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We develop the M-brane actions proposed in Y. Sakatani and S. Uehara, arXiv:1607.04265,
by using n-symbols determined in Y. Sakatani and S. Uehara, arXiv:1708.06342. Introducing
n-forms that are defined with the n-symbols, we present U-duality-covariant M-brane actions
which describe the known brane worldvolume theories for Mp-branes with p = 0,2,5. We
show that the self-duality relation known in the double sigma model is naturally generalized to
M-branes. In particular, for an M5-brane, the self-duality relation is nontrivially realized, where
the Hodge star operator is defined with the familiar M5-brane metric while the n-form contains
the self-dual three-form field strength. The action for a Kaluza—Klein monopole is also partially
reproduced. Moreover, we explain how to treat type IIB branes in our general formalism. As a
demonstration, we reproduce the known action for a (p, ¢)-string.

Subject Index B20, B23, B25

1. Introduction

String theory compactified on a d-torus has the O(d, d) T-duality symmetry, but the duality is not
manifest in the conventional formulation. A 7'-duality manifest formulation for strings, called the
double sigma model (DSM), was originally developed in Refs. [1-6], where the dimensions of
the target spacetime are doubled by introducing the dual winding coordinates. Utilizing the idea of
the doubled spacetime, a manifestly 7-duality-covariant formulation of low-energy superstrings was
developed in Refs. [4,7—-10], which is nowadays known as the double field theory (DFT). More recent
studies on the DSM include Refs. [11-14]. Other than the fundamental string, higher-dimensional
objects also transform covariantly under 7'-duality. A T-duality-covariant action for D-branes was
constructed in Ref. [15] (see also Ref. [5]) and a covariant action for a family of type II 5-branes [i.e.
NS5-brane, Kaluza—Klein monopole (KKM), and the exotic 5%-brane] was constructed in Ref. [16].

In fact, string theory compactified on a (d — 1)-torus or M-theory on a d-torus has a larger
duality symmetry generated by the E;) U-duality group. As a natural generalization of the
T-duality-covariant string theory, U-duality-covariant membrane theory was first investigated in
Ref. [17]. Moreover, by generalizing the idea of DFT, a manifestly U-duality-covariant formulation
of supergravity, called the exceptional field theory (EFT), was developed in Refs. [18-32]. Utilizing
DFT/EFT, unified treatments of brane solutions were studied in Refs. [33—37]. Further attempts at
U-duality manifest M-brane theories were made in Refs. [38—45], but some obstacles to the man-
ifestation of the whole U-duality symmetry are reported in Refs. [46—48] (see Sect. 3.6 for more
details on this point). Thus, it remains to be investigated whether we can formulate brane actions in
a U-duality-covariant manner.
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In this paper, we develop the worldvolume theories for M-branes proposed in Ref. [49]. The
proposed theory is based on the geometry of the exceptional spacetime (introduced in EFT) and
can reproduce the conventional worldvolume theories for the M2-brane and M5-brane in a uniform
manner. The action for an Mp-brane takes the form

1 1
§=——— - X)P! S | 1.1
Pyl 8 [2MU( )P A K, P+ p+1:| (1.1)

‘p+1

However, the U-duality covariance has not been manifest in €2, 1. In this paper, by using the -
symbols recently determined in Ref. [50], we introduce a covariant object ;;, to be called the n-form,
and propose a duality-covariant action that reproduces the above action. As we shall argue later, the
n-form can be regarded as a natural generalization of the O(d, d)-invariant metric 1y in DFT or
DSM. Indeed, we show that the self-duality relation in DSM,

ny P =My =, P, (1.2)
can be naturally generalized to
ny AP =My x, P’ (1.3)

for an Mp-brane. Moreover, we argue that the action for a KKM can also be naturally reproduced in
our formalism, although the whole action is not reproduced due to limitations of our analysis. We
also demonstrate that our formalism can reproduce brane actions for type I1IB branes.

The present paper is organized as follows. In Sect. 2, we briefly review the DSM constructed in
Ref. [12] and explain a slight difference from our approach. In Sect. 3, we apply our approach to
M-branes (MO, M2, M5-branes) and KKM. In Sect. 4, we explain how to apply our formalism to
type 1IB branes and reproduce the action for a (p, g)-string. A possible application to exotic branes
is discussed in Sect. 5. Section 6 is devoted to conclusions and discussion.

2. Double sigma model

In this section, we review the standard construction of the DSM and explain a slight difference
from our approach. The difference is not significant in the DSM, but it becomes important when we
consider higher dimensional objects in the following sections.

2.1. A briefreview of double sigma model

Let us begin with a brief review of Lee and Park’s DSM [12] (known as the string sigma model on
the doubled-yet-gauged spacetime). The action takes the form

S = —%Lz[%HIJ(X)DXI/\*,,DXJ+77UDX1/\AJ], 2.1)
where 1 is the O(d, d)-invariant metric, ,5 (o) is the intrinsic metric on the worldsheet, X/ (o) is the
embedding function of the string into the doubled spacetime, and H;; (X) is the generalized metric
satisfying the section condition 8% 8xH;; = 0. According to the section condition (or equivalently
the coordinate gauge symmetry [51]), there are d generalized Killing vectors, which take the form
Pl (i =1,...,d) when H;; depends only on the x! coordinates. Associated to the isometries, we
introduce one-form gauge fields A’ (o) satisfying

Al(0)9;T(x) =0 (2.2)
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for an arbitrary supergravity field 7(x), and define the covariant derivative DX/ (o) = dX' (o) —
Al (o).

In order to see the equivalence to the conventional string sigma model, let us consider a duality
frame where 9¥H;; = 0 is realized. In such frame, Eq. (2.2) requires A’ and DX’ to have the
following form:

Al (o) = (A,Sa))’ px! —ax! — Al = (d;{ ZA,~>‘ 2.3)
By further using the parameterization of the generalized metric
N o) "
the action becomes
S = —%/22 [G,-jdxf Ay dX) — By dX' A dX) — dX; A dX' 2.5)

1 . 3 .
+ 5 G (A = d& + By dX* — G vy dX*) Aoy (A — d; + By axX! = Gyvy dX’)].

Eliminating the gauge fields .4;, we obtain the action

s=-3 L [ Gy dX7 A sy dXT — By(X) dX* A dXT — dF; nax' |, (2.6)
2

which is the familiar sigma model action for the bosonic string up to a total-derivative term. The
DSM is thus classically equivalent to the conventional string sigma model. The action in Eq. (2.1)
is manifestly invariant under global O(d, d) rotations and worldsheet diffeomorphisms. It is also
invariant under generalized diffeomorphisms in the target doubled spacetime [12].

2.2. Our approach

In this paper, we basically follow the approach of Lee and Park, but there are slight differences.
Following Ref. [50], we introduce a set of null generalized vectors A? (a = 1,...,d) satisfying

A4t 3b =o. (2.7)

These A specify a solution of the section condition, and an arbitrary supergravity field 7' (x) must
satisfy the linear section equation [50]

A 9T (x) = 0. (2.8)

24 54
eeun=(2)- ) oo

corresponds to the section where supergravity fields satisfy d'7'(x) = 0. For a given set of null

For example, a choice

generalized vectors A% that specifies a section, we express the condition in Eq. (2.2) for A’ as
Al(o) 24 = 0. (2.10)

This is a minor difference (though it becomes important when we consider brane actions).
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Fig. 1. Fluctuations of a string as active generalized diffeomorphisms.

A major difference is in the parameterization of fluctuations. In the DSMs known in the literature,
fluctuations of a string are described by the embedding function X/ (o), but we take a different
approach, which is important in the generalization to branes. We first choose the section in Eq. (2.9),
where all fields and gauge parameters depend only on the physical coordinates x’. We then prepare
a static string worldsheet, where the tangent vectors to the worldsheet take the form

- - 5t
Ea=(EDH = (()f‘) (a=0,1), (2.11)
where the bar represents that the string is static. If we introduce a one-form
do*
=7 =7 0
E=&do" =] . |, (2.12)
0

it corresponds to dX’ (o) of a string in the static gauge, X°(0) = ¢® and X!(6) = o'. In order
to describe a fluctuation of the string, we perform a finite active diffeomorphism along a gauge
parameter £/(x) = (&, &) satisfying 9’6/ = 0 (see Fig. 1). Under the section in Eq. (2.9), a
generalized diffeomorphism e can be decomposed into a B-field gauge transformation and a usual

deo % OV O , (2.13)
F() 8f)\ 0 2

ax'k

diffeomorphism

where x = & Ux , Fjj = 0;4; — 0;4;, and A; are complicated functions of & ! (which coincide with
& when £’ = 0). The usual diffeomorphism maps £’ as

Elo) — (dX :)(“)>, (2.14)

and the B-field gauge transformation further maps it as

& () diffeo. dX"(o)\ B-field gauge trsf. /dX (o) ) ‘ 2.15)
0 Fij(X'(0)) dX7 (o)
We thus introduce a generalized vector El(o), which describes fluctuations of a string, as
dX (o)
o) = ) 2.16
FII(X(O')) dX](O') ( )

where the prime has been removed for simplicity. The scalar fields X’ describe fluctuations of a
string inside the d-dimensional physical subspace of the doubled target space (with coordinates x'),
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while the one-form 4; describes the fluctuation along the dual directions in the doubled spacetime.
In general, since the integrability condition is violated, i.e. (0;: £y — 0y &N # 0, we cannot find the
embedding functions X (o) thatrealize £/ (0') = dX' (o). However, inside the physical subspace, the
integrability condition, (3;£, — 9, &)’ = 0, is satisfied and the worldsheet is a manifold described
by X'(o) as usual. Thus, the violation in the dual components may be related to the gerbe structure
discussed in Ref. [52]. In this paper, instead of assuming the existence of the embedding functions
X (o), we parameterize fluctuations of a string by using the diffeomorphism parameters gl or
equivalently {X(0), 4;(X (0))}.

Since £/ is obtained by acting a generalized diffeomorphism on a generalized vector £/, £ also
transforms as a generalized vector. Such behavior of £’ is ensured as long as F, ;j transforms (like the
B-field) as

SyFy=EFy + 87 — 9% (Svdi =VFu + %) (2.17)

under an infinitesimal diffeomorphism. It should also be noted that £’ is a null generalized vector;
n £ &7 = 0. Assuming the null property, our parameterization in Eq. (2.16) is the most general
parameterization up to duality rotations.

Now, our action is given by

1
SZ__f [—HU(X)P’A*VPJ+n1J7>’AAJ], (2.18)
2 Js,L2

which is simply obtained from Eq. (2.1) with the replacements
ax' - &, px' > pl=¢g - A, (2.19)

In the duality frame of Eq. (2.9), the condition in Eq. (2.10) leads to

r_ (0 I _ ol 4l _ dX' _ (ax
A= (A,-)’ Pr=8-A= (F,_-,-(X(o))de—Ai> N (7?,-)’ (220)

and, in the following, we consider P; as the fundamental variable rather than A;. If we rewrite the
action as

1
s=——/ [ 5 Hu @O P! Ay P 4y PP ne ], (221)
2 e L2

we observe that F; appears only in the second term. In the second term, since the only quantity with
an upper index is dX' (other than the Kronecker delta), we see that F’ ;j appears only through the
pullback,

Fy(0) =dAi(0),  Ai(0) = 4;(X(0))dX". (2.22)

Indeed, we can explicitly expand the second term as

1 1 I J i
S:——/ [—HU(X)P A s, P+ Py AdX —2F2]. (2.23)
2 J5,l2

Therefore, the fundamental fields in our action are

(X' (0), 41(0), Pi(0), Yap(0)). (2.24)
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Namely, not all components of Ai(X (0)) appear in the action—only the pullback 41(c) does.
Eliminating the auxiliary fields P;(o) by using their equations of motion, we obtain

S = _—/ [ G0 dx? Ay dx! — By(x) dx’ A dx | —/ F. (2.25)
2 p)) py}

The main difference from Lee and Park’s action is in the last term. The last term in Eq. (2.6) reproduces
our F; if we regard dX; as Fj dX/.

