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Abstract: The electron-electron and electron-background interaction energies are calculated analytically for systems
with up to N = 6 electrons. The method consists of describing the position vectors of electrons using com-
plex coordinates and all the interaction energies with complex notation, whereby simplifications become
possible. As is known, in this type of calculation, complicated expressions involving integrals over many
variables are encountered and the trick of using complex coordinates greatly facilitates the exact calcula-
tion of various quantities. Contrary to previous analytical calculations, using complex coordinates avoids
complicated trigonometric functions from appearing in the integrand, simplifying the exact evaluation of
the integrals. The method we have used can be straightforwardly extended to larger systems with N > 6
electrons.
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1. Introduction

Since the discovery of the Fractional Quantum Hall Effect(FQHE) [1], the interest in the topic of strongly correlatedtwo-dimensional electron systems (2DES) has not ceasedto grow. Novel electronic states have been proposed inthis field of research, including the incompressible quan-tum fluid [2], composite Fermions [3–6], composite Bosons[7], and anyons [8, 9], all originating from elegant theories
∗E-mail: z_bentalha@yahoo.fr

involving sophisticated mathematics. Probably the mostwell-established theoretical idea in the domain of FQHEis due to Laughlin [2] who described the ground state asan incompressible quantum fluid and successfully clarifiedthe nature of states at filling factors ν = 13 , 15 , 17 .... In re-ality 2DES have unusual properties that cannot be incor-porated into a unique general theory that applies to anyfilling factor, but, in spite of that, Laughlin’s idea remainsirreproachable theoretically. For the other filling fractions
ν = 13 , 25 , 37 , 49 ...(referred to as Jain sequence), Jain ad-vanced the novel idea [3–6] that the Fractional QHE ofelectrons is a manifestation of the integral QHE [10, 11],but for composite Fermions, which are electrons carrying
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an even number of vortices of the many-body wave func-tion. In other words, the incompressible quantum fluid, inLaughlin theory, consists of strongly correlated electronsinteracting with a strong magnetic field whereas in Jaintheory it consists of weakly correlated composite Fermionsinteracting with a reduced magnetic field.Exact diagonalization of small systems of electrons [12–17]has been done to validate both Laughlin and Jain theories.In general these numerical calculations employ sphericalgeometry [18, 19] although the wave functions adopted inboth theories are written in disk geometry. Recently, an-alytical methods using various 2D-geometries have beenproposed [20, 21]. The main purpose of these studies wasto find exact results that can be used as instruments totest the accuracy of various computational methods used inthe domain of FQHE. Moreover, it is well known that thetheory of FQHE depends basically on three types of in-teraction energy, namely the electron-electron, electron-background and background-background interaction po-tentials. The latter is determined classically without usingthe wave function of the electron system. The two othersare quantum operators acting on wave functions and are ingeneral determined via numerical calculations with eitherexact diagonalization [12–17] or Monte Carlo simulations[22–24] .In this work we propose an analytical method basedon complex polar coordinates to calculate the electron-electron and electron-background interaction energies forsystems with several electrons. The main purpose of thisstudy is to show that a complex coordinate frameworkis the most convenient platform to do fast and accurateFQHE calculations. Exact analytical results are obtainedfor systems with up to N = 6 electrons in disk geom-etry at filling factor ν = 13 . These calculations can beextended straightforwardly to larger systems with N > 6electrons. The results we obtained coincide exactly withthe analytical results of Ref. [21] for N = 2, 3, 4 electrons.For N = 5 and 6 electrons, our results agree well withthe results found in Ref. [23] using the method of MonteCarlo simulations.The paper is organized as follows. In section 2, the nec-essary theoretical basis is presented. In section 3, theformulation in terms of complex coordinates is given, andillustrated for the specific case of N = 3 electrons. Wegive some concluding remarks in section 4.
2. Theoretical basis

