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Abstract

The commonly used methods for the calculation of the statisti-
cal uncertainties in cut efficiencies (“Poisson” and “binomial” errors)
are both defective, as is seen in extreme cases. A method for the cal-
culation of uncertainties based upon Bayes’ Theorem is presented;
this method has no problem with extreme cases. A program for the
calculation of such uncertainties is also available.1

1 The Problem

A common technique for the calculation of the efficiency of data selec-
tion (a cut) makes use of two identically-binned histograms. In his-
togram A, one plots the distribution of the quantity of interest for all
the events of the sample; in histogram B one plots the distribution of
the same quantity, but only for those events satisfying the selection
criterea, that is, those events which “pass the cut”. Intuition leads one
to expect that the “best” estimate for the (unknown true) efficiency of
the cut for each bin is just ki/Ni, where Ni is the number of events
in bin i of histogram A, and ki is the number of these events which
pass the cut – the number of events in bin i of histogram B. But what
statistical uncertainty should be assigned this estimate of the true ef-
ficiency?

There are two commonly used solutions: “Poisson” and “binomial”
errors. I believe that neither is correct, because each leads to absurd

1This paper is an updated version of a 1996 paper of the same name. The mathe-
matical content is the same, but the exposition has been slightly expanded, the author’s
contact information has been updated, and information on the new software available
has been added.
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results in limiting cases. In this paper, I describe these methods, dis-
cuss the regimes in which each is appropriate, and discuss the regime
in which each breaks down. I then present a simple alternative, not
subject to these defects.

For simplicity of notation, from here forward let us consider only
a single bin, in which k events out of a total of N events pass the
cuts. To determine the uncertainties in each bin of a histogram, one
merely applies the same rule independently to each bin i. Note that
this method calculates independent statistical uncertainties for each
bin; in this it is similar to both of the commonly used methods.

2 Two Common Procedures

2.1 Poisson Errors

2.1.1 Calculational Technique

In the “Poisson” calculation, one applies the large sample limit of the
Poisson distribution, to say that the uncertainty δk in k is

√
k, and

that the uncertainty δN in N is
√

N . Then, using the standard error
propagation formula2, one finds

δε′ = ε′

√(
δk

k

)2

+
(

δN

N

)2

=
k

N

√
1
k

+
1
N

=

√
k2(N + k)

N3
. (1)

Among the arguments against this method is the behavior in limiting
cases.

2.1.2 Examples of Failure

As a first example, consider the case k = 0, for any N ≥ 1, we find
ε′± δε′ = 0± 0. The calculation is telling us that if we observe one event,
and it fails the cut, we know with complete certainty that the efficiency
is exactly zero. This is a remarkable conclusion, which differs greatly
from our intuition.

As a second example, consider the case k = N . Then we find ε′ ±
δε′ = 1 ±

√
2/N . So if we have a sample with a single event, and if the

event passes our cuts, then we find ε′ ± δε′ = 1 ± 1.4; the “1σ” error

2For a standard justification of the standard formula, see, for example, Data Reduction
and Error Analysis for the Physical Sciences, Phillip R. Bevington.
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interval spans the range [−0.6, 2.4]. Again this is a remarkable result
— most of this range is unphysical! In fact, when we have k = N ,
for any value of N , we find that the error range extends past 1, even
though by definition it is impossible that we should have ε > 1. Clearly
the “Poisson” error calculation is in disagreement with our reasonable
expectations.

2.1.3 Regime of Validity

Of course, few would try to use “Poisson” uncertainties in the small-k
limit; the approximation of

√
k as the uncertainty in an observation of

k events only holds for large k. In such small-k cases, some expect bet-
ter behavior from the “binomial” errors, presented in the next session.
However, the failure of the case where N is large, and k is near N , is
not due to a failure of the “small N” limit; it is an inherent failure of the
model.

2.2 Binomial Errors

2.2.1 Calculational Technique

Next let us consider the “binomial” error calculation. This calculation
is based on the knowledge that the application of a cut (or cuts) can be
considered a binomial process, with probability of “success” (i.e. true
efficiency) ε.

