
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports

A machine learning approach
for efficient multi‑dimensional
integration
Boram Yoon

Many physics problems involve integration in multi-dimensional space whose analytic solution is
not available. The integrals can be evaluated using numerical integration methods, but it requires a
large computational cost in some cases, so an efficient algorithm plays an important role in solving
the physics problems. We propose a novel numerical multi-dimensional integration algorithm
using machine learning (ML). After training a ML regression model to mimic a target integrand, the
regression model is used to evaluate an approximation of the integral. Then, the difference between
the approximation and the true answer is calculated to correct the bias in the approximation of
the integral induced by ML prediction errors. Because of the bias correction, the final estimate of
the integral is unbiased and has a statistically correct error estimation. Three ML models of multi-
layer perceptron, gradient boosting decision tree, and Gaussian process regression algorithms are
investigated. The performance of the proposed algorithm is demonstrated on six different families of
integrands that typically appear in physics problems at various dimensions and integrand difficulties.
The results show that, for the same total number of integrand evaluations, the new algorithm
provides integral estimates with more than an order of magnitude smaller uncertainties than those of
the VEGAS algorithm in most of the test cases.

Monte Carlo integration is a numerical method evaluating the integral of an integrand over a finite region using
random sampling. As a consequence of the random sampling, in contrast to deterministic methods, the result
of the Monte Carlo integration is an estimate of the true value that comes with a statistical uncertainty. For
higher-dimensional integral problems, the Monte Carlo integration methods provide smaller uncertainties than
deterministic methods, such as the trapezoidal rule1, for a given number of integrand evaluations. As a result,
the Monte Carlo integration methods are broadly used in numerous physics calculations that involve numerical
integrations2–6.

The most widely used strategies reducing the variance of the Monte Carlo integration estimate are importance
sampling and stratified sampling. These strategies are implemented in many algorithms, such as the VEGAS7–9
and MISER1. Recently, an idea utilizing generative machine learning (ML) models to perform the importance
sampling is also proposed10.

In this paper, we present a novel algorithm numerically evaluating multi-dimensional integrals. The new
algorithm involves computations for the training of and prediction with the ML algorithms, in addition to the
evaluation of the integrand. Assuming that evaluations of the integrand is computationally much more expensive
than the ML calculations, throughout the paper, we focus on reducing the variance of an integral estimate for a
given number of integrand evaluations.

Method
Suppose that we have a ML regression model f̃ (x) that approximates a multi-dimensional function
f (x) ≈ f̃ (x) ≡ ỹ . Here x is the input vector of the regression model, which is called the independent variable,
and ỹ is the output of the regression model, which is called the dependent variable. The integral of f (x) over an
integration region � ∈ R

D can be split into two integrals.

(1)I =

∫

�

f (x)dx

OPEN

CCS‑7, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,
NM 87545, USA. email: boram@lanl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-98392-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

Here the I(a) is an integration of the ML regression model, which does not require an evaluation of f (x) to
calculate. Depending on the regression model, the integral I(a) may be calculated analytically or numerically. Since
f̃ (x) approximates f (x) , the I(a) provides an approximation of the target integral I. The I(b) in Eq. (2) provides a
correction to the bias of the approximation in I(a) . The integral can be evaluated using a numerical method, such
as the Monte Carlo integration. In the Monte Carlo integration, variance of the I(b) is proportional to

where the second line assumes a good ML regression model that gives Var
[
f̃ (X)

]
≈ Var

[
f (X)

]
 . Therefore, the

I(b) can be estimated precisely with a small number of Monte Carlo samples when correlation between f (X) and
f̃ (X) is high. The total uncertainty of the integral, σI , can be calculated by combining the errors of the two terms:
σ 2
I = σ 2

I(a)
+ σ 2

I(b)
 . The idea replacing an observable by its approximation with a proper correction term was used

in the field of lattice quantum chromodynamics11–13. In this paper, we generalize the idea for multi-dimensional
integral problems using ML regression algorithms.

