , which have been obtained from

phenomenological analyses and lattice QCD. Second, the q̄q condensate in the ((Y+K)

phase is obtained with the help of the Feynman–Hellmann theorem in the mean field

approximation. We discuss the relevance of the s-wave KC to chirally restored quark matter

through the behavior of the quark condensate as a mediating order parameter between the

(Y+K) phase and quark phase.

As a background of our present study, we overview our interaction model for the

(Y+K) phase, which has been explored in a series of our works, and summarize the results

on the onset density of KC in hyperon-mixed matter, the EOS, and the characteristic features

of the (Y+K) phase [36].

The paper is organized as follows. In Section 2, the chiral symmetry approach for kaon

condensation based on the effective chiral Lagrangian (abbreviated to ChL) is introduced.

In Section 3, the “minimal” RMF (MRMF) theory is explained in the meson-exchange

picture for B–B interaction. In addition, the universal three-baryon repulsion (UTBR)

[string junction model (SJM) as a specific model] and three-nucleon attraction (TNA) are

introduced phenomenologically. The formulation obtaining the ground state energy for

the (Y+K) phase is described in Section 4. In Section 5, the results on the properties of the

symmetric nuclear matter (SNM) with our interaction model are given. In Section 6, the

“KB sigma terms” are estimated by the inclusion of the nonlinear effect with respect to the

strange quark mass beyond chiral perturbation in the next-to-leading order. In Section 7,

the onset of the s-wave KC in hyperon-mixed matter and the composition of matter in the

(Y+K) are figured out. In Section 8, the static properties of neutron stars with the (Y+K)

phase such as gravitational mass and radius are summarized. Quark condensates in the

(Y+K) phase and relevance to chiral restoration are discussed in Section 9. A summary and

outlook are given in Section 10.

2. Chiral Symmetry Approach for Kaon Condensation

The (Y+K) phase is composed of kaon condensates and hyperon-mixed baryonic

matter together with leptons, being kept in beta equilibrium, charge neutrality, and baryon

number conservation. Among the Σ−, Σ0, and Σ+ hyperons and Ξ−, Ξ0 hyperons, Σ− and

Ξ− hyperons are considered as favorable to appear in matter, since the degenerate energy
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of negatively charged leptons (e−, µ−) helps meet the onset condition of leptonic weak

reactions, although there is another ambiguity concerning the hyperon potential in matter.

In the following, we simply take into account protons, neutrons, Λ, Σ−, and Ξ− hyperons

for baryons and electrons and muons for leptons.

Kaon–Baryon and Multi-Kaon Interactions

We base our model for K–B and K–K interactions upon the effective chiral SU(3)L ×
SU(3)R Lagrangian [7] in the next-to-leading order O(p2) with the typical energy scale p in

chiral perturbation. The relevant Lagrangian density is given by the following:

LK,B =
1

4
f 2 Tr(∂µU†∂µU) +

1

2
f 2ΛχSB(TrM(U − 1) + h.c.)

+ TrΨ(iγµ∂µ − MB)Ψ + TrΨγµ[Vµ, Ψ] + DTrΨγµγ5{Aµ, Ψ}+ FTrΨγµγ5[Aµ, Ψ]

+ a1TrΨ(ξM†ξ + h.c.)Ψ + a2TrΨΨ(ξM†ξ + h.c.) + a3(TrMU + h.c.)TrΨΨ , (1)

where the first and second terms are kinetic and mass terms of the nonlinear meson

fields, U = exp(2iπaTa/ f ) with πa (a = 1 ∼ 8) are the octet mesons, Ta is the flavor

SU(3) generator, f (=93 MeV) is the meson decay constant, ΛχSB ∼1 GeV is the chiral-

symmetry breaking scale, and M (=diag(mu, md, ms)) is the quark mass matrix. The third

term in Equation (1) is kinetic, and the mass terms of the octet baryons Ψ with MB are the

spontaneously broken baryon mass. The fourth term represents the s-wave K–B vector

interaction with Vµ ≡ i
2 (ξ

†∂µξ + ξ∂µξ†) being the vector current for the meson field ξ

(=U1/2). This term corresponds to the Tomozawa–Weinberg and term plays a role of

one of the main driving forces for KC. The fifth and sixth terms (the F and D terms),

with Aµ ≡ i
2 (ξ

†∂µξ − ξ∂µξ†) being the axial-vector current for the meson, lead to the

p-wave K–B interactions. As for the p-wave K–B interactions, it has been suggested that a

spontaneous creation of a pair of the particle–hole collective modes may occur with K+ and

K− quantum numbers (p-wave kaon condensation) in the case of a large fraction of the Λ

hyperons, through an onset mechanism that is similar to the p-wave pion condensation [37].

In general, the p-wave meson condensation accompanies the particle–hole excitations of

baryons, so that the onset density and the EOS with the condensed phase are sensitive to

the medium effects [11], which should be taken into account for a realistic consideration. In

this paper, we simply neglect the F and D terms, and only the s-wave KC is considered.

The last three terms with the coefficients a1∼a3 in Equation (1) are in O(p2) through

the mq-dependence in M and break the chiral symmetry explicitly. They serve as another

driving force for KC as the “K-baryon sigma terms”, ΣKb. Throughout this paper, we

consider only the K± [=(π4 ∓ iπ5)/
√

2] for πa, and nucleons (p, n) and hyperons (Λ, Σ−,

Ξ−) for Ψ.

In order to reproduce the s-wave on-shell KN scattering amplitudes, we should

conventionally take into account the range terms of the order ω2
K [=O(p2)] with the lowest

kaon energy ωK and a pole contribution from the Λ (1405), which lies ∼30 MeV below

the K̄N threshold. Indeed, they have sizable contributions to the s-wave on-shell KN

scattering amplitudes. Nevertheless, these contributions become negligible at a higher

density ρB ≳ ρ0, since ωK/mK ≪ 1 as the density ρB increases, and the ΣKb solely remains

to work as the s-wave K–B attractive interaction. The same consequence, which we call

the second-order effect, has been obtained in the second-order perturbation with respect

to the axial-vector current in the framework of current algebra and PCAC [19]. Therefore,

throughout this paper, these range terms and the Λ (1405) pole contribution are neglected

from the outset.
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The classical kaon field is assumed to be spatially uniform with spatial momentum

|k| = 0 and represented classically as follows:

K± =
f√
2

θ exp(±iµKt) , (2)

where θ is the chiral angle and µK is the K− chemical potential. As for the K+ meson in

matter, the s-wave K–N vector interaction and the range terms work repulsively [19,30].

Therefore, the lowest K+ energy increases with density, and the K+ condensation cannot

be expected to appear in β-equilibrated matter. Throughout this paper, we concentrate on

K− condensation.

By the use of Equation (2), the Lagrangian density (1) is separated into the kaon part

LK and the baryon part LB in the mean field approximation: LK,B = LK + LB. For LK, one

reads [34,36]:

LK = f 2
[1

2
(µK sin θ)2 − m2

K(1 − cos θ) + 2µKX0(1 − cos θ)
]

, (3)

where the second term in the bracket on the r. h. s. is the kaon mass term with

mK ≡ [ΛχSB(mu + ms)]
1/2 (4)

being identified with the kaon rest mass, which is set to the empirical value (493.677 MeV).

The last term in the bracket on the r. h. s. of Equation (3) stands for the s-wave K–B vector

interaction, with X0 being given by the following:

X0 ≡ 1

2 f 2 ∑
b=p,n,Λ,Σ− ,Ξ−

Qb
Vρb

=
1

2 f 2

(
ρp +

1

2
ρn −

1

2
ρΣ− − ρΞ−

)
, (5)

where ρb and Qb
V are the number density and V-spin charge, respectively, for the baryon

species b. The form of Equation (5) for X0 is specified model-independently within chiral

symmetry. From Equations (3) and (5), one can see that the s-wave K–B vector interaction

works attractively for protons and neutrons, but repulsively for Σ− and Ξ− hyperons, as

far as µK > 0, and there is no s-wave K–Λ vector interaction.

For LB, one reads:

LB = ∑
b=p,n,Λ,Σ− ,Ξ−

ψb(iγ
µ∂µ − M∗

b )ψb , (6)

where ψb is the baryon field b and M∗
b is the effective baryon mass:

M∗
b = Mb − ΣKb(1 − cos θ) , (7)

where Mb (b = p, n, Λ, Σ−, Ξ−) is the baryon rest mass, which is read off from the last three

terms in (1) as follows:

Mp = M̄B − 2(a1mu + a2ms) ,

Mn = M̄B − 2(a1md + a2ms) ,

MΛ = M̄B − 1/3 · (a1 + a2)(mu + md + 4ms) ,

MΣ− = M̄B − 2(a1md + a2mu) ,

MΞ− = M̄B − 2(a1ms + a2mu) (8)
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with M̄B = MB − 2a3(mu + md + ms). The quark masses mi are set to be (mu, md, ms) =

(2.2, 4.7, 95) MeV with reference to recent results of the lattice QCD simulation [38]. The

parameters a1 and a2 are then fixed to be a1 = −0.697 and a2 = 1.37 so as to reproduce the

mass splittings between the octet baryons. The second term on the r. h. s. in Equation (7)

represents a modification of the free baryon masses Mb through the s-wave K–B scalar

interaction simulated by ΣKb (b = p, n, Λ, Σ−, Ξ−), which are denoted in terms of the

coefficients a1, a2, and a3 in Equation (1) as follows:

ΣKn = −(a2 + 2a3)(mu + ms) = ΣKΣ− , (9a)

ΣKΛ = −
(

5

6
a1 +

5

6
a2 + 2a3

)
(mu + ms) , (9b)

ΣKp = −(a1 + a2 + 2a3)(mu + ms) = ΣKΞ− . (9c)

These quantities are identified with the “kaon–baryon sigma terms”, which are defined by:

ΣKb ≡ 1

2
(mu + ms)⟨b|(ūu + s̄s)|b⟩ (10)

by the use of the Feynman–Hellmann theorem, ⟨b|q̄q|b⟩=∂Mb/∂mq for q = (u, d, s), with

the help of the expressions of the baryon rest masses [Equation (8)] up to the next-to-leading

order in chiral perturbation. It is to be noted that, throughout this paper, the quark content

in the baryon, ⟨b|q̄q|b⟩, implies the value after the subtraction of the quark condensate in

the QCD vacuum, ⟨0|q̄q|0⟩ [39].

3. Baryon Interactions

3.1. Minimal RMF for Baryon–Baryon Interaction

The B–B interactions are given by the exchange of mesons [σ, σ∗ (∼ s̄s) for scalar

mesons, namely ω, ρ, φ for vector mesons] in the RMF theory [34–36]. We adopt the RMF

model for a two-body B–B interaction mediated by meson exchange, without the nonlinear

self-interacting (NLSI) meson potentials. [We call this model a “minimal RMF” (abbreviated

to MRMF) throughout this paper].

