
Two-dimensional quantum field theory in and

out of equilibrium

PhD Dissertation
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Chapter 1

Introduction

With over 120 years having passed since it was born [1], quantum theory now
enjoys a lifespan longer than that granted to the doyens of humankind. Even at
such a venerable age, the field retains much of its youthful appeal, marked by an
intriguing variety of traits. These characteristics—a counterintuitive conceptual
basis necessitating a scientific metanoia, various imposing mathematical prob-
lems inviting great computational effort, and an abundant promise in terms of
possible technical applications—have captivated generations of physicists.

Indisputably, the most renowned scientific conquests within quantum theory
are due to the description of the dynamics in terms of quantum fields in the
context of quantum field theory (QFT) [2]. Originally, QFT was developed to
study the field of atomic and subatomic physics, opening up a revolutionary
perspective on the microscopic structure of matter. The unrelenting struggle to
unveil the most fundamental aspects of the physical world resulted in one of
the most successful scientific theories, the standard model of particle physics,
housing the plethora of particles discovered in the last century. Propelled by
its success, quantum field theory soon emerged as a lingua franca of modern
theoretical physics, capturing collective traits of systems that have essentially
quantum degrees of freedom.

In particular, QFT has a long history of modelling quantum many-body dy-
namics in the field of condensed matter physics. Analogously to classical models
of statistical physics, quantum many-body systems exhibit second order phase
transitions, characterised by the divergence of the correlation length. In the de-
scription of critical phenomena, the microscopic length scale can be neglected,
and the long-wavelength modes of the lattice models are subject to a field theo-
retical description [3]. The validity of QFT reflects the universal behaviour near
the quantum critical point.

The study of quantum phase transitions is one of the most important contem-
poraneous applications of quantum field theory models. The curiosity of quantum
critical points lies in the fact that they occur in the ground state of the quantum
many-body Hamiltonian H. In other words, unlike classical ordering, quantum
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Figure 1.1: Illustration of the quantum critical region near a quantum phase tran-
sition. The quantum critical point is located at g = gc and T = 0, but universal
dynamics is expected in a broader region extending to nonzero temperatures.
Based on a similar illustration in Ref. [4].

phase transitions are zero temperature phenomena, happening at a critical value
gc of some coupling parameter g of the Hamiltonian. Nevertheless, the finger-
prints of universal behaviour captured by field theory are present for low finite
temperatures as well, outlining a quantum critical region [4], illustrated in Fig.
1.1. By probing this region, quantum critical systems can be investigated exper-
imentally.

A serious bottleneck in the observation of the quantum phases of matter is
the delicate nature of quantum correlations, which are easily subdued by ther-
mal fluctuations, long hindering the exploration of the quantum world outside
particle colliders. This motivates the focus on low-dimensional models, where
quantum fluctuations are enhanced. Coincidentally, for systems with a single
spatial dimension, it is possible to obtain exact solutions for the dynamics under
appropriate circumstances. These circumstances are the conditions for quantum
integrability, a powerful tool in the exact description of strongly interacting quan-
tum models. Quantum integrable models both on the lattice and in field theory
have provided theoretical physics with numerous illuminating results for almost
a century now [5]. The exact solutions reveal that exotic configurations of the
elementary degrees of freedom form a variety of particle-like collective excitations
in one-dimensional quantum systems.

The recent decades have witnessed several experimental breakthroughs lead-
ing to the realisation of well-known low-dimensional theoretical models, instigat-
ing a renewed interest in them. Precise experiments can now be performed on
metallic alloys with a chain-like crystalline structure on the one hand [4], and
on gases of ultracold atoms in optical traps, with manipulable dimensionality
and effective interactions on the other [6]. In particular, the cold atom experi-
ments offer an optimal setting to study isolated quantum systems, both in and
out of equilibrium. The latter aspect attracts a particularly heightened attention
from theorists, as non-equilibrium settings touch upon the very foundations of
statistical physics by explicitly probing the thermalisation of closed quantum
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systems.

The immense theoretical study triggered by modern experiments led to the
clarification of the fundamental concepts of statistical physics, especially in re-
lation to integrable systems [7]. The concurrent experimental and theoretical
works have produced a new paradigm, the quantum quench [8], to study non-
equilibrium behaviour. Quenching corresponds to the simple and experimentally
viable protocol of implementing a sudden change in the coupling parameters of
the quantum Hamiltonian. The study of the subsequent time evolution is at the
forefront of the research in the field of quantum dynamics out of equilibrium. A
parallel approach is the slow change, or ramp, of parameters near critical points,
with the aim of unveiling universal features in the dynamics [9].

In this thesis, I attempt to contribute to this line of work by advancing the
theoretical modelling of low-dimensional quantum systems both in and out of
equilibrium. As a preface, in Chapter 2 I overview the established results and
previous findings concerning the out-of-equilibrium behaviour of closed quan-
tum systems, and introduce the methodology of this thesis together with the
theoretical background and the experimental context of my work.

Chapters 3-7 discuss my main scientific results. The topic of Chapter 3 is
the exact calculation of matrix elements in the E8 integrable field theory, which
is obtained as the scaling limit of the critical Ising model under a longitudinal
magnetic field. The results, obtained through the solution of the form factor
bootstrap, find an immediate experimental application in the observation of the
exotic E8 particle spectrum in the quasi-1D anti-ferromagnetic BaCo2V2O8 ma-
terial.

In Chap. 4 I discuss the time evolution following a quantum quench in the
E8 model, where significant features of the post-quench dynamics are extracted
by comparing numerical and analytical results. Chap. 5 develops a perturbative
expansion to characterise the excitation content of the initial state following a
global quench in a quantum field theory model. The formulae are evaluated for
quenches in the E8 model, analogously to the previous chapter.

Chapter 6 presents an improvement to the numerical modelling method em-
ployed to solve the post-quench dynamics earlier. The numerical approach is
applicable in perturbed conformal field theory models, where the algorithmic
development allows for a more economic handling of the Hilbert space, while
making the method more available to a wider community of researchers.

Chap. 7 investigates the effects of ramps within the parameter space of the
Ising field theory. This specific non-equilibrium protocol is known to bring about
a universal dynamical behaviour, the Kibble–Zurek scaling, in near-critical mod-
els. My work expounds on the validity of this scaling in an interacting field the-
ory, using various observables to carry out a thorough theoretical examination.
Finally, in Chap. 8 I summarise my findings in the form of thesis statements.

Supplements, where required, are provided in the appendices in the form of
detailed calculations. Appendices A-C contain the extended calculations related
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to the form factor bootstrap, the perturbative overlaps, and the ramp dynamics,
respectively. App. D discusses the systematic improvement of data obtained from
the numerical modelling method used throughout the thesis.



Chapter 2

Low-dimensional quantum
many-body dynamics

In this chapter we outline the context of the novel results presented in this
thesis, focusing on the general traits of quantum many-body systems in one
temporal and one spatial dimensions. Firstly, we overview the theoretical ba-
sis provided by prior research regarding the non-equilibrium dynamics of closed
quantum systems in general. Secondly, we introduce the methodology of the sub-
sequent chapters by defining the specific quantum field theory we are going to use
to model the low-dimensional quantum dynamics, together with a highly efficient
numerical method. Finally, we briefly introduce the contemporary experimental
techniques, through which the discussed theoretical concepts take root within
the observable reality.

2.1 Fundamental non-equilibrium concepts

Even from a mere theoretical point of view, the study of closed quantum sys-
tems out of equilibrium is a vast subject with many branches. In this section we
identify two important strands that are fundamental to this field, and elaborate
on them in order to sketch the context of the new results in this thesis. These
two topics are the late-time dynamics, going under the name of equilibration;
and a paradigmatic protocol to realise and test non-equilibrium behaviour, the
quantum quench. Both aspects are illuminated by results coming from quantum
integrability, a field which quickly became an essential guide to contextualise
and explain non-equilibrium phenomena. In the following, we maintain a specific
focus on integrable models which play a central role in all subsequent chapters.

2.1.1 Late-time dynamics: thermalisation

The first question we expound on regarding the non-equilibrium quantum
many-body dynamics addresses the generic features of the late-time behaviour.

11
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The intuition coming from classical statistical mechanics is clear: generic classical
systems eventually approach a thermal equilibrium due to ergodicity, leading to
the equivalence of statistical and time averages. For quantum systems, thermal
states are described by the density operator corresponding to the Gibbs ensemble
(GE):

ρGE =
1

Z
e−βH =

1

Z

∑

n

e−βEn |n⟩ ⟨n| , (2.1)

which is a mixed state of the eigenstates |n⟩ of the Hamiltonian H. The mixed
nature of the Gibbs state poses a conundrum for the thermalisation of closed
quantum systems, since under unitary time evolution an initial pure state remains
pure:

ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)| =
∑

m,n

cnc
∗
me

−i(En−Em)t |n⟩ ⟨m| . (2.2)

In other words, thermalisation cannot occur at the level of the density operator
corresponding to the full system.

The first step towards the resolution of this challenge is to consider that
experimental probes of the thermalisation do not have access to the density
matrix itself, but to (a set of) observables On, so the physically meaningful
formulation of thermal equilibration is a statement on the observables:

Tr(ρ(t)On) → Tr(ρGEOn) . (2.3)

Here the limit involves time-averaging over long times and then taking the ther-
modynamic limit of infinite system size. Applying these limits to the density
operator ρ(t) itself yields the diagonal ensemble:

lim
T→∞

1

T

∫ T

0

dtρ(t) = ρDE =
∑

n

|cn|2 |n⟩ ⟨n| , (2.4)

where we assumed that the Hamiltonian H does not have an extensive set of
degeneracies, so only the diagonal contributions survive in the thermodynamic
limit, from where the equality follows. Then, to answer how (or whether) closed
quantum systems reach thermal equilibrium, one has to show that for the phys-
ically relevant observables the diagonal ensemble average is equivalent to the
predictions of the Gibbs ensemble.

To resolve this question, Deutsch [10] and Srednicki [11] proposed the eigen-
state thermalisation hypothesis (ETH), which can be summarised in the assump-
tion that in the thermodynamic limit the matrix elements of observables in the
eigenbasis of H exhibit a smooth dependence on the eigenstate energy En: [12]

⟨m| O |n⟩ = fO (En) δmn + e−S(En+Em
2 )/2gO

(
En + Em

2
, En − Em

)
Rmn , (2.5)

where fO (E) is a smooth function which coincides with the microcanonical en-
semble value, S is the entropy and Rmn are random variables with zero mean.



CHAPTER 2. LOW-DIMENSIONAL QUANTUM MANY-BODY DYNAMICS 13

On this basis, thermalisation (2.3) follows for all observables that satisfy the
ETH, assuming that the initial state have a narrow energy distribution in the
thermodynamic limit [13]. There is strong numerical evidence for the ETH in
the case of few-body operators [12], and more recent numerical and analytical
arguments for the validity of ETH of any observable confined to a subsystem
not larger than 1/2 of the system size (which is infinite in the thermodynamic
limit!) [14]. Roughly speaking, the generic understanding is that ETH is behind
the thermalisation of closed quantum systems in the sense that it holds for all
physically relevant and experimentally accessible quantities.

This reasoning explains the thermalisation of generic quantum systems, with
results completely analogous to the classical statistical mechanics, as the equilib-
rium state is given by a Gibbs ensemble. The analogy extends further, covering
the case of further conserved quantities. The late-time equilibrium state in this
case is given by a generalisation of Eq. (2.1), taking into account all the charges
Qi:

ρGGE =
1

Z

∑

i

e−βiQi , (2.6)

where the βi parameters can be calculated from the expectation value of the
charges in the initial state, by virtue of the conservation laws. The acronym
GGE stands for the generalised Gibbs ensemble, a name coined in the context
of integrable models [15], where an extensive set of charges is conserved by the
dynamics.

Integrable models are peculiar in the sense that they provide a way to create
“nonthermal” states (i.e., GGE and not GE states), however, they also often
require a fine-tuning of parameters: in realistic systems, at least a small inte-
grability breaking is always present. Nevertheless, the integrable steady state
(2.6) has profound consequences on the thermalisation of closed quantum sys-
tems through the process called prethermalisation. Prethermalisation amounts
to a separation of timescales: close to integrable systems first approach the GGE
value, and thermalise to the Gibbs ensemble much later. As it realises long-living
quantum correlations, prethermalisation is heavily studied both experimentally
[16–18] and theoretically [19–23].

2.1.2 A paradigmatic protocol: the quantum quench

Above we identified important general aspects of out-of-equilibrium quantum
dynamics. The concepts we encountered are touching upon the foundations of
statistical mechanics at the level of quantum theory, and it is desirable to have a
computationally and experimentally viable method to study them in detail—i.e.
a way to realise quantum systems with a finite energy density. A particularly
simple approach, called the quantum quench protocol, is to perform an abrupt
change in the parameters of the quantum Hamiltonian.



CHAPTER 2. LOW-DIMENSIONAL QUANTUM MANY-BODY DYNAMICS 14

Figure 2.1: The quasi-particle picture of post-quench dynamics. Left (figure from
Ref. [26]): the spreading of entanglement in a bipartite system. Subsystem A gets
entangled with the environment through the quasiparticles entering it, which
predicts SA(t) to grow linearly in time and then saturate to a finite value. Right
(figure from Ref. [27]): connected part of the density-density correlator in a free
fermionic lattice model after a global quantum quench. The nonzero part is
localised within the lightcone.

The quantum quench was introduced already in the 70’s [24], but it stepped
into the spotlight with the advent of experimentally realisable quantum Hamil-
tonians in the new millennium. The first analytical solutions were worked out in
critical models around 15 years ago [8, 25], and with subsequent works the quan-
tum quench quickly evolved to be a paradigm in the study of non-equilibrium
quantum systems. In general, quenching means time evolution with some Hamil-
tonian H such that the initial state |Ψ0⟩ is not an eigenstate of H. Although the
quench problem is in general a very broad topic, here we restrict our attention to
global quantum quenches which form the basis of Chaps. 4-5, to formulate the
protocol.

Global quenches correspond to a sudden change of parameters (say, at t = 0)
such that both the t < 0 and the t > 0 Hamiltonians (H0 and H, respectively)
have translational invariance. The preparation of the initial state is performed
by the pre-quench Hamiltonian, such that |Ψ0⟩ is usually the ground state of
H0. While the late-time behaviour is well understood (see above), general fea-
tures appearing on shorter timescales are much harder to identify, even though
a myriad of studies discussed the post-quench dynamics in various models. It is
in integrable theories that a more precise understanding can be achieved on an
analytical basis, for a volume of reviews see Ref. [7]. Perhaps the most successful
picture describing the short-time post-quench dynamics in this context is the
spreading of correlation and entanglement due to quasi-particle pairs.

In the quasi-particle pair picture, illustrated in Fig. 2.1, the finite particle den-
sity in the post-quench state is attributed to particles created in pairs with zero
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overall momentum, travelling in opposite directions. Crucially, there is a maximal
velocity that the particles can assume, playing the role of the speed of light in the
post-quench dynamics. As a consequence, correlations are nonzero in the system
only within a lightcone projected by the maximal quasi-particle velocity, and
the growth rate of the entanglement entropy SA(t) = −Tr{ρA(t) ln ρA(t)} corre-
sponding to a subsystem A is also limited. The latter quantity can be expressed
in a particularly concise form using the quasi-particle picture [26]:

SA(t) ∝ 2t

∫

2|v|t<ℓ

dpvpf(p) + ℓ

∫

2|v|t>ℓ

dpf(p) , (2.7)

where ℓ is the length of the subsystem A, vp is the velocity of a particle with
momentum p and f(p) depends on the probability of creating such a particle pair.
The first term corresponds to a linear growth in time, eventually saturating to
the value given by the second term. This quantitative behaviour can be shown to
hold in generic integrable models [28]. There are some notable exceptions, caused
by nontrivial interactions between the components of the particle pair (see the
confinement of mesons later on [29]), but the quasi-particle picture remains an
important ingredient in the understanding of quench dynamics, especially in light
of the difficulties in identifying further general traits.

To understand the complexities of modelling the post-quench time evolution,
let us calculate the dynamical expectation value of an observable O. It can be
expressed on the basis of the post-quench Hamiltonian as

⟨O(t)⟩ =
∑

k,l

⟨Ψ0|ϕk⟩ ⟨ϕk|O|ϕl⟩ ⟨ϕl|Ψ0⟩ e−i(El−Ek)t (2.8)

with |ϕk⟩ denoting the eigenstates of the post-quench Hamiltonian H with eigen-
values Ek. The long time average of the observable is given by the diagonal
ensemble average (cf. Eq. (2.4))

⟨O(t)⟩ = ⟨O⟩DE =
∑

k

|⟨Ψ0|ϕk⟩|2 ⟨ϕk|O|ϕk⟩ . (2.9)

To evaluate these expressions, first we need to have access to the Okl = ⟨ϕk|O|ϕl⟩
matrix elements of the observable, and the energy levels Ek—these are equilib-
rium ingredients, available in free theories, and, to some extent, in integrable
models. (See Chap. 3 for an elaboration in integrable field theories.) Second, the
dynamical ingredients are the overlap functions

gk = ⟨Ψ0|ϕk⟩ , (2.10)

expressing the initial state in the basis of the post-quench Hamiltonian. And
finally, to solve the dynamics, we have to be able to perform the (double) sum-
mation in Eqs. (2.8-2.9). This is in general a problem of formidable difficulty,
since there is an extensive set of eigenstates inserted. Here we comment on two
methods that perform the summation.
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The first method is called the quench action (QA) approach [30–32]. The QA
employs ideas from the thermodynamical Bethe Ansatz (TBA), arguing that in
the thermodynamic limit the summation over the states can be performed, to
identify the sole contribution coming from states with their energy density given
by the initial state. This selects a single term (a representative state) from one
of the summations, while from the second sum only states with non-extensive
energy difference contribute. The second approach will be introduced in more
detail in Chap. 4, here we merely remark that it is a linked cluster expansion
utilising the properties of matrix elements in integrable models [33, 34]. This
is an approximate expansion with the post-quench energy density as a small
parameter, and the resummation of the expansion contains hints of the late-time
dynamics and the precursors of thermalisation.

There are two common factors in these approaches. First, both utilise the con-
straints coming from integrability to identify the set of basis states and perform
the summations analytically. Second, for the concrete evaluation of the results,
the overlap functions has to be obtained from an independent calculation, moti-
vating a quest for the post-quench overlaps related to integrable models. These
considerations set the stage for Chap. 4, which discusses a numerical solution of
a specific quench problem in comparison with the analytic approaches; and espe-
cially for Chap. 5, where a perturbative calculation for field theory post-quench
overlaps is presented. Now we turn to the introduction of the model, where these
studies are carried out.

2.2 Model and methods

Various choices are available for the theoretical study of the universal non-
equilibrium dynamics of closed quantum systems. As discussed above, utilising
the tools of quantum integrability sheds light on different complex dynamical
questions from the details of thermalisation to the spread of correlations following
a quantum quench. A substantial part of this thesis is devoted to the investigation
of short-time dynamics out of equilibrium, where integrable models are expected
to provide further insight. Moreover, it is desirable to complement the analytical
studies with an efficient numerical modelling method, which holds the promise
to transcend the boundaries of analytical calculations.

In this section we outline the closer context of the subsequent chapters.
Firstly, we introduce the field theory model most heavily studied below: the
paradigmatic Ising field theory (IFT), which admits a simple formulation and is
a repository of various experimentally relevant and theoretically intriguing non-
equilibrium phenomena. Charting the parameter space of the IFT we comment
on the variety of analytical tools applicable to characterise the model both in and
out of equilibrium. Secondly, we discuss the basics of Hamiltonian truncation,
an approach to study field theories numerically. More precisely, we are going to
focus on the truncated conformal space approach (TCSA), a method working in
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quantum field theories defined as perturbations of some conformal field theory.
In particular, the TCSA is applicable in the context of the Ising field theory,
where it is able to supplement and surpass the analytical calculations.

2.2.1 The Ising field theory

The IFT is defined as the scaling limit of the critical transverse field Ising
chain. The Hamiltonian of the latter reads

HTFIC = −J
(∑

i

σx
i σ

x
i+1 + hx

∑

i

σx
i + hz

∑

i

σz
i

)
, (2.11)

where σα
i with α = x, y, z are the Pauli matrices at site i, the strength of the

ferromagnetic coupling J sets the energy scale, and hxJ and hzJ are the longi-
tudinal and transverse magnetic fields, respectively. We set periodic boundary
conditions, σα

L+1 = σα
1 . The model is fully solvable in the absence of the lon-

gitudinal field, hx = 0, when it can be mapped to free Majorana fermions via
the nonlocal Jordan–Wigner transformation [35, 36]. The Hilbert space is com-
posed of two sectors based on the conserved parity of the fermion number. The
fermionic Hamiltonian will be local provided we impose anti-periodic boundary
conditions for the fermionic operators in the even Neveu–Schwarz (NS) sector
and periodic boundary conditions in the odd Ramond (R) sector [3].

The transverse field Ising model is a paradigm of quantum phase transitions:
in infinite volume, for hz < 1 the ground state manifold is doubly degenerate,
spontaneous symmetry breaking selects the states (|0⟩NS ± |0⟩R)/

√
2 with finite

magnetisation ⟨σ⟩ = ±(1 − h2z)
1/8 (here |0⟩NS/R are the ground states in the

two sectors). In finite volume, there is an energy split between the states |0⟩NS

and |0⟩R, which is exponentially small in the volume, and the ground state is
|0⟩NS. In the paramagnetic phase for hz > 1, the ground state is always |0⟩NS

and the magnetisation vanishes. The quantum critical point (QCP) separating
the ordered and disordered phases is located at hz = 1, which can also be seen
from the behaviour of the gap, ∆ = 2J |1 − hz|, vanishing at the QCP. In the
ferromagnetic phase, the massive fermionic excitations can be thought of as do-
main walls separating domains of opposite magnetisations, and with periodic
boundary conditions their number is always even.1 In the paramagnetic phase
the excitations are essentially spin flips in the z direction.

The low energy effective theory describing the model near the critical point
is the Ising field theory, obtained in the scaling limit J → ∞, a → 0, hz → 1
such that speed of light cℓ = 2Ja and the gap ∆ = 2J |1 − hz| are fixed (a is
the lattice spacing) [37]. The critical point corresponds to the theory of a free
massless Majorana fermion, which is also one of the simplest conformal field
theories (CFT). The two relevant operators at the quantum critical point are

1This is true even in the Ramond sector, as |0⟩R contains a zero-momentum particle.
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Figure 2.2: The parameter space of the transverse field Ising model (2.11). The
critical point at hz = 1 separates the paramagnetic and ferromagnetic phases.
Low-energy modes of the critical region are captured by the Ising field theory
(2.12), where the two axes in the parameter plane correspond to two integrable
field theories.

the magnetisation σ (scaling dimension 1/8) and the so-called ‘energy density’ ϵ
(scaling dimension 1), corresponding to the longitudinal and transverse magnetic
fields in the scaling limit. The Hamiltonian of the resulting field theory in finite
volume R is given by

HIFT = HFF +
M

2π

∫ R

0

ϵ(x)dx+ h

∫ R

0

σ(x)dx . (2.12)

Here HFF is the Hamiltonian of the free massless Majorana fermion, a minimal
CFT with central charge c = 1/2. The precise relations between the lattice
and continuum versions of the longitudinal magnetic field and the magnetisation
operator are

σ(x = ja) = s̄J1/8σx
j , (2.13)

h = 2s̄−1J15/8hx , (2.14)

with s̄ = 21/12e−1/8A3/2 where A = 1.2824271291 . . . is Glaisher’s constant.

For h = 0 the Hamiltonian describes the dynamics of a free Majorana fermion
field with mass |M | (we set the speed of light to one, cℓ = 1). We will refer to
this choice of parameters in the M − h parameter plane of the theory (2.12)
as the “free fermion line” (see Fig. 2.2). The QCP at M = 0 separates the
paramagnetic phase M < 0 from the ferromagnetic phase M > 0, and the
coupling is proportional to the mass gap.2

Interestingly, there is another set of parameters that corresponds to an inte-
grable field theory: M = 0 with h finite.3 The spectrum of this theory can be

2The quantum phase transition is analogous to the temperature-induced phase transition of
the classical two-dimensional Ising model by virtue of the quantum-classical correspondence,
which relates a classical model to a quantum theory living in a lower dimension. Consequently,
adding the ϵ field to the critical model is sometimes referred to as a “thermal perturbation”,
since M plays the role of the distance from the critical temperature.

3The lattice model is not integrable for hz = 1 and hx ̸= 0, this is a feature of the field
theory in the scaling limit.
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described in terms of eight stable particles, the mass ratios and scattering matri-
ces of which can be written in terms of the representations of the exceptional E8

Lie group. From now on, we are going to refer to this specific set of parameters
as the “E8 integrable line” (see Fig. 2.2). The lightest particle with mass m1 sets
the energy scale which is connected to the coupling h as [38]

m1 = (4.40490857 . . . )|h|8/15 . (2.15)

The masses of the remaining particle species are expressed in terms of m1 as [39]

m2 = 2m1 cos
π

5
= (1.618033989...)m1 ,

m3 = 2m1 cos
π

30
= (1.989043791...)m1 ,

m4 = 2m2 cos
7π

30
= (2.404867172...)m1 ,

m5 = 2m2 cos
2π

15
= (2.956295201...)m1 , (2.16)

m6 = 2m2 cos
π

30
= (3.218340459...)m1 ,

m7 = 4m2 cos
π

5
cos

7π

30
= (3.891156823...)m1 ,

m8 = 4m2 cos
π

5
cos

2π

15
= (4.783386117...)m1 ,

featuring the golden ratio in m2/m1. The energy spectrum also contains moving
particle states, which are built up as combinations of particles with finite mo-
menta from the same or different species. Note that only three of the one-particle
masses are below the two-particle threshold 2m1, the other five are stable only
under the aegis of integrability.

The equilibrium properties of the Ising field theory are well understood apart
from the two integrable directions as well (see Fig. 2.3). For later convenience,
let us introduce the dimensionless quantity η to parameterise the position in the
M − h parameter plane:

η =
M

|h|8/15 . (2.17)

For |η| ≪ 1 the particle spectrum is insensitive of the sign of η, and it can be
described using the tools of form factor perturbation theory developed in Ref.
[41]. Due to integrability breaking, only 3 stable particles remain, the other five
obtain a finite life-time and decay [42, 43].

For larger values of η, however, the physics is markedly different depending on
the sign of the coupling. In the ferromagnetic regime there appear mesons4 whose

4The terminology comes from the analogy with quark confinement in the strong interaction.
The domain walls of the lattice model with h = 0 are confined by the longitudinal field, as the
energy cost increases with the distance between two neighbouring domain walls that have a
domain of the wrong magnetisation between them, effectively confining the domain walls.
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Figure 2.3: The parameter space of the Ising field theory with the spectral content
related to the position on theM−h plane. The circled numbers denote the num-
ber of stable particles in each case, magenta lines illustrate the decay threshold
of the various particle states. Schematic representations of the particle spectra
are added in four special settings, where balls denote stable single-particle states,
and the shaded region depicts the two-particle continuum. The increasing num-
ber of mesons towards the ferromagnetic phase eventually form the two-particle
continuum on the h = 0 axis in the McCoy-Wu scenario. The figure is inspired
by a similar illustration in Ref. [40].

number increases with the magnitude of M . When approaching the thermal axis
(η = ∞), the related poles in the scattering matrix fuse together to form a
branch cut corresponding to a continuum of two-kink states under the so-called
McCoy–Wu scenario [44]. The meson spectrum appearing close to the h = 0 axis
is well-understood [45–47].

In the paramagnetic regime, with increasing magnitude of η the number of
stable particles is first reduced to two and then to one. The threshold values for
the decays of the third and second particles are η3 = −0.138 and η2 = −2.08,
respectively [48].

Preceding the works presented in this thesis, a few studies already discussed
the non-equilibrium dynamics of the Ising field theory [29, 33, 49]. These explo-
rations mainly focused on quantum quenches in the vicinity of the thermal axis
h = 0, the most notable results being the interesting time evolution originating
from the confinement of kink states [29]. The message of these early works is
that the universal features of the non-equilibrium dynamics can be identified
against the background of the well understood equilibrium context of the IFT.
This message serves as a direct inspiration to this thesis, which is to a great ex-
tent devoted to the investigation of non-equilibrium behaviour of quantum field
theories, with a specific focus on the Ising field theory.
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Figure 2.4: Schematic depiction of the process of Hamiltonian truncation. In
finite volume the continuous energy spectrum is discretised to an infinite set of
separate energy levels, which in turn can be truncated to yield a finite Hilbert
space. The figure is inspired by a similar illustration in Ref. [53].

2.2.2 The truncated conformal space approach

The above depiction of the IFT parameter space suggests a variety of ap-
proaches to model the dynamics of the theory. We already commented on the
analytical tools available, from the exact treatment of the integrable lines to form
factor perturbation theory in the vicinity of the axes. A common denominator of
these methods is that the application to non-equilibrium protocols is incompara-
bly more complex than the equilibrium calculations in the ground state, similarly
to the case of dynamical correlators at finite temperatures [50–52]. Consequently,
it is desirable to utilise the available information in a more computationally ef-
ficient way, which at the same time maintains an edge over simple perturbative
calculations. By and large, this is the motivation at the basis of truncated space
approaches (abbr. TSA, see [53] for a review).

The TSA is a nonperturbative numerical method, which operates on the
Hilbert space of an exactly solvable Hamiltonian H0, composed of discrete energy
levels in finite volume. The Hilbert space is truncated such that only a finite set
of eigenstates {|n⟩} with En < Ecut is kept, as illustrated in Fig. 2.4. In turn, the
properties of a more generic Hamiltonian H = H0 + V can be calculated on the
truncated basis assuming that the matrix elements Vmn are known. The results
retain an error coming from the truncation, but the errors can be diminished by
increasing the cutoff parameter Ecut.

In the context of the IFT, the two simplest choices for H0 are the massive free
fermion model [54], and the conformal theory [55, 56], respectively. Truncating
the free fermionic basis is expected to work best in the vicinity of the thermal
axis with h = 0, and it was indeed successfully applied to quantum quenches in
this region in Ref. [49]. In this thesis, we opt for the other choice, the truncated
conformal space approach (TCSA), which is applicable in other perturbed CFTs
as well. A detailed introduction to this algorithm is postponed to Chap. 6, which
presents a recent development to the method. Here we just briefly elaborate on
the basic idea, set up some notation, and comment on the systematic procedure
of treating the truncation errors.
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The TCSA was developed by Yurov and Zamolodchikov in Ref. [55], and
applied in the IFT already in Ref. [56] with a resounding success, adequately
describing the bottom of the energy spectrum using a modest 18-dimensional
truncated Hilbert space. A significant development of the TCSA was the explicit
application of the conformal Ward identities [57] to calculate the finite volume
matrix elements of the perturbing operator exactly, after mapping the space-time
cylinder to the conformal plane.

Utilising these results, we can express the matrix elements of the Hamiltonian
(2.12) on the truncated basis. It is convenient to set up the numerics such that all
quantities are measured in the appropriate powers of the mass gap ∆. Depending
on the specific physical problem, the mass unit is either ∆ = m1, the mass of
the lightest particle in the E8 model; or ∆ = m, the mass of the elementary
excitation on the free fermion line. With this notation, the Hamiltonian matrix
H can be expressed in a dimensionless form for numerical calculations:

H/∆ =
2π

r

(
L0 + L̄0 − c/12 + κ̃1

r2−∆ϵ

(2π)1−∆ϵ
Mϵ + κ̃2

r2−∆σ

(2π)1−∆σ
Mσ

)
, (2.18)

where r = ∆R is the dimensionless volume parameter, Mϵ,σ are the matrices of
the operators ϵ, σ having scaling dimensions ∆ϵ = 1 and ∆σ = 1/8. Here κ̃1,2
are the dimensionless coupling constants that characterise the strength of the
perturbation.

The conformal Hamiltonian consists of three terms: c = 1/2 is the central
charge, while L0 and L̄0 are the generators of the conformal scaling transforma-
tions. States in the conformal Hilbert space are characterised by their L0 and
L̄0 eigenvalues, which can be labelled by the integers n, n̄. The sum N = n + n̄
is called the descendent level of the conformal state. The truncation scheme op-
erates by introducing a maximal descendent level Ncut, which is related to the
conformal cutoff energy as5

Ncut =
R

2π
Ecut . (2.19)

The cutoff parameters used in this work and the corresponding dimensions of
the truncated basis are listed in App. D.

Achieving higher and higher cutoffs is computationally demanding, so it is
essential to have a model for the cutoff-dependence. The strength of TCSA (in
contrast with some other truncated Hamiltonian approaches) lies in its system-
atic treatment of truncation errors. The contribution of high energy states can
be taken into account through a renormalisation group (RG) approach [58–63].
The RG analysis introduces running couplings into the model, governed by a
power-law function of the energy cutoff. Most of the works in this thesis concern
the E8 model, where the running of the couplings converges to the infinite-cutoff

5This relation between the two cutoffs holds only if there is no operator with ∆ > 1, which
is the case for the applications of the TCSA in this work.
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value so rapidly that including them does not make any difference to the dy-
namics. Consequently, we take a simpler approach to cure the truncation errors,
following Refs. [59, 64].

This approach focuses on the cutoff-dependence of the distinct observables
instead of the coupling parameters. By a reasoning analogous to the RG argu-
ments, it can be shown that the results for some arbitrary quantity6 at infinite
cutoff are related to TCSA data as

⟨ϕ⟩ = ⟨ϕ⟩TCSA + AN
−αϕ

cut +BN
−βϕ

cut + . . . , (2.20)

where the αϕ < βϕ exponents are positive numbers which depend on the scal-
ing dimension of the perturbation, the operator related to the quantity ϕ under
consideration, and those appearing in their operator product expansion. Ellipses
denote further subleading corrections that decay faster as Ncut → ∞. This ex-
pression then can be used to extract the infinite-cutoff value from a set of data
points obtained using different Ncut cutoff parameters via extrapolation. Unless
commented otherwise, all TCSA data presented below are extrapolated using this
formula, with the appropriate exponents in the different cases. The exponents
with some examples of the extrapolation procedure are gathered in Appendix D.

2.3 Experimental context

As a conclusion to this introductory chapter, let us briefly overview the exper-
iments which provide a background to the subsequent theoretical calculations. As
already discussed, all of the theoretical work presented in this thesis focuses on
the properties of quantum field theory models which capture universal behaviour
in the quantum critical region. Experimentally, this region can be attained both
in and out of equilibrium. The non-equilibrium dynamics can be realised in cold
atomic gases, triggering considerable theoretical efforts to explain the observa-
tions. Moreover, the signatures of quantum criticality are present in the equilib-
rium properties of low-dimensional systems as well (cf. Fig. 1.1). For this reason,
quasi-1D materials are increasingly studied in connection with the well-known
theoretical models of quantum many-body systems. In particular, specific spin
chains at low temperatures host the exotic E8 physics of the previous section,
thus creating an immediate link between our calculations and real-life materials.
Below we list a few interesting experimental results complementing the theoret-
ical focus of this thesis.7

6More precisely, the calculation of Ref. [59] applies to the equilibrium one-point function
of some operator O. We apply the same formula to time-dependent one-point functions in
non-equilibrium settings, and also for state overlaps, which are related to the identity operator
from this point of view. The most remote application is for the cumulants of a full counting
statistics, where the precision of the extrapolation justifies the approach.

7Naturally, the two selected branches do not cover all relevant experimental aspects. A
notable omission is the system of trapped ions, which can act as quantum simulators of spin-
1/2 systems. Let us mention two works related to this thesis, Refs. [65, 66].
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Cold atoms out of equilibrium

The renewed interest in the behaviour of quantum many-body systems in low
dimensions largely stems from the plentiful possibilities offered by cold atomic
gases to realise them experimentally. Fuelled by the initial quest for the obser-
vation of Bose–Einstein condensates, cold atoms emerged as a cornerstone of
studying low-dimensional physics in the past decades [6, 9]. Cold atomic gases
provide an excellent realisation of closed quantum systems, since they can be well
separated from the environment, and their dimensionality can be manipulated
by applying optical lattices to create quasi-1D cigar-shaped clouds. Moreover,
by manipulating the frequencies of the optical traps, effective couplings can be
induced between the atoms, opening the possibility to engineer quantum Hamil-
tonians with tunable parameters.

One of the most famous experiments with one-dimensional Bose gases is the
celebrated quantum Newton’s cradle [16]. The initialisation amounted to prepar-
ing two clouds of 87Rb atoms confined to a tube with an increasing potential
energy towards the end of the tube. Astonishingly, the initial motion induced by
the potential gradient continued after several collisions, resulting in a periodic
motion akin to the classical Newton’s cradle. The apparent lack of thermalisa-
tion, which instigated substantial work along the lines of Sec. 2.1.1, is due to the
nearly integrable dynamics of the clouds.

The 87Rb atoms are central to the ongoing experimental effort in the field
of non-equilibrium quantum dynamics. They can be used to realise the anti-
ferromagnetic version of the transverse field Ising chain in tilted optical lattices
(2.11) [67, 68], and study the role of entanglement spreading and the process of
thermalisation [69, 70]. At the same time, the phase dynamics of coupled Bose
gases provides insight into prethermalisation [17, 71, 72], and is argued to realise
a famous integrable model, the quantum sine-Gordon theory, along with other
quantum many-body problems [73].

To reiterate the point made earlier, cold atomic gases not only emulate well-
known models of quantum many-body theory, but they coincidentally provide
a realisation of out-of-equilibrium dynamics. Apart from the quantum quenches
introduced in Sec. 2.1.2, other non-equilibrium protocols are possible, such as the
slow change (or ramping) of coupling parameters, which is the setting of Chap.
7. For reviews on this topic, see Refs. [9, 74].

Spin chains and the transverse field Ising model

A separate path to attain the quantum critical region depicted in the first
chapter is via quasi-1D spin chains, where the effective degrees of freedom are
described by a one-dimensional quantum Hamiltonian. Here we focus our atten-
tion to the realisation of the transverse field Ising model (2.11), and especially
on the appearance of the exotic E8 spectrum.
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The first observation of the E8 model was done over a decade ago in the
ferromagnetic CoNb2O6 material [75]. The effective spin degrees of freedom orig-
inate from the spin of the Co2+ ions which are arranged into quasi-1D chains
within the crystalline structure. At low temperatures, the chains are ferromag-
netically ordered, and applying a large enough external transverse magnetic field
to a large CoNb2O6 single crystal the authors of Ref. [75] managed to realise
the (near) critical TFIM. Criticality is broken by the weak interaction between
the chains, which acts as a longitudinal magnetic field in the one-dimensional
systems, in other words, they are governed by the E8 Hamiltonian. Indeed, neu-
tron scattering spectroscopy revealed two prominent peaks, whose energies were
related via the golden ratio. Peaks corresponding to the higher particles were
hidden in the two-particle continuum.