Let us comment on the symmetry of the action in Eq. (2.18). The invariance under the worldsheet
diffeomorphism is manifest. Under an infinitesimal generalized diffeomorphism, £/ transforms as a
generalized vector and A’ is also supposed to transform as a generalized vector. Then, since ;7 and
nyy are generalized tensors, Eq. (2.18) is manifestly invariant under generalized diffeomorphism.
The action is also formally covariant under global O(d, d) rotations. In the O(d, d) rotated frame, A7
no longer takes the form of Eq. (2.9), and supergravity fields depend on another set of d coordinates,
which may contain the dual coordinates. The parameterization of the generalized vector &’ is also
changed since the physical subspace and the generalized diffeomorphism are changed (see Sect. 3.6
for more details).

For later convenience, let us also comment on the self-dual relation [1,5,6,12]. The equations of
motion for the auxiliary fields can be written as

Pi = =Gy ), dX/ + By dX. (2.26)
A duality-covariant rewriting of this equation is known as the self-dual relation, and takes the form
ny P = —HyX) %, P (2.27)

In this paper, we find a similar self-dual relation for M-branes that determines all of the auxiliary
fields in terms of the conventional fields.

3. M-branes in exceptional spacetime

In this section, we consider worldvolume actions for M-branes. We decompose the 11-dimensional
spacetime into an (11 — d)-dimensional “external space” and a d-dimensional “internal space,” and
enlarge the internal space into an exceptional space with dimension D = dim R, where R; is a
fundamental representation of the £;(4) group (see Appendix A.2). For simplicity, we disregard the
external space and consider dynamics of branes in the internal space only. This assumption becomes
less restrictive as d becomes larger. In order to describe the time evolution, we include the time
direction in the internal space.

In Sect. 3.1, we construct the brane actions for Mp-branes (p = 0,2, 5). The detailed properties
and the equivalence to the conventional theories are studied in Sects. 3.2—-3.4. The action for a KKM
is discussed in Sect. 3.5. In Sect. 3.6, we discuss the U-duality covariance of our actions.

3.1.  Action for an Mp-brane

In order to describe M-branes, we parameterize the generalized coordinates in the E4(4) exceptional
spacetime (d < 7) as

(xf):(xi Yivip  Vii--is yil"'i7,i>’

VT (3.1)
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where i = 1,...,dand I = 1,...,dim R;. We also parameterize the generalized metric M ; as
follows by using the fields in the 11-dimensional supergravity [22,37,53]:

~ 1 - 1 iriniy 1 i1
T _ =7 2 Ciiinia R1R23 L Ci i R
Mpy =L ML)y =|G%7 My, L=ed~ins edl ~iis , (3.2)
Gi 0 0 0
M |G|ﬁ 0 GIIIZ,]UZ 0 0 (3 3)
- 0 0 Gilis:j1-Js 0 > :
0 0 0 Ghinjij1 GY
. o
e Citini R
8; 0 0 0
_ iy 12
NG 81”2 0 0
= ky---ks ) 1/2k1k2k3
= 3%y is Chyhphs Cigks) 5!‘%1--4‘5 Chikyky §s 0 ’ (34)
213121450 3142151 i-is
k1k1p1p2p3q192 1i2kikalial3 i1-d5k1k2
Ty Cikyky Cp1p203 Ca192) 7"%1---,‘7 Cik 4y Cli 115 7!‘%,---1‘7 Ciky ky s
3121312171 2121312171 21/517! ipi Ui
5! 0 0 0
J
12
1 . 0 8,~|,~2 0 0
L Rilie o
eo! V1l = Cil“‘isj 0 8]_1--;(5 0 s (35)
\/5 iy-+is
ilakyks o
0 _7!841"'1'7 C’kl"'kS 0 6]1"2/7 5]
514217 ipeiy U0
5 0 0 0
J
_ Yy 172
/o 8,1,2 0 0
— 2 o o
L Ciy —isj =5Cliyipi3 Cigis 2081[1'11'2C’3’4’5] s 0 : (3'6)
VA V215! i-is

5 W2 (e 5C Cii 15 o
21Citiyip (Ciziqli— 5 Cizigis Cigig))) _426/[f1i2(c"|’3““7] 3Cliti3iy Cisigi)) 7E8{i1“‘isc’617]’ FUNEIEY

V! V217! 2145171 i-ig Ui

Here, (Gjj, Cijiriz> Ciy...ig) are the conventional fields in the 11-dimensional supergravity, |G| =
det(Gjj),and (R23)! ; and (R16) ; are E4(a) generators in the Ry -representation (see Appendix A.2

for the details). We also defined E Y 57V and Giviptie = Gtk L Givke 810
J1Jp 1 Jpl ik

Similar to the case of the DSM, we specify the section by introducing a set of null generalized
vectors Af (a = 1,...,d) satisfying [50]
Mgl =0, QY ab=o, (3.7)

where the explicit forms of 7% and Q¥ are given in Appendix A.3. For a given A{, the linear
section equations for arbitrary supergravity fields and gauge parameters 7 (x) become

Mgl e,T(x) =0, QM 8;T(x) =0. (3.8)
Using the same A%, we can express a condition for A’ as

Al@)r4 =0, (3.9)
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which corresponds to Eq. (2.10) in the DSM. For a natural choice of A%,

24
i 54
}\,il ip;a 1
21 0
()"?) = }\ilmis;a = 0 H (310)
NG
)Ll']u-i'/,i;a 0
NG
supergravity fields depend only on the physical coordinates x’ and A’ takes the form
0
o
2!
AN = | 4 (3.11)
NGl

NG
Similar to the DSM, we describe fluctuations of a p-brane by using the one-form-valued null
generalized vector £/ (o). In the case of the exceptional sigma model, we parameterize the null

generalized vector as
dx’
ax’ Fiyipj dX
2!
o=l g " - (3.12)
o) = J 0 = = (Fiywigj 5 Fliy iniy Figis)y) X :

0 NA

21 F'[’-I’IZ (F,'3..A,'71,'+% Fi3i4i5 Fi6i7]j)dX/

i

b

where we defined
Fil---i6 (.X') =6 a[ilAiz---i(,] (X),

Fi1i2i3 (X) =3 a[ilAi2i3](X),
(3.13)

1 i1ini 1 i1,
L= (L)) = e 5 Funn R g=g Fipig RIS
As in the string case, X*, 4 i1in» and 4, ...;; are understood as functions of the diffeomorphism param-
eters £/ that fluctuate a static brane. In order for £’ to transform as a generalized vector, F;;,;; and

Fj, ...is should transform as
SvFiiin = £EvFi iin — 3 0piy Viyi Svdii, = VEF i — vii
Vi = 2vliiyis [i1 Vipi3] VAijip =V L'kijip — Vijip )
Sy Fiywig = £vFiyig — 30 0iy Vigis Figisig) — 6 01y Vi--is)
k
(5[/141'1...,-5 =V Fki1~~~i5 -5 VIiiin Fi3i4i5] - V'l”'is) (3.14)
. . . . . . I\ i Vi1i2 vil“'iS vi1-~i7,k
under an infinitesimal generalized diffeomorphism along (V*) = (v N TRV ).Now, we
define the generalized vector Pl(o) as
dx’ dx’
Fiyigj dXI = Ay iy Piyiy
V2! V2!
I _ ol I_ . _ '
P=E£-A = ~(Fiyisj+5 Fliy iy Figis)i) X = Aj s = Piy-is | > (3-15)
Vst NET
20 Fifiyiy Finin)i+3 Figigis Figin)) 9 —Ai in i Piy-in,i
V7! V7!

and regard {P;,i,, Pi,.is» Pij--i;,i} as the fundamental fields instead of {A4;,;,, Ai,...is, Aij i, i}-
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Unlike the doubled case, the n-symbols 7. 1 in the E;(4) exceptional spacetime contain an addi-
tional index I [50]. Then, in order to describe a p-brane, we introduce a (p — 1)-form QI that
transforms in the Rp-representation, and define a (p — 1)-form-valued n-symbol

ny =19, (3.16)

which we call the n-form. In particular, when we consider an Mp-brane (p = 0,2, 5), we choose Q*

as follows:
0 dxi WA ax’
0 0 delr‘”i4
n2 s 4
Qw=[0] Qw=75|0| Qw=7] o | (3.17)
0 0 0
0 0 0

where F3 = % Fihiy dX figis Jp are constants representing the brane charge, and we have introduced
an abbreviated notation

AXTU 0 = XA A dXP. (3.18)

Then, we propose the following actions:

1
So=—= MyX) P A *yPJ,

2 s,
- [l/\/l ¥ pl J_pl a0 el
D = X)) P A%, P P A NE,
3 )5, L2
1 1
SF‘Ef [5 MO P Ax P =P Ay e ) (3.19)
%6

where 1 = ;1 QF,.
Note that the M5-brane charge in Eq. (3.17) has been obtained from the static “purely M5-brane
charge” Q%MS) through the active generalized diffeomorphism of Eq. (3.12),

0 Fi A dax’
Axi1ia dxi1i4
a1 Ms | v I I_AJ 1 _ M5 val
Q(M5) =z 0 - Q(MS) =L J Q(MS) = Q(MS) ="z 0 ’ (320)
5 0 3 0
0 0

where the transformation matrix £* ; for the R,-representation is given by (see Appendix A.2)
EIJ = (e—% Fi1i2i3 Ri1123 e % Fil —ig Ri116 ) I 7. (321)

The M2-brane charge is invariant under the active diffeomorphism, £*; Q?Mz) = Q(Imz)' As long
as Fj ii; and Fj,...;; behave as in Eq. (3.14), Q(IMF) transforms as a generalized vector in the R;-
representation and hence the n-form 5, transforms as a generalized tensor.

In our actions, the generalized metric M;;(X) includes an overall factor |G(X )|ﬁ, which
is important for the duality covariance in EFT. However, it does not play an important role in
the worldvolume theory because it can be absorbed into the intrinsic metric y,,. For conve-
nience, we introduce an independent scalar field e®©) inside M;(X) and regard the combination,
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~ 1
e®@) = @) |G(X)|57, as a new fundamental field. Namely, in the following, when we denote
My (X) in the worldvolume action, it means

My X) = e My X)), (3.22)
and e®©) is an independent field. For a p-brane (p # 1), the action has a local symmetry,
e’ = QP(0) e, yu(0) = Qo) Yar(0), (3.23)

and e®©) is not a dynamical field. Indeed, as we see later, e” disappears from the action after
eliminating y,; by using the equation of motion. Only for the case of a string (p = 1) in type 1IB
theory does the new scalar field e® play an important role (see Sect. 4.1).