Together with the free meson part of the Lagrangian density, one obtains the B–M

Lagrangian density as follows:

LB,M = ∑
b

ψb

(
iγµD

(b)
µ − M̃∗

b

)
ψb

+
1

2

(
∂µσ∂µσ − m2

σσ2
)
+

1

2

(
∂µσ∗∂µσ∗ − m2

σ∗σ∗2
)

− 1

4
ωµνωµν +

1

2
m2

ωωµωµ − 1

4
R

µν
a Ra

µν +
1

2
m2

ρR
µ
a Ra

µ

− 1

4
φµνφµν +

1

2
m2

φφµφµ , (11)

where the first term on the r. h. s. in Equation (11) is taken over from Equation (6). The

effective baryon mass is further modified from the M∗
b [Equation (7)] due to scalar meson

(σ, σ∗)–B couplings:

M̃∗
b ≡ M∗

b − gσbσ − gσ∗bσ∗

= Mb − ΣKb(1 − cos θ)− gσbσ − gσ∗bσ∗ , (12)

where gσb, gσ∗b are the scalar-meson–baryon coupling constants. Furthermore, the deriva-

tive in (6) is replaced by the covariant derivative as ∂µ → D
(b)
µ ≡ ∂µ + igωbωµ +

igρb Î
(b)

3 R3
µ + igφbφµ, where the vector meson (ω, ρ, φ)–B couplings are introduced. The

vector meson fields for the ω, ρ, φ mesons are denoted as ωµ and R
µ
a with the isospin compo-
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nents a and φµ, respectively, and gmb is the vector meson–B coupling constant. The kinetic

terms of the vector mesons are given in terms of ωµν ≡ ∂µων − ∂νωµ, R
µν
a ≡ ∂µRν

a − ∂νR
µ
a ,

and φµν ≡ ∂µφν − ∂νφµ. Throughout this paper, only the time components of the vec-

tor mean fields, ω0, R0 (≡ R3
0) and φ0, are considered for the description of the ground

state, and they are taken to be uniform. The meson masses are set to be mσ = 400 MeV,

mσ∗ = 975 MeV, mω = 783 MeV, mρ = 769 MeV, and mφ = 1020 MeV.

It should be remarked here that the NLSI terms were originally introduced in order to

phenomenologically reproduce the ground state properties such as the incompressibility

and slope of the symmetry energy at the saturation density through σ3 and σ4 terms and

ω-ρ coupling terms, respectively. The NLSI terms generate many-baryon forces through

the equations of motion for the meson mean fields. The extension of the NLSI terms to high

densities, however, leads to only a minor contribution to the repulsive energy. Therefore, in

the context of the stiffening of the EOS at high densities, the NLSI terms are not responsible

for a solution to the “hyperon puzzle”, nor can they compensate for large attractive energy

due to the appearance of the (Y+K) phase [34–36].

3.2. Universal Three-Baryon Repulsive Force and Three-Nucleon Attractive Force

Instead of the NLSI terms, we introduce the density-dependent effective two-body

potentials for the universal three-baryon repulsion (UTBR), which has been derived from

the string-junction model by Tamagaki [40] (SJM2) and originally applied to hyperon-

mixed matter by Tamagaki, Takatsuka, and Nishizaki [41]. Together with the UTBR,

phenomenological three-nucleon attraction (TNA) has been taken into account, and we

have obtained the baryon interaction model that reproduces the saturation properties of

symmetric nuclear matter (SNM) together with empirical values of incompressibility and

symmetry energy at ρ0.

In the SJM, when two baryons fully overlap at high densities, it is necessary to form

the string junction net, accompanying the excitation of the junction (J)–anti-junction ( J̄)

pair or B–B̄ excitation with energy ∼2 GeV, so that the confinement mechanism persists

inside two baryons. To avoid such an energy excess, two baryons are kept apart from each

other, which means the existence of a high-potential core with the potential height ∼2 GeV

between two baryons. Likewise, the origin of the three-baryon repulsive force is explained

with recourse to the quark confinement mechanism in the SJM when three baryons are

fully overlapped [40]. Therefore, it is natural that the three-body repulsion is qualitatively

independent on the spin flavor of baryons, reflecting the confinement mechanisms of

quarks at high-density regions. Thus, it is assumed to work universally between any

baryon species. Along with this viewpoint, we adopt a specific model for the universal

three-body repulsion (UTBR) proposed by Tamagaki based on the string-junction model

(SJM2) [40,41]. We utilize the density-dependent effective two-body potential USJM(1, 2; ρB)

between baryons 1 and 2, by integrating out variables of the third baryon participating

in the UTBR, after assigning the short-range correlation function squared fsrc(r)2 for each

baryon pair [40]. In the following, the approximate form of USJM is used as follows:

USJM2(r; ρB) = VrρB(1 + crρB/ρ0) exp[−(r/λr)
2] , (13)

where Vr = 95 MeV·fm3, cr = 0.024, and λr = 0.86 fm corresponds to ηc = 0.50 fm for

SJM2 [41]. The USJM grows almost linearly with ρB. Finally, one obtains the effective

two-body potential, ŨSJM(r; ρB) = fsrc(r)USJM(r; ρB).

To simulate the attractive contribution from the TNA to the binding energy for ρB ≲ ρ0,

we adopt the density-dependent effective two-body potential by Nishizaki, Takatsuka, and
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Hiura [42], which was phenomenologically introduced and the direct term of which agrees

with the expression by Lagaris and Pandharipande (LP1981) [43]:

UTNA(r; ρB) = VaρB exp(−ηaρB) exp[−(r/λa)
2](⃗τ1 · τ⃗2)

2 , (14)

where the range parameter λa is fixed to be 2.0 fm. UTNA(r; ρB) depends upon not only

on density but also on isospin τ⃗1 · τ⃗2 with Pauli matrices τ⃗i. The parameters Va and ηa are

determined together with other parameters to reproduce the saturation properties of the

SNM for the allowable values of L (see Section 5).

4. Description of the Ground State for the (Y+K) Phase

4.1. Energy Density Expression for the (Y+K) Phase

The energy density E for the (Y+K) phase is separated into the KC part, EK, the baryon

kinetic part, and meson part for two-body baryon interactions, EB,M, three-body interaction

parts, E (UTBR) + E (TNA), and free lepton parts, Ee for the ultra-relativistic electrons and

Eµ for muons. From (3) and (11) one obtains the following:

EK =
1

2
(µK f sin θ)2 + f 2m2

K(1 − cos θ) , (15)

EB,M = ∑
b

2

(2π)3

∫

|p|≤pF(b)
d3|p|(|p|2 + M̃∗2

b )1/2

+
1

2

(
m2

σσ2 + m2
σ∗σ∗2

)
+

1

2

(
m2

ωω2
0 + m2

ρR2
0 + m2

φφ2
0

)
, (16)

where each Fermi sphere of a baryon (b) is fully occupied up to Fermi momentum pF(b).

The contribution from the UTBR is written in the Hartree approximation as follows:

E (UTBR) = 2πρ2
B

∫
drr2ŨSJM2(r; ρB)

=
π3/2

2
Vr(λ̃r)

3ρ3
B

(
1 + cr

ρB

ρ0

)

=
π3/2

2
ρBUSJM2(r = 0; ρB) · (λ̃r)

3 , (17)

where (λ̃r)
3 ≡ 4

π1/2

∫ ∞

0
drr2 fsrc(r)e

−(r/λr)2
(=0.589496 · · · ) for SJM2. With the use of

the spatial average for the s. r. c. function fsrc(r) being denoted as f src, one can write

(λ̃r)3 ≃ f src · (λr)3. Thus, λ̃r is interpreted as the range of the effective two-body potential

ŨSJM2(r; ρB).

Likewise, the energy density contribution from the direct term of the TNA is repre-

sented as follows:

E (TNA) =
1

2

∫
d3rVaρBe−ηaρB e−(r/λa)2

× ρ2
B{3 − 2(1 − 2xp)

2}
= γaρ3

Be−ηaρB{3 − 2(1 − 2xp)
2} (18)

with γa ≡ (π3/2/2)Vaλ3
a and xp = ρp/ρB being the proton-mixing ratio. With

Equations (15)−(18) and the relativistic forms of the lepton energy densities, the total

energy density E is given by the following:

E = EK + EB,M + E(UTBR) + E(TNA) + Ee + Eµ . (19)
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4.2. Classical Field Equations for Kaon Condensates and Meson Mean Fields

Throughout this paper, the classical K− field (|K−| = f θ/
√

2) and meson mean fields

(σ, σ∗, ω, ρ, φ) are set to be uniform and only depend on total baryon density ρB. The

equations of motion for these fields are derived from the Lagrangian density LK + LB,M in

the mean field approximation.

The classical kaon field equation follows from

∂(LK + LB,M)/∂θ = 0 ,

which renders

µ2
K cos θ + 2X0µK − m∗2

K = 0 , (20)

where the effective kaon mass squared is defined by

m∗2
K ≡ m2

K − 1

f 2 ∑
b=p,n,Λ,Σ− ,Ξ−

ρs
bΣKb (21)

with ρs
b being a scalar density for baryon b:

ρs
b =

2

(2π)3

∫

|p|≤pF(b)
d3|p| M̃∗

b

(|p|2 + M̃∗2
b )1/2

. (22)

As for the equations of motion for meson mean fields, one obtains the following:

m2
σσ = ∑

b=p,n,Λ,Σ− ,Ξ−
gσbρs

b , (23a)

m∗2
σ σ∗ = ∑

Y=Λ,Σ− ,Ξ−
gσ∗Yρs

Y , (23b)

m2
ωω0 = ∑

b=p,n,Λ,Σ− ,Ξ−
gωbρb , (23c)

m2
ρR0 = ∑

b=p,n,Λ,Σ− ,Ξ−
gρb Î

(b)
3 ρb , (23d)

m2
φφ0 = ∑

Y=Λ,Σ− ,Ξ−
gφYρY . (23e)

4.3. Ground State Conditions

The ground state energy for the (Y + K) phase is obtained under the charge neutrality,

baryon number, and β-equilibrium conditions. Since we consider K− condensation in

hyperon-mixed matter, and only p, n, Σ−, and Ξ− are taken into account for baryons, as

stated in Section 2, the charge neutrality condition is written as follows:

ρQ = ρp − ρΣ− − ρΞ− − ρK− − ρe − ρµ = 0 , (24)

where ρQ denotes the total negative charge density, and ρK− is the number density of KC

and is given from the kaon part of the Lagrangian density (3) as:

ρK− = −iK−(∂LK/∂K̇−) + iK+(∂LK/∂K̇+)

= µK f 2 sin2 θ + 2 f 2X0(1 − cos θ) . (25)

In Equation (24), ρe is the electron number density and is related to the electron chemical

potential µe as ρe = µ3
e /(3π2) in the ultra-relativistic limit. ρµ is the muon number density

and is given by ρµ = [pF(µ
−)]3/(3π2).
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The baryon number conservation is given by:

ρp + ρn + ρΛ + ρΣ− + ρΞ− = ρB . (26)

In addition, the following chemical equilibrium conditions for weak processes are imposed:

n ⇌ p + K−, n ⇌ p + e−(+ν̄e), n + e− ⇌ Σ−(+νe), Λ + e− ⇌ Ξ−(+νe), n ⇌ Λ(+νeν̄e),

and those involved in muons in place of e− if muons are present. These conditions are

followed by the relations between the chemical potentials

µ = µK = µe = µµ = µn − µp ,

µΛ = µn,

µΣ− = µΞ− = µn + µe , (27)

where µ and µi (=∂E/∂ρi) (i = p, n, Λ, Σ−, Ξ−, K−, e−, µ−) are the charge chemical

potential and the chemical potential for each particle species (i), respectively, at a given

baryon number density ρB. It is to be noted that the strangeness-changing weak process,

n → p + K−, is expressed in terms of quarks as d → u + W− and W− → s + ū, the latter of

which proceeds through a flavor-mixing effect with the Cabibbo suppression.