The observed fingerprint of the E8 symmetry group elevates the model be-
yond a mathematical curiosity, and instigates an ongoing experimental effort to
corroborate the initial findings. Another particularly promising quasi-1D mate-
rial along this line is the BaCo2V2O8 crystal [76], where the interaction between
the Co2+ spins is anti-ferromagnetic. Applying a strong transverse field induces
an effective staggered transverse field felt by the individual spins, so the chains
exhibit an AFM-PM transition that belongs to the Ising universality class. Co-
incidentally, the coupling between the chains can be taken into account as a
staggered longitudinal field, thus realising the anti-ferromagnetic counterpart of
the earlier experiment. Performing a similar neutron scattering probe, Ref. [77]
demonstrated strong evidence for the presence of seven of the single-particle
states at the theoretically predicted masses (2.16), and tentatively pinpointed
the eighth particle.8

The identification of the universal features within the experimental data re-
quires a careful theoretical analysis. The neutron scattering experiment probes
the dynamical properties of the model via the dynamical structure functions
(DSF) Dαβ(ω,Q):

Dαβ(ω,Q) =

∫
dt
∑

r

ei(ωt−Qr)
〈
Sα(t, r)Sβ(0, 0)

〉
, (2.21)

where α, β = x, y, z, so the DSF are the spin-spin correlators in Fourier space. The
correlation functions of the E8 model can be calculated exactly in the knowledge
of the matrix elements of its operators: σ and ϵ. This experimental application
sets the stage for the next chapter, which details the quest after these matrix
elements.

8We remark that contemporaneously a more precise optical measurement increased the
number of observed E8 particles in the ferromagnetic CoNb2O6 chain as well [78].



Chapter 3

Form factor bootstrap in the
Ising field theory

Modelling a quantum many-body system oftentimes results in a computa-
tional problem of irresolvable complexity. Although one has to resort to numeri-
cal approximations in generic cases, integrable models are a beacon of hope that
exact analytic solutions do not always elude discovery [5]. A particularly fruitful
approach in the context of integrable quantum field theories is the bootstrap
program, a method that translates the numerous constraints arising from inte-
grability to a set of consistency relations between the specific functions under
consideration. In this chapter we introduce the form factor bootstrap, where the
functions subject to the consistency constraints are the matrix elements of local
operators. We will show how from the resulting generic equations the matrix
elements of specific local operators can be obtained on the basis of asymptotic
scattering states, i.e. how one can solve the form factor bootstrap.

Following the general formulation of the form factor bootstrap we present
its solution in the field theory describing the critical Ising model in a magnetic
field, also known as the E8 field theory. As discussed above, this model is of
experimental relevance, apart from being a theoretical curiosity. The calculation
of new exact form factors in the E8 model, which is the first important original
result presented in this thesis, touches both the theoretical and the experimental
aspects.

3.1 General form factor properties

3.1.1 Asymptotic states and the S-matrix

Obtaining the solution of an interacting quantum field theory is a notoriously
complex problem, which admits several different formulations. One approach is to
describe the interactions by scatterings: events which are preceded and followed
by a state where particles are essentially free [2]. This statement about the state

26
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content is asymptotic in the sense that the state before the scattering (the ‘in-
state’) and the one after the scattering (the ‘out-state’) are assumed to be a
valid description of the physical system in the infinite past and future, in other
words, at asymptotically distant time instances. The operator that relates these
asymptotic states to each other is called the scattering matrix or the S-matrix.
Formally, we can express the S-matrix as

Sout,in = ⟨out|S |in⟩ . (3.1)

Considering a matrix element of this general S-matrix between an in-state with
n particles and an out-state with m particles we get

|Aa1Aa2 ...Aam⟩ = Sb1,b2,...bn
a1,a2,...,am

|Ab1Ab2 ...Abn⟩ , (3.2)

where aj and bk index the possibly different types of particles, i.e. they label
the particle species. The standard way of calculating the matrix elements of the
scattering matrix is to separate the kinematics invoking relativistic invariance
and treat the dynamics perturbatively in the interaction strength employing the
technique of Feynman diagrams [2].

The repertoire of integrable field theories offers an alternative route, where
the S-matrix can be computed exactly. Integrable field theories are defined on
a two-dimensional Minkowski spacetime, where the two-momentum of on-shell
particles can be parameterised by a single variable, the relativistic rapidity ϑ:

(p0, p1) = (m coshϑ,m sinhϑ) , (3.3)

where p0 and p1 are respectively the energy and momentum of a particle with
mass m. The asymptotic states thus take the form

|Aa1(ϑ1)Aa2(ϑ2)...Aam(ϑm)⟩ (3.4)

with a specific ordering of the rapidities: they are decreasing

ϑ1 ≥ ϑ2 ≥ · · · ≥ ϑm (3.5)

for an in-state and increasing for an out-state. The ordering expresses that since
all motion is constrained to a line, the leftmost particle must possess the largest
velocity for the scattering event to take place, as it has to pass all the others.
Consequently, the order is reversed after the scattering. On the basis of the
asymptotic states (3.4) the S-matrix takes the form

Sb1,b2,...bn
a1,a2,...,am

(ϑout
1 , ϑout

2 , . . . , ϑout
m ;ϑin

1 , ϑ
in
2 , . . . , ϑ

in
n ) . (3.6)

In an integrable field theory there is an extensive set of local conserved charges,
and as a consequence, the scattering is purely elastic and completely factorised.
Pure elasticity means that all momenta are conserved separately—as a corollary,
particle creation or annihilation is not permitted—while complete factorisation
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means that the S-matrix of an n→ n process is the product of all possible 2 → 2
processes.1 Therefore, we can write Eq. (3.6) as

Sb1,b2,...bn
a1,a2,...,an

(ϑ1, ϑ2, . . . , ϑn) =
∏

i<j

Sβiβj
αiαj

(ϑi − ϑj) , (3.7)

where the dependence of the two-particle S-matrix on the rapidity difference
reflects Lorentz invariance. The αi, βi particle indices respectively contain the
in and out sets {aj}, {bj} with the addition of all intermediate particle states.
In general, the scattering is not diagonal in the particle species space, that is,
αi ̸= βi and αj ̸= βj. However, in the following we are going to focus on diagonal
scattering models, where the equality holds and the two-body S-matrix is labelled
by only two particle indices. The factorised S-matrix satisfies a set of consistency
equations, which can be used to identify the particle spectrum of the theory, and
write down the two-particle scattering matrices exactly, yielding the solution of
the so-called S-matrix bootstrap [39, 81–83]. For a pedagogical introduction to
the S-matrix bootstrap the reader is referred to Ref. [79]. In what follows, we
assume that the Sij(ϑ) are known exactly, and use them as an input to the form
factor bootstrap.

3.1.2 Form factor definition and axioms

Given the above formalism, it is natural to express the matrix elements of
local operators in an integrable field theory on the basis of asymptotic states.
The elementary matrix elements are called form factors and they are defined to
be

FO
a1,a2,...,an

(ϑ1, ϑ2, . . . , ϑn) ≡ ⟨0| O(0, 0) |ϑ1, ϑ2, . . . , ϑn⟩a1,a2,...,an , (3.8)

where ⟨0| is the vacuum state of the theory. Matrix elements with particles in
the left-hand-side state are obtained by crossing their momenta, which amounts
to a ϑ→ iπ − ϑ transformation in terms of the rapidity:

⟨ϑ′
1, ϑ

′
2, . . . , ϑ

′
m| O(0, 0) |ϑ1, ϑ2, . . . , ϑn⟩ =

FO(iπ − ϑ′
1, iπ − ϑ′

2, . . . , iπ − ϑ′
m, ϑ1, ϑ2, . . . , ϑn) , (3.9)

where we suppressed the particle species index for brevity. The form factors
satisfy a set of equations called the form factor axioms:

1. Lorentz invariance

FO
n (ϑ1 + λ, . . . ϑn + λ) = esOλFO

n (ϑ1, . . . ϑn) , (3.10)

1Interestingly, the property of factorised scattering does not require the vast amount of
local conserved charges, two extra is enough besides momentum conservation [79]. On the
other hand, the coexistence of interactions and complete factorisation is special to two space-
time dimensions: the same reasoning renders all theories with factorised scattering trivial in
d > 2. See the famous Coleman–Mandula theorem for d = 4 [80].
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O
ϑ1 ϑ2

. . . ϑn

= O
ϑ1 ϑ2

. . .
ϑn

Figure 3.1: Graphical depiction of the cyclic property of form factors. The black
dots at the intersections represent an S-matrix factor.

where sO is the Lorentz spin of the local field O, which is zero for Lorentz
scalars considered later on. A consequence of the above equation is that the
form factors of scalar operators only depend on the rapidity differences.

2. Exchange property

FO
n (ϑ1, . . .ϑj, ϑj+1, . . . ϑn) =

= S(ϑj − ϑj+1)F
O
n (ϑ1, . . . ϑj+1, ϑj, . . . ϑn) . (3.11)

3. Cyclic property

FO
n (ϑ1, . . . , ϑn−1, ϑn + 2πi) = FO

n (ϑn, ϑ1, . . . ϑn−1) . (3.12)

4. Kinematical singularities

−i lim
ϑ̃→ϑ

(ϑ̃− ϑ)FO
n+2(ϑ̃+ iπ, ϑ, ϑ1, ϑ2, . . . ϑn) =

=

(
1−

n∏

i=1

S(ϑ− ϑi)

)
FO
n (ϑ1, ϑ2, . . . ϑn) . (3.13)

5. Bound state singularities

−i lim
ϑab→iuc

ab

(ϑab − iucab)F
O
n+2(ϑa, ϑb, ϑ1, ϑ2, . . . ϑn) =

= Γc
abF

O
n+1(ϑc, ϑ1, ϑ2, . . . ϑn) , (3.14)

with ϑab = ϑa − ϑb and ϑc = ϑa − i(π − uabc) = ϑb + i(π − ubac), where u
c
ab

is the position of the bound state pole corresponding to the occurrence of
particle Ac in the scattering of Aa and Ab:

Sab(ϑ ∼ iucab) ∼
i(Γc

ab)
2

ϑ− iucab
. (3.15)
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O
ϑ
ϑ1

. . . ϑn

ϑ̃

→

(a)

O
ϑ
ϑ1

. . . ϑn

O
ϑa

ϑb

ϑ1

. . . ϑn

→

(b)

OΓc
ab

ϑ1

. . . ϑn

Figure 3.2: Graphical illustration of the form factor axioms in Eqs. (3.13, 3.14).
The black dots represent the S-matrix, while Γc

ab is the residue of the pole in the
scattering matrix related to an AaAb → Ac fusion.

In most of the above equations again the species indices are suppressed for sim-
plicity.

The first two equations are straight consequences of the form factor definition
and the Lorentz transformation property of the operator O. The cyclic property
is illustrated in Fig. 3.1. The figure on the right-hand side of the equation de-
picts the sequential “disentangling” needed to bring the rapidity arguments of
FO
n (ϑn, ϑ1, . . . ϑn−1) on the right-hand side of Equation (3.12) to canonical or-

der, where each exchange brings in an S-matrix factor. The second and third
equations together are usually called Watson’s equations [84].

The fourth equation signals the presence of a kinematical pole in the form
factor: when two particles from the same species with the same rapidities are
present in both asymptotic states, they form a disconnected piece and give rise
to a simple pole. The last equation is linked to the bound state poles in the S-
matrix: they correspond to two particles having such rapidity difference so that
they can be fused to form a third particle as a bound state. The kinematical and
bound state poles are depicted in Fig. 3.2.

3.1.3 The form factor bootstrap

The form factor axioms serve as a basis for the form factor bootstrap program,
the quest to obtain exact analytical expressions for the matrix elements of local
operators in integrable field theories. In the following we outline the general
procedure of solving the form factor bootstrap, for further details the reader is
referred to the review [85].

The starting point is the general solution of Watson’s equations, which is of
the form [3, 86–88]

FO
n (ϑ1, ϑ2, . . . ϑn) = KO

n (ϑ1, ϑ2, . . . ϑn)
∏

i<j

Fmin(ϑij) , (3.16)

where we introduced the shorthand notation ϑij = ϑi − ϑj. The minimal two-
particle form factors Fmin(ϑ) encode the nontrivial exchange properties appearing
in Watson’s equations and can be expressed in a closed form [3, 88]. The prefactor
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KO
n (ϑ1, ϑ2, . . . ϑn) is a completely symmetric and 2πi-periodic function of its

variables that contains the physical poles prescribed by Eqs. (3.13, 3.14). Its
pole structure is independent of the operator under consideration, hence it can
be further decomposed to

KO
n (x1, x2, . . . xn) =

QO
n (x1, x2, . . . , xn)

Dn(x1, x2, . . . , xn)
, (3.17)

where the information about the kinematical and bound state poles is encoded
in Dn, and the operator-dependence is only present in the QO

n function. We also
introduced a new variable xi ≡ exp(ϑi) for later convenience. Importantly, KO

n

is a rational function of the variables xi, hence Dn and QO
n are expressed as

polynomials xi. This property simplifies the Ansatz that can be used to find the
QO

n functions to a great extent.

To summarise the first part of the form factor bootstrap, the n-particle form
factor can be decomposed into three functions, two of which can be written
in closed form knowing the particle content of the asymptotic state and the
S-matrix. After that, all that remains is to find the QO

n function. Note that
the kinematical and bound state pole equations relate form factors with different
particle number, hence they impose a recurrence relation on the Qn polynomials.
Eventually, the solution of the form factor bootstrap boils down to solving this
recurrence after pinning down its starting elements from separate considerations.
We remark that the situation is slightly more complex when we restore the
particle species index, but the principle is the same. We will encounter a detailed
example of the case of multiple particle species in the next section.

3.2 Solution of the form factor bootstrap in the

E8 model

In the previous section we have introduced the form factor bootstrap program,
from the foundations of the problem to the method of solving it. Here we discuss
its solution in a specific integrable field theory, the E8 model, with the aim of
presenting the original results related to the first thesis statement.

3.2.1 Definition of the model

The E8 model is obtained by setting M = 0 in the the Ising field theory
Hamiltonian (2.12):

H = HCFT, c=1/2 + h

∫
σ(x)dx , (3.18)

which corresponds to an integrable field theory. The mass gap (2.15) and the
particle spectrum (2.16) of the model were stated already in Sec. 2.2.1. In ad-
dition, the S-matrix of the theory can be calculated exactly using the S-matrix
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bootstrap [39, 83, 89]. As an example, let us present the fundamental two-particle
scattering matrix describing the scattering process A1A1 → A1A1:

S11(ϑ) = (20)ϑ (12)ϑ (2)ϑ , (k)ϑ =
sinhϑ+ i sin πk/30

sinhϑ− i sin πk/30
. (3.19)

For completeness, we include the full S-matrix in Appendix A. Knowing the
exact two-particle S-matrix Sab(ϑ), the minimal form factors Fmin

ab (ϑ) can be
expressed in closed form, they are also reported in App. A.

With all these ingredients at hand, the task is to find the QO functions in-
troduced in Eq. (3.17). Two comments are in order: first, we have to identify
for what set of operators O the bootstrap is to be solved, and second, we have
to find a way to construct solutions for the 8 particle species present in the E8

model. The answer to the first question is that in a perturbed CFT the operator
content is completely determined by the primary fields [90]. We recall that the
scaling limit of the transverse field Ising model has two nontrivial primary op-
erators: the longitudinal magnetisation σ introduced above, and the transverse
magnetisation field ϵ. The solution of the form factor bootstrap in the E8 model
amounts to finding the matrix elements of these two operators.

As for the question of multiple particle species, there is no conceptual diffi-
culty involved in the construction of form factors containing particles of different
types. Due to the closure of the S-matrix bootstrap, any single-particle state in
the theory can be obtained as the bound state of two particles. This suggests a
“principled” approach outlined in Ref. [89], i.e. to calculate first those form fac-
tors that contain only the lightest A1 particles. All other form factors containing
the higher ones can be obtained by the subsequent application of the bound state
equation (3.14). This is the approach that we pursue here, thus we discuss it in
detail in the following.2

3.2.2 General solution

Let us denote the n-particle form factor of the A1 particles as Fn. We look
for Fn in the form of the following Ansatz satisfying the first three axioms:

FO
n (ϑ1, ϑ2, . . . ϑn) = HO

n

ΛO
n (x1, . . . , xn)

(x1 . . . xn)n

n∏

i<j

Fmin
11 (ϑi − ϑj)

D11(ϑi − ϑj)(xi + xj)
, (3.20)

2We remark that the full S-matrix (see Table A.1) contains further (higher order) poles
apart from those appearing in Eqs. (3.13, 3.14). These require the different form factors to
satisfy extra consistency relations, providing a somewhat orthogonal approach in the solution
of the E8 form factor bootstrap. This approach is particularly powerful in the determination of
two- and three-particle form factors [42, 89]. On the other hand, it becomes more complicated
when calculating many-particle form factors, which is the main reason why we take the other
path.
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where we recall that xj ≡ eϑj . Hn is a constant factor, and ΛO
n is a symmetric

polynomial. The D11 factors defined through

D11(ϑ) = P2/3(ϑ)P2/5(ϑ)P1/15(ϑ) , Pγ(ϑ) =
cos(πγ)− cosh(ϑ)

2 cos2
(
πγ
2

) (3.21)

encode the positions of the bound state poles, while kinematic poles are included
in (xi+xj) factors. The minimal form factor Fmin

11 is a function with no poles for
Imϑ ∈ [0, π], its explicit form is stated in App. A.1.

Using this Ansatz, the kinematical and bound state equations can be brought
to the form of recurrence relations for the polynomials ΛO

n , which can be solved
inductively in particle number n. For the E8 model, solutions of these equations
were previously constructed in [89, 91] and later in [42]; the latter article is
accompanied with an explicit set of form factors at [92]. The available functions
have been used in a number of works [93, 94], providing strong evidence that
they are correct.

However, for the purposes of our work in Ref. [95], and later on in Refs.
[77, 96], further form factors were needed with respect to those available in
the above sources. Unfortunately, the bound state recursive equation appearing
in [89] has some misprints, which required the rederivation of the bound state
recursion [95]. The detailed calculation is in App. A.2, and we leap to the end
result here:

Λn+2(xe
iπ/3, xe−iπ/3, x1, . . . , xn)

x4
∏n

j=1(x− e−11iπ/15xj)(x− e11iπ/15xj)(x+ xj)
=

= (−1)nΛn+1(x, x1, . . . , xn) (3.22)

with

Hn+2

Hn+1

=
Γ1
11 sin

(
2π
15

)
sin
(
11π
30

)
sin
(
8π
15

)
sin
(
3π
10

)

2 cos2(π/3) cos2(π/5) cos2(π/30)G11(2πi/3)
×

×
[

sin2(11π/30)γ

4 cos2(π/3) cos2(π/5) cos2(π/30)

]n
, (3.23)

where γ and G11(2πi/3) are constants defined in the appendix. Once the recur-
rence of the Hn constants are fixed, a similar equation can be derived from the
kinematic singularity equation (3.13). The final expression is [89]

(−1)nΛn+2(−x, x, x1, . . . , xn) = AnU(x, x1, . . . , xn)Λn(x1, . . . , xn) (3.24)

with

U(x, x1, . . . , xn) =
1

2
x5

n∑

k1,k2,...,k6=0

(−1)k1+k3+k5x6n−(k1+···+k6)

sin
( π
15

(10(k1 − k2) + 6(k3 − k4) + (k5 − k6))
)
ωk1 . . . ωk6 , (3.25)
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and

An =
4γ sin2

(
11π
30

) (
cos
(
π
3

)
cos
(
π
5

)
cos
(

π
30

))2 (
G11

(
2πi
3

))2
(
Γ1
11 sin

(
2π
15

)
sin
(
11π
30

)
sin
(
8π
15

)
sin
(
3π
10

))2 ×

×
(
sin
(
2π
3

)
sin
(
2π
5

)
sin
(

π
15

)

8 sin4
(
11π
30

)
G11(0)γ2

)n

. (3.26)

Note that we suppressed the operator subscript O for Hn and Λn above. This
reflects the fact that the recurrence relations themselves are independent of the
operator: their solution yields the form factor of a general operator O, a linear
combination of the two primary fields:

O = ασ + βε . (3.27)

Consequently, further input is needed to tell the operators apart. This ambiguity
is not resolved by fixing different initial conditions for the different operators, the
ambiguity is present at each level n [3]. In the following we discuss the separate
solutions for the σ and ϵ fields, respectively.

3.2.3 Solution for the σ field

We begin with the solution for the σ operator, as it is both conceptually
and practically simpler. The simplification stems from the proportionality of the
perturbing field and the trace of the stress-energy tensor in a perturbed CFT, a
direct consequence of the c-theorem [97, 98]. In the E8 model we have

Θ(x) = 4πh (1−∆σ)σ(x) , (3.28)

where Θ(x) is the trace of the stress-energy tensor and ∆σ = 1/16 is the confor-
mal weight of the magnetisation field.

First, this proportionality fixes the constant Hσ
2 , as the diagonal matrix el-

ement of the stress-energy tensor is known from the thermodynamical Bethe
Ansatz [38, 89]

FΘ
11(iπ) = ⟨A1|Θ|A1⟩ = 2πm2

1 , (3.29)

which in turn can be used to fix Hσ
1 by the application of the bound state

equation. To completely pin down the initial conditions of the recurrence, one
extra constraint is required provided by the common bound states of the A1A1

and A1A2 pairs [89].

Second, properties of the stress-energy tensor form factor distinguish the σ
solution and select the corresponding solution from the general solution of the
form factor recursion at each step. As discussed earlier, the Λn functions are
completely symmetric polynomials, hence they can be expressed in terms of the
ωn elementary symmetric polynomials generated by

n∏

k=1

(x+ xk) =
n∑

j=0

xn−jωj(x1, . . . , xn) . (3.30)
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In other words, Λn is the linear combination of products of the ω polynomi-
als. The solution of the recurrence relations (3.22,3.24) then amounts to finding
the coefficients in this linear combination. On the one hand, the number of the
coefficients is restricted, since the total polynomial degree is fixed by Lorentz
invariance, and the partial degrees are bounded by the asymptotic behaviour of
the form factors [42]. On the other hand, the conservation of the stress-energy
tensor means that the form factors of Θ must be proportional to the product
P+P− [89], with

P± =
n∑

j=1

p±j , p± = p0 ± p1 = ±e±ϑ , (3.31)

where n is the number of particles in the form factor. Using x = eϑ it is not hard
to see that P+P− = ωn−1ω1/ωn. Therefore, only the coefficients corresponding
to a term with at least one ωn−1ω1 product are nonzero. At each level n, this
reduces the number of unknowns sufficiently to obtain the solution directly.

The final step is to fuse the one-particle states to form higher-lying particles
as a bound state, with a suitable generalisation of the Ansatz in Eq. (3.20) to
multiple particle species. Although each fusion involves a calculation comparable
in complexity to the bound state recurrence relation, the computation process
can eventually be automated using a software capable of symbolic processing
such as e.g. Wolfram Mathematica [99]. An example calculation is presented in
Appendix A.3. A useful shortcut in the line of fusions is provided by including
bound state singularities involving particles also from the species A2 and A3.
Using this approach we constructed several new exact form factors for σ in Ref.
[95]; it is an extension of the results available earlier [92].

3.2.4 Solution for the ϵ field

The case of the ϵ field demands a slightly different approach, as the ambiguity
of Eq. (3.27) is not resolved by any conservation laws. However, it can be resolved
by applying a nonlinear condition which is provided by the clustering property
of form factors [100]:

lim
Λ→∞

F ϕ
r+l(ϑ1 + Λ, ϑ2 + Λ, ..., ϑr + Λ, ϑr+1, ..., ϑr+l) =

1

⟨ϕ⟩F
ϕ
r (ϑ1, ϑ2, ..., ϑr)F

ϕ
l (ϑ1, ϑ2, ..., ϑl) . (3.32)

This property was used in Ref. [91] to set the initial condition for the recurrence
for the ϵ field. Furthermore, the same constraint can be utilised at each level to
identify the ϵ operator in terms of already available form factors from the lower
levels.
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To this end, one has to calculate the asymptotic behaviour of the minimal
form factors and the bound state pole factor D11. They read:

lim
ϑ→∞

Gλ(ϑ) = −ıcλ exp(ϑ/2) (3.33)

where the functionsGλ defined in Eq. (A.4) are the building blocks of the minimal
form factors. The cλ are real constants that can be obtained from the numerical
evaluation of the defining expression for Gλ, yielding

lim
ϑ→∞

Fmin
11 (ϑ) = −1

2
c1/15c2/5c2/3 exp(2ϑ) (3.34)

for the asymptotic behaviour of the minimal form factor. In the case of the bound
state pole factor we have

lim
ϑ→∞

D11(ϑ) = −1

8

1

2 cos2(π/30)2 cos2(π/5)2 cos2(π/3)
exp(3ϑ) . (3.35)

The asymptotes of the two functions can be combined to impose the con-
straint coming from the clustering property on the symmetric polynomials, in
the simplest case “clustering” only a single rapidity (i.e. r = 1 and l = n− 1 in
the notation of Eq. (3.32)). Applying this prescription, exact form factors of the
ϵ field can be obtained analogously to the σ operator.

The newly derived form factors were used to calculate the dynamical structure
function (2.21) in Ref. [77], to be tested against an experimental probe of the
E8 spectrum in the quasi-1D material BaCo2V2O8. More precisely, the quantity
calculated therein is the DSF at zero transfer-momentum, which can be expressed
from Eq. 2.21 by inserting a complete set of asymptotic states:

Dαα(ω, 0) =
∞∑

n=0

∑

{a1,...,an}

1

N

(
n∏

j=1

∫
dϑj

2π

)∣∣∣∣Fα
a1,a2,...,an

(ϑ1, ϑ2, . . . , ϑn)

∣∣∣∣
2

×

× 2πδ(E − ω)2πδ(P ) ,

(3.36)

where the form factor is Fα = F ϵ(F σ) for α = x(z) the transverse (longitudinal)
component of the spin. N is a combinatorial factor to calculate the contributions
containing identical particles properly, and E(P ) are the energy (momentum) of
the inserted multi-particle state.

The goal of the experiment was to identify the full particle spectrum up to
the eighth particle, which is merely below 5m1. Consequently, the function in
Eq. (3.36) was calculated up to ωmax = 5m1, truncating the infinite sum over the
inserted states. The newly acquired form factors completed the list of terms in
this truncated sum to give a full theoretical prediction in the measured energy
interval. The analytically calculated DSF matched the neutron scattering image,
corroborating the claim that the BaCo2V2O8 chain under strong magnetic field
realises the E8 model, and simultaneously serving as a relevant application of
the form factors. Later, in Ref. [96] the theoretical background of the form factor
calculations was presented in detail.
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3.3 Summary

In this chapter we discussed the solution of the form factor bootstrap in the
E8 model. We introduced the general problem of finding the matrix elements of
local operators in an integrable field theory. We identified the set of equations
the form factors satisfy and outlined the method of solving them in general in
the context of the form factor bootstrap.

In a specific model, the E8 integrable field theory, we presented our results:
the calculation of new form factors, which required a careful reconstruction of
the recurrence relations satisfied by the matrix elements. The general solution
is exemplified by the two unique solutions for the two relevant operators in the
theory: the longitudinal and transverse magnetisation fields. As a net result, we
extended the list of previously available form factors in the E8 field theory. The
results were published in three articles:

1. Initially in Ref. [95], with the derivation of the recurrence relations and the
solution for the σ operator. The form factors were used as an ingredient
of a form factor perturbation theory calculation to model the post-quench
overlaps in the E8 theory. For a detailed presentation of this application,
the reader is referred to Chapter 5.

2. As an input to the dynamical structure function that was compared against
a neutron scattering experiment in the BaCo2V2O8 material in Ref. [77].
This application required the solution for the ϵ operator by exploiting the
clustering property.

3. The development regarding the ϵ solution together with a synopsis of the
E8 form factor bootstrap were included in Ref. [96].



Chapter 4

Post-quench time evolution in
the Ising field theory

In the previous chapter we presented the calculation of matrix elements in
the E8 model and introduced a formalism to obtain equilibrium properties of
integrable field theories. In the following we shift our attention to the behaviour
of physical systems out of equilibrium.

The broad and vivid field of out-of-equilibrium quantum many-body dynam-
ics was already introduced in Chapter 2. In particular, the quantum quench
protocol was proposed as a paradigmatic setting to study non-equilibrium prop-
erties in closed quantum systems. Here we report on a numerical simulation of
the time evolution following a quantum quench in the Ising field theory. Evalu-
ating the numerical results in comparison with analytical approximations to the
post-quench time evolution in field theory, we expand upon the second thesis
statement in this chapter.

4.1 Quenches in quantum field theory

Quantum field theories provide an effective description of quantum systems
near their quantum critical point and capture universal behavior [4]. It is natural
to ask whether universality extends to non-equilibrium systems. The first works
that introduced the quench protocol into quantum field theories argued that the
answer is positive [8, 25]. Their assumption was that the Hamiltonian governing
the dynamics after the quench is conformally invariant, corresponding to a sys-
tem in its critical point. Under this assumption, universal dynamical correlation
functions can be exactly calculated from the formalism of conformal field theory.

The reasoning can be generalised to small quenches in the vicinity of the crit-
ical point, opening the possibility to capture universal out-of-equilibrium physics
even if the system is not exactly in the critical point. Universality in these cases
is described by quantum field theories with less symmetries than their confor-
mal counterparts. As a consequence, the exact solution of a field theory quench is

38
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generally not possible to obtain: it is only available in non-interacting cases [101–
107]. There are various approximate solutions available under special settings,
such as a semi-classical approach for small quenches [108–110], or a mean-field
approximation for bosonic field theories [111–113].

Integrable field theories are another example where analytical approaches are
fruitful in solving the post-quench dynamics, even if not to the same extent as in
describing equilibrium physics. Constraints from integrability are most powerful
in characterising the infinite-time steady state [114–116] and in the expression
of the post-quench initial state [117–120]. The complete solution of the time
evolution is an arduous task even with the arsenal of integrable field theories
at hand. However, using the exactly known form factors and assuming a not
too large quench, even the dynamical correlations can be approximated through
form factor series, exemplified by the calculations for one-point functions in Refs.
[33, 34, 40, 121–123].

Faced with the slow progress of analytical results, accurate numerical mod-
elling of out-of-equilibrium dynamics becomes paramount. The Truncated Space
Approach (TSA) numerical method introduced in Chapter 2 has a long-standing
history of describing field theories in equilibrium, its applications including cal-
culating the spectrum of perturbed minimal conformal field theories [54–56, 124],
the sine–Gordon model [125], Landau–Ginzburg models [62, 63, 126, 127], and
Wess–Zumino models [128–130]. As discussed earlier, the essence of the method
is the exact calculation of the matrix elements of the finite volume Hamiltonian
in the conformal or free basis, followed by the exact diagonalisation of the finite
Hamiltonian matrix obtained by cutting off the spectrum at some energy value.

TSA was used in combination with other numerical methods in Refs. [131,
132], and first in Ref. [49] on its own to model non-equilibrium time evolution
following a quantum quench. Notably, it was applied with success to calculate
dynamical multi-point correlations in the sine–Gordon model [133]. Our work in
Ref. [94] was an early adopter of the application of TSA to field theory quenches,
followed by others later on [134–137]. The numerical results are highly accurate
and their comparison to the analytical form factor calculations provides a satis-
fying description of the post-quench time evolution, while outlining the timescale
of validity for the analytic approaches.

To this end, in the next section we present the results of quenches in and near
Zamolodchikov’s E8 integrable field theory [39], the same model that was consid-
ered in the previous chapter. We recall that this massive field theory emerges as
the scaling limit of the quantum Ising spin chain in a small longitudinal magnetic
field when the transverse field is tuned to the quantum critical point. This system
has been realised experimentally in CoNb2O6 [75], and recently in BaCo2V2O6

[77]. The quenches we study here correspond to sudden changes of the transverse
and longitudinal magnetic field in the spin chain.

We investigate the time evolution of various observables in quenches to both
integrable and non-integrable Hamiltonians. We compare our numerical results
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with two different analytic descriptions. Both of them are form factor expansions
but they differ in important aspects. The approach developed in Refs. [40, 121]
is a perturbative one that exploits the integrability of the pre-quench system but
does not require integrability of the post-quench Hamiltonian. The approach de-
veloped by Refs. [33, 34, 122] relies on the integrability of the post-quench system
and makes certain assumptions about the initial state. This approach is expected
to be valid for small quenches but it is not perturbative in the same sense as the
pre-quench expansion. Both methods can be applied to small quenches between
integrable systems, e.g. to a parameter quench in an integrable model, which
allows for a comparison of the two methods using the numerical TSA results.
In the following we present the results of the comparison in the E8 model and
discuss the characteristic features of quenches in this field theory.

4.2 Modelling the time evolution in E8 field the-

ory quenches

4.2.1 Quench protocols

To formulate the quenches in the E8 model we consider the Hamiltonian
defined in Eq. (2.12). We recall that the different values of the h and M pa-
rameters define different quantum field theories, which can be visualised in a
two-dimensional M − h parameter plane. The axis h = 0 yields a field theory
of free massive Majorana fermions, while setting M = 0 results in the E8 inte-
grable model. The quantum field theory with both parameters being nonzero is
not integrable.

The quenches we consider here are in the close vicinity of the E8 axis with
M = 0 and are described by the following action:

A = ACFT, c=1/2 − hi

∫
σ(x)d2x+ λ

∫
Θ(t)Ψ(x)d2x , (4.1)

where Ψ(x) is the quenching operator, with either Ψ(x) = σ(x) or Ψ(x) = ϵ(x),
and Θ(t) is the step function, such that the quench takes place at t = 0. This
prescription corresponds to a global quench, where the initial state is the ground
state of the t < 0 theory.

There are two types of quench protocols corresponding to the two possible
choices for the quenching field. The first type (Type I) is realised through choos-
ing the σ direction, which means that both the t < 0 (pre-quench) theory and
the (post-quench) model with t >= 0 is integrable. The second type (Type II)
follows from setting Ψ(x) = ϵ(x), and consequently the post-quench model is
non-integrable. We illustrate the two quench protocols on the M − h parameter
plane in Fig. 4.1.

We choose a dimensionless parameter to characterise the magnitude of the
quench in both cases. For Type I quenches, denoting the pre-quench value of the
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Figure 4.1: Illustration of quenches considered in this chapter in the M − h
parameter space. The lower (blue) dot on the axis represents the post-quench
Hamiltonian for Type I quenches, and the pre-quench Hamiltonian for Type II
quenches, which were performed in both (negative and positive M) directions.

coupling hi and the post-quench parameter hf we introduce the dimensionless
combination ξ through

ξ ≡ λ

hf
=
hi − hf
hf

. (4.2)

Note that the choice of hf simply sets the energy scale of the post-quench system
through Eq. (2.15). We choose it such that the mass gap m1 of the post-quench
Hamiltonian is set to unity, m1 = 1.

The magnitude of Type II quenches is measured by the dimensionless combi-
nation η of M and h, defined in Eq. (2.17). In this case the post-quench model
is non-integrable, hence the choice of hi sets the energy scale of the pre-quench
theory. We choose it such that the mass gap m

(0)
1 of the pre-quench Hamiltonian

is set to unity, m
(0)
1 = 1, where we introduced the notation superscript (0) to

differentiate between quantities on the pre- and post-quench bases.

Having set the energy scales for both types of quenches we measure each
physical quantity in appropriate powers of the mass gap (m1 or m

(0)
1 , depending

on the quench protocol considered): e.g. energy differences are measured in mass
gap units, while time and distance with the inverse of the energy scale set by the
mass gap.

4.2.2 Modelling methods

As alluded to in Sec. 4.1, we have three ways to describe the time evolu-
tion following a global quench in the E8 field theory. The first one is a nu-
merical method based on Hamiltonian truncation, the latter two are analytical
approaches: a perturbative expansion in the λ parameter of Eq. (4.1) (later on
referred to as ‘perturbative quench expansion’) and a linked cluster expansion on
the post-quench basis (‘post-quench expansion approach’ from now on) assuming
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a specific form of the post-quench initial state with a sufficiently small energy
density. Before proceeding to the presentation of the post-quench dynamics, we
introduce these three methods in a bit more detail. We focus on the evaluation
of dynamical one-point functions, as both analytical approaches are worked out
on this example.

The numerical method is the conformal Hamiltonian truncation introduced
in Sec. 2.2.2. The numerical treatment of the quench problem proceeds via an ini-
tial determination of the ground state |0⟩ of the pre-quench Hamiltonian (with
λ = 0), and then solving the Schrödinger equation involving the post-quench
Hamiltonian with |0⟩ as an initial condition. For the TCSA computations peri-
odic boundary conditions are used. As the time-evolved state is explicitly con-
structed, virtually any physical quantity related to the quench can be calculated
this way, the only limitation being the errors arising from the truncation of the
Hamiltonian to a finite dimension. To alleviate the limitations, we perform ex-
trapolation in cutoff using Eq. (2.20). The finite volume parameter induces an
upper time limit, until when the numerical results provide an accurate depiction
of the dynamics. We return to this question in Sec. 4.3.1.

The first analytical approach we consider is the perturbative quench expan-
sion [40, 121]. Its basic assumption is that the quench starts from an integrable
Hamiltonian H0, which is changed during the quench by the addition of an extra
local interaction to

H = H0 + λ

∫
dxΨ(x) , (4.3)

where λ is small enough to justify the application of perturbation theory. To
first order in λ and including only one-particle contributions, the perturbative
prediction for the post-quench time evolution of a local operator Φ is [40]

⟨Φ(t)⟩ = ⟨0|Φ|0⟩+ λ
8∑

j=1

2
(
m

(0)
j

)2F
(0)Ψ∗
j F

(0)Φ
j cos

(
m

(0)
j t
)
+ · · ·+ CΦ , (4.4)

where |0⟩ is the pre-quench vacuum, m
(0)
j are pre-quench one-particle masses

and CΦ is included to satisfy the initial condition that the ⟨Φ(t)⟩ function is

continuous at t = 0. The amplitudes F
(0)Φ
j are the one-particle form factors of

the Φ operator defined by Eq. (3.8), with an additional particle species index j.
Note that all quantities are taken at their pre-quench values reflecting that this
approach only assumes integrability of the pre-quench Hamiltonian.

The ellipsis denotes the contribution of higher particle states; their omis-
sion corresponds to a low-energy approximation valid for long enough times
t ≳ 1/m

(0)
1 . Validity of perturbation theory for the time evolution operator also

places a theoretical upper time limit for the validity of this expression in terms
of the quench amplitude

t∗ ∼ λ−1/(2−∆Ψ) , (4.5)

where ∆Ψ is the scaling dimension of the quenching Ψ operator.
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The second method, introduced for quenches in the free massive Majorana
field theory [33] and developed further in Refs. [34, 122, 123], builds upon the
premise that the post-quench system is integrable. It can be considered as a
systematic expansion in the post-quench particle density as a small parameter,
which means that it is limited to small enough quenches, which are, however,
not necessarily perturbative in the Hamiltonian sense used above. Consequently,
it has no upper time limit, while due to being a low-energy expansion it has a
lower time limit in terms of the post-quench mass m1. Adapting the results of
[122] to the case of the E8 model, the following time evolution is obtained for
operator Φ to leading order:

⟨Φ(t)⟩ = ⟨Ω|Φ|Ω⟩+
8∑

j=1

|gj|2
4

Re[FΦ
jj(iπ, 0)] +

8∑

j=1

Re[gjF
Φ
j e

−imjt]

+
∑

k ̸=j

Re

[
g∗kgj
2
FΦ
kj(iπ, 0)e

−i(mj−mk)t

]
+ . . . , (4.6)

where |Ω⟩ is the post-quench vacuum state,

gj
2

= ⟨Ψ(0)|Aj(0)⟩ (4.7)

is the overlap of the initial state |Ψ(0)⟩ with a zero-momentum post-quench one-
particle state of species j, and the FΦ form factors are matrix elements on the
post-quench basis.