Let us summarize the fundamental fields in our M-brane actions. There are always scalar fields
Xi(0),auxiliary fields {P;,;, (0), Pi,...is (@), Pj... i7,i(0)}, and the intrinsic metric y,4, (o). In addition,
the generalized vector E! contains quantities like £ ;,; dX’ and F i1 -eeisj dX7. As we explained in the
doubled case, since all of the indices of F, i)ipy) ATC contracted with X' in the action, only their
pullbacks

1
F3(0) =dAx(0),  A2(0) = o 4y, (X (0)) d dxX"2,

1
F¢(0) = dAs(o), As(0) = = A5 (X (0)) X5 (3.24)

can appear in the action. Then, from the dimensionality, for example, F¢ cannot appear in the
M2-brane action, and the fundamental fields can be summarized as follows:

MoO-brane :  {X"(0), Piyir (0), Piyoris @)y Piyovin.i(@), Vap(0), w(0)},
M2-brane :  {X'(0), Piyir (0), Piyoois (@), Piyovi.i(0), Vap(0), w(0), A2(0)},
MS5-brane : {Xi(a)a Piliz (0)3 771'1“-1'5 (0): Pi]---i7,i(0), Vab(U), a)(U), AZ(U)a AS(U)} (325)

Our action for an Mp-brane (p = 0,2, 5) can be summarized as

1 1 M, Mo
Sp:_m > [EMIJ(X)P]/\*VPJ_P[AWEJF) /\EJ]’ "5J>=O’
P+l
M2 /'Lz Ms MS 1
ny = 2 Nk dXF, ny = 5 (4! M-k X Fy Ay dX ) (3:26)

This action is manifestly invariant under a generalized diffeomorphism along 7/,
Sy My =Ey My, SyX' =V,

1
SyAr = t,F3 — vy, OyAs = t,Fg — 5 vy ANF3 —vs, (3.27)

where V' is restricted to be tangent to the worldvolume and we have defined v; = ; vi,;, dX'12 and
Vs = % Vijeois dX i1Is _The covariance of our action under global U-duality rotations is discussed in
Sect. 3.6.
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In order to expand the action explicitly, it is convenient to define the untwisted vector

dx’
(P = pés =17, (3.28)
RGE
73,'1.4.,'7,1‘
NG
where
Piriy = Piriy — Ciyigj dX7,
Piyis = Piyevis + 10 Pliyiy Cisigis) + (Ciyevisy — 5 Cliy iy Cigisy) dX7,
Piy.ini = Piyecinsi + 21 Pliyois Ciginli = 21 Pliviy (Chtiziz) — 5 Chtiziy Cisigin)
+ 21 Citiyiy (Ciyeeinlj — 3 Chriais Ciginyf) dX (3.29)
Then, we can expand the first term of the action as
. . 1 A ~
My Pl A, P = ew[Gij AXT N sy dX) - GIV Py oy By
+ 5 G 7Dil'--is A *7/7311"']'5
o G G Py oy Piin | (3.30)
We can also calculate the second term of the action as
1 .
vl M2 J
Plagi el = 57 Pinis AdX"2 = 3 F
1 . .
= 5 Puin A X +3(Cs — Fy), (3.31)
1
Pl A 77?]/'5) ANE = —

‘ Piyis A axis 4 E'P,'liz ANdX"2 ANF3 —6Fg

1 A L 1 4 .
= 5771'145 AdXTTE 57’:’11’2 ANdX""? AN Hy +6(Co — Fg) +3C3 AF3,

(3.32)
where

H; =F3 — Cs. (3.33)
Note that P/ A ngz) ANE and P! A ngS) A &7 expressed in the above forms are the same as 2, and

Qs introduced in Ref. [49] (up to conventions), and the actions presented above can be understood

as a rewriting of the actions in Ref. [49] making the duality covariance manifest.
For later convenience, we also define

Zr = My 77], ZA] = (L_T)[J Z; =My 75J-

(3.34)
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3.2. MO-brane

Let us consider the simplest example, the action for a particle in M-theory, sometimes called the
MO-brane. The action is simply given by (see also Ref. [54,55] for particle actions in extended
spacetimes)

1
So=—3 My X) P Ax, P (3.35)
X

The equations of motion for the auxiliary fields P;,;,, Pi,...is, and P;, ..., ; give

A A

Piiy =0, Piyis =0, Piyoini =0, (3.36)

and by eliminating the auxiliary fields, we obtain
1 . .
So = — / dt 7 Gij(X) 0. X" 9. X/, (3.37)
v

where v = e~ “/|y:| y*°. By considering v as the fundamental variable (instead of the redundantly
introduced fields w and y;¢), this is the bosonic part of the superparticle action discussed in Ref. [56].

3.2.1. Type IlIA branes: DO-brane
For completeness, we review how to reproduce the D0O-brane action from the above particle action
[56]. By considering the reduction ansatz

2 4 4
Gy Gpy e 3 ¢ s+ €3 ¢ ¢ & e3 ¢ ¢,
o= ( ) i ( g

GMS GMM 6% ¢ Q:S 6% ¢
_2
(% &) (e e O ) (B 0) (3.38)
0 1 0 e3 ¢ Q:s 1
wherer,s = 1,...,d — 1 and x" represents the M-theory direction, the action in Eq. (3.37) becomes
1
So = — / dv - [e—%¢ 8rs(X) 9 X7 9 X7 + €39 (3,X" + €, B,X’)z]. (3.39)
v

From the equations of motion for X, we obtain
4
e3? (X" + & 9. X") = v, (3.40)
where u is the integration constant, and using this, the action becomes

2
lre 3¢
So = —fdt 5 [—e Grs(X) X7 9:.X° — v e—%"’] - ,u/dr ¢ 9. X" (3.41)
A%

Here, we have added a total-derivative term p 9 X™. Using the equation of motion for v,
v2 MZ — —6% ¢ grs(X) 8er 8TXS, (342)

we obtain the standard DO-brane action

So = —ul / dre® /=g (X)X 8K — 1 / ¢ (3.43)

where ¢ = ¢, 9, X" dr.
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3.3. M2-brane

Let us next consider the action for an M2-brane,

1 1
SZ=——/ [—M]JPI/\*VPJ—P[/”T%“)/\‘SJ]
3Js,L2
1 1 5 i
- __/ [—M[J PLAwy, P —E2P A dX"’2] + Mz/ (C3 — F3). (3.44)
3 3 2 2! 3

We derive the conventional action for the usual fields X* by using the equations of motion for auxiliary
fields P;;...i5, Piy.is» Piy--iz,i> and Yap. The equations of motion for P;; ...;; and P;; ..;,,; can be written
as

Piyis = 0, Piywizi = 0. (3.45)
Using these, the equation of motion for P;,;, becomes

OGN 75ju‘z — 2 dX"2 = 0. (3.46)

These equations of motion completely determine P! and Z; in terms of X' and Vabs

dx! ¢ Gy dX/
R _M2e_wGili2’j1j2*dej1j2 R _M
ek s . @n= ar . (3.47)
0 0
0 0

The intrinsic metric y,; can also be determined by using its equation of motion,
My PLP =o. (3.48)
Indeed, from this and the above solutions for Pl , we obtain

hab = Glj aaXl abXJ = _5 G Pa; i Pb;jlh

—w)2
_ _% Giliz,ijz £,°1¢2 Ebd1d2 Bch” aCZXlz alejl 8d2X12
_ deth _
= (n2e™)’ det y ()/ h! V)ab‘ (3.49)
This leads to
dety —on6 —wn4 1y . -1\ b b
deth (n2e )7, (uae™)* (hy ™ hy ™), = 8. (3:50)

Note that if we define a matrix R,” = (,uge_‘”)2 (hy_l)ab, it cannot vary (i.e. SR = 0) because of
(RH),b = 82. Therefore, if R,®> = 83 is satisfied at an initial time, it must be always satisfied, namely

Vab = (11267 hap. (3.51)
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Using the above equations of motion, the action for X’ becomes

_H2

S
273

1 . .
57 Pirig ANdX"2 4o | (C3 — F3)
33 2! 33

1 e? .. .. A ~
— 5/ 7 G212 Pi1i2 A *)/Pju'z + MZ/ (C3 —F3)
X3 23

1 . )
= ——/ ewGij dX' A *de] %) (C3 — F3)
3 23 23

= —|ua| | dPo~—deth+p, | (Cz—F3). (3.52)
3 33

This is the bosonic part of the well-known membrane action [57].
Now, let us show the self-duality relation. Using the equations of motion, we can show that

2,2w .
_Mzez Gi. kiks ka A *delﬂkz e“ Gy *?idX/
A o dX1112 /de# R
n AP = \65 = «Oﬁ = %, Z]. (3.53)
0 0

This relation straightforwardly leads to the self-duality relation

0 AP = My, P (3.54)

3.3.1. Type lIA branes: D2-brane and F-string

For completeness, let us review the derivation of the actions for a D2-brane and a fundamental
string from the M2-brane action. In order to obtain the D2-brane action, we follow the procedure of
Ref. [56]. We first rewrite the action in Eq. (3.52) as

_ual

Ay
2 Js,

deth
Po ( — v) tu | (G =F) (3.55)
%3

v

by introducing an auxiliary field v. Under the reduction ansatz

2 4 4
(G) = Grs - G = ei?lpg”s +e§¢¢r < €§¢¢r
v Gus G B e%qbejs e%¢ ’

C3=0C3 —Br AC| + DBy A (dx™ + &), (3.56)

the action becomes

—2¢(deth
S2 = M d30' |:—€ (de )

. (1 +e*hy, Yb) — v:|

2 s,
+u2/ [€3+Bo A (Y1 =€) — F3], (3.57)
23

where Y1 = dX™ + € and we used the identity

deth = e 2 det(hy, + ¢*® Y, Yp)
=e 2 deth)(1+e*h"’ Y, V)  (Nap = grs DX 9pX"). (3.58)
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By introducing a Lagrange multiplier A that imposes the constraint d¥; = d€;, we can rewrite the
action as

= M o |:—e_2¢(det h

1%

S (1+e*h* Y, v,) — vi|

2 Js,
+m/ €3+ (By — Fy) A (Y1 — &) — F3]
23

~2¢ deth 1
_ b [ s, [—e = —v (14300 Fy fef)] - ”2/2 (& + Fa A€l — F3)
3

2 s v
(deth) 341V pITEII
* “2_2' > d3U v hab [Ya + (Z(llléilh) hac ECde fd@ Yb + % hbf Efgh fgh > (359)
3

where we defined F> = dA4| and F, = dA; — *B,, and Y] is regarded as a fundamental field. By
eliminating Y, and using

1 det(h + F)
1+ —h¢d he - -7 .
+ 5 Fou Fo oh (3.60)
we obtain
e 2% deth detth + F
S2=_|M22| d%[ —v ( )} —l—uz/ (€3 4+ F2 A€ — F3). (3.61)
s Y deth 3

Finally, using the equation of motion for v, we obtain the well-known D2-brane action

Sy = —|ua| | dPoe?/—detth+ F) + m/ (3 +Fr A€ —F3). (3.62)
3 23

On the other hand, when we derive the string action, we first make an ansatz,
X' =X"0c", X% =02, ta Ar(0?) = —A416°, o). (3.63)
do
Then, we can easily reproduce the Nambu—Goto-type action for a fundamental string,

Sy =—luil | d*oy— deth+ w1 | (B - F), (3.64)
X pI))

where p| = 112 (2R,), F2 = dA;, and deth = det(h;) (@, b = 0, 1).

3.4. M>5-brane
Let us next consider an M5-brane action,
1 1
S5 = ——/ [—M[JPI/\*),PJ —771/\772;5) /\5‘]]
6 Js L2
1

1 ~ . ~ L.
= —gf I:EMUPI A *},PJ — %Pilmis AdXHs — %Piliz A dXhn /\H3]
6 . !
1
+ usf <C6 — Fo+ = G /\F3), (3.65)
26 2

where Hy = F3 — Cjs.
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The equations of motion for P;,...;;,; and P;,...;; give
Piini =0,  eCGUITS o Py s dX T =0, (3.66)
From these, the equation of motion for P;,;, takes the following form:

0=V2IM"12; 5, P/ — usdx2 A Fs

(0}

= "GN ey Pyjy 2 8y, Apyjge) G ey Py — s dXIR AP
= eGN2I2 y, Py — usdX2 A Hy. (3.67)

Then, the equations of motion for auxiliary fields can be summarized as

dXi ea)Gij de
tse” Giyiy jyjp *y (dX/V2 NH3) 45 y (dX 12 NH3)
Ar Nl | v
(P) = 115€" Gy ig jy s *ydXI1I5 |7 (2D = s %y dX'175 . (3.68)
NG V5!
0 0

It should be noted that if we compute Z; = &LhH/ zZ 7 ford < 6 as

e’ Gy dX7 — s *y [liCB ANH3y +1;Ce + %LiC3 A C3]
145 %y (dX T2 AF3)

(2 = A , (3.69)
145 *VdXil'”lS
NG
its time component appears to be reproducing the generalized momenta, Eq. (2.9) in Ref. [58],
obtained in the Hamiltonian analysis. The equation of motion for y,; and the above solution for Pl
give
= i J 1 iz, j1j2 P D 1 i1-is, j1 s P D
hab = Gij 0,X 3bX = —2—! G - Pailiz ijLfZ — 5 G : Pﬂil---is ijl"'js

nse

w
di-ds J1 J2
T & b ale deX Hd3d4d5

1 use ¢ : :
S S e b SN PR i i
Y Gijia, jij 30 € a0, X 0cy X2 Hegeyes

—w)2
— % Giy s jroojs €175 0, XN -+ 3o XS ghds, Ay XV -+ - 9y XT3
..o deth 2 _
= (/¢L5€ w)2 M [5 hC3C4C5e,d3d4d5f HC3C4C5 Hd3d4d5 Yae J/bf + (y h ! V)ab]
_uy deth _
= (nse™)* G VaeOa ), (3.70)
where we have defined 291 010n = parcr ... pancn 8?11.’.'.?: and
tr(H? 1
0%, = (1 n r(6 ))5;; —SEHD G, HY = KR B Hog iy Hpgyas. (371
By rewriting this as
_ _ _ 2
V= ey T = (use ) V=R 0%, (3.72)
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and taking the square root, we obtain

V=7 7 ) = usle N =R (07)%, (3.73)
or
2
vas = (Isle™)? (det6%p)F (0°3) (—z/:_Z) = (lusle™)’ (detop)i.  (3.74)

Here, and hereafter, we raise or lower the worldvolume indices a, b by using the induced metric /.
The trace of Eq. (3.73) gives

Gy dX' A sydX) = /=y d° (y ' W) = |psle™*v/—hd® tr(07), (3.75)

and the action becomes

_Ks

S
T

1 4 o 1. N
(_ Pij.is A ax'ns 4+ — Piyiy A dx"2 s H3)
= ! 2!