5. Choice of Parameters and Properties of Symmetric Nuclear Matter

5.1. Meson–Nucleon Coupling Constants Determined from Saturation Properties in the SNM

In order to determine the meson–nucleon coupling constants, gσN , gωN , gρN , and

the σ, ω mean fields, ⟨σ⟩0, ⟨ω0⟩0, and parameters in TNA, ηa, γa, we impose the sat-

uration properties of the symmetric nuclear matter (SNM), i.e., the saturation density

ρ0 = 0.16 fm−3, binding energy B0 = 16.3 MeV, incompressibility K = 240 MeV, symmetry

energy S0 = 31.5 MeV, and slope L [≡ 3ρ0(dS(ρB)/dρB)ρB=ρ0
] = (60–70) MeV, taking into

account the ambiguity of the empirical value of the L [44]. Also, the equations of motion

for the meson mean fields are imposed:

m2
σ⟨σ⟩0 = gσNρs

N |ρB=ρ0

m2
ω⟨ω0⟩0 = gωNρ0 , (28)

where ρs
N (=ρs

p + ρs
n) is the nuclear scalar density. In Table 1, the relevant quantities associ-

ated with the (MRMF+UTBR+TNA) model are listed for three cases of L = (60, 65, 70) MeV.

Table 1. The parameters γa, ηa for TNA, the coupling constants, gσN , gωN , gρN , the meson mean

fields, ⟨σ⟩0, ⟨ω0⟩0, and the effective mass ratio for the nucleon, (M∗
N/MN)0, in the SNM at ρB = ρ0,

obtained in the (MRMF+UTBR+TNA) model in cases of L = 60, 65, and 70 MeV. The σ–Y coupling

constants (Y=Λ, Σ−, Ξ−) determined from the potential depths for Y in the SNM are also listed.

γa ηa gσN gωN gρN
⟨σ⟩0 ⟨ω0⟩0 (M∗

N /MN)0 gσΛ gσΣ− gσΞ−
(MeV·fm6) (fm3) (MeV) (MeV)

SJM2+TNA-L60 −1662.63 17.18 5.27 8.16 3.29 39.06 16.37 0.78 3.29 2.00 1.82
SJM2+TNA-L65 −1597.67 18.25 5.71 9.07 3.35 42.16 18.18 0.74 3.54 2.34 1.93
SJM2+TNA-L70 −1585.48 19.82 6.07 9.77 3.41 44.62 19.59 0.71 3.74 2.61 2.02

One can see from Table 1 that the slope L sensitively affects both σ and ω mean field

values at the saturation density ρ0; these meson mean fields contribute to the binding

energy at ρ0 by adjusting to the change in attractive energy contribution from the TNA due

to the change in the L. The change in these meson mean fields prevails at high densities

beyond ρ0 and affects the stiffness of the EOS at high densities. See also Section 8. For the

choice of the L within the (MRMF+UTBR+TNA) model, we refer to Refs. [34,36].
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Both the TNR and TNA play important roles in locating the total energy minimum

at the empirical saturation point. Indeed, it is necessary to include both the TNR and the

TNA in the total energy E (total) in addition to the nuclear two-body interaction within

the MRMF, in order to reproduce the empirical saturation property and incompressibility

(=240 MeV) for the SNM. The TNR (the TNA) pushes up (pulls down) the E (two-body)

curve for ρB ≳ ρ0 (ρB ≲ ρ0).

5.2. Meson–Hyperon Coupling Constants

The meson–hyperon coupling constants are determined to obtain the hyperon–nucleon

and hyperon–hyperon interactions. The vector meson couplings for hyperons are related

to the vector meson–nucleon couplings gωN , gρN , gφN through the SU(6) symmetry rela-

tions [45]:

gωΛ = gωΣ− = 2gωΞ− = (2/3)gωN , (29a)

gρΛ = 0 , gρΣ− = 2gρΞ− = 2gρN , (29b)

gφΛ = gφΣ− = (1/2)gφΞ− = −(
√

2/3)gωN . (29c)

The scalar (σ, σ∗) meson–hyperon couplings are determined with the help of information

from the phenomenological analyses of recent hypernuclear experiments. The obtained

values of the σ-Y coupling constants, gσY, are listed for the cases of L = (60, 65, 70) MeV

in Table 1 in Section 5.1. The details of obtaining the gσY and the σ∗-Y coupling constants,

gσ∗Y, are addressed in Ref. [35].

6. Estimation of the kaon–Baryon Sigma Terms—Quark Contents in
the Baryon

Nonlinear Effect on the Quark Contents

In this section, we estimate the allowable value of the K-nucleon sigma term, ΣKN

(N = p, n). ΣKN is generally expressed as:

ΣKN =
mu + ms

2m̂

(
ΣπN

1 + zN
+

m̂

ms
σs

)
(30a)

=
mu + ms

2m̂
ΣπN

(
1

1 + zN
+

1

2
yN

)
(30b)

with m̂ ≡ (mu + md)/2. In Equation (30a), ΣπN is the πN sigma term,

ΣπN ≡ m̂⟨N|(ūu + d̄d)|N⟩ , (31)

and σs (≡ ms⟨N|s̄s|N⟩) is the the strangeness content in the nucleon. In Equation (30b), zN

and yN are defined by

zN ≡ ⟨N|d̄d|N⟩/⟨N|ūu|N⟩ , (32)

yN ≡ 2⟨N|s̄s|N⟩/⟨N|(ūu + d̄d)|N⟩ . (33)

The former stands for the isospin asymmetry for the quark content in the nucleon, and the

latter implies breaking scale of the Okubo–Zweig–Iizuka (OZI) rule. The KN sigma terms

are related to the following flavor nonsinglet contents as well:

σ0 ≡ m̂⟨N|(ūu + d̄d − 2s̄s)|N⟩ = ΣπN − (2m̂/ms)σs , (34a)

σ3 ≡ m̂⟨p|(ūu − d̄d)|p⟩ . (34b)
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In chiral perturbation theory, these contents are related to the mass difference between the

octet baryons:

σ0 = −2m̂(a1 − 2a2) ≃
3

ms/m̂ − 1
(MΞ − MΛ) ≃ 25 MeV , (35a)

σ3 = −2m̂a1 ≃ 1

ms/m̂ − 1
(MΞ − MΣ) ≃ 5 MeV (35b)

with the use of Equation (8). Recent lattice QCD results suggest small s̄s contents in the

nucleon, i.e., yN ≡ 2⟨N|s̄s|N⟩/⟨N|(ūu + d̄d)|N⟩ = 0.03–0.2 [46–48]. In particular, for σs ∼ 0,

one can see from Equations (34a) and (35a) that σ0 = ΣπN ≃ 25 MeV. This value of ΣπN

is too small as compared with the phenomenological values (40–60) MeV [49,50], which

are deduced from the analyses of π-N scattering and pionic atoms, or lattice QCD results

∼40 MeV [50]. Thus, as far as the estimation of the quark contents in the nucleon is based

on chiral perturbation, small s̄s contents in the nucleon are incompatible with the standard

value of the πN sigma term.

It has been shown that nonlinear effects beyond chiral perturbation can make both the

value of ΣπN and the octet baryon mass splittings consistent with experiments with a small

strangeness content of the proton [50–52]. Here, we take into account the nonlinear effect

on the strangeness quark content, which originates from the additional universal rest mass

contribution of baryons, ∆M(ms), in a higher order with respect to ms.

The q̄q contents in the baryon b after correction from the nonlinear effect are obtained

from ⟨b|q̄q|b⟩=∂M̃b/∂mq, with the baryon rest masses given by M̃b = Mb + ∆M(ms). The

result is:

⟨p|ūu|p⟩ = ⟨n|d̄d|n⟩ = −2(a1 + a3) ,

⟨p|d̄d|p⟩ = ⟨n|ūu|n⟩ = −2a3 ,

⟨p|s̄s|p⟩ = ⟨n|s̄s|n⟩ = −2(a2 + a3) + ∆ (36)

with ∆ ≡ d∆M(ms)/dms, and

⟨Λ|ūu|Λ⟩ = ⟨Λ|d̄d|Λ⟩ = −1

3
(a1 + a2)− 2a3 ,

⟨Λ|s̄s|Λ⟩ = −4

3
(a1 + a2)− 2a3 + ∆ ,

⟨Σ−|ūu|Σ−⟩ = −2(a2 + a3) , ⟨Σ−|d̄d|Σ−⟩ = −2(a1 + a3) ,

⟨Σ−|s̄s|Σ−⟩ = −2a3 + ∆ ,

⟨Ξ−|ūu|Ξ−⟩ = −2(a2 + a3) , ⟨Ξ−|d̄d|Ξ−⟩ = −2a3 ,

⟨Ξ−|s̄s|Ξ−⟩ = −2(a1 + a3) + ∆ . (37)

Then, the Kb sigma terms (9) are modified by the replacement: a3 → ã3 ≡ a3 − ∆/4. The

nonlinear effect ∆ is absorbed into ã3.

The “K–baryon sigma terms” ΣKb are given in terms of a1 ∼ a3, ∆, and mu, md, ms by

ΣKn = −(a2 + 2ã3)(mu + ms) = ΣKΣ− , (38a)

ΣKΛ = −
(

5

6
a1 +

5

6
a2 + 2ã3

)
(mu + ms) , (38b)

ΣKp = −(a1 + a2 + 2ã3)(mu + ms) = ΣKΞ− (38c)

with ã3 ≡ a3 − ∆/4.

The parameters zN and yN are rewritten specifically as

zp =
a3

a1 + a3
= 1/zn , (39)
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yN =
2(a2 + a3)− ∆

a1 + 2a3
(N = p, n) . (40)

Once ΣπN is given, a3 and zp (zn) are determined from Equations (31) and (39), respectively.

