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We develop the M-brane actions proposed in Y. Sakatani and S. Uehara, arXiv:1607.04265,
by using η-symbols determined in Y. Sakatani and S. Uehara, arXiv:1708.06342. Introducing
η-forms that are defined with the η-symbols, we present U -duality-covariant M-brane actions
which describe the known brane worldvolume theories for Mp-branes with p = 0, 2, 5. We
show that the self-duality relation known in the double sigma model is naturally generalized to
M-branes. In particular, for an M5-brane, the self-duality relation is nontrivially realized, where
the Hodge star operator is defined with the familiar M5-brane metric while the η-form contains
the self-dual three-form field strength. The action for a Kaluza–Klein monopole is also partially
reproduced. Moreover, we explain how to treat type IIB branes in our general formalism. As a
demonstration, we reproduce the known action for a (p, q)-string.
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1. Introduction

String theory compactified on a d-torus has the O(d, d) T -duality symmetry, but the duality is not
manifest in the conventional formulation. A T -duality manifest formulation for strings, called the
double sigma model (DSM), was originally developed in Refs. [1–6], where the dimensions of
the target spacetime are doubled by introducing the dual winding coordinates. Utilizing the idea of
the doubled spacetime, a manifestly T -duality-covariant formulation of low-energy superstrings was
developed in Refs. [4,7–10], which is nowadays known as the double field theory (DFT). More recent
studies on the DSM include Refs. [11–14]. Other than the fundamental string, higher-dimensional
objects also transform covariantly under T -duality. A T -duality-covariant action for D-branes was
constructed in Ref. [15] (see also Ref. [5]) and a covariant action for a family of type II 5-branes [i.e.
NS5-brane, Kaluza–Klein monopole (KKM), and the exotic 52

2-brane] was constructed in Ref. [16].
In fact, string theory compactified on a (d − 1)-torus or M-theory on a d-torus has a larger

duality symmetry generated by the Ed(d) U -duality group. As a natural generalization of the
T -duality-covariant string theory, U -duality-covariant membrane theory was first investigated in
Ref. [17]. Moreover, by generalizing the idea of DFT, a manifestly U -duality-covariant formulation
of supergravity, called the exceptional field theory (EFT), was developed in Refs. [18–32]. Utilizing
DFT/EFT, unified treatments of brane solutions were studied in Refs. [33–37]. Further attempts at
U -duality manifest M-brane theories were made in Refs. [38–45], but some obstacles to the man-
ifestation of the whole U -duality symmetry are reported in Refs. [46–48] (see Sect. 3.6 for more
details on this point). Thus, it remains to be investigated whether we can formulate brane actions in
a U -duality-covariant manner.
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In this paper, we develop the worldvolume theories for M-branes proposed in Ref. [49]. The
proposed theory is based on the geometry of the exceptional spacetime (introduced in EFT) and
can reproduce the conventional worldvolume theories for the M2-brane and M5-brane in a uniform
manner. The action for an Mp-brane takes the form

S = − 1

p + 1

∫
�p+1

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ + �p+1

]
. (1.1)

However, the U -duality covariance has not been manifest in �p+1. In this paper, by using the η-
symbols recently determined in Ref. [50], we introduce a covariant object ηIJ , to be called the η-form,
and propose a duality-covariant action that reproduces the above action. As we shall argue later, the
η-form can be regarded as a natural generalization of the O(d, d)-invariant metric ηIJ in DFT or
DSM. Indeed, we show that the self-duality relation in DSM,

ηIJ PJ = −HIJ ∗γ PJ, (1.2)

can be naturally generalized to

ηIJ ∧ PJ = MIJ ∗γ PJ (1.3)

for an Mp-brane. Moreover, we argue that the action for a KKM can also be naturally reproduced in
our formalism, although the whole action is not reproduced due to limitations of our analysis. We
also demonstrate that our formalism can reproduce brane actions for type IIB branes.

The present paper is organized as follows. In Sect. 2, we briefly review the DSM constructed in
Ref. [12] and explain a slight difference from our approach. In Sect. 3, we apply our approach to
M-branes (M0, M2, M5-branes) and KKM. In Sect. 4, we explain how to apply our formalism to
type IIB branes and reproduce the action for a (p, q)-string. A possible application to exotic branes
is discussed in Sect. 5. Section 6 is devoted to conclusions and discussion.

2. Double sigma model

In this section, we review the standard construction of the DSM and explain a slight difference
from our approach. The difference is not significant in the DSM, but it becomes important when we
consider higher dimensional objects in the following sections.

2.1. A brief review of double sigma model

Let us begin with a brief review of Lee and Park’s DSM [12] (known as the string sigma model on
the doubled-yet-gauged spacetime). The action takes the form

S = −1

2

∫
�2

[ 1

2
HIJ (X ) DX I ∧ ∗γ DX J + ηIJ DX I ∧ AJ

]
, (2.1)

where ηIJ is the O(d, d)-invariant metric, γab(σ ) is the intrinsic metric on the worldsheet, X I (σ ) is the
embedding function of the string into the doubled spacetime, and HIJ (X ) is the generalized metric
satisfying the section condition ∂K∂KHIJ = 0. According to the section condition (or equivalently
the coordinate gauge symmetry [51]), there are d generalized Killing vectors, which take the form
∂̃ i (i = 1, . . . , d) when HIJ depends only on the xi coordinates. Associated to the isometries, we
introduce one-form gauge fields AI (σ ) satisfying

AI (σ ) ∂I T (x) = 0 (2.2)
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for an arbitrary supergravity field T (x), and define the covariant derivative DX I (σ ) ≡ dX I (σ ) −
AI (σ ).

In order to see the equivalence to the conventional string sigma model, let us consider a duality
frame where ∂̃kHIJ = 0 is realized. In such frame, Eq. (2.2) requires AI and DX I to have the
following form:

AI (σ ) =
(

0
Ai(σ )

)
, DX I = dX I − AI =

(
dX i

dX̃i − Ai

)
. (2.3)

By further using the parameterization of the generalized metric

(HIJ ) =
(

(G − B G−1 B)ij (B G−1)i
j

−(G−1 B)i
j Gij

)
, (2.4)

the action becomes

S = −1

2

∫
�2

[
Gij dX i ∧ ∗γ dX j − Bij dX i ∧ dX j − dX̃i ∧ dX i (2.5)

+ 1

2
Gij (Ai − dX̃i + Bik dX k − Gik ∗γ dX k) ∧ ∗γ

(Aj − dX̃j + Bjl dX l − Gjl ∗γ dX l)].

Eliminating the gauge fields Ai, we obtain the action

S = −1

2

∫
�2

[
Gij(X ) dX i ∧ ∗γ dX j − Bij(X ) dX i ∧ dX j − dX̃i ∧ dX i

]
, (2.6)

which is the familiar sigma model action for the bosonic string up to a total-derivative term. The
DSM is thus classically equivalent to the conventional string sigma model. The action in Eq. (2.1)
is manifestly invariant under global O(d, d) rotations and worldsheet diffeomorphisms. It is also
invariant under generalized diffeomorphisms in the target doubled spacetime [12].

2.2. Our approach

In this paper, we basically follow the approach of Lee and Park, but there are slight differences.
Following Ref. [50], we introduce a set of null generalized vectors λa (a = 1, . . . , d) satisfying

λa
I ηIJ λb

J = 0. (2.7)

These λa specify a solution of the section condition, and an arbitrary supergravity field T (x) must
satisfy the linear section equation [50]

λa
I ηIJ ∂J T (x) = 0. (2.8)

For example, a choice

λa ≡ (λa
I ) ≡

(
λa

i
λi; a

)
=

(
δa

i
0

)
(2.9)

corresponds to the section where supergravity fields satisfy ∂̃ iT (x) = 0. For a given set of null
generalized vectors λa that specifies a section, we express the condition in Eq. (2.2) for AI as

AI (σ ) λa
I = 0. (2.10)

This is a minor difference (though it becomes important when we consider brane actions).
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Fig. 1. Fluctuations of a string as active generalized diffeomorphisms.

A major difference is in the parameterization of fluctuations. In the DSMs known in the literature,
fluctuations of a string are described by the embedding function X I (σ ), but we take a different
approach, which is important in the generalization to branes. We first choose the section in Eq. (2.9),
where all fields and gauge parameters depend only on the physical coordinates xi. We then prepare
a static string worldsheet, where the tangent vectors to the worldsheet take the form

Ēa ≡ (Ē I
a) =

(
δi

a

0

)
(a = 0, 1), (2.11)

where the bar represents that the string is static. If we introduce a one-form

Ē I ≡ Ē I
a dσ a =

⎛
⎜⎜⎝

dσ a

0
...
0

⎞
⎟⎟⎠, (2.12)

it corresponds to dX I (σ ) of a string in the static gauge, X 0(σ ) = σ 0 and X 1(σ ) = σ 1. In order
to describe a fluctuation of the string, we perform a finite active diffeomorphism along a gauge
parameter ξ I (x) = (ξ i, ξ̃i) satisfying ∂̃ iξ I = 0 (see Fig. 1). Under the section in Eq. (2.9), a
generalized diffeomorphism e£̂ξ can be decomposed into a B-field gauge transformation and a usual
diffeomorphism

e£̂ξ =
(

δi
k 0

Fik(x′) δk
i

)(
∂x′k
∂xj 0

0 ∂xj

∂x′k

)
, (2.13)

where x′i = eξ j∂j xi, Fij ≡ ∂iAj − ∂jAi, and Ai are complicated functions of ξ I (which coincide with
ξ̃i when ξ i = 0). The usual diffeomorphism maps Ē I as

Ē I (σ ) →
(

dX ′i(σ )

0

)
, (2.14)

and the B-field gauge transformation further maps it as

Ē I (σ )
diffeo.→

(
dX ′i(σ )

0

)
B-field gauge trsf.→

(
dX ′i(σ )

Fij(X ′(σ )) dX ′j(σ )

)
. (2.15)

We thus introduce a generalized vector E I (σ ), which describes fluctuations of a string, as

E I (σ ) ≡
(

dX i(σ )

Fij(X (σ )) dX j(σ )

)
, (2.16)

where the prime has been removed for simplicity. The scalar fields X i describe fluctuations of a
string inside the d-dimensional physical subspace of the doubled target space (with coordinates xi),
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while the one-form Ai describes the fluctuation along the dual directions in the doubled spacetime.
In general, since the integrability condition is violated, i.e. (∂τEσ − ∂σEτ )

I �= 0, we cannot find the
embedding functions X I (σ ) that realize E I (σ ) = dX I (σ ). However, inside the physical subspace, the
integrability condition, (∂τEσ − ∂σEτ )

i = 0, is satisfied and the worldsheet is a manifold described
by X i(σ ) as usual. Thus, the violation in the dual components may be related to the gerbe structure
discussed in Ref. [52]. In this paper, instead of assuming the existence of the embedding functions
X I (σ ), we parameterize fluctuations of a string by using the diffeomorphism parameters ξ I , or
equivalently {X i(σ ), Ai

(
X (σ )

)}.
Since E I is obtained by acting a generalized diffeomorphism on a generalized vector Ē I , E I also

transforms as a generalized vector. Such behavior of E I is ensured as long as Fij transforms (like the
B-field) as

δV Fij = £vFij + ∂iṽj − ∂j ṽi
(
δV Ai = vkFki + ṽi

)
(2.17)

under an infinitesimal diffeomorphism. It should also be noted that E I is a null generalized vector;
ηIJ E I EJ = 0. Assuming the null property, our parameterization in Eq. (2.16) is the most general
parameterization up to duality rotations.

Now, our action is given by

S = −1

2

∫
�2

[ 1

2
HIJ (X ) P I ∧ ∗γ PJ + ηIJ P I ∧ AJ

]
, (2.18)

which is simply obtained from Eq. (2.1) with the replacements

dX I → E I , DX I → P I ≡ E I − AI . (2.19)

In the duality frame of Eq. (2.9), the condition in Eq. (2.10) leads to

AI =
(

0
Ai

)
, P I = E I − AI =

(
dX i

Fij
(
X (σ )

)
dX j − Ai

)
≡

(
dX i

Pi

)
, (2.20)

and, in the following, we consider Pi as the fundamental variable rather than Ai. If we rewrite the
action as

S = −1

2

∫
�2

[ 1

2
HIJ (X ) P I ∧ ∗γ PJ + ηIJ P I ∧ EJ

]
, (2.21)

we observe that Fij appears only in the second term. In the second term, since the only quantity with
an upper index is dX i (other than the Kronecker delta), we see that Fij appears only through the
pullback,

F2(σ ) ≡ dA1(σ ), A1(σ ) ≡ Ai
(
X (σ )

)
dX i. (2.22)

Indeed, we can explicitly expand the second term as

S = −1

2

∫
�2

[ 1

2
HIJ (X ) P I ∧ ∗γ PJ + Pi ∧ dX i − 2 F2

]
. (2.23)

Therefore, the fundamental fields in our action are

{X i(σ ), A1(σ ), Pi(σ ), γab(σ )}. (2.24)
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Namely, not all components of Ai
(
X (σ )

)
appear in the action—only the pullback A1(σ ) does.

Eliminating the auxiliary fields Pi(σ ) by using their equations of motion, we obtain

S = −1

2

∫
�2

[
Gij(X ) dX i ∧ ∗γ dX j − Bij(X ) dX i ∧ dX j

]
−

∫
�2

F2. (2.25)

The main difference from Lee and Park’s action is in the last term. The last term in Eq. (2.6) reproduces
our F2 if we regard dX̃i as Fij dX j.

Let us comment on the symmetry of the action in Eq. (2.18). The invariance under the worldsheet
diffeomorphism is manifest. Under an infinitesimal generalized diffeomorphism, E I transforms as a
generalized vector and AI is also supposed to transform as a generalized vector. Then, since HIJ and
ηIJ are generalized tensors, Eq. (2.18) is manifestly invariant under generalized diffeomorphism.
The action is also formally covariant under global O(d, d) rotations. In the O(d, d) rotated frame, λa

I
no longer takes the form of Eq. (2.9), and supergravity fields depend on another set of d coordinates,
which may contain the dual coordinates. The parameterization of the generalized vector E I is also
changed since the physical subspace and the generalized diffeomorphism are changed (see Sect. 3.6
for more details).

For later convenience, let us also comment on the self-dual relation [1,5,6,12]. The equations of
motion for the auxiliary fields can be written as

Pi = −Gij ∗γ dX j + Bij dX j. (2.26)

A duality-covariant rewriting of this equation is known as the self-dual relation, and takes the form

ηIJ PJ = −HIJ (X ) ∗γ PJ . (2.27)

In this paper, we find a similar self-dual relation for M-branes that determines all of the auxiliary
fields in terms of the conventional fields.

3. M-branes in exceptional spacetime

In this section, we consider worldvolume actions for M-branes. We decompose the 11-dimensional
spacetime into an (11 − d)-dimensional “external space” and a d-dimensional “internal space,” and
enlarge the internal space into an exceptional space with dimension D = dim R1, where R1 is a
fundamental representation of the Ed(d) group (see Appendix A.2). For simplicity, we disregard the
external space and consider dynamics of branes in the internal space only. This assumption becomes
less restrictive as d becomes larger. In order to describe the time evolution, we include the time
direction in the internal space.

In Sect. 3.1, we construct the brane actions for Mp-branes (p = 0, 2, 5). The detailed properties
and the equivalence to the conventional theories are studied in Sects. 3.2–3.4. The action for a KKM
is discussed in Sect. 3.5. In Sect. 3.6, we discuss the U -duality covariance of our actions.

