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Abstract
We give an adequate, concrete, categorical-basedmodel for Lambda-S , which is a typed version of a linear-
algebraic lambda calculus, extended with measurements. Lambda-S is an extension to first-order lambda
calculus unifying two approaches of non-cloning in quantum lambda-calculi: to forbid duplication of vari-
ables and to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S has a
superposition constructor S such that a type A is considered as the base of a vector space, while SA is its
span. Our model considers S as the composition of two functors in an adjunction relation between the
category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which
is hidden in the language, and plays a central role in the computational reasoning.

Keywords: Quantum computing; algebraic lambda-calculus; categorical semantics

1. Introduction
The non-cloning property of quantum computing has been treated in different ways in
quantum programming languages. One way is to forbid duplication of variables with linear
types (Abramsky, 1993; Girard, 1987), and hence, a program taking a quantum argument will not
duplicate it, e.g., Altenkirch and Grattage (2005); Green et al. (2013); Pagani et al. (2014); Selinger
and Valiron (2006); Zorzi (2016). Another way is to consider all lambda-terms as expressing lin-
ear functions, in what is known as linear-algebraic lambda-calculi, e.g., Arrighi and Díaz-Caro
(2012); Arrighi et al. (2017); Arrighi and Dowek (2017); Díaz-Caro and Petit (2012). The first
approach forbids a term λx.(x⊗ x) (for some convenient definition of ⊗), while the second
approach distributes (λx.(x⊗ x))( |0〉 + |1〉 ) to λx.(x⊗ x) |0〉 + λx.(x⊗ x) |1〉, mimicking the way
linear operations act on vectors in a vector space. However, adding a measurement operator to a
calculus following the linear-algebraic approach needs to also add linear types: indeed, if π repre-
sents a measurement operator, (λx.πx)(|0〉 + |1〉) should not reduce to (λx.πx) |0〉 + (λx.πx) |1〉
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This paper is the long journal version of (Díaz-Caro and Malherbe, 2019). In the present paper, the main new result is to
revisit some rewrite rules in order to prove a theorem of adequacy.
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but to π(|0〉 + |1〉). Therefore, there must be functions taking superpositions and functions dis-
tributing over them. However, the functions taking a superposition have to be marked in some
way, so to ensure that they will not use their arguments more than once (i.e., to ensure linearity in
the linear-logic sense).

Lineal, the first linear-algebraic lambda-calculus, is an untyped calculus introduced by Arrighi
and Dowek (2017) to study the superposition of programs, with quantum computing as a goal.
However, Lineal is not a quantum calculus in the sense that there is no construction allowing one
to characterize which terms can be directly compiled into a quantum machine. Vectorial (Arrighi
et al., 2017) has been the conclusion of a long path to obtain a typed Lineal (Arrighi and Díaz-
Caro, 2012; Arrighi et al., 2017; Díaz-Caro and Petit, 2012). In Vectorial, the type system gives
information on whether the final term can be considered or not as a quantum state (of norm 1).
Nevertheless, it fails to establish whether typed programs can be considered quantum, in the sense
of implementing unitary transformations and measurements – in any case, measurements are left
out of the equation in these versions of typed Lineal.

The calculus Lambda-S is a start over, with a new type system not related to Vectorial. It is a
first-order fragment of Lineal, extended with measurements. It has been introduced by Díaz-Caro
and Dowek (2017) and slightly modified later by Díaz-Caro et al. (2019a). Following this line,
Díaz-Caro et al. (2019b) presented a calculus defined through realizability techniques, which val-
idates this long line of research on Lineal as a quantum calculus, by proving the terms which are
typable with certain types coincide with implementations of unitary operators. In Díaz-Caro and
Malherbe (2020), we gave a categorical model of Lambda-S without measurements. The object of
the current paper is to set up the bases for a categorical model of Lambda-S in full (with mea-
surements), by defining a concrete model with a categorical presentation, paving the way to an
abstract construction in future research.

In linear logic, a type A without decoration represents a type of a term that cannot be dupli-
cated, while !A types duplicable terms. In Lambda-S instead, A are the types of the terms that
cannot be superposed, while SA are the terms that can be superposed, and since superposition
forbids duplication, Ameans that we can duplicate, while SAmeans that we cannot duplicate. So
the S is not the same as the bang “!,” but somehow the opposite, in the sense that we mark the
fragile terms (those that cannot be duplicated). This can be explained by the fact that linear logic
is focused on the possibility of duplication, while here we focus on the possibility of superposition,
which implies the impossibility of duplication.

Díaz-Caro and Dowek (2017) gave a first denotational semantics for Lambda-S (in envi-
ronment style) where the atomic type B is interpreted as {|0〉 , |1〉} while SB is interpreted as
Span({|0〉 , |1〉})=C2, and, in general, a type A is interpreted as a basis, while SA is the vector
space generated by such a basis. In this paper, we go beyond and give a categorical interpretation
of Lambda-S where S is a functor of an adjunction between the category Set and the category
Vec. Explicitly, when we evaluate S, we obtain formal finite linear combinations of elements of
a set with complex numbers as coefficients. The other functor of the adjunction, U, allows us to
forget the vectorial structure.

The main structural feature of our model is that it is expressive enough to describe the bridge
between the quantum and the classical universes explicitly by controlling its interaction. This is
achieved by providing a monoidal adjunction. In the literature, intuitionistic linear (as in linear-
logic) models are obtained by a comonad determined by a monoidal adjunction (S,m)� (U, n)1,
i.e., the bang ! is interpreted by the comonad SU (see Benton (1994)). In a different way, a crucial
ingredient of our model is to consider the monad US for the interpretation of S determined by
a similar monoidal adjunction. This implies that, on the one hand, we have a tight control of
the Cartesian structure of the model (i.e., duplication, etc) and, on the other hand, the world of
superpositions lives inside the classical world, i.e., determined externally by classical rules until we
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Figure 1. Syntax of types and terms of Lambda-S .

decide to explore it. This is given by the following composition of maps:

USB×USB n−→U(SB⊗ SB) Um−−→US(B×B)

that allows us to operate in a monoidal structure representing the quantum world and then to
return to the Cartesian product.

This is different from linear logic, where the classical world lives inside the quantum world
i.e. (!B)⊗ (!B) is a product inside a monoidal category.

Another source of inspiration for our model has been the work of Selinger (2007) and
Abramsky and Coecke (2004) where they formalized the concept of scalars and inner product
in a more abstract categorical setting, i.e., a category in which there is an abstract notion of a dag-
ger functor. It is envisaged that this approach will provide the basis for an abstract model in future
work.

The paper is structured as follows. In Section 2, we recall the definition of Lambda-S and give
some examples, stating its main properties. Section 3 is divided into three subsections: first we
define the categorical constructions needed to interpret the calculus, then we give the interpreta-
tion, and finally we prove such an interpretation to be adequate. We conclude in Section 4. An
appendix with the full proofs follows the article.

2. The Calculus Lambda-S
We give a slightly modified presentation of Lambda-S (Díaz-Caro et al., 2019a). In particular,
instead of giving a probabilistic rewrite system, where t →pk rk means that t reduces with prob-
ability pk to rk, we introduce the notation t −→ {p1}r1 ‖ · · · ‖ {pn}rn, where {p1}r1 ‖ · · · ‖ {pn}rn
denotes a finite distribution. This way, the rewrite system is deterministic and the probabilities are
internalized.

The syntax of terms and types is given in Figure 1. We write Bn for B× · · · ×B n-times, with
the convention that B1 =B, and may write

�n
i=1 {pi}ti, for {p1}t1 ‖ · · · ‖ {pn}tn. We use capital

Latin letters (A, B, C, . . . ) for general types and the capital Greek letters� ,�,�, and ϒ for qubit
types. Q is the set of qubit types, and T is the set of all the types (Q� T ). We write B = {Bn |
n ∈N} ∪ {� ⇒A |� ∈Q,A ∈ T }, that is, the set of nonsuperposed types. In addition, Vars is the
set of variables, B is the set of basis terms, V the set of values, � the set of terms, and D the set of
distributions on terms.We have Vars� B� V��� D, where the last inclusion is considering the
constant function that associates probability 1 to any term. As customary, we may write x instead
of x� when the type is clear from the context. Notice that this language is in Church-style.

The terms are considered modulo associativity and commutativity of the syntactic symbol +.
On the other hand, the symbol ‖ is used to represent a true distribution over terms, not as a
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Figure 2. Typing relation.

syntactic symbol, and so it is not only associative and commutative, we also have that {p}t ‖ {q}t
is the same as {p + q}t, {p}t ‖ {0}r = {p}t, and �1

i=1 {1}t = {1}t2.
There is one atomic type B, for basis qubits |0〉 and |1〉, and three constructors:×, for pairs,⇒,

for first-order functions, and S for superpositions.
The syntax of terms contains:

• The three terms for first-order lambda-calculus, namely, variables, abstractions, and applica-
tions.

• Two basic terms |0〉 and |1〉 to represent qubits, and one test ?r·s on them. We usually write
t?r·s for (?r·s)t, see Example 2.2 for a clarification of why to choose this presentation.

• A product × to represent associative pairs (i.e., lists), with its destructors head and tail.
We usually use the notations

∣∣b1b2 . . . bn〉 for ∣∣b1〉× ∣∣b2〉× · · · × ∣∣bn〉, ∣∣b〉n for ∣∣bb · · · b〉 and∏n
i=1 ti for t1 × · · · × tn.

• Constructors to write linear combinations of terms, namely+ (sum) and . (scalar multiplica-
tion), and its destructor πj measuring the first j qubits written as linear combinations of lists
of qubits. Also, one null vector 
0SA for each type SA. We may write −t for −1.t. The sym-
bol + is taken to be associative and commutative (that is, our terms are expressed modulo
AC (Arrighi and Dowek, 2017)), therefore, we may use the summation symbol

∑
, with the

convention that
∑1

i=1 t = t.
• Two casting functions ⇑r and ⇑	 allowing to transform lists of superpositions into superpo-
sitions of lists (see Example 2.4).

The rewrite system depends on types. Indeed, λx:S� .t follows a call-by-name strategy, while
λx:B.t, which can duplicate its argument, follows a call-by-base strategy (Assaf et al., 2014), that
is, not only the argument must be reduced first but also it will distribute over linear combinations.
Therefore, we give first the type system and then the rewrite system.

The typing relation is given in Figure 2. Recall that Lambda-S is a first-order calculus, so only
qubit types are allowed to the left of arrows, and in the contexts. We write SmA for SS · · · SA, with
m≥ 1. Contexts, identified by the capital Greek letters 
, �, and �, are partial functions from
Vars toQ. The contexts assigning only types of the form Bn are identified with the super-index B,
e.g. �B. Whenever more than one context appear in a typing rule, their domains are considered
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Figure 3. Beta rules.

Figure 4. Linear distribution rules.

Figure 5. Rules of the conditional construction.

Figure 6. Rules for lists.

Figure 7. Rules implementing the vector space
axioms.

pair-wise disjoint. Observe that all types are linear (as in linear-logic) except on basis types Bn,
which can be weakened and contracted (expressed by the common contexts �B). The particular
form of rule SE, allows us to type a measurement even if its argument has been typed with an
arbitrary k number of S. We choose this presentation to avoid subtyping, which was present in the
original presentation of Lambda-S (Díaz-Caro and Dowek, 2017).

The rewrite relation is given in Figures 3 to 10. We write t :A when there exists 
 such that

 
 t :A, and t � :A if not.

The two beta rules (Figure 3) are applied according to the type of the argument. If the abstrac-
tion expects an argument with a superposed type, then the reduction follows a call-by-name
strategy (rule (βn)), while if the abstraction expects a basis type, the reduction is call-by-base (rule
(βb)): it β-reduces only when its argument is a basis term. However, typing rules also allow typ-
ing an abstraction expecting an argument with basis type, applied to a term with superposed type
(see Example 2.1). In this case, the beta reduction cannot occur and, instead, the application must
distribute first, using the rules from Figure 4: the linear distribution rules.
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Figure 8. Rules for castings⇑r and⇑	.

Figure 9. Rules for the projection.

Figure 10. Contextual rules (notice that, in particular, there is no reduction under lambda).

Example 2.1. The term λx:B.x× x does not represent a cloning machine, but a CNOT with an
ancillary qubit |0〉. Indeed,

(λx:B.x× x) 1√
2
.(|0〉 + |1〉) (linαr )−−−→ 1√

2
.(λx:B.x× x)(|0〉 + |1〉)

(lin+
r )−−−→ 1√

2
.((λx:B.x× x) |0〉 + (λx:B.x× x) |1〉)

(βb)2−−−→ 1√
2
.(|00〉 + |11〉)
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The type derivation is the following:

x :B
 x :B Ax
x :B
 x :B Ax

x :B
 x× x :B2
×I


 λx:B.x× x :B⇒B2
⇒I


 λx:B.x× x : S(B⇒B2)
SI


 |0〉 :B Ax|0〉


 |0〉 : SB SI

 |1〉 :B Ax|1〉


 |1〉 : SB SI


 |0〉 + |1〉 : SB +I


 1√
2
.(|0〉 + |1〉) : SB

αI


 (λx:B.x× x) 1√
2
.( |0〉 + |1〉 ) : SB2

⇒ES

The rules from Figure 4 also say how superposed first-order functions reduce, which can be
useful for example to describe an operator as the superposition of simpler operators, cf. Arrighi
and Dowek (2017) for more interesting examples.

Figure 5 gives the two rules for the conditional construction. Together with the linear distri-
bution rules (Figure 4), these rules implement the quantum-if (Altenkirch and Grattage, 2005), as
shown in the following example.