Once again, the ellipsis indicates the contribution involving higher many-
particle states. In Refs. [33, 34, 122, 123] the first few of them were evaluated,
and they were found to contain secular terms proportional to powers of t. Their
resummation may lead to the appearance of frequency shifts and decay factors
through functions ∼ eiat and ∼ e−bt respectively. Both effects are consequences
of the finite post-quench particle densities. We neglected these terms in our con-
siderations for two reasons. First, the TCSA data for the relevant quenches show
no signs of damping or substantial frequency shifts on the time-scales of our
simulations (see below). Second, their computation requires the knowledge of
two-particle overlap functions, and their numerical determination requires con-
siderable effort, see Chapter 5.

We note that unlike the perturbative approach, the second method does not
construct the initial state but needs the one-particle overlaps gj as inputs. We
determined them by explicitly constructing the corresponding states in TCSA
and computing their scalar products with the initial state. Apart from this nu-
merical input, the evaluation of Eqs. (4.4,4.6) is a mere substitution exploiting
the exact relations for the particle masses and the form factors. For the latter
we use the ones available at Ref. [92].1

1The only caveat is that we normalise our operators according to their short-distance op-
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With the three approaches at hand, we turn to the presentation of the re-
sults. We treat the two types of quenches separately. For Type I quenches that
connect two points on the integrable E8 axis, all three approaches introduced in
the previous section can be used to describe the post-quench time evolution. In
contrast, Type II quenches do not allow for the application of the post-quench
expansion as the resulting model is not integrable.

For each type, we consider three dynamical quantities: the Loschmidt echo,
and the one-point functions of the σ and ϵ fields. The Loschmidt echo can be
used to test the validity of TCSA data, outlining the limitations to the appli-
cability of the approach in light of truncation errors and finite volume effects.
The dynamical one-point functions then serve as a benchmark for the analytical
approaches in comparison with our numerical method. The time evolution is also
analysed through the lens of Fourier transformation in the spirit of the “quench
spectroscopy” idea put forward in Ref. [40].

4.3 Results of quenches preserving integrability

4.3.1 Loschmidt echo

The Loschmidt echo characterises the return of a dynamical system to its
initial state [139]. For quantum systems, it is defined through the squared overlap

L(t) = | ⟨ψ(t)|0⟩ |2 ∝ e−rℓ(t) (4.11)

between the pre-quench ground state ⟨0| and the time-evolved state |ψ(t)⟩ =
exp(−iHt) |0⟩. The Loschmidt echo is an important dynamical quantity: its non-
analytic behaviour is the signature of a dynamical phase transition [140], and,
more relevantly to our case, it serves as an indicator of finite-size effects in the
post-quench dynamics. The latter property is due to the revival phenomenon:
the kinematics of quasi-particles is constrained to a ring of circumference R,
which eventually leads to the reappearance of the initial state. The correspond-
ing timescale can be extremely large, but partial revivals are predicted by the

erator product expansion:

⟨Φ(x)Φ(0)⟩ = 1

|x|4hΦ
+ . . . . (4.8)

This differs from the normalisation of the form factors at [92], hence they must be rescaled
using the exact vacuum expectation values

FΦ = FΦ
⟨Φ⟩=1 ⟨Φ⟩ . (4.9)

The exact expectation values of the σ and ϵ fields were obtained in Ref. [138]:

⟨σ⟩ = (−1.06144 . . . )m
1/8
1 , ⟨ϵ⟩ = (0.454752 . . . )m1 . (4.10)
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Figure 4.2: (a) Loschmidt echo L(t) and (b) Loschmidt rate function ℓ(t) after a
quench of size ξ = (hi − hf)/hf = 0.5 at five different volumes in the range r =
30 . . . 50. Volume dependence is almost completely absent for the rate function
ℓ(t). Time and volume is measured in units of the inverse massm−1

1 of the lightest
particle, r = m1R.

quasi-particle picture after some time that is of the order of the volume of the
system. The appearance of revivals in the Loschmidt echo indicates the time in-
stance until finite volume numerical modelling captures the universal behaviour
in the thermodynamic limit. Due to translational invariance, the Loschmidt echo
depends exponentially on the volume parameterised by r = m1R, and ℓ(t) is the
so-called rate function which displays no significant volume dependence until the
revivals appear.

To establish the usage of TCSA in modelling the post-quench time evolution,
we show in Fig. 4.2 the Loschmidt echo extracted from the numerical simulation
for a quench of size ξ = 0.5 corresponding to the relation hi = 1.5hf. To eliminate
volume dependence we also plot the Loschmidt rate function ℓ(t), cf. (4.11).
The data display neither partial nor full revivals. Revivals would occur at times
depending on the volume, which would manifest in the curves in Fig. 4.2b at
different volumes ceasing to overlap. The almost perfect overlap of the curves
also shows that other possible finite size effects are negligible, too. Note that
the oscillations in the Loschmidt echo exhibit no damping which means that the
system does not equilibrate on the time scales considered here. As ξ = 0.5 is the
magnitude of the largest quench we consider along the E8 axis, the behaviour of
the corresponding Loschmidt echo suggests that TCSA is an adequate approach
to model the time evolution in this parameter range.
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4.3.2 σ operator

We begin the presentation of dynamical one-point functions with the σ oper-
ator. As it corresponds to the continuum limit of the spin chain magnetisation,
the σ field is of the greatest physical significance. We now discuss how to apply
Eqs. (4.4) and (4.6) to the time evolution of the magnetisation.

The perturbative prediction Eq. (4.4) yields

⟨σ(t)⟩ = ⟨0|σ|0⟩+ λ

8∑

j=1

2
(
m

(0)
j

)2
∣∣∣F (0)σ

j

∣∣∣
2

cos
(
m

(0)
j t
)
+ · · ·+ Cσ . (4.12)

The constant Cσ is given in Ref. [40] as an infinite form factor series. A self-
consistent choice in the spirit of the derivation of this constant is to truncate
its series at the one-particle term, this guarantees the continuity of ⟨σ(t)⟩ at
t = 0 at this order of the form factor expansion. However, for the quench under
consideration the form factor series can be summed up with the result

Cσ =
1

15

hf − hi
hi

⟨0|σ|0⟩ . (4.13)

Eq. (4.13) should give a more accurate prediction for the baseline of the oscilla-
tions so we use this expression for Cσ in Fig. 4.3a.

For the post-quench method we obtain from Eq. (4.6)

⟨σ(t)⟩ = ⟨Ω|σ|Ω⟩+
8∑

j=1

|gj|2
4

Re[F σ
jj(iπ, 0)] +

8∑

j=1

Re[gjF
σ
j e

−imjt]

+
∑

k ̸=j

Re

[
g∗kgj
2
F σ
kj(iπ, 0)e

−i(mj−mk)t

]
+ . . . . (4.14)

The comparison between the TCSA simulations and the analytic expansions
for small quenches is shown in Figs. 4.3-4.5. As a foreword, let us comment on
the precision of the numerical results. The errors from truncation can be sys-
tematically minimised through a cutoff extrapolation scheme (cf. Eq. (2.20) and
Appendix D), leaving only the residual error of the extrapolation fit. In all cases
presented in this section, the error is restricted to a shift in the time-independent
baseline of oscillations, and the time-dependent uncertainty is comparable to the
linewidth of Fig 4.3. Since the baseline is adjusted for comparison (see below),
we decided to omit error bars in our plots. The volume dependence is similarly
absent: the difference between curves measured at r = 30 and r = 50 is prac-
tically invisible. As a result, our simulation results can be interpreted as being
identical to the physical ones for infinite volume and cutoff for the time windows
shown.

We start our systematic analysis with very small quenches and move towards
larger quenches afterwards. Fig. 4.3a shows the time evolution of the σ operator
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Figure 4.3: Time evolution of the σ operator after a small quench of size ξ = (hi−
hf)/hf = 0.005. Comparison of the TCSA data (black dots) with the perturbative
quench expansion result (4.12) (green line) and the prediction of the post-quench
expansion (4.14) (magenta dashed line). In panel (b) both theoretical results are
shifted to the diagonal ensemble value obtained from TCSA. TCSA data are for
volume r = 40 and are extrapolated in the truncation level. Time is measured
in units of the inverse mass m−1

1 of the lightest particle. Expectation values are

measured in units of m
1/8
1 .

after a quench of size ξ = 0.005. The two analytic approaches give identical
results which however differ from the TCSA data. The deviation is well within
the error bar of the TCSA method (note the scale on the y-axis!). In Fig. 4.3b
we shifted the curves on top of each other to show that for such a small quench
there is perfect agreement between the two analytic approaches and, up to a
minuscule constant, with the numerical data.

Before proceeding to larger quenches, let us comment on the baseline of os-
cillations. The TCSA data oscillates around the (truncated) diagonal ensemble
value, cf. Eq. (2.9). However, the analytical expressions are worked out only
to leading order, hence their time-independent parts are a leading order ap-
proximation of the diagonal ensemble expectation value. It is clear that for the
post-quench approach a complete resummation of time-independent terms would
resolve the mismatch, while for the perturbative expansion higher order terms
in λ would correct the result. As the diagonal average can be easily computed
in the TCSA framework, in the following figures we present the results with a
slight modification. The modification amounts to shifting the constant terms in
the analytical predictions to match the numerical diagonal ensemble, i.e. setting
a common baseline for the three approaches.

Working in this convention, let us now consider larger quenches of magnitudes
ξ = 0.05 and ξ = 0.5. They are plotted in Fig. 4.4 which shows that while the
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Figure 4.4: Time evolution of the σ operator after larger quenches of size (a)
ξ = 0.05 and (b) ξ = 0.5. TCSA data are for volume r = 40 and are extrapolated
in the truncation level. Notations and units are as in Fig. 4.3.

post-quench expansion supplemented by the numerical overlaps can be brought
to perfect agreement with the TCSA data by a constant shift, the first order
perturbative quench expansion shows a frequency mismatch. As the omitted
higher form factors in the series are expected to modify the short time behaviour
and vanish for large time, the discrepancy indicates that larger quenches are
beyond the domain of validity of first order perturbation theory.

We recall that the post-quench approach is not fully analytic as it needs
the gj overlaps as inputs. As the amplitudes of the oscillations in Fig. 4.4a set
by these overlaps are close in the different approaches, the better agreement be-
tween numerics and the post-quench approach does not come from a more precise
knowledge of the overlaps but from the fact that the post-quench expansion pre-
dicts oscillations with frequencies set by the post-quench particle masses, while
the perturbative expansion uses the pre-quench frequencies in the time evolution.

However, let us note that the mismatch between the perturbative approach
and TCSA data appears roughly at the predicted time range of validity of the
former. For the ξ = 0.05 quench the upper time limit predicted by Eq. (4.5) is
t∗ = |hi − hf|−8/15 which in terms of our dimensionless time used in the plots is
m1t

∗ ≈ 4.4ξ−8/15. For ξ = 0.05 we get t∗ ≈ 20, whose order of magnitude agrees
with the range of good agreement seen in Fig. 4.4a.

For the much larger quench with ξ = 0.5 shown in Fig. 4.4b there is a
starker contrast between the two analytical approaches. The post-quench expan-
sion matches excellently with the TCSA data, which implies that this quench
is still in the low density regime. As for the pre-quench approach, apart from
the frequency mismatch the amplitudes exhibit a similar disagreement with the
TCSA data. This shows that this quench is well beyond the perturbative regime.
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Figure 4.5: Time evolution of the ϵ operator after a quench of size (a) ξ = 0.05
and (b) ξ = 0.5 TCSA data are for volume r = 40 and are extrapolated in the
truncation level. Notations and units are as in Fig. 4.3. Expectation values are
measured in units of m1.

4.3.3 ϵ operator

The scaling Ising field theory has another relevant operator, the field ϵ with
scaling dimension ∆ϵ = 1, which corresponds to the transverse magnetisation in
the spin chain.

The comparison of the two approaches with the TCSA results is shown in Fig.
4.5. Similarly to the case of the σ operator, for a ξ = 0.05 quench the perturbative
prediction agrees well with the numerical result up to m1t ≈ 10 after which the
frequency mismatch causes deviations. The quench of size ξ = 0.5 is outside
of the perturbative domain, but the post-quench expansion shows a convincing
agreement with the TCSA data.

4.3.4 Fourier spectra of the post-quench time evolution

In the previous subsections we observed that the post-quench time evolution
for intermediate times is dominated by single-particle oscillations. We pointed
out that the main difference between the two approaches is that the perturbative
expansion predicts the frequency of the oscillations incorrectly. This observation
is reinforced by the analysis of the Fourier spectra to which we turn now.

We calculate the Fourier spectra of the three dynamical quantities presented
above from the TCSA data. The Fourier spectra in Fig. 4.6 attest that single-
particle oscillations dominate the time evolution. This observation supports the
idea of quench spectroscopy [40], which proposes to identify the particle spectrum
of a model by monitoring the time evolution following a quantum quench. We
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Figure 4.6: Fourier spectra of the time evolved operators and the Loschmidt echo
for quenches of size (a) ξ = 0.05 and (b) ξ = 0.5 in volume r = 50. Continuous
gridlines are at single particle masses of the E8 spectrum, and the blue (leftmost)
dashed line is located at the difference of the first two masses. The frequency ω
is measured in units of the mass of the lightest particle m1, operator expectation
values are measured in units of appropriate powers of m1.

note however, that although the E8 spectrum consists of eight particles, only
the first three of those can be seen clearly in the spectra. The rest are above
the two-particle threshold and are hard to distinguish against the background of
many-particle states.

Interestingly, there is an additional peak left of the tallest one corresponding
to the lightest particle, most visible in Fig. 4.6b. Its position is at m2 − m1,
where it is predicted to be by the post-quench expansion (4.6). Its smallness
together with the absence of further difference frequency peaks is explained by
the following consideration. The overlap factors gj are of order ξ, so while the
amplitudes of the frequencies mj are of order ξ, those of mj −mk are of order
ξ2, leading to a suppression of difference frequencies.

We remark that within the available frequency resolution we cannot observe
the frequency shifts originating from the finite post-quench particle density (cf.
the discussion in Subsection 4.2.2). Also note that the prominence of peaks de-
pends on the observable, which can be understood from Eq. (2.8): in addition
to the overlap factors, their height also depends on the operator matrix element
(form factor) associated to the given observable.

The erratic behaviour, consisting of a jagged landscape of multiple Fourier
peaks right above the two-particle threshold ω = 2 is due to two effects. First,
there are five stable one-particle states in the E8 spectrum above the two-particle
threshold that correspond to localised peaks; the E8 masses are indicated by
the continuous (black) vertical lines in Fig. 4.6. Second, the spectrum of multi-
particle levels in a finite volume is also discrete, corresponding to isolated peaks
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in the spectrum, which acquire a non-zero width in the finite density post-quench
environment. The spacing between these levels decreases with increasing ω, there-
fore the Fourier spectrum eventually becomes smooth for larger ω, which is con-
firmed by the data displayed in Fig. 4.6.

4.4 Integrability breaking quenches

Let us now turn to Type II quenches that break integrability. Non-integrable
systems, in contrast to integrable ones, are generally thought to thermalise in the
sense of locally equilibrating to a thermal Gibbs ensemble. It is an interesting
question which features of the time evolution observed for the integrable case
are robust under integrability breaking. A related and interesting question is
whether there is any sign of relaxation, i.e. damping of the oscillations, which
was notably absent for integrable quenches, at least for the time scales accessible
for the TCSA simulation.

Non-integrable quenches in the vicinity of the axis h = 0 were already stud-
ied in Ref. [49]; these correspond to a small breaking of integrability of the free
massive Majorana theory. Here we look at the opposite limit keeping h finite and
fixed, and quenching by switching on a nonzero value of M , which corresponds
to breaking integrability of the E8 theory. This can be done in two ways: either
towards the ferromagnetic or the paramagnetic phase, depending on whether the
sign of M is positive/negative, respectively. These quenches can be described
in terms of the dimensionless parameter η (cf. Eq.(2.17)). Note that since the
post-quench theory is non-integrable, the post-quench series (4.6) cannot be ap-
plied and the only analytical prediction comes from the pre-quench perturbative
expansion (4.4).

The equilibrium properties of the post-quench theory are well understood in
both regimes, see Sec. 2.2.1, and especially Fig. 2.3 therein. Here we only recall
that for small M there is no strong dependence on the sign, but as the quench
magnitude increases, the two directions become markedly different. Most notably,
in the ferromagnetic regime the number of stable particles increases, while in
the paramagnetic regime, the number of stable single-particle excitations is first
reduced to two and then to one. The threshold values for the decays of the third
and second particles are η3 = −0.138 and η2 = −2.08, respectively [48].

4.4.1 Small quenches

We start with very small quenches in both directions, choosing |η| = 0.0044
to be safely in the perturbative regime, so that we can compare the TCSA results
with the prediction of the perturbative quench expansion. In this case Eq. (4.4)
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Figure 4.7: Plot of ⟨σ(t)⟩ after quenches of size |η| = 0.0044 in the (a) paramag-
netic and (b) ferromagnetic direction. The black dots are the TCSA results, the
prediction of the perturbative quench expansion is shown in green lines. TCSA
data are for volume r = 50 and are extrapolated in the truncation level. Time is
measured in units of the pre-quench mass of the lightest particle m

(0)
1 . Note that

this unit coincides with m1 of Sec. 4.3.

predicts the following evolution for the magnetisation:

⟨σ(t)⟩ = ⟨0|σ|0⟩+ λ
8∑

i=1

2
(
m

(0)
i

)2F
(0)ϵ∗
i F

(0)σ
i cos

(
m

(0)
i t
)
+ · · ·+ C̃σ , (4.15)

where

λ = −M
2π

= −η|h|
8/15

2π
. (4.16)

Analogously to the previous section, instead of the perturbative prediction for
C̃σ we use the numerically evaluated diagonal ensemble value.

Note that the prediction is symmetric in the two directions apart from a
relative sign in the oscillations, despite the fact that the physics essentially dif-
fers in the ferromagnetic/paramagnetic domains. This is a feature of first order
perturbation theory. The numerical simulation is consistent with this behaviour
demonstrating that quenches of this size are truly in the perturbative domain:
as Fig. 4.7 shows, there is excellent agreement between the two approaches apart
from a very short initial transient. Note that there is no sign of damping of one-
particle oscillations at the time scale of the simulation. Our results show that for
very small quenches away from the E8 axis the perturbative expansion gives a
very good approximation in a reasonably wide time window.
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Figure 4.8: Time evolution of the (a) σ operator after a quench of size η = 0.125,
and (b) the ϵ operator after a quench with η = −0.125. TCSA data are for
volume r = 50 and are extrapolated in the truncation level. Notations and units
are as in Fig. 4.7.

4.4.2 Midsize quenches

Let us proceed with quenches of moderate size |η| = 0.125 in both directions.
As we increase the quench parameter, the different physics of the two directions
is expected to manifest itself in the post-quench dynamics. It is also an inter-
esting question whether the perturbative approach continues to provide reliable
predictions.

We present two examples of dynamical one-point functions in Fig. 4.8: ⟨σ(t)⟩
after a ferromagnetic quench, and ⟨ϵ(t)⟩ following a paramagnetic quench.2 The
agreement with the first order perturbative expansion involving the pre-quench
frequencies is now less satisfactory, because the difference between the pre- and
post-quench frequencies becomes visible. Apart from this, there is a difference in
the amplitudes as well.

For these quenches the time scale (4.5) is m
(0)
1 t∗ = m

(0)
1 /|λ| ≈ 4.4 · 2π/|η|

which for η = 0.125 gives m
(0)
1 t∗ ≈ 220. In contrast to this, deviations from the

numerical data are clearly visible at times that are at least an order of magnitude
smaller than t∗. Including more terms in the form factor series would lead to a
better agreement but mainly for short times at the order of m

(0)
1 t ∼ 1. The

crux of the mismatch is that first-order perturbation theory is insufficient to

2Let us remark that for non-integrable quenches the evaluation of ⟨ϵ(t)⟩ involves a subtlety.
Due to the presence of the Hamiltonian perturbation ϵ the expectation value ⟨ϵ(t)⟩ diverges
logarithmically with the cutoff [49] and it needs to be regularised. The divergent term is
proportional to the identity operator, so it merely causes a time-independent constant shift that
changes logarithmically with cutoff, which is easy to compensate during the cutoff extrapolation
(for details cf. Appendix D).



CHAPTER 4. POST-QUENCH TIME EVOLUTION IN THE ISING FIELD THEORY 54

2 4
10−10

10−5

(a)

ω/m1

In
te
n
si
ty

2 4

10−5

(b)

ω/m1

In
te
n
si
ty

|ε(ω)|2 |σ(ω)|2 |10 · L(ω)|2

Figure 4.9: Fourier spectra of various quantities after a quench of size (a) η =
−0.125 and (b) η = 0.125 in volume r = 50. The Fourier amplitude of the
Loschmidt echo is magnified for convenience. Continuous gridlines refer to the
three stable particle masses given in Eq. (4.18). Frequency is measured in units

of m
(0)
1 .

capture a shift in oscillation frequencies. To elucidate this point, let us consider
the following Taylor expansion:

cos[(ω0 + λω1)t] = cos(tω0)− λtω1 sin(tω0) +O
(
λ2
)
. (4.17)

Note the appearance of a secular term proportional to t in leading order, which
is absent from the perturbative expansion (4.4).

In the vicinity of the E8 axis, form factor perturbation theory (FFPT) pre-
dicts the following corrections to the masses of the three stable particles up to
leading order:

mj ≃ m
(0)
j +M

F
ϵ(0)
jj (iπ, 0)

mj

, j = 1, . . . , 8 , (4.18)

where m
(0)
j is the mass of the jth particle (j = 1, 2, 3) in the E8 model. The

gridlines in Fig. 4.9 are positioned at the leading order perturbative predictions.
The corrections are in the order of the frequency resolution in the figure, and
the observed shifts are consistent with the FFPT predictions. Also note the
appearance of Fourier peaks corresponding to mass differences; the expected
position of the dominant one is indicated by the leftmost vertical blue line. The
second difference between the two directions is that, at this value of the coupling
in the paramagnetic direction, the third particle is still stable but it is very close
to the threshold of instability, which is indeed reflected in the Fourier spectra
displayed in Fig. 4.9a. The absence of a prominent peak at the third particle
mass is in stark contrast with Fig. 4.9b.
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4.4.3 Large quenches

The third class of integrability breaking quenches presented here is at |η| =
1.38. At this value of the η parameter the equilibrium physics is markedly differ-
ent, most notably due to decay of the third massive particle in the paramagnetic
direction. For this reason, we treat the two directions separately.

Paramagnetic direction

The η = −1.38 quench is where we get the first observation of damping which
appears both in the oscillations of the Loschmidt echo and the expectation value
of the magnetisation σ. For this quench cutoff errors in TCSA are much larger,
but extrapolation in the cutoff is still reliable. On the other hand, the numerical
results now also display a visible volume dependence as shown in Fig. 4.10, in
particular, the Loschmidt echo becomes quite noisy for times t > R/2. For a
quench this large, perturbative approaches for both the time evolution and the
mass shifts are unreliable, and so we have no analytic predictions to compare
with our simulation results.

Despite these limitations, we can still draw some robust conclusions. The
damping is clearly visible in the time evolution of the magnetisation, and is also
manifested in the broadening of the quasi-particle peaks in the Fourier spectra
in Fig. 4.11 compared to those in Fig. 4.9a. The observation of the Fourier spec-
tra also reveals the decay of the third particle: the corresponding peak is not
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Figure 4.11: Fourier spectra of the time evolution after a quench of size η = −1.38
in volume r = 45. Units are as in Fig. 4.9.

present. Although in a different regime of the Ising field theory the decay rate
was accurately extracted from the TSA data [49], in the present case it is unfor-
tunately not possible to reliably estimate the relaxation time due to the limited
time window in which the TCSA is valid.

For even larger quenches, necessary to access the domain in which there is
only a single quasi-particle, the TCSA is not convergent enough to extract any
useful information and so we do not consider them here.

Ferromagnetic quenches

Consistently with the different equilibrium physics, the non-equilibrium dy-
namics shows a marked qualitative difference in the ferromagnetic direction,
compare Fig. 4.12 with Fig. 4.10. There is no observable damping, however,
the magnetisation shows the strong presence of a mass difference frequency.

The Fourier spectra in Fig. 4.13 display a nice regular sequence of meson
excitations, which is a signal of confinement [29, 49]. The meson masses in the
Ising field theory are well described by analytic methods [45–47]. However, in-
stead of using these predictions we determined the meson masses from the TCSA
spectrum of the post-quench Hamiltonian in the same volume (r = 50) in which
the time evolution was considered, which also accounts for finite size mass cor-
rections. As shown in Ref. [64], the TCSA meson masses agree with theoreti-
cal predictions to a high precision, so displaying the analytic results would not
amount to any visible change in Fig. 4.13. Even so, the peaks in the Fourier
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spectra do not coincide exactly with the masses, which indicates corrections due
to the effect of the finite post-quench particle density.

4.5 Summary

In this chapter we expanded on the second thesis statement based on the
work in Ref. [94]. We started with the description of the quench paradigm in
quantum field theories and discussed a specific QFT quench in detail. The work
we presented treats quenches starting from the E8 axis of the Ising field theory.
This line in the two-dimensional parameter space corresponds to an integrable
field theory, which leads to two distinctive quench types: first those that conserve
the integrable dynamics upon quenching, i.e. that have an integrable post-quench
dynamics, and second, quenches pointing to the non-integrable domain. We ad-
dressed both type of quenches using the non-perturbative TCSA method.

For the first quench type, there are two analytical expansions to compare with
the numerical results. We found that, for small enough quenches, both predict
the dynamics correctly. As the dimensionless quench parameter is increased, the
pre-quench perturbative method becomes less reliable in a way that is consistent
with its limitations coming from being a first-order expansion. On the other
hand, the post-quench approach continues to perform excellently in comparison
with the numerics for all quench magnitudes considered above.
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Figure 4.13: Fourier spectra for a quench of size η = 1.38 in volume r = 50.
Meson masses are seen to get slightly shifted for more massive mesons due to the
finite particle density. Units are as in Fig. 4.9.

We showed that the dynamical one-point functions exhibit single-particle
oscillations, which showed no signs of damping up to the timescale available to
TCSA. The Fourier analysis revealed that the frequencies of the oscillations are
determined by the particle spectrum of the post-quench theory. This observation
explains the success of the post-quench expansion and is consistent with the
suggestion of using quench protocols to identify the particle content via quench
spectroscopy.

For the second type of quenches only the pre-quench expansion makes pre-
dictions for the dynamical operator expectation values. While agreement with
the numerical data is found for very small integrability breaking quenches, first
order perturbation theory breaks down for larger quenches at times an order of
magnitude smaller than its estimated time range of validity. We argued that the
source of mismatch is inherent in the first order perturbative approximation as
a leading order calculation cannot reveal the frequency shifts coming from two
sources: the change of the energy spectrum and the presence of finite energy
density in the system via the quench protocol.

In contrast to the limitations of available analytic approaches, the applica-
tion of TCSA allows for a more far-reaching exploration of the non-integrable
regime. This probe revealed the non-equilibrium signatures of the different equi-
librium physics on the two sides of the axis: the paramagnetic and ferromagnetic
directions, respectively. In particular, the analysis of the Fourier spectra showed
the absence of the third massive particle beyond its predicted decay threshold
towards the paramagnetic direction. The largest quenches in the paramagnetic
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direction also exhibited a damping phenomenon in the time evolution of the mag-
netisation operator. In the other direction, the Fourier analysis of post-quench
dynamics indicated the presence of mesonic excitations in the spectrum, charac-
teristic features of the confinement phenomenon of the ferromagnetic region.



Chapter 5

Post-quench overlaps in quantum
field theory

The previous chapter presented an extensive analysis of post-quench time
evolution, exposing several important traits of quantum field theory quenches,
most notably, the important role played by single-particle oscillations. In this
chapter we work out a different aspect of the quench protocol in quantum field
theory: the overlap functions characterising the initial state.

The overlaps are defined as the scalar product of the initial state with the
post-quench eigenstates. As discussed in Chap. 2, they are an important in-
put for many analytical approaches to the post-quench dynamics, including the
Quench Action approach [30–32] and form factor expansions [33, 34]. In free the-
ories, overlaps can be directly obtained through a Bogoliubov transformation,
but they are also known for a number of quenches in interacting Bose gases and
integrable spin chains [141–153], including results in the context of the AdS/CFT
correspondence [154–157].

In contrast, for the generic QFT quench setting discussed in the previous
chapter, the results are much scarcer. Under simplifying assumptions, the over-
laps can be determined approximately [118, 119, 123, 158], or numerically using
truncated Hamiltonian methods [94, 120]. Below we elaborate on an alternative
analytical approach to the calculation of overlap functions, presenting our work
published in Ref. [95]. This approach is motivated by the perturbative expansion
of Refs. [40, 121] introduced in the previous section to provide a higher order
approximation of the overlap functions.

To contextualise the results, we begin with an introduction of the overlap
functions in quantum field theory quenches, with a specific focus on integrable
field theories. We discuss how to evaluate these functions in perturbation theory
and obtain general formulae in terms of matrix elements of the quenching oper-
ator. Although the expressions are expected to hold in a generic quantum field
theory, we choose the E8 model to evaluate them where the matrix elements
are known from the form factor bootstrap and the results can be contrasted

60
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with the nonperturbative TCSA data for various quantities and different types
of quenches.

5.1 Quantum field theory overlaps

The overlaps relate the initial state to the eigenstates of the post-quench
Hamiltonian. Formally, this relation is expressed in two-dimensional quantum
field theory considering the basis of asymptotic states defined in Eq. (3.4):

|Ω⟩ = N
{
|0⟩+

∞∑

N=1

∑

a1,...aN

(
s∏

a=1

1

k
(N)
a !

)
(5.1)

(
N∏

i=1

∫
dϑi

2π

)
Ka1...aN (ϑ1, . . . , ϑN) |ϑ1 . . . ϑN⟩a1...aN

}
,

where we used |Ω⟩ to denote the initial state which is the vacuum state of the pre-
quench theory. |0⟩ is the vacuum state of the post-quench model, and N ensures
the normalisation of the state. s denotes the number of particle species of the
post-quench system, k

(N)
a is the number of particles of species a in the state

consisting of N particles, and the particle momenta are parameterised by the
relativistic rapidity ϑ. The Ka1...aN (ϑ1, . . . , ϑN) are called the overlap functions:
the characterisation of the initial state amounts to calculating these functions.

For the exactly known overlaps referenced above, the multi-particle functions
are factorised in terms of zero-momentum pairs. Formally, this property is ex-
pressed most concisely through the cumulants K̄ of the overlap functions, defined
by:

|Ω⟩ = N exp

{ ∞∑

N=1

∑

a1,...aN

(
s∏

a=1

1

k
(N)
a !

)
(5.2)

(
N∏

i=1

∫
dϑi

2π

)
K̄a1...aN (ϑ1, . . . , ϑN)A

†
a1
(ϑ1) . . . A

†
aN
(ϑN)

}
|0⟩ ,

where the A†
a(ϑ) are the asymptotic particle creation operators. Pair factorisation

means that all cumulants with particle number N > 2 vanish: this property is
trivially satisfied in free quadratic models, and it also holds in a wide class of
quenches with integrable post-quench dynamics. Motivated by these results, Refs.
[159, 160] coined the term ‘integrable quench’ to refer to quenches where the post-
quench Hamiltonian is integrable and the initial state exhibits pair structure.
Applying this criterion to Eq. (5.2) the result is the generalised squeezed state
form:

|Ψ(0)⟩ = N exp

{∑

a

ga
2
A†

a(0) +
∑

a,b

1

2

∫
dϑ

2π
Kab(ϑ)A

†
a(−ϑ)A†

b(ϑ)

}
|0⟩ , (5.3)
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where ga are the one-particle overlaps and Kab is nonzero only if ma = mb. This
expression is completely analogous to the integrable boundary states introduced
by Ghoshal and Zamolodchikov [161]. Assuming an initial generalised squeezed
state form, various traits of the post-quench dynamics can be described analyti-
cally [34, 103, 114–119, 162–164].

Eq. (5.3) corresponds to a post-quench initial state with independently cre-
ated particle pairs (and zero-momentum particles, whenever the one-particle
overlap is finite). The most important consequence of this structure is that one-
and two-particle overlaps completely characterise the finite density state resulting
after the quench, narrowing down the set of overlap functions to be calculated.

The feature that most of the information regarding the initial state is en-
coded in one- and two-particle overlaps is not unique to integrable quenches. For
quenches with small enough post-quench density, i.e. when the average density
of particles is smaller than the inverse of the interaction range, one expects on
physical grounds that a similar factorisation holds with a very good approxima-
tion. It is precisely in this sense that the post-quench expansion [33, 34, 122]
considered in the previous section relies on small post-quench density: it uses the
vanishing of cumulants with N > 2.

The success of the post-quench expansion in describing the post-quench time
evolution is a confirmation that for not too large quenches few-body overlaps give
an adequate description of the initial state. This motivates the quest to calculate
this limited set of functions analytically. Below we present a perturbative calcu-
lation for the functions ga and Kab, corresponding to the one- and two-particle
overlaps, respectively:

ga
2

= a ⟨{0}|Ω⟩ (5.4)

Kab(ϑ1, ϑ2) = ab ⟨{ϑ1, ϑ2}|Ω⟩ . (5.5)

Note that in perturbation theory, there is no reason to exclude the two-particle
overlap functions Kab with ma ̸= mb. In fact, as we will see below, the pertur-
bative expansions predict that the corresponding overlaps are finite already in
leading order. Formally, this is only a small extension of the generalised squeezed
state form, such that it remains a very good approximation for the initial state
in the small post-quench density regime (cf. the discussion below Eq. (5.3)).

In partial analogy with the pre-quench and post-quench expansions of the
previous chapter, these expressions suggest two alternative approaches within
perturbation theory to calculate the overlaps: first, expand the initial state |Ω⟩
on the post-quench basis, and second, expand the post-quench eigenstates |{0}⟩a
and |{ϑ1, ϑ2}⟩ab on the pre-quench basis, where |Ω⟩ is the ground state. Note
that unlike the previous chapter, here both approaches remain within ordinary
perturbation theory. In the hope that these remarks clear up any unwanted
confusion, let us adopt a similar terminology in this chapter as well, and let
us call the two approaches post-quench perturbative expansion and pre-quench
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perturbative expansion, respectively. We present the corresponding calculations
in this order.

5.2 Post-quench perturbative expansion

In the post-quench expansion the overlaps are computed by expanding the
pre-quench vacuum |Ω⟩ in the basis of post-quench eigenstates. Assuming that
the pre- and post-quench Hamiltonians are related by

Hpre = Hpost + λ

∫
dxϕ(x) (5.6)

where ϕ is a local field, we can use ordinary Rayleigh–Schrödinger perturbation
theory to express the overlaps in terms of matrix elements of ϕ:

|Ω⟩ = |0⟩ − λ

∞∑

N=1

∑

a1,...aN

2π

k
(N)
a !

(
N∏

i=1

∫ ∞

−∞

dϑi

2π

)
δ

(
N∑

i=1

pa,i

)
×

× F ϕ∗
a1,...aN

(ϑ1, . . . , ϑN)∑N
i=1Epa,i

|ϑ1, . . . , ϑN⟩a1,...aN +O(λ2) ,

(5.7)

where pa,i = mai sinhϑi and Epa,i = mai coshϑi, and mai is the mass of particle i
that is of type ai. The first order correction includes the following matrix element:

⟨k|
∫

dxϕ(x) |0⟩ = 2πF ϕ∗
a1,...aN

(ϑ1, . . . , ϑN)δ

(
N∑

i=1

pa,i

)
, (5.8)

where |k⟩ = |ϑ1, . . . , ϑN⟩a1,...aN and F ϕ
a1,...aN

(ϑ1, . . . , ϑN) is the N -particle form
factor of the operator ϕ (cf. Eq. (3.8)), while the Dirac-delta reflects momentum
conservation. Note that although Eq. (5.7) contains an infinite summation over
states, the scalar product in the overlaps selects only a single term.

The second order contribution to each overlap involves an infinite sum over
intermediate states (cf. App. B.1). From Eq. (5.8) it follows that this sum contains
an explicit divergence in the diagonal matrix element ⟨0|

∫
dxϕ(x) |0⟩, which is

proportional to δ(0). The perturbed state is not normalised in this convention so
all quantities have to be divided by N = 1 +O(λ2). However, since we perform
overlap calculations up to O(λ2), the normalisation is immaterial as the leading
order contribution to any overlap is of O(λ). Consequently, the divergences can
not be removed by dividing with N . Instead, as shown in the following sections,
they can be regularised by switching to finite volume.
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5.2.1 Finite volume regularisation

Divergences involving δ(0) originate from the volume integral in Eq. (5.6) and
can be handled by switching to finite volume L:

∫ ∞

−∞
dxϕ(x) −→

∫ L

0

dxϕ(x) , (5.9)

where for simplicity we impose periodic boundary conditions. Using this pre-
scription, (5.8) is modified as

⟨k|
∫

dxϕ(x) |0⟩ = L ⟨k|ϕ(0) |0⟩L |pk=0 , (5.10)

where the L subscript signals that the matrix element is understood in finite
volume and pk = 0 makes it explicit that the eigenstate ⟨k| has zero overall
momentum.

When L is sufficiently large, the finite volume eigenstates can still be described
as multi-particle states with rapidities {ϑi} that are quantised according to the
Bethe–Yang equations:

Qi = mL sinhϑi +
∑

j ̸=i

δps(ϑi − ϑj) = 2πIi , (5.11)

where the quantum numbers Ii are integers and

δps(ϑ) = −i logS(ϑ) (5.12)

is the two-particle scattering phase-shift. As a result, the momentum integrals are
replaced by discrete sums running over the quantum numbers or, equivalently,
the rapidities labelling different states in finite volume. Matrix elements can be
expressed by the finite volume form factor formula [93]:

⟨{ϑi}|ϕ |{ϑ′
j}⟩L =

F ϕ
{ai},{aj}({ϑi − iπ}, {ϑ′

j})
√
ρ{ai}({ϑi})

√
ρ{aj}({ϑ′

j})
, (5.13)

where the ρ density factors are defined by the following determinant:

ρa1,...aN (ϑ1, . . . ϑN) = det

(
∂Qk

∂ϑl

)
, k, l = 1, . . . N . (5.14)

Note that the N -particle density factor scales as O(LN) with respect to the
volume. Putting everything together, one obtains for the perturbative expansion
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up to second order in finite volume

|Ω⟩L = |0⟩L − λL

∞∑

N=1

(
s∏

a=1

1

k
(N)
a !

) ∑

{ϑ1,...ϑN}
δ

(
N∑

i=1

mai sinhϑi, 0

)
×

× F ϕ∗
a1,...aN

({ϑ1, . . . ϑN})√
ρa1,...aN (ϑ1, . . . ϑN)

∑N
i=1mai coshϑi

|{ϑ1, . . . ϑN}⟩{ai},L +

+ λ2 |Ω(2)⟩L +O(λ3) ,

(5.15)

where we introduced the notation δ(a, b) ≡ δab for the Kronecker delta. Although
the first order correction seems to be proportional to L, we will see below that
the volume factor is cancelled by the density factor of the finite volume states, so
the correction to the overlaps is finite after taking the L→ ∞ limit. The second
order correction has the explicit form

|Ω(2)⟩L = L2

∞∑

N,M=1

∑

a1,...aN
b1,...bM

(
s∏

a=1

1

k
(N)
a !k

(M)
b !