3.1. Action for an Mp-brane

In order to describe M-branes, we parameterize the generalized coordinates in the Ed(d) exceptional
spacetime (d ≤ 7) as

(xI ) =
(

xi,
yi1i2√

2! ,
yi1···i5√

5! ,
yi1···i7, i√

7!
)

, (3.1)
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where i = 1, . . . , d and I = 1, . . . , dim R1. We also parameterize the generalized metric MIJ as
follows by using the fields in the 11-dimensional supergravity [22,37,53]:

MIJ = (LT M̂ L)IJ ≡ |G| 1
9−d M̄IJ , L ≡ e

1
3! Ci1i2i3 Ri1i2i3 e

1
6! Ci1···i6 Ri1···i6 , (3.2)

M̂ ≡ |G| 1
9−d

⎛
⎜⎜⎜⎝

Gij 0 0 0
0 Gi1i2, j1j2 0 0
0 0 Gi1···i5, j1···j5 0
0 0 0 Gi1···i7, j1···j7 Gij

⎞
⎟⎟⎟⎠, (3.3)

e
1
3! Ci1i2i3 Ri1i2i3

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δi
j 0 0 0

−Ci1i2j√
2! δ

j1j2
i1i2

0 0

− 5!δk1···k5
i1···i5 Ck1k2k3

Ck4k5j

2! 3! 2!√5!
5!δj1j2k1k2k3

i1···i5 Ck1k2k3
3!√2! 5! δ

j1···j5
i1···i5 0

− 7!δk1k1p1p2p3q1q2
i1···i7 Cik1k2

Cp1p2p3 Cq1q2j

3! 2! 3! 2!√7!
7!δj1j2k1k2l1l2l3

i1···i7 Cik1k2
Cl1l2l3

2! 2! 3!√2! 7!
7!δj1···j5k1k2

i1···i7 Cik1k2
2!√5! 7! δ

j1···j7
i1···i7 δ

j
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.4)

e
1
6! Ci1···i6 Ri1···i6 ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

δi
j 0 0 0

0 δ
j1j2
i1i2

0 0
Ci1···i5j√

5! 0 δ
j1···j5
i1···i5 0

0 − 7! δj1j2k1···k5
i1···i7 Cik1···k5

5!√2! 7! 0 δ
j1···j7
i1···i7 δ

j
i

⎞
⎟⎟⎟⎟⎟⎟⎠, (3.5)

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δi
j 0 0 0

−Ci1i2j√
2! δ

j1j2
i1i2

0 0

Ci1···i5j−5C[i1i2i3 Ci4i5]j√
5!

20δ
j1j2[i1i2

Ci3i4i5]√
2! 5! δ

j1···j5
i1···i5 0

21Ci[i1i2 (Ci3···i7]j− 5
3 Ci3i4i5 Ci6i7]j )√

7! − 42δ
j1j2[i1i2

(C|i|i3···i7]−5C|i|i3i4 Ci5i6i7])√
2! 7!

7!δj1···j5[i1···i5 Ci6i7]i
2!√5! 7! δ

j1···j7
i1···i7 δ

j
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Here, (Gij, Ci1i2i3 , Ci1···i6) are the conventional fields in the 11-dimensional supergravity, |G| ≡
det(Gij), and (Ri1i2i3)I

J and (Ri1···i6)I
J are Ed(d) generators in the R1-representation (seeAppendixA.2

for the details). We also defined δ
i1···ip
j1···jp ≡ δ

[i1[j1 · · · δip]
jp] and Gi1···ip, j1···jp ≡ Gi1k1 · · · Gipkp δ

j1···jp
k1···kp

.
Similar to the case of the DSM, we specify the section by introducing a set of null generalized

vectors λa
I (a = 1, . . . , d) satisfying [50]

λa
I ηIJ ;I λb

J = 0, λa
I �IJ λb

J = 0, (3.7)

where the explicit forms of ηIJ ;I and �IJ are given in Appendix A.3. For a given λa
I , the linear

section equations for arbitrary supergravity fields and gauge parameters T (x) become

λa
I ηIJ ;I ∂J T (x) = 0, λa

I �IJ ∂J T (x) = 0. (3.8)

Using the same λa, we can express a condition for AI as

AI (σ ) λa
I = 0, (3.9)
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which corresponds to Eq. (2.10) in the DSM. For a natural choice of λa,

(λa
I ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

λa
i

λi1i2; a√
2!

λi1···i5; a√
5!

λi1···i7, i; a√
7!

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

δa
i
0
0
0

⎞
⎟⎟⎟⎠, (3.10)

supergravity fields depend only on the physical coordinates xi and AI takes the form

(AI ) =

⎛
⎜⎜⎜⎜⎜⎝

0
Ai1i2√

2!
Ai1···i5√

5!
Ai1···i7, i√

7!

⎞
⎟⎟⎟⎟⎟⎠. (3.11)

Similar to the DSM, we describe fluctuations of a p-brane by using the one-form-valued null
generalized vector E I (σ ). In the case of the exceptional sigma model, we parameterize the null
generalized vector as

E I (σ ) = (LI
J )

⎛
⎜⎝

dX j

0
0
0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

dX i

Fi1i2j dX j
√

2!
−(Fi1···i5j+5 F[i1i2i3 Fi4i5]j ) dX j

√
5!

21 Fi[i1i2 (Fi3···i7]j+ 5
3 Fi3i4i5 Fi6i7]j ) dX j

√
7!

⎞
⎟⎟⎟⎟⎟⎠, (3.12)

where we defined

Fi1i2i3(x) ≡ 3 ∂[i1Ai2i3](x), Fi1···i6(x) ≡ 6 ∂[i1Ai2···i6](x),

L ≡ (LI
J ) ≡ e− 1

3! Fi1i2i3 Ri1i2i3 e− 1
6! Fi1···i6 Ri1···i6 . (3.13)

As in the string case, X i, Ai1i2 , and Ai1···i5 are understood as functions of the diffeomorphism param-
eters ξ I that fluctuate a static brane. In order for E I to transform as a generalized vector, Fi1i2i3 and
Fi1···i6 should transform as

δV Fi1i2i3 = £vFi1i2i3 − 3 ∂[i1vi2i3]
(
δV Ai1i2 = vkFki1i2 − vi1i2

)
,

δV Fi1···i6 = £vFi1···i6 − 30 ∂[i1vi2i3 Fi4i5i6] − 6 ∂[i1vi2···i5](
δV Ai1···i5 = vkFki1···i5 − 5 v[i1i2 Fi3i4i5] − vi1···i5

)
(3.14)

under an infinitesimal generalized diffeomorphism along (V I ) = (
vi,

vi1i2√
2! ,

vi1···i5√
5! ,

vi1···i7, k√
7!

)
. Now, we

define the generalized vector P I (σ ) as

P I ≡ E I − AI =

⎛
⎜⎜⎜⎜⎜⎝

dX i

Fi1i2j dX j−Ai1i2√
2!

−(Fi1···i5j+5 F[i1i2i3 Fi4i5]j ) dX j−Ai1···i5√
5!

21 Fi[i1i2 (Fi3···i7]j+ 5
3 Fi3i4i5 Fi6i7]j ) dX j−Ai1···i7, i√

7!

⎞
⎟⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

dX i

Pi1i2√
2!

Pi1···i5√
5!

Pi1···i7, i√
7!

⎞
⎟⎟⎟⎟⎟⎟⎠, (3.15)

and regard {Pi1i2 , Pi1···i5 , Pi1···i7, i} as the fundamental fields instead of {Ai1i2 , Ai1···i5 , Ai1···i7, i}.
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Unlike the doubled case, the η-symbols ηIJ ;I in the Ed(d) exceptional spacetime contain an addi-
tional index I [50]. Then, in order to describe a p-brane, we introduce a (p − 1)-form QI that
transforms in the R2-representation, and define a (p − 1)-form-valued η-symbol

ηIJ ≡ ηIJ ;I QI, (3.16)

which we call the η-form. In particular, when we consider an Mp-brane (p = 0, 2, 5), we choose QI

as follows:

QI
(M0) ≡

⎛
⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎠, QI

(M2) ≡ μ2

2

⎛
⎜⎜⎜⎝

dX i

0
0
0
0

⎞
⎟⎟⎟⎠, QI

(M5) ≡ μ5

5

⎛
⎜⎜⎜⎝

F3 ∧ dX i

dX i1···i4√
4!

0
0
0

⎞
⎟⎟⎟⎠, (3.17)

where F3 ≡ 1
3! Fi1i2i3 dX i1i2i3 , μp are constants representing the brane charge, and we have introduced

an abbreviated notation

dX i1···ip ≡ dX i1 ∧ · · · ∧ dX ip . (3.18)

Then, we propose the following actions:

S0 = −1

2

∫
�1

MIJ (X ) P I ∧ ∗γ PJ ,

S2 = −1

3

∫
�3

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(M2)
IJ ∧ EJ

]
,

S5 = −1

6

∫
�6

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(M5)
IJ ∧ EJ

]
, (3.19)

where η
(Mp)
IJ ≡ ηIJ ;I QI

(Mp).
Note that the M5-brane charge in Eq. (3.17) has been obtained from the static “purely M5-brane

charge” Q̄I
(M5) through the active generalized diffeomorphism of Eq. (3.12),

Q̄I
(M5) ≡ μ5

5

⎛
⎜⎜⎜⎝

0
dX i1···i4√

4!
0
0
0

⎞
⎟⎟⎟⎠ → QI

(M5) = LI
J Q̄J

(M5) = QI
(M5) ≡ μ5

5

⎛
⎜⎜⎜⎝

F3 ∧ dX i

dX i1···i4√
4!

0
0
0

⎞
⎟⎟⎟⎠, (3.20)

where the transformation matrix LI
J for the R2-representation is given by (see Appendix A.2)

LI
J ≡ (e− 1

3! Fi1i2i3 Ri1i2i3 e− 1
6! Fi1···i6 Ri1···i6

)IJ. (3.21)

The M2-brane charge is invariant under the active diffeomorphism, LI
J QJ

(M2) = QI
(M2). As long

as Fi1i2i3 and Fi1···i6 behave as in Eq. (3.14), QI
(Mp) transforms as a generalized vector in the R2-

representation and hence the η-form ηIJ transforms as a generalized tensor.

In our actions, the generalized metric MIJ (X ) includes an overall factor |G(X )| 1
9−d , which

is important for the duality covariance in EFT. However, it does not play an important role in
the worldvolume theory because it can be absorbed into the intrinsic metric γab. For conve-
nience, we introduce an independent scalar field eω̄(σ ) inside MIJ (X ) and regard the combination,
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eω(σ) ≡ eω̄(σ ) |G(X )| 1
9−d , as a new fundamental field. Namely, in the following, when we denote

MIJ (X ) in the worldvolume action, it means

MIJ (X ) = eω(σ)M̄IJ (X ), (3.22)

and eω(σ) is an independent field. For a p-brane (p �= 1), the action has a local symmetry,

eω(σ) → �1−p(σ ) eω(σ), γab(σ ) → �2(σ ) γab(σ ), (3.23)

and eω(σ) is not a dynamical field. Indeed, as we see later, eω disappears from the action after
eliminating γab by using the equation of motion. Only for the case of a string (p = 1) in type IIB
theory does the new scalar field eω play an important role (see Sect. 4.1).

Let us summarize the fundamental fields in our M-brane actions. There are always scalar fields
X i(σ ), auxiliary fields {Pi1i2(σ ), Pi1···i5(σ ), Pi1···i7, i(σ )}, and the intrinsic metric γab(σ ). In addition,
the generalized vector E I contains quantities like Fi1i2j dX j and Fi1···i5j dX j. As we explained in the
doubled case, since all of the indices of Fi1···ip+1 are contracted with dX i in the action, only their
pullbacks

F3(σ ) ≡ dA2(σ ), A2(σ ) ≡ 1

2! Ai1i2

(
X (σ )

)
dX i1i2 ,

F6(σ ) ≡ dA5(σ ), A5(σ ) ≡ 1

5! Ai1···i5
(
X (σ )

)
dX i1···i5 (3.24)

can appear in the action. Then, from the dimensionality, for example, F6 cannot appear in the
M2-brane action, and the fundamental fields can be summarized as follows:

M0-brane : {X i(σ ), Pi1i2(σ ), Pi1···i5(σ ), Pi1···i7, i(σ ), γab(σ ), ω(σ)},
M2-brane : {X i(σ ), Pi1i2(σ ), Pi1···i5(σ ), Pi1···i7, i(σ ), γab(σ ), ω(σ), A2(σ )},
M5-brane : {X i(σ ), Pi1i2(σ ), Pi1···i5(σ ), Pi1···i7, i(σ ), γab(σ ), ω(σ), A2(σ ), A5(σ )}. (3.25)

Our action for an Mp-brane (p = 0, 2, 5) can be summarized as

Sp = − 1

p + 1

∫
�p+1

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(Mp)
IJ ∧ EJ

]
, η

(M0)
IJ = 0,

η
(M2)
IJ = μ2

2
ηIJ ; k dX k , η

(M5)
IJ = μ5

5

( 1

4! ηIJ ; k1···k4 dX k1···k4 + F3 ∧ ηIJ ; k dX k
)

. (3.26)

This action is manifestly invariant under a generalized diffeomorphism along V I ,

δV MIJ = £̂V MIJ , δV X i = vi,

δV A2 = ιvF3 − v2, δV A5 = ιvF6 − 1

2
v2 ∧ F3 − v5, (3.27)

where vi is restricted to be tangent to the worldvolume and we have defined v2 ≡ 1
2! vi1i2 dX i1i2 and

v5 ≡ 1
5! vi1···i5 dX i1···i5 . The covariance of our action under global U -duality rotations is discussed in

Sect. 3.6.
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In order to expand the action explicitly, it is convenient to define the untwisted vector

(P̂ I ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

dX i

P̂i1i2√
2!

P̂i1···i5√
5!

P̂i1···i7,i√
7!

⎞
⎟⎟⎟⎟⎟⎟⎠ ≡ LI

J PJ , (3.28)

where

P̂i1i2 = Pi1i2 − Ci1i2j dX j,

P̂i1···i5 = Pi1···i5 + 10 P[i1i2 Ci3i4i5] + (
Ci1···i5j − 5 C[i1i2i3 Ci4i5]j

)
dX j,

P̂i1···i7,i = Pi1···i7, i + 21 P[i1···i5 Ci6i7]i − 21 P[i1i2

(
C|i|i3···i7] − 5 C|i|i3i4 Ci5i6i7]

)
+ 21 Ci[i1i2

(
Ci3···i7]j − 5

3 Ci3i4i5 Ci6i7]j
)

dX j. (3.29)

Then, we can expand the first term of the action as

MIJ P I ∧ ∗γ PJ = eω
[
Gij dX i ∧ ∗γ dX j + 1

2! Gi1i2, j1j2 P̂i1i2 ∧ ∗γ P̂j1j2

+ 1

5! Gi1···i5, j1···j5 P̂i1···i5 ∧ ∗γ P̂j1···j5

+ 1

7! Gi1···i7, j1···j7 Gij P̂i1···i7, i ∧ ∗γ P̂j1···j7, j

]
. (3.30)

We can also calculate the second term of the action as

P I ∧ η
(M2)
IJ ∧ EJ = 1

2! Pi1i2 ∧ dX i1i2 − 3 F3

= 1

2! P̂i1i2 ∧ dX i1i2 + 3 (C3 − F3), (3.31)

P I ∧ η
(M5)
IJ ∧ EJ = 1

5! Pi1···i5 ∧ dX i1···i5 + 1

2! Pi1i2 ∧ dX i1i2 ∧ F3 − 6 F6

= 1

5! P̂i1···i5 ∧ dX i1···i5 + 1

2! P̂i1i2 ∧ dX i1i2 ∧ H3 + 6 (C6 − F6) + 3 C3 ∧ F3, (3.32)

where

H3 ≡ F3 − C3. (3.33)

Note that P I ∧ η
(M2)
IJ ∧ EJ and P I ∧ η

(M5)
IJ ∧ EJ expressed in the above forms are the same as �2 and

�5 introduced in Ref. [49] (up to conventions), and the actions presented above can be understood
as a rewriting of the actions in Ref. [49] making the duality covariance manifest.