Then, ΣKN is obtained from Equation (30b) together with yN , which is given as a function of

∆ through Equation (40). With the nonlinear effect ∆, σ0 is represented as σ0 = −2m̂(a1 −
2a2 + ∆). In Figure 1, the K-neutron sigma term ΣKn as a function of yN is shown at a fixed

value of ΣπN considering uncertainty ranging from 35 MeV to 60 MeV. The vertical dotted

line shows boundaries of the allowable region for yN , taken from [46–48].

0.0 0.1 0.2 0.3 0.4 0.5 0.6
200

300

400

500

600 Σπn =  60 MeV

Σ
Κ

n
(M

e
V

)

45

50

yN

40

35

55

Figure 1. The K-neutron sigma term ΣKn as a function of yN (≡ 2⟨N|s̄s|N⟩/⟨N|(ūu + d̄d)|N⟩) for

a given value of ΣπN = (35–60) MeV. The current quark masses are set to (mu, md, ms) = (2.2, 4.7,

95) MeV. The vertical dotted line denotes the upper value of yN = 0.2 suggested by the lattice QCD

results, taken from [46–48]. The right endpoint of each line corresponds to ∆ = 0 (the case of chiral

perturbation). See the text for details.

The standard value for ΣπN has been taken to be ∼ 45 MeV phenomenologically [49].

Recently, the higher values (50–60 MeV) were suggested from the phenomenological

analyses of π-N scatterings [50]. In view of this, reading off from Figure 1, we take

two cases of ΣKn = 300 MeV with yN = 0 and 400 MeV with yN = 0.2 as typical values for ΣKn

throughout this paper. The corresponding quantities, ΣπN , ∆, and ΣKb (b = p, Λ, Σ−, Ξ−)

together with a3, ã3 are also determined for fixed values of (mu, md, ms) and (a1, a2). The

results are listed in Table 2.

Table 2. The parameters a1, a2, a3, and ã3 in the chiral symmetry breaking terms in the effective chiral

Lagrangian (1), and the quantities in terms of them for the current quark masses (mu, md, ms) = (2.2,

4.7, 95) MeV [38]: yN ≡ 2⟨N|s̄s|N⟩/⟨N|(ūu + d̄d)|N⟩, ∆ being a shift of the strangeness content in

the nucleon from the value in the leading-order chiral perturbation, ΣπN the πN sigma term, and

the “K–Baryon sigma terms” ΣKb (b = p, n, Λ, Σ−, Ξ−) adopted in this work. The K-neutron sigma

term, ΣKn, is set to be the two typical values 300 MeV and 400 MeV. The K− optical potential UK in

the SNM is listed for each value of ΣKn.

(a1, a2) a3
ΣπN yN ∆ ã3

ΣKn(= ΣKΣ−) ΣKp(= ΣKΞ−) ΣKΛ UK

(MeV) (MeV) (MeV) (MeV) (MeV)

(−0.697, 1.37) −3.09 47.4 0 −3.43 −2.23 300 368 379 −111
−3.37 51.3 0.20 −2.51 −2.74 400 468 479 −131
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A scale of the s-wave K–N attraction is characterized by the K− optical potential UK

in the SNM, which is defined in terms of the K− self-energy [Equation (43) in Section 7.1]

as UK = ΠK(ωK; ρB)/(2ωK)|ρB=ρ0 . In Table 2, the UK is listed for each case of ΣKn. The

value of UK has a sensitive dependence on ΣKn, while it depends little on the slope L. Our

deduced value of the depth |UK| (110 MeV–130 MeV) is larger than the theoretical values in

the chiral unitary approach [53], while it is similar to that of Refs. [54,55] (UK ∼ −120 MeV)

with the inclusion of short-range correlations. It can also be compared with the recent

optimal value of the real part of the K− optical potential depth |V0| = 80 MeV with the

imaginary part W0 = −40 MeV in the J-PARC E05 experiment [56].

It is to be noted that the pion-baryon sigma terms [σbq = m̂⟨b|(ūu + d̄d)|b⟩] and

strangeness sigma terms [σbs = ms⟨b|s̄s|b⟩] in the octet baryons (b) have been derived

from analyses of the lattice QCD simulations for the octet baryon masses [57,58]. For

comparison, we estimate σ̄bq ≡ m̂⟨b|(ūu + d̄d)|b⟩/Mb and σ̄bs ≡ ms⟨b|s̄s|b⟩/Mb with Mb

being the empirical baryon mass. For ΣπN=45 MeV and yN = 0.04, which are referred

to from [57], one obtains ∆ = −2.82 (a3 = −2.91), σ̄bq = (0.024, 0.017, 0.015, 0.012), and

σ̄bs = (0.026, 0.179, 0.238, 0.316) for b = (N, Y (=Λ, Σ−, Ξ−)). The relative ordering of σ̄bq, σ̄bs

for b = (N, Y(= Λ, Σ−, Ξ−)) estimated in our model agrees well with those in [57], while

there is a little difference in the absolute values for σYq, σYs between our results and those

in Figure 2 in [57].

7. Onset of KC and Composition of Matter in the (Y+K) Phase

Here, we consider kaon properties in hyperon-mixed matter and obtain the onset

density of KC with our interaction model (ChL+MRMF+UTBR+TNA).

7.1. Onset Density of Kaon Condensation in Hyperon-Mixed Matter

The in-medium modification of kaon dynamics in dense matter is revealed by the

density dependence of the lowest kaon energy ωK(ρB). ωK(ρB) is given as a pole of the

kaon propagator at ρB, i.e., D−1
K (ωK; ρB) = 0. The kaon inverse propagator, D−1

K (ωK; ρB), is

obtained through the expansion of the effective energy density with respect to the classical

kaon field,

Eeff(θ) = Eeff(0)−
f 2

2
D−1

K (µ; ρB)θ
2 + O(θ4) , (41)

where Eeff ≡ E + µρQ + νρB with the baryon chemical potential ν. With the use

of Equations (15), (16), (24), and (25), and by setting µK → ωK, θ → 0, one obtains

the following:

D−1
K (ωK; ρB) = ω2

K − m2
K − ΠK(ωK; ρB) , (42)

where ΠK(ωK; ρB) is the kaon self-energy:

ΠK(ωK; ρB) = − 1

f 2 ∑
b=p,n,Λ,Σ− ,Ξ−

(
ρs

bΣKb + ωKρbQb
V

)
. (43)

From Equations (42) and (43), the ωK is given explicitly as:

ωK = −X0 +
(

X2
0 + m∗2

K

)1/2
, (44)

where X0 and m∗2
K are given by Equations (5) and (21), respectively. The ωK(ρB) decreases

with an increase in ρB due to the K–B scalar and vector attraction, while the kaon chemical

potential µK, which is equal to the charge chemical potential µ in β-equilibrated matter

[Equation (27)], increases with density. At a certain density, ωK(ρB) intersects with µ, where

the condensed kaons spontaneously appear in the ground state through the weak reaction
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processes, n + N → p + N + K−, l → K− + νl (l = e−, µ−), and strong reaction processes,

Λ → p + K−, Ξ− → Λ + K−, · · · , in the presence of hyperons. Thus, the onset density

ρc
B(K

−) for the s-wave kaon condensation is given by [9]:

ωK(ρ
c
B(K

−)) = µ (45)

as a continuous phase transition. The relaxation processes toward the equilibrated matter

with KC are governed by the weak processes [59,60].

In Figure 2, the lowest K− energy ωK as a function of ρB is shown for (a) ΣKn = 300 MeV

and (b) ΣKn = 400 MeV in the case of L = 65 MeV. The charge chemical potential µ is also

shown as a function of ρB by the red dashed line. The filled triangle denotes the onset

density of Λ hyperon mixing, ρc
B(Λ), at which hyperon (Λ) mixing starts in the normal

neutron-star matter (nucleon matter). The filled circle denotes the ρc
B(K

−), at which KC is

realized from hyperon (Λ and/or Ξ−)-mixed matter.
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(a)  L = 65 MeV ΣKn = 300 MeV
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Figure 2. (a) The lowest K− energy ωK , the effective mass of the K− meson m∗
K defined by

Equation (21), and the X0 [Equation (5)] as a function of the baryon number density ρB for

ΣKn = 300 MeV in the case of L = 65 MeV. The ρB-dependence of the charge chemical potential

µ (=µe = µµ if muons are present) is also shown by the red dashed line. The filled triangle (filled

circle) denotes the onset density of Λ hyperon mixing, ρc
B(Λ) (the onset density of KC, ρc

B(K
−)). ωK

is equal to the charge chemical potential µ in the (Y+K) phase for ρB ≥ ρc
B(K

−). For a comparison,

the density dependence of m∗
K and X0 in pure hyperon-mixed matter, where θ is set to be zero, is also

shown by the green lines. (b) The same as (a), but for ΣKn = 400 MeV. The filled triangle corresponds

to the same onset density of Λ as in (a). See the text for details.

The onset density of KC is read as ρc
B (K−) = (0.60–0.73) fm−3 [(3.7–4.6) ρ0] for

ΣKn = 300 MeV and ρc
B (K−) = (0.49–0.52) fm−3 [(3.0–3.3) ρ0] for ΣKn = 400 MeV, within the

range of the slope L = (60–70) MeV. For ΣKn = 400 MeV, ωK is smaller at a given density

than in the case of ΣKn = 300 MeV due to the stronger s-wave K–B scalar attraction, so that

ρc
B (K−) for ΣKn = 400 MeV is lower than in the case of ΣKn = 300 MeV. In Table 3, the onset

densities ρc
B(Λ) and ρc

B(K
−) in the (ChL+MRMF+ UTBR+TNA) model for ΣKn = 300 MeV

and 400 MeV in the case of L = (60, 65, 70) MeV are listed. For all of the cases of L and ΣKn,

the onset of Λ mixing always precedes the onset of KC.



Symmetry 2025, 17, 270 15 of 24

Table 3. The onset densities at which hyperon mixing starts and those of KC in the (ChL+MRMF+

UTBR+TNA) model for ΣKn = 300 MeV and 400 MeV in the case of L = 60, 65, and 70 MeV. ρc
B(Λ)

is the onset density of Λ hyperons in the normal neutron-star matter, ρc
B(Ξ

− in Λ) is one of the Ξ−

hyperons in the Λ-mixed matter, ρc
B (K−) is one of the KC in the hyperon (Λ and/or Ξ−)-mixed

matter, and ρc
B(Ξ

− in K−Λ) is one of the Ξ− hyperons in the KC phase in the Λ-mixed matter.