Within a disk geometry we consider N(≥ 2) electrons ofcharge (−e0) embedded in a uniform neutralizing back-ground disk of positive charge Ne0 and area SN = πR2
N ,

where RN is the radius of the disk. This 2D electronic sys-tem is subjected to a strong perpendicular uniform mag-netic field B in the z direction. For a symmetric gauge(B = ∇ ∧ A), and fully polarized electrons of mass me,the quantum Hamiltonian of the system can be written as
H = N∑

j=1
12me

(−ih̄∇j + e0
c Aj )2 + Vee + Veb + Vbb (1)

where ∇j = ( ∂
∂rj

urj + ∂
rj∂φj

uφj ) represents the gradientoperator, Aj = B2 rjuφj the gauge potential of the jth elec-tron whereas Vee, Veb and Vbb are the electron-electron,electron-background and background-background inter-action potentials, respectively. Their corresponding ex-pressions are,
Vee = N∑

i<j

e20
| ri − rj |

, (2)

Veb = −ρ
N∑
i=1

∫
SN
d2r e20
| ri − r | . (3)

Vbb = ρ22
∫
SN
d2r

∫
SN
d2r′ e20
| r− r′ | (4)

where ri (or rj ) denotes the electron vector position while
r and r′ are background coordinates. SN is the area of thedisk and ρ the density of the system (number of electronsper unit area) that can also be defined as

ρ = ν2πl2 (5)
with l = √

h̄ c
e0B being the magnetic length, c the speed oflight and B the magnetic field strength. The filling factor

ν is given by the ratio of the number of electrons to thenumber of flux quanta penetrating the sample (ν = N
φ/φ0 )with φ0 = h c

e0 the quantum flux. The quantity ν is calledthe filling factor because it equals the number of occupiedLandau levels for non interacting electrons at a given mag-netic field.The background-background interaction potential, Eq. (4),can be calculated classically without using the wave func-tion of the electron system, and thus the introduction ofcomplex coordinates leaves the probem of calculating Vbbunchanged. Its value is determined analytically [21] andis given by
Vbb = 83π e20(ρSN )2

RN
. (6)
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Henceforth our concern will only be with Vee and Veb. Fora given wave function ψ(r1, r2, ..., rN ), the electron-electronand electron-background interaction energies are definedby [21],
〈Vee〉 = N(N − 1)2

∫
d2r1...d2rN e20

|r1−r2| | ψ(r1, ..., rN ) |2∫
d2r1...d2rN | ψ(r1, ..., rN ) |2 .

(7)

〈Veb〉 = −ρN
∫
d2r1...d2rN | ψ(r1, ..., rN ) |2 ∫

SN
d2r e20

|r1−r|∫
d2r1...d2rN | ψ(r1, ..., rN ) |2 .

(8)

Taking into account the fact that [20, 25]

∫
SN
d2r e20
| r1 − r | = 2e20SN

RN

∫ ∞

0
dq
q J1(q)J0( qRN r1) (9)

the expression for 〈Veb〉 can also be written as

〈Veb〉 = −2e20NρSN
RN

∫∞0 dq J1(q)
q

∫
d2r1...d2rN | ψ(r1, ..., rN ) |2 J0( qr1RN

)∫
d2r1...d2rN | ψ(r1, ..., rN ) |2 (10)

where Jn(x) are n-th order Bessel functions.To write Eqs. (7) and (10) in complex notation, change rk −→ zk = (xk + iyk = rkeiφk )k=1,...,N , to obtain
〈Vee〉 = N(N − 1)2

∫
d2z1....d2zN e20

|z1−z2 | | ψ(z1, ..., zN ) |2∫
d2z1...d2zN | ψ(z1, ..., zN ) |2 (11)

〈Veb〉 = −2e20NρSN
RN

∫∞0 dq J1(q)
q

∫
d2z1...d2zN | ψ(z1, ..., zN ) |2 J0( q|z1 |RN

)∫
d2z1...d2zN | ψ(z1, ..., zN ) |2 . (12)

With this change of variable, the Laughlin wave functionfinds its original form
ψ(z1, ..., zN ) = N∏

i<j
(zi − zj )3 e−∑N

k=1 zk z̄k4l2 (13)
and its corresponding norm is given by 〈ψ | ψ〉.
〈ψ | ψ〉 = ∫

d2z1...d2zN ∏
i<j

(zi−zj )3 ∏
i<j

(z̄i−z̄j )3e−∑
k |zk |2/2l2 .