) ∑

{ϑ1,...ϑN}

∑

{ϑ′
1,...ϑ

′
M}

δ

(
M∑

i=1

mbj sinhϑ
′
j, 0

)
δ

(
N∑

i=1

mai sinhϑi,
M∑

j=1

mbj sinhϑ
′
j

)
×

× ⟨{ϑ′
j}|ϕ |0⟩L ⟨{ϑi}|ϕ |{ϑ′

j}⟩L∑N
i=1mai coshϑi

∑M
j=1mbj coshϑ

′
j

|{ϑi}⟩{ai},L −

− L2

∞∑

N=1

∑

a1,...aN

(
s∏

a=1

1

k
(N)
a !

) ∑

{ϑ1,...ϑN}
δ

(
N∑

i=1

mai sinhϑi, 0

)
×

× ⟨ϕ⟩L ⟨{ϑi}|ϕ |0⟩L(∑N
i=1mai coshϑi

)2 |{ϑi}⟩{ai},L .

(5.16)

The explicit divergence appears in the last term, since the density factor coming
from the finite volume matrix element is insufficient to suppress the L2 factor.
However, the divergence is cancelled by the disconnected part of the finite volume
form factor, as shown below.

5.2.2 Results for one-particle overlaps

One-particle overlaps ga are defined by the scalar product in Eq. (5.4). For
simplicity, we suppress the species index here—the generalisation to the case of
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multiple species is presented later. This reduces the problem to the calculation
of a single amplitude g, which is connected to the finite volume scalar product
as [165]:

g

2
=

⟨{0}|Ω⟩L√
mL

, (5.17)

where the factor of 1/
√
mL results from the relation between the normalisation

of the infinite and finite volume states. Using (5.15) we can read off the result of
perturbation theory up to the second order:

g

2
=

1√
mL

[
−λL F ϕ

1

m
√
mL

+ λ2L2

(
− ⟨ϕ⟩F ϕ

1

m2
√
mL

+ (5.18)

+
F ϕ
1 F

ϕ
2 (iπ, 0)

m2
√
mL

√
mL

√
mL

+
⟨ϕ⟩F ϕ

1

m2
√
mL

+ . . .

)
+O

(
λ3
)
]
,

where the ellipsis denotes the contribution of higher multi-particle form factors,
and we used the results for the finite volume form factors derived in [93, 166]:

⟨{0}|ϕ|0⟩L =
F ϕ
1√
mL

, ⟨{0}|ϕ|{0}⟩L =
F ϕ
2 (iπ, 0)√
mL

√
mL

+ ⟨ϕ⟩ . (5.19)

Note that the diagonal form factor includes a disconnected contribution, which
exactly cancels the divergent term appearing in the second order of perturbation
theory. Eq. (5.18) can be simplified in the form:

g

2
= −λF

ϕ
1

m2
+ λ2

(
F ϕ
1 F

ϕ
2 (iπ, 0)

m4
+ . . .

)
+O

(
λ3
)
. (5.20)

The contributions from higher form factors can also be evaluated. The first such
term corresponds to the {ϑ′

j} = {−ϑ1, ϑ1} term in Eq. (5.16) and reads

λ2L2

2

∑

ϑ1

F ϕ
3 (iπ,−ϑ1, ϑ1)F

ϕ∗
2 (−ϑ1, ϑ1)

mLρ2(ϑ1,−ϑ1)2m2 coshϑ1

, (5.21)

where ρ2 is the density factor defined in (5.14), and overall momentum conserva-
tion was used to eliminate one of the rapidity summations. In the infinite volume
limit the summation is transformed into an integral

∑

ϑ1

→
∫

dϑ

2π
ρ̃(ϑ) , (5.22)

where ρ̃(ϑ) is the density of zero-momentum states, which can be obtained by
enforcing zero overall momentum on the Bethe–Yang equations (5.11):

ρ̃1(ϑ1) =
∂Q1(ϑ1, ϑ2)

∂ϑ1

∣∣∣∣
m sinhϑ1+m sinhϑ2=0

. (5.23)
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The quotient of these two density factors yields

ρ̃(ϑ)

ρ2(ϑ,−ϑ)
=

1

mL coshϑ
, (5.24)

and so the powers of L cancel, leading to the infinite volume limit

λ2

2

∫
dϑ

2π

F ϕ
3 (iπ,−ϑ, ϑ)F ϕ∗

2 (−ϑ, ϑ)
2m4 cosh2 ϑ

. (5.25)

This expression contains another possible source of divergence due to the kine-
matic pole (3.13) of the form factors: F3(iπ,−ϑ, ϑ) has a simple pole for ϑ→ 0.
However, F2 ∝ ϑ around the origin due to the two-particle S-matrix satisfying
S(0) = −1. 1 So the product is regular and the integral is well-defined. Adding
this term to Eq. (5.20) results in:

g

2
=− λ

F ϕ
1

m2
+ λ2

(
F ϕ
1 F

ϕ
2 (iπ, 0)

m4
+

+
1

2

∫
dϑ

2π

F ϕ
3 (iπ,−ϑ, ϑ)F ϕ∗

2 (−ϑ, ϑ)
2m4 cosh2 ϑ

+ . . .

)
+O

(
λ3
)
.

(5.26)

The above considerations can easily be generalised to a theory with multiple
particle species, resulting in the following expression for the overlap of a particle
of species a

ga
2

=− λ
F ϕ
a

m2
a

+ λ2

(
s∑

b=1

F ϕ
b F

ϕ
ab(iπ, 0)

m2
am

2
b

+

∑

b≤c

1

(2δbc)!

∫
dϑ

2π

F ϕ
abc(iπ, ϑ, ϑbc)

m2
a

(
mb cosh(ϑ) +

√
m2

c + (mb sinhϑ)2
)×

× F ϕ∗
bc (ϑ, ϑbc)√

m2
c + (mb sinhϑ)2

+ . . .

)
+O

(
λ3
)
,

(5.27)

with

ϑbc = −arcsinh

(
mb sinhϑ

mc

)
, (5.28)

which is a straightforward generalisation of Eq. (5.26). Note that this expression
is regular, since Faac does not have a kinematic pole in the case a ̸= c for ϑ→ 0
due to Sac(0) = +1 for two different species a and c.

1This reflects an effective exclusion statistics satisfied by these particles, see the exchange
axiom of form factors in Eq. (3.11)
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5.2.3 Results for two-particle overlaps

The next term in the expansion (5.1) corresponds to two-particle states which
have zero total momentum for a global quench (5.6). In the case of a single
particle species, their contribution is characterised by a single rapidity-dependent
overlap function K(−ϑ, ϑ):

K(−ϑ, ϑ) = ⟨{ϑ,−ϑ}|Ω⟩ , (5.29)

which is related to the corresponding finite volume inner product by the relation
[165]:

K(−ϑ, ϑ) = ρ̃(ϑ) ⟨{ϑ,−ϑ}|Ω⟩L√
ρ2(ϑ,−ϑ)

. (5.30)

The perturbative contributions to K(−ϑ, ϑ) can be easily read off from the n = 2
terms in Eq. (5.15):

K(−ϑ, ϑ) = ρ̃(ϑ)√
ρ2(ϑ,−ϑ)

[
− λL

F ϕ∗
2 (−ϑ, ϑ)

2m coshϑ
√
ρ2(ϑ,−ϑ)

+

+ λ2L2

(
−⟨ϕ⟩F ϕ∗

2 (−ϑ, ϑ)
(2m coshϑ)2

√
ρ2(ϑ,−ϑ)

+

+
F ϕ
1 F

ϕ∗
3 (iπ,−ϑ, ϑ)

2m2 coshϑ
√
mL

√
mL
√
ρ2(ϑ,−ϑ)

+ . . .

)
+O

(
λ3
)
]
,

(5.31)

where the ellipsis again corresponds to higher multi-particle form factor contri-
butions. Using

ρ̃(ϑ)

ρ2(ϑ,−ϑ)
=

1

mL coshϑ
(5.32)

we obtain

K(−ϑ, ϑ) =− λ
F ϕ∗
2 (−ϑ, ϑ)

2m2 cosh2 ϑ
+ λ2L

(
−⟨ϕ⟩F ϕ∗

2 (−ϑ, ϑ)
4(m coshϑ)3

+

+
F ϕ
1 F

ϕ∗
3 (iπ,−ϑ, ϑ)

2m3 cosh2 ϑmL
+ . . .

)
+O

(
λ3
)
.

(5.33)

The above expression contains an apparent infinite volume divergence; similarly
to the one-particle case, it is expected to cancel with the disconnected piece of
the next term in the form factor expansion. The corresponding term is:

∑

ϑ′>0

⟨{ϑ,−ϑ}|ϕ|{−ϑ′, ϑ′}⟩L ⟨{ϑ′,−ϑ′}|ϕ|0⟩L
4m2 coshϑ coshϑ′ , (5.34)
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where a disconnected piece appears for ϑ = ϑ′. In this case the relation between
the finite volume matrix element and the infinite volume form factors reads as
[166]:

⟨{ϑ,−ϑ}|ϕ|{−ϑ, ϑ}⟩L =
1

ρ2(ϑ,−ϑ)
(
F ϕ,s
4 (iπ + ϑ, iπ − ϑ,−ϑ, ϑ)+ (5.35)

+2mL coshϑF ϕ
2 (iπ, 0) + ρ2(ϑ,−ϑ) ⟨ϕ⟩

)
,

where the superscript s denotes that the form factor is evaluated symmetrically
at ϑ = ϑ′, i.e.

F ϕ,s
4 (iπ + ϑ, iπ − ϑ,−ϑ, ϑ) = lim

ϵ→0
F ϕ
4 (iπ + ϑ+ ϵ, iπ − ϑ+ ϵ,−ϑ, ϑ) , (5.36)

which is a regular expression [41, 166]. Note that the last term exactly cancels
the term proportional to L in (5.33). The final result for the two-particle overlap
is

K(−ϑ, ϑ) =− λ
F ϕ∗
2 (ϑ,−ϑ)

2m2 cosh2 ϑ
+

+λ2

(
F ϕ
1 F

ϕ∗
3 (iπ,−ϑ, ϑ)

2m4 cosh2 ϑ
+
F ϕ∗
2 (−ϑ, ϑ)F ϕ

2 (iπ, 0)

2m4 cosh4 ϑ
+ (5.37)

+
1

2

∫ ∞

−∞

dϑ′

2π

F ϕ,s
4 (iπ + ϑ, iπ − ϑ,−ϑ′, ϑ′)F ϕ∗

2 (−ϑ′, ϑ′)

4m4 cosh2 ϑ cosh2 ϑ′ + . . .

)
+O

(
λ3
)
,

The generalisation to multiple particle species is not as straightforward as
in the case of one-particle overlaps. The new feature is that in infinite volume
divergent disconnected pieces appear even when there is only one particle that
appears with the same rapidity on both sides. However, this cannot happen in
finite volume, due to the quantisation of rapidities according to Eq. (5.11) [166].
Consequently, it is necessary to be more careful when taking the limit L → ∞.
With due care, explicit expressions can be derived both for the overlap functions
containing a pair from the same species and a pair from different species. The re-
sulting formulae are similar in structure to Eq. (5.37), but they are more lengthy
due to the appearing extra terms. We list them with a detailed derivation in
Appendix B.2 for completeness.

At this point we have a second order perturbative expression for the one- and
two-particle overlaps generalised to models with multiple particle species. Note
that the only assumption these results rely on is that the quench parameter
λ is sufficiently small such that a perturbative approach is valid. Under the
additional assumption of small post-quench density (which is justified if we are
in the perturbative regime), Eqs. (5.26) and (5.37) give an adequate description
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of the initial state following a global quench of the form (5.6). Moreover, at least
formally, this description is valid in a generic quantum field theory.

Naturally, the utility of these expressions is highest when they can be evalu-
ated, i.e. in models where the Fn matrix elements are known. For example, the
quenches discussed in the previous chapter that are subject to integrable post-
quench dynamics provide an immediate application of Eqs. (5.26) and (5.37).
Moreover, the neglect of terms containing higher form factors is justified as well:
form factor series in two-dimensional QFT display a rapid convergence in general
[3].

We remark that the resulting expression for K(ϑ) reveals a distinctive feature
of the two-particle overlap function, appearing in the second order contribution.
That is, for ϑ → 0 the pair overlap has a simple pole which stems from the
F ϕ∗
3 (iπ,−ϑ, ϑ) form factor in the first λ2 term. The origin of this term is the

insertion of a single-particle state in the perturbative expansion. This is a general
phenomenon: the pole at the zero-momentum threshold is a consequence of the
nonzero single-particle overlap g, which also determines its residue [123]:

K(ϑ) ∼ −ig2
2ϑ

+O(ϑ0) . (5.38)

This relation is satisfied by Eqs. (5.26) and (5.37) up to leading (quadratic) order
in λ.

5.3 Pre-quench perturbative expansion

Above we presented a second order perturbative calculation for the overlaps
on the post-quench basis. While the formal results are expected to hold true
in any quantum field theory, in practice their applicability is more restricted:
they apply to quenches with integrable post-quench dynamics. The scope of
the perturbative approach can be partially extended by covering the case of
integrable pre-quench dynamics. This drives us to pursue a similar approach
along the second direction introduced in Sec. 5.1, i.e. to perform an analogous
expansion on the pre-quench basis.

Computationally, this amounts to solving a reversed task: in the previous
calculations we had to obtain the correction to the pre-quench vacuum order by
order, here it is necessary the compute the perturbative correction to each eigen-
state, focusing only on the part that is proportional to the pre-quench ground
state |Ω⟩. Apart from this modification, the steps of the calculations are almost
identical to the preceding ones so instead of a detailed calculation we focus on
the results while commenting on the differences.
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5.3.1 One-particle overlaps

For the g amplitudes the major changes compared to Eq. (5.27) are in the
denominators: the energy differences appearing in the perturbative expansion are
now with respect to the one-particle mass instead of the vacuum. Cancellation
of divergent parts is again due to disconnected pieces. Apart from the energy
denominators, the only difference appears in the ordering of rapidities in the
form factors. The final result is given by:

g
(0)
a

2
=− λ

F ϕ
a

m2
a

− λ2

(
Nspec∑

b=1,b ̸=a

F ϕ
b F

ϕ
ab(iπ, 0)

m2
amb(mb −ma)

+
F ϕ
aa(iπ, 0)F

ϕ
a

m4
a

+
∑

b≤c

1

(2δbc)!

∫
dϑ

2π

F ϕ
bca(iπ + ϑ, iπ + ϑbc, 0)

m2
a

√
m2

c + (mb sinhϑ)2
×

× F ϕ
bc(ϑ, ϑbc)(

mb cosh(ϑ) +
√
m2

c + (mb sinhϑ)2 −ma

) + . . .

)
+O

(
λ3
)
,

(5.39)

where now all masses and form factors are those of the pre-quench theory.2

The ellipsis indicates contributions of intermediate states with more than two
particles. Note that if ma > mb + mc then the denominator of the integrand
has a zero and the integrand has a pole. This will occur for all one-particle
states with mass ma > 2m1 in one or more such integral terms. This pole is the
consequence of a disappearing energy difference between a one-particle state and
the two-particle continuum in infinite volume. We postpone the discussion of this
singularity after presenting the two-particle overlaps.

5.3.2 Two-particle overlaps

Let us start with the discussion of the Kaa function. The first order contri-
bution is simply

− λ
F ϕ
aa(−ϑ, ϑ)

2m2
a cosh

2(ϑ)
. (5.40)

The second order contribution is given as a sum over eigenstates [c.f. the third
term of Eq. (B.5)]. Inserting the vacuum yields a divergent term which is can-
celled by the disconnected piece of the diagonal matrix element, analogously to

2Note that we omitted the (0) superscript from the quantities on the right-hand side for
brevity. Also note that for this expression to make sense, the Aa particle state has to be present
both in the pre-quench model (where the right-hand side is evaluated) and in the post-quench
model (where the overlap is defined).
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the argument in Section 5.2. The connected part of the diagonal element disap-
pears in the infinite volume limit due to the corresponding density factor and
therefore the only remaining term resulting from inserting the vacuum is

− λ2

2

F ϕ
aa(iπ, 0)F

ϕ
aa(−ϑ, ϑ)

m4
a cosh

4(ϑ)
. (5.41)

Moving forward and inserting the one-particle states yields

λ2

2

s∑

b=1

F ϕ
b F

π
baa(iπ,−ϑ, ϑ)

m2
amb cosh

2(ϑ)(2ma cosh(ϑ)−mb)
, (5.42)

where the aforementioned pole manifests itself as a divergence of the pair overlap
function Kaa(ϑ) whenever there is a particle with mb > 2ma.

Proceeding to the insertion of two-particle states, we can consider inserting
a pair of particles Ab with b ̸= a, in which case the form factor has no pole. In
finite volume, the corresponding contribution reads

λ2L2

2

∑

ϑ′

F ϕ
bb(−ϑ′, ϑ′)F ϕ

bbaa(iπ + ϑ′, iπ − ϑ′,−ϑ, ϑ)
ρbb(ϑ′,−ϑ′)2ma coshϑ(2ma coshϑ− 2mb coshϑ′)maL coshϑ

. (5.43)

Note that the pole is only present in infinite volume since for any finite L there are
no exact degeneracies in the spectrum due to the Bethe-Yang equations (5.11).
Hence one might expect that the finite volume regularisation technique detailed
in Section 5.2.1 is able to treat its effect properly. In the limit L→ ∞ limit the
energy difference can be zero at

ϑ∗ = arccosh

(
ma coshϑ

mb

)
. (5.44)

Note that ϑ∗ is imaginary if ϑ < arccosh(mb/ma). However, for larger ϑ the pole
is on the real axis. Eq. (5.43) can be rewritten as

λ2

8

∑

ϑ′

F ϕ
bb(−ϑ′, ϑ′)F ϕ

bbaa(iπ + ϑ′, iπ − ϑ′,−ϑ, ϑ)
ρ̃b(ϑ′)m2

amb coshϑ′ cosh2 ϑ(ma coshϑ−mb coshϑ′)
. (5.45)

The sum can be represented as a sum of contour integrals3 using

∑

ϑ′

f(ϑ′)

ρ̃b(ϑ′)
=
∑

ϑ′

∮

ϑ′

dϑ

2π

−f(ϑ)
1 + eiQ̃b(ϑ)

, (5.46)

where f(ϑ) is assumed to be regular at ϑ′, and the contours encircle the ϑ′ values
on the real axis that are given by the quantisation condition

Q̃b(ϑ
′) = mbL sinhϑ′ + δpsbb (2ϑ

′) = 2πJ , (5.47)
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ϑ′ϑ∗
= ϑ′

Figure 5.1: Illustration of the contour integrals involved in the finite volume
regularisation of an infinite volume pole. The summation goes over the quantised
ϑ′ (located at the crosses on the axes), and there is an additional pole at ϑ∗
(denoted by a dot). The contours can be joined together, but the residue at ϑ∗
has to be subtracted.

where J is a half-integer number. The contours can be joined to form two infinite
lines below and above the real axis, see Fig. 5.1. On the first the integrand
vanishes in the infinite volume limit while the second one yields

λ2

8

∫ ∞+iϵ

−∞+iϵ

dϑ′

2π

F ϕ
bb(−ϑ′, ϑ′)F ϕ

bbaa(iπ + ϑ′, iπ − ϑ′,−ϑ, ϑ)
m2

amb cosh
2 ϑ coshϑ′(ma coshϑ−mb coshϑ′)

. (5.48)

When joining the contours, it is necessary to subtract the residue of the pole at
ϑ = ϑ∗,

λ2

8

iF ϕ
bb(−ϑ∗, ϑ∗)F

ϕ
bbaa(iπ + ϑ∗, iπ − ϑ∗,−ϑ, ϑ)

m2
amb cosh

2 ϑ coshϑ′mb sinhϑ∗(1 + eiQ̃b(ϑ∗))
. (5.49)

Even though the result is finite, it does not have a L → ∞ limit due the factor
eiQ̃b(ϑ∗) ∼ eimbL sinhϑ∗ . Consequently, the sum in (5.45) still fails to have a well-
defined infinite volume limit.

Therefore the singularities corresponding to vanishing energy denominators
are intractable by the method of finite volume regularisation. One may try other
ways to circumvent this problem and arrive at a regular expression well defined
in the L → ∞ limit, however we failed in all our attempts so far. So the proper
treatment of these singularities remains an interesting open question.

Nevertheless, there exist particular quenches which are free of the complica-
tions discussed above. If the matrix elements of the operator ϕ are proportional
to the energy of the involved states, the divergence is cancelled and the sum can
be readily transformed to an integral. For instance, this is the case for Type I
quenches considered in the previous chapter, where the quenching operator is
σ(x). It is proportional to the trace of the energy-momentum tensor [41], and as
a consequence all of its form factors are proportional to the total energy of the
appropriate states.

The above mathematical reasoning is illuminated by considering the physical
picture. Note that in general the pre-quench basis is not an optimal choice to ex-
press the dynamics of the post-quench Hamiltonian. For example, heavy particles
whose kinematically allowed decays in the pre-quench system are only prohibited

3Analogously to the treatment of disconnected pieces for the Kaa and Kab functions in the
post-quench expansion. For more details, see Appendix B.2.
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by integrability become unstable. These particles are expected to acquire a finite
lifetime which is reflected by the divergent terms of the perturbative series. The
resolution would require a resummation, which is expected to shift the singularity
away from the real axis. Similarly, two-particle states acquire a finite lifetime due
to inelastic processes. The situation is radically different for quenches where the
pre-quench and post-quench setting corresponds to the same integrable model.
Such a protocol is simply equivalent to a rescaling of parameters describing the
spectrum, which retains its structure. Accordingly, one does not expect diver-
gences in perturbation theory and in fact, they are absent—apart from the ones
tractable with the method of finite volume regularisation.

Consequently, for this specific class of quenches, we can express the pertur-
bative overlap functions up to second order on the pre-quench basis as well. The
explicit formulae for the two-particle overlap functions are once again elaborate,
we report them in App. B.3.

5.4 Testing the results in the E8 Ising field the-

ory

In the previous two sections we presented two applications of perturbation
theory to the calculation of post-quench overlaps. In the following we turn to
putting these approaches to the test, for which we need a model which satisfies
the following important criteria. First, it must be rich enough to test all aspects
of our results; second, there must be enough information about its spectrum and
form factors for the evaluation of the analytic expressions for the overlaps and
third, it must be amenable to an effective alternative treatment.

The E8 field theory offers an ideal choice. It has 8 stable particles, hence the
perturbative predictions can be tested on a wide set of one- and two-particle
overlap functions. The matrix elements of its relevant operators can be calcu-
lated exactly (cf. Chapter 3), which allows for the numerical evaluation of the
perturbative expressions derived above. And finally, the analytic results can be
compared with a precise and efficient numerical method, the TCSA, which has
been used in a similar setting in the previous chapter.

We consider here the two quench types illustrated in Fig. 4.1, analogously to
the case of post-quench time evolution. Let us now turn to the discussion of the
results in the two cases.

5.4.1 Integrable post-quench dynamics

We recall that Type I quenches are defined by the action

A = ACFT, c=1/2 − hi

∫
σ(x)d2x− (hf − hi)

∫
σ(x)Θ(t)d2x , (5.50)
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i.e. they correspond to a sudden change of h from the initial hi to the final hf
at t = 0, expressed by the Heaviside function Θ(t). For t ≤ 0 the system is in
the ground state of the pre-quench Hamiltonian, which is the initial state of the
out-of-equilibrium time evolution which happens for t > 0. The quench can be
characterised by the dimensionless quench magnitude

ξ ≡ hf − hi
hf

. (5.51)

These quenches have integrable post-quench dynamics, hence the post-quench
expansion provides predictions for the overlap functions in this case. They also
belong to the special class of quenches where the pre-quench expansion yields
sensible results. As a consequence, the numerical data can be compared with
both approaches at the same time. All the TCSA calculations are performed in
finite volume, so in order to compare the numerical results to the perturbative
predictions it is convenient use the finite volume normalisation of Eqs. (5.17)
and (5.30). In the numerical calculations we measure everything in appropriate
powers of the post-quench mass gap m1, so the perturbative parameter λ is
obtained by multiplying ξ with the post-quench parameter hf.

Let us remark that the overlap functions are defined up to a phase factor,
since we can freely choose the phase of any quantum state. The TCSA uses a
basis in which all vectors are real, consequently the overlaps obtained from this
approach are also real. Thus the comparison is performed such that we take the
absolute value of the perturbative overlap functions.

Before turning to the discussion of the comparison with TCSA calculations,
let us comment on the numerical evaluation of the perturbative formulae. The
second order contributions involve a sum over all possible intermediate states,
which means an infinite summation over all possible number N of inserted par-
ticles. In the above calculations we truncated the infinite sum at pair states with
N = 2. We observe that the contribution from the terms involving an integral
over the momentum of a pair state is very small in most of the cases. Conse-
quently, we argue that the error we make by truncating the form factor expansion
at two-particle intermediate states is orders of magnitude smaller than the main
contributions in second order. This argument is supported by the numerical eval-
uation of the various terms presented in Appendix B.4.

Coincidentally, there is another source of truncation in the analytic expan-
sions, related to the large number of particle species in the E8 model. Currently,
the set of available form factors is incomplete already at the three-particle level,
hence the full second order contribution cannot be evaluated even for N ≤ 2
inserted particles. Our calculation presented in Chapter 3 significantly increased
the number of available three- and four-particle form factors, reducing the error
in the perturbative expansions coming from the truncation of the form factor
series.
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Figure 5.2: Comparison between TCSA overlaps of the lightest four one-particle
states and two different perturbative expansions as functions of the quench mag-
nitude ξ for quenches along the E8 axis in volume m1R = 40. Dashed lines
indicate the first-order predictions of the post-quench expansion and continuous
lines depict the sum of the first two orders. The pre-quench result up to the first
and second order is shown in dotted and dot-dashed lines, respectively. TCSA
data is shown by orange dots. Inset: the absolute deviation of second order re-
sults from TCSA. The numbers above the inset indicate the maximal deviation
in the plotted ξ interval.

One-particle overlaps

We begin the discussion of the comparison for the case of one-particle over-
laps. The ga functions for the four lowest-lying states are presented in Fig. 5.2.
The observation of these functions reveals that the perturbative expressions de-
scribe the overlaps very well for a quite wide range of quench magnitudes.

The agreement is most precise for the A1 and A2 particles in the top row,
while the analytical data is slightly less accurate for the A3 and A4 states. This
can partially be attributed to the limited knowledge of three-particle form factors
remarked above. The largest number of the form factors are accessible for the case
of the lightest particle A1, therefore the agreement is the best for this case and
the domain of validity almost covers the whole region of the plot. For heavier
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Figure 5.3: Perturbative predictions against the TCSA data for the two-particle
overlap K11 as a function of the dimensionless momentum p1/m after quenches
of size (a) ξ = 0.05, and (b) ξ = 0.1. The overlap was determined by TCSA using
volumes m1R = 30 . . . 65.. Black lines correspond to the first-order predictions of
the post-quench expansion, and blue continuous lines depict the sum of first two
orders. The result of the pre-quench expansion is denoted by black dashdotted
lines. The inset shows a magnified section around the local maxima of the curves.

particles it is expected that extending the set of available form factors would
result in a better agreement with TCSA data, although the domain of validity
presumably remains smaller than for A1 (see Table B.1).

We also note that including the second order leads to a major improvement of
the agreement between the perturbative and TCSA results in almost the whole
parameter region presented here. This is valid for both the post- and pre-quench
perturbative expansions, but the former gives more accurate predictions, in line
with the expectation that the post-quench basis is better suited to describe the
quench problem. This is reflected by the figures in the inset which show the
absolute deviation of the two perturbative expansions from the overlaps obtained
from TCSA: the post-quench curve remains consistently below the pre-quench
mismatch in all but one case.

Two-particle overlap functions

The multiple particle species present in the Ising Field Theory provide an
opportunity to observe both the Kaa and Kab functions. In this case we used
the data of quenches at a few different values of ξ and plotted the overlaps as
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Figure 5.4: Overlap functions of pairs of heavier particles (a) K12(p) and (b)
K22(p) after a quench of size ξ = 0.05 along the E8 axis. The first-order results
are omitted, all other conventions are as in Fig. 5.3.

functions of the momentum parameterising the particle pair.

The comparison for the overlap function of a pair of the lightest particle is
presented in Fig. 5.3, which shows that the perturbative expansion performs well
also for pair overlaps in matching the numerical results of TCSA for quenches
with ξ = 0.05 and ξ = 0.1. The change from first to second order is less spec-
tacular as it was in the one-particle case, but it still significantly improves the
agreement, more noticeably as the quench magnitude increases, see the inset in
Fig. 5.3b. In addition, the second order correction dramatically alters the quali-
tative behaviour of the overlap since it introduces a pole for zero momentum (cf.
the discussion at the end of Sec. 5.2).

It would be worthwhile to extend the numerical data to investigate the pres-
ence of the pole. Unfortunately, this is hindered by two reasons: first, to obtain
lower momenta, the volume parameter has to be increased to a regime where
TCSA becomes less accurate. Second, due to the quantisation condition of A1−A1

pair states, their energy gets within touching distance of each other as the volume
is increased. Since numerical diagonalisation techniques do not always properly
discern between near degenerate states, the resulting overlap will be imprecise.
Nevertheless, the agreement shown in Fig. 5.3 is quite convincing.

It is also possible to compare the predictions regarding overlap functions
of pair states of heavier particles, as well as that of pairs composed of different
species. Fig. 5.4 illustrates that, similar to the case ofK11, the analytic prediction
still agrees very well with the TCSA numerics, with the difference that there is a
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slightly bigger difference between the two approaches compared to the case shown
in Fig. 5.3. Similarly to the single-particle overlaps, the post-quench approach is
closer to the numerical data. As we observe a remarkable agreement between the
perturbative expressions and the numerics in Fig. 5.4a, we conclude that Type I
quenches, despite the equilibrium models both being integrable, do not meet the
criteria (5.3) of integrable quenches. This observation reinforces the similar but
purely perturbative argumentation of Ref. [40].

5.4.2 Non-integrable post-quench dynamics

Finally, let us turn to the discussion of Type II quenches leading from an inte-
grable pre-quench Hamiltonian to a non-integrable post-quench dynamics. They
are defined by adding the other Ising primary ϵ(x) field with scaling dimension
xϵ = 1 to the action (5.50).

A = ACFT, c=1/2 − h

∫
σ(x)d2x− M

2π

∫
ϵ(x)Θ(t)d2x , (5.52)

The different physics towards the paramagnetic and ferromagnetic directions
(corresponding to negative and positive M , respectively) was discussed in Sec.
2.2.1. Here we remain in the perturbative regime close to the E8 axis, where these
differences are less prominent. Still, we remark that in contrast to the symmetric
behaviour of the first-order expression we encountered in the previous chapter,
the second order perturbative expansion distinguishes between the two directions,
promising a more accurate assessment of non-integrable dynamics.

On a less positive note, the applicability of the perturbative calculations is
rather restricted in this case. As the post-quench dynamics is non-integrable,
the use of the post-quench expansion is excluded. The pre-quench model is inte-
grable, but the quenching operator is not proportional to the energy-momentum
tensor, which means that the second order contributions to the overlap functions
are plagued with infinities due to zero energy differences in the denominator.
However, there are three notable exceptions: the three lowest-lying single par-
ticle states are below the two-particle threshold, and consequently escape the
above problem. This is related to the stability of the three lightest particles in
the non-integrable regime. The test of these three particles is an interesting probe
of the effects of integrability breaking with the methods of perturbation theory.

Similarly to the previous chapter, we take the dimensionless parameter η

η =
M

|h|8/15 (5.53)

to measure the quench magnitude. In the following we work in units of m1 given
by Eq. (2.15) using the coupling h in the integrable pre-quench model, i.e. the
mass gap of the pre-quench system. There is an additional modification to the
earlier comparison: when we calculate the finite volume normalisation of TCSA
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Figure 5.5: The overlaps of the three lowest-lying one-particle states for non-
integrable quenches as functions of η (5.53) compared with TCSA data for

m
(0)
1 R = 40. Adding the second order yields better agreement in all cases. We

observe sizeable deviation only in the case of the third particle in the paramag-
netic direction due to the state becoming unstable, i.e. m3 > 2m1, as it is shown
in the bottom right panel. The stability threshold η3 = −0.138 is indicated by a
grid line.

data given by Eqs. (5.17) we have to use the post-quench masses. These can be
obtained from TCSA using a cutoff extrapolation scheme similar to the case of
the overlaps.

The overlaps of the first two one-particle states are excellently captured by
the perturbative expansion. The third particle shows an asymmetry in terms of
agreement with TCSA data: we observe a small deviation from the perturbative
result in the ferromagnetic direction, but a sizeable difference in the paramagnetic
region. This can be understood in the light of the instability of the third particle
in the paramagnetic regime. As η decreases, it crosses a threshold value η3 =
−0.138 where m3 becomes smaller than 2m1, so the corresponding particle state
becomes unstable for η < η3 [48]. This is a non-perturbative phenomenon which
is reflected by the deviation of TCSA data from the perturbative prediction,
observable even for small negative η.



CHAPTER 5. POST-QUENCH OVERLAPS IN QUANTUM FIELD THEORY 81

5.5 Summary

In this chapter we discussed the application of perturbation theory to con-
struct overlaps of post-quench eigenstates with the ground state of the pre-quench
Hamiltonian for quenches between integrable and close to integrable Hamiltoni-
ans. As a testing ground for our approach, we used quenches in the scaling Ising
field theory (IFT).

We developed two approaches within perturbation theory to address the same
question. The first approach is based on a perturbative expansion of the ini-
tial state in the basis of post-quench eigenstates. Working in this context, we
showed that the divergences resulting from the naive application of ordinary
non-degenerate perturbation theory can be handled by putting the system in
finite volume using the formalism developed in Refs. [93, 166]. We expanded
the one- and two-particle eigenstate functions up to second order in perturba-
tion theory. The second order contribution is given as an infinite sum which is
truncated upon numerical evaluation.

This is not a serious limitation, since this approach is effective when the
post-quench dynamics is integrable, and the required matrix elements can be
obtained as solutions to the form factor bootstrap. Form factor series exhibit fast
convergence, leading to reliable results by the inclusion of the first few terms. We
used the solution of the E8 form factor bootstrap presented in Chapter 3 to reduce
the residual error even further. The numerical evaluation of the perturbative
formulae established that the second order contribution is nearly complete using
the available form factors (see Appendix B.4).

The second approach entails a similar calculation on the pre-quench basis.
This approach is effective when the pre-quench dynamics is integrable, and is
directly related to a recently suggested perturbative approach to describe the
post-quench dynamics [40, 121]. The second order calculations revealed a ma-
jor roadblock in this approach in the shape of divergences intractable by finite
volume regularisation. This roadblock is circumvented only by quenches with
integrable post-quench dynamics, or, in other cases, by focusing on a limited set
of states below the two-particle threshold.

We compared the results of the perturbative calculations with data obtained
from the truncated conformal space approach in the IFT for the two types of
quenches introduced in the previous chapter. For Type I quenches both expan-
sions performed adequately in comparison with the numerics, with the post-
quench expansion having a slight edge, both for single-particle and pair states.
Notably, we demonstrated that two-particle states composed of particles of dif-
ferent species are present in the initial state. This violates the property (5.3) of
integrable initial states, providing further support for the claim that the quench is
not necessarily integrable even if both the pre-quench and post-quench dynamics
are [40, 121]. The results for the pair overlap function also showed the appear-
ance of the zero-momentum pole for Kaa(p), which is proved to hold generally if
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there is a non-zero overlap with one-particle states [123].

For the second type of quenches with a non-integrable post-quench Hamilto-
nian, only the overlaps for the lowest-lying states can be constructed using the
pre-quench perturbative expansion. For such overlaps we found good agreement
with the numerical TCSA data, where the main limitation is posed by the in-
stability of the third lightest particle. Lifting this limitation amounts to giving
a proper description of non-equilibrium integrability breaking in terms of the
properties of an integrable model in equilibrium. Whether this description can
be found by a perturbative approach or a different take is required is up to future
works to decide.



Chapter 6

The chirally factorised truncated
space approach

The previous two chapters discussed various aspects of the quench paradigm
in quantum field theory. With a specific focus on the Ising field theory, we mus-
tered a set of analytical and numerical approaches to describe the quench dy-
namics. In particular, on the numerical side, we demonstrated the utility of the
nonperturbative TCSA in out-of-equilibrium settings.

Motivated by this success, in this chapter we present the development of
a new algorithm, the chirally factorised truncated conformal space approach
(CFTCSA), which can be considered an improved version of the TCSA as out-
lined in Sec. 2.2.2. The aim of this development is twofold. First, to increase
the dimensions of the truncated Hilbert space utilising the chiral factorisation
of the underlying conformal field theory, and second, to work out a ready-to-
use algorithm that can be easily adapted to various problems by physicists with
no prior expertise in the method. The first holds the promise to assail more
computationally heavy problems in perturbed conformal field theories, and it is
fulfilled e.g. by our exploration of the Kibble–Zurek mechanism in the Ising field
theory [167] (see Chap. 7 below for a detailed discussion). We aspire to achieve
the second goal with our recent preprint [168] accompanied by several example
codes realising the new algorithm.1 In the following we overview the results of
the development.

6.1 Ingredients

6.1.1 Formulation

The physical model we want to describe is the same as for the ordinary
truncated conformal space approach: a 1 + 1-dimensional quantum field theory

1We remark that a similar idea has been developed independently for a special case: the
sinh-Gordon quantum field theory on a truncated free boson Hilbert space [169].

83
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which is defined by perturbing a conformal field theory (CFT) with a relevant
field:

H = HCFT + λ

∫ L

0

dxV(x) , (6.1)

where HCFT is the CFT Hamiltonian, V(x) is the relevant operator and λ is a
coupling with positive mass dimension. We remark that it is straightforward to
extend this definition by including further relevant fields, we only avoid this to
keep the notations simpler. We apply periodic boundary conditions, so the space
coordinate is confined to a circle: x + L ≡ x, thus the theory is defined on a
space-time cylinder. We further assume that the perturbation is translationally
invariant.

The Hilbert space employed by the TCSA corresponds to the conformal point,
where listing the set of basis vectors amounts to finding all irreducible represen-
tations of the conformal algebra. Crucially, in two dimensions the algebra is the
product of two decoupled infinite-dimensional chiral parts:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[
L̄n, L̄m

]
= (n−m)L̄n+m +

c

12
n(n2 − 1)δn+m,0 ,

[
Ln, L̄m

]
= 0 .