Example 2.2. The term ?r·s is meant to test whether the condition is |1〉 or |0〉. However, defining
it as a function allows us to use the linear distribution rules from Figure 4, implementing the
quantum-if:

(?r·s)(α. |1〉 + β . |0〉 ) (lin+
r )−−−→ (?r·s)(α. |1〉 )+ (?r·s)(β . |0〉 ) (linαr )2−−−→ α.(?r·s) |1〉 + β .(?r·s) |0〉

= α.(|1〉?r·s)+ β .(|0〉?r·s) (if1)−−→ α.r + β .(|0〉?r·s) (if0)−−→ α.r + β .s

This construction allow us to encode any quantum gate.

Figure 6 gives the rules for lists, (head) and (tail), which can only act in basis qubits, otherwise,
we would be able, for example, to extract a qubit from an entangled pair of qubits.

Figure 7 deals with the vector space structure implementing a directed version of the vector
space axioms. The direction is chosen in order to yield a canonical form (Arrighi and Dowek,
2017). The rules are self-explanatory. There is a subtlety, however, on the rule (zeroα). A simpler
rule, for example “If t :A then 0.t −→ 
0SA,” would lead to break confluence with the following
critical pair: 0.
0SA (zeroα)−−−−→ 
0SSA and 0.
0SA (zero)−−−→ 
0SA. To solve the critical pair, Díaz-Caro et al.
(2019a) added a new definition “minA,” which leaves the type A with a minimum amount of S
in head position (one, if there is at least one, or zero, in other case). This solution makes sense
in such a presentation of Lambda-S , since the interpretation of the type SSA coincides with the
interpretation of SA (both are the vector space generated by the span over A). However, in our
categorical interpretation these two types are not interpreted in the same way, and so, our rule
(zeroα) sends 0.
0SA to 
0SA directly. Similarly, all the rules ending in 
0SA have been modified from
its original presentation in the same way, namely: (zeroα), (zero), (lin0r ), and (lin0	).

Example 2.3.

2.
(
1
2
. |0〉 + |1〉

)
− 2. |1〉 (αdist)−−−→ 2.

(
1
2
. |0〉

)
+ 2. |1〉 − 2. |1〉

(prod)−−−→ 1. |0〉 + 2. |1〉 − 2. |1〉
(unit)−−−→ |0〉 + 2. |1〉 − 2. |1〉
(fact)−−−→ |0〉 + 0. |1〉
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(zeroα)−−−−→ |0〉 + 
0SB
(neutral)−−−−−→ |0〉

Remind that the symbol + is associative and commutative.

Figure 8 are the rules to implement the castings3. The idea is that × does not distribute with
respect to +, unless a casting allows such a distribution. This way, the types SB×B and S(B×
B) are different. Indeed, ( |0〉 + |1〉 )× |0〉 have the first type but not the second, while |00〉 +
|10〉 have the second type but not the first. The first type gives us the information that the state
is separable, while the second type does not. We can choose to take the first state as a pair of
qubits forgetting the separability information, by casting its type, in the same way as in certain
programming languages an integer can be cast to a float (and so, forgetting the information that
it was indeed an integer and not just any float).

Example 2.4. The term ( 1√
2
.( |0〉 + |1〉 ))× |0〉 is the encoding of the qubit 1√

2
( |0〉 + |1〉 )⊗ |0〉.

However, while the qubit 1√
2
( |0〉 + |1〉 )⊗ |0〉 is equal to 1√

2
( |00〉 + |10〉 ), the term will not

rewrite to the encoding of it, unless it is preceded by a casting ⇑r :

⇑r

(
1√
2
.( |0〉 + |1〉 )

)
× |0〉 (distαr )−−−→ 1√

2
. (⇑r ( |0〉 + |1〉 )× |0〉)

(dist+r )−−−−→ 1√
2
.(⇑r |00〉 + ⇑r |10〉 )

(neut⇑r )2−−−−−→ 1√
2
.( |00〉 + |10〉 )

Notice that
(

1√
2
.( |0〉 + |1〉 )

)
× |0〉 has type SB×B, highlighting the fact that the second qubit is

a basis qubit, i.e., duplicable, while 1√
2
.( |00〉 + |10〉 ) has type S(B×B), showing that the full term

is a superposition where no information can be extracted, and hence, non-duplicable.

Figure 9 gives the rule (proj) for the projective measurement with respect to the basis {|0〉 , |1〉}.
It acts only on superpositions of terms in normal form; however, these terms do not necessarily
represent a norm-1 vector, so the measurement must perform a division by the norm of the vector
prior to measure. In case the norm of the term is 0, then an error is raised. In the original version
of Lambda-S , such an error is left as a term that does not reduce. In this paper, however, we added
a new rule (proj
0) for the projective measurement over the null vector, in order to simplify the
model (otherwise, we would have been forced to add Moggi’s exception monad (Moggi, 1988) to
the model). Since the model we present in this paper is already complex, we prefer to add a rule
sending the error to a fixed value and focus on the novel constructions.

In rule (proj), j≤ n, and we use the following notations:

[α.]t may be either t or α.t (if it is not present, α = 1)∣∣k〉= ∣∣b1 . . . bj〉 where b1 . . . bj is the binary representation of k

|φk〉 =
∑
i∈Tk

⎛
⎝ αi√∑

r∈Tk |αr|2

⎞
⎠ n∏

h=j+1

∣∣bhi〉
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pk =
∑
i∈Tk

( |αi|2∑m
r=1 |αr|2

)

Tk = {i≤m | ∣∣b1i . . . bji〉= ∣∣k〉}
This way,

∣∣k〉× |φk〉 is the normalized kth projection of the term.

Example 2.5. Lets measure the first two qubits of a three qubits superposition. So, in rule (proj)
take j= 2 and n= 3. Say, the term to measure is |000〉 + 2. |110〉 + 3. |001〉 + |111〉. So, we have
m= 4, and

i αi
∣∣b1ib2ib3i〉

1 1 |000〉
2 2 |110〉
3 3 |001〉
4 1 |111〉

k
∣∣k〉 Tk pk |φk〉

0 |00〉 {1, 3} 1
15 + 9

15 = 2
3

1√
10
. |0〉 + 2.7√

10
. |1〉

1 |01〉 ∅ 0 –
2 |10〉 ∅ 0 –
3 |11〉 {2, 4} 4

15 + 1
15 = 1

3
2√
5 . |0〉 + 1√

5 . |1〉
All in all, the reduction is as follows:

π2( |000〉 + 2. |110〉 + 3. |001〉 + |111〉 )
(proj)−−−→ {2

3 }
(
|00〉 × ( 1√

10
. |0〉 + 3√

10
. |1〉 )

)
‖ {1

3 }
(
|11〉 × ( 2√

5 . |0〉 + 1√
5 . |1〉 )

)
Notice that, since 
 |000〉 + 2. |110〉 + 3. |001〉 + |111〉 : SB3, we have


 π2( |000〉 + 2. |110〉 + 3. |001〉 + |111〉 ) :B2 × SB

Finally, Figure 10 gives the contextual rules implementing the call-by-value and call-by-name
weak strategies (weak in the sense that there is no reduction under lambda).

Example 2.6. A Hadamard gate can be implemented by H = λx :B.x?|−〉·|+〉, where |+〉 =
1√
2
. |0〉 + 1√

2
. |1〉 and |−〉 = 1√

2
. |0〉 − 1√

2
. |1〉.

Therefore, H :B⇒ SB and we have H |0〉 −→∗ |+〉 and H |1〉 −→∗ |−〉.
Correctness has been established in previous works for slightly different versions of Lambda-

S , except for the case of confluence, which have only been proved for Lineal (Arrighi and Dowek,
2017). Lineal can be seen as an untyped fragment of Lambda-S without several constructions (in
particular, without πj). The proof of confluence for Lambda-S is delayed to future work, using the
development of probabilistic confluence by Díaz-Caro and Martínez (2018). The proof of Subject
Reduction and Strong Normalization are straightforward modifications from the proofs of the
different presentations of Lambda-S .
Theorem 2.7 (Confluence of Lineal, [Arrighi and Dowek (2017), Thm. 7.25). ] Lineal, an untyped
fragment of Lambda-S , is confluent.
Theorem 2.8 (Subject reduction on closed terms, [Díaz-Caro et al. (2019a), Thm. 5.12). ] For any
closed terms t and u and type A, if t −→ �

i {pi}ui and 
 t :A, then 
 �
i {pi}ui :A.

Theorem 2.9 (Strong normalization, [Díaz-Caro et al. (2019a), Thm. 6.10). ] If 
 t :A, then t is
strongly normalizing, that is, there is no infinite rewrite sequence starting from t.

Theorem 2.10 (Progress). If 
 t :A and t does not reduce, then t is a value.
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10 A. Díaz-Caro and O. Malherbe

Proof. By induction on t.

• If t is a value, then we are done.
• Let t = rs, then 
 r : S(� ⇒ C). So, by the induction hypothesis, r is a value. Therefore, by
its type, r is either a lambda term or a superposition of them, and so rs reduces, which is
absurd.

• Let t = r + s, then by the induction hypothesis both r and s are values, and so r + s is a
value.

• Let t = πjr, then by the induction hypothesis r is a value, and since t is typed, 
 r : SBn.
Therefore, the only possible r are superpositions of kets, and so, t reduces, which is absurd.

• Let t = α.r, then by the induction hypothesis r is a value, and so t is a value.
• Let t = r × s, then by the induction hypothesis both r and s are values, and so t is a value.
• Let t = head r, then by the induction hypothesis r is a value, and since t is typed, 
 r :Bn.
Therefore, the only possible r are products of kets, and so t reduces, which is absurd.

• Let t = tail r. Analogous to previous case.
• Let t =⇑r r, then, by the induction hypothesis, r is a value. Since t is typed, 
 r : S(S� ×�).
Therefore, the cases for r are
– r = x. Absurd, since r is closed.
– r = λx :�.r′. Absurd since 
 r : S(S� ×�).
– r = |0〉. Absurd since 
 r : S(S� ×�).
– r = |1〉. Absurd since 
 r : S(S� ×�).
– r = v1 + v2, then t reduces by rule (dist+⇑ ), which is absurd.
– r = 
0S(S�×�), then t reduces by rule (dist0⇑r) or (neut

⇑
0r), which is absurd.

– r = α.v, then t, reduces by rule (distα⇑), which is absurd.
– r = ?s1·s2. Absurd since 
 r : S(S� ×�).
– r = v1 × · · · × vn, with v1 not a pair, then the possible v1 are:

∗ v1 ∈ B, then t reduces by rule (neut⇑r ), which is absurd.
∗ v1 = v′

1 + v′
2, then t reduces by rule (dist+r ), which is absurd.

∗ v1 = 
0S(S�×�), then t reduces by rule (dist0r ), which is absurd.
∗ v1 = α.v, then t reduces by rule (distαr ), which is absurd.

• Let t =⇑	 r. Analogous to previous case.

3. Denotational Semantics
Even though the semantic of this article is about particular categories, i.e., the category of sets and
the category of vector spaces, from the start our approach uses theory and tools from category
theory in an abstract way. The idea is that the concrete situation exposed in this article will pave the
way to a more abstract formulation, and that is why we develop the constructions as abstract and
general as possible. A more general treatment, using a monoidal adjunction between a Cartesian
closed category and a monoidal category with some extra conditions, remains a topic for future
work. A first result in such direction has been published recently (Díaz-Caro andMalherbe, 2020),
however, in a simplified version of Lambda-S without measurements.

3.1 Categorical constructions
The concrete categorical model4 for Lambda-S will be given using the following constructions:

• A monoidal adjunction
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(Set,×, 1) ⊥ (Vec,⊗, I)

(S,m)

(U,n)

where
– Set is the category of sets with 1 as a terminal object.
– Vec is the category of vector spaces over C, in which I =C.
– S is the functor such that for each set A, SA is the vector space whose vectors are the formal
finite linear combinations of the elements of A with coefficients in C, and given a function
f :A→ B we define Sf : SA→ SB by evaluating f in A.

– U is the forgetful functor such that for each vector space V , UV is the underlying set of
vectors in V and for each linear map f , Uf is just f as function not taking into account its
linear property.

– m is a natural isomorphism defined by

mAB : SA⊗ SB→ S(A× B) (
∑
a∈A

αaa)⊗ (
∑
b∈B

βbb) �→
∑

(a,b)∈A×B
αaβb(a, b)

– n is a natural transformation defined by
nAB :UV ×UW →U(V ⊗W) (v,w) �→ v⊗w

• Vec† is a subcategory ofVec, where every morphism f :V →W have associated a morphism
f † :W →V , called the dagger of f , such that for all f :V →W and g :W →U we have

Id†V = IdV (g ◦ f )† = f † ◦ g† f †† = f

Notice that Vec† is a subcategory of FinVec, the category of finite vector spaces over C.
• SetD is a Kleisli category over Set defined with the following monoidal monad, called the
distribution monad (Giry, 1982; Moggi, 1988), (D, η̂, μ̂, m̂AB, m̂1):

D : Set→ Set DA=
{ n∑

i=1
piχai |

n∑
i=1

pi = 1, ai ∈A, n ∈N

}

where χa is the characteristic function of a, and η̂, μ̂, m̂AB, and m̂1 are defined as follows:

η̂ :A→DA a �→ 1χa
μ̂ :DDA→DA

∑n
i=1 piχ(∑mi

j=1 qijχaij )
�→∑n

i=1
∑mi

j=1 piqijχaij

m̂AB :DA×DB→D(A× B)
(∑n

i=1 piχai ,
∑m

j=1 qjχbj
)

�→∑n
i=1

∑m
j=1 piqj(χai , χbj)

m̂1 : 1→D1 ∗ �→ 1χ∗

Remarks 3.1.