For later convenience, we also define

ZI ≡ MIJ PJ , ẐI ≡ (L−T)I
J ZJ = MIJ P̂J . (3.34)
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3.2. M0-brane

Let us consider the simplest example, the action for a particle in M-theory, sometimes called the
M0-brane. The action is simply given by (see also Ref. [54,55] for particle actions in extended
spacetimes)

S0 = −1

2

∫
�1

MIJ (X ) P I ∧ ∗γ PJ . (3.35)

The equations of motion for the auxiliary fields Pi1i2 , Pi1···i5 , and Pi1···i7, i give

P̂i1i2 = 0, P̂i1···i5 = 0, P̂i1···i7, i = 0, (3.36)

and by eliminating the auxiliary fields, we obtain

S0 = −
∫

dτ
1

2v
Gij(X ) ∂τ X i ∂τ X j, (3.37)

where v ≡ e−ω
√|γττ | γ ττ . By considering v as the fundamental variable (instead of the redundantly

introduced fields ω and γττ ), this is the bosonic part of the superparticle action discussed in Ref. [56].

3.2.1. Type IIA branes: D0-brane
For completeness, we review how to reproduce the D0-brane action from the above particle action
[56]. By considering the reduction ansatz

(Gij) ≡
(

Grs GrM

GMs GMM

)
=

(
e− 2

3 φ grs + e
4
3 φ Cr Cs e

4
3 φ Cr

e
4
3 φ Cs e

4
3 φ

)

=
(

δt
r Cr

0 1

)(
e− 2

3 φ gtu 0

0 e
4
3 φ

)(
δu

s 0
Cs 1

)
, (3.38)

where r, s = 1, . . . , d − 1 and xM represents the M-theory direction, the action in Eq. (3.37) becomes

S0 = −
∫

dτ
1

2v

[
e− 2

3 φ grs(X ) ∂τ X r ∂τ X s + e
4
3 φ

(
∂τ X M + Cr ∂τ X r)2

]
. (3.39)

From the equations of motion for X M, we obtain

e
4
3 φ

(
∂τ X M + Cr ∂τ X r) = μ v, (3.40)

where μ is the integration constant, and using this, the action becomes

S0 = −
∫

dτ
1

2

[e− 2
3 φ

v
grs(X ) ∂τ X r ∂τ X s − v μ2 e− 4

3 φ
]

− μ

∫
dτ Cr ∂τ X r . (3.41)

Here, we have added a total-derivative term μ ∂τ X M. Using the equation of motion for v,

v2 μ2 = −e
2
3 φ grs(X ) ∂τ X r ∂τ X s, (3.42)

we obtain the standard D0-brane action

S0 = −|μ|
∫

dτe−φ
√−grs(X ) ∂τ X r ∂τ X s − μ

∫
C1, (3.43)

where C1 ≡ Cr ∂τ X r dτ .
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3.3. M2-brane

Let us next consider the action for an M2-brane,

S2 = −1

3

∫
�3

[ 1

2
MIJ P I ∧ ∗γ PJ − P I ∧ η

(M2)
IJ ∧ EJ

]

= −1

3

∫
�3

[ 1

2
MIJ P I ∧ ∗γ PJ − μ2

2! P̂i1i2 ∧ dX i1i2
]

+ μ2

∫
�3

(C3 − F3). (3.44)

We derive the conventional action for the usual fields X i by using the equations of motion for auxiliary
fields Pi1···i3 , Pi1···i5 , Pi1···i7, i, and γab. The equations of motion for Pi1···i5 and Pi1···i7, i can be written
as

P̂i1···i5 = 0, P̂i1···i7, i = 0. (3.45)

Using these, the equation of motion for Pi1i2 becomes

eωGi1i2, j1j2 ∗γ P̂j1j2 − μ2 dX i1i2 = 0. (3.46)

These equations of motion completely determine P̂ I and ẐI in terms of X i and γab,

(P̂ I ) =

⎛
⎜⎜⎜⎜⎝

dX i

−μ2e−ωGi1i2, j1j2∗γ dX j1j2√
2!

0
0

⎞
⎟⎟⎟⎟⎠, (ẐI ) =

⎛
⎜⎜⎜⎜⎝

eωGij dX j

−μ2 ∗γ dX i1i2√
2!

0
0

⎞
⎟⎟⎟⎟⎠. (3.47)

The intrinsic metric γab can also be determined by using its equation of motion,

MIJ P I
a PJ

b = 0. (3.48)

Indeed, from this and the above solutions for P̂ I , we obtain

hab ≡ Gij ∂aX i ∂bX j = − 1

2! Gi1i2, j1j2 P̂a; i1i2 P̂b; j1j2

= −(μ2e−ω)2

2! Gi1i2, j1j2 εa
c1c2 εb

d1d2 ∂c1X i1 ∂c2X i2 ∂d1X j1 ∂d2X j2

= (μ2e−ω)2 det h

det γ

(
γ h−1 γ

)
ab. (3.49)

This leads to

det γ

det h
= (μ2e−ω)6, (μ2e−ω)4 (hγ −1 h γ −1)

a
b = δb

a . (3.50)

Note that if we define a matrix Ra
b ≡ (μ2e−ω)2 (hγ −1)a

b, it cannot vary (i.e. δRa
b = 0) because of

(R2)a
b = δb

a . Therefore, if Ra
b = δb

a is satisfied at an initial time, it must be always satisfied, namely

γab = (μ2e−ω)2 hab. (3.51)
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Using the above equations of motion, the action for X i becomes

S2 = μ2

3

∫
�3

1

2! P̂i1i2 ∧ dX i1i2 + μ2

∫
�3

(C3 − F3)

= 1

3

∫
�3

eω

2
Gi1i2, j1j2 P̂i1i2 ∧ ∗γ P̂j1j2 + μ2

∫
�3

(C3 − F3)

= −1

3

∫
�3

eωGij dX i ∧ ∗γ dX j + μ2

∫
�3

(C3 − F3)

= −|μ2|
∫

�3

d3σ
√− det h + μ2

∫
�3

(C3 − F3). (3.52)

This is the bosonic part of the well-known membrane action [57].
Now, let us show the self-duality relation. Using the equations of motion, we can show that

η
(M2)
IJ ∧ P̂J =

⎛
⎜⎜⎜⎜⎝

−μ2
2e−2ω

2 Gki, k1k2 dX k ∧ ∗γ dX k1k2

μ2 dX i1i2√
2!

0
0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

eωGij ∗γ dX j

μ2 dX i1i2√
2!

0
0

⎞
⎟⎟⎟⎠ = ∗γ ẐI . (3.53)

This relation straightforwardly leads to the self-duality relation

η
(M2)
IJ ∧ PJ = MIJ ∗γ PJ . (3.54)

3.3.1. Type IIA branes: D2-brane and F-string
For completeness, let us review the derivation of the actions for a D2-brane and a fundamental
string from the M2-brane action. In order to obtain the D2-brane action, we follow the procedure of
Ref. [56]. We first rewrite the action in Eq. (3.52) as

S2 = |μ2|
2

∫
�3

d3σ
(det h

v
− v

)
+ μ2

∫
�3

(C3 − F3) (3.55)

by introducing an auxiliary field v. Under the reduction ansatz

(Gij) =
(

Grs GrM

GMs GMM

)
=

(
e− 2

3 φ grs + e
4
3 φ Cr Cs e

4
3 φ Cr

e
4
3 φ Cs e

4
3 φ

)
,

C3 = C3 − B2 ∧ C1 + B2 ∧ (dxM + C1), (3.56)

the action becomes

S2 = |μ2|
2

∫
�3

d3σ

[
e−2φ(det h)

v

(
1 + e2φ hab Ya Yb

) − v

]

+ μ2

∫
�3

[
C3 + B2 ∧ (Y1 − C1) − F3

]
, (3.57)

where Y1 ≡ dX M + C1 and we used the identity

det h = e−2φ det(hab + e2φ Ya Yb)

= e−2φ(det h)
(
1 + e2φ hab Ya Yb

) (
hab ≡ grs ∂aX r ∂bX s). (3.58)
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By introducing a Lagrange multiplier A1 that imposes the constraint dY1 ≡ dC1, we can rewrite the
action as

S2 = |μ2|
2

∫
�3

d3σ

[
e−2φ(det h)

v

(
1 + e2φ hab Ya Yb

) − v

]

+ μ2

∫
�3

[
C3 + (B2 − F2) ∧ (Y1 − C1) − F3

]
= |μ2|

2

∫
�3

d3σ

[
e−2φ det h

v
− v

(
1 + 1

2
hcd hef Fcd Fef

)]
+ μ2

∫
�3

(
C3 + F2 ∧ C1 − F3

)

+ |μ2|
2

∫
�3

d3σ
(det h)

v
hab

[
Ya +

μ2
2|μ2| v

(det h)
hac εcde Fde

] [
Yb +

μ2
2|μ2| v

(det h)
hbf εfgh Fgh

]
, (3.59)

where we defined F2 ≡ dA1 and F2 ≡ dA1 − B2, and Y1 is regarded as a fundamental field. By
eliminating Ya and using

1 + 1

2
hcd hef Fcd Fef = det(h + F)

det h
, (3.60)

we obtain

S2 = |μ2|
2

∫
�3

d3σ

[
e−2φ det h

v
− v

det(h + F)

det h

]
+ μ2

∫
�3

(
C3 + F2 ∧ C1 − F3

)
. (3.61)

Finally, using the equation of motion for v, we obtain the well-known D2-brane action

S2 = −|μ2|
∫

�3

d3σ e−φ
√

− det(h + F) + μ2

∫
�3

(
C3 + F2 ∧ C1 − F3

)
. (3.62)

On the other hand, when we derive the string action, we first make an ansatz,

X r(σ a) = X r(σ 0, σ 1), X M(σ a) = σ 2, ι ∂

∂σ2
A2(σ

a) = −A1(σ
0, σ 1). (3.63)

Then, we can easily reproduce the Nambu–Goto-type action for a fundamental string,

S1 = −|μ1|
∫

�2

d2σ

√
− det h̃ + μ1

∫
�2

(B2 − F2), (3.64)

where μ1 ≡ μ2 (2πRM), F2 ≡ dA1, and det h̃ ≡ det(hãb̃) (ã, b̃ = 0, 1).

3.4. M5-brane

Let us next consider an M5-brane action,

S5 = −1

6

∫
�6

[ 1

2
MIJ P I ∧ ∗γ PJ − P I ∧ η

(M5)
IJ ∧ EJ

]

= −1

6

∫
�6

[ 1

2
MIJ P I ∧ ∗γ PJ − μ5

5! P̂i1···i5 ∧ dX i1···i5 − μ5

2! P̂i1i2 ∧ dX i1i2 ∧ H3

]

+ μ5

∫
�6

(
C6 − F6 + 1

2
C3 ∧ F3

)
, (3.65)

where H3 = F3 − C3.
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The equations of motion for Pi1···i7, i and Pi1···i5 give

P̂i1···i7, i = 0, eωGi1···i5, j1···j5 ∗γ P̂j1···j5 − μ5 dX i1···i5 = 0. (3.66)

From these, the equation of motion for Pi1i2 takes the following form:

0 = √
2! Mi1i2

J ∗γ PJ − μ5 dX i1i2 ∧ F3

= eωGi1i2, j1j2 ∗γ P̂j1j2 + eω

3! δ
i1i2[j1j2

Aj3j4j5] Gj1···j5, k1···k5 ∗γ P̂k1···k5 − μ5 dX i1i2 ∧ F3

= eωGi1i2, j1j2 ∗γ P̂j1j2 − μ5 dX i1i2 ∧ H3. (3.67)

Then, the equations of motion for auxiliary fields can be summarized as

(P̂ I ) =

⎛
⎜⎜⎜⎜⎜⎝

dX i

μ5e−ωGi1i2, j1j2∗γ (dX j1j2∧H3)√
2!

μ5e−ωGi1···i5, j1···j5 ∗γ dX j1···j5√
5!

0

⎞
⎟⎟⎟⎟⎟⎠, (ẐI ) =

⎛
⎜⎜⎜⎜⎜⎝

eωGij dX j

μ5 ∗γ (dX i1i2∧H3)√
2!

μ5 ∗γ dX i1···i5√
5!

0

⎞
⎟⎟⎟⎟⎟⎠. (3.68)

It should be noted that if we compute ZI = (LT)I
J ẐJ for d ≤ 6 as

(ZI ) =

⎛
⎜⎜⎜⎝

eωGij dX j − μ5 ∗γ

[
ιiC3 ∧ H3 + ιiC6 + 1

2 ιiC3 ∧ C3
]

μ5 ∗γ (dX i1i2∧F3)√
2!

μ5 ∗γ dX i1···i5√
5!

⎞
⎟⎟⎟⎠, (3.69)

its time component appears to be reproducing the generalized momenta, Eq. (2.9) in Ref. [58],
obtained in the Hamiltonian analysis. The equation of motion for γab and the above solution for P̂ I

give

hab ≡ Gij ∂aX i ∂bX j = − 1

2! Gi1i2, j1j2 P̂ai1i2 P̂bj1j2 − 1

5! Gi1···i5, j1···j5 P̂ai1···i5 P̂bj1···j5

= − 1

2! Gi1i2, j1j2
μ5e−ω

3! εc1···c5
a ∂c1X i1 ∂c2X i2 Hc3c4c5

μ5e−ω

3! εd1···d5
b ∂d1X j1 ∂d2X j2 Hd3d4d5

− (μ5e−ω)2

5! Gi1···i5, j1···j5 εc1···c5
a ∂c1X i1 · · · ∂c5X i5 εd1···d5

b ∂d1X j1 · · · ∂d5X j5

= (μ5e−ω)2 det h

det γ

[2

3
hc3c4c5e, d3d4d5f Hc3c4c5 Hd3d4d5 γae γbf + (γ h−1 γ )ab

]

= (μ5e−ω)2 det h

det γ
γac θc

d (h−1γ )d
b, (3.70)

where we have defined ha1···an, b1···bn ≡ ha1c1 · · · hancn δ
b1···bn
c1···cn and

θa
b ≡

(
1 + tr(H 2)

6

)
δa

b − 1

2
(H 2)a

b, (H 2)a
b ≡ hae hc1d1 hc2d2 Hec1c2 Hbd1d2 . (3.71)

By rewriting this as

√−γ
2
(γ −1 h γ −1 h)a

b = (μ5e−ω)2
√−h

2
θa

b (3.72)
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and taking the square root, we obtain

√−γ (γ −1 h)a
b = |μ5|e−ω

√−h (θ
1
2 )a

b, (3.73)

or

γab = (|μ5|e−ω
) 1

2 (det θa
b)

1
8
(
θ− 1

2
)

ab,
(√−γ√−h

)2

= (|μ5|e−ω
)3

(det θa
b)

1
4 . (3.74)

Here, and hereafter, we raise or lower the worldvolume indices a, b by using the induced metric hab.
The trace of Eq. (3.73) gives

Gij dX i ∧ ∗γ dX j = √−γ d6σ (γ −1 h)a
a = |μ5|e−ω

√−h d6σ tr(θ
1
2 ), (3.75)

and the action becomes

S5 = μ5

6

∫
�6

( 1

5! P̂i1···i5 ∧ dX i1···i5 + 1

2! P̂i1i2 ∧ dX i1i2 ∧ H3

)

+ μ5

∫
�6

(
C6 + 1

2
C3 ∧ F3 − F6

)

= 1

6

∫
�6

(eω

5! Gi1···i5, j1···j5 P̂i1···i5 ∧ ∗γ P̂j1···j5 + eω

2! Gi1i2, j1j2 P̂i1i2 ∧ ∗γ P̂j1j2

)

+ μ5

∫
�6

(
C6 + 1

2
C3 ∧ F3 − F6

)

= −1

6

∫
�6

eωGij dX i ∧ ∗γ dX j + μ5

∫
�6

(
C6 + 1

2
C3 ∧ F3 − F6

)

= −|μ5|
∫

�6

d6σ
√−h

tr(θ
1
2 )

6
+ μ5

∫
�6

(
C6 + 1

2
C3 ∧ F3 − F6

)
. (3.76)

This is the action obtained in Ref. [49], and, as was shown there, at least in the weak field limit
|H3| 
 1, this theory is equivalent to the conventional M5-brane theory. In the following, we will
check the equivalence at the nonlinear level.