(14)
3. Complex coordinate method for
N=3 electrons
To show the method of calculation, we will focus on thecase of N = 3 electrons. The integral Eq. (14) can be

simplified greatly using the following rule:
∫
d2z zm z̄ n e−zz̄ = π δmn Γ(1 + n). (15)

In fact the key rule Eq. (15) greatly facilitates the evalu-ation of all the integrals in connection with this work. Awide class of correlators in 2d models [26] can be evalu-ated in this way. Taking into consideration Eq. (15) onecan verify that the formula Eq. (14), for N = 3 simplifies to
〈ψ(3) | ψ(3)〉 = ∫

d2z1 d2z2 d2z3P(3) e−∑3
k=1|zk |2/2l2 (16)

with
513

Brought to you by | CERN library
Authenticated

Download Date | 1/10/17 3:54 PM



A new method of calculation in the Fractional Quantum Hall Effect regime

P(3) =z61 z̄61z32 z̄32 + 9z61 z̄61z22 z̄22z3z̄3 + 9z61 z̄61z2z̄2z23 z̄23 + z61 z̄61z33 z̄33 + 9z51 z̄51z42 z̄42 + 36z51 z̄51z32 z̄32z3z̄3 + 36z51 z̄51z2z̄2z33 z̄33 + 9z51 z̄51z43 z̄43+ 9z41 z̄41z52 z̄52 + 225z41 z̄41z32 z̄32z23 z̄23 + 225z41 z̄41z22 z̄22z33 z̄33 + 9z41 z̄41z53 z̄53 + z31 z̄31z62 z̄62 + 36z31 z̄31z52 z̄52z3z̄3+ 225z31 z̄31z42 z̄42z23 z̄23 + 225z31 z̄31z23 z̄23z43 z̄43 + 36z31 z̄31z2z̄2z53 z̄53 + z31 z̄31z63 z̄63 + 9z21 z̄21z62 z̄62z3z̄3+ 225z21 z̄21z42 z̄42z33 z̄33 + 225z21 z̄21z32 z̄32z43 z̄43 + 9z21 z̄21z2z̄2z63 z̄63 + 9z1z̄1z62 z̄62z23 z̄23 + 36z1z̄1z52 z̄52z33 z̄33 + 36z1z̄1z32 z̄32z53 z̄53+ 9z1z̄1z22 z̄22z63 z̄63 + z62 z̄62z33 z̄33 + 9z52 z̄52z43 z̄43 + 9z42 z̄42z53 z̄53 + z32 z̄32z63 z̄63 (17)

where the terms having the form zn11 z̄m11 zn22 z̄m22 zn33 z̄m33 withat least one ni 6= mi are all vanishing according toEq. (15). Thus, it becomes easy to compute the valueof the norm
〈ψ(3) | ψ(3)〉 = π3(l2)12(3 291 217 920). (18)

Similarly let us calculate the electron-electron interactionenergy per particle εee = 〈Vee〉/3. We choose to workwith Jacobi complex coordinates instead of ordinary Jacobicoordinates so as to make possible use of Eq. (15). Jacobicomplex coordinates are defined by
Z1 = z1 − z2

Z2 = z1 + z22 − z3 (19)
Z3 = z1 + z2 + z33

and other useful relations are given by
∫ N∏

k=1 d
2zk = ∫ N∏

k=1d
2Zk N ≥ 2 (20)

Also, one can easily derive the inter-particle coordinatesin terms of Jacobi complex coordinates
z1 − z2 = Z1

z1 − z3 = Z12 + Z2 (21)
z2 − z3 = −Z12 + Z2

with the help of Eq. (15) and the substitution of Eq. (21),one can transform P(3) to P′(3) such that
P′(3) = 1(64)2 Z 91 Z̄ 91 + 9(16)2 Z 71 Z̄ 71 Z 22 Z̄ 22

+ 916Z 51 Z̄ 51 Z 42 Z̄ 42 + Z 31 Z̄ 31 Z 62 Z̄ 62 . (22)

Thus the expression of the electron-electron interactionenergy will take the following form:
〈Vee〉=3 e20

∫
d2Z1d2Z2d2Z3 P′(3)Z− 121 Z̄−

121 e−
3|Z3 |22l2 − |Z2 |23l2 − |Z1 |24l2

〈ψ | ψ〉 (23)and its value per electron is:
εee = e20 π3√π(l)21 890 451 225/2

π3(l)22 3 291 217 920
= 2 198 645√π16 252 928 e20

l ≈ 0.239772e20
l . (24)

This agrees with the result in Ref. [21].Now let us calculate the electron-background interactionenergy per particle εeb = 〈Veb〉/3.
εeb =
−6e20
R

