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2.6 Wakefields and Impedances
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2.6.1 Introduction

The problem of beam stability is fundamental for modern accelerators where acceleration
and storage of intense relativistic beams with small emittances are crucial for machine
operation. This complex problem interconnects the properties of the beam environment with
the beam dynamics through electromagnetic fields excited by the beam in the vacuum
chamber. To simplify the analysis of the beam stability, it is customary to split the study of
the fields excited by the beam into a separated topic through introduction of the notion of
the wakefield. Wakefields can usually be calculated using a simplified assumption about the
beam trajectory - in many cases considering the trajectory as a straight line passing through
an element of the vacuum chamber that excites the wake. Moreover, due to the linearity of
Maxwell’s equations, the wakefield can be first calculated for a point charge, and then
convoluted with the beam distribution to obtained the field inside the beam.

In this text we will introduce main concepts associated with wakefields. In our
consideration we use an assumption of relativistic particles for which the Lorentz factor
y> 1.

2.6.2 Definition of Wakes

The interaction between particles of a beam and the electromagnetic field generated by
an inhomogeneity in the beam pipe in many cases is localized in a region that is small when
compared to the length of the beam orbit. It also occurs on a time scale much smaller than
the characteristic oscillation times of the beam in the accelerator (such as the betatron and
synchrotron periods). This allows us to consider the interaction of the beam in the impulse
approximation and characterize it by the amount of integrated momentum transferred from
the electromagnetic field to the particle.

The concept of the wakefield or wake is introduced in the following way. Consider a
leading particle 1 of charge ¢ moving along the axis z with a velocity close to the speed of
light, v = ¢, so that z = ¢t (see Fig. 1). A trailing particle 2 of unit charge moves parallel to
the leading one, with the same velocity, at a distance s with offset p relative to the z-axis.
The vector p is a two-dimensional vector perpendicular to the z-axis, p = (x, y). Although
the two particles move in vacuum, there are material boundaries in the problem that scatter
the electromagnetic field and lead to an interaction between the particles through this
electromagnetic field.

Let us assume that we have solved Maxwell’s equations and found the electromagnetic
field generated by the first particle. We calculate the change of momentum Ap of the second
particle caused by this field as a function of the offset p and distance s,

Ap(p,s) = fm dt[E(p,z,t) + c2 X B(p,z,1)],_,_ -
- (1
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Figure 1: A leading particle 1 and a trailing particle 2 move parallel to each other in a vacuum
chamber.

Note that here we integrate along a straight line - the unperturbed orbit of the second
particle. The integration limits in Eq. (1) are extended from minus to plus infinity, assuming
that the integral rapidly converges outside of the element that generates the fields.

Since the beam dynamics is different in the longitudinal and transverse directions, it is

useful to separate the longitudinal momentum Ap. from the transverse component Ap,. With

the proper sign and the normalization factor ¢ / ¢, these two components are called the
longitudinal and transverse wake functions,

C C
wi(p,s) = ——Ap; = —— fthzlzmst—Sa
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Note the minus sign in the definition of the longitudinal wake function - it is introduced so
that the positive longitudinal wake corresponds to the energy loss of the trailing particle (if
both the leading and trailing particles have the same sign of charge). The so defined wakes
have dimension V/C in SI units and cm ' in CGS units (a useful relation between the units
is: 1 V/pC=1.11cm™).

There is an important relation that connects the longitudinal and transverse wakes
defined by Eq. (2)

ow
a_St = prl-

3)

This relation is usually referred to as the Panofsky-Wenzel theorem.

Because we have assumed that the leading particle is moving with the speed of light, the
field that it generates in a vacuum chamber cannot propagate ahead of it. This is the
causality principle, which means that the wake is zero for negative values of s,

wi(p, s) =0, w;(p, s) =0, for s <0. @
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It was assumed above that the electromagnetic field is localized in space and time and the
integral in Eq. (1) converges. There are cases, however, such as the resistive wall wake of a
long pipe, when this is not true and the source of the wake is uniformly distributed along an
extended path. In this case, it is more convenient to introduce the wake per unit length of the
path by dropping the integration in Eq. (1)

1
wl(ﬂ, S) = _EEz|z=ct—s-;

wr(ﬂ S) [EJ_ + Z X B]z—ct 5"
)

In this definition, the wakes acquire an additional dimension of inverse length, and have the
dimension cm ? in CGS and V/C/m in SI.