Note that the equalities in Eqs. (1) and (2) hold independently of the regression accuracy. When f̃ (x) poorly
approximates f (x) , the I(b) becomes difficult to calculate, and a numerical evaluation of I(b) yields large σ 2

I(b)
 for

a given number of integrand evaluations. Therefore, this approach always provides a correct error estimation
with an unbiased expectation value of the integral, provided good integration algorithms for the evaluation of
I(a) and I(b) . However, a good ML regression model accurately describing the integrand is essential for obtaining
the integral estimate with a small statistical uncertainty.

Machine learning models.  In this paper, we examine three regression algorithms: Multi-layer Perceptron
(MLP), Gradient Boosting Decision Tree (GBDT), and Gaussian Process (GP). MLP is a feedforward artifi-
cial neural network that produces outputs from inputs based on multiple layers of perceptrons14. The model is
flexibly applicable to various kinds of data and scales well up to a large number of data. GBDT is a sequence
of shallow decision trees such that each successive decision tree compensates for the prediction error of its
predecessor15,16. The model provides a good regression performance with no complicated tuning of hyperpa-
rameters and pre-processing of training data. An integration of the GBDT regression models can be calculated
analytically because the model is simply a set of intervals of input variables and their output values10. GP regres-
sion is a nonparametric model that finds an optimal covariance kernel function explaining training data17. The
model is good at interpolating the observations and works well with a small dataset. Analytic integrability of the
regression model depends on kernel choice. For example, in the case of the Radial Basis Function (RBF) kernel,
which is one of the most popular kernels in GP, prediction of an input vector is given by the dot product of a
Gaussian function of the input vector and a constant vector, as described in Eq. (7), so its analytic integration is
given by error functions.

Training data.  Building a ML regression model approximating f (x) requires training samples of
{(xi , f (xi))}

Ntrain
i=1  . To minimize the prediction error for a given number of training data, Ntrain , it is essential to col-

lect the training samples near the peaks of the function (importance sampling) and where the function changes
rapidly (stratified sampling). Such training data can be sampled by utilizing conventional numerical integration
algorithms, such as the VEGAS, which includes efficient sampling algorithms based on the importance sam-
pling and stratified sampling. When the peaks of the function are localized, the training samples obtained using
VEGAS build a much more accurate ML regression model than those from a uniform sampling method.

Data scaling.  Many ML regression algorithms benefit from scaling the dependent variable. Especially when
the dependent variable varies by orders of magnitude within the range of interest, which is a typical situation in
difficult multi-dimensional integral problems, the data scaling plays a crucial role in obtaining a good regression
performance. The most widely used scaling algorithms are min-max scaling and standardization:

where y′ is the scaled variable, min(y) and max(y) are the minimum and maximum of y, y is the average of y,
and σy is the standard deviation of y. For the data with large scale variation, however, these scaling methods are
dominated by the data of large magnitude and lose sensitivity to the data of small values.

To avoid the scale issue, we use the nth-root scaling defined as

where sgn(y) is the sign of y, and n is a positive integer. This is a strictly monotonic transformation whose inverse
is y = sgn(y′) · |y′|n . When n is too small, the transformation will not remove the large scale variation that makes

(2)
=

∫

�

f̃ (x)dx

︸ ︷︷ ︸

I(a)

+

∫

�

(

f (x)− f̃ (x)
)

dx

︸ ︷︷ ︸

I(b)

.

(3)Var
[
f (X)− f̃ (X)

]
= Var

[
f (X)

]
+ Var

[
f̃ (X)

]
− 2Cov

[
f (X), f̃ (X)

]

(4)≈ 2Var
[
f (X)

](

1− Corr
[
f (X), f̃ (X)

])

,

(5)y′ =
y −min(y)

max(y)−min(y)
[Min-max scaling], y′ =

y − y

σy
[Standardization] ,

(6)y′ = sgn(y) · |y|1/n ,

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

ML algorithms difficult to fit, and when n is too large, the transformation will wash out (or flatten) the informa-
tion of the data that is essential for training a ML algorithm. Therefore, an optimal choice of n is important in
obtaining a good regression model and is different for different ML algorithms. The optimal value of n can be
obtained using the training data. Taking a small portion (e.g. 10–50%) of the training data as a validation data-
set, one can train a regression model on the remaining training samples with various choices of n and find the
optimal value of n that gives the minimum prediction error on the validation dataset. Once the n is determined,
a final regression model can be obtained using the full training data.