(6.2)

Here c is a constant, the central charge of the algebra, and the Ln and L̄n op-
erators with n ∈ Z are the generators of the left and right chiral parts of the
algebra, respectively.2

Summing over all irreducible representations of this algebra constructs the
conformal Hilbert space:

HCFT =
⊕

Φ

WΦ , (6.3)

where we used the Φ primary fields of the CFT to label the representations [170].
The chiral factorisation of the algebra means that each irreducible representation
can be further decomposed as a product of left- and right-handed terms:

WΦ = VR(Φ) ⊗ VR̄(Φ) , (6.4)

where R(Φ) and R̄(Φ) are the representations of the fields under left- and right-
handed transformations, respectively. The behaviour of primary fields under
these conformal transformations can be characterised by their conformal weights
(also called primary weights) (hΦ, h̄Φ). E.g. the usual scaling dimension of a field
is simply given as ∆Φ = hΦ + h̄Φ . Notice that there can be fields transforming
under different left and right representations. Theories for which all fields satisfy

2We remark that the principles of the CFTCSA allow for the inclusion of further symmetries,
even covering the possibility of different left/right algebras. However, we do not pursue this
direction here, as all numerical works in this thesis are related to Eq. (6.2).
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R(Φ) = R̄(Φ) are called diagonal, with an example provided by the Ising field
theory.

The representation of the algebra (6.2) can be worked out using the eigen-
bases of the operators L0 and L̄0, which generate the chiral conformal scaling
transformations. The chiral modules VR and VR̄ are given as direct sums on these
bases:

VR(Φ) =
∞⊕

N=0

VR(Φ)(N) : L0 |v⟩ = (hΦ +N) |v⟩ ∀ |v⟩ ∈ VR(Φ)(N)

VR̄(Φ) =
∞⊕

N̄=0

VR̄(Φ)(N̄) : L̄0 |v̄⟩ =
(
h̄Φ + N̄

)
|v̄⟩ ∀ |v̄⟩ ∈ VR̄(Φ)(N̄) . (6.5)

The dimensions of the chiral subspaces at fixed levels are denoted by

dR(Φ)(N) = dimVR(Φ)(N) . (6.6)

For each primary Φ the term with N = N̄ = 0 is called the highest weight
subspace, which is spanned by a single vector in the simplest cases. This highest
weight vector is created from the conformal vacuum by the action of the primary
field Φ. Vectors with non-zero level N + N̄ are called descendent vectors, with
their chiral descendent levels given by (N, N̄).

Finally, using (6.4), the Hilbert space takes the form

HCFT =
⊕

Φ,N,N̄

VR(Φ)(N)⊗ VR̄(Φ)(N̄) . (6.7)

The full power of the conformal symmetry can be exploited by mapping the
theory (6.1) to the the complex plane (z, z̄). Starting from the space-time cylin-
der, let us first continue analytically to imaginary time: τ = −it. By introducing
the complex coordinates w = τ − ix and w̄ = τ + ix we can parameterise the
position on the cylinder as (w, w̄). The mapping to the complex plane is given
by the conformal transformation:

z = exp
2πw

L
. (6.8)

Under this exponential map, primary fields given on the space-time cylinder
transform as [170]

Φcyl(w, w̄) =

(
2πz

L

)hΦ
(
2πz̄

L

)h̄Φ

Φpl(z, z̄) , (6.9)

where the superscripts ‘cyl’ and ‘pl’ correspond to operators given on the space-
time cylinder and on the complex plane, respectively.
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6.1.2 The gains of chiral factorisation

After introducing the factorisation property of the conformal Hilbert space,
let us turn to its application within the truncated conformal space approach.
With the notation of the previous subsection, we can express any local operator
O(x) on the cylinder with left/right conformal weights hO and h̄O as

O(0) =

(
2π

L

)hO+h̄O ⊕

Φ,N,N̄,
Φ′,N′,N̄′

[
CΦ′Φ (O)×

× BO(R(Φ′), N ′,R(Φ), N)⊗ B̄O(R̄(Φ′), N̄ ′, R̄(Φ), N̄)

]
,

(6.10)

where CΦ′Φ(O) are the operator product structure constants of the CFT. The
only other ingredients are the matrix elements of operator O on the decomposed
Hilbert space (6.7) BO(R′, N ′,R, N) and B̄O(R̄′, N̄ ′, R̄, N̄). They are called chi-
ral three-point matrices (a.k.a. chiral vertex operators), and they only depend on
the representations of the chiral algebra involved in the particular block. Conse-
quently, they can be exactly calculated exploiting the conformal Ward identities
[170] which were first used to obtain TCSA matrix elements in Ref. [171]. (For
a detailed calculation see Ref. [172], and also Appendix A of Ref. [168].)

The calculation of the operator product structure constants can be reduced
to the problem of finding all elementary three-point couplings which relate the
primary fields of the CFT to each other. These in turn can be found in the
conformal bootstrap approach [170, 173], solving a set of consistency equations
satisfied by conformal correlators.

As a net result, all quantities appearing in the Hamiltonian (6.1) can be
expressed on the chirally factorised basis (6.7) in the knowledge of the ‘conformal
field theory data’ consisting of the following ingredients:

• the central charge c of the CFT,

• the set of primary fields in the decomposition (6.3) of the CFT Hilbert
space,

• the primary three-point couplings,

• and the matrix elements of the chiral three-point matrices

BO(R′, N ′,R, N)α′α and B̄O(R′, N̄ ′,R, N̄)ᾱ′ᾱ (6.11)

for the perturbing operator O = V .

The key advantage of the chirally factorised TCSA with respect to earlier
realisations is a more economical representation of the operator matrix elements.
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This is of major importance, as the main challenge posed to any truncated space
approach is the exponential growth of the dimensionality D of the truncated
Hilbert space with respect to the cutoff. Since the full space occupied by operator
matrix elements grows asD2, finite data storage places the most severe limitation
on the accuracy of TCSA.

However, the chiral factorisation property (6.4) implies that the size of the
CFT data, considered as a function of the cutoff, only grows with the square
root of the size of the complete (nonchiral) operator matrices, i.e. it is effectively
proportional to the dimension D of the truncated Hilbert space instead of D2.
Therefore, by employing chiral factorisation we significantly push the limit of
the truncated space approach, even if eventually we are still faced with the same
exponential growth. (We note that of the four ingredients listed above, only the
matrix elements take up significant space in the memory, and they are the only
ones that increase in size with raising the cutoff. For large cutoffs, where memory
becomes an issue, the other three ingredients are practically negligible.)

6.2 Implementation

The idea of the chirally factorised TCSA is to set up the numerical algorithm
exploiting (6.4), and use it to reduce the size of the CFT input data needed to
set up the TCSA. In this setting, the problem is transferred to finding an efficient
algorithm to handle the chirally factorised basis. In this section we discuss the
solution to this problem.

6.2.1 The core physical quantities

The central object of physical applications is the Hamiltonian (6.1), defined
by adding a relevant perturbation to the conformal field theory. The CFT Hamil-
tonian is given by

HCFT =
2π

L

(
L0 + L̄0 −

c

12

)
, (6.12)

and it is automatically diagonal in the basis specified by (6.5).

To express the matrix elements of the perturbation we introduce the notation
for a general vector in the conformal Hilbert space (6.7)

|Ψ⟩ =
∑

Φ,N,N̄

dR(Φ)(N)∑

α=1

dR̄(Φ)(N̄)∑

ᾱ=1

KΨ(Φ, N, N̄)αᾱ×

× |R(Φ), N, α⟩ ⊗
∣∣R̄(Φ), N̄ , ᾱ

〉
,

(6.13)

where α and ᾱ are indexing the vectors in the degenerate chiral subspaces
VR(Φ)(N) and VR̄(Φ)(N̄), while KΨ(Φ, N, N̄)αᾱ are complex vector coefficients
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represented as two-index tensors. Choosing an orthonormal basis within the de-
generate subspaces we can express the inner product of two vectors as

⟨Ψ1|Ψ2⟩ =
∑

Φ,N,N̄

∑

α,ᾱ

K∗
Ψ1
(Φ, N, N̄)αᾱKΨ2(Φ, N, N̄)αᾱ =

=
∑

Φ,N,N̄

Tr
[
KΨ1(Φ, N, N̄)†KΨ2(Φ, N, N̄)

] (6.14)

Now let us consider the action of the perturbing operator

Hpert =

∫ L

0

dxV(x) (6.15)

on a state |Ψ⟩ (6.13). The assumption of translational invariance means that
the left and right conformal weights of the operator V coincide: hV = h̄V . As a
consequence, Hpert conserves the momentum P , leading to a selection rule within
|Ψ⟩. The momentum operator can be expressed as

P
(
|Φ, N, α⟩ ⊗

∣∣Φ, N̄ , ᾱ
〉)

=
2π

L

(
sΦ +N − N̄

) (
|Φ, N, α⟩ ⊗

∣∣Φ, N̄ , ᾱ
〉)
, (6.16)

where sΦ = hΦ − h̄Φ is the conformal spin of the primary field Φ. For a state
with momentum 2πs/L, its components in the representation (6.13) satisfy the
selection rule

KΨ(Φ, N, N̄) = 0 for sΦ +N − N̄ ̸= s , (6.17)

and taking momentum eigenstates |Ψ1,2⟩ with momentum eigenvalues given by

P |Ψ1,2⟩ =
2π

L
s(Ψ1,2) |Ψ1,2⟩ , (6.18)

the spatial integral in Eq. (6.15) can be performed to give

⟨Ψ1|Hpert|Ψ2⟩ =
(
2π

L

)2hV ∑

Φ1,Φ2

CΦ1Φ2(V)
∑

N1,N̄1

∑

N2,N̄2

{
Lδ (s(Ψ1), s(Ψ2))×

× Tr

[
KΨ1(Φ1, N1, N̄1)

†BV(R(Φ1), N1,R(Φ2), N2)

KΨ2(Φ2, N2, N̄2)B̄V(R̄(Φ1), N̄1, R̄(Φ2), N̄2)
T

]}
, (6.19)

where δ(a, b) is the Kronecker delta.

As a result, the action of the perturbing operator on a momentum eigenstate
|Ψ⟩

|Ψ′⟩ = Hpert |Ψ⟩ (6.20)
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gives a state |Ψ′⟩ with the same momentum, and can be written in terms of the
vector components as

KΨ′(Φ′, N ′, N̄ ′)α′ᾱ′ =
(
2π

L

)2hV ∑

Φ,N,N̄

Lδ(s′, s)
∑

α,ᾱ
α′,ᾱ′

CΦ′Φ(O)BV(R(Φ′), N ′,R(Φ), N)α′,α×

× B̄V(R̄(Φ′), N̄ ′, R̄(Φ), N̄)ᾱ′,ᾱKΨ(Φ, N, N̄)αᾱ ,

where s = sΦ +N − N̄ and s′ = sΦ′ +N ′ − N̄ ′ , (6.21)

or alternatively in a compact matrix notation as

KΨ′(Φ′, N ′, N̄ ′) =
(
2π

L

)2hV ∑

Φ,N,N̄

Lδ(s′, s) CΦ′Φ(O)BV(R(Φ′), N ′,R(Φ), N)×

×KΨ(Φ, N, N̄)B̄V(R̄(Φ′), N̄ ′, R̄(Φ), N̄)T . (6.22)

The above expressions are only slightly modified if another translationally in-
variant quantity is considered in place of Hpert. Let us remark that due to the
conservation of momentum, for any such quantity the Hilbert space can be lim-
ited to states with a fixed value s, corresponding to a subspace with a given total
momentum 2πs/L. The vacuum state is in the s = 0 sector, hence considering the
zero-momentum sector is sufficient in numerous cases, covering every application
of TCSA presented in this thesis. Nevertheless, the generalisation to quantities
breaking translational invariance is straightforward, although it involves addi-
tional momentum sectors and therefore a much larger Hilbert space.

6.2.2 Describing the Hilbert space

The previous subsection showed how to express the Hamiltonian (6.1), and,
more generally, any translationally invariant physical quantity using the chiral
ingredients introduced in Sec. 6.1. The expressions suggest that the algorithmic
realisation of the CFTCSA is essentially equivalent to inventing a clever method
to perform the multiple summations over the chirally factorised basis. Put in
other words, we have to give an adequate and computationally useful description
of the factorised Hilbert space (6.7).

Here we introduce the descriptor structures which fulfil this task on the one
hand, and are easily adaptable to various models and physical problems on the
other. These descriptors are matrices that encode the decomposition of HCFT

to chiral subspaces and keep track of the relevant properties of these subspaces.
To illustrate their use, we will often reference the Ising field theory, which is a
particularly simple example of perturbed CFTs.



CHAPTER 6. THE CHIRALLY FACTORISED TRUNCATED SPACE APPROACH 90

Let us begin with the descriptor which performs the latter task, the so-called
Chiral Descriptor. The Chiral Descriptor summarises the basic information about
the chiral subspaces VR(N). Since for every primary field these spaces are spec-
ified by giving the representations RΦ and R̄Φ, the independent information
needed is to list at each level N the subspaces VR(N) of all the chiral repre-
sentations R. These can be ordered by increasing chiral conformal weight (L0

eigenvalue) hR + N , and the multiindex (R, N) replaced by their position n in
this list (in case of subspaces of equal weight, their order can be chosen in an ar-
bitrary way); however, depending on the problem, other orderings may be more
convenient. The CFT data constructed for the purpose of the TCSA computa-
tions must contain the basis of the chiral level subspaces to some upper limit
h(R, N) < hmax which is chosen sufficiently high to contain all states that oc-
cur in the numerical computations. The Chiral Descriptor is then a two-column
matrix listing the conformal weights hn and dimensions dn of the chiral level
subspaces VR(N):

DCh =




h1 d1
h2 d2
h3 d3
...

...


 , (6.23)

with h1 ≤ h2 ≤ h3 ≤ . . . .

The primary fields Φ appearing in the decomposition (6.3) can be enumerated
in some particular order as

ΦM , M = 1, . . . lPr . (6.24)

For CFTs with a finite number of primary fields (so-called rational CFTs), lPr
is a fixed number, but for those with infinitely many primaries (such as the
free massless boson) this list must be terminated so that every primary field Φ
appearing as a subspace WΦ in the truncated Hilbert space is included. The Ising
field theory provides an example of a rational CFT, with three primary fields:
the identity Φ1 = I, the magnetisation Φ2 = σ and the energy operator Φ3 = ϵ,
with conformal dimensions h1 = h̄1 = 0, h2 = h̄2 = 1/16 and h3 = h̄3 = 1/2.

As the Chiral Descriptor contains all information about the chiral algebra,
the additional information required to characterise the factorised Hilbert space
is how to sew together the primary subspaces from each level. This information
is encoded by the Hilbert Space Descriptor. The Hilbert Space Descriptor is a
three-column matrix with the indices of the left- and right-handed subspaces in
its first and second columns, respectively, while the third column contains the
index of the primary field corresponding to the subspace. The indices refer to
the rows of the Chiral Descriptor and therefore specify the conformal energy and
the dimensionality of the subspaces in the product space.

As an illustration, let us consider the zero-momentum subspace of the Hilbert
space of the Ising field theory. The first four rows correspond to VR(I)(0)⊗VR(I)(0),
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VR(σ)(0)⊗ VR(σ)(0), VR(ϵ)(0)⊗ VR(ϵ)(0) and VR(σ)(1)⊗ VR(σ)(1), and the Hilbert
Space Descriptor takes the form

DH =




1 1 1
2 2 2
3 3 3
4 4 2
...

...
...



, (6.25)

where the first and second column entries refer to the corresponding Chiral De-
scriptor, the first four lines of which describe the chiral level subspaces VR(I)(0),
VR(σ)(0), VR(ϵ)(0) and VR(σ)(1):

DCh =




0 1
1/16 1
1/2 1
17/16 1

...
...



. (6.26)

The Hilbert Space Descriptor thus contains all relevant properties of the
subspaces its rows correspond to. If the mth row of DH has j, k as its first
two elements, then the corresponding subspace has DCh(j, 1) + DCh(k, 1) total
conformal weight, DCh(j, 1)−DCh(k, 1) conformal spin, and DCh(j, 2)×DCh(k, 2)
dimension. As the TCSA introduces an upper limit on the total conformal weight,
the number of included subspaces are limited to a finite value lH.

The Hilbert Space Descriptor provides the recipe to express the general state
vectors (6.13) as

|Ψ⟩ =
lH∑

m=1

∑

α,ᾱ

KΨ(m)αᾱ |m,α, ᾱ⟩ , (6.27)

which are most conveniently handled as lists of matrices K(m), m = 1, . . . , lH
with sizes dictated by DH and DCh. From (6.14), the inner product of two vectors
|Ψ1⟩ and |Ψ2⟩ is given in by

⟨Ψ1|Ψ2⟩ =
lH∑

m=1

Tr
[
KΨ1(m)†KΨ2(m)

]
. (6.28)

6.2.3 Describing the action of local operators

The above description of the Hilbert space outlines the method to evaluate the
action of local operators, i.e. to perform the summations over the basis states as in
Eq. (6.19): one has to simply thread through the Hilbert Space Descriptor which
selects the appropriate chiral subspaces by referencing the Chiral Descriptor. It
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is convenient to exploit this structure completely via the definition of another
descriptor type which encodes all the information about a given local operator
in a similar manner.

This motivates the introduction of the Operator Descriptors. We recall that
the ingredients of the CFT data relevant to the action of scaling operators are the
three-point couplings between the operator and the primary fields CΦΦ′(O), and
the chiral three-point matrices BO(R, N,R′, N ′). The latter we can abbreviate
using n ≡ (R, N) (recall that n is the row index of the Chiral Descriptor) as
BO(n, n′). Consequently, all matrix elements of an operator O on the truncated
Hilbert space can be arranged in an Operator List, which is a list of matrices B−→
containing BO(n, n′) and B̄O(n, n′).

The Operator Descriptors then merely record the following three pieces of
information about the matrices BO(n, n′): their chiral indices n and n′, and their
position k in the Operator List. It is convenient to store these three numbers in
a matrix format: in a matrix element with value k, whose corresponding row and
column indices are related to the chiral indices n and n′. More precisely, the row
and column indices refer to the row indices of the Hilbert Space Descriptor, and
there are two separate matrices DO,L

Op and DO,R
Op for the left- and right-handed

components of the operator action, respectively.

Again, let us illustrate these Operator Descriptor Matrices with an example
from the Ising field theory. An excerpt from a left descriptor of the σ field is

Dσ,L
Op =




0 1 0 2 · · ·
0 0 9 0 · · ·
0 16 0 0 · · ·
20 0 21 0 · · ·
...

...
. . .



. (6.29)

The rows and columns refer to the row indices of the Hilbert Space Descriptor
(6.25) that specifies the n and n′ chiral indices of Bσ(n, n′) by referencing the
Chiral Descriptor. The values of the matrix elements are position indices in the
Operator List: e.g. Bσ(4, 1) is the 20th element of B−→. We define the zero-index

element of this list B−→(0) = 0 by convention. Note that the specific numbers
are dependent on the truncated Hilbert space: the Operator List and all the
descriptors have to be prepared consistently. In practice, it is convenient to create
all of them at once for a sufficiently large cutoff, and more stringent truncation
can be applied by muting the elements of the descriptors which would refer to
subspaces above the smaller cutoff.

Similarly, the matrix elements in the right-handed descriptor DO,R
Op (n, n′)

specify the position of the right chiral three-point matrices B̄O(R̄, N̄ , R̄′, N̄ ′)
in the Operator List B−→. Note that the left/right blocks are identical for an op-

erator if R (O) = R̄ (O), i.e. if both of its chiral parts transform in the same
representation. In such a case the two descriptors are identical and can be given
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by the same matrix: DO,L
Op = DO,R

Op = DO
Op. The dimensions of the Operator

Descriptor Matrices are lH × lH.

Finally, to further facilitate implementation, we encode the definition of the
operator algebra structure constant CΦΦ′(O) as follows:

CO(M,M ′) = CΦΦ′(O) . (6.30)

Here Φ and Φ′ are primary fields appearing in the decomposition (6.3) of the
conformal Hilbert space, and CO(M,M ′) is a rewriting of CΦΦ′(O) in which the
primary fields are indexed according to (6.24) by integers M and M ′ > 0, in
accordance with the 3rd row of the Hilbert Space Descriptor. Working in this
convention, the structure constants CO(M,M ′) can be stored in a matrix form,
which we call the Structure Constant Matrix. The non-zero elements at position
(M,M ′) are the actual structure constants connecting the conformal family of
the operator O under consideration and the conformal families associated with
Mth and M ′th primaries, whose left and right chiral parts, similarly to O itself,
can be different in a generic CFT. Given these considerations, the dimension of
this matrix is lPr × lPr, where lPr denotes the number of primary fields in the
theory.3 We remark that the case of several operators can be handled on the same
footing, providing the above information describing each operator O analogously.

With these notations, the action (6.22) of an integrated spin-0 field

|Ψ′⟩ =
(∫ L

0

dxV(x)
)
|Ψ⟩ (6.31)

can be computed as

KΨ′(m′) =

(
2π

L

)2hV lH∑

m=1

Lδs′,s CV(DH(m
′, 3), DH(m, 3))×

×
[
B−→
(
DV,L

Op (m′,m)
)
KΨ(m)·

· B−→
(
DV,R

Op (m′,m)
)T
]
.

(6.32)

6.2.4 An example application: the E8 spectrum

Finally, let us present an application of the CFTCSA to a specific physical
problem. We note that in complete analogy to the earlier versions of TCSA, it
can be used in modelling both in- and out-of-equilibrium dynamics of quantum
field theories. The next chapter is devoted to the detailed discussion of a nonequi-
librium setting, and here we briefly overview a simple equilibrium problem, the
spectrum of the E8 field theory in finite volume. As there are available analytic



CHAPTER 6. THE CHIRALLY FACTORISED TRUNCATED SPACE APPROACH 94

Volume m1L TBA Raw CFTCSA Extrapolated CFTCSA

0.075 -3.490664764718 -3.490664764706 -3.490664764727
0.125 -2.094420612223 -2.094420612172 -2.094420612249
0.475 -0.5521585879901 -0.5521585859634 -0.5521585879800
0.6 -0.4382356381999 -0.4382356343468 -0.4382356381806
0.8 -0.3314363841477 -0.3314363756476 -0.3314363841051
1.2 -0.2307543455439 -0.2307543196153 -0.2307543454197
1.6 -0.1904900446243 -0.1904899873971 -0.1904900443767
2 -0.1777603739145 -0.1777602681131 -0.1777603735367
4 -0.2512909490675 -0.2512902327811 -0.2512909507354
7 -0.4322470994378 -0.4322437272677 -0.4322471438901
9 -0.5555744641670 -0.5555676826358 -0.5555746099325
12 -0.7407438075920 -0.7407286652376 -0.7407443409462

Table 6.1: Ground state energy E0(R) for various volume parameters. Data in
the second column is calculated from Ref. [174]. The third column is obtained by
numerical diagonalisation from CFTCSA using 207,809 vectors, while the last
column is improved by extrapolating the cut-off dependence.

results for the energies. the spectral problem benchmarks the accuracy of the
numerical method.

As is customary, we measure the energy levels in units of the mass gap m1,
while the volume is parameterised by the scaling variable r = m1R. The ground
state energy in finite volume can be expressed as

E0(R) = m2
1EE8R− πc̃(r)

6R
, (6.33)

where c̃(r) is the so-called vacuum scaling function a.k.a. effective central charge,
which behaves as e−r for large volume. The coefficient EE8 is the bulk energy
constant which is exactly known [38]

EE8 = − sin π/30

16 sinπ/3 sinπ/5 sinπ/15
. (6.34)

The c̃(r) effective central charge was calculated by Klassen and Melzer [174] using
the thermodynamic Bethe Ansatz (TBA) [175], which we use to benchmark our
numerical results as shown in Table 6.1. We find a remarkable 10-digit accuracy
below r = 1, and a still impressive 5-6 digit agreement up until around r = 10.

To illustrate the behaviour of low-lying levels, we present results for the energy
level E1(R) of the first excited state E8 spectrum. This level correspond to the
lightest particle with mass m1, and so E1(R) − E0(R) → m1 as R → ∞, with
finite size corrections which were computed up to leading order in Ref. [176]
based on the seminal work [177] by Lüscher. We compare the predictions for the
finite size corrections (in units m1 = 1) to the CFTCSA results in Table 6.2.

3On the number of primaries lPr see the discussion after Eq. (6.24).
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Volume m1R ∆m1, predicted ∆m1, raw CFTCSA ∆m1, extrapolated

12.4613 -2.4860E-03 -2.4281E-03 -2.4274E-03
13.3811 -1.0850E-03 -1.0736E-03 -1.0729E-03
14.2486 -5.0140E-04 -4.9909E-04 -4.9846E-04
15.0722 -2.4220E-04 -2.4194E-04 -2.4139E-04
15.8582 -1.2130E-04 -1.2154E-04 -1.2111E-04
16.6114 -6.2680E-05 -6.2983E-05 -6.2714E-05

Table 6.2: Finite-size corrections to the lowest-lying particle’s energy in the E8

spectrum. KM stands for the analytical results of Klassen and Melzer [176].

6.3 Summary

In this chapter we presented a recent development of the truncated conformal
space approach, which utilises the chiral factorisation of the conformal basis.
This development allows for a more economical storage of matrix elements on
the truncated basis, and consequently for a higher accuracy to be attained by
the approach. Besides the structure of the algorithm, we also discussed a specific
application of the method and showed that it precisely calculates the finite size
corrections to the E8 energy spectrum.

The results with a range of additional physical applications are available in
our preprint [168]. The detailed presentation of the algorithm and the several
explicit example codes attached to the paper are aimed at making TCSA a
valuable and accessible tool for a wider community of researchers.



Chapter 7

Kibble–Zurek mechanism in the
Ising field theory

After taking a detour in numerical modelling in the previous chapter, let us
return to the non-equilibrium dynamics of quantum field theories. We already
considered a paradigmatic example: quantum quenches, which entail an abrupt
change in the parameters of the model. In this chapter we discuss a different
protocol, where the parameters of the system are tuned continuously during a
finite time period, i.e. the couplings are subject to a ramp.

The ramp protocol is most widely studied in the context of the Kibble–
Zurek mechanism (KZM), which paints the picture of a physical system slowly
driven through a second-order phase transition towards an ordered phase. As
the critical point is approached, the physical scales of the system diverge and
adiabatic behaviour inevitably breaks down. Consequently, on the other side of
the phase transition the system is in an excited state: ordered domains appear,
which are separated by domain walls (defects) [178, 179]. The resulting state
carries the imprints of crossing the critical point, as the defect density scales
universally with the speed of the ramp, a.k.a. the quench rate [180, 181].

Astonishingly, this simple picture captures universality in an extended set
of systems, and is applicable both to classical and quantum phase transitions
[9, 74, 182]. The success of this description continues to stimulate research aimed
at exploring its limitations and understanding its details. Below we carry out a
thorough investigation of the Kibble–Zurek mechanism based on our work in Ref.
[167]. First we expand on the simple physical picture of the previous paragraph,
and give a brief overview of the vast field of Kibble–Zurek physics, offering various
arguments for the universal scaling. Then we explore the various aspects of the
KZM within the Ising field theory, focusing on a wide set of quantities from
eigenstate dynamics through dynamical scaling to universal work statistics.

96
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7.1 Model and methods

7.1.1 The scenario behind the Kibble–Zurek mechanism

In order to refine the above description of the Kibble–Zurek mechanism, we
ought to take a more quantitative approach. In accordance with the topic of this
thesis, we focus on quantum critical points (QCPs), where the ramps correspond
to tuning the coupling constant λ of some local operator with scaling dimension
∆. We define the coupling constant such that λ = 0 corresponds to the critical
point. To maintain generality, we consider ramps that traverse the critical point
with a power-law dependence, i.e. near the QCP

λ = λ0

∣∣∣∣
t

τQ

∣∣∣∣
a

sgn(t) , (7.1)

where τQ is the quench rate, parameterising the speed at which the critical point
is crossed at t = 0.

Near the phase transition, the physical scales of the system grow indefinitely,
which entails the divergence of the relaxation time ξt, a phenomenon called crit-
ical slowing down:

ξt = Cλ−νz , (7.2)

where ν = (2−∆)−1 is the critical exponent connecting the diverging correlation
length to the coupling λ, and z is the dynamical critical exponent relating the
time and length scales to each other, in relativistic models z = 1.

If the dynamics were completely adiabatic, the evolution of the relaxation
time ξt(t) along the ramp would be simply given by substituting (7.1) for the
coupling λ. However, due to the critical slowing down, the system is unable to
follow an adiabatic path and defects are formed. To estimate the effect of non-
adiabatic behaviour, let us introduce the so-called Kibble–Zurek time τKZ when
the reaction of the system becomes too slow compared to the change in λ. The
KZ time can be inferred from comparing the change of ξt within a relaxation
time to the relaxation time itself: ξ̇tξt ∼ ξt. When ξ̇t(t) ≪ 1, the system can
adjust to the change, but it falls behind in the opposite limit. Defining τKZ to
denote the moment when equality holds gives

τKZ ≡ (aνz)
1

aνz+1

(
τQ

λ
1/a
0

) aνz
aνz+1

. (7.3)

More precisely, this expression for the Kibble–Zurek time follows from setting
the constant C in the near-critical scaling of the relaxation time (7.2) to 1. This
argumentation reveals that strictly speaking τKZ is defined only as a scaling
relation, i.e. only its power-law dependence on τQ is specified. This is not an
issue, as its principal use is to express the universal scaling of various quantities.
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Figure 7.1: The adiabatic-impulse-adiabatic scenario. (a) The impulse regime in
terms of the time t and coupling parameter λ. Continuous lines depict the λ(t)
function for slow/fast linear ramps, while the dashed line denotes the value of
λ at the beginning of the impulse regime −τKZ. (b) Illustration of the region
boundaries. Continuous lines depict the time-dependence of the change in the
relaxation time ξ̇t, while the green region signals non-adiabatic behaviour, which
appears when ξ̇t ∼ 1 (dashed line). After crossing the critical point, the system
returns to the adiabatic course.

It is worth noting that at the Kibble–Zurek time τKZ, the correlation time
scales with the quench rate τQ as τKZ itself:

ξt(−τKZ) ∝
(
τQ

λ
1/a
0

) aνz
aνz+1

∝ τKZ . (7.4)

The above considerations outline a more quantitative (but still hazy) description
of the physical scenario behind the KZM. That is, the system is on a completely
adiabatic course until t = −τKZ, then it enters the non-adiabatic or impulse
regime, where it remains up until t = τKZ, i.e. until after crossing the critical
point. From then onward, the time evolution is once again adiabatic, but the
system is not in its ground state anymore due to the intermediary period.

A depiction of this process is displayed in Fig. 7.1. Note that although the
time spent in the non-adiabatic regime is longer for slower quenches (cf. Eq.
(7.3)), the distance from the critical point in terms of the coupling parameter λ
upon entering the impulse regime decreases as τQ increases. In this sense, slower
ramps better approach the critical point, even though the duration of the non-
adiabatic period grows indefinitely.

The excited state after the impulse period is characterised by a correlation
length ξKZ = ξ(−τKZ). In the case of the introductory example, ξKZ is the typical
linear size of the ordered domains, so the density of excitations corresponding to
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defects (domain walls) in spatial dimension d is

nex ∝ ξ−d
KZ ∝

(
τQ

λ
1/a
0

)− aνd
aνz+1

. (7.5)

We remark that nex can be defined in more general settings (i.e. not only towards
the ordered phase), rendering the KZM a general description of ramps through
a critical point.

Eq. (7.5) is the prime example of the so-called Kibble–Zurek scaling. The KZ
scaling relies on the assumption is that the only relevant length (time) scale in
a system ramped through the critical point is ξKZ (τKZ). The initial rationale
to underpin this assumption was dubbed the “freeze-out scenario” [180]. This
scenario depicts the state in the non-adiabatic interval of time evolution t ∈
[−τKZ, τKZ] as remaining literally frozen. This entails the freezing of the typical
scales and creates a link between nex measured after the non-adiabatic time
evolution and the length scale ξKZ characterising the state before that.

The freeze-out picture can be refined by taking into account the evolution
of the system and the correlation length in the non-adiabatic regime [183–186].
While the inspection of the dynamics reveals that ξKZ is still the only relevant
length scale—so the scaling laws are not altered—it also introduces the KZ scal-
ing into the impulse regime. More precisely, utilising that in the non-adiabatic
time window the only relevant time and length scales are τKZ and ξKZ for a slow
enough ramp, time-dependent correlation functions can be expressed in terms of
scaling functions of the rescaled variables t/τKZ and x/ξKZ. For example, one-
and two-point functions of an operator O with scaling dimension ∆O take the
form in the impulse regime t ∈ [−τKZ, τKZ]

⟨O(x, t)⟩ =ξ−∆O
KZ FO(t/τKZ) ,

⟨O(x, t)O(0, t′)⟩ =ξ−2∆O
KZ GO

(
t− t′

τKZ

,
x

ξKZ

)
,

(7.6)

where F and G are scaling functions depending on the operator O and we as-
sumed translational invariance. Note that for one-point functions the scaling
holds in the precedent adiabatic regime t < −τKZ as well, since there the expec-
tation value depends only on the distance from the critical point, which is the
function of the dimensionless time t/τQ:

⟨O(x, t)⟩ ∝ ξ(t)−∆O ∝
(
t

τQ

)aν∆O

∝
(

t

τKZ

)aν∆O

τ
−∆O/z
KZ , (7.7)

where in the last step we used the relation (7.3).

The above arguments seem overly general at first glance. Is it possible that
they are an accurate depiction of non-equilibrium quantum dynamics near crit-
ical points? A reassuring answer to this question is found in more sophisticated
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derivations in concrete cases. The first quantum phase transition, where analytic
calculations confirmed the scaling relations is that of the free fermionic Ising
chain, where the dynamics of low-energy modes can be mapped to the famous
Landau–Zener transition problem [186–189]. Contemporaneously, the same prob-
lem was treated by a perturbative approach, yielding identical results [190]. This
approach, by using adiabatic perturbation theory, predicts the same scaling as
the arguments of Kibble–Zurek mechanism in several models besides the Ising
chain [190–193]. This formalism is useful to apply the generic scaling arguments
outside the non-adiabatic regime for quantities that are beyond the scope of
the initial formulation of KZM [194]. Finally, efficient numerical modelling tech-
niques of lattice models found the KZ scaling beyond the applicability of analytic
techniques [195–198].

The works cited in the previous paragraph cover only a small portion of
the vast literature focusing on the quantum Kibble–Zurek mechanism since the
first results came to light less than two decades ago. At the forefront of this
“KZ revolution” were the quantum lattice models, while field theories received
less attention. Notable exceptions are Refs. [185, 199–201] and applications of the
adiabatic perturbation theory approach to the sine–Gordon model [191, 192, 202].
The KZM in relation to field theory also appeared in the context of holography
[203–207]. Still, it is desirable to further extend the cases where KZ scaling is
demonstrated to genuinely interacting field theories. For this reason, we study
different aspects of the quantum Kibble–Zurek mechanism in the paradigmatic
Ising field theory, which is a simple but nontrivial field theory.

7.1.2 Ramps in the Ising field theory

The IFT offers an ideal choice in light of the approaches to the quantum KZM
presented in the previous subsection (exact analytical calculations, adiabatic
perturbation theory and numerical methods), as it admits all three of them in
its various settings. Firstly, it includes a free fermionic field theory, where exact
results can be obtained. Secondly, it has two integrable directions (the second
of which corresponds to a strongly interacting field theory), where the energy
spectrum is known and a perturbative approach can be developed. Finally, as
already thoroughly demonstrated in this thesis, the non-equilibrium dynamics
can be modelled by a very efficient numerical method, the TCSA.

To formulate the specific non-equilibrium setting that we use to study the
KZM, let us recall the expression of the IFT Hamiltonian:

HIFT = HCFT,c=1/2 +
M

2π

∫ L

0

ϵ(x)dx+ h

∫ L

0

σ(x)dx . (7.8)

As illustrated in Fig. 7.2, we perform ramps along the two integrable lines of the
model, equivalent to setting one of the two couplings to zero. For h = 0, called
the free fermion line, the Hamiltonian describes the dynamics of a free Majorana
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Figure 7.2: The two types of ramp protocols considered in this chapter, denoted
by dashed arrows in the parameter space of the Ising model. On the free fermion
line both directions were explored. Trans-critical protocols (TCP) traverse the
critical point, while end-critical protocols (ECP) end in the QCP, and give rise
to a different scaling.

fermionic field with mass |M |. The QCP at M = 0 separates the ferromagnetic
phase M > 0 from the paramagnetic phase M < 0. The coupling is proportional
to the mass gap and since the correlation length is the inverse of the gap, ν = 1.

The other integrable direction, corresponding to M = 0 is the E8 integrable
line. The correlation length critical exponent is different in this direction, we have
ν = 8/15. Consequently, the predictions of the KZM can be tested independently
in the two directions as the scaling laws depend on ν.

To perform an exhaustive investigation of the Kibble–Zurek physics in the
Ising field theory, we follow Ref. [185] and introduce two different types of ramp
protocols, indicated by dashed arrows in the two panels of Fig. 7.2. We distinguish
between the protocols based on the initial and final values of the tuned coupling
parameter λ. Protocols with λi and λf corresponding to different phases of the
model (ramp crossing the critical point) are instances of a trans-critical protocol
(TCP), while ramps with λf = 0 (ramp ending at the critical point) realise
the end-critical protocol (ECP). Certain observables exhibit markedly different
behaviour depending on the protocol [194], hence the concurrent exploration of
the two settings is a profound probe of the Kibble–Zurek scaling.

We focus our attention on linear ramps, where one of the couplings is varied
such that the system reaches or crosses the critical point at a constant rate,

λ(t) = −λ0
t

τQ
, (7.9)

where λ stands forM or h and the other coupling is set to zero. τQ is the duration
of the ramp that takes place in the time interval t ∈ [−τQ/2, τQ/2] for a TCP
ramp and t ∈ [−τQ, 0] for an ECP ramp.

Ramps along the free fermion line (h = 0) have been studied extensively,
especially in the spin chain. The time evolution of the free fermion modes with
different momentum magnitudes decouple and only modes of opposite momenta



CHAPTER 7. KIBBLE–ZUREK MECHANISM IN THE ISING FIELD THEORY 102

{k,−k} are coupled by the evolution equation. One can make progress either by
invoking the Landau–Zener description of transitions between energy levels or by
numerically solving the set of two-variable differential equations. Even analytical
solutions are known for various ramp profiles [182, 201]. These solutions are easily
generalised to the continuum field theory, providing us with an analytical tool
to examine the KZ scaling and offering a benchmark for our numerical method.
The detailed calculations are in Appendix C.2.

The Kibble–Zurek mechanism has not been studied along the other inte-
grable axis M = 0. As we noted above, in this direction ν = 8/15, so the KZ
scaling is modified with respect to the well-investigated free fermion case. Al-
though the model is integrable, the time evolution cannot be solved analytically,
which highlights the importance of the non-perturbative numerical method that
exploits the conformal symmetry of the critical model: the Truncated Conformal
Space Approach (TCSA). Nevertheless, as standard KZ arguments rely only on
typical energy and distance scales of the model, they should apply regardless of
the presence of interactions. The scaling arguments can also be supported by the
analysis of the exactly known form factors of the model in the context of the
adiabatic perturbation theory, to which we turn now.

7.1.3 Adiabatic perturbation theory

The adiabatic perturbation theory (APT) is a standard approach to study
the response to a slow perturbation [9, 208]. Assume that we want to solve the
time-dependent Schrödinger equation:

i
d

dt
|Ψ(t)⟩ = H(t) |Ψ(t)⟩ (7.10)

in a time interval t ∈ [ti, tf]. Using the basis of eigenstates of H(t) that are going
to be called instantaneous eigenstates |n(t)⟩ ,

H(t) |n(t)⟩ = En(t) |n(t)⟩ , (7.11)

we can expand the time evolved state with coefficients αn(t):

|Ψ(t)⟩ =
∑

n

αn(t) exp{−iΘn(t)} |n(t)⟩ , (7.12)

where the dynamical phase factor Θn(t) =
∫ t

ti
En(t

′) dt′ is already included. The
initial condition is that at ti the system is in its ground state |0(ti)⟩.