3.4.1. Results from the superembedding approach
A variation of our action in Eq. (3.76) with respect to A2 becomes (up to a boundary term)

δS5 = |μ5|
4

∫
�5

[
∂a
(√−h C

[a
c H b1b2]c) − σ5

3! εa1···a4b1b2 ∂a1Ca2a3a4

]
δAb1b2 , (3.77)

where

C
a

b ≡ tr(θ− 1
2 )

3
δa

b − (θ− 1
2 )a

b, σ5 ≡ μ5

|μ5| . (3.78)

By using the covariant derivative Da associated with hab, the equation of motion becomes

Da
[
C

[a
d H bc]d − σ5 (∗hH3)

abc ] = 0. (3.79)

This is consistent with the nonlinear self-duality relation [49]

C[ad Hbc]d = σ5 (∗hH3)abc, (3.80)
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although the self-duality relation cannot be derived from our action. On the other hand, under a
simultaneous variation, δX i = vi and δA2 = 1

2! vi Cij1j2 dX j1j2 (see Ref. [59]), the action in Eq. (3.76)
changes (up to a boundary term) as

δvS5 =
∫

�6

d6σ
{

|μ5|
√−h

[
Gij

(
G

ab ∇a∂bX j + DaG
ab ∂bX j) + 1

2 · 3! Fiabc C
[a

d H bc]d ]

− μ5 εa1···a6
( 1

6! Fia1···a6 + 1

2 · 3! 3! Fia1a2a3 Ha4a5a6

)}
vi, (3.81)

where we have defined

G
ab ≡ tr(θ

1
2 )

6
hab + (θ− 1

2 )c
d

6

[
−1

2
(H 2)ab δd

c + 1

2
(H 2)(ac hb)d + H ade H b

ce

]
,

∇a∂bX i ≡ Da∂bX i + �i
kl ∂aX k ∂bX l , �i

jk ≡ 1

2
Gil (∂jGkl + ∂kGjl − ∂lGjk

)
,

F4 ≡ dC3, F7 ≡ dC6 + 1

2
C3 ∧ F4, Fia1···ap ≡ Fij1···jp ∂a1X j1 · · · ∂apX jp . (3.82)

Namely, we obtain the equations of motion

G
ab ∇a∂bX i = σ5

εa1···a6

√−h

( 1

6! Fi
a1···a6 + 1

2 · 3! 3! Fi
a1a2a3 Ha4a5a6

)

− 1

2 · 3! Fi
abc C

[a
d H bc]d − DaG

ab ∂bX i. (3.83)

In order to evaluate the last term, we recall the invariance of the action under a worldvolume
diffeomorphism, δξ X i = ξa ∂aX i and δξ A2 = £ξ A2,

δξ S5 = |μ5|
∫

�6

√−h
(

DaG
ab − σ5

3! 3!
εa1···a6

√−h
hbc Fca1a2a3 Ha4a5a6

)
ξb = 0, (3.84)

where a boundary term is neglected because it is irrelevant. Since the diffeomorphism parameter
ξa(σ ) is arbitrary, we obtain [59]

DaG
ab = σ5

3! 3!
εa1···a6

√−h
hbc Fca1a2a3 Ha4a5a6 . (3.85)

Using this identity and the nonlinear self-duality relation of Eq. (3.80), we can express the equations
of motion in Eq. (3.83) as

G
ab ∇a∂bX i = σ5

εa1···a6

√−h

( 1

6! Fj
a1···a6 + 1

3! 3! Fj
a1a2a3 Ha4a5a6

)
Pj

i, (3.86)

where we defined a projection,

Pj
i ≡ δi

j − Gjk hab ∂aX k ∂bX i, (3.87)

satisfying Pi
k Pk

j = Pi
j (where we used hab ≡ (h−1)ab and hab = Gij ∂aX i ∂bX j).

In order to compare the above equations of motion with the known ones, let us review the familiar
results obtained in the superembedding approach [60,61]. In the superembedding approach, we
introduce a self-dual three-form field satisfying

(∗hh)abc = habc. (3.88)
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We then define

mab ≡ hab − 2 kab, kab = ha
cd hbcd . (3.89)

An important relation that relates habc and the three-form field H3 ≡ F3 − C3 is

habc = 1

4
m[ad Hbc]d . (3.90)

The above quantities satisfy [60]

ha1a2c hb1b2c = δb1b2
a1a2

, (m−1)ab = 1

1 − 2
3 k2

(
hab + 2 kab),

ka
a = 0, ka

c kc
b = k2

6
δb

a . (3.91)

We also define

K ≡ 1 + 2
3 k2

1 − 2
3 k2

, Q ≡ 1 − 2

3
k2 = 2

K + 1
, (3.92)

and then we can show the following nontrivial relations [62,63]:

kab = 1

8 K (K + 1)

[
(H 2)ab − tr(H 2)

6
hab

]
,

Ha1a2c H b1b2c = 2 (K2 − 1) δb1b2
a1a2

+ 8 (K + 1)2 k [b1[a1
kb2]

a2] + 8 K (K + 1) δ
[b1[a1

kb2]
a2] ,

(H 2)ab = 8 K (K + 1) kab + 4 (K2 − 1) hab, tr(H 2) = 24 (K2 − 1),

(H 4)ab ≡ (H 2)ac (H 2)c
b = 2

3
tr(H 2)

[
hab + 1

2
(H 2)ab

]
,

tr(H 4) = 4 tr(H 2)
[
1 + 1

12
tr(H 2)

]
, Ha1a2c Hb1b2

c (H 2)a2b2 = (H 4)a1b1 . (3.93)

If we introduce the 5-brane co-metric as [59–62]

Cab ≡ Q−1 ma
c mcb = K hab − 2 (K + 1) kab, (3.94)

it satisfies the following relations [62,63]:

Cab = K−1
[(

1 + 1

12
tr(H 2)

)
hab − 1

4
(H 2)ab

]
, det

(
Ca

b) = 1,

(C−1)ab = K−1
[
hab + 1

4
(H 2)ab

]
, trC = trC−1 = 6 K ,

(C−2)ab = hab + 1

2
(H 2)ab, (C2)ab =

(
1 + tr(H 2)

6

)
hab − 1

2
(H 2)ab,

(C−1)ab = −Cab + 2 K hab, Ha1a2c Hb1b2
c (C−1)a2b2 = K−1

(
H 2 + 1

4
H 4

)
a1b1

. (3.95)

Note that the 5-brane co-metric is proportional to the open membrane co-metric studied in Refs. [64,
65]. Using the co-metric, we can express the nonlinear self-duality relation for H3 as [59–62]

Cd [a Hbc]d = (∗hH )abc. (3.96)
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The equations of motion for scalar fields are obtained as [60,61]

Cab ∇a∂bX i = εa1···a6

√−h

( 1

6! Fj
a1···a6 + 1

3! 3! Fj
a1a2a3 Ha4a5a6

)
Pj

i. (3.97)

From the relations in Eq. (3.93), we can easily see that

(θ
1
2 )a

b = Ca
b, C

a
b = 2 K δa

b − (C−1)a
b = Ca

b, (3.98)

and the known nonlinear self-duality relation of Eq. (3.96) is equivalent to our relation in Eq. (3.80).
We can also show the nontrivial relation

G
ab = K hab − tr(θ− 1

2 )

24
(H 2)ab + 1

12
(θ− 1

2 )c(b (H 2)a)
c + 1

6
(θ− 1

2 )c
d H ade H b

ce

= K hab − K

2
(H 2)ab + 1

4 K

(
H 2 + 1

4
H 4

)ab

= 2K2 − 1

K
hab − 1

4 K
(H 2)ab = Cab. (3.99)

This indicates that the known equations of motion in Eq. (3.97) are equivalent to ours of Eq. (3.86).
Namely, as long as the relations in Eqs. (3.88) and (3.90) are satisfied at an initial configuration, the
equations of motion of our theory describe the same time evolution as the conventional M5-brane
theory. It is also interesting to note that the intrinsic metric naturally reproduced the 5-brane metric
or the open membrane metric (up to a Weyl rescaling)

(e
1
2 ωγ )ab = |μ5| 1

2 (C−1)ab, (3.100)

as a result of the equations of motion. Moreover, it is interesting to note that, by using Eq. (3.95),
our action in Eq. (3.76) becomes

S5 = −|μ5|
∫

�6

[
∗hK − σ5

(
C6 + 1

2
C3 ∧ F3 − F6

)]
, (3.101)

which takes the same form as the action studied in Refs. [59,66].

3.4.2. Self-duality relation for M5-brane
In this subsection, we show the self-duality relation for the M5-brane

η
(M5)
IJ ∧ PJ = MIJ ∗γ PJ . (3.102)

Instead of directly showing the relation, in the following we show an equivalent relation,

(L−T η(M5) L−1)IJ ∧ P̂J = ẐI . (3.103)

Using the equations of motion, the left-hand side becomes

(L−T η(M5) L−1)IJ ∧ P̂J = μ5

5!
[
L−T (ηk1···k4 + 4 F[k1k2k3 ηk4]) L−1]

IJ dX k1···k4 ∧ P̂J

= μ5

5!
(
ηk1···k4 + 4 H[k1k2k3 ηk4]

)
IJ dX k1···k4 ∧ P̂J
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

μ2
5e−ω

5

[
Gj1j2, k1k2 H3 ∧ dX [j1 δ

j2]
i ∧ ∗γ (dX k1k2 ∧ H3) + Gj1···j5, k1···k5 δ

[j1
i dX j2···j5]∧∗γ dX k1···k5

4!
]

2 μ5 dX i1i2∧H3+ 1
2 μ2

5e−ωGj1j2, k1k2 dX i1i2j1j2∧∗γ (dX k1k2∧H3)

5
√

2!
μ5 dX i1···i5√

5!
0

⎞
⎟⎟⎟⎟⎟⎟⎠.

(3.104)

Then, our task is to show that this generalized vector is equal to

∗γ ẐI =

⎛
⎜⎜⎜⎜⎜⎝

eωGij ∗γ dX j

μ5 dX i1i2∧H3√
2!

μ5 dX i1···i5√
5!

0

⎞
⎟⎟⎟⎟⎟⎠. (3.105)

The nontrivial relations are the first and the second rows,

Gij ∗γ dX j = μ2
5e−2ω

5
Gj1j2, k1k2 H3 ∧ dX [j1 δ

j2]
i ∧ ∗γ (dX k1k2 ∧ H3)︸ ︷︷ ︸

N1

+ μ2
5e−2ω

5

Gj1···j5, k1···k5 δ
[j1
i dX j2···j5] ∧ ∗γ dX k1···k5

4!︸ ︷︷ ︸
N2

,

dX i1i2 ∧ H3 = 2

5
dX i1i2 ∧ H3 +μ5e−ω

10
Gj1j2, k1k2 dX i1i2j1j2 ∧ ∗γ (dX k1k2 ∧ H3)︸ ︷︷ ︸

N3

. (3.106)

We show that

N1 = −μ−2
5 e2ω Gik ∂bX k (H 2)b

d ∗γ dσ d ,

N2 = μ−2
5 e2ω

[
5 Gik ∗γ dX k + Gik ∂bX k (H 2)b

d ∗γ dσ d],
N3 = 3

5
dX i1i2 ∧ H3, (3.107)

and then the relations in Eq. (3.106) are proven.
In order to show Eq. (3.107), we need to use various relations displayed in Sect. 3.4.1, such as

Eqs. (3.95) and (3.96). By using

dσ a1···a5 = εa1···a5c (∗γ dσc), ∗hdσa =
√−h√−γ

∗γ dσa, (3.108)

we can simplify N1 as

N1 ≡ Gj1j2, k1k2 H3 ∧ dX [j1 δ
j2]
i ∧ ∗γ (dX k1k2 ∧ H3)

= Gj1k1 Gik2

1

3! Ha1a2a3 ∂a4X j1 ∂b1X k1 ∂b2X k2
1

3! Hb3b4b5 dσ a1···a4 ∧ ∗γ dσ b1···b5

= 5!
3! 3! Gik ∂b2X k Ha1a2a3 Hb3b4b5 ha1a2a3ce, b2···b5d γcd

√−h√−γ
∗h dσe
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= −20

3! Gik ∂b2X k H a1a2a3 Hb3b4b5 δb3b4b5b2d
a1a2a3ce1

γ c
d γ e1

e2

det h

det γ
∗γ dσ e2

= −μ−2
5 e2ω

3
Gik ∂bX k

[
tr(H 2) δbd

ce1
− 6 (H 2)

[b
[c δ

d]
e1] + 3 H abd Hace1

]
γ c

d γ e1
e2

∗γ dσ e2

= −μ−2
5 e2ω

3
Gik ∂bX k

[
tr(H 2)

(γ 2)b
e2

− (trγ ) γ b
e2

2

− 3

2

[
(H 2 γ 2)b

e2
− tr(γ H 2) γ b

e2
− (trγ ) (H 2 γ )b

e2
+ (γ H 2 γ )b

e2

]
− 3 H adb Hace1 γ c

d γ e1
e2

]
∗γ dσ e2

= −μ−2
5 e2ω Gik ∂bX k (H 2)b

d ∗γ dσ d . (3.109)

Similarly, N2 becomes

N2 ≡ 1

4! Gj1···j5, k1···k5 δ
[j1
i dX j2···j5] ∧ ∗γ dX k1···k5

= 1

4! Gik1 Gj2···j5, k2···k5 ∂a1X j2 · · · ∂a4X j5 ∂b1X k1 · · · ∂b5X k5 dσ a1···a4 ∧ ∗γ dσ b1···b5

= 1

4! Gik ∂b1X k ha1···a4, b2···b5 εa1···a4c
d ∗h dσ d

√−h√−γ
εb1···b5e γec

= 2 Gik ∂b1X k hcd, b1e

√−h√−γ
γec ∗h dσd

= det h

det γ
Gik ∂bX k [−h−1 γ h−1 γ + (trγ ) h−1 γ

]b
d ∗γ dσ d

= μ−2
5 e2ωGik ∂bX k [−δb

d − 1
2 (H 2)b

d + 6 (δb
d + 1

4 (H 2)b
d)
] ∗γ dσ d

= μ−2
5 e2ω

[
5 Gik ∗γ dX k + Gik ∂bX k (H 2)b

d ∗γ dσ d]. (3.110)

Finally, N3 becomes

N3 ≡ μ5e−ω

10
Gj1j2, k1k2 dX i1i2j1j2 ∧ ∗γ

(
dX k1k2 ∧ H3

)
= μ5e−ω

10
Gj1j2, k1k2 ∂a1X i1 ∂a2X i2 ∂a3X j1 ∂a4X j2 ∂b1X k1 ∂b2X k2

1

3! Hb3b4b5 dσ a1···a4 ∧ ∗γ dσ b1···b5

= μ5e−ω

10

√−h√−γ
∂a1X i1 ∂a2X i2 ha3a4, b1b2

1

3! Hb3b4b5 εa1···a4c2d εb1···b5c1 γc1c2 ∗h dσd

= μ5e−ω

5

√−h√−γ
∂a1X i1 ∂a2X i2

(
H a1a2d hc1c2 − 3 H c1[a1a2 hd]c2

)
γc1c2 ∗h dσd

= 3

5
dX i1i2 ∧ H3. (3.111)

In this way, we have shown the nontrivial self-duality relation for the M5-brane.

