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Abstract Several recent developments have highlighted
the significance of the vanishing complexity factor formal-
ism in understanding the structure and evolution of stel-
lar relativistic compact objects. This formalism, introduced
through a novel definition proposed by Herrera (Phys. Rev. D
97:044010, 2018), offers valuable insights into the dynamics
of such systems. In this manuscript, we explored a class of
realistic solutions to the static and spherically symmetric field
equations characterized by two fluid distributions: ordinary
stellar matter and dark energy, within the framework of this
formalism. Utilizing the well-known Tolman-V I solution as
the seed ansatz for the metric coefficient grr , we employed
the complexity-free format to derive an analytic solution for
the other metric coefficient, gtt . Subsequently, we obtained
the solutions of gravitational field equations for our proposed
spacetime model by incorporating the linear dark energy
equation of state. These results were applied to the astrophys-
ical compact star candidate LMC X -4, with M = 1.04M�
and R = 8.4 km. The potential viability and credibility of
the proposed dark star solutions were thoroughly analyzed by
examining key constraints, including the regularity of met-
ric functions, physical adequacy through matter variables,
state parameter behavior, energy conditions, stability tests
(such as pressure anisotropy and hydrostatic equilibrium),
the speed of sound, and the mass–radius relation for this com-
pact star candidate. Notably, the estimated values of the dark
energy coupling factor, presented in Table 1, highlight the
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exotic nature of the fluid distribution and effectively quan-
tify the contribution of dark energy to the structure and evo-
lution of an ultra-relativistic dark compact star. These find-
ings strongly support our model solutions and demonstrate
improvements over previously reported results in Rej et al.
(Chin J Phys 87:608, 2024).

1 Introduction

General Relativity (GR), introduced by Albert Einstein, is
one of the most remarkable theories for explaining the gravi-
tational interaction between spacetime-geometry and the dis-
tribution of matter [1]. It provides the fundamental equations
of motion necessary to understand the stability of energy
content in cosmological and astrophysical systems on large
scales. Experimental tests of GR effectively elucidate and
provide precise insights into phenomena such as the deflec-
tion of light near massive objects and the motion of dynamic
structures within strong gravitational fields, including those
around neutron stars, pulsars, and black holes. An additional
consequence of GR, affirmed through empirical evidence
and active research, is the discovery of gravitational waves.
Neutron stars and other compact objects (COs) are promis-
ing candidates for studying and testing the viability of GR.

The field equations derived from GR establish a connec-
tion between geometric functions, also known as gravita-
tional potentials, and the matter distribution. The determi-
nation of the matter content often depends on the choice
of convenient geometrical methods. For spacetime geome-
tries characterized by two gravitational potentials, the most
common approach involves fixing one potential and subse-
quently solving for the remaining metric function. This pro-
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cedure frequently incorporates the equation of state (EoS)

[2–4] or imposes constraints on matter variables, such as
pressure isotropy [5]. Recently, the vanishing complexity fac-
tor condition [6] has also gained significant attention. Addi-
tionally, this approach may involve the so-called Karmarkar
condition, which embeds the curvature tensor within a five-
dimensional flat metric [7,8].

In recent times, Herrera’s [9] proposed complexity factor
condition has emerged as a supplementary tool for constrain-
ing matter distribution, potentially serving as an alternative to
implementing EoS. Interestingly, this approach can account
for the complexity factor in both static and dynamical sys-
tems [9,10]. Consequently, it provides a framework for study-
ing the structural properties and evolution of self-gravitating
bodies, including models of ultra-relativistic COs. Notably,
the complexity factor condition introduces an additional rela-
tionship that links the principal matter terms derived from the
energy–momentum tensor. These terms include energy den-
sity, pressures, shear stresses, and heat flux, particularly in
scenarios involving dynamical and dissipative collapse. The
definition of complexity based on these bulk properties dif-
fers significantly from the original concept, which was rooted
in the notions of information and disequilibrium, as defined
through statistical analysis [11,12]. This concept has also
been applied to the modeling of self-gravitating COs [13–
16]. In contrast, a quite recent study has redefined the term
“complexity” through Herrera’s pioneering work [9], which
proposed a novel interpretation for static and spherically
symmetric self-gravitating systems. This redefinition focuses
on the combination of key matter terms, such as the inhomo-
geneity of energy density and pressure anisotropy, as they
appear in the structure scalars derived through the orthogo-
nal splitting of the curvature tensor. The orthogonal splitting
of the curvature tensor for formulating structure scalars was
initially introduced by Bel [17] and subsequently reviewed by
Gómez-Lobo [18] and Herrera et al. [19]. Building on these
foundations, the new complexity factor condition provides an
intuitive framework for understanding the structure and evo-
lution of astrophysical COs. Specifically, it can be applied
to constrain such systems by employing the vanishing com-
plexity factor condition. The concept of the complexity factor
was initially introduced from a mathematical perspective to
describe the physical parameters governing the generation of
complexity in relativistic self-gravitating systems. However,
its significance became evident when it was employed as
an additional criterion for analyzing the structural equations
required to achieve hydrostatic equilibrium. The study of
complexity in the realm of relativistic astrophysicalCOs has
garnered significant attention, leading to the development of
several novel approaches for deriving their interior solutions
within the framework of GR and modified theories of grav-
ity. These solutions are crucial for understanding the physical
properties, structure, and evolution of self-gravitating com-

pact geometries [20–37]. Notably, the introduction of the
complexity factor offers a framework in which constraints
like pressure isotropy, energy density homogeneity, and the
imposition of EoS can be bypassed [38]. In particular, the
complexity factor serves as a self-consistent mechanism for
incorporating anisotropy into the analysis. The effectiveness
of applying the vanishing complexity condition has been
demonstrated in recent studies, even for systems governed
by modified and higher-order gravity theories [39–54].