Given the true efficiency ε and the sample size N , the expectation
value for the number of events 〈k〉 passing the cut is given by 〈k〉 = εN ,
and the standard deviation of the distribution of the number of events
passing is

σk =
√

var(k)

=
√

ε(1− ε)N. (2)

Since we don’t know the true efficiency, what is often done is to
put our estimate ε′ into this equation in its place, and then to divide
through by N , yielding the result δε′ = (1/N)

√
k(1− k/N).

2.2.2 Examples of Failure

While the “binomial errors” equation doesn’t contain the absurdity of
error ranges extending into unphysical regions below zero or above one,
it still yields absurd results in limiting cases. Consider, for example,
what we find when we observe only a single event. If it passes, we
find ε′ ± δε′ = 1 ± 0; if it fails, we find ε′ ± δε′ = 0 ± 0. In each case, this
calculation claims perfect certainty for the measured efficiency. In fact,
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for all N , if we have either k = 0 or k = N , then we find a zero error.
Again, this violates our reasonable expectation.

2.2.3 Region of Validity

The “binomial errors” approximation works acceptably when k is nei-
ther “too close” to 0, nor “too close” to N . The determination of what is
“too close” is a matter of judgement; clearly both k = 0 and k = N are
too close.

In the next section, I develop a calculation, based on the use of
Bayes’ Theorem, that calculates the statistical uncertainty in the effi-
ciency in a manner that agrees with our reasonable expectations, and
which exhibits reasonable behavior even in limiting cases.

3 A Better Calculation

Let us start out again with the binomial probability, this time writing
it more explicitly. The symbol P (k|ε,N, I) denotes the probability that k
events will pass the cut, given the conditions that the true efficiency is
ε, that there are N events in the sample, and that our prior information
I tells us this is a binomial process. The binomial distribution is

P (k|ε,N, I) =
N !

k!(N − k)!
εk(1− ε)N−k. (3)

In our problem, we do not know ε; rather, we have our data, which
is an observation of k events out of N passing the cut. What we need
to determine then is P (ε|k, N, I), which is the probability that the true
efficiency is between ε and ε + dε. Knowing this, we can determine
the most probable value of ε (that is, the value of ε we determine to
be most probable, given our data) and also a confidence interval for
ε with known probability content, so that we may make comparisons
with some statistical meaning. So how do we find P (ε|k,N, I)?

3.1 Bayes’ Theorem

The method for inverting a probability (determining P (A|BC) from
P (B|AC)) is called Bayes’ Theorem. In this context, it is

P (ε|k,N, I) =
P (k|ε,N, I)P (ε|N, I)

Z
, (4)

where Z is a constant to be determined by normalization, and P (ε|N, I)
is the probability we assign for the true efficiency to be between ε and
ε + dε before we consider the data. What shall we assign for this prob-
ability? A moment’s consideration tells us that, given only N and the
fact that we are dealing with a binomial process, so that ε must be in
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the inclusive range [0, 1], we would have no reason to favor one value of
the efficiency over another. Therefore it is reasonable to take

P (ε|N, I) =
{

1 if 0 ≤ ε ≤ 1
0 otherwise , (5)

independent of N . Note that the use of probability theory allows us to
include in our calculation the knowledge that the efficiency must be
between zero and one; this knowledge is built into the pre-data prob-
ability distribution describing our knowledge of ε, which assigns zero
probability to those values of ε which we know, with certainty, to be
impossible.

With P (k|ε,N, I) given by (3), we have all that is needed to determine
the normalization constant Z and thus the probability distribution de-
scribing post-data knowledge of ε.

To determine the normalization constant Z, we must solve

∫ ∞

−∞
P (ε|k,N, I) dε

=

∫∞
−∞ P (k|ε,N, I)P (ε|N, I) dε

Z

=
1
Z

N !
k!(N − k)!