3.5. Action for a Kaluza–Klein monopole

As the last example, let us consider a KKM in M-theory. In fact, a KKM couples to the mixed-
symmetry potential Ci1···i8, j, but this potential appears in the generalized metric MIJ of the Ed(d)
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exceptional spacetime only when d ≥ 8. Therefore, we cannot reproduce the whole brane action
for a KKM [67,68] due to our limitation, d ≤ 7. In this section, by neglecting the gauge fields, we
demonstrate that our action can reproduce the dominant part of the action for a KKM,

S ∼ −
∫

�7

d7σ k2
√

− det
(
Gij DaX i DbX j

)
. (3.112)

The main difference from the previously considered M-branes is that a KKM requires the existence
of an isometry direction generated by a generalized Killing vector kI . In this case, employing the
standard procedure in the gauged sigma model, we introduce an additional one-form gauge field
a1(σ ) and include it in AI ,

AI → AI + a1 kI . (3.113)

In other words, the generalized vector P I is modified as

P I → P I − a1 kI . (3.114)

Supposing that the generalized Killing vector takes the form kI = (ki, 0, . . . , 0), we have

(P I ) =

⎛
⎜⎜⎜⎝

DX i

Pi1i2√
2!

Pi1···i5√
5!

Pi1···i7,i√
7!

⎞
⎟⎟⎟⎠, DX i ≡ dX i − a1 ki. (3.115)

We then consider the action

SKKM = −1

7

∫
�7

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(KKM)
IJ ∧ EJ

]
, (3.116)

where η
(KKM)
IJ takes the following form by neglecting the gauge fields:

η
(KKM)
IJ ≡ μK

6! ηIJ ; k1···k5i, j DX k1 ∧ · · · ∧ DX k5 ki kj. (3.117)

More explicitly, we consider the following action:

SKKM = −1

7

∫
�7

[ 1

2
MIJ P I ∧ ∗γ PJ − μK

6! Pi1···i7, i ∧ DX i1···i6 ki7 ki
]
. (3.118)

Since we are neglecting the background gauge fields, the first term simply becomes

MIJ P I ∧ ∗γ PJ = eω
[
Gij dX i ∧ ∗γ dX j + 1

2! Gi1i2, j1j2 Pi1i2 ∧ ∗γ Pj1j2

+ 1

5! Gi1···i5, j1···j5 Pi1···i5 ∧ ∗γ Pj1···j5

+ 1

7! Gi1···i7, j1···j7 Gij Pi1···i7, i ∧ ∗γ Pj1···j7, j

]
. (3.119)

The equation of motion for Pi1···i7, i gives

−eωGi1···i7, j1···j7 Gij ∗ Pj1···j7, j + 7 μK DX [i1···i6 ki7] ki = 0, (3.120)
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and the equations of motion for Pi1···i5 and Pi1i2 give

Pj1···j5 = 0, Pi1i2 = 0. (3.121)

Using these, the equation of motion for γab becomes

Gij DaX i DbX j = − 1

7! Gi1···i7, j1···j7 Gij Pa; i1···i7, i Pb; j1···j7, j

= − 7

6! |μK|2e−2 ω k2 Gi1···i7, j1···j7 εc1···c6
a εd1···d6

b

× Dc1X i1 · · · Dc6X i6 ki7 Dd1X j1 · · · Dd6X j6 kj7 , (3.122)

where k2 ≡ Gij ki kj. If we define

�ij ≡ Gij − ki kj

k2 , πab ≡ Gij DaX i DbX j = �ij DaX i DbX j, (3.123)

the above equation can be expressed as

πab = −|μK|2e−2 ω (k2)2

6! �i1···i6, j1···j6 εc1···c6
a εd1···d6

b Dc1X i1 · · · Dc6X i6 Dd1X j1 · · · Dd6X j6

= |μK|2e−2 ω (k2)2 det π

det γ
(γ π−1 γ )ab, (3.124)

and we obtain

(γ −1 π γ −1 π)a
b = |μK|2e−2 ω (k2)2 det π

det γ
δa

b . (3.125)

This leads to

√−γ (γ −1 π)a
b = |μK|e−ωk2√−π δa

b ,
√−γ γ ab Gij DaX i DbX j = √−γ (γ −1 π)a

a = 7 |μK|e−ωk2√−π , (3.126)

and we finally obtain

SKKM = 1

7

∫
�7

μK

6! Pi1···i7, i ∧ DX i1···i6 ki7 ki

= −1

7

∫
�7

eωGij DX i ∧ ∗γ DX j = −|μK|
∫

�7

d7σ k2√−π . (3.127)

In this way, we can reproduce the well-known action for a KKM.
In order to introduce the worldvolume gauge fields, we need to modify the η-form,

η
(KKM)
IJ = ηIJ ;I Q̄I

(KKM), Q̄I
(KKM) ≡ μK

6

⎛
⎜⎜⎜⎝

0
0

6 dX [i1···i5 ki6] kk√
6!

0
0

⎞
⎟⎟⎟⎠, (3.128)

by performing the active diffeomorphism Q̄I
(KKM) → QI

(KKM) ≡ LI
J Q̄J

(KKM), where LI
J is defined

in Eq. (3.21). The resulting η-form, η
(KKM)
IJ ≡ ηIJ ;I QI

(KKM), transforms covariantly under generalized
diffeomorphisms. In our approach, the action is invariant under gauge transformations, and we expect
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that by introducing all of the gauge fields in the E8(8) case, we will straightforwardly reproduce the
whole action for a KKM.

In the E7(7) case, we cannot consider exotic branes since there are no winding coordinates (or
auxiliary fields Pi1···i8, j1j2j3 and Pi1···i8, j1···j6) for these branes. However, in the E8(8) case, we can
consider similar actions like

S53 = −1

6

∫
�6

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(53)
IJ ∧ EJ

]
,

S26 = −1

3

∫
�3

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ η

(26)
IJ ∧ EJ

]
, (3.129)

although the explicit forms of the η-symbols, η
(53)
IJ and η

(26)
IJ , are not yet determined. In the E8(8)

case, the generalized metric does not contain the potentials Ci1···i9, i1i2i3 and Ci1···i9, i1···i6 that couple to
the exotic 53-brane and the 26-brane, but we can consider the truncated action like the KKM action
presented in this subsection. In order to reproduce the whole action for a 53-brane and a 26-brane,
we are led to consider the E9(9) exceptional spacetime. Another possibility to describe a KKM or
exotic branes in d ≤ 7 is discussed in Sect. 5.

3.6. Comments on duality symmetry

In the previous sections, we have discussed our sigma model actions only in the usual section, where
the set of null vectors λa take the simple form, (λa

I ) = (δa
i , 0, . . . , 0). In such cases, E I , AI , and P I

transform covariantly under generalized diffeomorphisms (which do not change the section λa), and
our action was manifestly invariant. Since a subgroup of the T - or U -duality group, known as the
geometric subgroup, can be realized as a rigid part of generalized diffeomorphisms, invariance of our
action under the geometric subgroup is also manifest. In this subsection, we consider global duality
transformations that change the section λa, and show that E I , AI , and P I transform covariantly. In the
conventional formulation of string theory/M-theory, such duality symmetry exists only in constant
background, and we assume here that the supergravity fields are constant (unless otherwise stated).

3.6.1. Obstacle to manifest U-duality covariance
Let us begin with a brief review of the obstacle to describing the equations of motion in a manifestly
duality-covariant form [46,47].

In the DSM defined in a constant background, the equation of motion for Pi gives

Pi = −Gij ∗γ dX j + Bij dX j, (3.130)

and taking the exterior derivative, we obtain

dPi = −Gij d ∗γ dX j = 0, (3.131)

where we used the equation of motion for X i in the last equality. Namely, for a given solution, we
can (at least locally) find X̃i(σ ) that satisfies Pi = dX̃i. Then, we can express P I as P I = dX I ,
where (X I ) ≡ (X i, X̃i), and the equations of motion become

ηIJ dX J = −HIJ ∗γ dX J . (3.132)

This is manifestly covariant under a global O(d, d) rotation [1]

dX I → (�−1)I
J dX J , HIJ → �K

I �L
J HKL

(
�K

I �L
J ηKL = ηIJ

)
. (3.133)
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On the other hand, in the case of an M2/M5-brane in a constant background, as we can easily see
from Eqs. (3.53) or (3.105), the equations of motion give d ∗γ ẐI = 0 and thus d ∗γ P I = 0. Then,
the self-duality relation, η

(Mp)
IJ ∧ PJ = MIJ ∗γ PJ , and dη

(Mp)
IJ = 0 lead to

η
(Mp)
IJ ∧ dPJ = 0. (3.134)

Remarkably, unlike the case of the DSM, this does not mean dP I = 0. Indeed, as was pointed out
in Ref. [47], if we consider a solution of an M2-brane (for d ≥ 4)

{X i} = {σ 0, α σ 1 cos(ω σ 0), α σ 1 sin(ω σ 0), β σ 2, 0, . . . , 0} (α, β, ω : constant), (3.135)

we find that dPi1i2 �= 0 although Eq. (3.134) is satisfied. The only exception is the M2-brane in
d = 3, called the topological membrane [47]. In that case, the equations of motion give

(P I ) =
(

dX i

Ci1i2j dX j−Gi1i2, j1j2∗hdX j1j2√
2!

)
=

(
dX i

Ci1i2j dX j−εi1i2j dX j
√

2!

)
, (3.136)

where εijk ≡ √−G εijk , and dP I = 0 is automatically satisfied. Then, at least locally, we can find
the dual coordinates Yi1i2 satisfying Pi1i2 = dYi1i2 , and the self-duality equation becomes

η
(M2)
IJ ∧ dX J = MIJ ∗γ dX J , (X I ) ≡ (

X i,
Yi1i2√

2!
)
. (3.137)

This is covariant under the whole U -duality group E3(3) = SL(3) × SL(2) [47]. In general cases
with d ≥ 4, although we cannot express Pi1i2 as Pi1i2 = dYi1i2 , the self-duality relation

η
(M2)
IJ ∧ PJ = MIJ ∗γ PJ (3.138)

is itself still satisfied, and it is formally covariant under Ed(d) transformations

P I → (�−1)I
J PJ , MIJ → �K

I �L
J MKL, η

(M2)
IJ → �K

I �L
J η

(M2)
KL . (3.139)

In particular, under global U -duality transformations generated by Ri1i2i3 and Ri1···i6 , which we call
the ω-transformations, P I is transformed as

P I → P ′I ≡ (
e

1
3! ωi1i2i3 Ri1i2i3 e

1
6! ωi1···i6 Ri1···i6

)I
J PJ , (3.140)

and, for example in d = 4, we have

P I =
(

dX i

Pi1i2√
2!

)
→ (P ′I ) =

(
dX i − 1

2 ωij1j2 Pi1i2
Pi1i2√

2!

)
. (3.141)

The problem discussed in Ref. [47] is basically that if we continue to use the parameterization

(P ′I ) =
(

dX ′i
P ′

i1i2√
2!

)
, (3.142)

the non-closedness dPi1i2 �= 0 leads to the non-integrability of dX ′i:

dP ′i = d2X ′i = −1

2
ωij1j2 dPj1j2 �= 0. (3.143)
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Then, the conclusion of Ref. [47] was that ω-transformations are not allowed and Eq. (3.138) is
covariant only under the “geometric subgroup” generated by {Ki

j, Ri1i2i3 , Ri1···i6} (i.e., coordinate
transformations GL(d) and constant shift of C3 and C6). In the following, we stress that the param-
eterization (P I ) = (dX i,

Pi1i2√
2! ) should be changed under ω-transformations, and the integrability

condition dP ′i = 0 should be modified as

d
(
λa

I P I ) = 0, (3.144)

which is important to allow for the whole duality symmetry.

3.6.2. Duality covariance
Let us consider the DSM, where the duality group is O(d, d). The O(d, d) group is generated by
2d(2d−1)

2 generators, {Tα} ≡ {
Ki

j, Rij, Rij
}
, whose matrix representations are

(Kk
l)I

J ≡
(

δi
k δl

j 0
0 −δ

j
k δl

i

)
, (Rk1k2)I

J ≡
(

0 0
−2 δ

k1k2
ij 0

)
, (Rk1k2)

I
J ≡

(
0 2 δ

ij
k1k2

0 0

)
. (3.145)

Here, the Ki
j correspond to general coordinate transformations GL(d) and the Rij = R[ij] correspond

to the B-field gauge transformations, and these generate the geometric subgroup. The correspondents
of the ω-transformations, which change the section λa, are called β-transformations that are generated
by the remaining generators Rij = R[ij].

In the following, we show that E I (σ ) transforms covariantly,

E I (σ ) =
(

dX i

Fij dX j

)
→ E ′I (σ ) =

(
δi

j β ij

0 δ
j
i

)(
dX j

Fjk dX k

)
, (3.146)

under a global β-transformation. In order to determine the transformation rule, let us rewrite the
definition of E I (σ ) in terms of the β-rotated frame. Since the original section has been specified by
(λa

I ) = (δa
i , 0), in the β-rotated frame λa takes the form

(λ′a
I ) =

(
δ

j
i 0

β ij δi
j

)(
δa

j

0

)
=

(
δa

i
β ia

)
, (3.147)

and the linear section equations of Eq. (2.8) give

λa
I ηIJ ∂J T (x) = (

∂̃a − βai ∂i
)

T (x) = 0, (3.148)

where T (x) represents a supergravity field or a diffeomorphism parameter in the doubled spacetime.
Originally, E I was defined as E I = e£̂ξ Ē I by using the static Ē I defined in Eq. (2.12). In the β-rotated
frame, Ē I and the diffeomorphism parameter ξ I take the form

Ē ′I =
(

δi
j β ij

0 δ
j
i

)
ĒJ =

⎛
⎜⎜⎝

dσ a

0
...
0

⎞
⎟⎟⎠, ξ ′I =

(
δi

j β ij

0 δ
j
i

)
ξ J =

(
ξ i + β ij ξ̃j

ξ̃i

)
. (3.149)

In addition, the structure of the generalized diffeomorphism is also different according to the change
of the section. By employing a convention, where ∂̃ i is replaced by β ij ∂j due to the linear section
equations of Eq. (3.148), a derivative in the β-rotated frame becomes

∂I T (x) =
(

∂iT
∂̃ iT

)
=

(
∂iT

β ij ∂jT

)
=

(
δ

j
i 0

β ij δi
j

)(
∂jT
0

)
. (3.150)
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Then, the generalized Lie derivative of an arbitrary generalized vector W I becomes

£̂V W I ≡ V J ∂J W I − (
∂J V I − ∂ I VJ

)
W J

=
(

δi
j β ij

0 δ
j
i

)(
£v′w′j

£v′w̃j − 2 w′k ∂[k ṽj]

)
, (3.151)

where (V ′I ) ≡ (vi − β ij ṽj, ṽi) and (W ′I ) ≡ (wi − β ij w̃j, w̃i). Therefore, we obtain

£̂ξ ′W I =
(

δi
j β ij

0 δ
j
i

)(
£ξ w′j

£ξ w̃j − 2 w′k ∂[k ξ̃j]

)
, (3.152)

and we can show that a finite generalized diffeomorphism takes the form,

e£̂ξ =
(

δi
p β ip

0 δ
p
i

)(
δ

p
q 0

Fpq(x′) δ
q
p

)(
∂x′q
∂xk 0

0 ∂xk

∂x′q

)(
δk

j −βkj

0 δ
j
k

)
, (3.153)

which is precisely the β-rotated version of Eq. (2.13) [where the usual diffeomorphism and the
B-field gauge transformation have precisely the same form as Eq. (2.13)]. Then, the components of
E I described in the β-rotated frame become

E ′I (σ ) =
(

δi
j β ij

0 δ
j
i

)(
dX j

Fjk dX k

)
. (3.154)

This shows that components of E I are covariantly transformed under β-transformations. Since the
O(d, d) symmetry is generated by the geometric subgroup and β-transformations, we have shown
the covariance of E I under the whole O(d, d) transformations. Moreover, since AI (σ ) also trans-
forms covariantly by its definition, P I (σ ) also should, and our action is invariant under O(d, d)

transformations. Note that, in the β-rotated frame, P I takes the form

P ′I (σ ) =
(

δi
j β ij

0 δ
j
i

)(
dX j

Pj

)
, (3.155)

and dX i can be extracted from P I as dX a = λa
I P I by using λa

I . Therefore, the correct integrability
condition (or the Bianchi identity) to require is d(λa

I P I ) = 0 as advocated in Eq. (3.144). Note
also that if the original background is not constant, the generalized metric after the β-transformation
includes the dual-coordinate dependence from Eq. (3.148). Since scalar fields X̃i(σ ) are not intro-
duced in our DSM, we cannot define our DSM in such background. This is the reason why we
have supposed the background to be constant. Of course, since the supergravity fields are functions
only of x′i ≡ xi − β ij x̃j in the β-rotated background, instead of X i(σ ), we can introduce X ′i(σ )

as the fundamental variables in our DSM, but it is equivalent to going back to the usual section
(λa

I ) = (δa
i , 0).