We investigate the concept of the vanishing complexity
factor for static and anisotropic spherically symmetric stars
surrounded by a two-fluid distribution, namely, normal bary-
onic matter and dark energy. In particular, the non-baryonic
matter, commonly referred to as dark matter, exhibits a
repulsive influence characterized by negative pressure, as
described by the dark energy EoS. From this perspective,
Lobo [55] explored the stability of interior stellar COs by
incorporating the dark energy EoS, which plays a crucial
role in understanding the stability of stellar structures and
serves as a fundamental component in solving various astro-
physical problems. This is particularly evident in the lin-
ear EoS with the inclusion of surface density, which leads
to physically acceptable and sustainable stellar configura-
tions [56]. Several feasible EoSs originating from parti-
cle physics provide valuable insights into the microphysics
of such systems. However, deriving exact solutions often
requires laborious numerical approaches. For dark energy
stars, the EoS is typically expressed as p = −ρ, as orig-
inally proposed by Gliner [57], with the Bardeen geome-
try providing the first solution in this context [58]. In some
works, Bhar and Rahaman [59] highlighted various physical
attributes to analyze the outcomes of Einstein’s field equa-
tions for the stable formation of dark energy COs. Bhar [60]
investigated the implications of isotropic, spherically sym-
metric compact stars composed of both ordinary stellar mat-
ter and dark matter, elaborating that any astrophysical sys-
tem could potentially serve as a viable candidate for a dark
energy star. Abbas et al. [61] explored the feasible character-
istics of an anisotropic cylindrical system with a cosmologi-
cal variable, proposing it as a realistic choice for mimicking
dark energyCOs. Continuing along this debate, we highlight
recent advancements in the modeling of stellar COs within
the framework of vanishing complexity formalism. Rej et
al. [62] examined the effects of the dark energy coupling
parameter on anisotropic compact stellar models under the
vanishing complexity factor condition, utilizing the Finch–
Skea spacetime solution. Their findings indicate that the cou-
pling parameter allows for minimal features required to align
with standard datasets for modeling dark energy star candi-
dates. Using the vanishing complexity condition, Maurya et
al. [63] studied the phenomenological implications of grav-
itational wave echoes for anisotropic and spherically sym-
metric COs within galactic dark matter halos, employing a
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complete deformation geometric approach. Panotopoulos et
al. [64] reviewed several realistic properties of stellar dark
energy stars using the extended Chaplygin EoS under the
vanishing complexity factor condition. Similarly, Rincón et
al. [65] investigated the physical characteristics of tidal Love
numbers for anisotropic spherical compact bodies by select-
ing specific anisotropic factors. Numerous research groups
have explored various physical aspects of relativistic astro-
physical COs, treating them as viable testbeds for mimick-
ing dark energy stellar models. These studies involve diverse
geometrical approaches in the context of normal baryonic
matter extended with exotic matter and quark-gluon fluids
[66–80].

It is undoubtedly established that any proposed ansatz for
geometrical spacetime must be physically reliable and free
from singularities to ensure the stable interior configuration
of relativistic stellar COs. The selection of geometric vari-
ables as a seed ansatz to support the essential physical charac-
teristics of a system has long been a subject of debate among
researchers. In support of the chosen seed ansatz, several
realistic models have been analyzed to confirm the poten-
tial viability and sustainability of relativistic stellar systems.
In this work, we construct our spacetime results by adopting
the Tolman-VI solution as the seed ansatz, combined with the
characteristics of a linear dark energy EoS within the frame-
work of the vanishing complexity factor formalism. From
this perspective, Tolman [81] was the first to introduce the
study of eight distinct geometric variables by independently
formulating analytical solutions to the Einstein field equa-
tions. Biswas et al. [82] examined the physical acceptability
of a relativistic stellar model composed of anisotropic strange
quark matter, utilizing the Tolman–Kuchowicz ansatz as the
seed solution. Similarly, Jasim et al. [83] investigated the
stability of static, anisotropic, spherically symmetric COs
under a cosmological constant, employing the strange quark
matter MIT bag model and the same ansatz. Biswas et al.
[84] constructed feasible solutions to the Einstein field equa-
tions using this ansatz to model anisotropic ultra-relativistic
COs composed of strange quark matter within the frame-
work of f (R, T ) gravity. Majeed et al. [85] applied such
metric solutions to model anisotropic compact stars in the
context of non-conservative gravity theories. Hansraj and
Banerjee [86] explored the physical significance of Tolman
metrics for static, spherically symmetric perfect fluid spheres
in modified f (R, T ) gravity theory, demonstrating that these
metric potentials exhibit stable and realistic features for sus-
tainable models. From the literature survey, numerous signif-
icant attempts have been made to employ the Tolman ansatz
for modeling astrophysicalCOs within various gravitational
theories [87–96].

The outline of our article is as follows: In Sect. 2, we
explore the stellar matter distribution of a static and spher-
ically symmetric model, along with the properties of dark

energy, to examine the gravitational field equations within
the framework of a vanishing complexity factor. Using the
Tolman-V I ansatz as a seed solution for the radial met-
ric component, we derive the corresponding temporal met-
ric function under this vanishing complexity condition. In
Sect. 3, we extend these spacetime solutions by incorporat-
ing the linear dark energy EoS to derive the final expressions
for the Einstein field equations. To resolve the unknown con-
stants, we conduct a smooth matching of the interior and
exterior spacetimes at the hypersurface, as detailed in this
section. Furthermore, in Sects. 4 and 5, we evaluate the phys-
ical viability and stability of our proposed dark star model
through both graphical and analytical methods. This evalua-
tion encompasses the regularity of metric functions, matter
variables, the equation of state parameter, energy conditions,
pressure anisotropy, hydrostatic equilibrium, the causality
condition, and the mass–radius relation. Finally, in Sect. 6,
we present concluding remarks that summarize and highlight
the significance of our proposed dark star model.