∫ 1

0

εk(1− ε)N−k dε

= 1 (6)

for Z. Noting that the Beta function B(x, y) is defined by B(x, y) =∫ 1

0
tx−1(1 − t)y−1 dt, we may determine the normalization constant. We

use the relation B(x, y) = Γ(x)Γ(y)/Γ(x + y), and find

P (ε|k,N, I) =
Γ(N + 2)

Γ(k + 1)Γ(N − k + 1)
εk(1− ε)N−k. (7)

3.2 Using the Solution

Figure 1 shows P (ε|k, N, I) for N = 5 and k = 0, 1, 2, 3, 4 and 5. Note that
in all cases, we assign zero probability that ε is below zero or above
one. Note also that we assign zero probability to ε = 0 unless k = 0;
this is necessary, of course, since if we observe even a single event
which passes, we know the efficiency cannot be zero. Similarly, we
assign zero probability to ε = 1 unless k = N , since if even a single
event fails our cut, we know that the efficiency is not one. Finally, note
that in each case the peak of the distribution — and thus the most
probable value for the efficiency, given the data — is at exactly k/N .
Thus our intuition leads us to the same result as does the application
of probability theory.
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Figure 1: The post-data probability distribution for the cut efficiency ε,
for N = 5, and for k = 0, 1, 2, 3, 4 and 5.

To verify the observation of the location of the peak of the probabil-
ity, we find the maximum of P (ε|k,N, I) by solving

dP (ε|k, N, I)
dε

=
Γ(N + 2)εk(1− ε)N−k(Nε− k)
Γ(k + 1)Γ(N − k + 1)ε(ε− 1)

. (8)

The solutions for the extrema are ε = 0, ε = 1, and ε = k/N . Inves-
tigation of the second derivative (or inspection of the plot in Figure 1)
shows that the extrema at ε = 0 and ε = 1 are minima, except when
k = 0 or k = N . In all cases, ε = k/N is a maximum.

Since the probability distribution describing our knowledge of ε is
not a delta function, our estimate of the true efficiency has some un-
certainty. There are many measures of this uncertainty that can be
extracted from the distribution P (ε|k,N, I): upper and lower limits at
various confidence levels; the variance, or its square root, the stan-
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dard deviation; the mean absolute deviation; or confidence intervals of
various sorts.

I recommend using the shortest 68.3% confidence interval as the
measure of the uncertainty in the efficiency measurement. It has two
attractive features. First, it has a known probability content, one cho-
sen to be the same as a “1 σ” Gaussian error. Therefore such er-
ror intervals will behave as we most often expect. Second, it is the
most constrained region which has this probability content, so that
we present our measurement in the fashion that most constrains the
range in which we believe the true value exists. It has the unfortunate
drawback of being challenging to calculate. Unlike the formula for the
peak of the distribution, the formula for the shortest interval containing
probability content λ is non-trivial. To find the shortest interval [α, β]
which contains probability content λ, we must minimize the interval
β − α, subject to the constraint∫ β

α

P (ε|k,N, I) dε = λ. (9)

A formal solution can be found using the method of Lagrange multi-
pliers. The solution for α and β is found by the simultaneous solutions
of the nonlinear equations3

G + ραk(1− α)N−k = 0
G + ρβk(1− β)N−k = 0

Bβ(k + 1, N − k + 1)− Bα(k + 1, N − k + 1) = λG (10)

where λ is the required probability content of the confidence interval
(for example, 0.683), G = Γ(k+1)Γ(N−k+1)/Γ(N +2), and ρ is a Lagrange
multiplier introduced for the constraint. Here Bx(u, v) is the incomplete
Beta function, defined by

Bx(u, v) =
∫ x

0

tu−1(1− t)v−1 dt. (11)

3.3 Software

Since no closed-form solution of these equations is at hand (at least,
not one that I can find), and since the numerical solution of simul-
taneous nonlinear equations is a difficult problem, it turns out to be
simpler to write a program which minimizes β − α subject to the inte-
gral constraint directly. I have made available CALCEFF, a program that
does just that. This program takes as input a file of pairs of k and N ,

3Readers of the 1996 version of the paper may note there is a change in notation from
that version. The mathematical content is the same.
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and and a probability content. The output of the program is a table
containing the most probable efficiency k/N , and α and β, the lower
and upper edges of the shortest confidence interval with the required
probability content.

A simple library routine which performs the calculation for a single
point, as well as the program CALCEFF, are both available in source
format from the author. The source code is standard C++, and should
be handled by any reasonably conformant compiler. Please contact the
author at paterno@fnal.gov to obtain a copy of the code.
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