We can straightforwardly also apply the above discussion to M-brane sigma models. For example,
in the case of d = 4 discussed around Eq. (3.141), the ω-transformation rotates the usual section
λa

I = (δa
i , 0) as

λa
I → λ′a

I =
(

δa
i

ωai1i2√
2!

)
. (3.156)
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There, the linear section equations in Eq. (3.8) show ∂̃ ij = ωijk ∂k , and a derivative becomes

∂I T (x) =
⎛
⎝ ∂iT

∂̃ i1i2 T√
2!

⎞
⎠ =

⎛
⎝ ∂iT

ωi1i2j ∂jT√
2!

⎞
⎠ =

⎛
⎝ δ

j
i 0

ωi1i2j√
2! δ

i1i2
j1j2

⎞
⎠(

∂jT
0

)
. (3.157)

Accordingly, the generalized Lie derivative becomes

£̂V W I =
⎛
⎝δi

j −ωi1i2j√
2!

0 δ
j1j2
i1i2

⎞
⎠

⎛
⎝ £v′w′j

£v′ w̃j1j2−3 w′k ∂[k ṽj1j2]√
2!

⎞
⎠, (3.158)

where (V ′I ) ≡ (vi + 1
2 ωij1j2 ṽj1j2 , ṽi) and (W ′I ) ≡ (wi + 1

2 ωij1j2 w̃j1j2 , w̃i). Then, components of E I

described in the ω-rotated frame become

E ′I (σ ) =
⎛
⎝δi

j −ωi1i2j√
2!

0 δ
j1j2
i1i2

⎞
⎠

⎛
⎝ dX j

Fj1j2k dX k
√

2!

⎞
⎠, (3.159)

and we see that E I transforms covariantly under the ω-transformation. Moreover, the correct
parameterization of P I in the ω-rotated frame is

P ′I (σ ) =
⎛
⎝δi

j −ωi1i2j√
2!

0 δ
j1j2
i1i2

⎞
⎠(

dX j

Pj1j2√
2!

)
, (3.160)

and the integrability condition in the ω-rotated frame is

d
(
λ′a

I P I ) = d2X a = 0. (3.161)

Therefore, the self-duality relation of Eq. (3.138) is covariant under the whole SL(5) U -duality
symmetry.

Even for the higher-dimensional case d ≥ 5, from a similar argument, it will be possible to show
that E I transforms covariantly,

E I (σ ) → (
e

1
3! ωi1i2i3 Ri1i2i3 e

1
6! ωi1···i6 Ri1···i6

)I
J EJ , (3.162)

as is clear from the construction.

3.6.3. On dual coordinates
For completeness, we also comment on a section λa ≡ (λaI ) = (0, δi

a), where supergravity fields
depend only on the dual coordinates x̃i. On this section, generalized diffeomorphisms are combina-
tions of the usual Lie derivative (with opposite indices) and β-transformations. Then, starting from
a static configuration, X̃0(σ ) = σ0 and X̃1(σ ) = σ1, we obtain the parameterization of E I ,

E I (σ ) =
(

2 ∂̃ [iV j](X̃ ) dX̃j

dX̃i(σ )

)
. (3.163)

In this case, AI and P I take the form

AI =
(

Ai

0

)
, P I = E I − AI =

(
Pi

dX̃i

)
. (3.164)
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The scalar fields X̃i describe fluctuations along the dual directions, while the V i describe fluctuations
along the xi-directions. Our action then becomes

S = −1

2

∫
�2

[ 1

2
HIJ (X ) P I ∧ ∗γ PJ + ηIJ P I ∧ EJ

]

= −1

2

∫
�2

[ 1

2
HIJ (X ) P I ∧ ∗γ PJ + P i ∧ dX̃i

]
−

∫
�2

dV1, (3.165)

where we defined d ≡ dσa ∧ ∂a (a = 1, 2) and V1(σ ) ≡ V i
(
X̃ (σ )

)
dX̃i(σ ) is regarded as a

fundamental variable. By parameterizing the generalized metric as

HIJ =
(

g̃mn (g̃ β)m
n

−(β g̃)m
n (g̃−1 − β g̃ β)mn

)
, (3.166)

and eliminating the auxiliary fields Pi, we obtain the action

S = −1

2

∫
�2

[
g̃ij(X̃ ) dX̃i ∧ ∗γ dX̃j + β ij(X̃ ) dX̃i ∧ dX̃j

]
−

∫
�2

dV1, (3.167)

which is the well-known dual action [1] if the background is constant.Again, note that the integrability
condition becomes d(λaI P I ) = d2X̃a = 0.

We can also consider similar parameterizations of E I in the M-brane actions by choosing non-
standard sections. Unlike the conventional DSM, our sigma model does not include all of the
generalized coordinates X I (σ ) as the fundamental variables, but we can choose a part of generalized
coordinates depending on the choice of the section.

4. Type IIB branes in exceptional spacetime

In this section, we explain how to reproduce worldvolume actions for type IIB branes. The detailed
analysis will be reported elsewhere, but here we explain the basic procedure and demonstrate that
we can reproduce the action for a (p, q)-string.

Before considering brane actions, let us review the parameterization of the generalized coordinates
that are suitable for describing type IIB branes. We begin with the M-theory parameterization of the
generalized coordinates in the Ed(d) EFT for d ≤ 8,

(xI ) = ( xi︸︷︷︸
P

, yi1i2︸︷︷︸
M2

, yi1···i5︸ ︷︷ ︸
M5

, yi1···i7, j︸ ︷︷ ︸
KKM/M8

, yi1···i8, j1j2j3︸ ︷︷ ︸
53

, yi1···i8, j1···j6︸ ︷︷ ︸
26

, yi1···i8, j1···j8, k︸ ︷︷ ︸
0(1,7)

). (4.1)

Each coordinate is the winding coordinate associated with the brane specified below. For d = 8,
yi1···i7, j includes 64 coordinates, and among these, 56 coordinates with j ∈ {i1, . . . , i7} correspond to
the KKM, while the remaining 8 coordinates with j �∈ {i1, . . . , i7} may correspond to 8-branes (known
as M8-branes). If we decompose the physical coordinates xi as (xi) = (xr , xM) (r = 1, . . . , d − 1)

where xM represents the M-theory direction, we can decompose the above generalized coordinates
as those suitable for type IIA branes,

(xI )= ( xr︸︷︷︸
P

, y︸︷︷︸
D0

, yr︸︷︷︸
F1

, yr1r2︸︷︷︸
D2

, yr1···r4︸ ︷︷ ︸
D4

, yr1···r5︸ ︷︷ ︸
NS5

, yr1···r6,s︸ ︷︷ ︸
KKM/72

, yr1···r6︸ ︷︷ ︸
D6

, yr1···r7,s︸ ︷︷ ︸
61

3

, yr1···r7︸ ︷︷ ︸
72

,

yr1···r7,s1s2︸ ︷︷ ︸
52

2

, yr1···r7,s1s2s3︸ ︷︷ ︸
43

3

, yr1···r7,s1···s5︸ ︷︷ ︸
25

3

, yr1···r7,r1···r6︸ ︷︷ ︸
16

4

, yr1···r7,r1···r7︸ ︷︷ ︸
07

3

, yr1···r7,r1···r7,s︸ ︷︷ ︸
0(1,6)

4

), (4.2)
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where we defined the type IIA coordinates (where the index M is removed)

y ≡ xM, yr ≡ yrM, yr1···r4 ≡ yr1···r4M, yr1···r6,s ≡ yr1···r6M,s, yr1···r6 ≡ yr1···r6M,M,

yr1···r7 ≡ yr1···r7M, yr1···r7,s1s2s3 ≡ yr1···r7M,s1s2s3 , yr1···r7,s1s2 ≡ yr1···r7M,s1s2M,

yr1···r7,r1···r6 ≡ yr1···r7M,r1···r6 , yr1···r7,s1···s5 ≡ yr1···r7M,s1···s5M,

yr1···r7,r1···r7,s ≡ yr1···r7M,r1···r7M,s, yr1···r7,r1···r7 ≡ yr1···r7M,r1···r7M,M. (4.3)

In order to obtain the generalized coordinates for type IIB branes, we further decompose the
physical coordinates in the type IIA side as (xr) = (xa, xy) (a = 1, . . . , d − 2) and perform a T -
duality along the xy-direction. Under T -dualities, dependence of brane tensions on the string coupling
constant gs does not change, and we summarize the mapping between the winding coordinates [53] in
the following way. The type II branes with tension proportional to g0

s are the fundamental string (F1)
and the Kaluza–Klein momentum (P), while those with tension proportional to g−1

s are D-branes. By
employing the convention of Ref. [53], their winding coordinates are mapped under the T -duality
as follows:

xa

��

xy

���
��

�
yy

����
��

ya

��

y

��

yay

��

ya1a2

��

ya1a2a3y

��

ya1···a4

��

ya1···a5y

��

ya1···a6

��

xa xy y1
y y1

a y2
y −y2

a ya1a2y ya1a2a3 y1
a1···a4y y1

a1···a5 y(11)
a1···a6y

︷ ︸︸ ︷P ︷ ︸︸ ︷F1 ︷︸︸︷D0 ︷ ︸︸ ︷D2 ︷ ︸︸ ︷D4 ︷ ︸︸ ︷D6

︸ ︷︷ ︸
P

︸ ︷︷ ︸
F1

︸ ︷︷ ︸
D1

︸ ︷︷ ︸
D3

︸ ︷︷ ︸
D5

︸ ︷︷ ︸
D7

.

(4.4)

The type II branes with tension proportional to g−2
s include the NS5-brane, KKM, and the exotic

52
2-brane. Their winding coordinates are mapped as follows from type IIA theory to type IIB theory:

ya1···a4y

��

ya1···a5

�����
���

ya1···a5y,y

�������

ya1···a5y,b̄

��

ya1···a6,b

�����
���

ya1···a6y,by

��������
ya1···a6y,b1b2

��

−y2
a1···a4y −y2

a1···a5
ya1···a5y,y ya1···a5y,b̄ ±ya1···a6,b ±y1

a1···a6y,by y1
a1···a6y,b1b2

︷ ︸︸ ︷NS5 ︷ ︸︸ ︷KKM ︷ ︸︸ ︷52
2

︸ ︷︷ ︸
NS5

︸ ︷︷ ︸
KKM

︸ ︷︷ ︸
52

2

.

(4.5)

Here, the bar, as in ya1···a5y,b̄, represents that b̄ ∈ {a1, · · · , a5} and ± represents that the sign is not
determined yet in Ref. [53].

There are another set of 7-branes that also have tension proportional to g−2
s but are not connected

to other branes under T -dualities. The winding coordinates for the eight 7-branes in the type IIA
side are ya1···a5y,b (b �∈ {a1, · · · , a5}), ya1···a6,y, and ya1···a6y. Although we have not identified their
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transformation rule yet, a natural expectation is as follows:⎛
⎜⎝ya1···a5y,b

ya1···a6,y

ya1···a6y

⎞
⎟⎠ −→

⎛
⎜⎝ya1···a5y,b

ya1···a6,y

y(12)
a1···a6y

⎞
⎟⎠ . (4.6)

Here, the type IIB coordinates, ya1···a5y,b (b �∈ {a1, · · · , a5}), ya1···a6,y, and y(12)
a1···a6y correspond to

seven 72-branes and a 7-brane that (together with the D7-brane and the 73-brane) behaves as a triplet
under SL(2) S-duality transformations. The detailed properties of these 7-branes are not well known,
but they are necessary to construct a U -duality multiplet.

The type II branes with tension proportional to g−3
s are the exotic p-branes p7−p

3 . Under the
T -duality, their winding coordinates are mapped as

ya1 ···a6y,y

��

ya1 ···a6y,b

��

ya1 ···a6y,b1b2y

��

ya1 ···a6y,b1b2b3

��

ya1 ···a6y,b1 ···b4y

��

ya1 ···a6y,b1 ···b5

��

ya1 ···a6y,b1 ···b6y

��
y(22)
a1 ···a6y ±y2

a1 ···a6y,by −y2
a1 ···a6y,b1b2

±ya1 ···a6y,b1b2b3y ya1 ···a6y,b1 ···b4 ±y1
a1 ···a6y,b1 ···b5y y1

a1 ···a6y,b1 ···b6

︷ ︸︸ ︷
61

3

︷ ︸︸ ︷
43

3

︷ ︸︸ ︷
25

3

︷ ︸︸ ︷
07

3

︸ ︷︷ ︸
73

︸ ︷︷ ︸

52
3

︸ ︷︷ ︸

34
3

︸ ︷︷ ︸

16
3

. (4.7)

Finally, the type II branes with tension proportional to g−4
s are called the 16

4-brane and the
0(1,6)

4 -brane. The transformation rules for the corresponding winding coordinates are

ya1···a6y,b1···b5y

��

ya1···a6y,b1···b6

		��������
ya1···a6y,b1···b6y,y



									
ya1···a6y,b1···b6y,c

��
±y2

a1···a6y,b1···b5y −y2
a1···a6y,b1···b6

±ya1···a6y,b1···b6y,y ya1···a6y,b1···b6y,c

︷ ︸︸ ︷16
4 ︷ ︸︸ ︷0(1,6)

4

︸ ︷︷ ︸
16

4

︸ ︷︷ ︸
0(1,6)

4

. (4.8)

It is interesting to note that, as has been uncovered in Ref. [69] (see also Ref. [70]), the T -duality
transformation rules for the winding coordinates are very simple (up to the convention-dependent sign
factor). For a type II brane with tension proportional to g−n

s , if we consider the winding coordinate
with m-number of y-indices, after a T -duality along the y-direction, we obtain a winding coordinate
with (n−m)-number of y-indices with other indices unchanged. For example, a 07

3-brane (T07
3

∝ g−3
s )

associated with the winding coordinate ya1···a6y,b1···b6y that includes two y is mapped to a 16
3-brane

with the winding coordinate y1
a1···a6y,b1···b6

.