2 Dark stellar interior matter configuration and
fundamental equations

The Einstein field equations primarily describe the gravita-
tional interaction between geometry and the matter field, and
they can be expressed in tensorial form as:

Gστ = Rστ − gστ R

2
= 8πTστ . (1)

In this section, we describe the matter configuration within
the stellar interior of a static and locally anisotropic spheri-
cally symmetric compact sphere, characterized by a two-fluid
distribution consisting of ordinary matter and an exotic fluid
known as dark matter. It is a realistic choice to use the stan-
dard Schwarzschild-like coordinates (t, r, θ, φ) which can
be expressed through the following line-element in the co-
moving frame

ds2 = eadt2 − ebdr2 − r2dθ2 − r2 sin2 θdφ2. (2)

The gravitational functions, denoted as a = a(r) and
b = b(r), depend solely on the radial coordinate r and are
assumed to be positive. The required solutions for both metric
functions, provided in the subsequent section, will be utilized
to express the analytical solutions of the Einstein field equa-
tions in more compact form. Here, we consider the system to
be anisotropic, meaning that there is pressure not only in the
radial direction (pr ) but also in the transverse direction (pt ).
The fluid distribution, characterized by pressure anisotropy,
is used to investigate interior solutions for relativistic stellar
compact spheres, particularly those with a significant degree
of anisotropic fluid. So, the energy–momentum tensor for a
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locally anisotropic stellar fluid distribution is defined as

Tστ =
(
ρ + pt

)
uσuτ − pt gστ +

(
pr − pt

)
υσ υτ . (3)

Here, the matter components, ρ, pr and pt represent the
energy density, radial pressure, and tangential pressure,
respectively. Additionally, uσ denotes the fluid four-velocity
vector, while υσ is the unit space-like vector in the radial
direction. The effective energy–momentum tensor for a rel-
ativistic compact sphere is influenced by a two fluid distri-
bution, generally comprising normal baryonic matter along
with the contribution of dark energy components, character-
ized by energy density ρde, radial pressure pder , and trans-
verse pressure pdet , as defined below

T00 = ρ(e f f ) = ρ + ρde, (4)

T11 = −p(e f f )
r = −

(
p + pder

)
, (5)

T22 = T33 = −p(e f f )
t = −

(
p + pdet

)
. (6)

The Einstein field equations (1) for the line-element (2), com-
bined with the two fluid components (4)–(6), can be derived
as follows

8πρ(e f f ) = e−b
(
b′r + eb − 1

r2

)
, (7)

8πp(e f f )
r = e−b

(
a′r − eb + 1

r2

)
, (8)

8πp(e f f )
t = e−b

4

(
a′(a′ − b′) + 2a′′ + 2

r

(
a′ − b′)

)
. (9)

In the subsequent section, we elaborate on and apply the van-
ishing complexity condition to determine the analytical form
of the metric function. This approach provides an additional
geometrical tool for analyzing the structure and evolution of
relativistic COs, especially in scenarios where other geo-
metrical methods are not straightforward to implement.

2.1 Applying vanishing complexity factor condition on
anisotropic matter configuration

This study provides readers with the necessary ingredients
to understand the concept of the vanishing complexity factor
condition and its potential applications within the framework
of relativistic systems and astrophysical contexts. It is widely
recognized that solving the anisotropic interior geometries of
celestial objects requires an auxiliary condition to fully close
the system. Among the various methods available to address
this requirement, we adopt the concept of complexity, as
proposed in [9], for static and spherically symmetric self-
gravitating systems. This approach introduces a fresh per-
spective on complexity, addressing two major shortcomings
of earlier concepts. Previous approaches offered a limited
understanding of the energy density fluid by focusing solely
on energy density while neglecting other critical factors, such

as pressure. Additionally, these earlier models modified the
probability distribution with the energy density of the fluid
distribution, as highlighted in [15].

The vanishing complexity factor condition offers an alter-
native approach to addressing anisotropies in the modeling
of (CO) [93,97–99]. This condition, based on the orthogo-
nal decomposition of the curvature tensor, yields trace-free
results expressed in terms of scalar functions. These scalars
are closely linked to the kinematic and physical properties
of the fluid [100]. Furthermore, it is important to note that,
for static anisotropic matter configurations, the complexity
factor condition serves as a geometric framework for for-
mulating EoS that relate radial and tangential pressures.
In the context of studying the complexity factor for static,
self-gravitating celestial objects, it is well-established that a
homogeneous isotropic fluid represents one of the simplest
systems, as it serves as a baseline for measuring deviations
from complexity. Thus, the complexity factor is expected to
evaluate the relationship between energy density inhomo-
geneity and pressure anisotropy within a system. This study
provides a concise overview of the complexity factor formal-
ism and highlights its significance in astrophysical research.
The complexity factor function (YT F ) has been extensively
studied, and no additional framework is needed here for its
formulation. The scalar function of the complexity factor is
expressed as follows:

YT F = 8π	 − 4π

r3

∫ r

0

(
ρ(e f f )(r)

)′
r3dr. (10)

It highlights the fundamental significance of the simplest
configuration, determined by the system’s energy density in
conjunction with isotropic pressure. Specifically, this corre-
sponds to a system sustained by a homogeneous isotropic
fluid, where any inhomogeneous energy density cancels out
the pressure anisotropy [9]. In particular, YT F = 0 indicates
that the system is in a state of vanishing complexity. Notably,
the complexity factor YT F deviates for any system where

	 = 1

2r3

∫ r

0

(
ρ(e f f )(r)

)′
r3dr. (11)

This implies the existence of a class of results that validate the
applicability of this approach. By applying condition (11), we
can establish a feasible bound for the proposed model while
solving (1), as it involves a non-local EoS. Through algebraic
manipulation of the Einstein field equations, Eq. (10) has
been derived as follows:

YT F =
e−b

(
a′(rb′ − ra′ + 2) − 2ra′′

)

4r
. (12)

Using YT F = 0, the result becomes,

a′
(
rb′ − ra′ + 2

)
− 2ra′′ = 0. (13)
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The above expression can be written in the form of a total
derivative as follows,

d

dr

(
ln a′ + a − b

2
− ln r

)
= 0. (14)

After integration, we obtain

ln a′ + a − b

2
− ln r = constant. (15)

The result in (15) provides a more compact analytical expres-
sion for the relationship between a and b following the inte-
gration process. From this, we derive

e
a
2 = A

∫
re

b
2 dr + B, (16)

where A and B are integration constants. For convenience,
the above equation can be rewritten as

ea =
(
A

∫
re

b
2 dr + B

)2

. (17)

It is noteworthy that the result in (17) was first proposed by
Contreras and Stuchlík [6].