Another example where the wakes per unit length are more appropriate than the
integrated wakes is the case of periodic structures. For such structures, the fields and the
wakes in Eq. (5) are understood as averaged over one structure period with the total wake
given by multiplying the wake per unit length by the length of the structure.

2.6.3 The “Catch-Up” Distance

As mentioned earlier, for a beam particle moving along a straight line with the speed of
light, due to causality, the electromagnetic field scattered off discontinuities on the wall of
the pipe does not affect the charges that travel ahead of it. This field can only interact with
the charges in the beam that are behind of the particle that generates the field. For short
bunches, the time needed for the fields scattered off the wall of the vacuum chamber to
reach the beam on the axis may not be negligible, and the interaction with this field may
occur well downstream of the point where the field was generated. Let us find where the
electromagnetic field produced by a leading charge reaches a trailing particle traveling at a
distance s behind the leading one. Assume that a discontinuity located on the surface of a
pipe of radius b at coordinate z = 0 is passed by the leading particle at time # = 0 (see Fig. 2).
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Figure 2: A wall discontinuity located at z = 0 scatters the electromagnetic field of a relativistic
particle. When the particle moves to location z, the scattered field arrives to point z — s.
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If the scattered field reaches point z — s at time ¢, then (ct)’ = (z — 5)* + b*, where z is the
coordinate of the leading particle at time ¢, z = ct. Assuming that s <« b, from these two
equations we find

(6)

The distance z given by this equation is often called the catch-up distance. Only after the
leading charge has traveled that far away from the discontinuity, a particle at point s behind
it starts to feel the wake field generated by the discontinuity.

2.6.4 Transverse Wakes in Axisymmetric Systems

In the general case of a vacuum chamber which does not have symmetries, the transverse
wake defined by the second equation in (5) can be directed at arbitrary angle to the offset of
the leading particle. Of special interest for applications is the case of an axisymmetric
vacuum chamber. From the axisymmetry, we first conclude that wr, = 0 if the leading
particle travels on axis of the vacuum chamber. Moreover, in view of the symmetry, for a
nonzero offset of the leading particle, the wake w; is directed along the offset. In this case,
instead of the vectorial wake wr, a scalar wake 1w, is used which is defined as the projection
of wr, onto the direction of the offset.

Since wr; is zero for zero offset, it is small for small offsets. In the lowest order, it can be
approximated as a linear function of the offset of the leading particle

w, = rw(s). o

Note that in this approximation the wake does not depend on the offset of the trailing
particle. The quantity W(s) is the wake per unit offset. It has dimension of V/(pC m) in SI
units and cm ” in CGS units. It is normally called the dipole wake.

2.6.5 Wakefield of a Bunch of Particles

Given the interaction of two point charges we can calculate the wakefield inside a bunch
that contains N particles assuming N >> 1. Let the longitudinal distribution function of the
bunch be A(s) (the distribution function is defined so that A(s)ds gives the probability of
finding a particle near point s). The coordinate s here is measured along the direction of the
bunch motion; the head of the bunch corresponds to positive s, and the tail - to negative s.
This meaning of s should not be confused with s shown in Fig. 1: there, it is the distance
from the leading and trailing particles and is measured in the direction opposite to the
direction of motion. To find the change of the longitudinal momentum of a particle located
at point s inside the bunch we sum the wakes generated by all other particles at s,

2
Ap,(s) = _Nc_e ]“7 ds’ A(sw(s" — s).
* (8)
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Here we have used the causality principle and integrated only over the part of the bunch in
front of point s. In the relativistic limit, the energy loss AE(s) caused by the wake field is
equal to —cAp;, so Eq. (8) can also be rewritten as

AE(s) = Né? f ) ds' A(s)w(s” — s).
’ )

Two important integral characteristics of the strength of the wake are given by the average
value of the energy loss AE,,, and the rms spread in energy, AE.,s, generated by the wake.
These two quantities are defined by the following equations

AE,, = fm dsAE(s)A(s) = Ne* fm dsA(s) fm ds' A(sHw(s" — s)

(10)

and

00 1/2
AEq s = [ f ds(AE(s) — AEa,,)zfl(s)] .