L ΣKn ρc
B(Λ) ρc

B(Ξ
− in Λ) ρc

B(K−) ρc
B(Ξ

− in K−
Λ)

(MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3)

60 300 0.466 − 0.598 1.04
400 0.466 − 0.486 0.994

65 300 0.425 0.568 0.653 −
400 0.425 − 0.503 0.900

70 300 0.397 0.516 0.733 −
400 0.397 (0.516) 0.523 0.790

In Ref. [30], the modification of kaon properties in nucleonic and hyperon-mixed

matter in neutron stars is investigated in the chiral SU(3) mean field model. The kaon

self-energy includes the K–scalar-field interaction, K–vector-field interaction, and the range

terms, corresponding to the case of our model interaction specified within chiral symmetry.

The results on the density-dependence of the lowest kaon energy around and beyond the

nuclear saturation density and the onset density of KC are also quantitatively similar to

our case. On the other hand, the K–K nonlinear self-interaction is naturally incorporated in

our model as a consequence of the nonlinear representation of the K-field in the effective

chiral Lagrangian. This nonlinear K–K interaction may bring about any different aspect for

the EOS beyond the onset density of KC.

7.2. Interplay Between Kaons and Baryons Before and After the Onset of KC

Together with ωK, the density-dependence of X0 [Equation (5)] and that of the “ef-

fective mass” m∗
K of the K− meson [Equation (21)] are shown in Figure 2. For reference,

the particle fractions ρa/ρB before and after the onset of KC are shown as functions of ρB

in Figure 3.
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Figure 3. (a) The particle fractions in the (Y+K) phase as functions of the baryon number density ρB

for Σkn = 300 MeV in the case of L = 65 MeV. The total strangeness fraction is given by (ρK− + ρΛ +

2ρΞ− )/ρB. (b) The same as (a) but for Σkn = 400 MeV.
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As seen in Figure 3 and Table 3, the Λ mixing starts at a lower density than that of KC

or Ξ− hyperons. Subsequently, the fraction of Λ hyperons monotonically increases with

density even after KC or Ξ− hyperons appear. Due to the appearance of Λ hyperons, the

nucleon (neutron and proton) fractions (and thus nucleon scalar densities) are suppressed

as a result of baryon number conservation. In pure hyperon-mixed matter, the decrease

in the nucleon fractions leads to the suppression of the increase in K–N attractive vector

interaction simulated by X0 [∝
(
ρp + ρn/2 − ρΣ−/2 − ρΞ−

)
/(2 f 2) in Equation (5)]. The

appearance of the Ξ− hyperons also tends to work repulsively for the K–Ξ− vector interac-

tion, but the effect is negligible since ρΞ− is tiny, even if the Ξ− hyperons are mixed in the

range ρc
B(Λ) ≲ ρB ≲ ρc

B(K
−). On the other hand, m∗

K reduces rapidly with density beyond

the onset of Λ mixing, due to the fact that the increase in Λ scalar density overcomes the

decrease in nucleon scalar densities and that the KΛ sigma term is larger than the KN ones.

Once KC appears, the KC and Ξ− hyperons compete against each other through the

repulsive K–Ξ− vector interaction term in X0, and the Ξ− fraction becomes small. This

competitive relation can also be seen from the interaction part of the K− number density

ρK− [Equation (25)]. As a result, the X0 is slightly enhanced in comparison with the case of

pure hyperon-mixed matter. On the other hand, the reduction in m∗
K becomes moderate

as compared with the case of pure hyperon-mixed matter, as seen in Figure 2. Indeed, the

s-wave K–B scalar attraction is diminished according to the reduction in the total baryon

scalar density in the presence of KC, since a part of the strangeness is taken over by KC.

It is to be noted that the Σ− hyperons are not mixed over the relevant densities due to

the strong repulsion of VN
Σ− in our model.

The development of KC with an increase in the baryon density leads to an enhance-

ment of the proton fraction so that the positive charge carried by protons compensates

for the negative charge by KC, keeping charge neutrality. On the other hand, the lepton

(e−, µ−) fractions are suppressed after the appearance of KC as well as Λ hyperons, since

the negative charge carried by leptons is replaced by that of KC, avoiding the cost of the

degenerate energy of leptons. The (Y+K) phase becomes almost lepton-less at high densities

(see Figure 3). As a consequence, the charge chemical potential µ [=(3π2ρe)1/3 ] decreases

steadily as the density increases after the onset of KC and has a value with µ ≲ O(mπ) (see

Figure 2). These features concerning proton and lepton fractions and the charge chemical

potential are characteristic of the hadron phase in the presence of KC. The total strangeness

is carried mainly by Λ hyperons and KC in the (Y+K) phase with a minor fraction of Ξ−

hyperons at high densities.

8. EOS and Structure of Neutron Stars with the (Y+K) Phase

In this section, we first summarize the results on the stiffness of the EOS with the

(Y+K) phase. The energy contribution from the UTBR per baryon, E (UTBR)/ρB, which is

roughly proportional to ρB
2, has a sizable contribution to the total energy and results in the

stiffening of the EOS at high densities. The E (two-body) [= EB,M/ρB] also brings about

repulsive energy as large as E (UTBR) until the onset of KC. Beyond the onset density of

KC, the E (two-body) turns to decrease with density due to the attraction from the s-wave

K–B interaction for both cases of ΣKn, until it increases again at higher density. On the

other hand, the E (KC) [= EK/ρB], composed of kinetic and mass terms of KC, increases

with baryon density. The sum of E (two-body) and E (KC) results in positive energy, which

increases with baryon density and works to stiffen the EOS as much as E (UTBR). See

Ref. [36] for more details.

Second, we discuss the effects of KC on the static properties of compact stars such as

the gravitational mass M–radius R relations. They are obtained by solving the Tolman–

Oppenheimer–Volkoff equation with the EOS including the (Y+K) phase. For the low-
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density region ρB < 0.10 fm−3, which is below the density of uniform matter, we utilize the

EOS of Ref. [61] and combine it with the EOS obtained in our model for ρB ≥ 0.10 fm−3.

In Table 4, some critical gravitational masses and their radii are summarized for ΣKn

= 300 MeV and 400 MeV in the case of L = (60, 65, 70) MeV. Mc(Λ) and Rc(Λ) [Mc(K−)
and Rc(K−)] are the mass and radius of the neutron star, where the central density attains

the onset density of the Λ-hyperons, ρc
B(Λ) [the onset density of KC, ρc

B(K
−)]. Mmax and

R(Mmax) are the maximum mass of the neutron star and its radius.

Table 4. Some critical gravitational masses in the unit of the solar mass M⊙ and their radii of

neutron stars for ΣKn = 300 MeV and 400 MeV in the case of L = (60, 65, 70) MeV, obtained with the

(ChL+MRMF+UTBR+TNA) model. The Mc(Λ) and Rc(Λ) [Mc(K−) and Rc(K−)] are the mass and

radius of the neutron star, where the central density reaches the onset density of the Λ-hyperons,

ρc
B(Λ) [the onset density of KC, ρc

B(K
−)]. Mmax and R(Mmax) are the maximum mass of the neutron

star and its radius.

L ΣKn Mc(Λ)/M⊙
Rc(Λ)

Mc(K−)/M⊙
Rc(K−)

Mmax/M⊙
R(Mmax)

(MeV) (MeV) (km) (km) (km)

60
300
400

1.448 12.33
1.742
1.452

12.11
12.33

2.035
1.993

10.02
9.48

65
300
400

1.508 12.78
1.961
1.737

12.29
12.68

2.124
2.076

10.76
10.29

70
300
400

1.582 13.15
2.139
1.915

12.24
12.97

2.200
2.155

11.31
11.06

The mass of the neutron star where the central density reaches the onset density ρc
B(K

−)
is (1.74–2.14)M⊙ for L = (60–70) MeV in the case of ΣKn = 300 MeV, and (1.45–1.92)M⊙ for

L = (60–70) MeV in the case of ΣKn = 400 MeV.

Observationally, neutron stars as large as 2 M⊙ (M⊙ being the solar mass) have been

detected [62–66]. Both the mass and radius have been detected from X-ray observation by

the Neutron star Interior Composition ExploreR (NICER): for the pulsar PSR J0740+6620

with Mobs. = 2.08M⊙, Robs. = (12.35 ± 0.75) km [67] and Mobs. = (2.072+0.067
−0.066) M⊙, Robs.

= (12.39+1.30
−0.98) km [68], and for PSR J0030+0451 with Mobs. = (1.34+0.15

−0.16)M⊙, Robs. =

(12.71+1.14
−1.19) km [69], and Mobs. = (1.44+0.15

−0.14)M⊙, Robs. = (13.02+1.24
−1.06) km [70]. The curves

of M–R relations based on our EOS in the case of L = (65, 70) MeV pass through the

above constrained regions. In particular, the maximum masses with the (Y+K) phase

in the core are consistent with recent observations of massive neutron stars in both the

cases of ΣKn = 300 MeV and 400 MeV for L =(65, 70) MeV. However, the masses within the

causal limit for ΣKn = 400 MeV and L = 60 MeV do not reach the range allowable from the

observations of most massive neutron stars. In our model, the larger values of the slope

L ≳ 60 MeV are preferred in order to obtain observed massive neutron stars [36].

9. Quark Condensates in the (Y+K) Phase and Relevance to
Chiral Restoration

Following the preceding results on the properties of the (Y+K) phase, we discuss the

effects of the (Y+K) phase on chiral restoration in dense matter by obtaining the quark

condensates in the (Y+K) phase within the mean field approximation. The quark condensate

in KC (for q = u, d, s) is expressed as:

⟨q̄q⟩KC ≡ ⟨KC|q̄q|KC⟩
= ⟨KC|dĤ/dmq|KC⟩ , (46)
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where |KC⟩ is the kaon-condensed eigenstate of the total Hamiltonian Ĥ (= ∑
q=u,d,s

mq q̄q +

· · · ) with the eigenvalue of the ground state energy density Eg.r., i.e., Ĥ|KC⟩ = Eg.r.|KC⟩,
and ⟨KC|KC⟩ = 1. With the Feynman–Hellmann theorem [39], one obtains

⟨q̄q⟩KC = d⟨KC|Ĥ|KC⟩/dmq

= dEg.r./dmq . (47)

Throughout this paper, Eg.r. is approximated to Eg.r. ≃ E0 + ∆E0 + E , where E0 is the

vacuum energy, ∆E0 is the energy shift due to vacuum polarization in the presence of

baryonic matter, and E [Equation (19)] is the energy density of the (Y+K) phase in the mean

field approximation. In the following, we further neglect ∆E0. Then, the quark condensate

associated with the charged kaon condensation reads as follows:

⟨ūu + s̄s⟩KC = ∑
q=u,s

d(E0 + E)/dmq

= ⟨ūu + s̄s⟩0 + ∑
q=u,s

dE/dmq , (48)

where the first term in the second line on the r. h. s. is the quark condensate in the vacuum,

and the second term is the contribution from the total energy density E [Equation (19)]. The

latter is further separated into the one from the kaon mass term [Equation (15)] and the one

from the baryonic energy Equation (16): ∑
q=u,s

dE/dmq = ∑
q=u,s

dEK/dmq + ∑
q=u,s

dEB,M/dmq.