1
+u5/ (C6+—C3 /\F3—F6)
Y6 2

_1 é GUissvds P A e P é G2 J V2 P A, P
- 6 5 5' 1115 Y 7JiJs 21 nn Y7 Ju2
AN !

1
+M5/ (C6+—C3 /\F3_F6)
Y6 2

1 . . 1
=——/ ewGi]'Xm/\*deJ-i-,lLs/ (C6+—C3 /\F3—F6)
6 Jx, T 2

1
tr(62 1
= —|us| d60’\/—h ( )+M5/ (C6+—C3 /\F3—F(,). (3.76)
Y6 6 6 2

This is the action obtained in Ref. [49], and, as was shown there, at least in the weak field limit
|H3| < 1, this theory is equivalent to the conventional M5-brane theory. In the following, we will
check the equivalence at the nonlinear level.

3.4.1. Results from the superembedding approach
A variation of our action in Eq. (3.76) with respect to 4, becomes (up to a boundary term)

585 = “‘;‘_5' ) [aa(\/—h Cla, ghb2ley — ‘;—f e1aabiby aalcaza3a4] 8Ap, by (3.77)
] !
where
1
tr(6~2
co, = W e .y (3.78)
3 | es]

By using the covariant derivative D, associated with /4,5, the equation of motion becomes
D[ Cly H*M — 55 (3, H3)™ | = 0. (3.79)
This is consistent with the nonlinear self-duality relation [49]

Cia” Hpera = 05 ()1H3) abe (3.80)
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although the self-duality relation cannot be derived from our action. On the other hand, under a
simultaneous variation, X' = v and 84, = % v Cyj,j, dX7V2 (see Ref. [59]), the action in Eq. (3.76)
changes (up to a boundary term) as

. . 1
8,85 = f d% { 11sIV/=h | Gy (G™ Vs X! + DuG™ 3,X7) + 5y Fave cley e |
X6 e

1 1 .
— M5 Galm%(@ F1a1 ag T T3 2.3131 lalaza3 Ha4a5a6>} Vl, (381)
where we have defined
1 1
tr(02) 07 2)¢y 1 1
Qb — : jab 4 - [_E (H?)2 321 4 5 (H?)@, pod +HadeHbce]’

. . . . |
VadpX' = DadpX' + Ty 0X* 0pX1, T} = 3 G" (3G + %Gy — 891Gy,
1 4 .
Fy=dCs;, F7=dCg¢+ 5 C3 A Fy, Fial---ap = Ljy-p Bale' ce. BapXJP. (3.82)

Namely, we obtain the equations of motion

ab i enas 1 1 i
GY V,0pX' = 05 \/_h (6‘ F aras T T 7 .313! F aiayas Ha4a5a6)
1 .
- 2—3’F‘abc cley HYM — p,G® apx". (3.83)

In order to evaluate the last term, we recall the invariance of the action under a worldvolume
diffeomorphism, 8z X' = £% 9,X" and 8¢ 4, = £: 4>,

o5 €
8eS5 = v—h(DGab———
£Ss = |us] o a 33 ok

where a boundary term is neglected because it is irrelevant. Since the diffeomorphism parameter
£%(o) is arbitrary, we obtain [59]

ay---ag

hbc Fca1a2a3 Ha4a5a6) Eb = O> (384)

05 ed1ds

3131 J/—h

Using this identity and the nonlinear self-duality relation of Eq. (3.80), we can express the equations

D, Gab hb ca1a2a3 Ha4a5a6- (3-85)

of motion in Eq. (3.83) as

; eNnde 1 | :
Gab Vaale = 05 ’_—h (a F]a1-~~a6 + ﬁFjalaza;; Ha4a5a6> lea (386)
where we defined a projection,
Pl =81 — Gy h™ 9,X* 0,X", (3.87)

satisfying P* P/ = P/ (where we used h% = (h=")® and hy, = Gij 0.X LapX).

In order to compare the above equations of motion with the known ones, let us review the familiar
results obtained in the superembedding approach [60,61]. In the superembedding approach, we
introduce a self-dual three-form field satisfying

(knh)ape = hape- (3.88)
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We then define
ab = hab _ 2kab, kllb — hacd thd. (389)

An important relation that relates /.5, and the three-form field Hz = F3 — C3 is

1
habe = 1 mia® Hpela. (3.90)
The above quantities satisfy [60]
1
hayare K¢ = 8312, (m DY = —— (K +2k),
1—2k
k2
k=0, kk?’= Z(S . (3.91)
We also define
1+ 3k 2 2
= , =1-k=-—" 3.92
T 053N T (352)

and then we can show the following nontrivial relations [62,63]:

b — ! [(Hz)ab tr(H?) hab]
SK K+ 1) 6
e P =27~ 1) 8 4806+ DA R85 180 K%

HH? =8K K+ Dk? +4K>—1Dh*, wH?) =24K>—-1),
1
(H4)ab (HZ)ac (Hz)c — tr(Hz) |:hab + E (HZ)ab],
1
tr(H) = 4t [1+ Etr(luﬂ)], Hayae Hpips® (H = (HYapy. (3.93)
If we introduce the 5-brane co-metric as [59—62]
C® =0 "' mlem® =Kh?®—2(K +1)k®, (3.94)
it satisfies the following relations [62,63]:
1 1
= k7| (14 @) K — D] det(Cl) =1,
-1 -1 1 2 —1
(€ Nap =K [y + 7 D). wC=uC™" = 6K,
_ 1 tr(H?) 1
2 _ - 2 2yab _ ab _ ~ 2\ab
(C Dy =hay + 5 s () = (14 == ) 1 = 5 D)™,
- c —1\a — 1
(€ b = —Cap + 2K hap Huyae Hyyo® (€7 = K7 (W24 J 1Y) | (3.99)

4

Note that the 5-brane co-metric is proportional to the open membrane co-metric studied in Refs. [64,
65]. Using the co-metric, we can express the nonlinear self-duality relation for H3 as [59-62]

C?a Hpera = GonH) ape. (3.96)
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The equations of motion for scalar fields are obtained as [60,61]

€f1-as

Ve

From the relations in Eq. (3.93), we can easily see that

‘ 1. ‘ .

C% v, 9,X! = <— Flapag + —— Py aras Hawé) Py, (3.97)
1ia a a a —1\a a

02) = C%, C%h =2K6, —(C)' =C%, (3.98)

and the known nonlinear self-duality relation of Eq. (3.96) is equivalent to our relation in Eq. (3.80).
We can also show the nontrivial relation

1
tr(60 2 1 1
Gab — Khab _ % (HZ)ab _|_ E (9-%)0([) (Hz)a)c + g (9—%)Cd Hade Hbce

K 1 1 ab

=Khab _ (HZ)ab N <H2 + _H4)
2 4K 4

2K — 1 1
= % hab _ ﬁ (HZ)ab — Cab. (399)

This indicates that the known equations of motion in Eq. (3.97) are equivalent to ours of Eq. (3.86).
Namely, as long as the relations in Egs. (3.88) and (3.90) are satisfied at an initial configuration, the
equations of motion of our theory describe the same time evolution as the conventional M5-brane
theory. It is also interesting to note that the intrinsic metric naturally reproduced the 5-brane metric
or the open membrane metric (up to a Weyl rescaling)

%a) _ % -1 1
€27y )ab = 512 (C )b, (3.100)

as a result of the equations of motion. Moreover, it is interesting to note that, by using Eq. (3.95),
our action in Eq. (3.76) becomes

1
Ss = —|us| [*hK — 05 <C6 + - C3 AF3 —F6)], (3.101)
X6 2

which takes the same form as the action studied in Refs. [59,66].

3.4.2.  Self-duality relation for M5-brane
In this subsection, we show the self-duality relation for the M5-brane

10 AP = My %, P (3.102)

Instead of directly showing the relation, in the following we show an equivalent relation,
LTy LYy AP =2 (3.103)
Using the equations of motion, the left-hand side becomes

=T . (ws) 7 — A M5 o — _ .
W™ L7y AP = <L Ty kg + 4 Fltghoks i) L]y ax % AP

s

= ? (nkl..-k4 + 4H[k1k2k3 nk4])[J ka1-..k4 A 73.]
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p2e=® VL2 75 poe, dx 1k ]

5 [G/U2,k1k2 H3 A dx Vi 8{2] N ky (ka1k2 A H3) + Gk s 41

dX 122 Axy, (dXF1R2 AH3)

2pus dX12AH3+1 p2e@G

1/2: K1k
= 52!
s AXi1-is
NG
0
(3.104)
Then, our task is to show that this generalized vector is equal to
€wGij *y de
ws dX12 NF3
2 = V2!
*) 2] s s . (3.105)
NG
0
The nontrivial relations are the first and the second rows,
) MZe—Zw o
Gyj %y dX) = 2 Gy iky H3 A dX U 8PV A sy, (aX 1% A H3)
Ny
B3T3 Gy hyooks 81 AXI2 IS A sy ks
5 4! ’
N,
Xy = Zaxii a4 g AXT122 A s (dXR1R2 A 3.106
AN 3—§ A 3+T 1j2, k1ko /\*y( N 3)- ( . )
N3
We show that
Ny = —M;Zezw Gir aka (Hz)z *y de,
No = u52e* [5Gy *, dX* + Gy X" (HD) ) do’],
3 .
N; = B dX""2 A Hj, (3.107)

and then the relations in Eq. (3.106) are proven.
In order to show Eq. (3.107), we need to use various relations displayed in Sect. 3.4.1, such as
Egs. (3.95) and (3.96). By using

do®179 = gNC (x da,),  xpdo, = % %, dog, (3.108)
we can simplify N as
N1 = Gy kky Hz A dX V8PV A s, (dX 152 A )
= G,i, Git %Halam By X1 3, X1 By, X2 %H,Bbws do®% Ak, dobbs

5!

k byebsd
= ﬁGik Oy X" Hayaray Hpypyps K242 750y g

*p, do,

V=Y
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20 deth
=-3 Gt 3p, X" HO19293 Hy 52?2;‘2;?3? Y Yer dcty %, do®
lfz@zw k bd
= -5 Gudpx [tr(HZ) 820 — 6 (M 8 + 3 H Hacel] v vE %, do®
-2 2w 2\b b
/,LS k 2 (V )62 - (try) yez
- 2 opX* | tr(H
3 Gir OpX [r( ) >
3
=Syl —wt HY Yl — ) ()l + 1)
_ 3Hade c . el do®?
acey Y4 Vez *y Ao
= —pu52e* Gy pX* (HD) #) do. (3.109)

Similarly, N> becomes

1 ; S
N, = z Gjy - js, by ks 5?1 dx72 75k A *dekl"'kS
1 J2 Js ki ks g ai-as by-+-bs
= a Gity Gjy.ijs, ky-rrks 0ay X7% -+ - 0, X7° 0p X" -+ - 0p X do A *ydo
1 V=h ..
= E Gik 8b1Xk ha1~~~a4,b2~-~b5 g a4cd *p dad \/?)/ Sbl bse Yec
V=h
= 2Gig By X*HE Z e w dog
deth _ _ —1_1b
= oty O X [y Wy - (ry) Wy ] xy do
= 32 Gy 0pX* [—85 — 5 (HM +6 (8 + § HA] =, do?
= us2e*[5 Gy *, dX* + Gy X" (HD) %, do’]. (3.110)

Finally, N3 becomes

use ¢ L
N5 = =10 Gl kil XV Ay (dx*1% A Hy)
pse™® i i 71 J2 k1 ky 1 ay--asq by---bs
= 5 Gty X 80X 00, X1 30, X7 09, X¥1 8, X2 2 Hy g do 4 Ay do
use © N/ — ; : 1
T \/_)/ 90y X" 00, X" hazay, by, 31 [babibs g aacrd ghrbscry o xy doy
—
= “52 Nh — By X' 9y X2 (HN 24 perez — 3 galmaz pdlez) o sy doy
3
= SdX"" A Hs. (3.111)

In this way, we have shown the nontrivial self-duality relation for the M5-brane.