• There exists an object B and maps i1, i2 in Set such that for every t : 1−→A and r : 1−→A,
there exists a unique map [t, r] making following diagram commute:

1 B 1

A

i1

t
[t,r]

i2

r
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12 A. Díaz-Caro and O. Malherbe

This object B is the Boolean set and such a map will allow us to interpret the if construction
(Definition 3.4).

• For every A ∈ |Set|, Vec(I, SA) is an abelian group with the sum defined point-wise.
Therefore, there exists a map + :USA×USA→USA in Set, given by (a, b) �→ a+ b using
the underlying sum from SA.

• To have an adjunction means that each function g :A→UV extends to a unique linear
transformation f : SA→V , given explicitly by f

(∑
i αixi

)=∑
i αig(xi), that is, formal linear

combinations in SA to actual linear combinations in V (see (Mac Lane, 1998) for details).
• Set is a Cartesian closed category where ηA is the unit and εA is the counit of− ×A� [A,−],
from which we can define the curryfication (curry) and un-curryfication (uncurry) of any
map.

• The defined adjunction between Set and Vec gives rise to a monad (T, η,μ) in the category
Set, where T =US, η : Id→ T is the unit of the adjunction, and using the counit ε, we obtain
μ=UεS : TT → T, satisfying unity and associativity laws (see Mac Lane (1998)).

3.2 Interpretation
Definition 3.2. Types are interpreted in the category SetD, as follows:

�B� =B �� ⇒A� = ��� ⇒ �A� �SA� =US �A� �� ×�� = ��� × ���
Remark 3.3. To avoid cumbersome notation, we omit the brackets �·�when there is no ambiguity.
For example, we write directly USA for �SA� =US �A� and A for �A�.

Before giving the interpretation of typing derivation trees in the model, we need to define
certain maps that will serve to implement some of the constructions in the language.

To implement the if construction, we define the following map.

Definition 3.4. Given t, r ∈ [
,A] there exists a map B
ft,r−→ [
,A] in Set defined by ft,r =

[t̂, r̂] where t̂ : 1→ [
,A] and r̂ : 1→ [
,A] are given by the constant maps � �→ t and � �→ s,
respectively. Concretely this means that i1( � ) �→ t and i2( � ) �→ r.

Example 3.5. Consider t = i1 and r = i2, with t, r ∈ [1,B], where B= {i1( � ), i2( � )}. To make
the example more clear, let us consider i1( � )= |0〉 and i2( � )= |1〉, hence B= {|0〉 , |1〉}. The
map B

ft,r−→ [1,B] in Set is defined by ft,r = [î1, î2], where îk : 1→ [1,B], for k= 1, 2. Therefore, we
have the following commuting diagram:

1 B 1

[1,B]

i1

î1
ft,r

i2

î2

Hence, we have: ft,r |0〉 = ft,r(i1( � ))= (ft,r ◦ i1)�= î1( � )= i1 = t
ft,r |1〉 = ft,r(i2( � ))= (ft,r ◦ i2)�= î2( � )= i2 = r

Therefore, ft,r is the map |0〉 �→ t and |1〉 �→ r.

In order to implement the projection, we define a map πj (Definition 3.14), which is formed
from the several maps that we describe below.
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A projection πjk acts in the following way: first it projects the first j components of its argu-
ment, an n-dimensional vector, to the basis vector

∣∣k〉 in the vector space of dimension j, then it
renormalizes it, and finally it factorizes the first j components. Then, the projection πj takes the
probabilistic distribution between the 2j projectors πjk, each of these probabilities, calculated from
the normalized vector to be projected.

Example 3.6. Let us analyse the Example 2.5:

π2(|000〉 + 2. |110〉 + 3. |001〉 + |111〉)
(proj)−−−→ {2

3 }
(
|00〉 × ( 1√

10
. |0〉 + 3√

10
. |1〉 )

)
‖ {1

3 }
(
|11〉 × ( 2√

5 . |0〉 + 1√
5 . |1〉 )

)
We can divide this in four projectors (since j= 2, we have 22 projectors), which are taken in
parallel (with the symbol ‖). The four projectors are π2,00, π2,01, π2,10, and π2,11. In this case, the
probability for the projectors π2,01 and π2,10 are 0, and hence these do not appear in the final term.

The projector π2,00 acts as described before: first it projects the first 2 components of
|000〉 + 2. |110〉 + 3. |001〉 + |111〉 to the basis vector |00〉, obtaining |000〉 + 3. |001〉. Then it
renormalizes it, by dividing it by its norm, obtaining 1√

10
. |000〉 + 3√

10
. |001〉. Finally, it fac-

torizes the vector, obtaining |00〉 × ( 1√
10
. |0〉 + 3√

10
. |1〉 ). Similarly, the projector π2,11 gives

|11〉 × ( 2√
5 . |0〉 + 1√

5 . |1〉 ). Finally, the probabilities to assemble the final term are calculated as

p0 = |1|2+|3|2
|1|2+|2|2+|3|2+|1|2 = 2

3 and p1 = |2|2+|1|2
|1|2+|2|2+|3|2+|1|2 = 1

3 .

Categorically, we can describe the operator πjk (Definition 3.11) by the composition of
three arrows: a projector arrow to the

∣∣k〉 basis vector (Definition 3.7), a normalizing arrow
Norm (Definition 3.8), and a factorizing arrow ϕj (Definition 3.9). Then, the projection πj
(Definition 3.14) maps a vector to the probabilistic distribution between the 2j basis vectors

∣∣k〉,
using a distribution map (Definition 3.12).

In the following definitions, if |ψ〉 is a vector of dimension n, we write |ψ〉 : I → SBn to the
constant map 1 �→ |ψ〉.

Definition 3.7. The projector arrow to the
∣∣k〉 basis vector Projk is defined as follows:

Pk : (SB)⊗n �→ (SB)⊗n Pk = (
∣∣k〉 ◦ ∣∣k〉†)⊗ I

Definition 3.8. The normalizing arrow Norm is defined as follows:

Norm :USBn →USBn |ψ〉 �→
⎧⎨
⎩

|ψ〉√
(|ψ〉†◦|ψ〉)(�)

if |ψ〉 �= 
0

|0〉 otherwise

Definition 3.9. The factorizing arrow ϕj is defined as any arrow making the following diagram
commute:

Bj ×USBn−j USBj ×USBn−j U(SBj ⊗ SBn−j)

Bj ×USBn−j USBn =US(Bj ×Bn−j)

η×Id

Id

n

Um

ϕj
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14 A. Díaz-Caro and O. Malherbe

Example 3.10. For example, take ϕj as the following map:

ϕj :USBn →Bj ×USBj−n

a �→

⎧⎪⎪⎨
⎪⎪⎩

j∏
h=1

∣∣bh〉× n∑
i=1
αi.

(
n∏

h=j+1

∣∣bih〉
)

if a=
n∑
i=1
αi.

(
j∏

h=1

∣∣bh〉× n∏
h=j+1

∣∣bih〉
)

|0〉n otherwise

Definition 3.11. For each k= 0, . . . , 2j − 1, the projection to the
∣∣k〉 basis vector, πjk, is defined

as any arrow making the following diagram commute:

USBn USBn

Bj ×USBn−j USBn

πjk

UPk

Norm

ϕj

where we are implicitly using the isomorphism USBn ∼=U(SB)⊗n, obtained by composing n− 1
times the mediating arrowm and then applying the functor U.

The following distribution map is needed to assemble the final distribution of projections in
Definition 3.14.

Definition 3.12. Let {pi}ni=1 be a set with pi ∈ [0, 1] such that
∑n

i=1 pi = 1. Then, we define d{pi}i
as the arrow:

d{pi}i :An →DA (a1, . . . , an) �→
n∑
i=1

piχai

Example 3.13. Consider d{ 12 , 13 , 16 } :B3 →DB3 defined by d{ 12 , 13 , 16 }(b1 × b2 × b3)= 1
2χb1 + 1

3χb2 +
1
6χb3 . Then, for example, d{ 12 , 13 , 16 } |101〉 = 1

2χ|1〉 + 1
3χ|0〉 + 1

6χ|1〉.

Definition 3.14. The projective arrow is as follows, where pk =Norm( |ψ〉 )† ◦ Pk ◦ Norm( |ψ〉 ).

πj :USBn →D(Bj ×USBn−j) |ψ〉 �→
2j−1∑
k=0

pkχπjk|ψ〉

Example 3.15. Consider the set B2 and the vector space SB2. We can describe the projection
π1 as the map π1 :USB2 →D(B×USB) such that |ψ〉 �→ p0χπ10|ψ〉 + p1χπ11|ψ〉, where, if |ψ〉 =
α1. |00〉 + α2. |01〉 + α3. |10〉 + α4. |11〉, then p0 = |α1|2+|α2|2√∑4

i=1 |αi|2
and p1 = |α3|2+|α4|2√∑4

i=1 |αi|2
.

The normalizing arrow is the arrow Norm :USB2 →USB2 such that:

α1. |00〉 + α2. |01〉 + α3. |10〉 + α4. |11〉
�→ α1√∑4

i=1 |αi|2
. |00〉 + α2√∑4

i=1 |αi|2
. |01〉 + α3√∑4

i=1 |αi|2
. |10〉 + α4√∑4

i=1 |αi|2
. |11〉
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The factorization arrow is the arrow ϕ1 :USB2 →B×USB such that:

α1. |00〉 + α2. |01〉 + α3. |10〉 + α4. |11〉 �→

⎧⎪⎪⎨
⎪⎪⎩

|0〉 × (α1. |0〉 + α2. |1〉 ) if α3 = α4 = 0
|1〉 × (α3. |0〉 + α4. |1〉 ) if α1 = α2 = 0
|00〉 otherwise

Finally, π10 andπ11 are defined asmaps inUSB2 →B×USB such thatπ10 = ϕ1 ◦ Norm ◦UP0
and π11 = ϕ1 ◦ Norm ◦UP1.

We write (US)mA for US . . .USA, wherem> 0. The arrow sum on (US)mA with A �=USB will
use the underlying sum in the vector space SA. To define such a sum, we need the following map.

Definition 3.16. The map gk : ((US)k+1A)× ((US)k+1A)→ (US)k(USA×USA) is defined by:

gk = (US)k−1Um ◦ (US)k−1n ◦ (US)k−2Um ◦ (US)k−2n ◦ · · · ◦Um ◦ n

((US)k+1A)× ((US)k+1A) (US)k(USA×USA)

U(S(US)kA⊗ S(US)kA) (US)k−1U(SUSA⊗ SUSA)

US((US)kA× (US)kA) (US)k−1((US)2A× (US)2A)

USU(S(US)k−1A⊗ S(US)k−1A) (US)2((US)k−1A× (US)k−1A)

n

gk

Um

(US)k−1Um

USn

(US)k−1n

USUm

...

Example 3.17. We can define the sum on (US)3A× (US)3A by using the sum on SA as:

(US)3A× (US)3A
g2−→ (US)2(USA×USA) (US)2+−−−−→ (US)3A where g2 =USUm ◦USn ◦Um ◦ n.

Using all the previous definitions, we can finally give the interpretation of a type derivation tree
in our model. If 
 
 t :A with a derivation T, we write generically �T� as 
 t−→A. In the following
definition, we write SmA for S . . . SA, wherem> 0 and A �= SB.

Definition 3.18. IfT is a type derivation tree, we define inductively �T� as an arrow in the category
SetD, as follows. To avoid cumbersome notation, we omit to write the monad D in most cases (we
only give it in the case of the measurement, which is the only interesting case).�
�B, x :� 
 x :�

Ax
�

=�B ×�
!×Id−−→ 1×� ≈� where Id is the identity in Set

�
�B 
 
0SA : SA

Ax
0
�

=�B !−→ 1

̂0−→USA where 
̂0 is the constant function � �→ 
0�

�B 
 |0〉 :B
Ax|0〉

�
=�B !−→ 1

ˆ|0〉−→B where ˆ|0〉 is the constant function � �→ |0〉�
�B 
 |1〉 :B

Ax|1〉
�

=�B !−→ 1
ˆ|1〉−→B where ˆ|1〉 is the constant function � �→ |1〉
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�

 
 t : SmA

 
 α.t : SmA αI

�
= 


t−→ (US)mA (US)m−1Uλ−−−−−−→ (US)m−1U(SA⊗ I)
(US)m−1U(Id⊗α)−−−−−−−−−→ (US)m−1U(SA⊗ I) (US)m−1Uλ−1−−−−−−−−→ (US)mA�


,�B 
 t : SmA �,�B 
 r : SmA

,�,�B 
 t + r : SmA

+I

�
= 
×�×�B Id×δ−−→ 
×�×�B ×�B

Id×σ×Id−−−−−→ 
×�B ×�×�B t×r−−→ (US)mA× (US)mA
gm−1−−→ (US)m−1(USA×USA) (US)m−1+−−−−−→ (US)mA�


 
 t :A

 
 t : SA SI

�
= 


t−→A η−→USA�

 
 t : SkBn


 
 πjt :Bj × SBn−j
SE

�
= 


t−→ (US)k
(
Bn) μk−1

−−→USBn πj−→D(Bj × S
(
Bn−j) )