3 Tolman V I solution in context of vanishing
complexity formalism

To develop a potentially sustainable model for ultra-relativistic
compact stellar spheres, it is essential to derive exact analyti-
cal solutions to the gravitational field equations. These solu-
tions must be feasible and realistic for the static stellar inner
core, which is expected to model relativistic astrophysical
star formations composed of ordinary baryonic matter com-
bined with dark energy. Constructing authentic solutions to
the Einstein field equations is notoriously difficult due to
their highly non-linear, second-order differential equations.
In this study, we adopt a well-defined spacetime potential
based on the Tolman-V I solution as the seed ansatz. This
solution has been shown to yield viable implications for rel-
ativistic stellar interior configurations in both astrophysical
and cosmological contexts. Thus, we utilize the grr compo-
nent of the spacetime geometry as the Tolman-V I ansatz,
expressed as

eb = 2 − n2. (18)

In context of vanishing complexity formalism, and using the
relation (17), we obtain the gtt component of the spacetime
model as

ea =
(
Ar2

√
2 − n2

2
+ B

)2

. (19)

Using the solutions provided in (18) and (19), we derive the
necessary expressions for the field equations in terms of the
effective matter components as

ρe f f = 1 − n2

8πr2(2 − n2)
, (20)

pef fr = 2B(n2 − 1) + Ar2(−2 + 3n2 − n4 + 4
√

2 − n2)

8πr2(2 − n2)(2B + Ar2(2 − n2))
, (21)

pef ft = A2r2(2 − n2) + 2AB
√

2 − n2

2π(2 − n2)(2B + Ar2(2 − n2))2 . (22)

The underlying field equations describing the interior rel-
ativistic geometry, composed of two fluid distributions-
namely dark matter and normal baryonic matter-are pre-
sented in Eqs. (20)–(22). This set of equations consists of
three independent equations with five unknown quantities:
ρ, ρde, p, pder , and pdet . To address the challenge of solv-
ing this underdetermined system with only three independent
equations, two additional constraints are required. To balance
the system, we assume a linear dark energy EoS. The system
of equations (20)–(22) is then solved by employing methods
developed in prior research, as outlined in [101–111], where
the exotic nature of dark energy aids in configuring relativis-
tic compact objects (COs). In this framework, the radial pres-
sure of dark energy (pder ) is proportional to the dark energy
density (ρde), while the dark energy density is proportional
to the ordinary stellar matter density (ρ), i.e.,

pder = −ρde, (23)

ρde = αρ. (24)

Here, α is a proportionality constant treated as the dark
energy coupling parameter, whose value can be determined
from the matching conditions. It is important to note that the
dark energy EoS given in (23)–(24) indicates that the matter
configuration under consideration is exotic in nature. Con-
sequently, this matter distribution is often referred to as a
“degenerate vacuum” or “fallacious vacuum”. By substitut-
ing Eqs. (23)–(24) into the set of Eqs. (20)–(22), we derive
the components corresponding to ordinary stellar matter and
dark energy as
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ρ = 1 − n2

8π(α + 1)
(
2 − n2

)
r2

, (25)

p =
Ar2

(
−n4 + 4α

√
2 − n2 + 3n2 + 4

√
2 − n2 − 2

)
+ 2B

(
n2 − 1

)

8π(α + 1)
(
2 − n2

)
r2

(
A

(
2 − n2

)
r2 + 2B

) , (26)

and

ρde = α
(
1 − n2

)

8π(α + 1)
(
2 − n2

)
r2

, (27)

pder = − α
(
1 − n2

)

8π(α + 1)
(
2 − n2

)
r2

, (28)

pdet = −4ABr2(−n4 + 4α
√

2 − n2 + 3n2 + 4
√

2 − n2 − 2) − 4B2(n2 − 1) + γ1

8π(α + 1)(n2 − 2)(A(n2 − 2)r3 − 2Br)2 . (29)

where,

γ1 = A2
(
n2 − 2

)
r4

(
−n4 + 4α

(√
2 − n2 + 1

)

+3n2 + 4
√

2 − n2 + 2
)

.

Next, we determine the values of the unknown constants
involved in the spacetime solutions by applying the matching
constraints between the inner geometry and the outer metric
at the boundary hypersurface, where r = R with R rep-
resenting the radius of the star. We employ the conventional
method of smooth matching at the junction interface between
the interior and exterior geometries to compute the values
of these unknown constants. For this purpose, we adopt the
Schwarzschild vacuum solution as the exterior line element
[112], given as follows:

ds2 = F(r)dt2 −
(
F(r)

)−1
dr2 − r2

(
dθ2 + sin2θdφ2

)
.

(30)

Here, F(r) =
(

1 − 2M
r

)
, where M denotes the total mass

of the dark energy star. The matching constraints for both
metrics ensure the continuity of gtt and grr at the boundary
surface, which is governed by the Israel–Darmois junction
conditions [113,114]. Accordingly, these constraints lead to
the following relationship

( AR2
√

2 − n2

2
+ B

)2 =
(

1 − 2M

R

)
, (31)

(
2 − n2

)
=

(
1 − 2M

R

)−1
. (32)

From the above expression, the values of the unknown con-
stants can be determined as follows

n = +
√

R − 4M

R − 2M
, (33)

B =
√
R − 2M√

R
− 1

2
A
√

2 − n2R2. (34)

As a result, we determined the required forms of the unknown
constants n and B in terms of the total mass M and radius
R corresponding to the well-known astrophysical compact
star candidate LMC X -4, with M = 1.04M� and R =
8.4 km [115]. It is important to note that the dimensions of
the unknown constants A, B and n are km−2, km0 and km0,

respectively. The dark energy coupling parameter α is also
calculated using the condition of vanishing radial pressure at
the star’s surface, i.e., (pr (r = R) = 0), and is expressed as

α =
A
(
n4 − 3n2 − 4

√
2 − n2 + 2

)
R2 − 2B

(
n2 − 1

)

4A
√

2 − n2R2
.