According to the above dictionary, the whole M-theory coordinates (xI ) are mapped to the type
IIB coordinates,

(xM) =( xm︸︷︷︸
P

, yα
m︸︷︷︸

F1/D1

, ym1m2m3︸ ︷︷ ︸
D3

, yα
m1···m5︸ ︷︷ ︸

NS5/D5

, ym1···m6, n︸ ︷︷ ︸
KKM/72

, y(αβ)
m1···m7︸ ︷︷ ︸

Q7

,
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yα
m1···m7, n1n2︸ ︷︷ ︸

52
2/52

3

, ym1···m7, n1···n4︸ ︷︷ ︸
34

3

, yα
m1···m7, n1···n6︸ ︷︷ ︸

16
4/16

3

, ym1···m7, n1···n7, p︸ ︷︷ ︸
0(1,6)

4

), (4.9)

where m, n, p = 1, . . . , d−1 and α, β = 1, 2. In Ref. [53], the map between the M-theory coordinates
and the type IIB coordinates was expressed as

xI = SI
M xM, xM = (S−1)M

I xI , (4.10)

and by using the same matrix SI
M, the generalized metric was also transformed as

MMN = SI
M SJ

N MIJ . (4.11)

Then, with the help of Buscher-like transformation rules for supergravity fields, the generalized metric
MMN is nicely parameterized with the type IIB supergravity fields (see Ref. [53] for the details). In
the following, we use the parameterization of MMN and obtain the brane action for a (p, q)-string.
More detailed discussions and actions for other type IIB branes will be reported elsewhere.

4.1. Action for a (p, q)-string

When we considered M-branes we chose the M-theory section in Eq. (3.10), but here we choose the
type IIB section,

(λa
M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λa
m

(λa)m
α

(λa)m1m2m3√
3!

(λa)
m1···m5
α√

5!
(λa)m1···m6, m√

6!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

δa
m
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠, (4.12)

where the supergravity fields depend only on the physical coordinates xm. Similar to the M-brane
case, EM and PM ≡ EM − AM take the form

EM =

⎛
⎜⎜⎜⎜⎜⎜⎝

dX m

−Fα
mn dX n

− Fm1m2m3n+ 3
2 εγ δ Fγ

n[m1
Fδ

m2m3]√
3! dX n

− Fα
m1···m5n+10 Fn[m1m2m3 Fα

m4m5]−5 εγ δ Fγ
n[m1

Fδ
m2m3

Fα
m4m5]√

5! dX n

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠, PM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dX m

Pα
m

Pm1m2m3√
3!

Pα
m1···m5√

5!
Pm1···m6, m√

6!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.13)

where the last row in EM has been abbreviated for simplicity and we have defined

Fα
m1m2

≡ 2 ∂[m1Aα
m2], Fm1m2m3 ≡ 3 ∂[m1Am2m3], Fα

m1···m6
≡ 6 ∂[m1Aα

m2···m6]. (4.14)

Furthermore, similar to Eq. (3.22), we introduce the scalar field eω(σ) into the generalized metric

MMN instead of the overall factor |G| 1
9−d (see Eqs. (2.12)–(2.17) in Ref. [53]). In the case of a string,
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which corresponds to the η-symbol ηα
MN (see Ref. [53]), the η-form becomes

η
(1)

MN = ηMN;M QM
(1) = μ1 qαηα

MN, QM
(1) ≡ μ1

⎛
⎜⎜⎜⎜⎜⎝

qα

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠, (4.15)

where (qα) ≡ (p, q) are constants. Then, we consider a string action

S1 = −1

2

∫
�2

[ 1

2
MMN(X ) PM ∧ ∗γ PN − PM ∧ η

(1)

MN ∧ EN
]

= −1

2

∫
�2

[ 1

2
MMN(X ) PM ∧ ∗γ PN − μ1 qα Pα

m ∧ dX m
]

− μ1

∫
�2

qα Fα
2 , (4.16)

where the fundamental fields are

{X m(σ ), Pα
m(σ ), Pm1m2m3(σ ), Pα

m1···m5
(σ ), Pm1···m6, m(σ ), γab(σ ), ω(σ), Aα

1 (σ )}. (4.17)

We can eliminate the auxiliary fields, Pα
m, Pm1m2m3 , Pα

m1···m5
, andPm1···m6, m, by using their equations

of motion, and the action becomes

S1 = −1

2

∫
�2

(eω + e−ωμ2
1 |q|2

2

)
Gmn dX m ∧ ∗γ dX n + μ1

∫
�2

qα

(
Bα

2 − Fα
2

)
, (4.18)

where we defined

|q| ≡
√

e−ϕq2 + eϕ(p − q C0)2. (4.19)

As in the case of the usual string action, the equation of motion for γab gives

γab ∝ hab ≡ Gmn ∂aX m ∂bX n, (4.20)

and by using this, the action for X m and Aα
1 becomes

S1 = −
∫

�2

d2σ
(eω + e−ωμ2

1 |q|2
2

)√− det h + μ1

∫
�2

qα

(
Bα

2 − Fα
2

)
= −|μ1|

∫
�2

d2σ |q| cosh ω′ √− det h + μ1

∫
�2

qα

(
Bα

2 − Fα
2

)
, (4.21)

where eω′ ≡ eω

|μ1| |q| . The equations of motion for ω show that eω = |μ1| |q|, and we finally obtain

S1 = −|μ1|
∫

�2

d2σ |q| √− det h + μ1

∫
�2

qα

(
Bα

2 − Fα
2

)
. (4.22)

This is the well-known (p, q)-string action [71,72] for (qα) = (p, q). We can also show that the
self-duality relation is satisfied:

η
(1)

MN ∧ PN = MMN ∗γ PN. (4.23)
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5. Exotic branes and gauge fields in the external space

In the previous sections, we have considered only the internal components of the supergravity fields,
such as Ci1i2i3 and Ci1···i6 . Here, we also consider the external components, such as Cμi1i2 and
Cμ1μ2i1···i4 , where μ runs over the external (11 − d) dimensions. In fact, the external n-form gauge
fields make up the so-called Rn-representation of the Ed(d) group (see Ref. [73]). We denote these
external fields as

A I 1

μ , Bμ1μ2; I 2 , Cμ1μ2μ3; I 3 , Dμ1···μ4; I 4 , Eμ1···μ5; I 5 , Fμ1···μ6; I 6 , Gμ1···μ7; I 7 , . . . , (5.1)

where the index I n (n = 1, 2, 3, . . .) transforms in the Rn-representation of the Ed(d) (note that I 1 = I
and I 2 = I in our M-theory parameterization).

Recently, while this manuscript was being prepared, Ref. [74] appeared on arXiv that constructed
a U -duality-covariant action for strings, including the external fields as well. In our convention, their
action takes the form

S = 1

2

∫
�2

T
[ 1

2
MIJ DY I ∧ ∗γ DY J + gμν dX μ ∧ ∗γ dX ν

]

− 1

2

∫
�2

qI 2
[
ηIJ ; I 2 AI ∧ dY J + ηIJ ; I 2 A I ∧ DY J + Bμν; I 2 dX μ ∧ dX ν

]
, (5.2)

where DY I ≡ dY I − AI + A I and A I ≡ A I
μ dX μ. If the external fields (i.e. gμν , A I , and Bμν; I 2)

are ignored, their action reproduces our 1-brane action in Eq. (4.16) by identifying dY I with our
E I . As a natural extension, it is important to introduce external fields {A I 1

μ , Bμ1μ2; I 2 , . . .} up to the
(p + 1)-form into our p-brane actions. If all of the external fields are introduced in a gauge-invariant
manner, it will be possible to reproduce the actions for a KKM and exotic branes as we discuss
below.

In order to argue that the extension of our p-brane action can completely reproduce the Wess–
Zumino couplings for exotic branes, let us review which potentials are included in the external
fields. For simplicity, let us first consider branes with co-dimension higher than two. In M-theory,
this means 7-branes or lower-dimensional branes. They are standard objects in M-theory (i.e. M2,
M5, and KKM) that couple to standard fields (i.e. C3, C6, and C7,1). As one can see from Table 1, an
external p-form contains only the standard fields when we consider the Ed(d) group with d ≤ 8 − p.
The external p-form field comes to contain non-standard supergravity fields when we consider the
Ed(d) group with d = 9 − p. The non-standard potentials, C9,3 and C9,6, are known to couple to
defect branes (i.e. co-dimension 2-branes) known as the exotic 53-brane and 26-brane, respectively.

In order to reproduce whole actions for a KKM in the Ed(d) exceptional spacetime with 1 ≤ d ≤ 8,
we need to include external fields up to the eight-form,

{A I 1

1 , B2; I 2 , C3; I 3 , D4; I 4 , E5; I 5 , F6; I 6 , G7; I 7 , H8; I 8}, (5.3)

and write down a gauge-invariant action. Since all components of the field Cμ̂1···μ̂8, i, where
{μ̂} = {μ, i}, are contained in these external fields, the Wess–Zumino term for a KKM will be com-
pletely reproduced. On the other hand, in order to consider the exotic 53-brane, we need to consider
3 ≤ d ≤ 8. In this case, naively, we may write down an action using only

{A I 1

1 , B2; I 2 , C3; I 3 , D4; I 4 , E5; I 5 , F6; I 6}. (5.4)
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Table 1. Contents of the external fields in M-theory for each Ed(d). Only the supergravity fields that couple to
branes with co-dimension higher than one are explicitly shown.

E3(3) [6]
E4(4) [10]

��

E5(5) [16]
E6(6) [27]

��

E7(7) [56]

��

E8(8) [248]

��
Aμ : {Ci

μ, Cμi1i2 , Cμi1···i5 , Cμi1···i7, j, Cμi1···i8, j1j2j3 , Cμi1···i8, j1···j6 , Cμi1···i8, j1···j8, k , . . .},

E3(3) [3]

��

E4(4) [5]
E5(5) [10]

��

E6(6) [27]

��

E7(7) [133]

��
Bμ1μ2 : {Cμ1μ2i, Cμ1μ2i1···i4 , Cμ1μ2i1···i6, j, Cμ1μ2i1···i7, j1j2j3 , Cμ1μ2i1···i7, j1···j6 , . . .},

E3(3) [2]
E4(4) [5]

��

E5(5) [16]

��

E6(6) [78]

��
Cμ1μ2μ3 : {Cμ1μ2μ3 , Cμ1μ2μ3i1i2i3 , Cμ1μ2μ3i1···i5, j, Cμ1μ2μ3i1···i6, j1j2j3 , Cμ1μ2μ3i1···i6, j1···j6 , . . .},

E3(3) [3]

��

E4(4) [10]

��

E5(5) [45]

��
Dμ1···μ4 : {Cμ1···μ4i1i2 , Cμ1···μ4i1···i4, j, Cμ1···μ4i1···i5, j1j2j3 , . . .},

E3(3) [6]

��

E4(4) [24]

��
Eμ1···μ5 : {Cμ1···μ5i, Cμ1···μ5i1i2i3, j, Cμ1···μ5i1···i4, j1j2j3 , . . .},

E3(3) [11]

��
Fμ1···μ6 : {Cμ1···μ6 , Cμ1···μ6i1i2, j, Cμ1···μ6i1i2i3, j1j2j3 , . . .},

Gμ1···μ7 : {Cμ1···μ7i, j, . . .},

Hμ1···μ8 : {Cμ1···μ8, i, . . .},

Iμ1···μ9 : {. . .}.

These external fields include all components of Cμ̂1···μ̂9, i1i2i3 . Similarly, the exotic 26-brane appears
only for 6 ≤ d ≤ 8, and in order to write down the action, we may only need

{A I 1

1 , B2; I 2 , C3; I 3}. (5.5)

If our expectation is correct, the exotic 26-brane will be the most tractable example. We may also
consider co-dimension-1 branes and co-dimension-0 branes that couple to non-standard supergravity
fields hidden in the ellipses in Table 1 (see Ref. [75] for a recent study on mixed-symmetry poten-
tials and the associated co-dimension-1 branes). Further investigation along this direction will be
interesting.
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6. Conclusion

In this paper, we showed that the action of the form

Sp = − 1

p + 1

∫
�p+1

[ 1

2
MIJ (X ) P I ∧ ∗γ PJ − P I ∧ ηIJ ∧ EJ

]
(6.1)

can reproduce the conventional M-brane actions in a uniform manner. In the case of the M5-brane,
the intrinsic metric γab naturally reproduced the 5-brane metric as a result of the equations of motion,
and by using this metric, the self-duality relation,

η
(M5)
IJ ∧ PJ = MIJ ∗γ PJ , (6.2)

was realized. In contrast to the conventional formulations of extended sigma models (i.e. dou-
ble/exceptional sigma model), the worldvolume gauge fields, such as A2 and A5, are naturally
introduced inside E I , which essentially plays the role of dX I in the conventional formulations.
In order to show the applicability of our formalism to type IIB branes, we demonstrated that the
well-known (p, q)-string action can be correctly reproduced. An extension of our p-brane action
which includes external fields and actions for exotic branes was discussed in Sect. 5.

It will be interesting future work to reproduce all of the known brane actions in M-theory and type
IIB theory. So far, actions of exotic branes are constructed only for the exotic 52

2-branes and 52
3-branes

in type II theory [16,76,77] and the 53-brane in M-theory [78]. By considering the E9(9) exceptional
spacetime or including external fields, it will be possible to reproduce the actions for these branes as
well as the other exotic branes discussed in Sect. 5. Extended sigma models play an important role in
describing string/brane dynamics in “stringy” backgrounds, such as non-Riemannian backgrounds
(see Ref. [79] for the detailed analysis) and backgrounds with non-geometric fluxes called U -folds.
It will be interesting to study concrete applications.

Finally, let us discuss the global U -duality rotations of our M-brane actions, assuming the existence
of n isometries in the physical d-torus. For concreteness, we suppose n = 3: Ed(d) exceptional
spacetime with three isometries. We decompose the coordinates as (xi) = (xm, yp) (m = 1, . . . , d−3,
p = 1, 2, 3), and the yp directions are isometric. In this case, the physical duality group is SL(3) ×
SL(2) and an M2-brane and an M5-brane wrapped on the isometric 3-torus should transform with
each other as an SL(2) doublet. One may realize this symmetry in our formulation in the following
manner.