This nth-root scaling plays a crucial role in building a good regression model for most of the integral prob-
lems. In this study, we standardize the y after the nth-root scaling to maximize the regression performance.

Evaluation of I(a) and I
(b)

.  When n = 1 , I(a) of Eq. (2) can be calculated analytically for certain regression
algorithms. When n > 1 , however, the ML predictions should be processed by the inverse of the nth-root trans-
formation, so the analytic integral becomes complicated. For example, GP regression with a RBF kernel for a
nth-root scaled data can be written as

where ||x|| is the Euclidean norm of x , xi are the training data, and αi and l are constants that are determined
from the training. To obtain the prediction of the integrand f̃ (x) , the GP regression needs to be transformed as
f̃ (x) = sgn(f̃ ′(x))|f̃ ′(x)|n . For a positive integrand, the power of n of Eq. (7) can be expanded analytically, but
the number of terms is large for large N and n.

For simplicity, we use a numerical method, the VEGAS algorithm, to evaluate I(a) and I(b) . Since the peaks
of the f (x) are flattened by subtracting the f̃ (x) in the integrand of I(b) , a simple Monte Carlo integration works
well for I(b) . However, the VEGAS outperforms the simple Monte Carlo integration when the regression is not
accurate enough.

Numerical experiments
In this section, we present numerical experiments of the proposed integration algorithm using ML. The precisions
of the integral estimates are compared with those of the VEGAS algorithm, which is one of the best performing
algorithms on the market18, at a similar number of integrand evaluations.

Test integrands.  In order to test the performance of the numerical integration, we use the six families of the
integrands proposed in Ref.19 that typically appear in physics problems:

Here, D is the dimension of x , and wi ∈ [0, 1) is the parameter that is supposed to shift the peaks of the
integrand without changing the difficulty of the integral problem. One exception is f6(x) , as the small value of
w1 or w2 makes the function to be localized in small region and makes the integral problem difficult. To avoid
the unwanted effect, we restrict wi ∈ [0.1, 0.9) for f6(x) . ci is a positive parameter that controls the difficulty of
the integral. In general, increasing the value of ci increases the difficulty of the integral problem. To fix the dif-
ficulty of the integral, we randomly choose ci from a uniform distribution in [0, 1) and renormalize the vector by
multiplying a constant factor so that ||c||1 =

∑

i |ci| becomes the target constant. In this study, we carry out the
integration for 36 different random choices of w and c and take average performance. To fix the integration dif-
ficulty, we normalize c to three different values of ||c||1 = 1, 3 , and 8. Integration is performed in a D-dimensional
unit hypercube, and the results are compared at three different dimensions of D = 5, 8 , and 10.

ML regression algorithms and hyperparameters.  For the implementation of the MLP, GP, and GBDT
regression algorithms, we use the scikit-learn python library20. For MLP, four hidden layers of 128, 128, 128,
and 16 neurons with rectified linear unit (ReLU) activation functions are used. Training is performed using
Adam optimization algorithm21 with the learning rate of 10−4 . Training updates are performed until there is no
decrease of the validation score with a tolerance of 10−6 for 20 epochs with 10% of validation fraction. For GP,
RBF with a constant kernel is used, and length scale and constant are determined using L-BFGS-B optimizer22.
For GBDT, we use 1000 weak estimators with a learning rate of 0.01 and a subsampling ratio of 0.3. The maxi-
mum depth of each decision tree is limited to 4. Note that here we use a relatively large number of estimators
with a small subsampling ratio so that the regression output becomes a smooth function in x . In this proof-of-
principal study, we did not explore the extensive phase space of the hyperparameters but took the best solution
among the few choices around the default values of the scikit-learn library20 we tried.