�

 
 t :A 
 
 r :A

 
 ?t·r :B⇒A

If
�

= 

curry(uncurry(ft,r) ◦ swap)−−−−−−−−−−−−−−−→ [B,A]�


, x :� 
 t :A

 
 λx:� .t :� ⇒A

⇒I
�

= 

η�−→ [� , 
×�] [Id,t]−−→ [� ,A]�

�,�B 
 u :� 
,�B 
 t :� ⇒A
�, 
,�B 
 tu :A

⇒E

�
= �× 
×�B Id×δ−−→�× 
×�B ×�B

Id×σ×Id−−−−−→�×�B × 
×�B u×t−−→� × [� ,A] ε
�−→A�

�,�B 
 u : S� 
,�B 
 t : S(� ⇒A)
�, 
,�B 
 tu : SA

⇒ES

�
= �× 
×�B Id×δ−−→�× 
×�B ×�B

Id×σ×Id−−−−−→�×�B×
×�B u×t−−→US� ×US[� ,A]
n−→U(S� ⊗ S[� ,A]) Um−−→US(� × [� ,A])
USε�−−−→USA�


,�B 
 t :� �,�B 
 u :�

,�,�B 
 t × u :� ×�

×I

�
= 
×�×�B Id×δ−−→ 
×�×�B ×�B

Id×σ×Id−−−−−→ 
×�B ×�×�B t×u−−→� ×��

 
 t :Bn


 
 head t :B ×Er

�
= 


t−→Bn head−−→B where head is the projector of the first component in Set�

 
 t :Bn


 
 tail t :Bn−1
×E	

�
= 


t−→Bn tail−→Bn−1 where tail is the projector of the n− 1 last compo-
nents�


 
 t : S(S� ×�)

 
⇑r t : S(� ×�)

⇑r

�
= 


t−→US(US� ×�) U(Id×η)−−−−−→US(US� ×US�)
USn−−→USU(S� ⊗ S�) USUm−−−→USUS(� ×�) μ−→US(� ×�)�


 
 t : S(� × S�)

 
⇑	 t : S(� ×�)

⇑	
�

= 

t−→US(� ×US�) U(η×Id)−−−−−→US(US� ×US�)

USn−−→USU(S� ⊗ S�) USUm−−−→USUS(� ×�) μ−→US(� ×�)�

 
 ti :A ∑

i pi = 1

 
 {p1}t1 ‖ · · · ‖ {pn}tn :A ‖

�
= 


δ−→ 
n t1×···×tn−−−−−→An d{pi}i−−→DA

Proposition 3.19 (Independence of derivation). If 
 
 t :A can be derived with two different
derivations T and T′, then �T� = �T′�.
Proof. Without taking into account rules ⇒E, ⇒ES, and SI , the typing system is syntax directed.
Hence, we give a rewrite system on trees such that each time a rule SI can be applied before or
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after another rule, we choose a direction to rewrite the tree to one of these forms. Similarly,
rules ⇒E and ⇒ES, can be exchanged in few specific cases, so we also choose a direction for
these.

Then, we prove that every rule preserves the semantics of the tree. This rewrite system is clearly
confluent and normalizing, hence for each tree T we can take the semantics of its normal form,
and so every sequent will have one way to calculate its semantics: as the semantics of the normal
tree. The full proof is given in the appendix.

Remark 3.20. Proposition 3.19 allows us to write the semantics of a sequent, independently of its
derivation tree. Hence, from now on, we will use �
 
 t :A�, without ambiguity.

3.3 Soundness and adequacy
We first prove the soundness of the interpretation with respect to the reduction relation
(Theorem 3.22), then we prove the computational adequacy (Theorem 3.28). Finally, we prove
adequacy (Theorem 3.29) as a consequence of both results.

3.3.1 Soundness
Soundness is proved only for closed terms, since the reduction is weak (cf. Figure 10). First, we
need a substitution lemma.

Lemma 3.21 (Substitution). If x :� 
 t :A and 
 r :�, the following diagram commutes:

1 A

�

(r/x)t
r t

That is, �
 (r/x)t :A� = �x :� 
 t :A� ◦ �
 r :��.
Proof. We prove, more generally, that if 
′, x :� , 
 
 t :A and 
 r :� , the following diagram
commutes:


′ × 
 A


′ × 1× 
 
′ ×� × 


(r/x)t

≈
Id×r×Id

t

That is, �
′, 
 
 (r/x)t :A� = �
′, x :� , 
 
 t :A� ◦ (Id× �
 r :�� × Id). Then, by taking 
 =

′ = ∅, we get the result stated by the lemma.

We proceed by induction on the derivation of 
′, x :� , 
 
 t :A. The full proof is given in the
appendix.

Theorem 3.22 (Soundness). If 
 t :A, and t −→ r, then �
 t :A� = �
 r :A�.
Proof. By induction on the rewrite relation, using the first derivable type for each term. The full
proof is given in the appendix.

3.3.2 Computational adequacy
We adapt Tait’s proof for strong normalization to prove the computational adequacy of
Lambda-S .
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Definition 3.23. Let A,B be sets of closed terms. We define the following operators on them:

• Closure by antireduction: A= {t | t −→∗ r, with r ∈A and FV(t)= ∅}.
• Closure by distribution: A‖ = {�i {pi}ti | ti ∈A and

∑
i pi = 1}.

• Product: A×B= {t × u | t ∈A and u ∈B}.
• Arrow: A⇒B= {t | ∀u ∈A, tu ∈B}.
• Span: SA= {∑i [αi.]ri | ri ∈A}.
The set of computational closed terms of type A (denoted CA), is defined by

CB = {|0〉 , |1〉}‖ CA×B = CA × CB
‖

C�⇒A = C� ⇒ CA
‖

CSA = SCA ∪ {
0SA}‖

A substitution σ is valid in a context 
 (notation σ � 
) if for each x :A ∈ 
, σx ∈ CA.

Lemma 3.24. If 
 t :A then t ∈ CA.

Proof. We prove, more generally, that if 
 
 t :A and σ � 
, then σ t ∈ CA. We proceed by
induction on the derivation of 
 
 t :A. The full proof is given in the appendix.

Definition 3.25 (Elimination context). An elimination context is a term of type B produced by
the following grammar, where exactly one subterm has been replaced with a hole [·].

C := [ · ] | Ct | tC | πjC | head C | tail C |⇑r C |⇑	 C
We write C[t] for the term of type B obtained from replacing the hole of C by t.

Definition 3.26 (Operational equivalence). We write t ≈e r if, for every elimination context C,
there exists s such that C[t]−→∗ s and C[r]−→∗ s.

We define the operational equivalence ≈op inductively by

• If t ≈e r, then t ≈op r.
• If t ≈op r then α.t ≈op α.r.
• If t1 ≈op r1 and t2 ≈op r2, then t1 + t2 ≈op r2 + r2.
• If t1 ≈op r1 and t2 ≈op r2, then t1 × t2 ≈op r1 × r2.

Remark that operational equivalence differ from the standard notion of observational equiva-
lence since t ≈op r does not imply λx :� .t ≈op λx :� .r, as a consequence of not having reductions
under lambda.

Lemma 3.27. If C[t]≈op C[r], then t ≈op r.

Proof. By the shape of C, the only possibility for C[t]≈op C[r] is C[t]≈e C[r]. Then, by definition,
there exists a term s and a context D such that D[C[t]]−→∗ s and D[C[r]]−→∗ s. Consider the
context E=D[C], we have E[t]=D[C[t]]−→∗ s and E[r]=D[C[r]]−→∗ t′. Therefore, t ≈e r,
and so t ≈op r.

Theorem 3.28 (Computational adequacy). If �
 t :A� = �
 v :A�, then t ≈op v.

Proof. We proceed by induction on A.

• A=B. By Lemma 3.24, we have t ∈ CA, thus, t −→∗ {q1} |0〉 ‖ {q2} |1〉, and, by the
same lemma, v= {p1} |0〉 ‖ {p2} |1〉. Hence, by Theorem 3.22, we have �
 v :A� =
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�
 t :A� = �
 {q1} |0〉 ‖ {q2} |1〉 :A�. So, 12 |0〉×|1〉−−−−→B2 d{p1,p2}−−−−→DB= 12 |0〉×|1〉−−−−→B2 d{q1,q2}−−−−→
DB. Therefore, pi = qi, thus t −→∗ v.

• A= C1 × C2. By Lemma 3.24, we have t ∈ CA, thus, t −→∗ �
i {qi}(wi1 ×wi2), with wij ∈ CCj ,

and, by the same lemma, v= �
i {pi}(vi1 × vi2), with vij ∈ CCj . Hence, by Theorem 3.22,

we have �
 v :A� = �
 t :A� = �
 �
i {qi}(wi1 ×wi2) :A�. So, (12)n (w11×w12)×···×(wn1×wn2)−−−−−−−−−−−−−−−→

(C1 × C2)n
d{qi}i−−→D(C1 × C2)= (12)n (v11×v12)×···×(vm1×vm2)−−−−−−−−−−−−−−→ (C1 × C2)n

d{pi}i−−→D(C1 × C2).
Therefore, pi = qi, m= n, and

	
 vij : Cj

 = 	
wij : Cj



. Therefore, by the induction

hypothesis, wij ≈op vij, and so, t ≈op v.
• A=� ⇒ C. The only possibility for v, a value of type� ⇒ C, is v= �

i {pi}λx� .ri.
Hence, let f = �
 t :A� = �
 v :A� = 1n (η� )n−−−→ [� , 1×�]n [Id,ri]n−−−→ [� , Cn]

d{pi}i−−→D[� , C].
By Lemma 3.24, we have t ∈ CA. Hence, t −→∗ t′, such that for all s ∈ C� , t′s ∈ CC.

Let w ∈ C� be a value, and g = �
w :�� = 1 w−→�
d{1}−−→D� .

Thus, �
 tw : C� = �
 vw : C� = 1n+1 f×g−−→D[� , C]×D� mD−−→D([� , C]×�) Dε−→DC.
By Theorem 2.9 and Theorem 2.10, there exists u value, such that vw−→∗ u, and by
Theorem 2.8, 
 u : C. So, by Theorem 3.22, �
 u : C� = �
 vw : C�.
Therefore, by the induction hypothesis, tw≈op u. Since vw−→∗ u, we have u≈op vw. Hence,
tw≈op vw, and so, by Lemma 3.27, t ≈op v.

• A= SC. By Lemma 3.24, we have t ∈ CA, thus, t −→∗ �
i {qi}∑j αjwij, with wij ∈ CC, and,

by the same lemma, v= �
i {pi}∑k βkvik, with vik ∈ CC. Hence, by Theorem 3.22, we have

�
 v :A� = �
 t :A� =
�

 �

i {qi}∑j αjwij :A
�
. So, d{qi}i ◦US+ ◦w11 × · · · ×wnm = d{pi}i ◦

US+ ◦v11 × · · · × vn′m′ . Therefore, pi = qi, m=m′, n= n′ and
	
wij : C


 = 	
 vij : C


.

Therefore, by the induction hypothesis, wij ≈op vij, and so, t ≈op v.

3.3.3 Adequacy
Adequacy is a consequence of Theorems 2.8 (subject reduction), 2.9 (strong normalization), 2.10
(progress), 3.22 (soundness), and 3.28 (computational adequacy).

Theorem 3.29 (Adequacy). If �
 t :A� = �
 r :A�, then t ≈op r.

Proof. By Theorem 2.9, t is strongly normalizing, and by Theorem 2.10, it normalizes to a value.
Hence, there exists v such that t −→∗ v, and, by Theorem 2.8, we have 
 v :A. By Theorem 3.22,�
 v :A� = �
 t :A� = �
 r :A�. Then, by Theorem 3.28, v≈op t and v≈op r. Hence, t ≈op r.

4. Conclusion
We have revisited the concrete categorical semantics for Lambda-S presented in our LSFA’18
paper (Díaz-Caro and Malherbe, 2019) by slightly modifying the operational semantics of the
calculus, obtaining an adequate model (Theorem 3.29).

Our semantics highlights the dynamics of the calculus: the algebraic rewriting (linear dis-
tribution, vector space axioms, and typing casts rules) emphasizes the standard behavior of
vector spaces. The natural transformation n takes these arrows from the Cartesian category
Set to the tensorial category Vec, where such a behavior occurs naturally, and then are taken
back to the Cartesian realm with the natural transformation m. This way, rules such as (lin+

r ):
t(u+ v)−→ tu+ tv, are simply considered as Um ◦ n producing (u+ v, t) �→ (u, t)+ (v, t) in
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two steps: (u+ v, t) �→ (u+ v)⊗ t = u⊗ t + v⊗ t �→ (u, t)+ (v, t), using the fact that, in Vec,
(u+ v)⊗ t = u⊗ t + v⊗ t.

We have constructed a concrete mathematical semantic model of Lambda-S based on a
monoidal adjunction with some extra conditions. The construction depends crucially on inherent
properties of the categories of set and vector spaces. In a future work, we will study the semantics
from amore abstract point of view. Our approach will be based on recasting the concrete model at
a more abstract categorical level of monoidal categories with some axiomatic properties that are
now veiled in the concrete model. Some of these properties, such as to consider an abstract dagger
instead of an inner product, were introduced in the concrete model from the very beginning, but
others are described in Remark 3.1 and Definitions 3.4, 3.8, 3.9, 3.11, 3.12, and 3.14. Another ques-
tion we hope to address in future work is the exact categorical relationship between the notion of
amplitude and probability in the context of the abstract semantics. While some research has been
done in this topic (e.g., Abramsky and Coecke (2004); Selinger (2007)), it differs from our point
of view in some important aspects: for example to consider a notion of abstract normalization as
primitive.

Competing interests. The authors declare none.