3.5. Action for a Kaluza—Klein monopole

As the last example, let us consider a KKM in M-theory. In fact, a KKM couples to the mixed-
symmetry potential C;,...;; ;, but this potential appears in the generalized metric My of the Ey(q)
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exceptional spacetime only when d > 8. Therefore, we cannot reproduce the whole brane action
for a KKM [67,68] due to our limitation, d < 7. In this section, by neglecting the gauge fields, we
demonstrate that our action can reproduce the dominant part of the action for a KKM,

S~ — / d’o Kk \/ — det(Gy DoX' DpXY). (3.112)
37

The main difference from the previously considered M-branes is that a KKM requires the existence
of an isometry direction generated by a generalized Killing vector k. In this case, employing the
standard procedure in the gauged sigma model, we introduce an additional one-form gauge field
a1 (o) and include it in A/,

Al — Al 4 a k. (3.113)

In other words, the generalized vector P! is modified as

Pl Pl ay k. (3.114)
Supposing that the generalized Killing vector takes the form &/ = (k/,0,...,0), we have
DX
Piyiy _
PH=|»rts |, DX =dX' —ak. (3.115)
NG
7’,‘1,,,1'7’,'
I
We then consider the action
1 1 KKM
Skkm = —7f2 [EM[J(X) Pl Asy P, =P A A& ] (3.116)
7

where n(KKM) takes the following form by neglecting the gauge fields:
g = 6' S0k kst DX ADXS K. (3.117)

More explicitly, we consider the following action:

1 1 K
Sciw =3 [ [5Mu P/ nx, P =B Py n DXk, (3.118)
%7

Since we are neglecting the background gauge fields, the first term simply becomes
My P A s, P = [G,, AX' oy X+ G’”2 V2P Ay P,

— Giis,jids p,oo L
+ 5] G Piyowis A *y Py s

1 .
+ % G gY 73,'1...1'7,1' AN *ylpj1~~j7,ji|- (3.1 19)
The equation of motion for P;,...;,,; gives

—? G G Py s+ T DX BT = 0, (3.120)
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and the equations of motion for P;,...;s and P;,;, give
Piy.js = 0, Pii» = 0. (3.121)

Using these, the equation of motion for y,; becomes
G,’j DaXl DbX] = —% G GY Pa;i1~~i7,i Pb;j1~~~j7,j

—2w k2 cl...c6a gdl"'d6

=—7 WK Giy i j1js € b
X DCIX” o D X k" Dy X7V - Dy X0 K7, (3.122)

where k% = G k' /. If we define

ki k; j — J
I; =Gy — w2 7ap = Gjj Dq X! DpX/ = I1;; D, X' DpX/, (3.123)
the above equation can be expressed as
|’ 2 (k) s dyd : : : ~
Ty = _T Hi1~~-i6,j1-~~j6 g€l C6a gl 6ch1X” .. DC6X16 DleJI Ce Dd6XJ6
_ det _
= lulPe 2 (6 —= (v 77 V)abs (3.124)

dety
and we obtain

, detm

'y m = e (k) 5. (3.125)
det y
This leads to
V=Y v ) = ek =7 8,
V=YY Gy DX DX = =y (y T 1) = T e kA, (3.126)
and we finally obtain
Ly DX
KKM = ? a i1-i7,i N\
7 U
1 ‘ .
= —3/ e?Gy DX' A%, DX = || | d'o K>/ = (3.127)
=7 =7

In this way, we can reproduce the well-known action for a KKM.
In order to introduce the worldvolume gauge fields, we need to modify the n-form,

S Mk i -i5 g
ngm) =Nyt Q(KKM)’ Q(IKKM) = o oaxls kel f (3.128)

oo%,woo

by performing the active dlffeomorphlsm Q(KKM) — Q(KKM) = L1 Q(KKM), where L1 is defined

in Eq. (3.21). The resulting n-form, 11 i J ) — N1 Q(KKM), transforms covariantly under generalized
diffeomorphisms. In our approach, the action is invariant under gauge transformations, and we expect
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that by introducing all of the gauge fields in the Egg) case, we will straightforwardly reproduce the
whole action for a KKM.

In the E7(7) case, we cannot consider exotic branes since there are no winding coordinates (or
auxiliary fields P;,...i5, j1jj; and Pj,...ig, j1.-.js) for these branes. However, in the Eg(g) case, we can
consider similar actions like

1 1
Sg3 = —gf [EMU(X) Pl AP =P A ASJ],
%6
Spo = —1 [lM X P Ax, P — P A ag’ 3.129
26 = 3 5 J *y N > 3. )
23

although the explicit forms of the n-symbols, 11533) and 17}36), are not yet determined. In the Eg g
case, the generalized metric does not contain the potentials Cj; ...ig jyipi; and Cj,...jg, i, ...is that couple to
the exotic 53-brane and the 2°-brane, but we can consider the truncated action like the KKM action
presented in this subsection. In order to reproduce the whole action for a 53-brane and a 2°-brane,
we are led to consider the Eq(9y exceptional spacetime. Another possibility to describe a KKM or
exotic branes in d < 7 is discussed in Sect. 5.

3.6. Comments on duality symmetry

In the previous sections, we have discussed our sigma model actions only in the usual section, where
the set of null vectors A“ take the simple form, (A7) = (6¢,0,...,0). In such cases, & A and P!
transform covariantly under generalized diffeomorphisms (which do not change the section A¢), and
our action was manifestly invariant. Since a subgroup of the 7- or U-duality group, known as the
geometric subgroup, can be realized as a rigid part of generalized diffeomorphisms, invariance of our
action under the geometric subgroup is also manifest. In this subsection, we consider global duality
transformations that change the section A, and show that £ I Al and P! transform covariantly. In the
conventional formulation of string theory/M-theory, such duality symmetry exists only in constant
background, and we assume here that the supergravity fields are constant (unless otherwise stated).

3.6.1. Obstacle to manifest U-duality covariance
Let us begin with a brief review of the obstacle to describing the equations of motion in a manifestly
duality-covariant form [46,47].

In the DSM defined in a constant background, the equation of motion for P; gives

Pi = —Gyj *, dX/ + By dX, (3.130)
and taking the exterior derivative, we obtain
dP; = —Gyid %, dX/ =0, (3.131)

where we used the equation of motion for X’ in the last equality. Namely, for a given solution, we
can (at least locally) find )~(,'(a) that satisfies P; = df(i. Then, we can express Plas Pl = ax?!,
where (X1) = (X7, )N(i), and the equations of motion become

ny dX7 = —Hyy *, dx”. (3.132)
This is manifestly covariant under a global O(d, d) rotation [1]

dX' — (A" ax’, Hy — A% AL Hk (A ALy ke = ). (3.133)
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On the other hand, in the case of an M2/MS5-brane in a constant background, as we can easily see
from Egs. (3.53) or (3.105), the equations of motion give d *,, Z; = 0 and thus d *y P! = 0. Then,
the self-duality relation, n}“}") AP = My *y P’ and d n}}”") = 0lead to

1" AdP’ = 0. (3.134)

Remarkably, unlike the case of the DSM, this does not mean dP/ = 0. Indeed, as was pointed out
in Ref. [47], if we consider a solution of an M2-brane (for d > 4)

(X ={6°, ao!cos(wa?), ao'sin(wc?), Bc2,0,...,00 (o, B,w: constant), (3.135)

we find that dP;;;, # 0 although Eq. (3.134) is satisfied. The only exception is the M2-brane in
d = 3, called the topological membrane [47]. In that case, the equations of motion give

' dx’ dx’
(7) ) = CiliZf de_Giliz»./l.f2*thj1j2 = Cilizi de—é‘il,‘Z]’ de s (3136)
V2! Va2t

where ¢;;; = ~/—G €, and dP! =0is automatically satisfied. Then, at least locally, we can find
the dual coordinates Y;,;, satisfying P;,;, = dY},i,, and the self-duality equation becomes

ny Adx) = My dx!, @) = (x7, 22, (3.137)

This is covariant under the whole U-duality group £33y = SL(3) x SL(2) [47]. In general cases
with d > 4, although we cannot express P;,;, as P;,;, = d¥;,;,, the self-duality relation

10 AP = My o, P (3.138)
is itself still satisfied, and it is formally covariant under £, (4 transformations
P — (AN, P, My — A% A My, 77?;2) — AKX AL, 77222)- (3.139)

In particular, under global U-duality transformations generated by R;,;,i; and R;,...;;, which we call
the w-transformations, P’ is transformed as

L iini L
7)[ N P/[ = (e? '11213 Rl'l"2"3ea 'l ’6R,‘1A4A,-6)]J PJ, (3.140)

and, for example in d = 4, we have

dxi dxi — L i p, .
Pl = (p) - (P =( P ) (3.141)
V2 V2
The problem discussed in Ref. [47] is basically that if we continue to use the parameterization
dx"
P = (731{152> , (3.142)
el

the non-closedness dP;,;, # 0 leads to the non-integrability of dX"':

. , | QR
dp' = dZX/l — _E w2 d’PjU.Z # 0. (3.143)
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Then, the conclusion of Ref. [47] was that w-transformations are not allowed and Eq. (3.138) is
covariant only under the “geometric subgroup” generated by {K;/, R'12/3, R1"i6} (i.e., coordinate
transformations GL(d) and constant shift of C3 and Cg). In the following, we stress that the param-
eterization (P!) = (dX’, %) should be changed under w-transformations, and the integrability

condition dP"* = 0 should be modified as
d(r{ P') =0, (3.144)

which is important to allow for the whole duality symmetry.

3.6.2. Duality covariance
Let us consider the DSM, where the duality group is O(d, d). The O(d, d) group is generated by
% generators, {Ty} = {K/, RY, R;7}, whose matrix representations are

o (880 R 0 0 ; (0 28/
(Kk)J=(k0’ ss) (R, = _ashe o) Ruw)'y=(, ~ %) G145

Here, the K/ correspond to general coordinate transformations GL(d) and the RV = R correspond
to the B-field gauge transformations, and these generate the geometric subgroup. The correspondents
of the w-transformations, which change the section ¢, are called -transformations that are generated
by the remaining generators R;; = Ry;j).

