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Abstract: The electron-electron and electron-background interaction energies are calculated analytically for systems
with up to N = 6 electrons. The method consists of describing the position vectors of electrons using com-
plex coordinates and all the interaction energies with complex notation, whereby simplifications become
possible. As is known, in this type of calculation, complicated expressions involving integrals over many
variables are encountered and the trick of using complex coordinates greatly facilitates the exact calcula-
tion of various quantities. Contrary to previous analytical calculations, using complex coordinates avoids
complicated trigonometric functions from appearing in the integrand, simplifying the exact evaluation of
the integrals. The method we have used can be straightforwardly extended to larger systems with N > 6
electrons.
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1. Introduction involving sophisticated mathematics. Probably the most
well-established theoretical idea in the domain of FQHE
is due to Laughlin [2] who described the ground state as
an incompressible quantum fluid and successfully clarified
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" 1
Since the discovery of the Fractional Quantum Hall Effect the nature of states at filling factors v = 3, 5, 7... In re-

(FQHE) [1], the interest in the topic of strongly correlated ality 2DES have unusual properties that cannot be incor-
two-dimensional electron systems (2DES) has not ceased ~ Porated into a unique general theory that applies to any

to grow. Novel electronic states have been proposed in  filling factor, but, in spite of that, Laughlin’s idea remains
irreproachable theoretically. For the other filling fractions

this field of research, including the incompressible quan-
12,3, 1 (referred to as Jain sequence), Jain ad-

tum fluid [2], composite Fermions [3-6], composite Bosons V=735 773
vanced the novel idea [3-6] that the Fractional QHE of

[7], and anyons [8, 9], all originating from elegant theories
electrons is a manifestation of the integral QHE [10, 11],

but for composite Fermions, which are electrons carrying
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an even number of vortices of the many-body wave func-
tion. In other words, the incompressible quantum fluid, in
Laughlin theory, consists of strongly correlated electrons
interacting with a strong magnetic field whereas in Jain
theory it consists of weakly correlated composite Fermions
interacting with a reduced magnetic field.

Exact diagonalization of small systems of electrons [12-17]
has been done to validate both Laughlin and Jain theories.
In general these numerical calculations employ spherical
geometry [18, 19] although the wave functions adopted in
both theories are written in disk geometry. Recently, an-
alytical methods using various 2D-geometries have been
proposed [20, 21]. The main purpose of these studies was
to find exact results that can be used as instruments to
test the accuracy of various computational methods used in
the domain of FQHE. Moreover, it is well known that the
theory of FQHE depends basically on three types of in-
teraction energy, namely the electron-electron, electron-
background and background-background interaction po-
tentials. The latter is determined classically without using
the wave function of the electron system. The two others
are quantum operators acting on wave functions and are in
general determined via numerical calculations with either
exact diagonalization [12-17] or Monte Carlo simulations
[22-24] .

In this work we propose an analytical method based
on complex polar coordinates to calculate the electron-
electron and electron-background interaction energies for
systems with several electrons. The main purpose of this
study is to show that a complex coordinate framework
is the most convenient platform to do fast and accurate
FQHE calculations. Exact analytical results are obtained
for systems with up to N = 6 electrons in disk geom-
etry at filling factor v = % These calculations can be
extended straightforwardly to larger systems with N > 6
electrons. The results we obtained coincide exactly with
the analytical results of Ref.[21] for N = 2, 3, 4 electrons.
For N =5 and 6 electrons, our results agree well with
the results found in Ref.[23] using the method of Monte
Carlo simulations.

The paper is organized as follows. In section 2, the nec-
essary theoretical basis is presented. In section 3, the
formulation in terms of complex coordinates is given, and
illustrated for the specific case of N = 3 electrons. We
give some concluding remarks in section 4.

2. Theoretical basis

Within a disk geometry we consider N(> 2) electrons of
charge (—eg) embedded in a uniform neutralizing back-
ground disk of positive charge Neg and area Sy = 7R2,

where Ry is the radius of the disk. This 2D electronic sys-
tem is subjected to a strong perpendicular uniform mag-
netic field B in the z direction. For a symmetric gauge
(B = V AA), and fully polarized electrons of mass m,,
the quantum Hamiltonian of the system can be written as

N
1 . €p
H= ; Zme(—mv,- + ?A,-)Z 4 Vet Vap + Vi (1)

where V; = (a%u,/. + #uw) represents the gradient
operator, A; = gr,-uq,j the gauge potential of the jth elec-
tron whereas V.., V., and V,, are the electron-electron,
electron-background and background-background inter-
action potentials, respectively. Their corresponding ex-

pressions are,

N e(z)

Vee = , 2
Z|ri_rj @
i<j
N ez

Veb = —p / dr—2—. (3)
g S Iri—r]
2 2
P 2 2 eO
Vih = — d dr———— 4
bb 5 - f/SN r|r—r’| 4

where r; (or r;) denotes the electron vector position while
r and r’ are background coordinates. Sy is the area of the
disk and p the density of the system (number of electrons
per unit area) that can also be defined as

_ v
T 2xl2

p )

with [ = \/:% being the magnetic length, ¢ the speed of
light and B the magnetic field strength. The filling factor
v is given by the ratio of the number of electrons to the
number of flux quanta penetrating the sample (v = ﬁ)
with ¢ = h% the quantum flux. The quantity v is called
the filling factor because it equals the number of occupied
Landau levels for non interacting electrons at a given mag-
netic field.