Notes
1 Wherem and n are the mediating arrows given by the monoidality of the adjunction.
2 As a remark, notice that ‖ can be seen as the + symbol of the algebraic lambda calculus (Vaux, 2009), where the equality is
confluent since scalars are positive, while the + symbol in Lambda-S coincides with the + from Lineal (Arrighi and Dowek,
2017) (see Assaf et al. (2014) for a more detailed discussion on different presentations of algebraic lambda calculi).
3 The subtlety about 
0SA explained for Figure 7 has led us to add some extra rules to Lambda-S , with respect to its original
presentation, in Figure 8. Those are (dist0⇑r ), (dist

0
⇑	 ), (neut

⇑
0r), and (neut⇑0	).

4 Although “concrete categorical” seems paradoxical, since a model can either be concrete or categorical, we chose to use this
terms to stress the fact that we use a categorical presentation of this concrete model.
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Appendix A. Detailed Proofs
Proposition 3.19 (Independence of derivation). If 
 
 t :A can be derived with two different
derivations T and T′, then �T� = �T′�.
Proof. Without taking into account rules ⇒E, ⇒ES, and SI , the typing system is syntax directed.
Hence, we give a rewrite system on trees such that each time a rule SI can be applied before or
after another rule, we choose a direction to rewrite the tree to one of these forms. Similarly, rules
⇒E and ⇒ES can be exchanged in few specific cases, so we also choose a direction for these.

Then, we prove that every rule preserves the semantics of the tree. This rewrite system is clearly
confluent and normalizing, hence for each tree T we can take the semantics of its normal form,
and so every sequent will have one way to calculate its semantics: as the semantics of the normal
tree.

In order to define the rewrite system, we first analyse the typing rules containing only one
premise, and check whether these rules allow for a previous and posterior rule SI . If both are
allowed, we choose a direction for the rewrite rule. Then we continue with rules with more than
one premise and check under which conditions a commutation of rules is possible, choosing also
a direction.
Rules with one premise:

• Rule αI :

 
 t : SA

 
 t : SSA SI


 
 α.t : SSA αI
−→


 
 t : SA

 
 α.t : SA αI


 
 α.t : SSA SI (1)

• Rules SE, ⇒I , ×Er , ×E	 , ⇑r , and ⇑	: These rules end with a specific types not admitting two
S in the head position (i.e. Bj × SBn−j, � ⇒A, B, Bn−1, and S(� ×�)) hence removing an
S or adding an S would not allow the rule to be applied, and hence, these rules followed or
preceded by SI cannot commute.
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Rules with more than one premise:

• Rule +I :


,�B 
 t : SA

,�B 
 t : SSA

SI
�,�B 
 r : SA
�,�B 
 u : SSA

SI


,�,�B 
 (t + u) : SSA
+I

−→

,�B 
 t : SA �,�B 
 u : SA


,�,�B 
 (t + u) : SA
+I


,�,�B 
 (t + u) : SSA
SI

(2)

• Rules ⇒E and ⇒ES:

�,�B 
 u :�
�,�B 
 u : S�

SI

,�B 
 t :� ⇒A

,�B 
 t : S(� ⇒A)

SI

�, 
,�B 
 tu : SA
⇒ES

−→
�,�B 
 u :� 
,�B 
 t :� ⇒A

�, 
,�B 
 tu :A
⇒E

�, 
,�B 
 tu : SA
SI

(3)

• Rule ‖:

 
 ti :A

 
 ti : SA

SI ∑
i pi = 1


 
 {p1}t1 ‖ · · · ‖ {pn}tn : SA ‖ −→

 
 ti :A ∑

i pi = 1

 
 {p1}t1 ‖ · · · ‖ {pn}tn :A ‖


 
 {p1}t1 ‖ · · · ‖ {pn}tn : SA SI
(4)

• Rules If and ×I : these rules end with specific types not admitting two S in the head position
(i.e. B⇒A and � ×�), hence removing an S or adding an S would not allow the rule to be
applied, and hence, these rules followed or preceded by SI cannot commute.

The confluence of this rewrite system is easily inferred from the fact that there are no critical pairs.
The normalization follows from the fact that the trees are finite and all the rewrite rules push the
SI to the root of the trees.

It only remains to check that each rule preserves the semantics.

• Rule (1): The following diagram gives the semantics of both trees (we only treat, without loss
of generality, the case where A �= S(A′)). This diagram commutes by the naturality of η.


 USA USUSA USU(SA⊗ I) USU(SA⊗ I)

U(SA⊗ I) U(SA⊗ I) USA USUSA

t

Uλ

η USUλ USU(Id⊗α)

USUλ−1

U(Id⊗α) Uλ−1 η

• Rule (2): The following diagram gives the semantics of both trees (we only treat, without lost
of generality, the case where A �= SA′).


×�B ×�×�B USA×USA USUSA×USUSA


×�×�B ×�B USA×USA US(USA×USA)


×�×�B USA USUSA

t×r η×η

g0=Id g1Id×σ×Id

+ US+Id×δ
η

This diagram commutes since the maps are as follows:
(t, r) η×η�→ (t, r)

g1�→ (t, r) US+�→ t + r and (t, r) Id�→ (t, r) +�→ t + r η�→ t + r
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• Rule (3): The following diagram gives the semantics of both trees. The lower diagram with
the dotted arrow commutes by the naturality of η, and the upper diagram commutes because
η is a monoidal natural transformation.

�×�B × 
×�B �× 
×�B

� × [� ,A] US� ×US([� ,A]) U(S� ⊗ S([� ,A]))

A USA US(� × [� ,A])

u×t

(Id×σ×Id)◦(Id×δ)

ε�
η

η2 n

U(m)
η

US(ε� )

• Rule (4): The following diagram gives the semantics of both trees.


 
n An USAn

DA USDA=DUSA

δ t1×···×tn ηn

d{pi}i d{pi}i
η

The mappings are as follows:

(a1, . . . , an)
ηn�→ (a1, . . . , an)

d{pi}i�→ ∑
i piχai and (a1, . . . , an)

d{pi}i�→ ∑
i piχai

η�→∑
i piχai

Lemma A.1. If 
 
 t :A, then 
,�B 
 t :A. Moreover,
	

,�B 
 t :A
 = �
 
 t :A� ◦ (Id× !).

Proof. A derivation of 
 
 t :A can be turned into a derivation 
,�B 
 t :A just by adding�B in
its axioms’ contexts. Since FV(t)∩�B = ∅, we have 	


,�B 
 t :A
 = �
 
 t :A� ◦ (Id× !).

Lemma 3.21 (Substitution). If x :� 
 t :A and 
 r :� , the following diagram commutes:

1 A

�

(r/x)t
r t

That is, �
 (r/x)t :A� = �x :� 
 t :A� ◦ �
 r :��.
Proof. We prove, more generally, that if 
′, x :� , 
 
 t :A and 
 r :� , the following diagram
commutes:


′ × 
 A


′ × 1× 
 
′ ×� × 


(r/x)t

≈
Id×r×Id

t

That is, �
′, 
 
 (r/x)t :A� = �
′, x :� , 
 
 t :A� ◦ (Id× �
 r :�� × Id). Then, by taking 
 =

′ = ∅, we get the result stated by the lemma.

We proceed by induction on the derivation of 
′, x :� , 
 
 t :A. In this proof, we write
d = (Id× σ × Id) ◦ (Id× δ). Also, we take the rules αI and +I with m= 1, the generalization is
straightforward.

• �B, x :� 
 x :� By Lemma A.1,
	
�B 
 r :�
 = �
 r :�� ◦ !. Hence,
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�B 1 �

1×� ≈�

�B × 1 �B ×�

≈

! r

Id
!

Id×r
!×Id

This diagram commutes by the naturality of the projection.
• �B, x :Bn 
 
0SA : SA

�B 1 USA

�B × 1 �B ×Bn

≈

! 
̂0

Id×r

!

This diagram commutes by the naturality of the projection.
• The cases�B, x :Bn 
 |0〉 :B and�B, x :Bn 
 |1〉 :B are analogous to the previous case.
• 
′, x :� , 
 
 t : SA

, x :� , 
 
 α.t : SA


′ × 
 USA U(SA⊗ I) U(SA⊗ I) USA


′ × 1× 
 
′ ×� × 


≈

(r/x)t U(λ) U(Id⊗α) U(λ−1)

Id×r×Id
t

This diagram commutes by the induction hypothesis.

• 

′, x :� , 
,�B 
 t : SA �,�B 
 u : SA

′, x :� , 
,�,�B 
 t + u : SA

USA USA×USA


′ × 
×�×�B 
′ × 
×�B ×�×�B USA×USA


′×1×
×�×�B 
′×�×
×�×�B 
′ ×� × 
×�B ×�×�B

+

≈

d (r/x)t×u
Id

Id×r×Id d

t×u

This diagram commutes by the induction hypothesis.
If x ∈ FV(u) or x ∈ FV(u)∩ FV(t) the cases are analogous.

• 
′, x :� , 
 
 t :A

′, x :� , 
 
 t : SA


′ × 
 A USA


′ × 1× 
 
′ ×� × 


(r/x)t

≈

η

Id×r×Id
t

This diagram commutes by the induction hypothesis.

https://doi.org/10.1017/S0960129523000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000361


Mathematical Structures in Computer Science 25

•

′, x :� , 
 
 t : SBn


′, x :� , 
 
 πjt :Bj × SBn−j


′ × 
 USBn D(Bj × SBn−j)


′ × 1× 
 
′ ×� × 


(r/x)t

≈

πj

Id×r×Id
t

This diagram commutes by the induction hypothesis.

• 

′, x :� , 
 
 t :A 
′, x :� , 
 
 s :A


′, x :� , 
 
 ?t·s :B⇒A


′ × 
 [B,A]


′ × 1× 
 
′ ×� × 


≈

(r/x)G

Id×r×Id
G

where (r/x)G= curry(uncurry(f(r/x)t,(r/x)s) ◦ swap) and G= curry(uncurry(ft,s) ◦ swap)
By the induction hypothesis, (r × Id) ◦ t = (r/x)t and (r × Id) ◦ s= (r/x)s, hence, (r × Id) ◦
ft,s = f(r/x)t,(r/x)s and so (r/x)G= (r × Id) ◦G, which makes the diagram commute.

•

′, x :� , 
, y :�
 t :A


′, x :� , 
 
 λy:�.t :�⇒A


′ × 
 [�, 
′ × 
×�] [�,A]


′ × 1× 
 
′ ×� × 
 [�, 
′ ×� × 
×�]

≈

η� [Id,(r/x)t]

[Id,Id×r×Id]
Id×r×Id η�

[Id,t]

The dotted arrow divides the diagram in two. The upper part commutes by the IH and the
functoriality of [�,−], while the lower part commutes by the naturality of η�.

• �,�B 
 u :� 
′, x :� , 
,�B 
 t :�⇒A
�, 
′, x :� , 
,�B 
 tu :A

A

�× 
′ × 
×�B �×�B × 
′ × 
×�B �× [�,A]

�× [�,A]

�× 
′ × 1× 
×�B �× 
′ ×� × 
×�B �×�B × 
′ ×� × 
×�B

≈

d

Id×(r/x)t

u×(r/x)t
ε�

u×Id

Id×r×Id d

u×t

Id×t

This diagram commutes by the induction hypothesis and the functoriality of the product.

• �
′, x :� ,�,�B 
 u :� 
,�B 
 t :�⇒A

�′, x :� ,�, 
,�B 
 tu :A
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Analogous to previous case.

• �,�B 
 u : S� 
′, x :� , 
,�B 
 t : S(�⇒A)
�, 
′, x :� , 
,�B 
 tu : SA

�× 
′ × 
×�B �× 
′ × 1× 
×�B �× 
′ ×� × 
×�B

�×�B × 
′ × 
×�B US�×US[�,A] �×�B × 
′ ×� × 
×�B

U(S�⊗ S[�,A]) US(�× [�,A]) USA

≈

d

Id×r×Id

d
u×(r/x)t

n

u×t

Um USε�

This diagram commutes by the induction hypothesis and the functoriality of the product.

• �
′, x :� ,�,�B 
 u : S� 
,�B 
 t : S(�⇒A)

�′x :� ,�, 
,�B 
 tu : SA
Analogous to previous case.

• 

′, x :� , 
,�B 
 t :� �,�B 
 u :ϒ

′, x :� , 
,�,�B 
 t × u :�×ϒ


′ × 
×�×�B 
′ × 
×�B ×�×�B �×ϒ


′ × 1× 
×�×�B 
′ ×� × 
×�×�B 
′ ×� × 
×�B ×�×�B

≈
d (r/x)t×u

Id×r×Id d

t×u

This diagram commutes by the induction hypothesis and coherence results.

• 
,�
B 
 t :� �′, x :� ,�,�B 
 u :ϒ


,�′, x :� ,�,�B 
 t × u :�×ϒ
Analogous to previous case.

• 
′, x :� , 
 
 t :Bn


′, x :� , 
 
 head t :B


′ × 
 Bn B


′ × 1× 
 
′ ×� × 


≈

(r/x)t head

Id×r×Id
t

This diagram commutes by the induction hypothesis.

• 
′, x :� , 
 
 t :Bn


′, x :� , 
 
 tail t :Bn−1


′ × 
 Bn Bn−1


′ × 1× 
 
′ ×� × 


≈

(r/x)t tail

Id×r×Id
t

This diagram commutes by the induction hypothesis.
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• 
′, x :� , 
 
 t : S(S�×ϒ)

′, x :� , 
 
⇑r t : S(�×ϒ)


′ × 
 US(US�×ϒ) US(US�×US(ϒ)) US(U(S�⊗ S(ϒ))


′ × 1× 
 
′ ×� × 
 US(�×ϒ) USUS(�×ϒ)

≈

(r/x)t U(Id×n) U(n)

USU(m)
Id×r×Id

t

μ

This diagram commutes by the induction hypothesis.