In the context of APT we assume that the explicit time dependence of the
Hamiltonian is of the form H(t) = H0 + λ(t)V, where the parameter λ changes
slowly and monotonously. The small parameter of perturbation theory is λ̇, and
plugging (7.12) into (7.10) we can express the αn coefficients in terms of the
coupling up to leading order as

αn(λ) ≈
∫ λ

λi

dλ′ ⟨n(λ′)| ∂λ′ |0(λ′)⟩ exp{i(Θn(λ
′)−Θ0(λ

′))} , (7.13)
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where the dynamical phase Θn(λ) =
∫ λ

En(λ
′)/λ̇′ dλ′ is expressed in terms of

the coupling with λ = λ(t), and we assumed that there is no Berry phase. The
integrand strongly oscillates in the adiabatic limit λ̇→ 0, so the integral can be
approximated to read at the end of the time evolution tf

αn(λf) ≈ iλ̇′
⟨n(λ′)| ∂λ′ |0(λ′)⟩
En(λ′)− E0(λ′)

exp{i(Θn(λ
′)−Θ0(λ

′))}
∣∣∣∣
λf

λi

, (7.14)

where we neglected a non-analytic contribution, which is exponentially small in
the inverse of λ̇. The result is essentially a switch-on/off effect: it is proportional
to the time derivative of λ at the initial and final moments. If the ramp is initiated
and finished more smoothly, this effect is suppressed: in general, a discontinuity
in the ath derivative brings about the scaling α ∝ τ−a

Q with the time parameter of
the ramp τQ [182]. We consider linear ramps (cf. Eq. (7.9)) so higher derivatives
disappear and the small parameter of the perturbative expansion is 1/τQ.

Note that the coefficients αn̸=0 measure the non-adiabaticity of the process,
and they are required to be small by the standard arguments of perturbation
theory. Therefore, naively, APT is expected to break down completely for ramps
that pass the critical point, as the gap disappears and the fraction in Eq. (7.14) is
divergent. Quite surprisingly, by relaxing the α0 ≈ 1 requirement of elementary
perturbation theory, Ref. [190] reproduced the KZ scaling for the density of
defects in the quantum Ising chain, followed by the APT treatment of a wider
variety of scaling quantities in different models [191–194, 209–211].

As we generalise this approach to the case of the Ising field theory, it is worth-
while to reiterate the basic arguments introducing adiabatic perturbation theory
to Kibble–Zurek physics, following Ref. [193]. In essence, the APT calculation
makes an appeal to low density, analogously to our argumentation in Chap. 5 re-
garding the post-quench initial state, but with a different mindset. The rationale
is that for small intensive quantities in the thermodynamic limit, a perturbative
approach should be feasible even if the resulting state does not have substantial
overlap with the instantaneous ground state. This is motivated by the consid-
eration that exciting even a single quasi-particle results in an orthogonal state,
even though it corresponds to a vanishing energy and particle density in the
thermodynamic limit.

The perturbative calculation is based on the above reasoning. For a specific
example, we consider the transverse field Ising chain, where all quasi-particles are
created in pairs {k,−k}, so we can use their momentum k to enumerate them,
and express the density of defects as1

nex = lim
L→∞

2

L

∑

k>0

|αk|2 =
∫ π

−π

dk

2π
|αk|2 , (7.15)

1The model is quadratic, hence the density of excitations is given by summing the indepen-
dently created pairs.
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where αk = αk(λf) is the coefficient of a particle pair state |k,−k⟩ given by Eq.
(7.13). The KZ scaling can be derived through an appropriate rescaling of the
momentum and coupling variables:

η = kτ
ν

1+zν

Q , ζ = λτ
1

1+zν

Q , (7.16)

which removes the dependence on the small parameter 1/τQ from the exponent
of Eq. (7.13). The observation that lies at the heart of the APT treatment of
KZ scaling is that near the phase transition the energy difference and matrix
element appearing in the expression of αk take the following scaling forms:

Ek(λ)− E0(λ) = |λ|zνF (k/|λ|ν) (7.17)

⟨{k,−k}(λ)| ∂λ |0(λ)⟩ = λ−1G(k/|λ|ν) , (7.18)

with the asymptotic behaviour F (x) ∝ xz and G(x) ∝ x−1/ν as x → ∞. These
considerations yield that

nex = τ
− ν

1+zν

Q

∫
dη

2π
K(η) , (7.19)

with

K(η) =

∣∣∣∣
∫ ζf

ζi

dζ
G(η/ζν)

ζ
exp

(
i

∫ ζ

ζi

dζ ′ ζ ′zνF (η/ζ ′ν)

)∣∣∣∣
2

. (7.20)

At this point supposedly all power-like dependence on the quench rate is
gathered into the prefactor, at the cost of extending the boundaries of the mo-
mentum integral. The scaling of the defect density is then given by the prefactor
if the integral over η is convergent in the limit τQ → ∞. In that case the limits
of the integral over η are sent to ±∞, and its convergence properties can be de-
ducted from the asymptotics ofK(η). Substituting Eqs. (7.17) and (7.18) one can
perform the integral in (7.20) in the limit η ≫ ζνi,f to determine the asymptotic
behaviour

K(η) ∝ ηβ ≡ η−2z−2/ν . (7.21)

The criterion for convergence then is 2z + 2/ν > 1, or, equivalently ν
1+zν

< 2
[210]. In the opposite case the integral is divergent, indicating that to discard the
contribution from high-energy modes in the limit τQ → ∞ is not justified. The
scaling brought about by all energy scales is quadratic τ−2

Q due to the disconti-

nuity of λ̇, cf. Eq. (7.14). Consequently, the case of equality ν
1+zν

= 2 separates
between the Kibble–Zurek scaling determined by the exponent of τQ in Eq. (7.19)
and the quadratic scaling.

We note that even if in a strict sense adiabatic perturbation theory breaks
down in the impulse regime, the above extension of the APT indeed gives the
correct scaling in several cases, and notably, makes only 10% error in the prefactor
C in nex = Cτ

−1/2
Q in the transverse field Ising chain [190]. This motivates its

application in the Ising field theory as well.
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7.1.4 The APT in the Ising field theory

The APT can be used to model ramps in the Ising field theory in two separate
directions corresponding to the ramps along the two integrable directions of the
model. In the case of the free field theory the generalisation of the arguments
above is straightforward and it yields the same result as for the free fermion Ising
chain. The application of the reasoning to the E8 integrable model requires a bit
of extra work. To some extent, the complications are technical, these details
are presented in App. C.1. Here we comment on the key assumptions of the
arguments.

The application of the APT to the Kibble–Zurek scaling heavily relies on the
assumption that the ramp induces a low-density state. This is justified in the
limit τQ → ∞ : the slower we cross the critical point, the less defects are created.
Coincidentally, it has a profound consequence in the case of the E8 model: based
on the reasoning following Eq. (5.3) we expect that the non-equilibrium state
essentially factorises to a product of few-particle states. Note that in contrast
to the free fermion case, this factorisation is not exact, but a very accurate
approximation given that the energy density of the non-equilibrium state is low
[49, 119, 120] compared to the natural scale set by the final mass gap.

Based on these assumptions, we can show that the arguments of APT gen-
eralise to an interacting field theory as well. To formulate the arguments, let us
have in mind a specific quantity, the excess heat density w that can be expressed
as

w(λf) = lim
L→∞

1

L

∑

n

En(λf)|αn(λf)|2 . (7.22)

In the calculation of the energy density, the machinery of APT introduced above
is applicable despite the interacting nature of the E8 model, with two important
caveats. The first is the role of one-particle states. Since there is only a finite
number of them, they cannot contribute to intensive quantities in the thermo-
dynamic limit, however, they cannot be entirely discarded either. As we will see
below in the case of E8 ramps, for any finite L increasing the quench time τQ
eventually results in a state where single-particle states contribute dominantly
to the energy density. This issue is related to the order of the limits τQ → ∞ and
L → ∞, and it is not clear at first glance whether the KZ scaling should apply
here.

To gain some insight, let us take a small diversion to the discussion of finite
volume effects in regard of the Kibble–Zurek mechanism. As the KZ arguments
rely on a divergent length scale ξKZ, it is clear that finite volume can bring about
adiabatic behaviour if

ξKZ ≃ L ⇒ (τQ/ξt)
aν

aνz+1 ≃ L/ξ , (7.23)

where ξ and ξt are the correlation length and time in the ground state of the
initial Hamiltonian. If the quench rate τQ is significantly larger than this, the
transition is adiabatic due to the fact that finite volume opens the gap.
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In light of Eq. (7.23) we are ready to pose the question: do zero-momentum
single-particle states provide a “shortcut to adiabaticity”, or are they subject to
the same Kibble–Zurek scaling as the moving particle pairs? We note that this
issue is unique to models with stable one-particle states, and hence is absent
from previous APT calculations.2 Remarkably, the finite volume calculation (for
details see App. C.1.1) predicts that one-particle states contribute to the energy

density with the right KZ exponent τ
− ν

ν+1

Q . We will comment on this result later
in comparison with the numerics.

The second caveat is that for two-particle states there are separate branches
of excitations corresponding to the different AaAb pairings of the multiple species,
each branch with a nontrivial density of states due to the interactions between
the particles. However, in the thermodynamic limit the effects of the interac-
tions are of O(1/L) and disappear as L → ∞,3 while the separate branches are
independent due to the approximate factorisation and can be simply summed
up. Consequently, the derivation is identical to the free fermion case, although
one has to check whether the scaling forms (7.17) and (7.18) apply for the
dispersion and the matrix elements of the E8 theory as well. Observing that
ϑ = arcsinh(p/ma) = arcsinh [p/ (c|λ|ν)] with some constant c, one can see that
the former is trivially satisfied with the right asymptotic F (x) ∝ xz. The lat-
ter equation regarding the scaling and the high-energy behaviour of the matrix
element also holds in general, as one can verify in the E8 model (see Appendix
C.1). Hence, as long as the initial assumptions of low energy and approximate
pair factorisation are valid, the adiabatic perturbation theory predicts KZ scaling
of intensive quantities in the E8 theory as well.

7.1.5 Realisation in the truncated conformal space ap-
proach

Finally, let us briefly discuss the modelling of the ramp protocols with the
CFTCSA introduced in the previous chapter. The dimensionless form of the
Hamiltonian used for the calculations (2.18) is expressed in Sec. 2.2.2. Through-
out this chapter, we work along the integrable lines, which corresponds to setting
κ̃1 or κ̃2 to zero in Eq. (2.18). The energy scale is set by the unit ∆ = m for
the free fermion field theory, and ∆ = m1 in the E8 model. We measure every
physical quantity in appropriate powers of ∆i, the mass gap in the pre-ramp
model.

The ramping protocol is realised in the CFTCSA by tuning the nonzero κ̃

2With the only exception of the attractive regime of the sine–Gordon model studied in Ref.
[192], where non-moving breathers are present. Unfortunately, it is unclear whether this issue
was explored there, cf. Sec. IV. in Ref. [192], and especially footnote 64 therein.

3This counters the intuition coming from thermodynamical Bethe Ansatz calculations, but
note that the state is composed of only two particles, so no “backflow” can survive the ther-
modynamic limit.
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linearly in the dimensionless time ∆it. The dynamics is obtained by numerically
integrating the time-dependent Schrödinger equation

i∂t |Ψ⟩ = H(t) |Ψ⟩ . (7.24)

To apply the CFTCSA, we need an algorithm for numerical integration that
operates without having direct access to the elements of the matrix H(t). In
MATLAB [212], there are several efficient built-in numerical routines available
to solve this task, hence we used this software in this case.

In this section we introduced the general arguments underpinning the Kibble–
Zurek scaling, and enumerated a set of analytical and numerical approaches to
test the mechanism in the context of the Ising field theory. Collectedly, these
tools allow for an in-depth exploration of the Kibble–Zurek mechanism, from
the microscopic level of eigenstates to more recently developed themes in the
literature: the universal dynamical scaling (7.6), and the scaling behaviour of
the higher cumulants of the work. We present the results of the exploration in
this order.

7.2 Eigenstate dynamics

Perhaps the most intriguing characteristic of the Kibble–Zurek mechanism
is that it can be explained by a simple-minded scenario, the adiabatic-impulse-
adiabatic approximation. The overwhelming success of this “cartoon picture”
begs the question whether it is an accurate depiction of the dynamics even at
the microscopic level. For a quantum model, the fundamental level is that of
the eigenstates, and the question is equivalent to the enquiry whether all change
in the population of eigenstates is localised to the impulse regime. While the
predicted scaling relations are heavily analysed in the literature, the microscopic
dynamics is a relatively unexplored territory. Our aim here is to exploit the fact
that through the TCSA we have a direct access to the eigenstate dynamics, so we
are able to test the Kibble–Zurek scenario at the most fundamental level. At the
same time, this is a nontrivial check of the claims of the adiabatic perturbation
theory, since the key players of APT are the |αn|2 probabilities to be in a given
excited state.

To quantify the above considerations, we work in the basis of the eigenstates
|n(t)⟩ corresponding to the time-dependent Hamiltonian H(t) (the instantaneous
eigenstates) introduced in Eq. (7.11). We use them to generalise the statistics of
work function [213] to each time instance along the course of the ramp, defining
an instantaneous statistics of work function

P̃ (W, t) =
∑

n

δ (W − [En(t)− E0(ti)]) |gn(t)|2 , (7.25)
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where the summation is over |n(t)⟩, and gn(t) are the overlaps of the time-evolved
state with the instantaneous eigenstates:

gn(t) = ⟨n(t)|Ψ(t)⟩ . (7.26)

W is called to the total work performed by the non-equilibrium protocol. P̃ (W, t)
is zero for W < E0(t) − E0(0). In the following we focus only on the statistics
of the excess work P (W, t) = P̃ (W − [E0(t) − E0(ti)], t) so P (W, t) is zero if
W < 0. In the following we analyse P (W, t) from two main aspects for ramps
along the two integrable directions in the Ising field theory. On the free fermion
line, our primary focus will be on the gn(t) overlap functions. They provide a
benchmark to the TCSA calculations by comparing them to the exact results,
and they are perfect indicators of non-adiabatic behaviour. On the E8 line, where
only the numerical approach works for P (W, t), we concentrate on the structure
of excitations after the ramp.

However, to accept the TCSA as a reliable method to model the Kibble–Zurek
physics, it is necessary to outline the parameter region in terms of the quench
rate τQ, where it is able to capture the universal KZ scaling. It is clear that
this region is limited from above due to finite volume effects (cf. the discussion
around Eq. (7.23)), and also from below, as fast ramps excite high-energy modes,
enhancing truncation errors. Let us turn to this question first.

7.2.1 Probability of adiabaticity

A control quantity that can be used to fix the domain of τQ where the
Kibble–Zurek scaling applies is the probability to be adiabatic after the ramp,
|g0(tf)|2, where g0(t) is the overlap with the instantaneous ground state. This
overlap is exponentially suppressed with the volume in the KZ scaling regime,
but its logarithm is proportional to the density of quasiparticles nex, such that
− log(|g0|)/L ∝ nex (cf. Eq. (7.15)). Within the domain of validity of the Kibble–
Zurek scaling the density scales according to Eq. (7.5), i.e. it decays as a power
law with τQ. However, at the onset of adiabaticity it is exponentially suppressed
[214, 215]. To explore the time scale mentioned above for the volume parameters
available in our calculation, we investigate the logarithm of the ground state
overlap P (0) after a TCP ramp crossing the critical point.

We begin with ramps along the free fermion line. In this case, besides the nu-
merical treatment of TCSA, the dynamics admits an exact analytic solution as
well. The field theory calculation is completely analogous to the lattice case: start-
ing from an equilibrium ground state, only states consisting of zero-momentum
particle pairs have nonzero overlap with the time evolved state, moreover, the
different pairs of momentum modes {p,−p} decouple completely. In finite vol-
ume L the momentum is quantised as pn = 2πn/L, where n is a half-integer in
the Neveu–Schwarz (NS) sector and integer in the Ramond (R) sector (cf. Sec.
2.2.1). To solve the dynamics we follow the approach of Ref. [201] and use the
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Figure 7.3: Logarithm of the probability of adiabaticity after a linear ramp along
the two integrable lines of the Ising Field Theory. (a) Continuous lines and sym-
bols of the same colour denote analytical and extrapolated TCSA data, respec-
tively, for various volume parameters. Black dashed line denotes the KZ scaling.
At the onset of adiabaticity finite volume results deviate from the KZ slope and
each other in a more pronounced manner. (b) Symbols stand for extrapolated
TCSA data and the slope of the dashed line signals the KZ scaling exponent.

Ansatz:

|Ψ(t)⟩ =
⊗

p

|Ψ(t)⟩p , with |Ψ(t)⟩p = ap(t) |0⟩p,t + bp(t) |1⟩p,t , (7.27)

where |0⟩p,t and |1⟩p,t denote the instantaneous ground and excited states of the
two-level system at time t along the ramp. The coefficients ap(t) and bp(t) satisfy
|ap(t)|2+ |bp(t)|2 = 1, and they can be expressed via the solutions of two coupled
first order differential equations (for details see Appendix C.2). The population of
mode p is given by np(t) = |bp(t)|2. Although the equations can be solved exactly,
numerical integration is more suitable for our purposes. Hence, strictly speaking,
referring to this solution as ‘analytical’ is not entirely precise. From now on,
when we use the term ‘analytical’ we mean the “numerically exact” procedure
outlined above. The probability to remain in the ground state is readily given by
the product over momenta:

|g0(t)|2 =
∏

p

(1− np(t)) . (7.28)

Although there are infinitely many terms in this product, np is suppressed as
np ∝ exp(−πτQp2/m), so we can safely truncate it at some pmax upon evaluation.

The analytical results for a ramp starting in the paramagnetic phase are
compared with TCSA data in Fig. 7.3a, with the slope of the KZ scaling as a
guide to the eye. The lower time limit of TCSA is signalled by the deviation
from the exact solution for mτQ < 5. To identify the upper time limit of TCSA
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in application to the KZ scaling, we note that the onset of adiabaticity occurs
at different quench times τQ depending on the volume parameter. Therefore, the
claim that for a given volume L we can observe the KZ scaling—as opposed
to adiabatic behaviour—can be supported by the observation that changing the
volume does not alter the KZ scaling. We note that the onset of adiabaticity
signalled by the strong deviation of different volume curves from each other
and from the τ

−1/2
Q line is not an abrupt change but rather a smooth crossover,

which prohibits a precise estimate of the upper time limit. Nevertheless, we can
identify that for mτQ ≈ 5 · 100 . . . 102 the Kibble–Zurek scaling is satisfied to a
good precision using the volume parameters available to the numerical method.

The results of the same enquiry are presented in Fig. 7.3b for the E8 model,
where we have to resort to the results of TCSA. The comparison with the slope
of the predicted KZ scaling shows that the logarithm of the ground state overlap
scales as the density of quasiparticles for large enough τQ. Although the KZ
scaling sets in later, i.e. for larger τQ than in the free fermion case, it is persistent
up to the maximum ramp duration available to our numerical method. This can
be understood in light of the fact that the exponent appearing in Eq. (7.23) is
larger for the E8 model, and consequently the onset of adiabaticity occurs for a
slower ramp in the same volume.

The analysis of adiabatic behaviour established that our numerical method
is applicable to address the KZM for a fairly wide range of parameters. Conse-
quently, we are ready to utilise it to explore the microscopic dynamics behind
the KZM, i.e. to observe how excitations form at the level of instantaneous eigen-
states. Below we discuss the results for the free fermion line and the E8 direction,
respectively.

7.2.2 Ramps along the free fermion line

As already noted, the ramp dynamics along the free fermion line is exactly
solvable; we exploit this fact to draw a robust picture of eigenstate dynamics
by comparing the analytical and numerical results. We perform linear ramps of
the type (7.9), with the role of the coupling parameter λ played by the time-
dependent fermion mass M :

M(t) = −2Mit/τQ , (7.29)

where Mi is the initial value of the coupling at t = −τQ/2. As discussed in Sec.
7.1.2, the critical exponents in this case are ν = 1, z = 1, so the Kibble–Zurek
time (7.3) scales as τKZ ∼ √

τQ. To test the adiabatic-impulse-adiabatic scenario,
we need to have a specified value of τKZ which we simply set as

mτKZ =
√
mτQ , (7.30)

where m = |Mi| is the mass gap at the start of the ramp. Depending on the sign
of Mi, the ramp is either towards the ferromagnetic phase or the paramagnetic
phase; we are going to present our results in this order.
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Figure 7.4: Overlaps of the evolving wave function with instantaneous eigenstates
for two different ramps from the paramagnetic to the ferromagnetic phase with
mτQ = 16 and mτQ = 64 for mL = 50. The green region indicates the non-
adiabatic regime. Solid lines are TCSA data for Ncut = 25 while dots are obtained
from the numerical solution of the exact differential equations. Analytical results
are plotted only for the few low-momentum states with the most substantial
overlap. Lower indices in the legends refer to the quantum numbers of the modes
present in the many-body eigenstate: pn = nπ/L. The composite structure of
some lines is caused by level crossings experienced by multiparticle states.

The paramagnetic-ferromagnetic (PF) direction

Ramps starting from the paramagnetic phase are defined by Mi < 0. In this
case the ground state is non-degenerate and lies in the Neveu–Schwarz sector, so
the time evolved state is orthogonal to the Ramond sector subspace for all times.

As noted above, the solution of the dynamics amounts to finding the ap(t)
and bp(t) coefficients characterising the decoupled particle pairs with momenta
{p,−p}. Consequently, each excited state is specified as a set of p momentum
modes. The elementary overlaps gp corresponding to a state with a single mo-
mentum mode can be expressed as

| ⟨p,−p|Ψ(t)⟩ |2 ≡ |gp(t)|2 = np(t)
∏

p′ ̸=p

(1− np′(t)) , (7.31)

where np = |bp|2 and the product goes over the quantised momenta, which are
odd multiples of π/L in the NS sector. The extension to states with multiple
particle pairs is straightforward.

The comparison of these results with the numerical data involves a subtlety.
TCSA constructs the eigenstates and the time-evolved state such that they are
normalised to 1, and as a result, the overlaps |gn|2 are highly sensitive to the
number of states kept after truncation. As there is no direct correspondence
between the single-mode momentum cutoff applied to the infinite product of Eq.
(7.31) and the many-body TCSA energy cutoff, we set the latter such that the
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Figure 7.5: Overlaps of the evolving wave function with instantaneous eigenstates
for two different ramps from the ferromagnetic to the paramagnetic phase with
mτQ = 16 and mτQ = 64 for mL = 50. The green region indicates the non-
adiabatic regime. Solid lines are TCSA data for Ncut = 31 while dots are obtained
from the numerical solution of the exact differential equations.

match between the analytical and numerical results is optimal. Note that this is
a single parameter for all the states.

The time evolution of the overlaps is presented in Fig. 7.4. Dots are calculated
from the exact solution (7.31) and continuous lines denote TCSA data obtained
by solving the many-body dynamics numerically. Fig. 7.4a depicts a curious be-
haviour of the second largest overlap in TCSA: the corresponding line seemingly
consists of many different segments. This is a consequence of level crossings and
the errors of numerical diagonalisation near these crossings. The state in question
consists of two two-particle pairs, and as the mass scale M is ramped, its energy
increases steeper than that of high-momentum states with only a single pair,
hence the level crossings. At each crossing the numerical diagonalisation cannot
resolve precisely levels in the degenerate subspace, so the resulting overlap is not
accurate. This accounts for the most prominent difference between the numerical
and analytical results. Apart from that, the agreement is quite satisfactory.

The light green background corresponds to the naive impulse regime t ∈
[−τKZ, τKZ]. Of course this is only a crude estimate for the time when adiabatic-
ity breaks down, as strictly speaking Eq. (7.30) is valid only as a scaling relation.
Nevertheless, most of the change in each state population indeed happens within
this coloured region. This statement is even more accentuated by Fig. 7.4b, that
is, for a slower ramp. Comparing the two panels of Fig. 7.4 we observe that in-
creasing the ramp time the probability of adiabaticity increases while the weight
of the multiparticle states are suppressed. Note that although the two lowest
available levels (the ground state and the first excited state) dominate the time-
evolved state, the dynamics is far from being completely adiabatic, meaning no
excitations at all. Hence, in accordance with the remarks concerning finite size
effects in the previous subsection, we are within the regime of Kibble–Zurek
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Figure 7.6: Statistics of work after the ramp P (W, t = τQ/2) along the E8 di-
rection with m1τQ = 32, m1L = 40, and Ncut = 45. States containing only
zero-momentum particles are denoted by continuous lines, while dashed lines
denote moving multiparticle states, different colours correspond to a different
AaAb branch. The particle content is expressed as a label near the overlap of
the most prominent states, with the same convention for colouring. The colour
of the single-particle labels A3 and A6 reflects that they can be viewed as the
bound states of A1A1 and A2A2, respectively, with a small binding energy (cf.
Table A.1).

scaling instead of being adiabatic.

The ferromagnetic-paramagnetic (FP) direction

The ferromagnetic ground state is twofold degenerate in infinite volume. For
the initial state we choose the state with maximal magnetisation corresponding to
the infinite volume symmetry breaking state: |Ψ0⟩ = 1√

2
(|0⟩R + |0⟩NS). As both

sectors are present in the initial state, the time-evolved state also overlaps with
both sectors. This provides yet another benchmark for our numerical approach
and also a somewhat richer landscape of the overlap functions.

As one can see in Fig. 7.5, the dynamics are very similar to the PF case
with the main difference coming from the fact that both sectors contribute.
We also note that the number of level crossings is substantially increased, due
to the gap developed between the two sectors in the paramagnetic phase. The
different behaviour of the two vacua stems from the different available momentum
modes in each sector: in the Ramond sector the momenta are larger in the lowest
available modes and consequently they are less likely to be excited.
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7.2.3 Ramps along the E8 line

After investigating the free fermion line, we now turn to the behaviour of
overlaps in the other integrable direction, i.e. for ramps along the E8 axis defined
by the protocol

h(t) = −2hit/τQ (7.32)

for t ∈ [−τQ/2, τQ/2]. The scaling dimension of the perturbing operator σ is
∆σ = 1/8, so critical exponent ν is different in this direction from the free fermion
case: ν = 1/(2−∆σ) = 8/15 (cf. Eq.(2.15)). This implies that the Kibble–Zurek
time (7.3) is given by

m1τKZ = (m1τQ)
8/23 , (7.33)

where, similarly to the free fermion case, the choice of the proportionality factor
being 1 is just a convention.

Due to the lack of exact results for the evolution of energy levels, we consider
another aspect of the instantaneous work function compared to the free fermion
case, i.e. we calculate P (W ) at a specific moment: the end of the ramp. From
the defining relation Eq. (7.25) it is clear that P (W ) has peaks at the discrete
finite volume energy levels of the E8 spectrum. By virtue of the E8 particle spec-
trum (2.16), many of these peaks correspond to states composed of one or more
zero-momentum particles, denoted by Aa, where a is the particle species index.
Similarly to the free fermion line, pair states of moving particles are present as
well, their quantisation is dictated by the zero-momentum Bethe–Yang equations
(B.8) accounting for the interactions between the two particles in the pair state.
As a result, we can identify the particle content of all states in the spectrum by
their energy, and have a detailed picture of excitations created by the ramp.

First, we present P (W ) following a ramp at the onset of the KZ scaling regime
(cf. Fig. 7.3b), m1τQ = 32. States with visible overlap in Fig. 7.6 are marked with
gridlines: continuous lines for states built up from zero-momentum particles, and
dashed lines for moving particle pairs. We labelled the most prominent overlaps
with the Aa particle content: note that most of the post-ramp weight is car-
ried by zero-momentum particles, and only a few dashed lines are present, each
marking a state with comparatively small overlap. Moreover, in each moving
branch, the pair with the lowest momentum stands out, indicating an effective
”momentum-cutoff”. This is very much in line with the traditional KZ argu-
ments, as the dominant role of low-momentum modes is the consequence of the
large Kibble–Zurek length scale ξKZ. The distribution of the overlaps of states
composed of zero-momentum particles indicates an akin tendency in terms of the
overall energy of the states, as high-energy modes are similarly suppressed.

This suppression is even more drastic for a slower ramp withm1τQ = 128, pre-
sented in Fig. 7.7. Note that there is a single pair overlap which is at least barely
visible on the y scale of the figure, all others are practically negligible, mean-
ing that the post-ramp state is almost exclusively composed of zero-momentum
particles. These in turn exhibit a shift towards lower energies compared to the
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Figure 7.7: Statistics of work after the ramp P (W, t = τQ/2) along the E8 direc-
tion with m1τQ = 128, m1L = 40, and Ncut = 45. The conventions are the same
as in Fig. 7.6.

faster ramp (note the drop in the number of continuous gridlines). Altogether,
the indication of the statistics of work function is that the customary Kibble-
Zurek arguments, stating the sole importance of low-momentum modes by virtue
of the increasing ξKZ length scale, identically apply in regard of the large time
scale ξt and the prominence of low-energy excitations. We remark that to our
knowledge, albeit well within the KZ motif, this is the first case where the unique
role of low-energy excitations is demonstrated on a different footing than that of
low-momentum modes.

The dominant role of zero-momentum particles prompts us to return to the
point made in Sec. 7.1.4 regarding the scaling brought about by single-particle
states. We recall that in the thermodynamic limit they cannot contribute to
intensive quantities, but it is equally clear that in the finite volume parameter
regime available by TCSA their contribution is in fact dominant. A comparison of
the τQ values of Figs. 7.6-7.7 to the x scale in Fig. 7.3b indicates that we are well
within the KZ scaling regime, which was identified by looking at the scaling of the
probability of remaining adiabatic. It is desirable to have an analytic argument
to explain the observed scaling in this case, where it must be attributed to single-
particle states. Apparently, the APT calculation provides one, as it predicts that
each single-particle overlap |αa|2 scales as τ−8/23

Q separately, i.e. they are subject
to the “correct” KZ scaling (cf. App. C.1.1). However, a more careful inspection
of Figs. 7.6-7.7 reveals that this prediction cannot hold exactly. For instance, the
overlap of the first particle (located at 1 on the horizontal axis in the figures)
increases with increasing τQ instead of the monotonously decreasing behaviour
predicted by the scaling form.
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This ambiguity does not come as a surprise, as the application of the APT to
the KZ scaling far exceeds the conventional boundaries of perturbation theory,
hence not all aspects of its conclusions are warranted. This is not to say that
the KZ scaling itself is in question: we are well within the τQ regime where the
KZ scaling is spectacularly satisfied. To sum up, even if the APT arguments do
not describe them properly, our numerical data verifies that one-particle states
in fact comply with the usual KZ scaling arguments and reproduce the expected
scaling relations for various quantities. This was already seen for the probability
of adiabaticity, and will be demonstrated below for further quantities. In regard
of the conflicting predictions of the perturbative approach, a remote analogy
can be drawn with the form factor series expansion calculation of the central
charge in integrable perturbed conformal field theories, where the result of the
sum over multiparticle states is fixed by the c-theorem, while the separate terms
vary greatly due to the details of the interaction [89].

7.3 Dynamical scaling in the impulse regime

In this section we explore the dynamical scaling aspect of the Kibble–Zurek
mechanism in the Ising field theory considering two one-point functions. We
focus on the energy density and the magnetisation, both of which are important
observables in the theory.

7.3.1 Energy density

The energy density over the instantaneous vacuum or the excess heat density
is defined as

w(t) =
1

L
⟨Ψ(t)|H(t)− E0(t)|Ψ(t)⟩ , (7.34)

where the Hamiltonian H(t) has an explicit time dependence governed by the
ramping protocol and E0(t) is the ground state of the instantaneous Hamiltonian
H(t). In accordance with Eq. (7.6), the excess heat for different ramp rates is
expected to collapse to a single scaling function:

w(t/τKZ) = ξ−d−∆H
KZ FH(t/τKZ) = τ

−d/z−1
KZ FH(t/τKZ) = τ−2

KZFH(t/τKZ) , (7.35)

where d = 1 is the spatial dimension, ∆H = z is the scaling dimension of the
energy and the second equation follows from τKZ = ξzKZ. For ramps along the free
fermion line the energy density can be obtained from the solution of the exact
differential equations using the mapping to free fermions, yielding essentially
exact results. For the E8 line, it is easily extracted from the numerical data, as
it merely amounts to taking the expectation value of the Hamiltonian.

In Fig. 7.8 we examine the scaling behaviour (7.35) for several ramps in both
integrable directions. In the free fermion case, the analytic calculations and the
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Figure 7.8: Dynamical scaling of the energy density for ramps along the two
integrable directions. The insets illustrate the effects of rescaling. (a) The free
fermion line, where solid lines denote exact analytical solution while dot-dashed
lines represent TCSA results for mL = 50 extrapolated in the cutoff. (b) The
E8 direction, where extrapolated TCSA data obtained for m1L = 50 is in solid
lines.

extrapolated TCSA data are practically indistinguishable. The insets show that
the non-rescaled curves deviate substantially from each other, reflecting that the
dynamical scaling of Eq. (7.35) is retained in both directions. Notably, the col-
lapse of the curves is perfect well beyond the impulse regime |t/τKZ| < 1. This
can be understood in light of the eigenstate dynamics investigated in Sec. 7.2. As
we observed, the population of the instantaneous eigenstates is approximately
constant after the non-adiabatic period. The subsequent increase in energy den-
sity then is merely due to the increasing gap ∆(t) as the coupling is ramped.
The energy scale increases identically for all quench rates which in turn leads to
the collapse of different curves. This argument can be formalised for the general
set-up of Sec. 7.1.1 as

w(t≫ τKZ) ≈ nex(t) ·∆(t) ∝ τ
−d/z
KZ

(
t

τQ

)aνz

∝ τ
−d/z
KZ

(
t

τKZ

)aνz

τ−1
KZ , (7.36)

where nex is the density of defects that is constant well beyond the impulse regime
and scales as τ

−d/z
KZ . The gap scales as (t/τQ)

zν and we used that (τKZ/τQ)
aνz ∝

τ−1
KZ. The result shows that w(t ≫ τKZ) is a function of t/τKZ. To conclude, we
expect the rescaled energy density to grow as (t/τKZ)

aνz in the final adiabatic
period, and this is in fact what we observe in Fig. 7.8.

7.3.2 Magnetisation

The magnetisation operator σ that corresponds to the order parameter has
scaling dimension ∆σ = 1/8 hence is expected to satisfy the following scaling in
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Figure 7.9: Dynamical scaling of the magnetisation for two different ramps. The
extrapolated TCSA results are obtained using dimensionless volume l = 50. (a)
Ramps from the ferromagnetic phase in the free fermion model. The fitted func-
tion corresponding to the instantaneous one-particle oscillation is f(t/τKZ) =
0.612(2) cos ((t/τKZ)

2 + 0.830(3)) . (Note that (t/τKZ)
2 = m(t)t.) (b) Ramps

along the E8 axis. The dashed black line shows the exact adiabatic value [138]:
⟨σ⟩ad = (−1.277578 . . . ) · sgn(h)|h|1/15.

the impulse regime (z = 1):

⟨σ(t/τKZ)⟩ = τ
−1/8
KZ Fσ(t/τKZ) . (7.37)

In contrast to the energy density, the magnetisation is much harder to calculate
even in the free fermion case as it is a highly non-local operator in terms of
the fermions. Consequently, we have to resort to TCSA calculations in both
directions.

The scaling behaviour of the magnetisation (7.37) is checked in Fig. 7.9. Let
us begin with the discussion of the free fermion case, presented in Fig. 7.9a. To
have a nonzero magnetisation, we initiate the ramp in the ferromagnetic phase.
The scaling is present most notably in terms of the frequency of the oscillations
beyond the non-adiabatic window. Due to truncation errors of the TCSA method
(see Appendix D), the predicted scaling is not reproduced perfectly in terms of
the amplitudes and neither in the first half of the non-adiabatic regime. This
is also the reason why the various curves do not collapse perfectly for times
t < −τKZ where the scaling should also hold according to Eq. (7.7). This is
in contrast with the E8 results presented in Fig. 7.9b, where TCSA has better
convergence properties and the curves precisely reproduce the initial adiabatic
behaviour.

Returning to the free fermion ramp, we observe that the frequency of the
late time oscillations is increasing with time. The oscillations can be fitted with
the function f(t) = A cos [m(t) · t+ ϕ] which demonstrates that the oscillations
originate from one-particle states whose masses and thus the frequency increases
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in time with the gap. We remark that this is analogous to sudden quenches in the
Ising field theory (cf. Chapter 4) where the presence of one-particle oscillations
is supported by analytical and numerical evidence [33, 49, 94]. The oscillations
appear undamped well after the impulse regime t/τKZ ≫ 1. We remark that for
sudden quenches the decay rate of the oscillations depends on the post-quench
energy density [33, 216]. We expect the same to apply for ramps as well, but
here the energy density is suppressed for slower ramps so the damping cannot
be observed during a finite ramp. In contrast, the decay of oscillations in the
dynamics of the order parameter after the ramp is observed in Ref. [198] in the
spin chain.

In the E8 direction we observe that the collapse in the early adiabatic regime
is perfect, but the curves slightly deviate after the non-adiabatic regime. The
oscillations appearing afterwards are once again expected to be related to the
single-particle states. Unfortunately, to verify this expectation by a similar fitting
procedure is not viable, due to the fact that there are eight of them.

7.4 Cumulants of work

So far we have gained insight in the KZM by examining the instantaneous
spectrum directly and demonstrated the relevance of the Kibble–Zurek time scale
in dynamical scaling functions of local observables. In this section we aim to
demonstrate that the Kibble–Zurek scaling is present in an even wider variety
of quantities: the full statistics of the excess heat (or work) during the ramp is
subject to scaling laws of the KZ type as well.

A particularly interesting result of the free fermion chain (already tested
experimentally, cf. Ref. [65]) is that apart from the average density of defects
and excess heat, their full counting statistics is also universal in the KZ sense:
all higher cumulants of the respective distribution functions scale according to
the Kibble–Zurek laws [194, 217]. The scaling exponents depend on the protocol
in the sense that they are different for ramps ending at the critical point (ECP)
and those crossing it (TCP). As Ref. [218] demonstrates, the universal scaling of
cumulants can be observed in models apart from the transverse field Ising spin
chain, hence it is natural to explore their behaviour in the Ising Field Theory.

The cumulants of excess work are defined via a generating function lnG(s):

G(s) = ⟨exp[s(H(t)− E0(t))]⟩ (7.38)

where the expectation value is taken with respect to the time-evolved state. The
cumulants κj are the coefficients appearing in the expansion of the logarithm:

lnG(s) =
∞∑

j=1

sj

j!
κj . (7.39)
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The first three cumulants coincide with the mean, and the second and third
central moments, respectively. Assuming that the generating functions satisfy a
large deviation principle [194, 219], all of the cumulants are extensive ∝ L. To
have a more robust numerical estimate of the cumulants by comparing results
using various volume parameters, we are going to focus on the κj/L cumulant
densities.