∫∞0 dq J1(q)
q

∫
d2z1d2z2d2z3 P(3) e− |z1 |22l2 − |z2 |22l2 − |z3 |22l2 J0( q|z1|R )

〈ψ | ψ〉 (25)
where R is the radius of the disk for N = 3 electronsand P(3) is given by Eq. (17). After a straightforwardcalculation, we obtain:
εeb = − e20

l e9/2
√
π2 [−2 974 10139 680 I0(9/2) + 3 605 52339 680 I1(9/2)]

≈ −1.226488e20
l (26)

where In(x) are n-th order modified Bessel functions of thefirst kind [27] and (ln(e) = 1). As expected the obtainedresult coincides exactly with the result of Ref. [21].
In what follows, we give the various expressions of εeb for
N = 2, 4, 5 and 6 electrons,

εeb(2) = − e2064 e3 l
√
π2 [−93 I0(3) + 377 I1(3)], (27)
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Figure 1. Exact analytical results by the method of complex coordi-
nates in disk geometry for the Laughlin state at ν = 1/3.
The potential energy per particle, ε =< V > /N, is plot-
ted as a function of 1/√N for systems with N = 2, 3, 4, 5
and 6 electrons. The line is a part of the least-square fit of
Ref. [23]. Energies are in units of e20/l.

εeb(4) = − 36e20640× 2766887264 e6 l
√
π2[−4069333409925 I0(6) + 4478198326949 I1(6)], (28)

εeb(5) = − e201718536372224 e15/2 l
√
π2[−60904709460939925 I0(15/2) +65453547890073563 I1(15/2)]. (29)

εeb(6) = − 3e209278461711902310400 e9 l
√
π2[−2274996342475647272594191 I0(9) +2413336234783834479505131 I1(9)]. (30)

The values of various interaction energies are given inTable 1. The ground state energy ε, which is defined by
Table 1. Ground-state energy per electron ε = εee + εeb + εbb(in

units of e20/l) for Laughlin states with filling factor ν = 13
corresponding to systems withN = 2, 3, 4, 5 and 6 electrons
in a disk geometry. The last two values of the sixth column
are derived by fitting the data resulting from a Monte Carlo
simulation method [23]. εMS is the ground state energy per
particle by the Monte Carlo method.

N εbb εeb εee ε εMS2 0.490070 −1.010575 0.138473 −0.382032 –3 0.600211 −1.226488 0.239772 −0.386505 –4 0.693064 −1.409568 0.327649 −0.388855 −0.388845 0.774869 −1.571267 0.406143 −0.390255 −0.3904666 0.848826 −1.717742 0.477399 −0.391517 −0.391758

(ε = εee+εeb+εbb), calculated in this work for N = 5 and6 electrons agrees well with that in Ref. [23] (see Table 1).The values are approximated numerically up to six digitsafter the decimal point. To compare our results for ε(5)and ε(6) with the results reported in Ref. [23], we need toplot only a part of the least-square fit full line of Ref. [23],(see Fig. 1).
4. Concluding remarks
In this work and within the theory of FQHE, we proposeda method of calculation based on complex coordinates.The electron-electron and electron-background interac-tion energies are computed for systems with up to N = 6electrons. The method outlined in this paper, in whichthe position vectors of electrons are taken to be complexcoordinates and all interactions are written in complexnotation, simplifies calculation by avoiding integrals ofcomplicated trigonometric functions. The results we foundcoincide with the results of Ref. [21] for N = 2, 3 and4 electrons and with the results reported in Ref. [23] for
N = 5 and 6 electrons. New expressions are presented for
εeb(3), εeb(4), εeb(5), εee(5), εeb(6) and εee(6). This showsclearly that the method of complex coordinates is a par-ticularly convenient way to do easy Fractional QuantumHall Effect calculations. The present calculation can bestraightforwardly extended to larger systems with N > 6electrons, the same steps of calculus repeat themselves forany given N . It can easily be seen that there is no math-ematical limit to extending the calculation beyond N > 6electrons and we believe that only a powerful computer isrequired to go further. This will allow bulk regime (ther-modynamic limit) values for key quantities such as variousinteraction energies to be obtained. We point out that incarrying out the numerical computation we used MATH-EMATICA software [28] and we remarked that for N > 4the computation is fast and straightforward.
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