• 

′, x :� , 
 
 t : S(�× S(ϒ))

′, x :� , 
 
⇑	 t : S(�×ϒ)
Analogous to previous case.

•

′, x :� , 
 
 ti :A i= 1, . . . , n

∑n
i=1 pi = 1


′, x :� , 
 
 �n
i=1 {pi}ti :A


′ × 
 (
′ × 
)n An D(A)


′ × 1× 
 
′ ×� × 
 (
′ ×� × 
)n

δ

≈

∏n
i=1 (r/x)ti d{pi}i

Id×r×Id δ

∏n
i=1 ti

This diagram commutes by the induction hypothesis.

Theorem 3.22 (Soundness). If 
 t :A, and t −→ r, then �
 t :A� = �
 r :A�.
Proof. By induction on the rewrite relation, using the first derivable type for each term. We take
the rules αI and +I withm= 1, the generalization is straightforward.

• (comm) (t + r)= (r + t). We have

 t : SA 
 r : SA


 (t + r) : SA and 
 r : SA 
 t : SA

 (r + t) : SA

Then

1 12 USA2 USA×USA USA≈

t×r

r×t
Id +

This diagram commutes by the commutativity of sum in SA as vector space.
• (assoc) ((t + r)+ s)= (t + (r + s)). We have


 t : SA 
 r : SA

 (t + r) : SA 
 s : SA


 ((t + r)+ s) : SA
and 
 t : SA


 r : SA 
 s : SA

 (r + s) : SA


 (t + (r + s)) : SA
Then
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1 13 USA3 USA3 USA

USA3 USA2 USA2

≈ t×r×s

g0×Id

Id×g0

Id×+
+×Id Id

+

This diagram commutes by the associativity of sum in SA as vector space.
• (βb) If b has type Bn and b ∈ B, then (λx:Bn.t)b−→ (b/x)t. We have

x :Bn 
 t :A

 λx:Bn.t :Bn ⇒A 
 b :Bn


 (λx:Bn.t)b :A
and 
 (b/x)t :A

Then

12 Bn × [Bn, 1×Bn]≈Bn × [Bn,Bn] Bn × [Bn,A]

1 A

b×ηBn Id×[Id,t]

ε≈
(b/x)t

This diagram commutes using Lemma 3.21.
• (βn) If u has type S� , then (λx:S� .t)u−→ (u/x)t. We have

x : S� 
 t :A

 λx:S� .t : S� ⇒A 
 u : S�


 (λx:S� .t)u :A
and 
 (b/x)t :A

Then

12 US� × [US� , 1×US�]≈US� × [US� ,US�] S� × [S� ,A]

1 A

u×ηUS� Id×[Id,t]

ε≈
(b/x)t

This diagram commutes using Lemma 3.21.
• (lin+

r ) If t has type Bn ⇒A, then t(u+ v)−→ tu+ tv. We have


 t :Bn ⇒A

 t : S(Bn ⇒A)


 u : SBn 
 v : SBn


 u+ v : SBn


 t(u+ v) : SA

and


 t :Bn ⇒A

 t : S(Bn ⇒A) 
 u : SBn


 tu : SA


 t :Bn ⇒A

 t : S(Bn ⇒A) 
 v : SBn


 tv : SA

 tu+ tv : SA
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USBn ×US([Bn,A]) U(SBn ⊗ S([Bn,A])) USA

(USBn)2 ×US([Bn,A]) US(Bn × [Bn,A]) USA2

(USBn)2 × [Bn,A] USA2

13 US(Bn × [Bn,A])2

1 U(SBn ⊗ S([Bn,A]))2

14 (USBn × [Bn,A])2 (USBn ×US([Bn,A]))2

n

U(m)+×Id
US(εBn ) +

g0×η g0

u×v×t US(εBn )2

≈

≈ U(m)2

u×t×v×t (Id×η)2
n2

The mappings are as follows:
∗ �→ (∗, ∗, ∗) �→ (u, v, t) �→ (u, v, t) �→ (u+ v, t) �→ (u+ v)⊗ t = u⊗ t + v⊗ t �→
(u, t)+ (v, t) �→ t(u)+ t(v)
∗ �→ (∗, ∗, ∗, ∗) �→ (u, t, v, t) �→ (u, t, v, t) �→ (u⊗ t, v⊗ t) �→ (u, t, v, t) �→ (t(u), t(v)) �→
(t(u), t(v)) �→ t(u)+ t(v)

• (linαr ) If t has type Bn ⇒A, then t(α.u)−→ α.(tu). We have


 t :Bn ⇒A

 t : S(Bn ⇒A)


 u : SBn


 α.u : SBn


 t(α.u) : SA
and


 t :Bn ⇒A

 t : S(Bn ⇒A) 
 u : SBn


 tu : SA

 α.(tu) : SA

Then

U(SBn ⊗ I)×US[Bn,A] U(SBn ⊗ I)×US[Bn,A] USBn ×US[Bn,A]

USBn × [Bn,A] U(SBn ⊗ S[Bn,A])

12 US(Bn × [Bn,A])

USBn × [Bn,A] U(SA⊗ I) USA

USBn ×US[Bn,A] U(SA⊗ I)

U(SBn ⊗ S[Bn,A]) US(Bn × [Bn,A]) USA

U(Id⊗α)×Id Uλ−1×Id

nUλ×η

Umu×t

u×t USεBn

Id×η

Uλ−1

n

U(Id⊗α)

Um USεBn
Uλ

The mappings are as follows:
(∗, ∗) �→ (u, t) �→ (u⊗ 1, t) �→ (u⊗ α, t) �→ (α.u, t) �→ α.u⊗ t = α.(u⊗ t) �→ α.(u, t) �→
α.t(u)
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(∗, ∗) �→ (u, t) �→ (u, t) �→ u⊗ t �→ (u, t) �→ t(u) �→ t(u)⊗ 1 �→ t(u)⊗ α �→ α.t(u)
• (lin0r ) If t has type Bn ⇒A, then t
0SBn −→ 
0SA. We have


 t :Bn ⇒A

 t : S(Bn ⇒A) 
 
0SBn : SBn


 t
0SBn : SA
and 
 
0SA : SA

Then

USBn × [Bn,A] USBn ×US([Bn,A]) U(SBn ⊗ S([Bn,A]))

12 US(Bn × [Bn,A])

1 USA

Id×η n

U(m)
̂0×t

US(εBn )
λx.0

≈

The mappings are as follows:
∗ �→ (∗, ∗) �→ (
0, t) �→ (0, t) �→ 
0⊗ t = 
0 �→ 
0 �→ 
0
∗ �→ 
0

• (lin+
	 ) (t + u)v−→ (tv+ uv). We have


 t : S(� ⇒A) 
 u : S(� ⇒A)

 (t + u) : S(� ⇒A) 
 v : S�


 (t + u)v : SA
and


 t : S(� ⇒A) 
 v : S�

 tv : SA


 u : S(� ⇒A) 
 v : S�

 uv : SA


 (tv+ uv) : SA
Then

US� ×US([� ,A])2 US� ×US([� ,A])2 US� ×US([� ,A])

13 U(S� ⊗ S([� ,A]))

1 US(� × [� ,A])

14 USA

(US� ×US([� ,A]))2 USA2

U(S� ⊗ S([� ,A]))2 US(� × [� ,A])2

Id×g0 Id×+

nv×t×u

U(m)

≈

≈

US(ε� )

v×t×v×u

n2

+

U(m)2
US(ε� )2

The mappings are as follows:
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∗ �→ (∗, ∗, ∗) �→ (v, t, u) �→ (v, t, u) �→ (v, t + u) �→ v⊗ (t + u)= v⊗ t + v⊗ u �→
(v, t)+ (v, u) �→ t(v)+ u(v)
∗ �→ (∗, ∗, ∗, ∗) �→ (v, t, v, u) �→ (v⊗ t, v⊗ u) �→ (v, t, v, u) �→ (t(v), u(v)) �→ t(v)+ u(v)

• (linα	 ) (α.t)u−→ α.(tu). We have


 t : S(� ⇒A)

 α.t : S(� ⇒A) 
 u : S�


 (α.t)u : SA
and


 t : S(� ⇒A) 
 u : S�

 tu : SA


 α.(tu) : SA
Then

US� ×U(S([� ,A])⊗ I) US� ×US([� ,A]) U(S� ⊗ S([� ,A]))

US� ×U(S([� ,A])⊗ I) US(� × [� ,A])

US� ×US([� ,A]) U(SA⊗ I) USA

12 U(SA⊗ I) USA

US� ×US([� ,A]) U(S� ⊗ S([� ,A])) US(� × [� ,A])

Id×U(λ−1) n

U(m)Id×U(Id⊗α)

S(ε� )Id×U(λ)
U(λ−1)

u×t

u×t Id×α

U(λ)

n U(m)
US(ε� )

The mappings are as follows:
(∗, ∗) �→ (u, t) �→ (u, t ⊗ 1) �→ (u, t ⊗ α) �→ (u, α.t) �→ u⊗ (α.t)= α.(u⊗ t) �→ α.(u, t) �→
α.t(u)
(∗, ∗) �→ (u, t) �→ u⊗ t �→ (u, t) �→ t(u) �→ t(u)⊗ 1 �→ t(u)⊗ α �→ α.t(u)

• (lin0	) 
0S(Bn⇒A)t −→ 
0SA. We have


 
0S(Bn⇒A) : S(Bn ⇒A) 
 t : SBn


 
0S(Bn⇒A)t : SA
and 
 
0SA : SA

Then

USBn ×US([Bn,A]) U(SBn ⊗ S([Bn,A]))

12 US(Bn × [Bn,A])

1 USA

n

U(m)t×λx.
0

US(ε� )≈

̂0

The mappings are as follows:
∗ �→ (∗, ∗) �→ (t, 
0) �→ t ⊗ 0= 
0 �→ 
0 �→ 
0
∗ �→ 
0

• (if1) |1〉?t·r −→ t. We have

 t :A 
 r :A

 ?t·r :B⇒A 
 |1〉 :B


 |1〉?t·r :A
and 
 t :A
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Then

12 B× [B,A]

1 A

λx.|1〉×curry(uncurry(ft,r)◦swap)

ε≈
t

Notice that curry(uncurry(ft,r) ◦ swap) transforms the arrowB
ft,r−→ [1,A] (which is the arrow

|0〉 �→ r, |1〉 �→ t) into an arrow 1−→ [B,A], and hence, ˆ|1〉 × curry(uncurry(ft,r) ◦ swap) ◦
ε= t.

• (if0) Analogous to (if1).
• (head) If h �= u× v, and h ∈ B, head h× t −→ h. We have


 h :B 
 t :Bn−1


 h× t :Bn


 head h× t :B
and 
 h :B

Then

12 Bn

1 B

h×t

head≈
h

This diagram commutes since head is just the projection πB.
• (tail) If h �= u× v, and h ∈ B, tail h× t −→ t. We have


 h :B 
 t :Bn−1


 h× t :Bn


 tail h× t :Bn−1
and 
 t :Bn−1

Then

12 Bn

1 Bn−1

h×t

tail≈
t

This diagram commutes since tail is just the projection πBn−1 .
• (neutral) (
0SA + t)−→ t. We have


 
0SA : SA 
 t : SA

 
0SA + t : SA

and 
 t : SA

Then

12 USA2 USA2

1 USA


̂0×t g0

+≈
t

The mappings are as follows:
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∗ �→ (∗, ∗) �→ (
0, t) �→ (
0, t) �→ t
∗ �→ t

• (unit) 1.t −→ t. We have


 t : SA

 1.t : SA and 
 t : SA

Then

USA U(SA⊗ I) U(SA⊗ I)

1 USA

U(λ) U(Id⊗1)

U(λ−1)t
t

The mappings are as follows:
∗ �→ t �→ t ⊗ 1 �→ t ⊗ 1 �→ 1.t = t
∗ �→ t

• (zeroα) Cases:
– If t :A with A ∈ B, 0.t −→ 
0SA. We have


 t :A

 t : SA


 0.t : SA
and 
 
0SA : SA

Then
A USA U(SA⊗ I) U(SA⊗ I)

1 USA

η Uλ U(Id⊗0)

Uλ−1t

̂0

The mappings are as follows:
∗ �→ t �→ t �→ t ⊗ 1 �→ t ⊗ 0= 
0 �→ 
0
∗ �→ 
0

– If t : SA and t � :A, 0.t −→ 
0SA. We have


 t : SA

 0.t : SA and 
 
0SA : SA

Then
USA U(SA⊗ I) U(SA⊗ I)

1 USA

Uλ U(Id⊗0)

Uλ−1t

̂0

The mappings are as follows:
∗ �→ t �→ t ⊗ 1 �→ t ⊗ 0= 
0 �→ 
0
∗ �→ 
0

• (zero) α.
0SA −→ 
0SA. We have


 
0SA : SA

 α.
0SA : SA

and 
 
0SA : SA

Then
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USA U(SA⊗ I) U(SUSA⊗ I)

1 USA

U(λ) U(Id⊗α)

U(λ−1)
̂0

̂0

The mappings are as follows:
∗ �→ 
0 �→ 
0⊗ 1 �→ 
0⊗ α = 
0 �→ 
0
∗ �→ 
0

• (prod) α.(β .t)−→ (αβ).t. We have

 t : SA


 β .t : SA

 α.(β .t) : SA

and 
 t : SA

 (αβ).t : SA

Then

U(SA⊗ I) U(SA⊗ I) USA

USA U(SA⊗ I)

1 U(SA⊗ I)

USA U(SA⊗ I) U(SA⊗ Id) USA

U(Id⊗β) U(λ−1)