In the following, we show that & (o) transforms covariantly,

dax’ st By ax’
gl _ . el N . 3.146
(o) (FjjdXJ> — &%) (0 8{) (ijka>, (3.146)

under a global B-transformation. In order to determine the transformation rule, let us rewrite the
definition of £/ () in terms of the B-rotated frame. Since the original section has been specified by
(A7) = (&7, 0), in the B-rotated frame A? takes the form

(8 0\ o\ [
o)) e

and the linear section equations of Eq. (2.8) give
M T = (39— B 3) T(x) =0, (3.148)

where T'(x) represents a supergravity field or a diffeomorphism parameter in the doubled spacetime.
Originally, £/ was defined as £/ = €% £/ by using the static £/ defined in Eq. (2.12). In the S-rotated
frame, £’ and the diffeomorphism parameter &/ take the form

do?
(o= ) e )= (T) e
0 l l

In addition, the structure of the generalized diffeomorphism is also different according to the change
of the section. By employing a convention, where 3’ is replaced by g% 0; due to the linear section
equations of Eq. (3.148), a derivative in the 8-rotated frame becomes

far\ _(aT \_ (8 o\ (4T
o T (x) = (57) = (,30' 3ﬂ"> = (50‘ 5;‘) ( ) ) (3.150)
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Then, the generalized Lie derivative of an arbitrary generalized vector W/ becomes

gewl =v/ow! — (v —a'vy)w’

_(5 # ) £V/Wg,k ). (3.151)
0 84 £V/Wj —2w 3[kvj]
where (V') = (v — pY Vi, v;) and W'y =w — gy wj, w;). Therefore, we obtain
R st By £l
gt = (7 ﬁj o), (3.152)
0 31. .‘Eng —2w 8[1{5]’]

and we can show that a finite generalized diffeomorphism takes the form,

. i i P ' k _ gk
e (% ﬂ: 8[,/ (11 ok ai)k 5 P, (3.153)
0 & J\Fpe) &)\ 0o 2)\o ¢

which is precisely the S-rotated version of Eq. (2.13) [where the usual diffeomorphism and the
B-field gauge transformation have precisely the same form as Eq. (2.13)]. Then, the components of
E! described in the B-rotated frame become

N 5;.' BY dx’
E (a)_<0 5{ Fraxt) (3.154)

This shows that components of £ are covariantly transformed under -transformations. Since the
0O(d, d) symmetry is generated by the geometric subgroup and S-transformations, we have shown
the covariance of £ under the whole O(d, d) transformations. Moreover, since A/ (o) also trans-
forms covariantly by its definition, P! (o) also should, and our action is invariant under O(d, d)
transformations. Note that, in the B-rotated frame, P! takes the form

a, v _ (8 BT (dx
7’(0)—(0 5 P ) (3.155)

and dX' can be extracted from P/ as dX* = Af P! by using A{. Therefore, the correct integrability
condition (or the Bianchi identity) to require is d (A} P!y = 0 as advocated in Eq. (3.144). Note
also that if the original background is not constant, the generalized metric after the g-transformation
includes the dual-coordinate dependence from Eq. (3.148). Since scalar fields X;(o) are not intro-
duced in our DSM, we cannot define our DSM in such background. This is the reason why we
have supposed the background to be constant. Of course, since the supergravity fields are functions
only of X = x' — BV X; in the B-rotated background, instead of X'(c), we can introduce X" (o)
as the fundamental variables in our DSM, but it is equivalent to going back to the usual section
(A9) = (8¢, 0).

We can straightforwardly also apply the above discussion to M-brane sigma models. For example,
in the case of d = 4 discussed around Eq. (3.141), the w-transformation rotates the usual section
Ay = (87, 0) as

8¢
)\.? e )\,}a = (wailli2>. (3156)
VA
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There, the linear section equations in Eq. (3.8) show 87 = w%* 9y, and a derivative becomes

0;T 0;T 3{ 0 ;T
0T (x) = by | = | ot T =\ Lz 8i1i2 o | (3.157)
V2! V2! V2 2
Accordingly, the generalized Lie derivative becomes
i ol £V/w7
? I _ |77 V2!
= 52 iy =3w  duyy | (3.158)
i1iz V2!

where (V') = (v + %wijlﬁ Viijp» Vi) and W'y =mw + % w2 Wj j»» Wi). Then, components of &l
described in the w-rotated frame become

; 5;‘ _olY dx’

/ _ /2!

& (o) = N Fypdx | (3.159)
i1z V2!

and we see that £ transforms covariantly under the w-transformation. Moreover, the correct
parameterization of P! in the w-rotated frame is

s —MYN gxi
Ploy=|"7 2 (m : (3.160)
81’11'2 V2!
and the integrability condition in the w-rotated frame is
d(\fPh) =d*x* = 0. (3.161)

Therefore, the self-duality relation of Eq. (3.138) is covariant under the whole SL(5) U-duality
symmetry.

Even for the higher-dimensional case d > 5, from a similar argument, it will be possible to show
that £ transforms covariantly,

51(0_) - (eﬁ w'1213 Rijipiz o1 w76 Ril"'ié)IJ gJ, (3.162)

as 1s clear from the construction.

3.6.3. On dual coordinates

For completeness, we also comment on a section A, = (Ay7) = (0, 52), where supergravity fields
depend only on the dual coordinates X;. On this section, generalized diffeomorphisms are combina-

tions of the usual Lie derivative (with opposite indices) and B-transformations. Then, starting from
a static configuration, )N(() (o) = 0p and X 1(0) = o1, we obtain the parameterization of £ I

201X dX;
5’(0):< df(‘((a; f). (3.163)

In this case, A’ and P! take the form
Al = (“3) pl_gl A = (;) (3.164)
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The scalar fields X; describe fluctuations along the dual directions, while the V't describe fluctuations
along the x’-directions. Our action then becomes

1
S:——/ [—HU(X)P[/\*VPJ+771J731/\5J]
2 Jg,l2

1 1 . ~
=5 [ [3se0P ns 4P nak] - [ an, (3.165)
p3)) 2 Py}

2
where we defined d = do, A 3% (@ = 1,2) and V(o) = V(X (0))dXi(o) is regarded as a
fundamental variable. By parameterizing the generalized metric as

& @B
Hy = R 3.166
v (—(ﬁ o @ - ﬁéﬁ)’”") (3160

and eliminating the auxiliary fields 7P;, we obtain the action
1 o~ ~ ~ o~ ~ ~
S = —5/ [g’f(X)dX,- A s, dX; + BY(X) dX; A dXJ] — / dri, (3.167)
p) 2}

which is the well-known dual action [ 1] if the background is constant. Again, note that the integrability
condition becomes d(Ag; P!) = d*X, = 0.

We can also consider similar parameterizations of £ in the M-brane actions by choosing non-
standard sections. Unlike the conventional DSM, our sigma model does not include all of the
generalized coordinates X (o) as the fundamental variables, but we can choose a part of generalized
coordinates depending on the choice of the section.

4. Type IIB branes in exceptional spacetime

In this section, we explain how to reproduce worldvolume actions for type IIB branes. The detailed
analysis will be reported elsewhere, but here we explain the basic procedure and demonstrate that
we can reproduce the action for a (p, g)-string.

Before considering brane actions, let us review the parameterization of the generalized coordinates
that are suitable for describing type IIB branes. We begin with the M-theory parameterization of the
generalized coordinates in the E4(4) EFT ford < 8,

1 i
) = (X' Yirigs Yivwiss Vir-in,j » Yiv-is.jijajas Yiv-ig.ji-jos Yit-is.ji-js. k) (4.1)
—_—— S —— —
P M2 M5  KKM/M8 53 26 o7

Each coordinate is the winding coordinate associated with the brane specified below. For d = 8,
Yiy-—iy,j includes 64 coordinates, and among these, 56 coordinates with j € {iy, ..., i7} correspond to
the KKM, while the remaining 8 coordinates withj & {iy, . .., i7} may correspond to 8-branes (known
as M8-branes). If we decompose the physical coordinates x” as (x') = (X", x") r = 1,...,d — 1)
where x" represents the M-theory direction, we can decompose the above generalized coordinates
as those suitable for type IIA branes,

1
D)= (X" 5 Y s Ve s VrimsYrrgs Verorss Yrporgs s Vrporgs Veywrrss Verrrs
e i g e
P DO FI D2 D4 NS5 KKM/7, D6 6% T2

Y <17,81529 Yr 17,815283 9 Yr 17,8155 9 Yrprr g s Vr P ET Y Yr <P, ---r7,s)9 (42)
~—— ——
2 3 5 6 7 (1,6)
53 4 23 13 03 0y
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where we defined the type IIA coordinates (where the index v is removed)

J— M J— — — —
Y=X°% VYVr =V Vrpera S Vrpravs Vrpres = Vrpremss  Vrprg = Yrp-remms
Yrrery = Veprps Vrpergsisass = Vrepermsisaszs Vrpergsisy = Vrprpsisoms
Yriergrrre = Vrpermryrgs Yrior7,s1-55 = Vrprm,s)---S5M»

Yrirrr s = Vrieeramrrrinss  Yryeergrrrr = Vepermrorpme (4.3)

In order to obtain the generalized coordinates for type IIB branes, we further decompose the
physical coordinates in the type IIA side as (x") = (x*, ¥) (a = 1,...,d — 2) and perform a T-
duality along the x’-direction. Under 7'-dualities, dependence of brane tensions on the string coupling
constant g; does not change, and we summarize the mapping between the winding coordinates [53] in
the following way. The type II branes with tension proportional to gg are the fundamental string (F1)
and the Kaluza—Klein momentum (P), while those with tension proportional to g~ !are D-branes. By
employing the convention of Ref. [53], their winding coordinates are mapped under the 7-duality
as follows:

P F1 DO D2 D4 D6
—_——
x4 X yy Ya y yay Yajap yal‘¢2“3y Yay---ay yal""15y Yai---aq
11
xt % y)II ytlz y32/ _yg Yaiay  Yaiazas yclzl agy yc111~~-a5 Y1(11 --)~a6y
P F1 Dl D3 D5 D7

“4.4)

The type II branes with tension proportional to g;2 include the NS5-brane, KKM, and the exotic
5§-brane. Their winding coordinates are mapped as follows from type IIA theory to type IIB theory:

52
NS5 KKM 2

Yay--asy Ya,---as Yay--asyy ya1-~~a5y,l3 Yay---ae,b Yay---agy,by Yai---agy,b1by

’ > ) >< ’

2 2 - 1 1
_yal agy _yal a5 Ya, --asy,y yal -asy.b :I:yal --ag,b :I:yal ---aey,by ya1 --agy,b1b2

NS5 KKM 53
4.5)
Here, the bar, as in Vayasy.p> represents that be {ai,- - ,as} and &£ represents that the sign is not

determined yet in Ref. [53].

There are another set of 7-branes that also have tension proportional to g 2 but are not connected
to other branes under T-dualities. The winding coordinates for the eight 7-branes in the type I1A
side are yq,...asp,p (b & {ar,- -+ ,as}), Ya--agy> a0d Ya,...q5y. Although we have not identified their
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transformation rule yet, a natural expectation is as follows:

Yay---asy,b Ya;--asy,b

Yay-—agy — Yai--asy | - (4.6)
(12)

Yay---agy Yay-agy

Here, the type IIB coordinates, Y4,...asy,p (b & {a1,--- ,as}), Ya;---aey» and yéll.z,).aéy correspond to
seven 7;-branes and a 7-brane that (together with the D7-brane and the 73-brane) behaves as a triplet
under SL(2) S-duality transformations. The detailed properties of these 7-branes are not well known,
but they are necessary to construct a U-duality multiplet.