(7)f̃ ′(x) =

Ntrain∑

i=1

αi exp

[

−
1

2l2
||x − xi||

2

]

,

(8)

f1(x) = cos(2πw1 + c · x) [Oscillatory] ,

f2(x) =
D∏

i=1

1

c−2
i + (xi − wi)2

[Product peak] ,

f3(x) =
1

(1+ c · x)D+1
[Corner peak] ,

f4(x) = exp(−
∑D

i=1 c
2
i (xi − wi)

2) [Gaussian] ,
f5(x) = exp(−c · |x − w|) [C0 − function] ,

f6(x) =

{
0 if x1 > w1 or x2 > w2 ,
exp(c · x) otherwise.

[Discontinuous] .

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

The powers of the nth-root scaling n ∈ [1, 50] for MLP and GP regressions are determined by using 20% of
training data as a validation dataset. The performance of the GBDT algorithm is not very sensitive to the scaling
but n > 1 gives better performance than the n = 1 case. So, we use a fixed number n = 3 for GBDT regression.

VEGAS setup.  For the VEGAS numerical integration, we use Lepage’s VEGAS python library version
3.4.59,23. The library has two damping parameters: α and β . The parameter α controls the remapping of the inte-
gration variables in the VEGAS adaptation. A smaller value gives the slower grid adaption for a conservative esti-
mate. Here, we use α = 0.5 , which is the default value of the library, for most of the calculations. One exception
is the discontinuous integrand family f6(x) , which is more difficult to evaluate than other integrand families and
requires a large number of samples per iteration or slow grid adaptation to converge to the exact integral solu-
tion. To make the VEGAS integral stable, we use α = 0.2 for f6(x) . The parameter β controls the redistribution
of integrand evaluations in the stratified sampling. β = 1 is the theoretically optimal value, and β = 0 means no
redistribution. Here, we use β = 0.75 , which is the default value of the library.

Another important parameters are the number of iterations for the VEGAS grid adaptation ( Nitn ) and the
approximated number of integrand evaluations per iteration ( Neval ). These parameters are set differently for dif-
ferent VEGAS tasks performed in this study: (1) calculation of the target integral I in Eq. (1) for a comparison,
(2) sampling the training data, (3) calculation of I(b) in Eq. (2), and (4) calculation of I(a) in Eq. (2).

•	 In task (1), we use Nitn = 20 at two different values of Neval = 500 , and 1000. When β = 0 , the total number
of integrand evaluations will be Nitn × Neval . Because of the redistribution that happens when β > 0 , how-
ever, the total number of integrand evaluations for this task drops to around N ≈ Nitn × Neval/2 for the test
functions used in this study.

•	 In task (2), we use Nitn = 10 for the most of the integrand families with the same Neval values used in task (1).
In this task, all the integrand calls,

(
x, f (x)

)
 , are collected as the ML training data. The total number of inte-

grand evaluations in this task is Ntrain ≈ N/2 . Two exceptions are f3(x) , where we use Nitn = 14 , and f6(x) ,
where we use Nitn = 6 , which are the choices that stabilize the VEGAS integration of task (3). The choice of
Nitn determines the ratio of the number of integrand evaluations for the training ( Ntrain) and bias correction
( Ncrxn ). The parameter can be tuned for a given problem so that it minimizes the integral uncertainty. In
this proof-of-principal study, however, we take Nitn = 10 , which makes the ratio Ntrain : Ncrxn ≈ 1 : 1 , as
our default value and change it only when we find an instability in the VEGAS integration of task (3).

•	 In task (3), our target total number of integrand evaluations is N − Ntrain , so that the total number of inte-
grand evaluations in the ML integrator is the same as that of the VEGAS integration in task (1). To make
Ncrxn as close as possible to N − Ntrain , we set Neval = (N − Ntrain)/5 with α = 0.5 and carry out the VEGAS
iterations until the accumulated number of integrand evaluations becomes greater than or equal to N − Ntrain ,
saving the results for each iteration, separately. Then, we find the iteration number that gives the accumulated
number of integrand evaluations closest to N − Ntrain and take the integral estimate at the number of itera-
tions as our final results.