With the use of the kaon rest mass [Equation (4)], one obtains the following:

∑
q=u,s

dEK/dmq = f 2(1 − cos θ) ∑
q=u,s

dm2
K/dmq =

2 f 2m2
K

mu + ms
(1 − cos θ) . (49)

With the use of Equation (16), the contribution from EB,M is given as:

∑
q=u,s

dEB,M/dmq = ∑
q=u,s

∑
b

ρs
b

(
∂M̃∗

b /∂mq

)
+ ∑

q=u,s

(
m2

σσ∂σ/∂mq + m2
σ∗σ∗∂σ∗/∂mq

)
, (50)

where the factor ∂M̃∗
b /∂mq is written with the use of Equation (12) as:

∂M̃∗
b /∂mq = ⟨q̄q⟩b −

(
∂ΣKb/∂mq

)
(1 − cos θ)−

(
gσb∂σ/∂mq + gσ∗b∂σ∗/∂mq

)
. (51)

Substitution of Equation (51) into Equation (50) leads to

∑
q=u,s

dEB,M/dmq = ∑
q=u,s

∑
b

ρs
b

{
⟨q̄q⟩b −

(
∂ΣKb/∂mq

)
(1 − cos θ)

}
, (52)

where each term proportional to ∂σ/∂mq and ∂σ∗/∂mq is shown to vanish separately with

the help of the equations of motion for the σ mean field [Equation (23a)] and σ∗ mean field

[Equation (23b)], respectively. Noting that

∑
q=u,s

⟨q̄q⟩b = ∑
q=u,s

∂ΣKb/∂mq =
2ΣKb

mu + ms
, (53)

one can write Equation (52) simply as:

∑
q=u,s

dEB,M/dmq =
2 cos θ

mu + ms
∑
b

ρs
bΣKb . (54)
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From Equations (49) and (54), one obtains the following:

∑
q=u,s

dE/dmq =
2 f 2m2

K

mu + ms

{
1 −

(
m∗2

K

m2
K

)
cos θ

}
(55)

with the use of Equation (21) for m∗2
K .

The vacuum condensate ⟨ūu + s̄s⟩0 is related to the meson decay constant f by the

Gell-Mann–Oakes–Renner (GOR) relation:

⟨ūu + s̄s⟩0 = − 2 f 2m2
K

mu + ms
. (56)

Substituting Equations (55) and (56) into Equation (48), one finally obtains

⟨ūu + s̄s⟩KC

⟨ūu + s̄s⟩0
=

(
m∗2

K

m2
K

)
cos θ . (57)

Thus, the density-dependence of the quark condensate is determined by the s-wave K–B

scalar interaction simulated by the Kb sigma terms ΣKb within the mean field approximation.

In Figure 4, the ratio of the quark condensate in the (Y+K) phase to the vacuum quark

condensate, ⟨ūu + s̄s⟩KC/⟨ūu + s̄s⟩0, is shown as a function of the baryon number density

ρB for L = 65 MeV with ΣKn = 300 MeV for (a) and ΣKn = 400 MeV for (b).
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Figure 4. (a) The ratio of the quark condensate in the (Y+K) phase to the vacuum quark condensate,

⟨ūu + s̄s⟩KC/⟨ūu + s̄s⟩0, as a function of ρB for L = 65 MeV and ΣKn = 300 MeV is shown by the black

line. For comparison, the one in pure hyperon-mixed matter without KC by setting θ = 0 is shown by

the green line and the one for nucleon matter, i.e., pure neutron-star matter without hyperon mixing

and KC, is shown by the red line. (b) The same as (a) but for ΣKn = 400 MeV.

One can see that the appearance of hyperons leads to a larger decrease in the conden-

sate as density increases in comparison with the case of non-strangeness matter (nucleon

matter). In the presence of KC, the decrease in the quark condensate is also enhanced in

comparison with the case of nucleon matter by the reduction factor cos θ in Equation (57),

while the decrease is moderated in comparison with the case of pure hyperon-mixed matter,

since the s-wave K–B scalar attractive interaction is weakened as a result of the compet-

ing effect between hyperons and KC. The decrease in the quark condensate is larger for
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ΣKn = 400 MeV than for ΣKn = 300 MeV. Thus, it may be concluded that the appearance of

strangeness in the form of hyperon mixing and KC in dense matter assists in the restoration

of chiral symmetry.

It is to be noted that a contribution from particle–hole correlations by baryons and

mesons beyond the mean field approximation is not taken into account in the present

form of the q̄q condensates, Equation (57), nor the vacuum polarization effect on the q̄q

condensates, d(∆E0)/dmq, through the modification of the Dirac sea in the presence of the

Fermi sea. These effects should be taken into account for future study.

10. Summary and Outlook

We have overviewed the properties of the coexistent phase of kaon condensates and

hyperons [(Y+K) phase] by the use of the interaction model based on the effective chiral La-

grangian (ChL) for K–B and K–K interactions combined with the minimal relativistic mean

field theory (MRMF) for two-body baryon interaction, taking into account the universal

three-baryon repulsion (UTBR) and the phenomenological three-nucleon attraction (TNA),

referring to the results in Ref. [34,36]. The interplay between KC and hyperons and the

resulting onset mechanisms of KC in hyperon-mixed matter and the EOS with the (Y+K)

phase have been clarified within the (ChL+MRMF+UTBR+TNA) model. The EOS and the

resulting mass and radius of compact stars within a hadronic picture accompanying the

(Y+K) phase are consistent with recent observations of massive neutron stars.

We have figured out the close relations between the s-wave KC in the (Y+K) phase

and the quark (q̄q) condensates in the context of chiral symmetry and its spontaneous and

explicit breaking. One is the estimation of the quark contents inside the baryon, which is

connected to the Kb sigma term as one of the driving forces for the s-wave KC. By taking

into account the nonlinear effect with respect to the strangeness quark mass beyond the

chiral perturbation, we have obtained the allowable range of the Kn sigma term, for a given

πN sigma term, which is suggested from phenomenological analyses of the π-N scattering

experiments, and the small s̄s strangeness content in the nucleon, which is suggested from

the recent lattice QCD results. As a result, the values of ΣKn = (300–400) MeV have been

adopted as reasonable values in the paper.

Second, we have obtained the q̄q condensates in the (Y+K) phase in the mean field

approximation. It has been shown that both the appearance of strangeness in the form of

hyperon mixing and KC in dense matter assists the restoration of chiral symmetry.

As an outlook with regard to the realistic EOS including various aspects of MC over

the whole densities, it is suggested from heavy-ion collision experiments that the EOS in

the SNM or in pure neutron matter may be softer for ρB (2–4.5) ρ0 [71]. Pion condensation

(PC), which may be realized at rather low densities ρB ≳ 2ρ0, may have a role as a softening

mechanisms of the EOS at the relevant densities [11]. A possible coexistence of PC and

KC (π-K condensation) may be a realistic form of hadronic phase for keeping from the

assumption of the UTBR. In the ground state of the π-K condensed phase in neutron-star

matter, the energy eigenstates for baryons are given by quasi-baryonic states with the

superposition of neutron and proton states under the p-wave charged pion condensates.

In such a case, the ground state is occupied solely by the lower-energy eigenstates of the

quasi-baryons as a result of the level repulsion, forming the one-Fermi sea, which may help

resolve the assumption of the universal strengths between different species of baryons for

the UTBR.

On the other hand, there have been extensive studies on MC in quark matter [72]:

PC in the Nambu–Jona–Lasinio (NJL) model [73], PC in the NJL model with chiral

imbalance [74,75], PC and KC in chiral perturbation theory [76,77], KC in the Ginzburg–

Landau model with axial anomaly [78], etc. Recently, hadron–quark crossover has been
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proposed to obtain massive compact stars compatible with observations [79–83]. In this

context, the connection of hadronic matter including the (Y+K) phase to quark matter at

high densities may be possible. Specifically, there may be similarity and difference between

the alternating layer spin (ALS) structure accompanying π0 condensation in hadronic

matter [6] and a dual chiral density wave (DCDW) in quark matter [84,85]. It is also an

open problem how the (Y+K) phase is connected to KC in the color–flavor-locked (CFL)

phase [86–88]. Toward a unified understanding of meson condensation in both the hadronic

phase and quark phase, tje correspondence between chiral dynamics in both phases should

be clarified on the assumption that there remain various hadronic excitation modes even in

quark matter. For example, the following issues may be left as a future elucidation whether

there are relevant meson–quark interactions for MC in quark matter, corresponding to

the s-wave K–B scalar and vector interactions as the driving force of the s-wave KC, and

those corresponding to the p-wave πN interaction as the driving force of the p-wave PC

in hadronic matter. Multi-quark interaction may be responsible for stiffening the EOS of

MC in quark matter. Such a repulsion might correspond to the UTBR, which is introduced

phenomenologically in order to solve the significant softening problem stemming from the

appearance of KC and hyperon mixing in hadronic matter.

Author Contributions: Conceptualization, T.M. (Takumi Muto), T.M. (Toshiki Maruyama) and T.T.;

methodology, T.M. (Takumi Muto); software, T.M. (Takumi Muto) and T.M. (Toshiki Maruyama);

validation, T.M. (Takumi Muto), T.M. (Toshiki Maruyama) and T.T.; formal analysis, T.M. (Takumi

Muto, T.M. (Toshiki Maruyama) and T.T.; investigation, T.M. (Takumi Muto), T.M. (Toshiki Maruyama)

and T.T.; resources, T.M. (Takumi Muto) and T. Maruyama; data curation, T.M. (Takumi Muto);

writing—original draft preparation, T.M. (Takumi Muto); writing—review and editing, T.M. (Takumi

Muto, T.M. (Toshiki Maruyama) and T.T.; visualization, T.M. (Takumi Muto); supervision, T.T.; project

administration, T.M. (Takumi Muto); funding acquisition, T.M. (Takumi Muto); All authors have read

and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data presented in this study are contained within the article.

Acknowledgments: The authors thank H. Sotani, N. Yasutake, and A. Dohi for their useful comments

and interest in this work. The work is financially supported by the Chiba Institute of Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Sawyer, R.F. Condensed π− phase in neutron-star matter. Phys. Rev. Lett. 1972, 29, 382. [CrossRef]

2. Scalapino, D.J. π− condensate in dense nuclear matter. Phys. Rev. Lett. 1972, 29, 392. [CrossRef]

3. Migdal, A.B. Pion fields in nuclear matter. Rev. Mod. Phys. 1978, 50, 107. [CrossRef]

4. Migdal, A.B.; Saperstein, E.E.; Troitsky, M.A.; Voskresensky, D.N. Pion degrees of freedom in nuclear matter. Phys. Rep. 1990,

192, 179. [CrossRef]

5. Baym, G.; Campbell, D.K. Mesons and Nuclei; Rho, M., Wilkinson, D.H., Eds.; North Holland, Amsterdam, The Netherlands, 1979;

Volume III, p. 1031.