U(λ)U(λ)

U(Id⊗α)

t

t

U(λ−1)
U(λ) U(Id⊗(α.β)) U(λ−1)

The mappings are as follows:
∗ �→ t �→ t ⊗ 1 �→ t ⊗ β �→ β .t �→ β .t ⊗ 1 �→ β .t ⊗ α �→ α.(β .t)= (α.β).t
∗ �→ t �→�→ t ⊗ 1 �→ t ⊗ (α.β) �→ (α.β).t

• (αdist) α.(t + u)−→ α.t + α.u. We have

 t : SA 
 u : SA


 t + u : SA

 α.(t + u) : SA

and

 t : SA


 α.t : SA

 u : SA


 α.u : SA

 α.t + α.u : SA

Then

USA2 USA U(SA⊗ I)

USA2 U(SA⊗ I)2 U(SA⊗ Id)

12 U(SA⊗ I)2 USA

1 USA2

+ U(λ)

U(Id⊗α)
U(λ)2

g0

U(Id⊗α) U(λ−1)t×u

U(λ−1)2≈ +

The mappings are as follows:
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(t, u) �→ (t, u) �→ t + u �→ (t + u)⊗ 1 �→ (t + u)⊗ α �→ α.t + α.u
(t, u) �→ (t ⊗ 1, u⊗ 1) �→ (t ⊗ α, u⊗ α) �→ (α.t, α.u) �→ α.t + α.u

• (fact) (α.t + β .t)−→ (α+ β).t. We have


 t : SA

 α.t : SA


 t : SA

 β .t : SA


 (α.t + β .t) : SA
and 
 t : SA


 (α+ β).t : SA

Then

U(SA⊗ I)2 U(SA⊗ I)2

USA2 USA2

12 USA2

1 USA

USA U(SA⊗ I) U(SA⊗ I)

U(Id⊗α)×U(Id⊗β)

U(λ−1)2U(λ)2

g0t2

+

t

≈

U(λ) U(Id⊗(α+β))
U(λ−1)

The mappings are as follows:
∗ �→ (∗, ∗) �→ (t, t) �→ (t ⊗ 1, t ⊗ 1) �→ (t ⊗ α, t ⊗ β) �→ (α.t, β .t) �→ (α.t, β .t) �→ (α + β).t
∗ �→ t �→ t ⊗ 1 �→ t ⊗ (α + β) �→ (α+ β).t

• (fact1) (α.t + t)−→ (α+ 1).t. We have


 t : SA

 α.t : SA


 t : SA

 t : SA


 (α.t + t) : SA
and 
 t : SA


 (α+ 1).t : SA

Then

U(SA⊗ I)×USA U(SA⊗ I)×USA

USA2 USA2

12 USA2

1 USA

USA U(SA⊗ I) U(SA⊗ I)

U(Id⊗α)×Id

U(λ−1)×IdU(λ)×Id

g0t2

+

t

≈

U(λ) U(Id⊗(α+1))
U(λ−1)

The mappings are as follows:
∗ �→ (∗, ∗) �→ (t, t) �→ (t ⊗ 1, t) �→ (t ⊗ α, t) �→ (α.t, t) �→ (α.t, t) �→ (α + 1).t
∗ �→ t �→ t ⊗ 1 �→ t ⊗ (α + 1) �→ (α+ 1).t
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• (fact2) (t + t)−→ 2.t. We have

 t : SA 
 t : SA


 (t + t) : SA and 
 t : SA

 2.t : SA

Then

12 USA2 USA2

1 USA

USA U(SA⊗ I) U(SA⊗ I)

t×t g0

+≈

t
U(λ) U(Id⊗2)

U(λ−1)

The mappings are as follows:
∗ �→ (∗, ∗) �→ (t, t) �→ (t, t) �→ 2.t
∗ �→ t �→ t ⊗ 1 �→ t ⊗ 2 �→ 2.t

• (dist+r ) ⇑r ((r + s)× u)−→⇑r (r × u)+ ⇑r (s× u).
We have


 r : S� 
 s : S�

 r + s : S� 
 u :�

 (r + s)× u : S� ×�


 (r + s)× u : S(S� ×�)

⇑r ((r + s)× u) : S(� ×�)

and


 r : S� 
 u :�

 r × u : S� ×�


 r × u : S(S� ×�)

⇑r (r × u) : S(� ×�)


 s : S� 
 u :�

 s× u : S� ×�


 s× u : S(S� ×�)

⇑r (s× u) : S(� ×�)


⇑r (r × u)+ ⇑r (s× u) : S(� ×�)
Then

US� ×� US(US� ×�) US(US�)×US�

US�2 ×� US(U(S� ⊗ S�))

US�2 ×� USUS(� ×�)

13 ≈ 1≈ 14 US(� ×�)

(US� ×�)2 US(� ×�)2

US(US� ×�)2 US(� ×�)2

US(US� ×US�)2 US(U(S� ⊗ S�))2 USUS(� ×�)2

η U(Id×η)

US(n)+×Id

USU(m)g0×Id

μr×s×u

r×u×s×u

η2

+

U(Id×η)2

g0

US(n)2 USU(m)2
μ2

The mappings are as follows:
∗ �→ (∗, ∗, ∗) �→ (r, s, u) �→ (r, s, u) �→ (r + s, u) �→ (r + s, u) �→ (r + s, u)

�→ (r + s)⊗ u= (r ⊗ u)+ (s⊗ u) �→ (r, u)+ (s, u) �→ (r, u)+ (s, u)
∗ �→ (∗, ∗, ∗, ∗) �→ (r, u, s, u) �→ (r, u, s, u) �→ (r, u, s, u)

�→ (r ⊗ u, s⊗ u) �→ (r, u, s, u) �→ (r, u, s, u) �→ (r, u, s, u) �→ (r, u)+ (s, u)

• (dist+	 ) ⇑	 u× (r + s)−→⇑	 (u× r)+ ⇑	 (u× s). Analogous to case (dist+r )
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• (distαr ) ⇑r (α.r)× u−→ α.⇑r r × u. We have


 r : S�

 α.r : S� 
 u :�

 (α.r)× u : S� ×�


 (α.r)× u : S(S� ×�)

⇑r (α.r)× u : S(� ×�)

and


 r : S� 
 u :�

 r × u : S� ×�


 r × u : S(S� ×�)

⇑r (r × u) : S(� ×�)

 α.⇑r r × u : S(� ×�)

Then

US� ×� US(US� ×�)

U(S� ⊗ I)×� US(US� ×US�)

U(S� ⊗ I)×� US(U(S� ⊗ S�))

US� ×� USUS(� ×�)

12 US(� ×�)

US� ×� U(S(� ×�)⊗ I)

US(US� ×�) U(S(� ×�)⊗ I)

US(US� ×US�) US(� ×�)

US(U(S� ⊗ S�)) USUS(� ×�)

η

U(Id×η)U(λ−1)×Id

US(n)U(Id⊗α)×Id

USU(m)U(λ)×Id

μ

r×u

r×u

η

U(λ−1)

U(Id×η)

U(Id⊗α)

US(n)

U(λ)

USU(m)
μ

The mappings are as follows:
(∗, ∗) �→ (r, u) �→ (r ⊗ 1, u) �→ (r ⊗ α, u) �→ (α.r, u) �→ (α.r, u) �→ (α.r, u) �→ α.r ⊗ u �→
α.(r, u) �→ α.(r, u)
(∗, ∗) �→ (r, u) �→ (r, u) �→ (r, u) �→ r ⊗ u �→ (r, u) �→ (r, u) �→ (r, u)⊗ 1 �→ (r, u)⊗ α �→
α.(r, u)

• (distα	 ) ⇑	 u× (α.r)−→ α.⇑	 u× r. Analogous to case (distαr ).
• (dist0r ) If u has type�, ⇑r 
0S� × u−→ 
0S(�×�). We have


 
0S� : S� 
 u :�

 
0S� × u : S� ×�


 
0S� × u : S(S� ×�)

⇑r 
0S� × u : S(� ×�)

and 
 
0S(�×�) : S(� ×�)

Then
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1≈ 12 US� ×� US(US� ×�) US(US� ×US�)

US(� ×�) USUS(� ×�) USU(S� ⊗ S�)


̂0×u


̂0

η US(Id×η)

USn

μ USUm

The mappings are as follows:
∗ �→ (∗, ∗) �→ (
0, u) �→ (
0, u) �→ (
0, u) �→ 
0⊗ u= 
0 �→ 
0 �→ 
0
∗ �→ 
0

• (dist0	) If u has type� , ⇑	 u× 
0S� −→ 
0S(�×�). Analogous to case (dist0r ).
• (dist+⇑ ) ⇑ (t + u)−→ (⇑ t+ ⇑ u). We only give the details for ⇑r , the case ⇑	 is analogous.


 t : S(S� ×�) 
 u : S(S� ×�)

 t + u : S(S� ×�)


⇑r (t + u) : S(� ×�)
and


 t : S(S� ×�)

⇑r t : S(� ×�)


 u : S(S� ×�)

⇑r u : S(� ×�)


⇑r t+ ⇑r u : S(� ×�)
Then

(US(US� ×�))2 US(US� ×�) US(US� ×US�)

(US(US� ×�))2 (US(US� ×US�))2 USU(S� ⊗ S�)

1× 1 (USU(S� ⊗ S�))2 USUS(� ×�)

(USUS(� ×�))2 US(� ×�)

(US(� ×�))2 US(� ×�)2

+ U(Id×η)

USng0

(U(Id×η))2

(USn)2 USUmt×u

(USUm)2 μ

μ2

g0

+

The mappings are as follows. For i= 1, . . . ,m, let ai =∑
ki γiki .aiki , t =

∑n
i=1 βi(ai, bi) and

u=∑m
i=n+1 βi(ai, bi). To avoid a more cumbersome notation, we only consider the case

where � and � do not have an S in head position, and we omit the steps not modifying
the argument.

(t, u) �→ t + u �→
m∑
i=1

βi.ai ⊗ bi =
m∑
i=1

βi.
∑
ki

γiki .(aiki ⊗ bi)

�→
m∑
i=1

βi.
∑
ki

γiki .(aiki , bi) �→
m∑
i=1

∑
ki

βi.γiki .(aiki , bi)

(t, u) �→
( n∑

i=1
βi.ai ⊗ bi,

m∑
i=n+1

βi.ai ⊗ bi

)

�→
⎛
⎝ n∑

i=1
βi.
∑
ki

γiki .(aiki , bi),
m∑

i=n+1
βi.
∑
ki

γiki .(aiki , bi)

⎞
⎠
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�→
⎛
⎝ n∑

i=1

∑
ki

βi.γiki .(aiki , bi),
m∑

i=n+1

∑
ki

βi.γiki .(aiki , bi)

⎞
⎠

�→
m∑
i=1

∑
ki

βi.γiki .(aiki , bi)

• (distα⇑) ⇑ (α.t)−→ α.⇑ t. We only give the details for ⇑r , the case ⇑	 is similar.


 t : S(S� ×�)

 α.t : S(S� ×�)


⇑r (α.t) : S(� ×�)
and


 t : S(S� ×�)

⇑r t : S(� ×�)


 α.⇑r t : S(� ×�)

Then

U(S(US� ×�)⊗ I) US(US� ×�) US(US� ×US�)

U(S(US� ×�)⊗ I) USU(S� ⊗ S�)

US(US� ×�) US(US� ×US�) USUS(� ×�)

1 USU(S� ⊗ S�) US(� ×�)

US(� ×�) USUS(� ×�) U(S(� ×�)⊗ I)

U(S(� ×�)⊗ I)

Uλ−1 U(Id×η)

USnU(Id⊗α)

USUmUλ
U(Id×η)

USn μt

USUm

Uλ
μ

Uλ−1

US(Id⊗α)

The mappings are as follows. For i= 1, . . . ,m, let ai =∑
ki γiki .aiki and t =∑

i βi.(ai, bi). To
avoid a more cumbersome notation, we only consider the case where � and � do not have
an S in head position, and we omit the steps not modifying the argument.

t �→ t ⊗ 1 �→ t ⊗ α = (
∑
i
βi.(ai, bi))⊗ α =

∑
i
αβi.(ai, bi) �→

∑
i
αβi.(ai ⊗ bi)

=
∑
i
αβi.

∑
ki

γiki .(aiki ⊗ bi) �→
∑
i
αβi.

∑
ki

γiki .(aiki , bi) �→
∑
i

∑
ki

αβiγiki .(aiki , bi)

t �→
∑
i
βi.(ai ⊗ bi)=

∑
i
βi.
∑
ki

γiki .(aiki ⊗ bi) �→
∑
i
βi.
∑
ki

γiki .(aiki , bi)

�→
∑
i

∑
ki

βiγiki .(aiki , bi) �→ (
∑
i

∑
ki

βiγiki .(aiki , bi))⊗ 1 �→ (
∑
i

∑
ki

βiγiki .(aiki , bi))⊗ α

= α.
∑
i

∑
ki

βiγiki .(aiki , bi) �→
∑
i

∑
ki

αβiγiki .(aiki , bi)
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• (dist0⇑r) ⇑r 
0S(S(S�)×�) −→⇑r 
0S(S�×�). We have


 
0S(SS�×�) : S(SS� ×�)

⇑r 
0S(SS�×�) : S(S� ×�)

and

 
0S(S�×�) : S(S� ×�)

 
0S(S�×�) : S(SS� ×�)

⇑r 
0S(S�×�) : S(S� ×�)

Then

1 US(US(US�)×�) US(US(US�)×US�)

US(US� ×�)

USUS(US� ×�) US(U(S(US�)⊗ S�))


̂0

̂0

US(Id×η)

US(n)

η

μ

USU(m)

Both mappings start with ∗ �→ 
0, and then continue mapping, by linearity, to 
0.
• (dist0⇑	) ⇑	 
0S(�×SS�) −→⇑	 
0S(�×S�). Analogous to case (dist0⇑r).
• (neut⇑0r) ⇑r 
0S(SBn×�) −→ 
0S(Bn×�). We have


 
0S(SBn×�) : S(SBn ×�)

⇑r 
0S(SBn×�) : S(Bn ×�)

and 
 
0S(Bn×�) : S(Bn ×�)

Then

1 US(USBn ×�) US(USBn ×US�)

US(Bn ×�) USUS(Bn ×�) US(U(SBn ⊗ S�))

λx.0


̂0

U(Id×η)

US(n)

μ USU(m)

Both mappings start with ∗ �→ 
0, and then continue mapping, by linearity, to 
0.
• (neut⇑0	) ⇑	 
0S(�×SBn) −→ 
0S(�×Bn). Analogous to case (neut

⇑
0r).