•	 In task (4), we use Nitn = 30 and set Neval to those used in task (1) multiplied by a factor of 1000. We stop
the VEGAS iteration when the error of I(a) becomes smaller than 20% of the error of I(b) . In this study, we
use a numerical integration method to evaluate I(a) so that all results for different integrand families and ML
algorithms could be obtained from the same condition. However, a numerical approach requires evaluation
of the ML model f̃ (x) , so it provides a cost reduction only when the evaluation of the ML model is cheaper
than the evaluation of the target integrand f (x) . We recommend using an analytic approach for the evalu-
ation of I(a) whenever it is available. When analytic approach is not available or computationally expensive
due to a large scaling power, Neval should be tuned considering the evaluation cost of f̃ (x) and the integral
precision required.

VEGAS integral estimates are obtained by taking a weighted average of the estimates from each VEGAS iteration.
Whenever the p-value of the weighted average is smaller than 0.05, we discard the results and rerun the VEGAS
integration with a different random seed.

Results.  Table 1 shows the precision gain of the proposed integration algorithm over VEGAS.

Total number of integrand evaluations of the ML integrator ( Ntrain + Ncrxn ) is similar to that of the VEGAS
integration (N). The full list of N, Ntrain , Ncrxn , and precision of the integral algorithms are given in Supplemen-
tary Tables S1 to S6.

The best performing ML algorithms are GP for the integrand families 1–4, MLP for the integrand family 5,
and GBDT for the integrand family 6. Figure 1 clearly explains these results: GP with a RBF kernel shows very
good performance in describing smooth functions but fails in C0 and discontinuous functions. MLP shows
mediocre performance for the all functional forms, and GBDT, which is a combination of the discrete decision
trees, outperforms the MLP in describing the discontinuous integrands.

For all test cases, the ML integrator performs better than VEGAS. The gain is higher when D is smaller and
when ||c||1 is smaller. Also, the gain tends to be increased when N is larger, which indicates a better scaling
behavior than VEGAS. In case of the integrations with the GP regression algorithm, the σI of the ML integrator
is up to four orders of magnitude smaller than that of VEGAS. When GP is efficiently applied, the difference

(9)Gain =
σI of VEGAS

σI of ML Integrator
.

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

between the target integrand and its ML prediction is tiny, which makes the value and error of I(b) small. As a
result, the final error is dominated by the error of I(a) , which can be improved without increasing the number of
f (x) evaluations. As an example, I(a) and I(b) of the integrands shown in Fig. 1 are given below:

Since the ML integrator uses VEGAS, it inherits the potential instability of the VEGAS for small Neval , which
introduces a systematic bias in the integration results. In general, the instability can be avoided by increasing N or
decreasing the value of α ; a detailed description of how to deal with the instability is given in Ref.24. For the ML
integrator, the most fragile part is the integration for I(b) =

∫
(f − f̃)dx . When such instability is observed, for a

given N, one can increase the ratio of Ntrain for a better prediction or increase the ratio of Ncrxn for a more stable
integrand evaluation, depending on the integral problem. It is also important to use a ML regression algorithm
that yields a smooth f̃ (x) . As shown in the right column of Fig. 1, a non-smooth f̃ (x) , such as the one from
GBDT, makes f (x)− f̃ (x) highly oscillating and the integral difficult to evaluate. Among the three regression
algorithms used in this study, we find that the smooth prediction of GP gives the most stable integration for I(b) .
To check the instability, we do not manually tune the integration parameters for each integral problem but use
a general setting for most of the calculations. As a result, we could observe a few integral results deviating from
the true answer by more than 4σ , mostly in case the integral families 3 and 6. It shows that the ML integrator
is more stable than VEGAS for the integral family 6, but less stable for the integral family 3 mainly due to the
non-smooth prediction of the MLP and GBDT. Since the number of more than 4σ deviations is small compared
to the total number of random samples, inclusion of those occurrences does not change the average results, so
we did not exclude those occurrences from our average results. The number of more than 4σ deviations for each
integral problem is given in Supplementary Tables S1 to S6.