(35)

The numerically computed values of these unknowns, corre-
sponding to the viable compact star LMC X -4, are given in
Table 1.

Table 1 Numerical values of the constants A, B, n, along with the
dark energy coupling parameter α, are presented for the dark energy
star model LMCX − 4

A B n α

0.0025 0.686015 0.651618 0.07195

0.0060 0.531030 0.651618 − 0.53194

0.0095 0.376044 0.651618 − 0.69086

0.00130 0.221059 0.651618 − 0.76421
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Fig. 1 Physical behavior of the interior geometrical potentials ea and
eb, alongside the matching of exterior metric functions, as a function
of radial distance r for the dark energy star candidate LMCX − 4

4 Viability of proposed solutions via matter variables

To validate whether the proposed solutions represent a phys-
ically sustainable model of a stellar relativistic dark energy
star, we have subjected them to rigorous physical conditions
in this section. This includes examining the acceptability of
non-singularity and the potential regularity of the entire stel-
lar interior configuration by testing the matching of spacetime
potentials, matter variables, gradient functions, state param-
eters, and energy conditions. Through a series of graphical
plots, we illustrate the behavior of gravitational and thermo-
dynamic variables, enabling the reader to comprehend the
substantial features of the presented model.

4.1 Acceptability of geometric functions

Both metric components are free from central singularities
and remain feasible and regular throughout the entire con-
figuration of the dark energy sphere (r < R). Additionally,
for the presented system, we have ea(0) = B, where B is a
non-negative constant, and eb(0) = constant.

• As shown in Fig. 1, both geometric components remain
non-negative and regular across the entire interior domain
of theCO. The physical analysis confirms that the metric
functions are devoid of irregularities and central singular-
ities. Furthermore, it is important to note that the interior
and exterior metric components are smoothly matched at
the boundary hypersurface. These properties collectively
underscore the potential viability and sustainability of
our proposed model solutions.

4.2 Physical plausibility of density, pressure and gradient
functions

The matter components play a pivotal role in assessing the
physical credibility and potential viability of the interior con-
figuration of any stellar model. To achieve this, we present
our results for the spacetime geometry under consideration
by analyzing the matter variables associated with two fluid
distributions: ordinary stellar matter and dark energy. Addi-
tionally, we examine the effectiveness of these fluids through
detailed graphical representations.

• It is crucial to study the structural properties of energy
density and pressure, ensuring they remain physically
realistic and non-singular throughout the stellar interior
(CO) for well-consistent and stable equilibrium star for-
mation. From Fig. 2, we analyze the effects of energy den-
sity (left panel) and pressure (right panel) associated with
ordinary stellar matter on the proposed star candidate,
LMCX −4, for various choices of the free parameter A.

The results clearly indicate that these quantities exhibit
a positive impact and maintain non-singular behavior at
every point within the compact sphere. Both energy den-
sity and pressure achieve their maximum finite values
at the stellar core (r ∼ 0), reflecting the ultra-relativistic
nature of denseCOs [116–118]. Additionally, it is impor-
tant to note that the pressure must vanish at the boundary
(r = R). Both quantities decrease smoothly with increas-
ing radial coordinate r and approach zero at the surface
of the CO (see Fig. 2).

• We analyze the influence of dark energy on the presented
star model by examining various matter quantities in
Fig. 3. The left panel, depicting the energy density asso-
ciated with dark energy, shows a decreasing and negative
impact throughout the stellar interior (CO). This behav-
ior reflects the intrinsic nature of dark energy, which
arises due to the dark energy coupling parameter directly
involved in its equation of state (EoS). In other words,
this characteristic highlights the exotic nature or repulsive
force that emerges in the system as a result of the coupling
parameter, with its numerical values provided in Table 1
for the readers reference. Recent studies have similarly
noted that the energy density associated with dark energy
exhibits a negative influence, attributed to the coupling
parameter [119]. Regarding the pressure terms of dark
energy, these display positive and non-singular behav-
ior across the entire domain of the compact star (see the
right and lower panels of Fig. 3). It is worth mention-
ing that this impact may arise when the negative pressure
effectively counterbalances the negative energy density
of dark energy.
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Fig. 2 Profile of energy density (left panel) and pressure (right panel) for ordinary stellar matter versus r

Fig. 3 Variation of energy density (left panel), radial pressure (right panel), and transverse pressure (lower panel) owing to dark energy vs radial
function r

• On the other hand, we also examine the effective terms of
the matter distribution in Fig. 4. As evident from Fig. 4
(left panel), the energy density due to effective matter
demonstrates a positive and regular behavior throughout
the entire composition of the compact sphere. It reaches
its maximum value at the central core and gradually
decreases as the radial distance r increases. In contrast,
both pressures arising from effective matter do not exhibit
a positive nature and remain decreasing functions of the
radial coordinate r across the entire configuration of the
CO (see right and lower panels).

• Furthermore, we validate the stability of our proposed
model solutions for the dark energy CO by analyzing

the energy density and pressure with respect to their first
derivatives. As shown clearly in Fig. 5, the first deriva-
tives of the energy density (left panel) and isotropic pres-
sure (right panel) exhibit a negative trend throughout the
fluid sphere, behaving as monotonically decreasing func-
tions of the radial coordinate r. This behavior suggests
that both gradient functions confirm the physical stability
of the model, further supported by their zero values at the
stellar core.