Elaborating on the framework of adiabatic perturbation theory presented in
Sec. 7.1.3, we argue that the scaling behaviour of the cumulants of the excess
heat are not sensitive to the presence of interactions in the E8 model and take
a route analogous to Ref. [194] to obtain the KZ exponents. The core of the
argument is the following: the Kibble–Zurek scaling within the context of APT
stems from the rescaling of variables (7.16) which yields Eq. (7.19) from Eq.
(7.15). The rescaling concerns the momentum variable that originates from the
summation over pair states.

Now consider that cumulants can be expressed as a polynomial of the mo-
ments of the distribution:

κn = µn +
∑

λ⊢n
αλ

k∏

j=1

µmj
(7.40)

where λ = {m1,m2, . . . ,mk} is a partition of the integer index n with |λ| = k ≥ 2,
and αλ are integer coefficients. The moments are defined for the excess heat as

µn = ⟨[H − E0]
n⟩ . (7.41)

Let us note that the integration variable subject to rescaling in Eq. (7.16)
originates from taking the expectation value. Consequently, in the limit τQ → ∞
terms consisting of powers of lower moments are suppressed compared to µn,
because they are the product of multiple integrals of the form (7.19). So the
scaling behaviour of κn equals that of µn, which is defined with a single expec-
tation value, hence its scaling behaviour is given by the calculation in Sec. 7.1.3.
We remark that this line of thought is completely analogous to the arguments
of Ref. [194]. According to the above reasoning, all cumulants of the work and
quasiparticle distributions in the E8 model should decay with the same power
law as τQ → ∞.

To put the claims above to test, we follow the presentation of Ref. [194] and
we discuss the two different scaling for the cumulants: first considering ramps
that end at the critical point then examining ramps that navigate through the
phase transition.

7.4.1 ECP protocol: ramps ending at the critical point

For ramps that end at the critical point one may apply the scaling form in
(7.6) since the final time of such protocols corresponds to a fixed t/τKZ = 0. The
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Figure 7.10: Cumulant densities for linear ramps on the free fermion line starting
in the paramagnetic phase and ending at the QCP: a comparison between the
numerically exact solution (solid lines) in the thermodynamic limit and cutoff-
extrapolated TCSA data in different volumes (symbols). For both approaches
κ3/L is plotted a decade lower for better visibility.

resulting naive scaling dimension of a work cumulant κn is then easily obtained
since it contains the product of n Hamiltonians with dimension ∆H = z = 1.
Consequently, we expect

κn/L ∝ τ
−d/z−n
KZ ∝ τ

−aν(d+nz)
aνz+1

Q , (7.42)

where we used Eq. (7.3). However, the arguments of adiabatic perturbation the-
ory [194] as outlined in Sec. 7.1.3 demonstrate that this naive scaling is true only
if the corresponding quantity is not sensitive to the high-energy modes. However,
using APT one can express the cumulants similarly to the defect density in Eq.
(7.19). If the corresponding rescaled integral does not converge that means the
contribution from high-energy modes cannot be discarded and the resulting scal-
ing is quadratic with respect to the ramp velocity: τ−2

Q . The crossover happens
when aν(d + nz)/(aνz + 1) = 2; for smaller n the KZ scaling applies while for
larger n quadratic scaling applies with logarithmic corrections at equality [210].

For the free fermion line ν = 1 (a = d = z = 1), and the crossover cu-
mulant index is n = 3. Fig. 7.10 justifies the above expectations for the three
lowest cumulants by comparing the numerically exact solutions to TCSA results.
TCSA is most precise for moderately slow quenches and the first two cumulants.
There is notable deviation from the exact results in the case of the third cumu-
lant although the scaling behaviour is intact. The deviation does not come as a
surprise, since the fact that the integral of adiabatic perturbation theory does
not converge means that there is substantial contribution from all energy scales,
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Figure 7.11: Cumulant densities for ECP ramps on the E8 integrable line: cutoff-
extrapolated TCSA data and the expected KZ scaling from dimension counting.
The scaling exponents are 16/23, 24/23 and 32/23, respectively.

including those that fall victim to the truncation.

Fig. 7.10 also demonstrates that for very slow quenches finite size effects can
spoil the agreement between exact results and TCSA. This is the result of the
onset of adiabaticity (cf. Fig. 7.3a).

We expect identical scaling behaviour from the other integrable direction of
the Ising Field Theory in terms of τKZ that translates to a different power-law
dependence on τQ. Indeed this is what we observe in Fig. 7.11. In this case
there is no exact solution available, hence solid lines denote the expected scaling
law instead of the analytic result. The figure is indicative of the correct scaling
although finite volume effects are more pronounced as the duration of the ramps
is larger than earlier.

7.4.2 TCP protocol: ramps crossing the critical point

For slow enough ramps that cross the critical point, and terminate at a given
finite value of the coupling which lies far from the non-adiabatic regime where
(7.6) applies, the excess work density scales identically to the defect density. This
is due to the fact that the gap that defines the typical energy of the defects is
the same for ramps with different τQ and the excess energy equals energy scale
times defect density. It is demonstrated in Ref. [194] that higher cumulants of
the excess work share a similar property: their scaling dimension coincides with
that of the mean excess work, consequently all cumulants of the defect number
and the excess work scale with the same exponent. As we argued above, this
claim is expected to hold more generally than the free model considered in Ref.
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Figure 7.12: The first two cumulant densities for linear ramps crossing the QCP
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data while the solid lines show the expected KZ scaling ∼ τ
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[194], and in particular we claimed that it holds in the E8 model.

Fig. 7.12 demonstrates the validity of this statement for the second cumu-
lant. In line with the reasoning presented earlier (cf. Eq. (7.40) and below), the
subleading terms are more prominent than in the case of the first cumulant (i.e.
the excess heat) and KZ scaling is observable only for larger τQ. Higher cumu-
lants do not exhibit the same scaling within the quench time window available
for TCSA calculations. Due to the increasing number of terms in the expressions
with moments for the nth cumulant κn, we expect that the Kibble–Zurek scaling
occurs for larger and larger τQ, on time scales that are not amenable to effective
numerical treatment as of now. Nevertheless, the behaviour of the second cumu-
lant still serves as a nontrivial check of the assumptions that were used in Sec.
7.1.4 to apply APT to the E8 model. As the argumentation did not rely explicitly
on the details of the interactions in the E8 theory, rather on the more general
scaling behaviour of the gap (7.17) and the matrix element (7.18), we expect that
a similar behaviour of the cumulants is observable in other interacting models
exhibiting a phase transition.

7.5 Summary

In this chapter we explored the Kibble–Zurek mechanism in the Ising field
theory. This model accommodates two types of universality, predicting different
KZ scaling for ramps along the free fermion line and the E8 integrable line,
caused by the different universal scaling exponent ν for the two cases. The lattice
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counterpart of the free fermion model is thoroughly studied in the literature, as
the dynamics can be solved exactly. Taking the scaling limit, we obtained an
exact solution in the field theory and showed that the KZ scaling is intact. At the
same time, the exact calculation proved the validity of our numerical approach,
the TCSA, in the context of the Kibble–Zurek mechanism. In the E8 model, we
could only rely on the latter method, supplemented by arguments from adiabatic
perturbation theory.

We investigated three main aspects of the Kibble–Zurek physics. The first is
the dynamics at the microscopic level, which can be obtained from the numerical
diagonalisation, and from the exact results, where available. Remarkably, we
found that the simple scenario explaining the KZ scaling is followed almost to
the letter even at the most fundamental level, which means that most of the
change in the population of eigenstates is localised to the non-adiabatic period.
Moreover, in the interacting E8 model, we demonstrated that the behaviour of
low-energy zero-momentum particles is analogous to the low-momentum modes
of the free fermion model. In the second part we introduced a new perspective
on the impulse regime of the time evolution, where we demonstrated the validity
of a dynamical scaling law for the one-point functions of the theory. Finally,
we extended on a recent theme of the literature, the universality of the full
counting statistics of excitations after the ramp. More precisely, we focused on
the cumulants of the distribution of the excess heat, and offered an argument in
the context of adiabatic perturbation theory that all of the cumulants obey the
KZ scaling even in an interacting model. We demonstrated this claim in the E8

model for the first three cumulants in the case of ramp protocols ending in the
critical point, and for the first two cumulants in the case of ramps crossing it.

Altogether, the results of this chapter serve as a robust demonstration of the
KZ scaling laws in a nontrivial field theory. The observed scaling indicates that
the arguments behind the Kibble–Zurek mechanism should apply to a generic
field theory setting as well. In the case of the full distribution of excess heat,
our numerical results and perturbative arguments provide particularly strong
indications. Importantly, this quantity is available to experiments, e.g. using
Rydberg atoms [220] to explore the Ising universality class, or in cold-atomic
gases realising an interacting field theory [221]. We remark that in terms of the
higher cumulants of the kink distribution in the free model, the universal scaling
is already verified experimentally [65].



Chapter 8

Thesis statements

The works presented in this thesis describe the quantum many-body dynamics
in low dimensions in terms of quantum field theory models both in and out of
equilibrium. As a conclusion, let us summarise the novel results by the following
statements:

1. I worked out the solution of the form factor bootstrap in the E8 integrable
quantum field theory. I performed a re-derivation of the recurrence relations
generating the multi-particle form factors, and by solving them extended
the set of matrix elements available in the earlier literature. The solution
for the σ field was published in Ref. [95], while the analogous results for
the ϵ operator were published in Ref. [96] with a synopsis of the form
factor bootstrap. Finally, my results provided theoretical support for the
experimental observation of the E8 particle spectrum, published in Ref.
[77].

2. I analysed the time evolution following a global quantum quench in the E8

field theory. With the tools of numerical modelling I compared two analyt-
ical approaches to the post-quench dynamics with each other, and argued
that the expansion on the post-quench basis is more suited to describe
the time evolution, which carries the fingerprints of the equilibrium post-
quench model. Most notably, I pointed out the prominent role of single-
particle oscillations in the dynamical one-point functions, originating from
the particle states in the post-quench spectrum. I demonstrated the validity
of this claim both for integrable and non-integrable post-quench dynamics.
The results were published in Ref. [94].

3. I derived a second-order perturbative expansion to post-quench overlaps
applicable to generic quantum field theories in principle, and to models with
at most a small integrability breaking in practice. In comparison with the
numerical data I have justified the perturbative approach for quenches of
moderate size in the E8 model for one- and two-particle states. Importantly,
the presence of pairs composed of different particles indicated that the
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initial state is not of an integrable form. I applied the expansion to quenches
with non-integrable dynamics for the lightest particles and found serious
limitations otherwise. The results were published in Ref. [95].

4. I investigated the Kibble–Zurek mechanism in the Ising field theory. Ex-
ploring the parameter space, by numerically modelling ramps slowly ap-
proaching and crossing the critical point, I verified the distinct scaling
predictions corresponding to the two integrable directions. In particular, I
found strong evidence for the general arguments behind the Kibble–Zurek
scaling in terms of various quantities from the microscopic level to dynam-
ical scaling functions. The unique spectrum of the E8 model allowed for
a nontrivial demonstration of the scaling brought about by single-particle
states. Furthermore, I offered a set of numerical and analytical arguments
in support of the universal scaling of the full distribution of the excess
heat induced by the non-equilibrium protocol. The results were published
in Ref. [167].
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[59] I. M. Szécsényi, G. Takács, and G. M. T. Watts, “One-point functions in
finite volume/temperature: a case study,” Journal of High Energy
Physics 8 (2013) 94, arXiv:1304.3275 [hep-th].

http://arxiv.org/abs/1310.4821
http://dx.doi.org/10.1016/j.nuclphysb.2016.08.024
http://arxiv.org/abs/1607.01068
http://arxiv.org/abs/1607.01068
http://dx.doi.org/10.1016/S0550-3213(99)00280-1
http://arxiv.org/abs/hep-th/9902075
http://dx.doi.org/10.3842/SIGMA.2007.011
http://dx.doi.org/10.3842/SIGMA.2007.011
http://arxiv.org/abs/hep-th/0611066
http://dx.doi.org/10.1088/1742-5468/2010/11/P11012
http://dx.doi.org/10.1088/1742-5468/2010/11/P11012
http://arxiv.org/abs/1008.3810
http://dx.doi.org/10.1088/1361-6633/aa91ea
http://arxiv.org/abs/1703.08421
http://arxiv.org/abs/hep-th/0112167
http://dx.doi.org/10.1142/S0217751X9000218X
http://dx.doi.org/10.1142/S0217751X9000218X
http://dx.doi.org/10.1142/S0217751X91002161
http://dx.doi.org/10.1142/S0217751X91002161
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.028
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.028
http://arxiv.org/abs/hep-th/0701061
http://arxiv.org/abs/1106.2448
http://dx.doi.org/10.1007/JHEP08(2013)094
http://dx.doi.org/10.1007/JHEP08(2013)094
http://arxiv.org/abs/1304.3275


BIBLIOGRAPHY 132
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quantum field theory quenches from an integral equation hierarchy,”
Nuclear Physics B 902 (2016) 508–547, arXiv:1510.01735
[cond-mat.stat-mech].
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Appendix A

Details of the E8 bootstrap

A.1 Elementary building blocks

As discussed in the main text, the form factor bootstrap builds on the exactly
known S-matrix, calculated in the context of S-matrix bootstrap. In the E8

model all scatterings are diagonal, hence the complete S-matrix is built up of
8 · (8 − 1)/2 = 56 blocks: this is the number of possible pairings between the 8
particles. The full S-matrix of the E8 model was conjectured by Zamolodchikov
[39, 82] and later on verified through thermodynamic Bethe Ansatz calculations
by Klaasen and Melzer [222]. The two-body scatterings factorise to products of
the elementary function [89]

(k)ϑ =
sinhϑ+ i sinπk/30

sinhϑ− i sin πk/30
. (A.1)

We present the full S-matrix in Table A.1. For each possible pairing ab we list the
(k) factors appearing in the corresponding S-matrix block Sab. When a particle
Ac is a bound state of the ab pairing, a bold number c is printed in the overset
of the (k) factor which determines the so-called fusion angle, the rapidity dif-
ference where the bound state pole appears. Most notable are the bound states
of various pairings of the three lightest particles, as they were used repeatedly
in the construction of the new form factors. In many cases, the same (k) factor
appears multiple times in a single Sab block, this is denoted by superscript: when
calculating the S-matrix, the appropriate power must be taken. Formally, Sab

can be expressed as

Sab(ϑ) =
∏

k∈Aab

[(k)ϑ]
pk , (A.2)

where Aab denotes that the product is taken over the entries in the cell corre-
sponding to the ab pairing of Table A.1, and pk are the multiplicities of a single
k block, i.e. the superscripts appearing in the table.

Calculating the S-matrix pins down the minimal form factors introduced in
the main text. More precisely, they are completely fixed as those solutions of
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a b Aab a b Aab

1 1
1

(20)
2

(12)
3

(2) 3 6
2

(26)
3

(24)3
6

(18)3
8

(8)3 (10)2 (16)4

1 2
1

(24)
2

(18)
3

(14)
4

(8) 3 7
3

(28)
5

(22)3 (4)2 (6)2 (10)4 (12)4 (16)4

1 3
1

(29)
2

(21)
4

(13)
5

(3) (11)2 3 8
5

(27)
6

(25)3
8

(17)5 (7)4 (9)4 (11)2 (15)3

1 4
2

(25)
3

(21)
4

(17)
5

(11)
6

(7) (15) 4 4
1

(26)
4

(20)3
6

(16)3
7

(12)3
8

(2) (6)2 (8)2

1 5
3

(28)
4

(22)
6

(14)
7

(4) (10)2 (12)2 4 5
1

(27)
3

(23)3
5

(19)3
8

(9)3 (5)2 (13)4 (15)2

1 6
4

(25)
5

(19)
7

(9) (7)2 (13)2 (15) 4 6
1

(28)
4

(22)3 (4)2 (6)2 (10)4 (12)4 (16)4

1 7
5

(27)
6

(23)
8

(5) (9)2 (11)2 (13)2 (15) 4 7
2

(28)
4

(24)3
7

(18)5
8

(14)5 (4)2 (8)4 (10)4

1 8
7

(26)
8

(16)3 (6)2 (8)2 (10)2 (12)2 4 8
4

(29)
5

(25)3
7

(21)5 (3)2 (7)4 (11)6 (13)6 (15)3

2 2
1

(24)
2

(20)
4

(14)
5

(8)
6

(2) (12)2 5 5
4

(22)3
5

(20)5
8

(12)5 (2)2 (4)2 (6)2 (16)4

2 3
1

(25)
3

(19)
6

(9) (7)2 (13)2 (15) 5 6
1

(27)
2

(25)3
7

(17)5 (7)4 (9)4 (11)4 (15)3

2 4
1

(27)
2

(23)
7

(5) (9)2 (11)2 (13)2 (15) 5 7
1

(29)
3

(25)3
6

(21)5 (3)2 (7)4 (11)6 (13)6 (15)3

2 5
2

(26)
6

(16)3 (6)2 (8)2 (10)2 (12)2 5 8
3

(28)
4

(26)3
5

(24)5
8

(18)7 (8)6 (10)6 (16)8

2 6
2

(29)
3

(25)
5

(19)3
7

(13)3
8

(3) (7)2 (9)2 (15) 6 6
3

(24)3
6

(20)5
8

(14)5 (2)2 (4)2 (8)4 (12)6

2 7
4

(27)
6

(21)3
7

(17)3
8

(11)3 (5)2 (7)2 (15)2 6 7
1

(28)
2

(26)3
5

(22)5
8

(16)7 (6)4 (10)6 (12)6

2 8
6

(28)
7

(22)3 (4)2 (6)2 (10)4 (12)4 (16)4 6 8
2

(29)
3

(27)3
6

(23)5
7

(21)7 (5)4 (11)8 (13)8 (15)4

3 3
2

(22)
3

(20)3
5

(14)
6

(12)3
7

(4) (2)2 7 7
2

(26)3
4

(24)5
7

(20)7 (2)2 (8)6 (12)8 (16)8

3 4
1

(26)
5

(16)3 (6)2 (8)2 (10)2 (12)2 7 8
1

(29)
2

(27)3
4

(25)5
6

(23)7
8

(19)9 (9)8 (13)10 (15)5

3 5
1

(29)
3

(23)
4

(21)3
7

(13)3
8

(5) (3)2 (11)4 (15) 8 8
1

(28)3
3

(26)5
5

(24)7
7

(22)9
8

(20)11 (12)12 (16)12

Table A.1: The full S-matrix of the E8 model. For each pairing the scattering
matrix is the product of (k)ϑ factors denoted by parentheses. Superscript stands
for the appropriate power, while the bold number c in the overset signals the
presence of a bound state Ac in the AaAb channel, at the rapidity difference
where the corresponding (k) factor has a pole.

Watson’s equations for n = 2, that fulfil the following criteria: first, they have
no poles nor zeros in the strip Imϑ ∈ (0, 2π), and second, they are minimally
increasing as |ϑ| → ∞ [89]. These constraints identify the minimal form factors
to be

Fmin
ab (ϑ) =

(
−i sinh ϑ

2

)δab ∏

k∈Sab

[
Gk/30(ϑ)

]pk , (A.3)
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where δab is the Kronecker delta, and otherwise the notation is analogous to Eq.
(A.2). The Gλ functions have the integral representation

Gλ(ϑ) = exp

{
2

∫ ∞

0

dt

t

cosh
(
λ− 1

2

)
t

cosh t/2 sinh t
sin2 iπ − ϑ

2π

}
. (A.4)

They satisfy various functional identities, two of which are repeatedly used to
derive the recurrence relations:

Gλ(ϑ+ iπα)Gλ(ϑ− iπα) =
Gλ(iπα)Gλ(−iπα)
Gλ+α(0)Gλ−α(0)

Gλ+α(ϑ)Gλ−α(ϑ) , (A.5)

G1−λ(ϑ)Gλ(ϑ) =
sinh(1/2(ϑ− i(λ− 1)π)) sinh(1/2(ϑ+ i(λ+ 1)π))

sin2(πλ/2)
. (A.6)

A.2 Derivation of the recurrence relation

To construct solutions to the form factor equations, one takes the following
Ansatz for the n-particle form factors containing only the lightest particle:

FO
n (ϑ1, ϑ2, . . . ϑn) ≡ FO

1...1︸︷︷︸
n

(ϑ1, ϑ2, . . . ϑn)

= Hn
Λn(x1, . . . , xn)

(ωn(x1, . . . , xn))n

n∏

i<j

Fmin
11 (ϑi − ϑj)

D11(ϑi − ϑj)(xi + xj)
,

(A.7)

where x ≡ exp(ϑ) and ωn denotes the elementary symmetric polynomials gener-
ated by

n∏

k=1

(x+ xk) =
n∑

j=0

xn−jωj(x1, . . . , xn) , (A.8)

and the operator-dependence is carried by the Hn constant factor and the Λn n-
variable symmetric polynomial. Λn can be expressed in terms of the elementary
symmetric polynomials ω.

Using the above Ansatz, Eqs. (3.13) and (3.14) yield recurrence relations
for Λn. Here we derive the recursion corresponding to the the bound state pole
equation (3.14) which can be written as

− i lim
ϑab→2iπ/3

(ϑab − 2iπ/3)Hn+2
Λn+2(xa, xb, x1, . . . , xn)

(ωn+2)n+2
×

×
n∏

i=1

Fmin
11 (ϑa − ϑj)F

min
11 (ϑb − ϑj)

D11(ϑa − ϑj)D11(ϑb − ϑj)(xa + xj)(xb + xj)

Fmin
11 (ϑa − ϑb)

D11(ϑa − ϑb)(xa + xb)
=

= Γ1
11Hn+1

Λn+1(xc, x1, . . . , xn)

(ωn+1)n+1

n∏

i=1

Fmin
11 (ϑc − ϑj)

D11(ϑc − ϑj)(xc + xj)
. (A.9)
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We can parameterise ϑa = ϑ+ iπ/3, ϑb = ϑ− iπ/3 and ϑc = ϑ. The bound state
poles are encoded in the factors D11 which can be expressed as

D11(ϑ) = P2/3(ϑ)P2/5(ϑ)P1/15(ϑ) , (A.10)

where

Pγ(ϑ) =
cos(πγ)− cosh(ϑ)

2 cos2
(
πγ
2

) . (A.11)

The residue can be calculated using l’Hospital’s rule,

− i lim
ϑab→2iπ/3

(ϑab − 2iπ/3)P2/3(ϑab) =
2 cos2(π/3)

sin(2π/3)
, (A.12)

resulting in

2 cos2(π/3)

sin(2π/3)

Hn+2

Hn+1

Λn+2(xe
iπ/3, xe−iπ/3, x1, . . . , xn)

(ωn+2)n+2
×

×
n∏

i=1

Fmin
11 (ϑ+ iπ/3− ϑj)F

min
11 (ϑ− iπ/3− ϑj)

D11(ϑ+ iπ/3− ϑj)D11(ϑ− iπ/3− ϑj)(xeiπ/3 + xj)(xe−iπ/3 + xj)
×

Fmin
11 (2πi/3)

P2/5(2πi/3)P1/15(2πi/3)(xeiπ/3 + xe−iπ/3)
=

= Γ1
11

Λn+1(x, x1, . . . , xn)

(ωn+1)n+1

n∏

i=1

Fmin
11 (ϑ− ϑj)

D11(ϑ− ϑj)(x+ xj)
. (A.13)

The minimal form factor can be written in the form

Fmin
11 (ϑ) = −i sinh(ϑ/2)G2/3(ϑ)G2/5(ϑ)G1/15(ϑ) . (A.14)

with the Gλ functions defined in Eq. (A.4).

We can then compute

Fmin
11 (ϑ+ iπ/3− ϑj)F

min
11 (ϑ− iπ/3− ϑj)

Fmin
11 (ϑ− ϑj)

=

1

γ

∏

σ1,σ2=±
sinh((ϑ− ϑj)/2 + iπσ1/6)

sinh
(
1
2
(ϑ− ϑj + 4iπσ2/15)

)

sin2(11π/30)
, (A.15)

where we used the identity G1(ϑ) = −i sinh(ϑ/2), and denoted

1

γ
≡
∏

σ1,σ2=±G1/15(σ1iπ/3)G2/5(σ2iπ/3)G2/3(2iπ/3)G2/3(0)

G1(iπ/3)G1/3(iπ/3)G11/15(0)G1/15(0)G2/5(0)G−4/15(0)
. (A.16)

Introducing further the function

G11(ϑ) = G1/15(ϑ)G2/5(ϑ)G2/3(ϑ) , (A.17)
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one obtains

Hn+2

Hn+1

Λn+2(xe
iπ/3, xe−iπ/3, x1, . . . , xn)

xn+4ωn

G11(2πi/3)

P2/5(2πi/3)P1/15(2πi/3)
×

×
n∏

i=1

[ ∏
σ1=± sinh((ϑ− ϑj)/2 + iπσ1/6)

D11(ϑ+ iπ/3− ϑj)D11(ϑ− iπ/3− ϑj) sin
2(11π/30)γ

×

×
∏

σ2=± sinh
(
1
2
(ϑ− ϑj + 4iπσ2/15)

)

(xeiπ/3 + xj)(xe−iπ/3 + xj)

]
=

=
1

2 cos2(π/3)
Γ1
11Λn+1(x, x1, . . . , xn)

n∏

i=1

1

D11(ϑ− ϑj)(x+ xj)
. (A.18)

Considering now the D factors

D11(ϑ+ iπ/3− ϑj)D11(ϑ− iπ/3− ϑj)

D11(ϑ− ϑj)
=

=

∏
σ1,σ2=± P2/3(ϑ+ iπσ1/3− ϑj)P2/5(ϑ+ iπσ2/3− ϑj)

P2/3(ϑ− ϑj)P2/5(ϑ− ϑj)
× (A.19)

×
∏

σ3=± P1/15(ϑ+ iπσ3/3− ϑj)

P1/15(ϑ− ϑj)

and using the identity

cos(πγ)− cosh(ϑ) = 2 sin((iϑ− πγ) /2) sin((iϑ+ πγ) /2) ≡
≡
∏

σ=±
2 sin((iϑ+ πγσ) /2) , (A.20)

Eq. (A.19) can be simplified as

D11(ϑ+ iπ/3− ϑj)D11(ϑ− iπ/3− ϑj)

D11(ϑ− ϑj)
=

=
∏

σ1,σ2=±
sin

(
i

2
(ϑ− ϑj) + πσ1/2

)
sin

(
i

2
(ϑ− ϑj) + πσ2/6

)
× (A.21)

×
∏

σ3,σ4=± sin
(
i
2
(ϑ− ϑj) + 2πσ3/15

)
sin
(
i
2
(ϑ− ϑj) + 11πσ4/30

)
∏

σ=± cos2(π/3) cos2(π/5) cos2(π/30) sin
(
i
2
(ϑ− ϑj) + πσ/3

) .

Using

P2/5(2πi/3)P1/15(2πi/3) =
sin 8π

15
sin 2π

15
sin 3π

10
sin 11π

30

cos2(π/5) cos2(π/30)
(A.22)

and the identity

∏

σ=±
sin

(
i

2
(ϑ− ϑj) + σπγ/2

)
= − 1

4xxj
(x− e−iπγxj)(x− eiπγxj) , (A.23)



APPENDIX A. DETAILS OF THE E8 BOOTSTRAP 152

the final form of the recurrence relation is:

Λn+2(xe
iπ/3, xe−iπ/3, x1, . . . , xn)

x4
∏n

i=1(x− e−11iπ/15xj)(x− e11iπ/15xj)(x+ xj)
=

= (−1)nΛn+1(x, x1, . . . , xn) (A.24)

provided the Hn are chosen to satisfy

Hn+2

Hn+1

=
Γ1
11 sin

(
2π
15

)
sin
(
11π
30

)
sin
(
8π
15

)
sin
(
3π
10

)

2 cos2(π/3) cos2(π/5) cos2(π/30)G11(2πi/3)
×

×
[

sin2(11π/30)γ

4 cos2(π/3) cos2(π/5) cos2(π/30)

]n
. (A.25)

A.3 Form factors involving higher species

from bound state equations

Form factors involving species other than A1 can be obtained using the bound
state singularity equation (3.14). Consider a particle Ac that is the bound state
of two A1 particles, then the relevant singularity takes the form

−i lim
ϑab→iuc

11

(ϑab − iuc11)F
O
n+2(ϑa, ϑb, ϑ1, ϑ2, . . . ϑn) =

= Γc
11F

O
c,n(ϑc, ϑ1, ϑ2, . . . ϑn) , (A.26)

where the index n is a short-hand for n particles of type A1.

For form factors containing particles of different species, the Ansatz (A.7)
must be generalised to the form

FO
a1,a2,...an

(ϑ1, ϑ2, . . . ϑn) =

= QO
a1,a2,...an

(x1, . . . , xn)
n∏

i<j

Fmin
ai,aj

(ϑi − ϑj)

Dai,aj(ϑi − ϑj)(xi + xj)
δai,aj

, (A.27)

where the Dab factors ensure the correct position of the bound state poles, the
functions Fmin

ab are minimal form factors that have no poles in the strip Imϑ ∈
[0, π] and satisfy

Fmin
ab (iπ − ϑ) = Fmin

ab (iπ + ϑ) Fmin
ab (ϑ) = S11(ϑ)F

min
ab (−ϑ) (A.28)

δa,b is the Kronecker delta, and

Qa1,...,an(x1, . . . , xn) =

α′′
1∑

α1=α′
1

· · ·
α′′
n∑

αn=α′
n

dα1,...,αn
a1,...an

xα1
1 . . . xαn

n (A.29)
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is a polynomial symmetric under exchange of particles of the same species and
its degree is constrained by the asymptotic behaviour of the form factors [42].
Using this Ansatz Eq. (A.26) can be written as

− i lim
ϑab→iuc

11

(ϑab − iuc11)Q
O
n+2(xa, xb, x1, . . . , xn)×

×
n∏

i=1

[
Fmin
11 (ϑa − ϑj)F

min
11 (ϑb − ϑj)

D11(ϑa − ϑj)D11(ϑb − ϑj)(xa + xj)(xb + xj)
×

× Fmin
11 (ϑa − ϑb)

D11(ϑa − ϑb)(xa + xb)

]
= (A.30)

= Γc
11Q

O
c,n(xc, x1, . . . , xn)

n∏

i=1

Fmin
c1 (ϑc − ϑj)

Dc1(ϑc − ϑj)
.

For definiteness let us choose the pole at 2iπ/5 which corresponds to the particle
A2 (the other pole at iπ/15 corresponding to A3 can be handled similarly). The
residue can be computed using

− i lim
ϑab→2iπ/5

(ϑab − 2iπ/5)P2/5(ϑab) =
2 cos2(π/5)

sin(2π/5)
, (A.31)

which leads to

QO
n+2(xe

iπ/5, xe−iπ/5, x1, . . . , xn)
sin(π/5)G11(2iπ/5) cos(π/5)

P2/3(2iπ/5)P1/15(2iπ/5)x sin(2π/5)
×

×
n∏

i=1

∏
σ=± F

min
11 (ϑ− ϑj + iπσ/5)D12(ϑ− ϑj)∏

σ′=± F
min
12 (ϑ− ϑj)D11(ϑ− ϑj + iπσ′/5)(xeiπ/5 + xj)(xe−iπ/5 + xj)

= Γ2
11Q

O
2,n(x, x1, . . . , xn) . (A.32)

Using the identities (A.6) the form factor product simplifies once again, leading
to an analogous calculation to that detailed above. The final result reads

QO
n+2(xe

iπ/5, xe−iπ/5, x1, . . . , xn)
∏n

i=1

∏
σ=±(x− e4iπσ/5xj)

x
∏n

i=1

∏
σ1,σ2=±(x− e13iπσ1/15xj)(x+ xjeiπσ2/5)

=

= −(C2)
−n sin(2π/5) sin 8π

15
sin 7π

30
sin π

6
sin 2π

15

sin(π/5) cos2(π/3) cos(π/5) cos2(π/30)G11(2iπ/5)
×

× Γ2
11Q

O
2,n(x, x1, . . . , xn) (A.33)

with

C2 =
(cos4(π/3) cos4(π/5) cos4(π/30))γ2

cos2(2π/15) cos2(7π/30) cos2(3π/10) cos2(2π/5) sin2(13π/30)
(A.34)

and

γ2 =

∏
σ1,σ2,σ3=±G1/15(σ1iπ/5)G2/5(σ2iπ/5)G2/3(σ3iπ/5)

G13/15(0)G7/15(0)G3/5(0)G1/5(0)G−2/15(0)G4/15(0)
. (A.35)



Appendix B

Perturbative calculations of
overlaps

B.1 Rayleigh–Schrödinger expansion

Taking a Hamiltonian H = H0+λV , its spectrum and the eigenstates can be
found using Rayleigh–Schrödinger perturbation theory based on the Hamiltonian
H0 with eigenstates |n(0)⟩,

H0 |n(0)⟩ = E(0)
n |n(0)⟩ , (B.1)

expressed as a power series in λ:

En =E(0)
n + λE(1)

n + λ2E(2)
n + . . . , (B.2)

|n⟩ = |n(0)⟩+ λ |n(1)⟩+ λ2 |n(2)⟩+ . . . , (B.3)

where the ellipses denote higher order contributions in λ. Here we only need the
expansion for the eigenstates up to second order, i.e. the terms

|n(1)⟩ =
∑

k ̸=n

⟨k(0)|V |n(0)⟩
E

(0)
n − E

(0)
k

|k(0)⟩ (B.4)

|n(2)⟩ =
[∑

k ̸=n

∑

l ̸=n

⟨l(0)|V |k(0)⟩ ⟨k(0)|V |n(0)⟩
(E

(0)
n − E

(0)
k )(E

(0)
n − E

(0)
l )

|l(0)⟩−

−
∑

k ̸=n

⟨n(0)|V |n(0)⟩ ⟨k(0)|V |n(0)⟩
(E

(0)
n − E

(0)
k )2

|k(0)⟩
]
. (B.5)

Note that the resulting expression for the states is not normalised. Quantities
expressed on this basis must be normalised by dividing with the norm of the
ground state, which is N = 1+O(λ2). However, for our calculations up to O(λ2)
this is irrelevant since the leading order of the overlaps is always O(λ).

154



APPENDIX B. PERTURBATIVE CALCULATIONS OF OVERLAPS 155

B.2 Two-particle overlaps with multiple species

B.2.1 The case Kaa(ϑ)

The additional complication in the calculation of Kaa(ϑ) with respect to
K(ϑ) is due to the different possible disconnected pieces in a theory with mul-
tiple particle species. Disconnected contributions appear in the second order of
perturbation theory, the relevant contributions can be extracted from Eq. (5.31).
Restoring particle labels the relevant contribution to Kaa(ϑ,−ϑ) is given as

Dab(ϑ,−ϑ) ≡
ρ̃a(ϑ)√
ρaa(ϑ,−ϑ)

λ2L2×

×
∑

ϑ′

ab ⟨{ϑ′, ϑ′
ab}|ϕ|0⟩L aa ⟨{ϑ,−ϑ}|ϕ|{ϑ′, ϑ′

ab}⟩ab,L
2ma coshϑ(ma coshϑ′ +mb coshϑ′

ab)

(B.6)

which must be summed over the intermediate species label b, and where ϑ′
ab is

defined similarly to (5.28):

ϑ′
ab = −arcsinh

(
ma sinhϑ

′

mb

)
, (B.7)

and the summation over ϑ′ runs over the solutions of the following Bethe–Yang
equation:

Q̃(ϑ′) = ma sinhϑ
′ + δpsab(ϑ

′ − ϑ′
ab) = 2πI , (B.8)

indexed by the quantum number I ∈ Z. Expressing the finite volume matrix
elements with the form factors yields

Dab(ϑ,−ϑ) =
λ2

2m2
a cosh

2(ϑ)
×

×
∑

ϑ′

F ϕ∗
ab (ϑ

′, ϑ′
ab)F

ϕ
aaab(iπ + ϑ, iπ − ϑ, ϑ′, ϑ′

ab)

(ma coshϑ′ +mb coshϑ′
ab)ma coshϑ′ρ̃a(ϑ′)

,

(B.9)

where ρ̃a(ϑ
′) is obtained by differentiating the function Q̃ defined in Eq. (B.8).

Since the four-particle form factor has poles for ϑ′ = ±ϑ it is not possible to re-
place the sum with a simple integral. This problem can avoided by using contour
integrals to express the sum. Denoting

dab ≡
∑

ϑ′

f(ϑ′)

ρ̃a(ϑ′)
≡
∑

ϑ′

F ϕ∗
ab (ϑ

′, ϑ′
ab)F

ϕ
aaab(iπ + ϑ, iπ − ϑ, ϑ′, ϑ′

ab)

(ma coshϑ′ +mb coshϑ′
ab)ma coshϑ′ρ̃a(ϑ′)

. (B.10)

one can write

dab = −
∑

ϑ′

∮

ϑ′

dθ

2π

f(θ)

1− eiQ̃(θ)
, (B.11)
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where the contours go around each root ϑ′ anticlockwise. The contours can be
deformed to give

dab =

(∫ ∞+iϵ

−∞+iϵ

−
∫ ∞−iϵ

−∞−iϵ

+

∮

ϑ

+

∮

−ϑ

)
dθ

2π

f(θ)

1− eiQ̃(θ)
, (B.12)

where ϵ is a small shift. The second integral vanishes in the infinite volume limit
due to

lim
L→∞

1

1− eiQ̃(θ+iϵ)
= lim

L→∞

1

1− eimaL(sinh θ cos ϵ+i cosh θ sin ϵ)+O(L0)
=

=

{
1 , ϵ > 0

0 , ϵ < 0

(B.13)

and in the first one only the numerator remains. Moreover, the integral contour
can be pulled back to the real axis using

∫ ∞

−∞
dϑ′ coth(ϑ′ ± ϑ) = 0 , (B.14)

which can be proved by shifting the integration contour to Imϑ′ = π/2:

∫ ∞+iϵ

−∞+iϵ

dθ

2π
f(θ) =

∫ ∞

−∞

dϑ′

2π

[
f(ϑ′)−R1(ϑ) coth(ϑ

′ − ϑ)−

−R2(−ϑ) coth(ϑ′ + ϑ)

]
,

(B.15)

where R1 and R2 are the residues of f(ϑ′) at ϑ′ = ϑ and ϑ′ = −ϑ, respectively,
which also appear in the contributions of the two isolated poles:

∮

ϑ

dθ

2π

f(θ)

1− eiQ̃(θ)
=i

R1(ϑ)

1− eiQ̃(ϑ)
,

∮

−ϑ

dθ

2π

f(θ)

1− eiQ̃(θ)
=i

R2(−ϑ)
1− eiQ̃(−ϑ)

. (B.16)

The residues can be calculated using the kinematical poles of the form factors
(3.13) and the S-matrix:

R1(ϑ) =
−iF ϕ

ab(iπ − ϑ, ϑab)F
ϕ∗
ab (ϑ, ϑab)Saa(2ϑ)(1− S∗

aa(2ϑ)Sab(ϑ− ϑab))

(ma coshϑ+mb coshϑab)ma coshϑ

R2(−ϑ) =
R1(−ϑ)
Saa(−2ϑ)

. (B.17)

The denominators in (B.16) can be simplified using that ±ϑ are solutions to
another Bethe–Yang equation:

Q̃′(ϑ) = maL sinhϑ+ δpsaa(2ϑ) = 2πJ J ∈ Z+
1

2
, (B.18)
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with
Saa(ϑ) = −eiδpsaa(ϑ) . (B.19)

Comparing with Eq. (B.8) yields

1− eiQ̃(ϑ) = 1− S∗
aa(2ϑ)Sab(ϑ− ϑab) ≡ η−1(ϑ) . (B.20)

Putting everything together one obtains

Dab(ϑ,− ϑ) =
λ2

2m2
a cosh

2(ϑ)
×

×
[∫ ∞

−∞

dϑ′

2π

(
f(ϑ′)−R1(ϑ) coth(ϑ

′ − ϑ)−R2(−ϑ) coth(ϑ′ + ϑ)

)
+

+ iR1(ϑ)η(ϑ) + iR2(−ϑ)η(−ϑ)
]
, (B.21)

with

f(ϑ′) =
F ϕ∗
ab (ϑ

′, ϑ′
ab)F

ϕ
aaab(iπ + ϑ, iπ − ϑ, ϑ′, ϑ′

ab)

(ma coshϑ′ +mb coshϑ′
ab)ma coshϑ′ . (B.22)

Using the above results, one can easily write down the generalisation of Eq.
(5.37) to multiple particle species. The final result is

Kaa(−ϑ, ϑ) =− λ
F ϕ∗
aa (−ϑ, ϑ)

2m2
a cosh

2 ϑ
+ λ2

(
Nspec∑

b=1

F ϕ
b F

ϕ∗
baa(iπ,−ϑ, ϑ)

2m2
a cosh

2 ϑm2
b

+
F ϕ∗
aa (−ϑ, ϑ)F ϕ

aa(iπ, 0)

2m4
a cosh

4 ϑ
+

Nspec∑

b=1

Dab(ϑ,−ϑ)+ (B.23)

+
∑

(c,d)̸=(a,b)

1

(2δcd)!