The type 1T branes with tension proportional to g; are the exotic p-branes pg_p . Under the
T'-duality, their winding coordinates are mapped as

1 3 5 7
63 43 23 03

Yay--agyy Yay-agy.b Yay --agy.bybyy Yay--agy,bybyb3 Yay -agy.by--bay Yay--agy.by--bs Yay--agyby --bgy

! | | | } | b (4.7)

22) 2 -2 1 I
Yay agy By agy.by Vaagybiby  Yar-agybibybyy  Yay-agybi-by g acybibsy  Yay-agybi-bg

[

4
73 52 33 1g

Finally, the type II branes with tension proportional to g;# are called the lg—brane and the
021’6)-brane. The transformation rules for the corresponding winding coordinates are

6 (1,6)
13 04
Yay---agy,b1---bsy Yay--agy,b1-bg Yay--agy,b1---bey.y Yay--agy.b1---bey,c
| e | . (48)
2 2
iya1~-~a6y,b1~-~b5y —Yayagybr-bs EYay-agy.br-beyy — Yai-acy.bi--bey.c
6 (1,6)
14 04

It is interesting to note that, as has been uncovered in Ref. [69] (see also Ref. [70]), the T-duality
transformation rules for the winding coordinates are very simple (up to the convention-dependent sign
factor). For a type II brane with tension proportional to g; ", if we consider the winding coordinate
with m-number of y-indices, after a T-duality along the y-direction, we obtain a winding coordinate
with (n—m)-number of y-indices with other indices unchanged. For example, a Og-brane (T, 0] & g5 3)

associated with the winding coordinate g, ...qqy.5,.-b¢y that includes two y is mapped to a 1$-brane

1
aj--aey,b1-+be"

According to the above dictionary, the whole M-theory coordinates (x/) are mapped to the type
IIB coordinates,

with the winding coordinate y

M m o o (aB)
(x ) :( X, ym D ym|m2m37 yml...msp yml-umé,n, yml---m7:
S S—— — e — —

P F1/D1 D3 NS5/D5  KKM/7; Q7
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o o
ym1~~-m7,n1n27 Ymy--mz,ni-ngs ym1~~~m7,n1~~n6’ le--.m7,n1--~n7,p)a (4'9)

4 1.6
53/% 3 1613 0

wherem,n,p=1,...,d—1andw, B = 1,2. InRef. [53], the map between the M-theory coordinates
and the type IIB coordinates was expressed as

A =8yxM M= shHM, (4.10)

and by using the same matrix S’ the generalized metric was also transformed as
Mun = S'm S N My (4.11)

Then, with the help of Buscher-like transformation rules for supergravity fields, the generalized metric
M is nicely parameterized with the type IIB supergravity fields (see Ref. [53] for the details). In
the following, we use the parameterization of My and obtain the brane action for a (p, ¢)-string.
More detailed discussions and actions for other type IIB branes will be reported elsewhere.

4.1. Action for a (p,q)-string

When we considered M-branes we chose the M-theory section in Eq. (3.10), but here we choose the
type 1IB section,

At 5a
()La)m m
o
a ()\u)mlmzmg, 0
aw=1"—"7x= |=10] (4.12)
0Nt 0
5!
()La)ml--~m6,m 0

NG

where the supergravity fields depend only on the physical coordinates X™. Similar to the M-brane
case, EM and PM = M — AM take the form

daxm
daxm
(03 n o
—F2 dX Pr
3 Y 5 P,
M Fmymamsnt3 €5 Foimy Fmymy] o M mjmyms
y 5 o
B Fify--msn 10 Fmymams P, ms1 =5 €6 Fagm, Fmyms Fnyms ] 2X0 Pm;.-ms
5! NG
e Prmy--mg.m
/6!

where the last row in M has been abbreviated for simplicity and we have defined
Fr?rlumz = 2a[m|Aam2]a Fmimym; = 3 9im;Am,m;), Fﬁ]l"'mﬁ = 68[m|A(rxn2~-~m6]~ (4.14)

Furthermore, similar to Eq. (3.22), we introduce the scalar field ¢“(°) into the generalized metric
1
M instead of the overall factor |G|9-7 (see Eqgs. (2.12)—(2.17) in Ref. [53]). In the case of a string,
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which corresponds to the n-symbol ny, (see Ref. [53]), the n-form becomes

9o
0
0
1
77|(\/|;\1 = NIMN; M QIE/II) = K1 GallN> Q?]) =ut] ol (4.15)
0
0
0
where (¢q,) = (p,q) are constants. Then, we consider a string action
1 1 M N _pM A D A gN
Sy = —= [—MMN(X)P Ay PN —PM A A g ]
2 J5,L2
1 1 M N o m o
= =5 [ [ MO PM A, PN — g P A dx™ | =1 [ qa . (4.16)
)3 p2))

where the fundamental fields are

XM(©), Pm(9), Pmymoms (@), Py ..ms (0), Pmyme,m(0), Yab(0), w(0), A7 ()}, (4.17)

We can eliminate the auxiliary fields, Py, Pm;m,m;» P, ...ms»> a0d P, ..mg, m, by using their equations
of motion, and the action becomes

1 e? 1 e @ 2 2
S1=——/ ( 1141 )GmndX’“A*de”+m/ qa (BS — F5), (4.18)
2 Jyx, 2 )3}

where we defined

g1 = Je ¢ + e#(p — 4 Co)?. (4.19)
As in the case of the usual string action, the equation of motion for y,;, gives
Vab & hap = Gmn 8,.X™ 0pX", (4.20)

and by using this, the action for X™ and 4 becomes

w w 2 2
Si=— [ @t (MY gy, g BY _ F¢
5 2 2
2

2
= —|M1|/ d*o |g| cosh ' v/—deth + / o (BS — F5), 4.21)
pp) )]
where e = = Tl ml - The equations of motion for w show that e” = |ut1] |¢|, and we finally obtain
S1 = —|u1] d%o |g| v/— deth + u1/ qa (B — F5). (4.22)
3] 3]

This is the well-known (p, ¢)-string action [71,72] for (¢,) = (p,q). We can also show that the
self-duality relation is satisfied:

g A PY = My %, PN, (4.23)
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5. Exotic branes and gauge fields in the external space

In the previous sections, we have considered only the internal components of the supergravity fields,
such as Cj,,;; and Cj,...;,. Here, we also consider the external components, such as Cy;,;, and
Cu1 12y --is» Where p runs over the external (11 — d) dimensions. In fact, the external n-form gauge
fields make up the so-called R,-representation of the E;(4) group (see Ref. [73]). We denote these
external fields as

t,

wip2; 1?0 Cuipops; I3

2

ar
w1 pa; 14 éaulmus;ls’ 7 Y

!, B i1 DT es (51
where the index /" (n = 1,2, 3, . ..) transforms in the R,,-representation of the £;(4) (note that / L=
and /> = I in our M-theory parameterization).

Recently, while this manuscript was being prepared, Ref. [74] appeared on arXiv that constructed
a U-duality-covariant action for strings, including the external fields as well. In our convention, their
action takes the form

1 1
S = Efz T[EMUDYI A %, DY + g, dX“A*de”]
2

1 2
— 5/2 q [nU;,Z Al nay? + . p o' ADY + B, 2 dX* A dX"], (5.2)
2

where DY! = dY’ — Al + /" and @7 = o] dX"*.1f the external fields (i.e. g, «/, and 8, 12)
are ignored, their action reproduces our 1-brane action in Eq. (4.16) by identifying d¥Y! with our
& As a natural extension, it is important to introduce external fields {.<7 /! , ,95’/“ EIE
(p + 1)-form into our p-brane actions. If all of the external fields are introduced in a gauge-invariant
manner, it will be possible to reproduce the actions for a KKM and exotic branes as we discuss
below.

..} up to the

In order to argue that the extension of our p-brane action can completely reproduce the Wess—
Zumino couplings for exotic branes, let us review which potentials are included in the external
fields. For simplicity, let us first consider branes with co-dimension higher than two. In M-theory,
this means 7-branes or lower-dimensional branes. They are standard objects in M-theory (i.e. M2,
MS5, and KKM) that couple to standard fields (i.e. C3, Cg, and C7,1). As one can see from Table 1, an
external p-form contains only the standard fields when we consider the E4(4) group withd < 8 —p.
The external p-form field comes to contain non-standard supergravity fields when we consider the
Eqa) group with d = 9 — p. The non-standard potentials, Cy 3 and Cg g, are known to couple to
defect branes (i.e. co-dimension 2-branes) known as the exotic 53-brane and 2°-brane, respectively.

In order to reproduce whole actions for a KKM in the E;(4) exceptional spacetime with 1 < d < 8,
we need to include external fields up to the eight-form,

1
{M[ 5 %2;[2, %3;]3, .@4;[4, 605;]5, 96;16’ g7;]7, %;]8}, (53)

and write down a gauge-invariant action. Since all components of the field C; where

Qi-g, i
{1} = {u, i}, are contained in these external fields, the Wess—Zumino term for a KKM will be com-
pletely reproduced. On the other hand, in order to consider the exotic 53-brane, we need to consider

3 <d < 8. In this case, naively, we may write down an action using only

1
(A, Bop, Gps Dass Ess, Feors) (5:4)
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Table 1. Contents of the external fields in M-theory for each £,(,. Only the supergravity fields that couple to
branes with co-dimension higher than one are explicitly shown.

Fagtiol mgun F009
| ! y ’ |
%ﬂ : {CL, Cp,i]izs Cﬂilml‘s, Cﬂjlmi%j, Cﬂil"‘i8,flf2f3’ Cﬂil“‘iS’jl“‘fW Cﬂil“‘ig,jlmjg,k’ .. .},
E33) 3] ]f:((:))[[fo]] Eg(6) 1271 E7¢7 1133]
| ! ! |
%umz : {Cuwziﬁ Cuwzilwiw Cuwzilmis,j’ C#1M2il"'i7»./l./2/3’ Cﬂl#ﬁl"'h».fl"'/ﬁ’ .
281 E% Escs) L16] Eg(6) [781
y | !
Cgumzus : {CM1M2M3’ Cu1uzu3i1izisv Cumzusilwis,j’ Cl’-ll’-zl’-}il"'iésjljZ/S’ Cﬂlﬂzﬂﬂl“'ié’jl"%’ b
E33) 3] E4(4) [10] Ess) [45]
\ v \
@M“M : {Cﬂl"'l’-4i1i2’ Cﬂl“‘li4i1~~i4,j’ CM1<»<M4i1»<»i5,j1j2j3, ..h
E33) 6] E4(4) 24]
v \
‘g)m-‘-us S ACuyusis Cuyonsivigi,go Cotyeopisiyig,jijnjs .h
E33) [11]
v
Furng * ACuings Curngivinis Cut-ugiriizsiinjss b

Gy - ACu gy s
%l"'#t@ . {C/LI"'IJ-S,i’ .. .},

I P

These external fields include all components of Cj; ... 44, i, iyi5 - Similarly, the exotic 2%_brane appears
only for 6 < d < 8§, and in order to write down the action, we may only need

1
A, By, ). (5.5)

If our expectation is correct, the exotic 2°-brane will be the most tractable example. We may also
consider co-dimension-1 branes and co-dimension-0 branes that couple to non-standard supergravity
fields hidden in the ellipses in Table 1 (see Ref. [75] for a recent study on mixed-symmetry poten-
tials and the associated co-dimension-1 branes). Further investigation along this direction will be

interesting.
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6. Conclusion

In this paper, we showed that the action of the form

1 1
Sy=——o -

1l [2M1J(X)7>’A*y7>J—7>1AuU /\5‘]] 6.1)
p+1

can reproduce the conventional M-brane actions in a uniform manner. In the case of the M5-brane,
the intrinsic metric y,; naturally reproduced the 5-brane metric as a result of the equations of motion,
and by using this metric, the self-duality relation,

0y AP = My %, P, (6.2)

was realized. In contrast to the conventional formulations of extended sigma models (i.e. dou-
ble/exceptional sigma model), the worldvolume gauge fields, such as 4> and As, are naturally
introduced inside £, which essentially plays the role of dX’ in the conventional formulations.
In order to show the applicability of our formalism to type IIB branes, we demonstrated that the
well-known (p, g)-string action can be correctly reproduced. An extension of our p-brane action
which includes external fields and actions for exotic branes was discussed in Sect. 5.

It will be interesting future work to reproduce all of the known brane actions in M-theory and type
1IB theory. So far, actions of exotic branes are constructed only for the exotic 5% -branes and 5§-branes
in type II theory [16,76,77] and the 53-brane in M-theory [78]. By considering the E9(9) exceptional
spacetime or including external fields, it will be possible to reproduce the actions for these branes as
well as the other exotic branes discussed in Sect. 5. Extended sigma models play an important role in
describing string/brane dynamics in “stringy” backgrounds, such as non-Riemannian backgrounds
(see Ref. [79] for the detailed analysis) and backgrounds with non-geometric fluxes called U-folds.
It will be interesting to study concrete applications.

Finally, let us discuss the global U-duality rotations of our M-brane actions, assuming the existence
of n isometries in the physical d-torus. For concreteness, we suppose n = 3: Ey(4) exceptional
spacetime with three isometries. We decompose the coordinates as (x') = (x, Wym=1,...,d-3,
p = 1,2,3), and the y” directions are isometric. In this case, the physical duality group is SL(3) x
SL(2) and an M2-brane and an M5-brane wrapped on the isometric 3-torus should transform with
each other as an SL(2) doublet. One may realize this symmetry in our formulation in the following
manner.