Similar to the case of the KKM discussed in Sect. 3.5, we introduce three 1-form gauge fields
a(p)

1 associated with the Killing vectors kI
(p) ∂I ≡ ∂p. We then replace P I in the M2/M5 action with

P I − a(p)

1 kI
(p), and after eliminating the gauge fields we obtain the actions for M2/M5-branes that

fluctuate in the (d − 3)-dimensional spacetime. Thanks to the isometries, we can trivially integrate
the wrapped M5-brane action over the 3-torus, and the M5-brane action will become an effective
2-brane action. Then, a natural expectation (at least if we ignore the gauge field A2 for simplicity)
is that the wrapped M5-brane action will take the form of the 2-brane action in Eq. (3.19) with the
following η-form:

ηIJ ≡ ηIJ ;I QI, QI
(wM5) ∼

⎛
⎜⎜⎜⎜⎝

0
4 DX [i1 k

i2
(1)

k
i3
(2)

k
i4]
(3)√

4!
0
0
0

⎞
⎟⎟⎟⎟⎠. (6.3)
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In fact, this kind of charge appears if we consider a duality ration of the M2 charge QI
(M2),

QI
(M2) = μ2

2

⎛
⎜⎜⎜⎝

DX i

0
0
0
0

⎞
⎟⎟⎟⎠ → QI

(M2’) ≡ (e
1
3! qi1i2i3 Ri1i2i3 )IJ QJ

(M2) = μ2

2

⎛
⎜⎜⎜⎝

DX i

4 DX [i1 qi2i3i4]√
4!

0
0
0

⎞
⎟⎟⎟⎠, (6.4)

where qi1i2i3 is proportional to k [i1
(1) ki2

(2) ki3]
(3) and (Ri1i2i3)

I
J is an Ed(d) generator in the R2-

representation (see Appendix A.2). This 2-brane with the charge QI
(M2’) may be interpreted as a

bound state of an M2-brane and wrapped M5-branes like the (p, q)-string. It will be interesting to
perform a more detailed analysis and clarify its relation to the (p, q)-membrane discussed in Ref. [38].
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Appendix A. Conventions
A.1. Differential forms

We employ the following conventions for differential forms on a worldvolume:

ε0···p = − 1√−γ
, ε0···p = √−γ , ε0···p = 1 = −ε0···p, dp+1σ = dσ 0 ∧ · · · ∧ dσ p,

(∗γ wq)a1···ap+1−q = 1

q! εb1···bq
a1···ap+1−q wb1···bq ,

∗γ (dσ a1 ∧ · · · ∧ dσ aq) = 1

(p + 1 − q)! εa1···aq
b1···bp+1−q dσ b1 ∧ · · · ∧ dσ bp+1−q . (A.1)

A.2. Ed(d) algebra and the Rn-representation

In the M-theory parameterization, we decompose the Ed(d) (d ≤ 7) generators as follows:

{Tα} = {Ki
j, Ri1i2i3 , Ri1···i6 , Ri1i2i3 , Ri1···i6} (α = 1, . . . , dim Ed(d)). (A.2)

Their commutation relations are given as follows [22]:[
Ki

j, Kk
l] = δ

j
k Ki

l − δl
i Kk

j,
[
Ki

j, Rk1k2k3
] = −3 δ

[k1|
i Rj|k2k3],[

Ki
j, Rk1k2k3

] = 3 δ
j
[k1| Ri|k2k3],

[
Ki

j, Rk1···k6
] = −6 δ

[k1|
i Rj|k2···k6],[

Ki
j, Rk1···k6

] = 6 δ
j
[k1| Ri|k2···k6],

[
Ri1i2i3 , Ri4i5i6

] = −Ri1···i6 ,

[
Ri1i2i3 , Rj1j2j3

] = −3! · 3!
2! δ

[i1i2[j1j2
Kj3]i3] + 1

3
3! δi1i2i3

j1j2j3 D,

[
Ri1i2i3 , Rj1···j6

] = 6!
3! δ

i1i2i3[j1j2j3
Rj4j5j6],

[
Ri1i2i3 , Ri4i5i6

] = Ri1···i6 ,
[
Ri1i2i3 , Rj1···j6] = −6!

3! δ
[j1j2j3
i1i2i3 Rj4j5j6],

[
Ri1···i6 , Rj1···j6

] = −6! · 6!
5! δ

[i1···i5[j1···j5 Ki6]
j6] + 2

3
6! δi1···i6

j1···j6 D, (A.3)

where D ≡ ∑
i Ki

i.
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Table A1. Rn-representation dimensions.

Ed(d) R1 R2 R3 R4 R5 R6 · · ·
SL(5) 10 5 5 10 24 40 + 15 · · ·

SO(5, 5) 16 10 16 45 144 320 + 126 + 10 · · ·
E6(6) 27 27 78 351 1728 + 27
E7(7) 56 133 912 8645 + 133

We denote the representation of the Ed(d) group that is composed of the external n-form fields as the
Rn-representation, whose dimensions are determined as in Table A1 [73]. The R9−d-representation is
always the adjoint representation and there is a symmetry in the dimensions, dim Rn = dim R9−d−n.
In the M-theory parameterization, we decompose the index I n of the Rn-representation as

(V I 1
) = (

vi,
vi1i2√

2! ,
vi1···i5√

5! ,
vi1···i7, k√

7! ,
vi1···i8, k1k2k3√

8! 3! ,
vi1···i8, k1···k6√

8! 6! ,
vi1···i8, k1···k8, k√

8! 8! , . . .
)
,

(VI 2) = (
vi,

vi1···i4√
4! ,

vi1···i6, k√
6! ,

vi1···i7, k1k2k3√
7! 3! ,

vi1···i7, k1···k6√
7! 6! , . . .

)
,

(VI 3) = (
v,

vi1i2i3√
3! ,

vi1···i5, k√
5! ,

vi1···i6, k1k2k3√
6! 3! ,

vi1···i6, k1···k6√
6! 6! , . . .

)
,

(VI 4) = ( vi1i2√
2! ,

vi1···i4, k√
4! ,

vi1···i5, k1k2k3√
5! 3! , . . .

)
,

(VI 5) = (
vi,

vi1i2i3, k√
3! ,

vi1···i4, k1k2k3√
4! 3! , . . .

)
,

(VI 6) = (
v,

vi1i2, k√
2! ,

vi1i2i3, k1k2k3√
3! 3! , . . .

)
, (A.4)

where the ellipses are not necessary when we consider the Ed(d) group with d ≥ 9 − n. We may
simply denote I 1 and I 2 as I and I, respectively.

The matrix representations of the Ed(d) generators in the R1-representation are given as follows
[22]:

(Kk1
k2)I

J ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

δi
k1

δ
k2
j 0 0 0

0 − δ
k2l
i1i2

δ
j1j2
k1l√

2! 2! 0 0

0 0 − δ
k2l1···l4
i1···i5 δ

j1···j5
k1l1···l4

4!√5! 5! 0

0 0 0 −
1
6! δ

k2l1···l6
i1···i7 δ

j1···j7
k1l1···l6 δ

j
i +δ

j1···j7
i1···i7 δ

k2
i δ

j
k1√

7! 7!

⎞
⎟⎟⎟⎟⎟⎟⎠ + δ

k2
k1

9 − d
δI

J , (A.5)

(Rk1k2k3)
I

J ≡

⎛
⎜⎜⎜⎜⎜⎝

0 − δ
ij1j2
k1k2k3√

2! 0 0

0 0
δ

j1···j5
i1i2k1k2k3√

2! 5! 0

0 0 0
δ

j1···j7
i1···i5l1l2

δ
l1l2j
k1k2k3

2!√5! 7!
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A.6)

(Rk1k2k3)I
J ≡

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

− δ
k1k2k3
i1i2j√

2! 0 0 0

0
δ

j1j2k1k2k3
i1···i5√

2! 5! 0 0

0 0
δ

j1···j5l1l2
i1···i7 δ

k1k2k3
l1l2i

2!√5! 7! 0

⎞
⎟⎟⎟⎟⎟⎠, (A.7)
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(Rk1···k6)
I

J ≡

⎛
⎜⎜⎜⎜⎝

0 0
δ

j1···j5i
k1···k6√

5! 0

0 0 0
δ

j1···j7
i1i2l1···l5 δ

l1···l5j
k1···k6

5!√2! 7!
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠, (A.8)

(Rk1···k6)I
J ≡

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

δ
k1···k6
i1···i5j√

5! 0 0 0

0
δ

j1j2l1···l5
i1···i7 δ

k1···k6
l1···l5i

5!√2! 7! 0 0

⎞
⎟⎟⎟⎟⎠, (A.9)

where we defined δ
j1···jp
i1···ip ≡ p! δj1···jp

i1···ip .
Using the η-symbols, we can also find the matrix representations of the Ed(d) generators (Tα)IJ

in the R2-representation through

(ehα Tα )K
I (ehα Tα )L

J ηKL;J (ehα Tα )JI = ηIJ ;I. (A.10)

The explicit matrix forms are obtained as follows:

(K s2
s1

)IJ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δi
s1 δ

s2
j 0 0 0 0

0
δ
i1 ···i4
s1 t1 t2 t3

δ
s2 t1 t2 t3
j1 ···j4

3! √4! 4! 0 0 0

0 0

1
5! δ

i1 ···i6
s1 t1 ···t5 δ

s2 t1 ···t5
j1 ···j6 δk

l +δ
i1 ···i6
j1 ···j6 δk

s1 δ
s2
l√

6! 6! 0 0

0 0 0

1
6! δ

i1 ···i7
s1 t1 ···t6 δ

s2 t1 ···t6
j1 ···j7 δ

k1k2k3
l1 l2 l3

+ 1
2! δ

i1 ···i7
j1 ···j7 δ

k1k2k3
s1 t1 t2

δ
s2 t1 t2
l1 l2 l3√

7! 3! 7! 3! 0

0 0 0 0

1
6! δ

i1 ···i7
s1 t1 ···t6 δ

s2 t1 ···t6
j1 ···j7 δ

k1 ···k6
l1 ···l6 + 1

5! δ
i1 ···i7
j1 ···j7 δ

k1 ···k6
s1 t1 ···t5 δ

s2 t1 ···t5
l1 ···l6√

7! 6! 7! 6!

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

− 2 δ
s2
s1

9 − d
δIJ , (A.11)

(Rs1s2s3)IJ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
δ

is1s2s3
j1···j4√

4! 0 0 0

0 0
3−√

2
7 δ

i1···i4s1s2s3
j1···j6l − 1

2! δ
i1···i4t1t2
j1···j6 δ

s1s2s3
t1t2l√

4! 6! 0 0

0 0 0
3−√

2
7 δ

i1···i6k
j1···j7 δ

s1s2s3
l1l2l3

− 1
2! δ

i1···i6r
j1···j7 δ

kt1t2
l1l2l3

δ
s1s2s3
t1t2r√

6! 7! 3! 0

0 0 0 0
δ

i1···i7
j1···j7 δ

k1k2k3s1s2s3
l1···l6√

7! 3! 7! 6!
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.12)

(Rs1s2s3)
I
J ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

δ
i1···i4
js1s2s3√

4! 0 0 0 0

0
3−√

2
7 δ

i1···i6k
j1···j4s1s2s3

− 1
2! δ

i1···i6
j1···j4t1t2

δ
t1t2k
s1s2s3√

6! 4! 0 0 0

0 0
3−√

2
7 δ

i1···i7
j1···j6lδ

k1k2k3
s1s2s3 − 1

2! δ
i1···i7
j1···j6rδ

k1k2k3
lt1t2

δ
t1t2r
s1s2s3√

7! 3! 6! 0 0

0 0 0
δ

i1···i7
j1···j7 δ

k1···k6
l1l2l3s1s2s3√

7! 6! 7! 3! 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.13)
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(Rs1···s6)IJ ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1+2

√
2

7 δ
s1···s6i
j1···j6l −δ

s1···s6
j1···j6 δi

l√
6! 0 0

0 0 0
δ

s1···s6r
j1···j7 δ

i1···i4
l1l2l3r√

7! 3! 4! 0

0 0 0 0
1+2

√
2

7 δ
i1···i6k
j1···j7 δ

s1···s6
l1···l6 −δ

s1···s6k
j1···j7 δ

i1···i6
l1···l6√

7! 6! 6!
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.14)

(Rs1···s6)
I
J ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

1+2
√

2
7 δ

i1···i6k
s1···s6j−δ

i1···i6
s1···s6 δk

j√
6! 0 0 0 0

0
δ

i1···i7
s1···s6rδ

k1k2k3r
j1···j4√

7! 3! 4! 0 0 0

0 0
1+2

√
2

7 δ
i1···i7
j1···j6lδ

k1···k6
s1···s6 −δ

i1···i7
s1···s6lδ

k1···k6
j1···j6√

7! 6! 6! 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A.15)

From the relation in Eq. (A.10), for generalized vectors AI and BJ that transform in the R1-
representation and CI that transforms in the R2-representation, a combination, AI BJ ηIJ ;I CI, is
invariant under U -duality transformations:

AI BJ ηIJ ;I CI → (ehα Tα )I
K (ehα Tα )J

L AK BL ηIJ ;I (ehα Tα )IJ CJ = AK BL ηKL;J CJ. (A.16)

A.3. η-symbols in the M-theory parameterization

The η-symbols ηI = (ηIJ ;I) and ηI = (ηIJ ;I) (ηIJ ;I = ηJI ;I and ηIJ ;I = ηJI ;I) are constant
matrices that connect the symmetric product of two R1-representations and the R2-representation.
When we consider M-theory, we decompose the R2-representation as

(ηI) =
(

ηi,
ηi1···i4√

4! ,
ηi1···i6, k√

6! ,
ηi1···i7, k1k2k3√

7! 3! ,
ηi1···i7, k1···k6√

7! 6!
)

. (A.17)

The two types of η-symbols, ηI and ηI, are simply related as

ηIJ ;I = ηIJ ;I, (A.18)

as matrices. Their explicit matrix forms are determined in Ref. [50] and are given as follows (see
Ref. [50] for the explicit form of ηI):

ηk ≡

⎛
⎜⎜⎜⎜⎜⎝

0
δ

j1j2
ki√
2! 0 0

δ
i1i2
kj√
2! 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (A.19)

ηk1···k4 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
δ

j1···j5
ik1···k4√

5! 0

0
δ

i1i2j1j2
k1···k4√

2! 2! 0 0

δ
i1···i5
jk1···k4√

5! 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.20)

ηk1···k6, l ≡ ηKKM
k1···k6, l + ηk1···k6l , (A.21)
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ηKKM
k1···k6, l≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
δ
j1 ···j7
k1 ···k6 iδ

j
l −

δ
j1 ···j7
k1 ···k6 l δ

j
i

7√
7!

0 0
−
(
δ
j1 ···j5k
k1 ···k6

δ
i1 i2
kl − 2

7 δ
j1 ···j5 i1 i2
k1 ···k6 l

)
√

2!5! 0

0
−
(
δ
i1 ···i5k
k1 ···k6

δ
j1 j2
kl − 2

7 δ
i1 ···i5 j1 j2
k1 ···k6 l

)
√

2!5! 0 0

δ
i1 ···i7
k1 ···k6 j δ

i
l −

δ
i1 ···i7
k1 ···k6 l δ

i
j

7√
7! 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠, (A.22)

ηk1···k7 ≡ 1

7
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 3
δ

j1···j7
k1···k7

δ
j
i√

7!
0 0

δ
j1···j5i1i2
k1···k7√

2! 5! 0

0
δ

i1···i5j1j2
k1···k7√

2! 5! 0 0

3
δ

i1···i7
k1···k7

δi
j√

7! 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.23)

ηk1···k7, l1l2l3 ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0
−δ

j1···j7
l1l2l3m1···m4

δ
ji1i2m1···m4
k1···k7

4!√2! 7!
0 0

δ
i1···i5m1m2
k1···k5k6k7

δ
j1···j5
m1m2l1l2l3

2!√5! 5! 0

0
−δ

i1···i7
l1l2l3m1···m4

δ
ij1j2m1···m4
k1···k7

4!√2! 7! 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.24)

ηk1···k7, l1···l6 ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 0
δ

j1···j7
k1···k7

δ
ji1···i5
l1···l6√

5! 7!
0 0

δ
i1···i7
k1···k7

δ
ij1···i5
l1···l6√

5! 7! 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.25)

We also define the �-tensor:

(�IJ ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
εj1···j7 δ

j
i√

7!
0 0 εi1i2j1···j5√

2! 5! 0

0 − εi1···i5j1j2√
2! 5! 0 0

− εi1···i7 δi
j√

7! 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠, (A.26)

(�IJ ) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
εj1···j7 δi

j√
7!

0 0
εi1i2j1···j5√

2! 5! 0

0 − εi1···i5j1j2√
2! 5! 0 0

− εi1···i7 δ
j
i√

7! 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.27)

The relation between the η-symbols (and the �-tensor) and the Y -tensor known in the literature has
been shown in detail in Ref. [50] (see, in particular, Appendix B therein). Similar expressions for
the η-symbols and the �-tensor that are suitable for type IIB theory are given in Ref. [50].
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