∫ ∞

−∞

dϑ′

2π

F ϕ,s
aacd(iπ + ϑ, iπ − ϑ, ϑ′, ϑ′

cd)F
ϕ∗
cd (ϑ

′, ϑ′
cd)

2m2
a cosh

2 ϑ(mc coshϑ′ +md coshϑ′
cd)mdcoshϑ′

cd

+

+ contributions from higher form factors

)
+O

(
λ3
)
,

where (c, d) ̸= (a, b) means that the sum excludes those pairs in which exactly
one particle is of species a.

B.2.2 The case Kab(ϑ)

The above results can be extended to a pair with different particles. The
overlap function is then Kab(ϑ, ϑab), with ϑab as in Eq. (B.7). The terms involving
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no rapidity integrals are given by

Kab(ϑ, ϑab) =− λ
F ϕ∗
ab (ϑ, ϑab)

(ma coshϑ+mb coshϑab)mb coshϑab

+

+ λ2

(
Nspec∑

c=1

F ϕ
c F

ϕ∗
cab(iπ, ϑ, ϑab)

m2
c(ma coshϑ+mb coshϑab)mb coshϑab

+ (B.24)

+
F ϕ∗
ab (ϑ, ϑab)

(ma coshϑ+mb coshϑab)2mb coshϑab

×

×
(
F ϕ
aa(iπ, 0)

mb coshϑab

+
F ϕ
bb(iπ, 0)

ma coshϑ

)
+ ...

)
+O

(
λ3
)
.

Terms containing integrals are similar to the Dab contribution of Eq. (B.6), and
the ones with disconnected contributions have the form

Gc
ab(ϑ, ϑab) ≡

ρ̃a(ϑ)√
ρab(ϑ, ϑab)

λ2L2×

×
∑

ϑ′

cc ⟨{ϑ′,−ϑ′}|ϕ|0⟩Lab ⟨{ϑ, ϑab}|ϕ|{−ϑ′, ϑ′}⟩cc,L
2mc coshϑ′(ma coshϑ+mb coshϑab)

,

(B.25)

with c = a or b. The computation required here is similar to the one above, so
we only present the results. The c = a term can be expressed as

Ga
ab(ϑ, ϑab) =

λ2

(ma coshϑ+mb coshϑab)mb coshϑab

× (B.26)

×
[ ∫ ∞

−∞

dϑ′

2π
(g(ϑ′)−R3(ϑ) coth(ϑ

′ − ϑ)−R4(−ϑ) coth(ϑ′ + ϑ))

+ iR3(ϑ)η2(ϑ) + iR4(−ϑ)η2(−ϑ)
]
,

with

g(ϑ′) =
F ϕ∗
aa (−ϑ′, ϑ′)F ϕ

abaa(iπ + ϑ, iπ + ϑab,−ϑ′, ϑ′)

2m2
a cosh

2(ϑ′)
, (B.27)

and

R3(ϑ) =
−iF ϕ

ba(iπ + ϑab,−ϑ)F ϕ∗
aa (−ϑ, ϑ)S∗

aa(2ϑ)Sab(ϑ− ϑab)

2m2
a cosh

2(ϑ)
×

× (1− Saa(2ϑ)Sab(ϑab − ϑ)) ,

R4(−ϑ) =R3(ϑ) ,

η2(ϑ) =
1

1− Saa(2ϑ)S∗
ab(ϑ− ϑab)

, (B.28)
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while Gb
ab is slightly different:

Ga
ab(ϑ, ϑab) =

λ2

(ma coshϑ+mb coshϑab)mb coshϑab

× (B.29)

[ ∫ ∞

−∞

dϑ′

2π
(h(ϑ′)−R5(ϑ) coth(ϑ

′ − ϑ)−R6(ϑ) coth(ϑ
′ + ϑ))+

iR5(ϑ)η3(ϑ) + iR6(ϑ)η3(−ϑ)
]

with

h(ϑ′) =
F ϕ∗
bb (−ϑ′, ϑ′)F ϕ

abbb(iπ + ϑ, iπ + ϑab,−ϑ′, ϑ′)

2m2
b cosh

2(ϑ′)
(B.30)

and

R5(ϑ) =
−iF ϕ

ab(iπ + ϑ,−ϑab)F
ϕ∗
bb (−ϑab, ϑab)

2m2
b cosh

2(ϑab)
×

× S∗
bb(2ϑab)(1− Sab(ϑ− ϑab)Sbb(2ϑab)) ,

R6(ϑ) =R5(ϑ)Sab(ϑ− ϑab)Sab(−ϑ− ϑab) ,

η2(ϑ) =
1

1− Saa(2ϑ)S∗
ab(ϑ− ϑab)

. (B.31)

There are additional terms corresponding to inserting a state with only one a or
b particle; however, terms including such multi-particle form factors are expected
to give very small contributions so we neglect them.

The final result for the Kab function is

Kab(ϑ, ϑab) = −λF
ϕ∗
ab (ϑ, ϑab)

Cab(ϑ, ϑab)
+ λ2

[
Nspec∑

c=1

F ϕ
c F

ϕ∗
cab(iπ, ϑ, ϑab)

m2
cCab(ϑ, ϑab)

+

+
F ϕ∗
ab (ϑ, ϑab)

Cab(ϑ, ϑab)(ma coshϑ+mb coshϑab)

(
F ϕ
aa(iπ, 0)

mb coshϑab

+
F ϕ
bb(iπ, 0)

ma coshϑ

)
+

+Ga
ab(ϑ, ϑab) +Gb

ab(ϑ, ϑab)+

+
∑

c ̸=a,b
d ̸=a,b

1

(2δcd)!

∫ ∞

−∞

dϑ′

2π

F ϕ,s
abcd(iπ + ϑ, iπ + ϑab, ϑ

′, ϑ′
cd)F

ϕ∗
cd (ϑ

′, ϑ′
cd)

Cab(ϑ, ϑab)(mc coshϑ′ +md coshϑ′
cd)md coshϑ′

cd

+

+ contributions from higher form factors

]
+O

(
λ3
)
, (B.32)

with
Cab(ϑ, ϑab) = (ma coshϑ+mb coshϑab)mb coshϑab . (B.33)
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B.3 Results for the pre-quench expansion

Working in the pre-quench basis one obtains the following results for overlaps
with a pair of two particles of the same species:

K(0)
aa (−ϑ, ϑ) = −λ F

ϕ
aa(−ϑ, ϑ)

2m2
a cosh

2 ϑ
+ λ2

(
Nspec∑

b=1

F ϕ
b F

ϕ
baa(iπ,−ϑ, ϑ)

2m2
a cosh

2 ϑmb(2ma coshϑ−mb)
+

+
F ϕ
aa(−ϑ, ϑ)F ϕ

aa(iπ, 0)

2m4
a cosh

4 ϑ
+

Nspec∑

b=1

D
(0)
ab (ϑ,−ϑ)+ (B.34)

+
∑

(c,d)̸=(a,b)

1

(2δcd)!

∫ ∞

−∞

dϑ′

2π

F ϕ,s∗
aacd(iπ + ϑ, iπ − ϑ, ϑ′, ϑ′

cd)F
ϕ
cd(ϑ

′, ϑ′
cd)

2m2
a cosh

2 ϑ(2ma coshϑ− E
(0)
cd (ϑ

′))mdcoshϑ′
cd

+ contributions from higher form factors

)
+O

(
λ3
)
,

while for a pair composed of particles of different species the result is

K
(0)
ab (ϑ, ϑab) = −λ F

ϕ
ab(ϑ, ϑab)

C
(0)
ab (ϑ, ϑab)

+ λ2

[
Nspec∑

c=1

F ϕ
c F

ϕ
cab(iπ, ϑ, ϑab)

mc(E
(0)
ab (ϑ)−mc)C

(0)
ab (ϑ, ϑab)

−

− F ϕ
ab(ϑ, ϑab)

C
(0)
ab (ϑ, ϑab)E

(0)
ab (ϑ)

(
F ϕ
aa(iπ, 0)

mb coshϑab

+
F ϕ
bb(iπ, 0)

ma coshϑ

)
+ (B.35)

+G
b(0)
ab (ϑ, ϑab) +G

a(0)
ab (ϑ, ϑab) +

∑

c ̸=a,b
d ̸=a,b

(
1

(2δcd)!
×

×
∫ ∞

−∞

dϑ′

2π

F ϕ,s∗
abcd (iπ + ϑ, iπ + ϑab, ϑ

′, ϑ′
cd)F

ϕ
cd(ϑ

′, ϑ′
cd)

C
(0)
ab (ϑ, ϑab)(E

(0)
ab (ϑ)− E

(0)
cd (ϑ

′))md coshϑ′
cd

)
+ . . .

]
+O

(
λ3
)
,

where E
(0)
ab (ϑ) = ma coshϑ +mb coshϑab is the (pre-quench) energy of an Aa −

Ab particle pair with zero overall momentum. The C, D, and G functions can
be simply transformed to the pre-quench basis by replacing the corresponding
quantities in the definitions of the previous section.

B.4 Numerical evaluation of the perturbative

expressions

Although the end results involving multiple species (5.27), (B.23) and (B.32)
look quite complicated, their numerical evaluation reveals that not all contri-
butions are equally important. Here we examine the second order contributions
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g1
A1 A2 A1-A1 A3 A4 A1-A2 A1-A3 A5

5.84879 -0.94431 -0.38934 0.28140 0.03816 0.02552 0.01286 -0.01184

g2
A1 A2 A1-A1 A3 A4 A6 A1-A2 A5

1.78700 -1.18054 0.25376 0.14533 -0.05807 -0.00571 -0.00539 0.00449

g3
A1 A3 A2 A4 A1-A1 A1-A2 A5 A2 − A2

0.96636 0.43049 -0.26373 -0.09194 -0.06197 0.01725 -0.00891 -0.00161

Table B.1: Contributions to ga at order λ
2 sorted by magnitude, with the particle

content of the inserted state shown in the top rows.

K11

A1 A1 − Adisc
1 A2 A3 A1 − Aconn

1 A5 A4

-0.2931 0.2232 -0.1541 -0.0154 -0.0106 -0.0079 -0.0072
+2.3520i -1.7915i +1.2366i +0.1235i +0.0850i +0.0636i +0.0575i

K12

A1 A2 A1 − A1 A1 − Adisc
2 A1 − Aconn

2 A3 A5

-0.2135 0.0968 -0.1366 -0.1396 0.0130 -0.0365 0.0041
+0.0161i -0.1739i -0.0705i +0.0105i +0.0523i -0.0085i -0.0116i

K22

A1 A2 − Adisc
2 A2 A1 − A1 A3

0.3187 -0.2242 0.1211 -0.0380 0.0200
-0.0497i +0.0350i -0.0189i -0.0897i -0.0031i

Table B.2: Most sizeable contributions in second order to Kab(ϑ) at ϑ = 0.45.
Upper row for each particle indicates the inserted state. The text superscript,
where present, indicates whether it is the disconnected or the connected part of
the diagonal form factor.

to the post-quench expansion. Table B.1. contains the eight largest coefficients
multiplying λ2 for the one-particle overlap (5.27). Note that there are orders of
magnitude difference between the first and last columns, which reflects the fast
convergence of the form factor expansions.

For the pair overlap functions, the second order contributions are collected
in Table B.2. Again, it is the lowest-lying states that contribute the most, but
the coefficients decrease less drastically with the energy of the state, which is the
reason why it was important to construct form factors beyond the ones available
previously.



Appendix C

Analytical calculations for
Kibble–Zurek ramps

C.1 Application of the adiabatic perturbation

theory to the E8 model

To use the framework of adiabatic perturbation theory in the E8 model we
assume that the time-evolved state can be expressed as

|Ψ(t)⟩ =
∑

n

αn(t) exp{−iΘn(t)} |n(t)⟩ , (C.1)

with the dynamical phase factor Θn(t) =
∫ t

ti
En(t

′) dt′. We also assume that

there is no Berry phase and thus to leading order in the small parameter λ̇ the
αn coefficients take the form

αn(λ) ≈
∫ λ

λi

dλ′ ⟨n(λ′)| ∂λ′ |0(λ′)⟩ exp{i(Θn(λ
′)−Θ0(λ

′))} . (C.2)

Higher derivatives as well as higher order terms in λ̇ are neglected from now on.

The αn coefficients can be used to formally express quantities that have known
matrix elements in the instantaneous basis of the Hamiltonian:

⟨O(t)⟩ =
∑

m,n

α∗
m(λ(t))αn(λ(t))Omn . (C.3)

In what follows, we present the evaluation of this sum - approximately, under
conditions of low energy density discussed in the main text - for the case of
O(t) = H(t)−E0(t) in the E8 model. To generalise this calculation to the defect
density or to higher moments of the statistics of work function is straightforward.
The work density (or excess heat density) after the ramp reads

w(λf) =
1

L

∑

n

(En(λf)− E0(λf)) |αn(λf)|2 . (C.4)

162
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The spectrum of the model consists of 8 particle species Aa, a = 1, . . . , 8 with
masses ma. The energy and momentum eigenstates are the asymptotic states of
the model labelled by a set of relativistic rapidities {ϑ1, ϑ2, . . . ϑN} and particle
species indices {a1, a2, . . . aN}:

|n⟩ = |ϑ1, ϑ2, . . . ϑN⟩a1,a2,...aN , (C.5)

with energy En =
∑N

i=1mai cosh(ϑi) and momentum pn =
∑N

i=1mai sinh(ϑi).
The summation in Eq. (C.4) in principle goes over the infinite set of asymptotic
states. As discussed in the main text, for low enough density we can approxi-
mate the sum in Eq. (C.4) with the contribution of one- and two-particle states,
analogously to the calculation of Ref. [192] in the sine–Gordon model.

C.1.1 One-particle states

As discussed in the main text the one-particle states do not add to the energy
density in the thermodynamic limit. Nevertheless, in a finite volume L they give
a finite contribution, which can be expressed as

w1p =
1

L

8∑

a=1

ma|αa(λf)|2 , (C.6)

where ma is the mass of the particle species a and the summation runs over the
eight species. We can write the coefficient αa as

αa(λf) =

∫ λf

λi

dλ ⟨{0}a(λ)| ∂λ |0(λ)⟩ exp
{
iτQ

∫ λ

λi

dλ′ma(λ
′)

}
, (C.7)

where ⟨{0}a(λ)| denotes the asymptotic state with a single zero-momentum par-
ticle. The matrix elements and masses depend on λ through the Hamiltonian
that defines the spectrum. The matrix element can be evaluated as

⟨{0}a(λ)| ∂λ |0(λ)⟩ = −⟨{0}a(λ)|V |0(λ)⟩
ma(λ)

. (C.8)

For the momentum-conserving E8 ramps considered in the main text, V is the
integral of the local magnetisation operator σ(x): V =

∫ L

0
σ(x)dx. Utilising this

we further expand

⟨{0}a(λ)| ∂λ |0(λ)⟩ = − LF σ∗
a (λ)

ma(λ)
√
ma(λ)L

, (C.9)

where the square root in the denominator emerges from the finite volume ma-
trix element [93] and F σ

a is the (infinite volume) one-particle form factor of the
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magnetisation operator. It only depends on the coupling λ through its propor-
tionality to the vacuum expectation value of σ. The particle masses scale as the
gap: ma(λ) = Ca|λ|zν , where Ca are some constants. This allows us to write

|αa(λf)|2 = L

∣∣∣∣∣

∫ λf

λi

dλ
F̃ σ∗
a λ2ν−1

C
3/2
a |λ|3/2zν

exp

{
iτQ

∫ λ

λi

dλ′Ca|λ′|zν
}∣∣∣∣∣

2

. (C.10)

We can perform the integral in the exponent that leads to a τQ|λ|1+zν dependence
there. To get rid of the large τQ factor in the denominator, we introduce the
rescaled coupling ζ with

ζ = λτ
1

1+zν

Q . (C.11)

The change of variables yields

|αa(λf)|2 = Lτ
− ν(4−3z)

1+zν

Q

∣∣∣∣
∫ ζf

ζi

C̃asgn(ζ)|ζ|2ν−1−3/2zν exp
{
iC ′

a|ζ|1+zν
}∣∣∣∣

2

, (C.12)

where C̃a and C ′
a are constants that depend on Ca, the one-particle form factors

and the critical exponents. We note the integral is convergent for large ζ due to
the strongly oscillating phase factor and also for ζ → 0 since 2ν − 1 − 3/2zν =
−11/15 in the E8 model. Substituting z = 1 in the exponent of τQ leads to the
correct KZ exponent of a relativistic model, ν/(1 + ν).

The result is quite peculiar in the sense that it is proportional to L, giving
a volume-independent contribution to the energy density. Taking the thermo-
dynamic limit of Eq. (C.12) naively would result in a finite energy density of
8 states, which is a reductio ad absurdum. Mathematically, the source of this
paradox is that we approximated the normalisation of the perturbed state as 1,
which is a leading order estimate, and breaks down if L is too large compared
to 1/τQ. We can intuitively argue that this paradox is eventually resolved by the
increasing weight of multi-particle states as L is increased: in a sense, they take
on the role of one-particle states in larger volume to create the KZ scaling. From
a reversed point of view (i.e., keeping L fixed, and increasing τQ), (C.12) serves
as an extension of Kibble–Zurek physics by one-particle states, working against
the ultimately inevitable adiabatic behaviour brought about by finite volume, a
missed shortcut to adiabaticity. This further explains why the KZ scaling window
is much more extended towards larger τQ in the E8 model compared to the free
fermion line.

Nevertheless, for low-density settings, the multi-particle states mentioned
above still effectively factorise to two-particle pairs, which are able to carry a
finite density, as infinitely many of them are allowed as L→ ∞. Let us now turn
to the contribution of pair states.
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C.1.2 Two-particle states

The contribution of a two-particle state with species a and b is going to be
denoted wab and reads

wab(λf) =
1

L

∑

ϑ

(ma coshϑ+mb coshϑab)|αϑ(λf)|2 , (C.13)

where ϑab is a function of ϑ determined by the constraint that the state has zero
overall momentum. The summation goes over the rapidities that are quantised
in finite volume L by the Bethe–Yang equations:

Qi = maiL sinhϑi +
N∑

j ̸=i

δaiaj(ϑi − ϑj) = 2πIi , (C.14)

where Ii are integers numbers and

δab = −i logSab (C.15)

is the scattering phase shift of particles of type a and b. For a two-particle state
Eq. (C.14) amounts to two equations of which only one is independent due to
the zero-momentum constraint. It reads

Q̃(ϑ) = maL sinhϑ+ δab(ϑ− ϑab) = 2πI , I ∈ Z . (C.16)

In the thermodynamic limit L → ∞ the summation is converted to an integral
with the integral measure dϑ

2π
ρ̃(ϑ), where ρ̃(ϑ) is the density of zero-momentum

states defined by

ρ̃(ϑ) =
∂Q̃(ϑ)

∂ϑ
= maL coshϑ+

(
1 +

ma coshϑ

mb coshϑab

)
Φab(ϑ− ϑab) , (C.17)

where Φ(ϑ) is the derivative of the phase shift function. The resulting integral is

1

L

∫ ∞

−∞

dϑ

2π
ρ̃(ϑ)|αϑ(λf)|2 . (C.18)

The αϑ(λf) term can be expressed as (cf. Eq. (C.2)

αϑ(λf) =

∫ λf

λi

dλ ⟨{ϑ, ϑab}ab(λ)| ∂λ |0(λ)⟩×

× exp

{
iτQ

∫ λ

λi

dλ′ [ma(λ
′) coshϑ+mb(λ

′) coshϑab]

}
.

(C.19)

Analogously to the one-particle case we can evaluate the matrix element in the
E8 field theory as

− L ⟨{ϑ, ϑab}ab(λ)|σ(0) |0(λ)⟩L
En(λ)− E0(λ)

= − LF σ∗
ab (ϑ, ϑab)

(En(λ)− E0(λ))
√
ρab(ϑ, ϑab)

, (C.20)
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where F σ
ab(ϑ1, ϑ2) is the two-particle form factor of operator σ in the E8 field

theory and the density factor is the Jacobian of the two-particle Bethe–Yang
equations (C.14) arising from the normalisation of the finite-volume matrix ele-
ment [93]. It can be expressed as

ρab(ϑ1, ϑ2) =maL coshϑ1mbL coshϑ2+

+ (maL coshϑ1 +mbL coshϑ2)Φab(ϑ1 − ϑ2) .
(C.21)

Observing Eqs. (C.17) and (C.21) one finds that the details of the interaction
enter via the derivative of the phase shift function but crucially, they are of order
1/L compared to the free field theory part. So leading order in L we find that

wab(λf) =

∫ ∞

−∞

dϑ

2π
(ma(λf) coshϑ+mb(λf) coshϑab)ma(λf) coshϑ×

×
∣∣∣∣
∫ λf

λi

dλ
F σ∗
ab (ϑ, ϑab)

(ma(λ) coshϑ+mb(λ) coshϑab)
× (C.22)

×
exp
(
iτQ
∫ λ

λi
dλ′ (ma(λ

′) coshϑ+mb(λ
′) coshϑab)

)

√
ma(λ)mb(λ) coshϑ coshϑab

∣∣∣∣∣∣

2

+O(1/L) .

By a change of variables in the outer integral to the one-particle momentum
p = ma sinhϑ we obtain

wab =

∫ ∞

−∞

dp

2π
Ep(λf)

∣∣∣∣
∫

dλG(ϑ) exp

(
iτQ

∫
dλ′Eϑ(λ

′)

)∣∣∣∣
2

. (C.23)

Now we can introduce the momentum p in the inner integral as well by noting
that the energy can be expressed as a function of momentum via the relativistic
dispersion and that the relativistic rapidity also ϑ = arcsinh(p/m). Since m ∝
|λ|zν with z = 1 any expression that is a function of ϑ can be expressed as a
function of p/|λ|ν . Having this in mind, the result is analogous to the free case so
all the machinery developed there can be used. The key assumptions from this
point regard the scaling properties of the energy gap and the matrix element
G(ϑ) in this brief notation:

Ep(λ) = |λ|zνF (p/|λ|ν)
G(ϑ) = λ−1G(p/|λ|ν) . (C.24)

These equations are trivially satisfied with the proper asymptotics for F (x) ∝ xz.
To obtain the asymptotics og G(x) in the E8 model we use

lim
L→∞

⟨{ϑ, ϑab}(λ)| ∂λ |0(λ)⟩L =
⟨σ⟩F σ∗

ab (ϑ, ϑab)√
ma coshϑmb coshϑab(ma coshϑ+mb coshϑab)

=λ1/15−8/15−8/15G(ϑ) = λ−1G(ϑ) , (C.25)
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where we neglected the O(1/L) term from the finite volume normalisation and
used ⟨σ⟩ ∝ λ1/15, m ∝ λ8/15. Fab(ϑ, ϑab) is the two-particle form factor of the E8

theory that does not depend on the coupling. They satisfy the asymptotic bound
[89]:

lim
|ϑi|→∞

F σ(ϑ1, ϑ2 . . . , ϑn) ≤ exp(∆σ|ϑi|/2) . (C.26)

Since the matrix elements considered here are of zero-momentum states, ϑ→ ∞
means ϑab → −∞ and F σ

ab(ϑ, ϑab) ≤ exp(∆σϑ) as the form factors depend on the
rapidity difference. Dividing by the factor exp(2ϑ) in the denominator yields the
correct asymptotics G(x) ∝ x∆−2 = x−1/ν as an upper bound due to Eq. (C.26).
We remark that the scaling forms (C.24) hold true for any value of the coupling
λ in the field theory, in contrast to the lattice where they are valid only in the
vicinity of the critical point. From this perspective Eq. (C.24) follows from the
definition of the field theory as a low-energy effective description of the lattice
model near its critical point.

As a consequence, one can introduce new variables in place of λ and p such
that the explicit τQ dependence disappears from the integrand. This is achieved
by the following rescaling:

η = pτ
ν

1+zν

Q , ζ = λτ
1

1+zν

Q . (C.27)

The result for the energy density is

wab = τ
− ν

1+zν

Q

∫ ∞

−∞

dη

2π
E

p=ητ
− ν

1+zν
Q

(λf) |α(η)|2 . (C.28)

In terms of scaling there are two options: first, let |λf| ≠ 0 hence ζf → ∞ in
the KZ scaling limit τQ → ∞. Then the energy gap at p → 0 is a constant
and Ep=0(λf) can be brought in front of the integral. If it converges, Eq. (C.28)
completely accounts for the KZ scaling. Second, if |λf| = 0, the energy gap is

Ep ∝ pz and an additional factor of τ
− ν

1+zν

Q appears in front of the integral. Note
that this is the scaling of κ1 in Fig. 7.11. The high-energy tail of the integrand
is modified due to the extra term of ηz from the energy gap. This leads to a
convergence criterion such that once again the crossover to quadratic scaling
happens when the exponent of τQ in front of the integral is less then −2. It is
easy to generalise this argument to the nth moment of the statistics of work,
which amounts to substituting En

p instead of Ep to Eq. (C.28). As argued in the
main text, this is the leading term in the nth cumulant of the distribution as
well, which concludes the perturbative reasoning behind the results of Sec. 7.4.

C.2 Ramp dynamics in the free fermion field

theory

The non-equilibrium dynamics of the transverse field Ising chain is thoroughly
studied in the literature. Due to the factorisation of the dynamics to indepen-
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dent fermionic modes solving the time evolution amounts to the treatment of a
two-level problem parametrised by the momentum k. This two-level problem can
be mapped to the famous Landau–Zener transition with momentum-dependent
crossing time. Its exact solution is known and yields a particularly simple ex-
pression for the excitation probability of low-momentum modes pk (or |α(k)|2
with the notation of adiabatic perturbation theory, cf. Sec. 7.1.3) in the limit
τQ → ∞. Then the KZ scaling of various quantities follows [189, 215], and ex-
tends to the full counting statistics of defects [217] and excess heat [194]. For
a finite Landau–Zener problem one can express the solution in terms of Weber
functions [182, 186], while for a generic nonlinear ramp profile as the solution of
a differential equation [201, 219].

To generalise the analytical solution on the chain to the free field theory we
performed the scaling limit on the expressions of Ref. [201]. We remark that in the
works cited above there are several parallel formulations of this problem on the
chain each with a slightly different focus. Our choice to use this specific one in the
continuum limit is arbitrary but the result is the same for all frameworks. We use
the following notation: c

(†)
k denotes the Fourier transformed fermionic (creation)-

annihilation operators obtained by the Jordan–Wigner transformation. In each
mode k, η

(†)
k are the quasiparticle ladder operators and we use η

(†)
k,i to refer to the

operators that diagonalise the Hamiltonian initially before the ramp procedure.
The operators c and η are related via the Bogoliubov transformation

ηk = Ukck − iVkc
†
−k , (C.29)

where the coefficients are Uk = cos θk/2 and Vk = sin θk/2 with

exp(iθk) =
g − exp(ik)√

1 + g2 − 2g cos k
. (C.30)

From a dynamical perspective, U and V relate the adiabatic (instantaneous)
free fermions and quasiparticles, hence we are going to refer to them as adiabatic
coefficients. The dynamics can be solved in the Heisenberg picture using the
Ansatz

ck(t) = uk(t)ηk,i + iv∗−k(t)η
†
k,i . (C.31)

The Heisenberg equation of motion yields a coupled first order differential equa-
tion system for the time-dependent Bogoliubov coefficients that can be decoupled
as [201]:

∂2

∂t2
yk(t) +

(
Ak(t)

2 +B2
k ± i

∂

∂t
Ak(t)

)
yk(t) = 0 , (C.32)

where the upper and lower signs correspond to yk(t) = uk(t) and yk(t) = v∗−k(t)
respectively, and Ak(t) = 2J(g(t) − cos k) and Bk = 2J sin k. To connect with
the expression for the time-evolved k mode in the main text,

|Ψ(t)⟩k = ak(t) |0⟩k,t + bk(t) |1⟩k,t , (C.33)
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we have to express ak(t) and bk(t) with the time-dependent Bogoliubov coeffi-
cients. To do so, first one has to perform a Bogoliubov transformation that relates
the quasiparticle operators ηk,i defined by the initial value of coupling gi to the
instantaneous operators ηk,t that are given by g(t), then substitute Eq. (C.31)
to account for the dynamics. The result is concisely expressed by the following
scalar products:

ak(t) =
(
Uk −Vk

)( uk(t)
v∗−k(t)

)
, bk(t) =

(
Vk Uk

)( uk(t)
v∗−k(t)

)
(C.34)

where Uk and Vk are defined by Eq. (C.30) using the ramped coupling g(t). The
population of the mode k is given by nk(t) = |bk(t)|2. Notice that the slight
difference between Eq. (C.34) and the notation of Refs. [182, 186] is due to a
different convention of the Bogoliubov transformation.

To take the continuum limit, one has to apply the prescriptions detailed in
Sec. 2.2.1 to Eq. (C.32). Denoting the momentum of field theory modes with p
we get

Ap(t) =M(t) , Bp = p , (C.35)

where M(t) is the time-dependent coupling of the field theory. The initial con-
ditions read

up(t = 0) = Up ,
∂

∂t
up(t)

∣∣∣∣
t=0

= −iMiUp − ipV−p (C.36)

v∗−p(t = 0) = V−p ,
∂

∂t
v∗−p(t)

∣∣∣∣
t=0

= −ipUp + iMiV−p , (C.37)

where the adiabatic coefficients U and V are defined by the initial coupling Mi

via the expressions

Up = +

√
1

2
+

M

2
√
p2 +M2

(C.38)

and

Vp =




+
√

1
2
− M

2
√

p2+M2
for p ≤ 0 ,

−
√

1
2
− M

2
√

p2+M2
for p > 0 .

(C.39)

We remark that for a linear ramp profile one can express the solution ex-
actly using the parabolic Weber functions [201]. However, for practical purposes
we opted for the numerical integration of Eq. (C.32). The results of Sec. 7.2
are obtained by solving the differential equations substituting the quantised
momenta for p. As the excitation probability of a mode p is suppressed as
np ∝ exp(−πτQp2/m), we calculated the solution up to a momentum cut-off
pmax/m = 2π. At volume L = 50 this amounts to 100 modes in the two sectors
together.

For the intensive quantities considered in Secs. 7.3 and 7.4 we worked in the
thermodynamic limit L→ ∞ where the sum over momentum modes is converted
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to an integral. Calculating the excitation probabilities of several modes up to a
cutoff pmax/m = 30 we used interpolation to obtain a continuous np function.
This was used in the momentum integrals that yield the energy density and its
higher cumulants. The need for the higher cutoff stems from the fact that np

decreases less drastically for ECP ramps.



Appendix D

Numerical details of the TCSA
data

D.1 Conventions and applying truncation

The truncated conformal space approach was developed originally by Yurov
and Zamolodchikov [55, 56]. It constructs the matrix elements of the Hamiltonian
of a perturbed CFT in finite volume R on the conformal basis. The Ising field
theory is defined as the near-critical perturbation of the c = 1/2 minimal CFT
by adding the primary fields σ and ϵ. We recall the form of the dimensionless
Hamiltonian:

H/∆ =
2π

r

(
L0 + L̄0 − c/12 + κ̃1

r2−∆ϵ

(2π)1−∆ϵ
Mϵ + κ̃2

r2−∆σ

(2π)1−∆σ
Mσ

)
, (D.1)

where ∆ is the mass gap opened by the perturbation, r = ∆R the dimensionless
volume parameter and ∆ϕ is the sum of left and right conformal weights of the
primary field ϕ. All quantities are measured in units of the mass gap ∆, which
is m, the mass of the elementary excitation on the free fermion line; and m1, the
mass of the lightest particle in the E8 model. Where non-integrable settings are
considered, the mass unit is chosen to correspond to the closest axis.

Ncut matrix size Ncut matrix size Ncut matrix size

19 338 31 4476 43 40353

21 551 33 6654 45 56867

23 840 35 9615 47 78951

25 1330 37 14045 49 110053

27 1994 39 20011 51 151270

29 3023 41 28624 53 207809

Table D.1: Matrix size vs. cutoff. The more efficient storing of matrix elements
in the CFTCSA version allows for the practical usage of the rightmost column.
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Quantum quenches

Type I Type II

Observable Leading Subleading Leading Subleading

⟨ϵ⟩ -1 -2 −1∗ -2

⟨σ⟩ -7/4 -11/4 -1 -7/4

Overlaps -11/4 -15/4 −11/4† -15/4

Kibble–Zurek ramps

Free fermion model E8 model

Observable Leading Subleading Leading Subleading

κn -1 -2 -11/4 -15/4

⟨σ⟩ -1 -2 -7/4 -11/4

Table D.2: Extrapolation exponents for the various quantities. ∗ : the ⟨ϵ⟩ one-
point function is logarithmically divergent (corresponding to a zero leading ex-
ponent), but the divergence is a constant shift in the time-dependent function,
and it can be subtracted. The oscillations are then fitted by the exponents writ-
ten here. † : the non-integrable perturbation in principle modifies the exponents
with respect to Type I quenches, but the fitting procedure reveals that the corre-
sponding coefficient is negligible, and the most precise fits are given by the above
setting.

The matrix elements of H are calculated using the eigenstates of the confor-
mal Hamiltonian H0 as basis vectors:

H0 |n⟩ =
2π

R

(
L0 + L̄0 −

c

12

)
|n⟩ = En |n⟩ , (D.2)

where c = 1/2 is the central charge. The truncation is imposed by the constraint
that only vectors with En < Ecut are kept, where Ecut is the cutoff energy. It is
convenient to characterise the cutoff with the L0 + L̄0 eigenvalue N instead of
the energy as it is related to the conformal descendent level. Table D.1 contains
the number of states with

N − c

12
< Ncut ≡

R

2π
Ecut (D.3)

for the range of cutoffs that were used in this work.

D.2 Extrapolation details

As discussed in the main text, the truncation errors can be minimised by ap-
plying an extrapolation procedure to approximate the infinite-cutoff value of ob-
servables by fitting data obtained using a range of cutoff parameters. The general
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Figure D.1: Extrapolation of the post-quench time evolution of ⟨ϵ(t)⟩ following
a Type I quench in the E8 model, with ξ = 0.05 and m1R = 40. Panel (a) shows
the raw data from a range of cutoffs Ncut = 25 . . . 35 with dashdotted lines,
while solid lines denote the extrapolated value. Sections of this panel at three
time instances denoted by dashed gridlines are presented in panels (b)-(d). Here
green diamonds denote the raw data with respect to Ncut, the leading exponent,
and the fitted function is in dashdotted red lines. Note that the fitted function
appears linear: this reflects the fact that only the leading exponent was used for
this quantity.

form of the relation between TCSA data at a given cutoff and the truncation-free
value reads: [59, 64]

⟨O⟩ = ⟨O⟩TCSA + AN−αO
cut +BN−βO

cut + . . . . (D.4)

The exponents αO, βO depend on the operator O, and on the primary fields that
perturb the CFT. For completeness, we gather all the exponents used for the
extrapolation of the various quantities in Tab. D.2.

We applied Eq. (D.4) to obtain what is called throughout the main text as
’extrapolated TCSA data’. Strictly speaking, the relation is established for the
vacuum expectation value of a local operator O in the model, but we utilised
under more relaxed conditions: for dynamical quantities, performing extrapo-
lation at each time instant; for post-quench overlaps, where we calculated the
αO, βO exponents using O = I the identity operator; and for the cumulants of
the statistics of work function. In certain cases the fit with two exponents proved
to be numerically unstable reflected by large residual error of the estimated fit
coefficients. In these cases, only the leading exponent was used.
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Figure D.2: Extrapolation of the post-quench overlaps for Type I quenches in the
E8 model. The conventions are the same as in Fig. D.1 (b)-(d). The behaviour
of one-particle overlaps in panels (a)-(c) is correctly estimated by Eq. (D.4).
The same does not hold for the pair overlap depicted in panel (d), where the
cutoff-dependence is not monotonous and apparently erratic. Consequently, the
numerical two-particle overlaps in the main text are not extrapolated, but rather
taken from a highest cutoff considered in this figure, Ncut = 37.

In each case, we sampled the extrapolation fits to see whether the power-
law dependence on Ncut is correct in the regime of cutoff-parameters we used.
In the overwhelming majority of the cases, we found a significant improvement
by the extrapolation, with the sole exception of pair-state overlaps following
a quantum quench. Representative examples are included in Figs. D.1-D.4 as
an illustration of the extrapolation for post-quench time evolution, post-quench
overlaps, dynamical one-point function along a ramp, and post-ramp cumulant
functions, respectively.

As the use of TCSA to directly calculate the cumulant functions is unprece-
dented, let us elaborate on this part in a bit more detail. Based on the above
discussion, we expect that the same expression accounts for the cutoff dependence
as in the case of local observables. This is what we find inspecting Fig. D.4. The
depicted data is a small subset of all the extrapolations whose results are pre-
sented in the main text but they convey the general message that cumulants can
be obtained accurately using TCSA. The relative error in the extrapolated value
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Figure D.3: Details of the extrapolation for the dynamical one-point function
of the order parameter for a ferromagnetic-paramagnetic ramp along the free
fermion line with mR = 50 and mτQ = 128. The cutoff parameter is in the range
Ncut = 35 . . . 51. The conventions are the same as in Fig. D.1, with the addition
that the residual fitting error is denoted by a grey shading.

is typically in the order of 1− 3% for cumulants in the free fermion model (with
an increase towards higher cumulants) and around 0.1− 0.7% in the E8 model.
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(a) FF ECP ramp, κ1, mR = 40 (b) FF ECP ramp, κ3, mR = 70

(c) E8 ECP ramp, κ2, m1R = 65 (d) E8 TCP ramp, κ1, m1R = 55

Figure D.4: Extrapolation of various work cumulants for various protocols. The
plots are typical of the overall picture of extrapolating overlaps obtained using
TCSA.
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