The background-background interaction potential, Eq. (4),
can be calculated classically without using the wave func-
tion of the electron system, and thus the introduction of
complex coordinates leaves the probem of calculating Vi
unchanged. lts value is determined analytically [21] and
is given by

es(pPSn)°

8
Vyp = = —0E2NT 6
o = 3 02 (6
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Henceforth our concern will only be with V., and V.. For
a given wave function ¢(ry, r2, ..., ry), the electron-electron
and electron-background interaction energies are defined
by [21],

92
NN =1) [ drid iy [ i, rn) |2
2 fdzﬁ...dzl’/\/ | L,ll(n, ...,I’N) |2

< Vee*> =
(7)

ez
fd2r1...d2rN | Wre,.corn) |2 fSN dzrmﬂrI
fd2f1...d2I’N | l,[l(h,...,r/\/) |2

(Ver) = —pN

(8)
|

—2e5NpSn fom quTm fd2f1---d2f/\/ | Wre,.corn) |2 jo(%

Taking into account the fact that [20, 25]

2 25 o
d?r—20 =2€0N/ Q1 @ho(-Lry (@
[ At =2 [ @i o

the expression for (V) can also be written as

Veb) = 10
( b> R/\/ fd2r1...d2rN | l,[l(l“], ...,I‘/\/) |2 ( )
where J,(x) are n-th order Bessel functions.
To write Eqgs. (7) and (10) in complex notation, change ry — 7 = (xx + iy = rre'®)i=1.. n, to obtain
e2
(Vi) = NN =1) [ d*z1.d’zn 2 [ Yz, 2n) [P )
el 2 fd221...d22/\/ | l,[J(Z1, ...,ZN) |2
iy = 2eNgSy I A0S o | ) bR 1
eb RN fd221...d22/\/ | 11[1(21, ...,ZN) |2
\
With this change of variable, the Laughlin wave function simplified greatly using the following rule:
finds its original form
2 REEE d’z7" 2" e = 7t 5y T(1 15
Yz, ozn) = (@ —z)? e =l (13) z7"2" e =7 0 ['(1+n). (15)
i<j

and its corresponding norm is given by (¢ | ¢).

<¢’ | ¢’> — /d221...d22/\/|—|(21—2j)3 |_|(21—2j)3e_2klzk|2/2[2.
i<j i<j
(14)

3. Complex coordinate method for
N=3 electrons

To show the method of calculation, we will focus on the
case of N = 3 electrons. The integral Eq. (14) can be

In fact the key rule Eq. (15) greatly facilitates the evalu-
ation of all the integrals in connection with this work. A
wide class of correlators in 2d models [26] can be evalu-
ated in this way. Taking into consideration Eq. (15) one
can verify that the formula Eq. (14), for N = 3 simplifies to

(L/}(3) | L/I(3)> = /d221 d222 d2237)(3) e‘Zi:w |ZI<|2/212 (16)
with
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PB) =22222323 + 928282222 2325 + 97828 2,2, 2322 + £ 21‘32;2; + 9272325 + 3622123232323 + 362721 22227373 + 92,7775 23

454 3

525 4:4 555 | 353656 33555 5
+ 97} 575 + 22527} 3737272 + 2257121 2323 2373 + 97} 7} A7 + #5878 + 36537575733

353,252 454

53656

4-4_2:2 5 252 656, 5
+ 2252373737373 75 + 22573 7R 777375 + 3635 2,2, 2375 + 77578 + 927 2 5 2373

252 _3-53_4:54

5

+ 2252222 3737373 + 225272 3737425 + 92323 2,2,2578 + 9212 8287273 + 36211 555373 + 362121 55323

555454

2.2 656 3,656
+ I BB+ 88572 + 95257323 + 932357 + 25737878 (17)

where the terms having the form z{' 2" 2322, 23 2;* with

at least one n; # m; are all vanishing according to
Eqg. (15). Thus, it becomes easy to compute the value
of the norm

(¢(3) | Y(3)) = 73(13)'?(3291 217 920). (18)

Similarly let us calculate the electron-electron interaction
energy per particle €,e = (Vee)/3. We choose to work
with Jacobi complex coordinates instead of ordinary Jacobi
coordinates so as to make possible use of Eq. (15). Jacobi
complex coordinates are defined by

Zi=z1—2

zZ +Z
12 2oz (19)

21+ 2+ 23
3

Z =

7=

and other useful relations are given by

N N
/ [ |z = [l—leZk N>?2 (20)
k=1 k=1

Also, one can easily derive the inter-particle coordinates
in terms of Jacobi complex coordinates

n—n=2,

V4
=2 +2 1)