(11)

The average energy loss normalized by the product eQ, where Q = Ne is the bunch charge,
is called the loss factor. Denoting the loss factor by » we have a relation » = AE,, / Q.

2.6.6 Wake at Origin for a Periodic Structure

When a short bunch passes through a single structure, such as a single-cell cavity,
connected to infinitely long beam pipes, it can lose a large amount of energy to the
wakefields. In fact, the diffraction model of wakes says that the bunch energy loss for this
situation depends on bunch length, o, as o. ', and the corresponding point charge wake
depends on s as w; ~s 2

For periodic structures (which includes the case of structures with translational
symmetry) this changes, and w; (0") appears to equal a constant that depends on the
aperture of the structure. In an axisymmetric structure that constant is given by

Z
wi0) = 2%,
na

(12)

where a is the radius of the aperture. The parameter Z; is the impedance of free space, equal
to (4m/c) in the cgs system, and 377 Q in the MKS system. This relation has been found to
hold for a smooth resistive pipe [1], a metallic pipe with a thin dielectric layer [2], a disk-
loaded accelerator structure [3], and a metallic pipe with small corrugations [2]. It seems to
be a general property of axisymmetric, periodic structures. (Ref. [4] claims to have a general
proof that it is.) For the transverse wake, in an axisymmetric structure, the slope of the
dipole wake at the origin depends only on the pipe radius,
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In flat geometry - e.g. the beam passes on the symmetry plane between two, infinitely wide,
resistive plates - w; (07 is given by the result of Eq. (12) multiplied by the factor (n*/16),
with a now half the distance between the plates.

These properties give one the upper limit of how quickly energy can be removed from
the beam by the wakefield and how strong the transverse force can be. Note that these
relations concerning the wakes at the origin do not depend on the material properties of the
structure, provided that the region within the aperture contains, as usual, only vacuum.

2.6.7 Impedances

Knowledge of the longitudinal and transverse wake functions gives us a fairly complete
understanding of the electromagnetic interaction of the beam with its environment. However,
in many cases, especially in the study of beam instabilities, it is more convenient to use the
Fourier transform of the wake functions, which gives us the impedances. Also, it is often
easier to calculate the impedance for a given geometry of the beam pipe, rather than the
wake function.

For historical reasons the longitudinal Z; and transverse Z, impedances are defined as
Fourier transforms of wakes with different factors

I :
Z[(a)) = E f ds w[(S)elws/C )
0

i o0 .
Zi4(w) = - f ds w,,q(s)e“‘”/ .,
0 (14)

where index ¢ denotes a transverse component, ¢ = x, y. Note that the integration in
Egs. (14) can actually be extended into the region of negative values of s, because w; and
w4 are equal to zero there.

Impedance can also be defined for complex values of w such that Im @ > 0 and the
integrals of Eq. (14), converge. So defined, the impedance is an analytic function in the
upper half-plane of the complex variable w.

Note that other authors use definitions of the impedance that differ from Eq. (14). In Refs.
[5, 6] the longitudinal impedance is defined as a complex conjugate to the one given by Egs.
(14). Here we follow the definitions of Refs. [7, 8].

From the definitions in Egs. (14) it follows that the impedance satisfies the following
symmetry relations

Re Z)(w) = Re Z)(~w), ImZj(w) = —Im Z)(-w),

Re Z; (w) = —Re Z, ;(—w), ImZ,; (w) = Im Z, ;,(-w). (15)

The inverse Fourier transform expresses the wakes in terms of the impedances
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1 o0 .
wi(s) = — f dw Z)(w)e “sle

2n J o

i © .
Wrq(s) = — f det,q(w)e"“‘”/c.