6. Kunihiro, T.; Muto, T.; Takatsuka, T.; Tamagaki, R.; Tatsumi, T. Various phases in high-density nuclear matter and neutron stars.

Prog. Theor. Phys. Suppl. 1993, 112, 1.

7. Kaplan, D.B.; Nelson, A.E. Strange goings on in dense nucleonic matter. Phys. Lett. B 1986, 175, 57. [CrossRef]

8. Tatsumi, T. K-on condensation and cooling of neutron stars. Prog. Theor. Phys. 1988, 80, 22. [CrossRef]

9. Muto, T.; Tatsumi, T. Theoretical aspects of kaon condensation in neutron matter. Phys. Lett. B 1992, 283, 165. [CrossRef]

10. Muto, T. Role of weak interaction on kaon condensation in neutron matter–A result with hyperon excitations.

Prog. Theor. Phys. 1993, 89, 415. [CrossRef]

11. Muto, T.; Tamagaki, R.; Tatsumi, T. A chiral symmetry approach to meson condensations. Prog. Theor. Phys. Suppl. 1993, 112, 159.

[CrossRef]

http://doi.org/10.1103/PhysRevLett.29.382
http://dx.doi.org/10.1103/PhysRevLett.29.386
http://dx.doi.org/10.1103/RevModPhys.50.107
http://dx.doi.org/10.1016/0370-1573(90)90132-L
http://dx.doi.org/10.1016/0370-2693(86)90331-X
http://dx.doi.org/10.1143/PTP.80.22
http://dx.doi.org/10.1016/0370-2693(92)90001-K
http://dx.doi.org/10.1143/ptp/89.2.415
http://dx.doi.org/10.1143/PTPS.112.159


Symmetry 2025, 17, 270 22 of 24

12. Muto, T.; Takatsuka, T.; Tamagaki, R.; Tatsumi, T. Implications of various hadron phases to neutron star phenomena.

Prog. Theor. Phys. Suppl. 1993, 112, 221. [CrossRef]

13. Thorsson, V.; Prakash, M.; Lattimer, J.M. Composition, structure and evolution of neutron stars with kaon condensates. Nucl. Phys.

A 1994, 572, 693. [CrossRef]

14. Kolomeitsev, E.E.; Voskresensky, D.N.; Kämpfer, B. Kaon polarization in nuclear matter. Nucl. Phys. A 1995, 588, 889–917.

[CrossRef]

15. Lee, C.-H.; Brown, G.E.; Min, D.-P.; Rho, M. An Effective chiral Lagrangian approach to kaon - nuclear interactions: Kaonic atom

and kaon condensation. Nucl. Phys. A 1995, 585, 401. [CrossRef]

16. Lee, C.-H. Kaon condensation in dense stellar matter. Phys. Rep. 1996, 275, 255. [CrossRef]

17. Prakash, M.; Bombaci, I.; Prakash, M.; Ellis, P.J.; Lattimer, J.M.; Knorren. Composition and Structure of Protoneutron

Stars.Phys. Rep. 1997, 280, 1. [CrossRef]

18. Tsushima, K.; Saito, K.; Thomas, A.W.; Wright, S.V. In-medium kaon and antikaon properties in the quark-meson coupling model.

Phys. Lett. B 1998, 429, 239. [CrossRef]

19. Fujii, H.; Maruyama, T.; Muto, T.; Tatsumi, T. Equation of state with kaon condensates and neutron stars. Nucl. Phys. A 1996,

597, 645. [CrossRef]

20. Glendenning, N.K.; Schaffner-Bielich, J. First order kaon condensate. Phys. Rev. C 1999, 60, 025803. [CrossRef]

21. Maxwell, O.V.; Brown, G.E.; Campbell, D.K.; Dashen, R.F.; Manassah, J.T. Beta decay of pion condensates as a cooling mechanism

for neutron stars. Astrophys. J. 1977, 216, 77. [CrossRef]

22. Brown, G.E.; Kubodera, K.; Page, D.; Pizzecherro, P. Strangeness condensation and cooling of neutron stars. Phys. Rev. D 1988,

37, 2042. [CrossRef] [PubMed]

23. Fujii, H.; Muto, T.; Tatsumi, T.; Tamagaki, R. Effects of weak interaction on kaon condensation and cooling of neutron stars.

Nucl. Phys. A 1994, 571, 758.

24. Fujii, H.; Muto, T.; Tatsumi, T.; Tamagaki, R. Effects of symmetry energy on the direct URCA process in the kaon condensed phase.

Phys. Rev. C 1994, 50, 3140. [CrossRef]

25. Ellis, P.J.; Knorren, R.; Prakash, M. Kaon condensation in neutron star matter with hyperons. Phys. Lett. B 1995, 349, 11. [CrossRef]

26. Knorren, R.; Prakash, M.; Ellis, P.J. Strangeness in hadronic stellar matter. Phys. Rev. C 1995, 52, 3470. [CrossRef]

27. Schaffner, J.; Mishustin, I.N. Hyperon-rich matter in neutron stars. Phys. Rev. C 1996, 53, 1416. [CrossRef]

28. Pal, S.; Bandyopadhyay, D.; Greiner, W. Antikaon condensation in neutron stars. Nucl. Phys. A 2000, 674, 553. [CrossRef]

29. Muto, T. Interplay between kaon condensation and hyperons in highly dense matter. Phys. Rev. C 2008, 77, 015810. [CrossRef]

30. Mishra, A.; Kumar, A.; Sanyal, S.; Dexheimer, V.; Schramm, S. Kaon properties in (proto-)neutron star matter. Eur. Phys. J. A 2010,

45, 169. [CrossRef]

31. Char, P.; Banik, S. Massive neutron stars with antikaon condensates in a density-dependent hadron field theory. Phys. Rev. C 2014,

90, 015801. [CrossRef]

32. Malik, T.; Banik, S.; Bandyopadhyay, D. Equation-of-state Table with Hyperon and Antikaon for Supernova and Neutron Star

Merger. Astrophys. J. 2021, 910, 96. [CrossRef]

33. Ma, F.; Wu, C.; Guo, W. Kaon-meson condensation and ∆ resonance in hyperonic stellar matter within a relativistic mean-field

model. Phys. Rev. C 2023, 107, 045804. [CrossRef]

34. Muto, T.; Maruyama, T.; Tatsumi, T. Effects of three-baryon forces on kaon condensation in hyperon-mixed matter. Phys. Lett. B

2021, 820, 136587. [CrossRef]

35. Muto, T.; Maruyama, T.; Tatsumi, T. Kaon-baryon coupling schemes and kaon condensation in hyperon-mixed matter.

Prog. Theor. Exp. Phys. 2022, 2022, 093D03. [CrossRef]

36. Muto, T. Properties of kaon-condensed phase in hyperon-mixed matter with three-baryon forces. arXiv 2024, arXiv:2411.09967v1.

37. Muto, T. Kaonic modes in hyperonic matter and p-wave kaon condensation. Nucl. Phys. A 2002, 697, 225. [CrossRef]

38. Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.

Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01.

39. Cohen, T.D.; Furnstahl, R.J.; Griegel, D.K. Quark and gluon condensates in nuclear matter. Phys. Rev. C 1992, 45, 1881. [CrossRef]

40. Tamagaki, R. Universal short-range repulsion in the baryon system originating from the confinement: Approach in string-junction

model. Prog. Theor. Phys. 2008, 119, 965. [CrossRef]

41. Takatsuka, T.; Nishizaki, S.; Tamagaki, R. Universal three-body repulsion suggested by neutron stars. AIP Conf. Proc. 2008,

1011, 209.

42. Nishizaki, S.; Takatsuka, T.; Hiura, J. Properties of hot asymmetric nuclear matter.Prog. Theor. Phys. 1994, 92, 93. [CrossRef]

43. Lagaris, I.E.; Pandharipande, V.R. Variational calculations of realistic models of nuclear matter. Nucl. Phys. A 1981, 359, 349.

[CrossRef]

44. Oertel, M.; Hempel, M.; Kähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007.

[CrossRef]

http://dx.doi.org/10.1143/PTPS.112.221
http://dx.doi.org/10.1016/0375-9474(94)90407-3
http://dx.doi.org/10.1016/0375-9474(95)00084-E
http://dx.doi.org/10.1016/0375-9474(94)00623-U
http://dx.doi.org/10.1016/0370-1573(96)00005-1
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1016/S0370-2693(98)00488-2
http://dx.doi.org/10.1016/0375-9474(95)00451-3
http://dx.doi.org/10.1103/PhysRevC.60.025803
http://dx.doi.org/10.1086/155447
http://dx.doi.org/10.1103/PhysRevD.37.2042
http://www.ncbi.nlm.nih.gov/pubmed/9958904
http://dx.doi.org/10.1103/PhysRevC.50.3140
http://dx.doi.org/10.1016/0370-2693(95)00231-9
http://dx.doi.org/10.1103/PhysRevC.52.3470
http://dx.doi.org/10.1103/PhysRevC.53.1416
http://dx.doi.org/10.1016/S0375-9474(00)00175-5
http://dx.doi.org/10.1103/PhysRevC.77.015810
http://dx.doi.org/10.1140/epja/i2010-10986-x
http://dx.doi.org/10.1103/PhysRevC.90.015801
http://dx.doi.org/10.3847/1538-4357/abe860
http://dx.doi.org/10.1103/PhysRevC.107.045804
http://dx.doi.org/10.1016/j.physletb.2021.136587
http://dx.doi.org/10.1093/ptep/ptac115
http://dx.doi.org/10.1016/S0375-9474(01)01226-X
http://dx.doi.org/10.1103/PhysRevC.45.1881
http://dx.doi.org/10.1143/PTP.119.965
http://dx.doi.org/10.1143/ptp/92.1.93
http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1103/RevModPhys.89.015007


Symmetry 2025, 17, 270 23 of 24

45. Schaffner, J.; Dover, C.B.; Gal, A.; Greiner, C.; Millener, D.J.; Stöcker, H. Multiply strange nuclear systems. Ann. Phys. 1994, 235, 35.

[CrossRef]

46. Ohki, H.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Noaki, J.; Onogi, T.; Shintani, E.; Yamada, N.; JLQCD

Collaboration. Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry. Phys. Rev. D 2008,

78, 054502. [CrossRef]

47. Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Lellouch, L.; Lippert, T.; Metivet, T.; Portelli, A.; Szabo, K.K. Lattice

computation of the nucleon scalar quark contents at the physical point. Phys. Rev. Lett. 2016, 116, 172001. [CrossRef] [PubMed]

48. Alexandrou, C.; Bacchio, S.; Constantinou, M.; Finkenrath, J.; Hadjiyiannakou, K.; Jansen, K.; Koutsou, G.;Vaquero Aviles-Casco,

A. Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD. Phys. Rev. D 2020, 102, 054517. [CrossRef]

49. Gasser, J.; Leutwyler, H.; Sainio, M.E. Sigma-term update. Phys. Lett. B 1991, 253, 260. [CrossRef]

50. Alarcón, J.M. Brief history of the pion–nucleon sigma term. Eur. Phys. J. Spec. Top. 2021, 230, 1609. [CrossRef]

51. Jaffe, R.L.; Korpa, C.L. The pattern of chiral symmetry breaking and the strange quark content of the proton.

Comm. Nucl. Part. Phys. 1987, 17, 163.