As a result, these diverse characteristics of the matter terms in
the two-fluid distributions, analyzed within the framework of
the vanishing complexity formalism, validate and standard-
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Fig. 4 Physical behavior of energy density (left panel), radial pressure (right panel), and tangential pressure (lower panel) due to effective matter
with respect to radial coordinate r

Fig. 5 Physical behavior of gradient functions as a function of r; dρ
dr (left panel) and dp

dr (right panel)

ize our model solutions. This ensures the configuration of a
potentially stable and sustainable dark energy star CO .

4.3 State parameter

The most common form of the EoS is defined as p = ωρ,

where ω represents the parameter for isotropic distribution.
Since our study focuses on modeling a dark energy compact
star candidate, the state parameter can be expressed as ω =
p
ρ
, to analyze the structural properties of the stellar interior

within the compact configuration (r < R). The analytical
solution for the state parameter is given by

ω = −
Ar2

(
−n4 + 4(α + 1)

√
2 − n2 + 3n2

)
− 2Ar2 + 2B

(
n2 − 1

)
(
n2 − 1

) (
A

(
n2 − 2

)
r2 − 2B

) .

(36)

To evaluate the physical adequacy of the state parameter in
revealing the structural properties of celestial astrophysical
COs, various insights have been derived by analyzing dif-
ferent types of stellar relativistic COs through their EoS
parameters [118,120–122].

• In this context, we examine the behavior of the state
parameter for the dark energy spherical star model, as
depicted in Fig. 6. Figure 6 clearly demonstrates that
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Fig. 6 Physical behavior of state parameter (ω) versus radial function r

the state parameter exhibits a regular and non-singular
behavior at every point within the stellar sphere. Notably,
it remains positive and adheres to the essential bound,
staying within the permissible range 0 ≤ ω ≤ 1). This
condition further validates our findings, reinforcing the
physical viability and potential equilibrium state of the
dark energy CO .

4.4 Energy conditions

It is of utmost importance to reaffirm the physical viability of
the fluid distribution within the stellar relativistic CO under
various energy conditions. The fluid configuration inside a
dark spheroidal object can either be realistic or exotic. For
the fluid distribution to be considered realistic, it must satisfy
certain constraints related to mass density, radial pressure,
and tangential pressure. These constraints are referred to as
energy conditions, namely the null energy condition (NEC),

weak energy condition (WEC), dominant energy condition
(DEC), and strong energy condition (SEC). From this per-
spective, the following constraints must be satisfied to ensure
a physically sustainable dark energy star model. These con-
ditions are expressed as:

WEC : ρ(e f f ) + p(e f f )
r ≥ 0, ρ(e f f ) + p(e f f )

t ≥ 0, (37)

NEC : ρ(e f f ) ≥ 0, ρ(e f f )

+p(e f f )
r ≥ 0, ρ(e f f ) + p(e f f )

t ≥ 0, (38)

DEC : ρ(e f f ) ≥ |p(e f f )
r |, ρ(e f f ) ≥ |p(e f f )

t |, (39)

SEC : ρ(e f f ) + p(e f f )
r + 2p(e f f )

t ≥ 0. (40)

• Stabilizing these energy conditions is crucial for sub-
stantiating our dark energy compact stellar model. The
investigation of the energy conditions mentioned above
for both ordinary stellar matter and effective matter dis-
tributions, in the context of the compact star LMCX−4,

is presented in Figs. 7 and 8. These figures demonstrate
that all the energy conditions for baryonic and effec-
tive matter are satisfied by our model, except for the
effective SEC. Notably, the plots of the energy condi-
tion profiles indicate optimal behavior at the central stel-
lar region and remain positive across the entire interior
domain of the dark energy CO. However, the effective
SEC, which corresponds to the two-fluid distribution,
reveals an exotic nature characterized by the repulsive
action of the dark energy fluid. This suggests that the
effective SEC may be significantly influenced by strong
gravitational interactions in such scenarios.

5 Stability analysis

To address stellar stability, it is essential to consider sev-
eral feasible constraints, including pressure anisotropy, force
equilibrium, sound speed, and the mass function. The fol-
lowing subsections will provide a detailed analysis of these
conditions within the framework of our study.

5.1 Pressure anisotropy

The proposed model must be realistic and adhere to a crucial
physical condition regarding pressure anisotropy to ensure a
non-singular and stable configuration of the dark energyCO.

At the surface (r = R), the transverse pressure (p(e f f )
t ) may

or may not vanish, but the radial pressure (p(e f f )
r ) must be

zero. Pressure anisotropy plays a fundamental role in under-
standing the unique properties of matter within the core of a
stellar system. To calculate the anisotropy in our model, we
define it as 
 = (p(e f f )

t − p(e f f )
r ) and proceed to evaluate

the pressure anisotropy as follows


 =
4B2

(
− 1 + n2

)
− 4ABr2

(
2 − 3n2 + n4

)
+ A2r4

(
− 2 + n2

)(
6 − 3n2 + n4 − 4

√
2 − n2

)

8π
(

− 2 + n2
)(

− 2Br + Ar3
(

− 2 + n2
))2 . (41)

For 
 > 0, the pressure anisotropy represents a repulsive
force acting outward, while for 
 < 0, it indicates an attrac-
tive force acting inward. To evaluate this behavior, we plot
the pressure anisotropy as a function of the radial coordinate
r for the interior model of the dark energy CO.
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Fig. 7 Profile of Energy conditions corresponding to ordinary stellar matter against a radial function r

Fig. 8 Profile of Energy conditions corresponding to effective matter as a function of radial distance r
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Fig. 9 Profile of pressure anisotropy vs r

• As shown in Fig. 9, the anisotropic stress remains positive
and regular throughout the interior of the spherical dark
energy star, corresponding to distinct intervals of A. The
anisotropy of pressure decreases steeply from the center
towards the stellar surface and reaches zero at approxi-
mately r ∼ R. This behavior suggests the presence of a
massive core surrounded by high-density regions, lead-
ing to significant anisotropic pressure variations driven
by strong gravitational interactions, particularly in galac-
tic halo regions. In such scenarios, the anisotropic pres-
sure may transition to isotropic pressure at the surface,
as traditionally observed in COs such as white dwarfs,
neutron stars, and black holes.