21 Joo

(16)
2.6.8 Resonator Wakefield and Impedance

The resonator model of wakes and impedances is quite useful in accelerator physics. For
example, the impedance of the individual (trapped) modes of an RF cavity can be described
with this model. The parameters are shunt resistance R, resonant frequency w,, and quality
factor 0. This model is also used at times to describe the impedance of a storage ring,
typically with Q taken to be 1, and the other parameters deduced from machine physics
studies. In the Large Electron Positron Collider (LEP) at CERN, for example, this approach
was taken to model both the longitudinal and transverse impedances of the ring [9]. Note
that, unlike in the previous section, where the impedance and wake were per unit length for
periodic structures, for the resonator model they are normally per object.

The longitudinal impedance of the resonator model is given by

R,
Z(w) = — .
1+io( - )
(17)
The corresponding wake becomes
r —r 1 . -r
wy(s) = 2H(s)x exp o). cos @S _ sin @rs ,

2Qc c 102 -1 c

(18)

with the unit step function H(s) =0 (1) for s <0 (s > 0), the mode loss factor » = w,R; / (2Q),

and @, = w, /1 — 1/(4Q?). If R, is in units of ohms, then so is the impedance, and the loss
factor (and wake) have units of V/C. For OQ > 1, we can approximate

WS

wi(s) = 2H(s)x exp (—ﬂ) cos -

2
ce (19)

For QO = 1, the resonator impedance is plotted in Fig. 3, and the corresponding wake in
Fig. 4.
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Figure 3: The real (blue) and imaginary (red) parts of the resonator impedance, assuming Q = 1.
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Figure 4: The longitudinal wake for the resonator impedance, assuming O = 1.

The resonator impedance can also be used to model the transverse impedance and wake of a
cavity or a storage ring. For example, assuming cylindrical symmetry, with the beam near the axis,
the dipole impedance and wake will dominate the transverse wake force. In this case the transverse
impedance is of the same form as Eq. 17, but with R; replaced by cR,; / w, where R, has units of
Ohm/m’ in the MK system.

2.6.9 Resistive Wall Impedance

One of the first impedances studied in accelerator physics was the resistive wall (rw)
impedance, in particular, the low-frequency, transverse rw impedance. This impedance is
often a limiting factor in the average current that can be stored in a storage ring. (Note that
the equations presented here, with slightly different notation, can be found in [7].)

The low-frequency longitudinal rw impedance (the interaction per unit length) is given
by



75

1-9) [Zw

2na 2co,’

Z(w) =
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where a is beam pipe radius, o, is wall conductivity. A more general expression for Z;, valid
also for high frequencies, is given by

2 1 A\
- )
na -1
A 1)
where A = wy/ ¢ and the length scale sy is

2 1/3
Sp = (Z ) .

07 22)

This general form of the longitudinal rw wall impedance is needed when considering
bunches of lenf?rth 0. S so. Normally, sy is a very short distance. For example, for a Cu (o, =
5.9x10” Q 'm ") pipe of radius a = 1 cm, so =21 pm.

The longitudinal rw wake (again given per unit length) corresponding to the impedance
of Eq. (21) is a universal function of x =5/ 59

00 2 —ch'2
wi(x) = H(x)4ZOC [16_" cos V3x — g f dy ye ) .
0

na? \ 3 Yo +8

(23)

The longitudinal rw impedance is plotted in Fig. 5, and the corresponding wake in Fig. 6.

These calculations have assumed that the conductivity of the pipe wall is a constant. A
more involved calculation, including the so-called “ac conductivity” of the metal wall has
also been performed. In fact, a calculation also including the anomalous skin effect - an
effect that tends to be a low temperature effect - has also been done. Finally, the
corresponding calculations have been carried out for the transverse rw impedance and wake
in a round structure. Equations (20) and (23) imply that the long-range longitudinal rw wake
asymptotically varies as s 2, whereas the long-range dipole rw wake varies as s 2, which
is why the transverse rw wake can limit the average current stored stably in a ring, whereas
the corresponding longitudinal wake tends not to.
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Figure 5: The real (blue) and imaginary (red) parts of the longitudinal resistive wall impedance.
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Figure 6: The longitudinal resistive wall wake.
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