52. Hatsuda, T.; Kunihiro, T. Flavor mixing in the low energy hadron dynamics: Interplay of the SU f (3) breaking and the UA(1)

anomaly. Z. Phys. C 1991, 51, 49. [CrossRef]

53. Ramos, A.; Oset, E. The properties of K̄ in the nuclear medium. Nucl. Phys. A 2000, 671, 481. [CrossRef]

54. Waas, T.; Rho, M.; Weise, W. Effective kaon mass in dense baryonic matter: Role of correlations. Nucl. Phys. A 1997, 617, 449.

[CrossRef]

55. Waas, T.; Weise, W. S-wave interactions of K̄ and η mesons in nuclear matter. Nucl. Phys. A 1997, 625, 287. [CrossRef]

56. Ichikawa, Y.; Yamagata-Sekihara, J.; Ahn, J.K.; Akazawa, Y.; Aoki, K.; Botta, E.; Ekawa, H.; Evtoukhovitch, P.; Feliciello, A.; Fujita,

M.; et al. An event excess observed in the deeply bound region of the 12C (K−, p) missing-mass spectrum. Prog. Theor. Exp. Phys.

2020, 2020, 123D01. [CrossRef]

57. Shanahan, P.E.; Thomas, A.W.; Young, R.D. Sigma terms from an SU(3) chiral extrapolation. Phys. Rev. D 2013, 87, 074503.

[CrossRef]

58. Lutz, M.F.M.; Bavontaweepanya, R.; Kobadaj, C.; Schwarz, K. Finite volume effects in the chiral extrapolation of baryon masses.

Phys. Rev. D 2014, 90, 054505. [CrossRef]

59. Muto, T.; Tatsumi, T.; Iwamoto, N. Nonequilibrium weak processes in kaon condensation. I. Reaction rate for the thermal kaon

process. Phys. Rev. D 2000, 61, 063001. [CrossRef]

60. Muto, T.; Tatsumi, T.; Iwamoto, N. Nonequilibrium weak processes in kaon condensation. II. Kinetics of condensation. Phys. Rev. D

2000, 61, 083002. [CrossRef]

61. Baym, G.; Pethick, C.; Sutherland, P. The ground state of matter at high densities: Equation of state and stellar models.

Astrophys. J. 1971, 170, 299. [CrossRef]

62. Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A two-solar-mass neutron star measured using

Shapiro delay. Nature 2010, 467, 1081. [CrossRef] [PubMed]

63. Fonseca, E.; Pennucci, T.T.; Ellis, J.A.; Stairs, I.H.; Nice, D.J.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Crowter, K.; Dolch,

T.; et al.The nanograv nine-year data set: Mass and geometric measurements of binary millisecond pulsars. Astrophys. J. 2016,

832, 167. [CrossRef]

64. Antoniadis, J.; Fereire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe,

T.; et al. A massive pulsar in a compact relativistic binary. Science 2013, 340, 448. [CrossRef]

65. Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.;

Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2020, 4, 72.

[CrossRef]

66. Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian,

Z.; Guillemot, L.; et al. Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. L. 2021, 915, L12.

[CrossRef]

67. Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer,

J.M.; Loewenstein, M.; et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. L. 2021, 918, L28.

[CrossRef]

68. Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva,

J.S.; et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy.

Astrophys. J. L. 2021, 918, L27.

69. Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty,

D.; et al. A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation. Astrophys. J. L. 2019, 887, L21. [CrossRef]

http://dx.doi.org/10.1006/aphy.1994.1090
http://dx.doi.org/10.1103/PhysRevD.78.054502
http://dx.doi.org/10.1103/PhysRevLett.116.172001
http://www.ncbi.nlm.nih.gov/pubmed/27176514
http://dx.doi.org/10.1103/PhysRevD.102.054517
http://dx.doi.org/10.1016/0370-2693(91)91394-B
http://dx.doi.org/10.1140/epjs/s11734-021-00145-6
http://dx.doi.org/10.1007/BF01579559
http://dx.doi.org/10.1016/S0375-9474(99)00846-5
http://dx.doi.org/10.1016/S0375-9474(97)00020-1
http://dx.doi.org/10.1016/S0375-9474(97)00487-9
http://dx.doi.org/10.1093/ptep/ptaa139
http://dx.doi.org/10.1103/PhysRevD.87.074503
http://dx.doi.org/10.1103/PhysRevD.90.054505
http://dx.doi.org/10.1103/PhysRevD.61.063001
http://dx.doi.org/10.1103/PhysRevD.61.083002
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1038/nature09466
http://www.ncbi.nlm.nih.gov/pubmed/20981094
http://dx.doi.org/10.3847/0004-637X/832/2/167
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1038/s41550-019-0880-2
http://dx.doi.org/10.3847/2041-8213/ac03b8
http://dx.doi.org/10.3847/2041-8213/ac089b
http://dx.doi.org/10.3847/2041-8213/ab481c


Symmetry 2025, 17, 270 24 of 24

70. Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.;

Lattimer, J.M.; et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter.

Astrophys. J. L. 2019, 887, L24. [CrossRef]

71. Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592. [CrossRef]

72. Mannarelli, M. Meson Condensation. Particles 2019, 2019, 411–443. [CrossRef]

73. Abuki, H.; Anglani, R.; Gatto, R.; Pellicoro, M.; Ruggieri, M. Fate of pion condensation in quark matter: From the chiral limit to

the physical pion mass. Phys. Rev. D 2009, 79, 034032. [CrossRef]

74. Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Charged pion condensation in dense quark matter: Nambu–Jona-Lasinio model

study. Symmetry 2019, 2019, 778. [CrossRef]

75. Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Electrical neutrality and β-equilibrium conditions in dense quark matter:

Generation of charged pion condensation by chiral imbalance. Eur. Phys. J. C 2020, 80, 995. [CrossRef]

76. Adhikari, P.; Andersen, J.O. Quark and pion condensates at finite isospin density in chiral perturbation theory. Eur. Phys. J. C

2020, 80, 1028. [CrossRef]

77. Adhikari, P.; Andersen, J.O. Pion and kaon condensation at zero temperature in three-flavor χPPT at nonzero isospin and strange

chemical potentials at next-to-leading order. JHEP 2020, 06, 170. [CrossRef]

78. Schmitt, A.; Stetina, S.; Tachibana, M. Ginzburg-Landau phase diagram for dense matter with axial anomaly, strange quark mass,

and meson condensation. Phys. Rev. D 2011, 83, 045008. [CrossRef]

79. Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron-quark crossover and massive hybrid stars with strangeness. Astrophys. J. 2013,

764, 12. [CrossRef]

80. Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron–quark crossover and hot neutron stars at birth. PTEP 2016, 2016, 021D01.

[CrossRef]

81. Baym, G.; Furusawa, S.; Hatsuda, T.; Kojo, T.; Togashi, H. New neutron star equation of state with quark–hadron crossover.

Astrophys. J. 2019, 885, 42. [CrossRef]

82. Kojo, T. Stiffening of matter in quark-hadron continuity. Phys. Rev. D 2021, 104, 074005. [CrossRef]

83. Fujimoto, Y.; Fukushima, K.; McLerran, L.D.; Praszalowicz, M. Trace anomaly as signature of conformality in neutron stars.

Phys. Rev. Lett. 2022, 129, 252702. [CrossRef] [PubMed]

84. Tatsumi, T.; Nakano, E. Dual chiral density wave in quark matter. arXiv 2004, arXiv:hep-ph/0408294.

85. Nakano, E.; Tatsumi, T. Chiral symmetry and density waves in quark matter. Phys. Rev. D 2005, 71, 114006. [CrossRef]

86. Son, D.T.; Stephanov, M. Inverse meson mass ordering in the color-flavor-locking phase of high-density QCD. Phys. Rev. D 2000,

61, 07402. [CrossRef]

87. Bedaque, P.; Schafer, T. High-density quark matter under stress. Nucl. Phys. A 2002, 697, 802. [CrossRef]

88. Kaplan, D.B.; Reddy, S. Novel phases and transitions in color flavor locked matter. Phys. Rev. D 2002, 65, 054042. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3847/2041-8213/ab50c5
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.3390/particles2030025
http://dx.doi.org/10.1103/PhysRevD.79.034032
http://dx.doi.org/10.3390/sym11060778
http://dx.doi.org/10.1140/epjc/s10052-020-08502-w
http://dx.doi.org/10.1140/epjc/s10052-020-08574-8
http://dx.doi.org/10.1007/JHEP06(2020)170
http://dx.doi.org/10.1103/PhysRevD.83.045008
http://dx.doi.org/10.1088/0004-637X/764/1/12
http://dx.doi.org/10.1093/ptep/ptv187
http://dx.doi.org/10.3847/1538-4357/ab441e
http://dx.doi.org/10.1103/PhysRevD.104.074005
http://dx.doi.org/10.1103/PhysRevLett.129.252702
http://www.ncbi.nlm.nih.gov/pubmed/36608254
http://dx.doi.org/10.1103/PhysRevD.71.114006
http://dx.doi.org/10.1103/PhysRevD.61.074012
http://dx.doi.org/10.1016/S0375-9474(01)01272-6
http://dx.doi.org/10.1103/PhysRevD.65.054042

	Introduction
	Chiral Symmetry Approach for Kaon Condensation
	Baryon Interactions
	Minimal RMF for Baryon–Baryon Interaction
	Universal Three-Baryon Repulsive Force and Three-Nucleon Attractive Force

	Description of the Ground State for the (Y+K) Phase
	Energy Density Expression for the (Y+K) Phase
	Classical Field Equations for Kaon Condensates and Meson Mean Fields
	Ground State Conditions

	Choice of Parameters and Properties of Symmetric Nuclear Matter
	Meson–Nucleon Coupling Constants Determined from Saturation Properties in the SNM
	Meson–Hyperon Coupling Constants

	Estimation of the kaon–Baryon Sigma Terms—Quark Contents in the Baryon
	Onset of KC and Composition of Matter in the (Y+K) Phase
	Onset Density of Kaon Condensation in Hyperon-Mixed Matter
	Interplay Between Kaons and Baryons Before and After the Onset of KC

	EOS and Structure of Neutron Stars with the (Y+K) Phase
	Quark Condensates in the (Y+K) Phase and Relevance to Chiral Restoration
	Summary and Outlook
	References