5.2 Equilibrium of forces

Another feasible test for investigating the constancy and reg-
ularity of the presented spacetime geometry, based on the
characteristics of a two-fluid distribution, is the equilibrium
of forces. To confirm the potential stabilization of the equilib-
rium state of the model under the combined action of differ-
ent forces acting on the system, we now define the Tolman–
Oppenheimer–Volkoff (T OV ) equation [123–125], which is
expressed as follows:

a′

2

(
ρ(e f f ) + p(e f f )

r

)
− 2

r

(
p(e f f )
t − p(e f f )

r

)

+ d

dr

(
pef fr

)
= 0. (42)

Here, the equation is decomposed into the following compo-
nents

• The gravitational force (Fg), which deals for the inward
pull due to gravity.

Fig. 10 Profile of equilibrium of forces vs radial distance r

• The anisotropic force (Fa), arising from anisotropy of
pressure in the stellar interior.

• The hydrostatic force (Fh), terming the gradient of pres-
sure.

In its compact form, the T OV equation encapsulates the
interplay between these forces, ensuring the equilibrium of
dark energyCOs. This framework provides a comprehensive
understanding of the stability conditions and the physical
dynamics governing compact stellar relativisticCOs in these
gravitational scenarios.

Fg + Fa + Fh = 0. (43)

More precisely,

Fg = a′

2

(
ρ(e f f ) + p(e f f )

r

)
, (44)

Fa = −2

r

(
p(e f f )
t − p(e f f )

r

)
= −2	

r
, (45)

Fh = d

dr

(
pef fr

)
. (46)

• Here, 	 is the total measure of anisotropy of pressure. We
examine the combined behavior of the prescribed forces
acting on the proposed stellar system, as illustrated in
Fig. 10. The interaction of these forces, analyzed for each
value of the parameter A, reveals a realistic and stable
configuration of the stellar geometry, ensuring hydrody-
namic equilibrium at every interior point of theCO. This
equilibrium arises from the effective counterbalancing of
the gravitational and anisotropic dark forces against the
hydrostatic force, which is negative throughout the sys-
tem. Ultimately, this balance further supports the con-
sistency and stability of our solutions in modeling dark
energy COs.
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Fig. 11 Physical behavior of speed of sound (V 2) vs radial coordi-
nate r

5.3 Causality condition

To ensure the stability of stellar astrophysical compact sys-
tems, another fundamental physical mechanism is evaluated
using the causality condition, as established by Herrera’s
widely recognized cracking concept [126,127]. For a phys-
ically viable model, the speed of sound, V 2 = dp

dρ , must

satisfy the stability criterion: V 2 = dp
dρ ≤ 1. The speed of

sound for our model solution is expressed as

V 2 = −
−4B2

(
− 1 + n2

)
+ 4ABr2

(
2 − 3n2 + n4

)
+ A2r4

(
− 2 + n2

)(
− 2 + 3n2 − n4 + 4

√
2 − n2

(
1 + α

))

(
− 1 + n2

)(
− 2B + Ar2

(
− 2 + n2

))2 . (47)

• In Fig. 11, we analyze the physical behavior of the sound
speed for our proposed dark star candidate. The sound
speed exhibits a consistent and stable profile across the
entire interior domain of the stellar body. Moreover, it
remains within the required bounds, 0 ≤ V 2 ≤ 1, adher-
ing to the fundamental limits of stellar configurations.
This confirms that our proposed model solution satisfies
the causality condition, supporting the stabilized equilib-
rium formation of the dark energy CO.

5.4 Profile of mass function

We calculate the mass function by solving the differential
equation (7), which is equivalent to the Misner-Sharp mass
function [128] for a static and spherically symmetric dark
stellar model. The profile of the effective mass function for
our model sphere is expressed as

m(r) = 4π

∫ r

0
ρ(e f f )r2dr. (48)

Fig. 12 Profile of mass function against a radial distance r

• The stellar mass is a realistic function of the radial coor-
dinate r, exhibiting an increasing behavior from the core
to the boundary, as shown in Fig. 12. The mass function
demonstrates an evolutionary trend at every interior point
of the compact stellar geometry, remaining bounded and
attaining its maximum value as the radial coordinate r
increases. These characteristics further affirm the relia-
bility of the proposed model, which effectively describes
an ultra-relativistic, dense dark energy CO, as discussed
in [129].

6 Concluding remarks

In recent years, the diverse novel implications of stellar rel-
ativistic and astrophysical COs within the framework of the
vanishing complexity factor formalism have garnered sig-
nificant attention among various research groups. This inter-
est stems from their stabilized and equilibrium configura-
tions. In this context, we present exact analytical solutions
for a static and spherically symmetric compact system by
analyzing two-fluid distributions: ordinary stellar matter and
dark energy, under the vanishing complexity factor formal-
ism. To achieve this, we derived the Einstein field equations
for these stellar relativistic fluid distributions by imposing
the vanishing complexity factor condition. This condition
effectively nullifies the complexity when the energy density
inhomogeneity cancels out the pressure anisotropy or, equiv-
alently, in isotropic systems. Using this approach, we gener-
ated spacetime solutions expressed through the relationships
between the metric functions ea and eb. To close the system
of equations, we adopted the Tolman-VI solution as the seed
ansatz, alongside a linear dark energy EoS, which allowed
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us to derive isotropic and anisotropic matter components for
the gravitational field equations of stellar relativistic dark
COs. Furthermore, we supported our proposed spacetime
model both analytically and graphically by applying vari-
ous physical constraints to the matter variables, such as the
regularity of the metric variables, the physical plausibility
of energy density and pressure terms (including their gradi-
ents), the viability of the state parameter, and the reliability
of energy conditions. These analysis ensure the realistic con-
figuration and potential adherence of the dark energy CO
model. Additionally, we examined the stability and equi-
librium state of the proposed model by analyzing pressure
anisotropy, hydrostatic equilibrium of forces, speed of sound,
and matter profiles. Moreover, we determined numerical val-
ues for the unknown constants and the dark energy coupling
parameter (α) for various choices of the free parameter A,