21— Z3 >

Z
_ 4.z
2 T4

2 — 23

with the help of Eq. (15) and the substitution of Eq. (21),
one can transform P(3) to P’(3) such that

1
P'3)= (64)2 Z1 Z + (16)221 212373

9

+ g LRBB+ BB (22)

(

Thus the expression of the electron-electron interaction
energy will take the following form:

A2 152 11

3¢l [PZP2d7, PR)Z 177 e s i
(¢1¢)

(Vee) =
(23)
and its value per electron is:

o _ 2 VA 890451 225)2
e = 50 T (1223291217 920
2198645./7 €2 P

€ €0
16252928 | % 0.239772 L (24)

This agrees with the result in Ref. [21].
Now let us calculate the electron-background interaction
energy per particle €., = (Vep)/3.

Eebh =

2
—6e3 o dqhll [ Pz Pz, d?z PR) e 7 T W Jo(UE
R (W 1¢)

(25)
where R is the radius of the disk for N = 3 electrons

and P(3) is given by Eq. (17). After a straightforward
calculation, we obtain:

2
el [, 2974101
== ST T 92
€0 = ~Teon\ 21" 30680 P2+

eZ
~ —1.22648870 (26)

3605523

39680 h(9/2)]

where [,(x) are n-th order modified Bessel functions of the
first kind [27] and (In(e) = 1). As expected the obtained
result coincides exactly with the result of Ref. [21].

In what follows, we give the various expressions of g, for
N =2,4,5 and 6 electrons,

2
en(2) = _64823[ @[_93 W) +377L(3),  (27)
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Figure 1. Exact analytical results by the method of complex coordi-
nates in disk geometry for the Laughlin state at v = 1/3.
The potential energy per particle, ¢ =< V > /N, is plot-
ted as a function of 1/3/N for systems with N = 2,3,4,5
and 6 electrons. The line is a part of the least-square fit of
Ref. [23]. Energies are in units of /L.

3

3%e2 /
€es(¥) = " 640 x 2766887264 €0 [\ 2
[—4069333409925 /y(6) + 4478198326949 (6)], (28)

£ep(5) = — et Nl
) = T1718536372224 €572 1\ 2
[—60904709460939925 Iy(15/2) +

65453547890073563 /1 (15/2)]. (29)

Eep(6) =

3e? T
9278461711902310400e° L Y 2
[—2274996342475647272594191 /y(9) +

2413336234783834479505131 /1(9)]. (30)

The values of various interaction energies are given in
Table 1. The ground state energy &, which is defined by

Table 1.

Ground-state energy per electron € = €q0 + €ep + €pp(in
units of eg/l) for Laughlin states with filling factor v = %
corresponding to systems with N = 2, 3, 4,5 and 6 electrons
in a disk geometry. The last two values of the sixth column
are derived by fitting the data resulting from a Monte Carlo
simulation method [23]. s is the ground state energy per

particle by the Monte Carlo method.

N epp €eb €ee € EMSs
0.490070 —1.010575 0.138473 —0.382032 —
0.600211 —1.226488 0.239772 —0.386505 —
0.693064 —1.409568 0.327649 —0.388855 —0.38884
0.774869 —1.571267 0.406143 —0.390255 —0.390466
0.848826 —1.717742 0.477399 —0.391517 —0.391758

D O AW N

(€ = €ee+ Een+Epp), calculated in this work for N =5 and
6 electrons agrees well with that in Ref. [23] (see Table 1).
The values are approximated numerically up to six digits
after the decimal point. To compare our results for g(5)
and £(6) with the results reported in Ref. [23], we need to
plot only a part of the least-square fit full line of Ref. [23],
(see Fig.1).

4. Concluding remarks

In this work and within the theory of FQHE, we proposed
a method of calculation based on complex coordinates.
The electron-electron and electron-background interac-
tion energies are computed for systems with up to N =6
electrons. The method outlined in this paper, in which
the position vectors of electrons are taken to be complex
coordinates and all interactions are written in complex
notation, simplifies calculation by avoiding integrals of
complicated trigonometric functions. The results we found
coincide with the results of Ref. [21] for N = 2,3 and
4 electrons and with the results reported in Ref. [23] for
N =5 and 6 electrons. New expressions are presented for
€eb(3), €en(4), €eb(D), €ee(D), €ep(6) and €.(6). This shows
clearly that the method of complex coordinates is a par-
ticularly convenient way to do easy Fractional Quantum
Hall Effect calculations. The present calculation can be
straightforwardly extended to larger systems with N > 6
electrons, the same steps of calculus repeat themselves for
any given N. It can easily be seen that there is no math-
ematical limit to extending the calculation beyond N > 6
electrons and we believe that only a powerful computer is
required to go further. This will allow bulk regime (ther-
modynamic limit) values for key quantities such as various
interaction energies to be obtained. We point out that in
carrying out the numerical computation we used MATH-
EMATICA software [28] and we remarked that for N > 4
the computation is fast and straightforward.
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