• (neut⇑r ) If u ∈ B, ⇑r u× v−→ u× v. We have

 u :�

 u : S� 
 v :�

 u× v : S� ×�


 u× v : S(S� ×�)

⇑r u× v : S(� ×�)

and

 u :� 
 v :�

 u× v :� ×�


 u× v : S(� ×�)

Then

1≈ 12 � ×� US� ×� US(US� ×�)

US(� ×�) USUS(� ×�) US(U(S� ⊗ S�)) US(US� ×US�)

u×v

η

η×Id η

U(Id×η)

μ USU(m) US(n)

Both mappings are the identity, so we do not give the mappings. Notice that even if v is a
linear combination, the η on� will freeze its linearity by considering it as a basis vector in a
new vector space US� having� as base.
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• (neut⇑	 ) If v ∈ B, ⇑	 u× v−→ u× v. Analogous to case (neut⇑r ).

• (proj) πj |ψ〉 −→
2j−1�
k=0

{pk}(
∣∣k〉× |φk〉 ),

where

|ψ〉 =
n∑
i=1

[αi.]
m∏
h=1

∣∣bhi〉
∣∣k〉= ∣∣b1〉× · · · × ∣∣bj〉 where b1 . . . bj is the binary representation of k

|φk〉 =
∑
i∈Tk

βik.
m∏

h=j+1

∣∣bhi〉

βik =

⎛
⎜⎜⎝ αi√∑

r∈Tk
|αr|2

⎞
⎟⎟⎠ and pk =

∑
i∈Tk

⎛
⎜⎜⎝ |αi|2

n∑
r=1

|αr|2

⎞
⎟⎟⎠

with Tk = {i≤ n | ∣∣b1i〉× · · · × ∣∣bji〉= ∣∣k〉}.
We have


 ∣∣b11〉 :B . . . 
 ∣∣bm1
〉 :B



m∏
h=1

∣∣bh1〉 :Bm



m∏
h=1

∣∣bh1〉 : SBm


 [αi.]
m∏
h=1

∣∣bh1〉 : SBm . . .


 ∣∣b1n〉 :B . . . 
 ∣∣bmn
〉 :B



m∏
h=1

∣∣bhn〉 :Bm



m∏
h=1

∣∣bhn〉 : SBm


 [αn.]
m∏
h=1

∣∣bhn〉 : SBm


 |ψ〉 : SBm


 πj |ψ〉 :Bj × SBm−j

and


 ∣∣k〉 :Bj


 ∣∣bj+1,i1
〉 :B . . . 
 ∣∣bm,i1

〉 :B



m∏
h=j+1

∣∣bhi1 〉 :Bm−j



m∏

h=j+1

∣∣bhi1 〉 : SBm−j


 βi11.
m∏

h=j+1

∣∣bhi1 〉 : SBm−j . . .



∣∣∣bj+1,i2j−1

〉
:B . . . 


∣∣∣bm,i2j−1

〉
:B



m∏

h=j+1

∣∣∣bhi2j−1

〉
:Bm−j



m∏

h=j+1

∣∣∣bhi2j−1

〉
: SBm−j


 βi2j−12
j−1.

m∏
h=j+1

∣∣∣bhi2j−1

〉
: SBm−j


 |φk〉 : SBm−j


 ∣∣k〉× |φk〉 :Bj × SBm−j



2j−1�
k=1

{pk}(
∣∣k〉× |φk〉 ) :Bj × SBm−j
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The following diagram, where

� = �
 |ψ〉 : SBm� and Pk =
�

 ∣∣k〉× |φk〉 : Bj × SBm−j

�
commutes.

1≈ 12j (Bj ×USBm−j)2j

USBm D(Bj ×USBm−j)

�

P0×···×P2j−1

d{pk}k
πj

Indeed

πj ◦� =
2j−1∑
k=0

pkχπjk|ψ〉 = d{pk}k ◦
⎛
⎝2j−1∏

k=0

Pk

⎞
⎠

• (proj
0) πj
0SBn −→ |0〉×n. We have


 
0SBn : SBn


 πj
0SBn :Bj × SBn−j and 
 |0〉 :B · · · 
 |0〉 :B

 |0〉j :Bj


 |0〉 :B · · · 
 |0〉 :B

 |0〉n−j :Bn−j


 |0〉n−j : SBn−j


 |0〉n :Bj × SBn−j

Then

1n ≈ 1 USBn

Bn Bj ×USBn−j


̂0

ˆ|0〉n πj

Id×ηn−j

The mappings are as follows:
∗ �→ 
0 �→ |0〉n
∗ ≈ ∗n �→ |0〉n �→ |0〉n

• Contextual rules Trivial by composition law.

Lemma 3.24. If 
 t :A then t ∈ CA.

Proof. We prove, more generally, that if 
 
 t :A and σ � 
, then σ t ∈ CA. We proceed by struc-
tural induction on the derivation of 
 
 t :A. In order to avoid cumbersome notation, we do not
take the closure by parallelism into account, except when needed. The extension of this proof to
such a closure is straightforward.

• Let 
B, x :� 
 x :� as a consequence of rule Ax. Since σ � 
B, x :� , we have σx ∈ C� .
• Ax
0, Ax|0〉 and Ax|1〉 are trivial since, by definition 
0SA ∈ CSA, |0〉 ∈ CB and |1〉 ∈ CB.
• Let 
 
 α.t : SA as a consequence of 
 
 t : SA and rule αI . By the IH, σ t ∈ CSA, hence, by
definition α.σ t = σα.t ∈ CSA.

• Let 
,�,�B 
 (t + u) : SA as a consequence of 
,�B 
 t : SA, �,�B 
 u : SA, and rule +I .
By the IH, σ1σ t, σ2σu ∈ CSA, hence, by definition σ1σ t + σ2σ t = σ1σ2σ (t + u) ∈ CSA.
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• Let 
 
 πjt :Bj × SBn−j as a consequence of 
 
 t : SBn and rule SE. By the IH, σ t ∈ CSBn =
SCBn ∪ {
0SBn}. Then, σ t ∈ S{|0〉 , |1〉}n, so σ t −→∗ ∑

i αi
∣∣bi1〉× · · · × ∣∣bin〉, with bij = 0 or

bij = 1. Therefore, πjσ t −→∗ πj
∑

i αi
∣∣bi1〉× · · · × ∣∣bin〉→ ∣∣b′

1
〉× . . .

∣∣∣b′
j

〉
×∑

i βi

∣∣∣b′
i,j+1

〉
×

· · · × ∣∣b′
in
〉 ∈ {|0〉 , |1〉}j × {|0〉 , |1〉}n−j ⊆ CBj×SBn−j .

• Let 
 
 ?t·r :B⇒A as a consequence of 
 
 t :A, 
 
 r :A and rule If. By the induction
hypothesis, σ t ∈ CA and σ r ∈ CA. Hence, for any s ∈ CB, s?σ t·σ r reduces either to σ t or to
σ r, hence it is in CA, therefore, ?σ t·σ r ∈ CB⇒A.

• Let 
 
 λx:� .t :� ⇒A as a consequence of 
, x :� 
 t :A and rule ⇒I . Let r ∈ C� .
Then, σ (λx:� .t)r = (λx:� .σ t)r → (r/x)σ t. Since (r/x)σ t � 
, x:� , we have, by the IH, that
(r/x)σ t ∈ CA. Therefore, λx:� .t ∈ C�⇒A.

• Let�, 
,�B 
 tu :A as a consequence of�,�B 
 u :� , 
,�B 
 t :� ⇒A and rule ⇒E. By
the IH, σ1σu ∈ C� and σ2σ t ∈ C�⇒A. Then, by definition, σ1σ tσ2σ r = σ1σ2σ (tr) ∈ CA.

• Let �, 
,�B 
 tu : SA as a consequence of �,�B 
 u : S� , 
,�B 
 t : S(� ⇒A) and rule
⇒ES. By the IH σ1σ t ∈ CS(�⇒A) = SC�⇒A ∪ {
0S(�⇒A)} and σ2σu ∈ CS� = SC� ∪ {
0S�}.
Cases:
∗ σ1σ t −→∗ 
0S(�⇒A) and σ2σu→ 
0S� . Then σ1σ2σ (tu)= σ1σ tσ2σu−→∗ 
0S(�⇒A)
0S� →


0SA ∈ CSA.
∗ σ1σ t −→∗ 
0S(�⇒A) and σ2σu→∑

j βjuj, with uj ∈ C� . Then σ1σ2σ (tu)=
σ1σ tσ2σu−→∗ 
0S(�⇒A)

∑
j βjuj → 
0SA ∈ CSA.

∗ σ1σ t −→∗ ∑
i αiti with ti ∈ C�⇒A and σ2σu→ 
0S� . Then σ1σ2σ (tu)= σ1σ tσ2σu−→∗∑

i αi(ti
0S�)−→∗ 
0SA ∈ CSA.
∗ σ1σ t −→∗ ∑

i αiti with ti ∈ C�⇒A and σ2σu→∑
j βjuj, with uj ∈ C� . Then σ1σ2σ (tu)=

σ1σ tσ2σu−→∗ ∑
ij αiβjtiuj with tiuj ∈ CA, therefore, σ1σ2σ (tu) ∈ CSA.

• Let 
 
 t : SA as a consequence of 
 
 t :A and rule SI . By the IH, σ t ∈ CA ⊆ SCA ⊆ CSA.
• Let 
,�,�B 
 t × u :� ×� as a consequence of 
,�B 
 t :� , �,�B 
 u :� and rule ×I .
By the IH, σ1σ t ∈ C� and σ2σu ∈ C�, hence, σ1σ t × σ2σu= σ1σ2σ (t × u) ∈ C� × C� ⊆
C�×�.

• Let 
 
 head t :B as a consequence of 
 
 t :Bn and rule ×Er . By the IH, σ t ∈
CBn = CB × CBn−1 = {u | u−→∗ u1 × u2 with u1 ∈ CB andu2 ∈ CBn−1}. Hence, σ (head t)=
head σ t −→∗ head(u1 × u2)→ u1 ∈ CB.

• Let 
 
 tail t :Bn−1 as a consequence of 
 
 t :Bn and rule ×E	. By the IH, σ t ∈
CBn = CB × CBn−1 = {u | u−→∗ u1 × u2 with u1 ∈ CB andu2 ∈ CBn−1}. Hence, σ (tail t)=
tail σ t −→∗ tail(u1 × u2)→ u2 ∈ CBn−1 .

• Let 
 
⇑r t : S(� ×�), as a consequence of 
 
 t : S(S� ×�) and rule ⇑r . By the IH, we

have that σ t ∈ CS(S�×�). Therefore, σ t ∈ S((SC� ∪ {
0S�})× C�)∪{
0S(S�×�)}. Cases:
∗ σ t −→∗ 
0S(S�×�), then σ ⇑r t =⇑r σ t −→∗⇑r 
0S(S�×�) −→ 
0S(�×�) ∈ CS(�×�).

∗ Otherwise, σ t ∈ S((SC� ∪ {
0S�})× C�), so σ t −→∗ ∑
i αi(ri × ui) with ui ∈ C� and

ri ∈ SC� ∪ {
0S�}. Cases: If ri −→∗ 
0S� , then ⇑r ri × ui −→∗⇑r 
0S� × ui −→ 
0S(�×�) ∈
CS(�×�). If ri −→∗ ∑ni

j=1 βijrij, with rij ∈ C� . Hence, ⇑r ri × ui −→∗ ∑ni
j=1 βij ⇑r

(rij × ui) ∈ CS(�×�). Hence, if all the ri reduce to 
0S� , σ ⇑r t =⇑r σ t −→∗ 
0S(�×�).
Otherwise, let I be the set of index of ri not reducing to 
0S� , therefore,
σ ⇑r t =⇑r σ t −→∗ ∑

i αi(ri × ui)→∑
i αi ⇑r (ri × ui)−→∗ ∑

i∈I αi
∑ni

j=1 βij ⇑r
(rij × ui)−→∗ ∑

i∈I
∑ni

j=1 αiβij ⇑r (rij × ui) ∈ CS(�×�).
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• Let 
 
⇑	 t : S(� ×�) as a consequence of 
 
 t : S(� × S�) and rule ⇑	. Analogous to
previous case.

• Let 
 
 {p1}t1 ‖ · · · ‖ {pn}tn :A as a consequence of 
 
 ti :A and rule ‖. By the IH each σ ti ∈
CA, hence, by definition σ ({p1}t1 ‖ · · · ‖ {pn}tn)= {p1}σ t1 ‖ · · · ‖ {pn}σ tn ∈ CA.
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