as given in Table 1. Notably, the estimated values of the dark
energy coupling factor, corresponding to different values of
A, reflect the exotic nature of the fluid distribution. This cou-
pling effectively quantifies the amount of dark energy con-
tributing to the structure and evolution of ultra-relativistic
dark compact star candidates. The authenticity of the model
is confirmed by the significant matter variables observed near
the stellar core, which suggest that the spacetime geometry is
composed of high-density regimes [116–118]. This valida-
tion demonstrates that our model solutions surpass previous
results reported in [62]. Finally, several realistic features of
our proposed results are elaborated as follows:

• Acceptability of geometric components: The analysis
demonstrates that both geometric functions confirm the
physical acceptability and realistic configuration neces-
sary for the structure and evolution of dark energy CO.

This conclusion is supported by their smooth match-
ing with exterior geometries at the junction interface
(see Fig. 1). Furthermore, the positive and non-singular
behavior of the solutions suggests the stability of the
model across the entire interior domain of the dark star
candidate. Collectively, these attributes support the for-
mulation of a stellar relativistic model for dark energy
CO.

• Potential viability of matter variables: The physi-
cal adequacy of the proposed model has been evalu-
ated by analyzing various matter profiles, including ordi-
nary stellar fluid, dark energy, and their combined effec-
tive matter, as illustrated in 2-5. These profiles exhibit
well-consistent and feasible trends throughout the fluid
sphere’s composition. The trends reflect the behavior of
energy densities, isotropic pressure, and the radial and
transverse pressures of dark energy, along with their
effective and first derivative functions. Notably, all pro-
files display maximum finite values near the stellar core,
gradually decreasing with the radial coordinate r. In par-

ticular, the energy density associated with dark energy
and the pressures of effective matter do not show any
positive trends; rather, they remain decreasing functions
of the radial coordinate r across the entire interior domain
of the stellar body (see Fig. 3 (left panel) and Fig. 4 (right
and lower panels)). These characteristics align with the
expected behavior for a physically realistic and sustain-
able model of dark energy CO.

• State parameter: In addition, the physical plausibility of
the state parameter has been examined to verify the real-
istic configuration of the dark spheroidal structure (see
Fig. 6). This parameter exhibits a non-negative, bounded,
and non-singular behavior at every interior point of the
stellar spheroidal geometry. Furthermore, it is observed
that the parameter remains within the required range,
0 ≤ ω ≤ 1, for r < R. Consequently, this condition
ensures the stability and equilibrium configuration of the
proposed dark star model.

• Physical reliability of energy constraints: In Figs. 7
and 8, we have analyzed the fundamental credibility of
the fluid distribution in our proposed model by evaluating
various energy conditions. These conditions establish the
relationships between density and pressures, demonstrat-
ing the consistency and reliability of the stellar model.
Specifically, the behavior of each plot in both profiles
indicates that the energy conditions are well-satisfied and
compatible with the stellar dark CO, thereby confirm-
ing its physical viability and dynamic equilibrium. How-
ever, the SEC associated with the effective components
reveals an exotic influence characterized by the repulsive
force of the dark energy fluid. This observation suggests
that the effective SEC may be significantly influenced
by strong gravitational interactions within such matter
distributions.

• Credibility via pressure anisotropy: We have analyzed
the impact of pressure anisotropy on the dark energy CO
in Fig. 9. Each curve of pressure anisotropy, including the
magnified view, exhibited a non-negative, regular trend.
It demonstrated optimal behavior near the center and
behaved as a moderately decreasing function of the radial
distance r. This behavior reflects the evolution of a highly
dense core region, leading to significant anisotropic pres-
sure variations driven by strong gravitational interactions,
particularly in stellar galactic halos. Under such condi-
tions, the anisotropic pressure may transition to isotropic
pressure at the surface, as commonly observed in COs
such as white dwarfs, neutron stars, and black holes. This
outcome further supports the stable and equilibrium con-
figuration of the proposed dark star candidate.

• Equilibrium of forces: Despite the robust attributes of
the model, we have also evaluated the feasibility of the
stellar interior dark structure by examining the com-
bined effects of three distinct forces, as illustrated in
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Fig. 10. The physical significance of these forces was
tested across the entire domain, revealing a strong agree-
ment with the theoretical expectations and confirming
the maintenance of a hydrodynamic equilibrium state at
every interior point of the CO. This equilibrium arises
from the effective counterbalancing of gravitational and
anisotropic dark forces against the effective hydrostatic
force, which remains negative throughout the system.
Ultimately, this balance reaffirms the stability and physi-
cal acceptability of our model solutions in describing the
configuration of the dark energy stellar structure.

• Constancy via speed of sound: From Fig. 11, we have
analyzed the stability of our model by examining the
sound speed as an essential characteristic. For a stable
relativistic configuration, the speed of sound is expected
to lie within the appropriate range 0 ≤ V 2 ≤ 1. Our
results confirm that this criterion is satisfied, clearly sup-
porting the physical realism and viability of the proposed
new dark energy CO.

• Profile of mass function: We have analyzed the evo-
lutionary behavior of the mass function for our stellar
model, as shown in Fig. 12. The mass profile is non-
negative and exhibits a growing trend with the radial
coordinate r. It remains bounded at every interior point
and reaches its maximum value at the boundary surface.
These trends validate the model’s viability and effectively
describe an ultra-compact dark energy star.
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