Similar to the case of the KKM discussed in Sect. 3.5, we introduce three 1-form gauge fields
agp) associated with the Killing vectors k(Ip) 07 = 9. We then replace P! in the M2/MS5 action with

Pl — agp) k(lp), and after eliminating the gauge fields we obtain the actions for M2/M5-branes that
fluctuate in the (d — 3)-dimensional spacetime. Thanks to the isometries, we can trivially integrate
the wrapped M5-brane action over the 3-torus, and the M5-brane action will become an effective
2-brane action. Then, a natural expectation (at least if we ignore the gauge field A, for simplicity)
is that the wrapped M5-brane action will take the form of the 2-brane action in Eq. (3.19) with the
following n-form:

0
ip 2 13 i)
4pxli k) k3 k)
_ I I NZT]
Ny =319, Qs ~ : (6.3)

0
0
0
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In fact, this kind of charge appears if we consider a duality ration of the M2 charge Q(IMZ),

DX DX’
4pxlin 4213141
J M2 N
o) = 0 )
0
0

n2

0
I I _ (,4q12BR
Q=7 0|~ Quny = (€311
0

iz )T 5

: (6.4)

where ¢''253 is proportional to k([il) kg) kég and (R;i,i3) 5 is an Eg(g) generator in the Ry-
representation (see Appendix A.2). This 2-brane with the charge Qé[m-) may be interpreted as a
bound state of an M2-brane and wrapped M5-branes like the (p, ¢)-string. It will be interesting to
perform a more detailed analysis and clarify its relation to the (p, ¢)-membrane discussed in Ref. [38].

Funding
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Appendix A. Conventions
A.1.  Differential forms

We employ the following conventions for differential forms on a worldvolume:

. 1 .
0P = _\/?y’ €0.p =~/—V, €0.p=1= —0? @tlg =doO A Ado?,
_ Lo bb
(*qu)alma,,H,q = a £ a1 -dpp1—g Why-bys
sy (o™ A - Ado®) = b ae dob' Ao A dobria (A.1)
' Torl—g! e ' '

A.2.  E,qu) algebra and the R,-representation

In the M-theory parameterization, we decompose the E;(4) (d < 7) generators as follows:

{To) = (K7, RM2B, RNV, Ry Rijig) (@ =1,...,dim Eyq)). (A.2)
Their commutation relations are given as follows [22]:

[K/, K/ =8, K =LK/, [K/, Rhlebs] = —3 5011 pilkakal,

(K7, Rkt ] = 380 Riigs), [K7 L ROH6] = —6 8111 pilbhal,

[K/\ Riykg] = 68)  Ritpyokg)s [R5, RWSIS] = —RN s,

[k1]

31.3! [i1i i3] 1 i1ipi
[R5, Ry ] = === 8yjyjs K™ + 33185 Ds
[Ri1i2i3 R ] _ g 8i1i2i3 Ri

»del = 3y i Jajsjel>
e 6! G o

[Ri1i2i39 Ri4i5i6] = Ri]"~i57 [Rl'|i2i3: R J6:| = _5 Sl[ﬁéz} Rj4]5j6]’

646! [iiis 2 i
(R, Ryoje] = = =5~ 8t KLy + 361815 D (A.3)

where D = Y . K';.
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Table Al. R,-representation dimensions.

Eqa) Rl R R R, Rs Ry

SL(5) 10 5 5 10 24 40+ 15
SO(,5) 16 10 16 45 144 320+ 126+ 10

Eeo 27 27 T8 351 1728427

Exsy 56 133 912 8645+ 133

We denote the representation of the £4(4) group that is composed of the external n-form fields as the
R,-representation, whose dimensions are determined as in Table A1 [73]. The Ry_4-representation is
always the adjoint representation and there is a symmetry in the dimensions, dim R,, = dim Rg_,4_,.
In the M-theory parameterization, we decompose the index /” of the R,-representation as

VI1 _ (vl Vijip Vll i Vipeigk  Vipeigkikoky  Vipeig kjkg  Vig-ig,kp kg, k )
NIRRTV, TR VATE T VAT TRV T

V) = (v“ \/7, v”\/l*().ka Vi14,.i77,!k;/!52k3 , Viy- \}77'% kg . .),

(Vp3) = (V’ "111213 Vli/;%k’ th-;;ﬁ%zks, V’l\’/%]%’”.)’

(V) = (”’1;3, V’IJ"%’C, ””';7%‘2"3,...),

(Vys) = (Vz, "111213 k’ Vii- \74%’:2"3 .. .)’

(Vy6) = (v, V%k, Vlzé#) (A.4)

where the ellipses are not necessary when we consider the E4(4) group with d > 9 — n. We may
simply denote /' and /2 as I and I, respectively.

The matrix representations of the £;(;) generators in the R-representation are given as follows
[22]:

5 87 0 0 0
skl g2
SNV 0 0 52
212!
(Kklkz)lj = 6k21| 148” J5 + 5]7 (A 5)
0 0  Siis Sty 0 9—-d
415151
13’f211 lo g/1-77 5/+5/1 173k2§/
O O 0 -i7 kyly-- R
W
si2
0 ki/k%h 0 0 \
175
i1igkykp ks
Rigiiy) s = | © 0 V2! AP (A.6)
'l“jjl ) 5211%;’{3
i -isly
0 0 0 21V/5171
0 0 0 0 )
0 0 0 0
shikaks
B 0 0
(Rklkzks)IJ = ' §i2kikaks , (A7)
0 i-is 0 0
V215!
g1Ishh 55611/f2k3
i-iy 11
0 0 NG 0
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(Riy i)y

(=]

Ryl

.1...' '1;...
where we defined 611. = pr gt
1y e

1751
8//‘1""% 0
grur shls/
0 iyiplyls "ky-ke
51217 >
0 0
0 0
0 0 0
0 0 0
0 0 0}
121115 Jky-kg
81'1”4!'7 sllmlsi O 0
5142171

wip

(A.8)

(A.9)

Using the n-symbols, we can also find the matrix representations of the £, 4y generators (T, )l
in the Ry-representation through

h* Ty K h* Ty\L " TynT
(e" ") (e” ") kg (e 1) = ;1 (A.10)
The explicit matrix forms are obtained as follows:
53;18;2 0 0 0 0
Ei];'if/ 52111213
0 31/4r4 0 0 0
L gilie o201 t5 e oi106 sk 82
(KT, = 0 o 30si-as Y g O Y16 %1% 0
1 = J6l6!
1 i1y ooty ot gkikoky 1 iyin sk koky safyty
0 0 o Ssutite gz Tl 2V sifi bl 0
71317131
1 (i1i7 o116 Kk | 1 iy kpkg sty
0 0 o o o syt Bty Oy 5 g P11t Pyl
71617161
52
26
L5t Al
- 9 d J» ( . )
( 5is1s2s3
J1°J4
0 VA 0 0 0
3=/2 §i174819283 _ 1 gh1eial11) 6815283
0 T Tj1iel 2177176 iyl 0 0
V416!
s15283\1 _ — 3— 2 gl ik ¢515253 1 i1 igr ki1 1 (515253
(R ) J = 0 0 O 7 aj1~~¢/’7 8111213 2!§/1"t/7 L3 "t1pr O s (A12)
A/6!7!3!
{1"'{7551kzlk3315233
J197 1--lg
0 0 0 V7131716!
\o o 0 0 0
0 0 0 0 0
i]-eig
Pl 0 0 0 0
3—7ﬁ3{1---{6k —4 iig 52112212
I _ J1J4515283 2171 jatytp "S15253
(Rslszsg) J = 0 V64! 0 0 0 s (A13)
3=V2gi1i7 skikaks _ 1 giyi7 ckikoks gtityr
0 0 7 %1l 0515253 T 20%1 jgrln s, 9515253 0 0
V71316!
i iy ;fll‘"lke
J197 111513515253 )
K 0 0 0 V716! 73! 0
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1+%ﬁ5§1 "'»_?()lLsﬂ '"»_?63;‘ \
i) el 16
0 0 NG 0, . 0
Sl“'S()l‘ I|"'l4
197 libiyr
0 0 0 Ait ity 0
S1eS6\I V713141 o o
(R ) g = 14272 gi1i6k g8156 _gS136K 5116 | (A.14)
0 0 0 0 7 %17 Olylg 17 Olylg
V7!6!6!
0 0 0 0
0 0 0 0 0
0 0 0 0 O\
0 0 0 0 0
14272 gi1 ik giyig ok
I 7 s1s6f 517867 O O 0 O
= 6!
(RS1-~S6) Jd = Vel 6,-1..,,'7 5k1k2k3r (AIS)
51567 %1 4
0 V713141 o 0 o 00
1422 51017 skikg _giyiy ckyke
\ 0 0 7 i1l 05156 sy 56l Y1 e 0 0
V716!6!

From the relation in Eq. (A.10), for generalized vectors A’ and B’ that transform in the R;-
representation and CT that transforms in the R,-representation, a combination, Al B/ .1 C I is
invariant under U-duality transformations:

AT B i1 € — (@ Ty g (@ Ty L AR By 1 (@ T) 5 €7 = AKX BE g 5 €T (AL16)

A.3.  n-symbols in the M-theory parameterization

The n-symbols n* = (n™*1) and n1 = (ni7;1) ”** = /"% and ny7;1 = nyr1) are constant
matrices that connect the symmetric product of two Rj-representations and the Rj-representation.
When we consider M-theory, we decompose the R)-representation as

Niy-ig nil-"i@,k 77i1--~i7,k1k2k3 77i1~~-i7,k1~-k6
(1) = <n~, ; , : ) A17
' ANZ NSV TR T 716! (17
The two types of n-symbols, nT and nr, are simply related as
Nt =1, (A.18)

as matrices. Their explicit matrix forms are determined in Ref. [50] and are given as follows (see
Ref. [50] for the explicit form of n1):

oo 00
857
m=| O 0], (A.19)
0 0 0
0 0 00
gL
ey
o 0 =50
3;(11’?{]52
Ny ooy = i?i J2121 0 0 , (A.20)
iy 0 0 0
NG
0 0 0
Mky-okes ] = Mpyokg, 1 T Mhy ookl (A.21)
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iy g WL
0 0 0 5 A~ "
)
KKM — 0 0 6 N 1K 0
Teoko =) o (a.22)
s - gl
17 0 0 0
Nl
5/1"-1'7 s
0 0 0 3 Audy
NG
621":/?!‘1!’2
1 0 0 At 0
— V2151
Nky-ky = ﬁ §iisin ) (A.23)
0 s K A 0 0
e V215!
L"Z i
1~k O
3 A 0 0 0
0 0 0 0
_8j1~~j7 Jilipmy ---my
0 O 0 111213m‘1‘.»'~m§'7k'1~»k7
— iigmymy oj1+J5 ’ o
Nky-kg, bl = 0 0 Skl"'k5k6k7 8m1”12111213 0 ) (A24)
214/5!5!
ip-i7 1jamy-my
0 _81112l3m1-~m4 ky--kq 0 0
41/2!7!
0 0 0 0
0 0 0 0
nk]"'k7,l]"'l(, = O 0 0 8k1-~~k7 8ll~~~16 . (A25)
NGET
6,'1.4.1‘7 81'/‘1.4.1‘5 st
\O 0 ky -k 01y -lg 0
VST
We also define the Q2-tensor:
177 (}1
(o 0 0 i
NG
0 0 €i1i2J1+J5 0
(Q[J) = O gil"'iS/ljZ i)‘s’ O s (A26)
V2151
it 51 215!
0 o0
€ in 8
0 0 A
NG
0 0 €iinj1 s 0
IJ\ /215!
(Q ) = _6,‘1“4,‘5/'”2 0 0 (A27)
‘ V215!
€iroin 8,
\— A 0 0 0

The relation between the 7-symbols (and the 2-tensor) and the Y -tensor known in the literature has
been shown in detail in Ref. [50] (see, in particular, Appendix B therein). Similar expressions for
the n-symbols and the 2-tensor that are suitable for type IIB theory are given in Ref. [50].
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