Table 2 gives a comparison of the training and prediction cost of the wallclock time for different ML models.
For the prediction cost, we measure the regression wallclock time of trained models on 105 random samples. It
shows that training a ML algorithm is much more expensive than making predictions using a trained ML model.
It also shows that GP is more expensive than MLP and GBDT. Note that the ML training and prediction costs
can be reduced significantly by changing the model parameters at the cost of slightly worse prediction ability.
For example, MLP cost can be reduced by increasing the learning rate and lowering the number of epochs, or by
reducing the neural network size. The GBDT cost also can be reduced by lowering the number of weak estima-
tors. The main reason for the expensive cost of GP is its computational complexity of O(N3

train) , and it can be
improved by using scalable variants of the GP25. Also, note that all timing measurements are done with the ML
implementations in the scikit-learn library. The cost comparison could be changed with the faster implementa-
tions dedicated for each ML algorithm, such as the PyTorch26, XGBoost27, and GPflow28.

(10)

I = I(a) + I(b)
f4 : 0.3195642(12) = 0.3195644(12) − 0.000000189(30) [GP] ,
f5 : 0.11582(10) = 0.115408(17) + 0.00041(10) [MLP] ,
f6 : 14.463(42) = 13.8934(51) + 0.570(42) [GBDT] .

Table 1.   Precision gain of the proposed algorithm over VEGAS, defined in Eq. (9), at two different number of
integrand evaluations (N) for three dimensions (D) and three integrand difficulties ( ||c||1 ) on the six integrand
families listed in Eq. (8). The results are averaged over 36 random samples. The numbers in the parentheses are
the standard deviation of the mean.

Integrand family 1 2 3 4 5 6

(ML Algorithm) (GP) (GP) (GP) (GP) (MLP) (GBDT)

N D ||c||1

≈5000

5

1.0 407 (29) 6181 (319) 329 (4) 6223 (258) 14.1 (6) 10.0 (5)

3.0 197 (2) 1321 (67) 211 (98) 1151 (47) 5.5 (2) 6.5 (4)

8.0 181 (1) 47 (8) 138 (5) 346 (9) 3.1 (1) 3.1 (2)

8

1.0 352 (28) 8292 (262) 207 (3) 8918 (177) 8.9 (3) 8.6 (6)

3.0 141 (2) 1219 (100) 130 (1) 1606 (46) 3.6 (1) 4.3 (2)

8.0 107 (3) 20 (2) 57 (3) 319 (7) 1.6 (1) 2.3 (1)

10

1.0 345 (29) 8533 (250) 178 (2) 8941 (189) 6.5 (2) 8.2 (4)

3.0 119 (1) 972 (106) 99 (1) 2028 (56) 2.5 (1) 4.3 (2)

8.0 54 (2) 17 (2) 35 (1) 386 (10) 1.2 (1) 2.0 (1)

≈10000

5

1.0 357 (24) 5770 (311) 299 (3) 5497 (235) 16.7 (5) 14.5 (7)

3.0 175 (2) 1241 (44) 200 (92) 1084 (44) 7.9 (3) 7.5 (3)

8.0 157 (5) 121 (20) 144 (6) 279 (8) 4.0 (1) 3.6 (2)

8

1.0 359 (28) 9130 (307) 215 (3) 9649 (203) 16.7 (5) 11.0 (6)

3.0 147 (2) 1592 (89) 142 (1) 1698 (49) 6.6 (2) 5.0 (2)

8.0 132 (2) 40 (5) 97 (3) 320 (8) 3.1 (1) 2.7 (1)

10

1.0 339 (27) 9092 (218) 181 (2) 9535 (118) 13.0 (5) 9.8 (6)

3.0 118 (1) 1679 (111) 116 (1) 1976 (47) 5.1 (2) 4.7 (3)

8.0 89 (3) 36 (4) 57 (2) 372 (9) 2.4 (1) 2.2 (1)

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

Conclusion
In this paper, we proposed a novel algorithm calculating multi-dimensional integrals using ML regression algo-
rithms. In this algorithm, a ML regression model is trained to mimic the target integrand and is used to estimate
an approximated integral. Any bias of the estimate induced by the ML prediction error is corrected by using
a bias correction term, as described in Eq. (2), so that the final integral result could have a statistically correct
estimation of the uncertainty. Two essential prescriptions for obtaining a good the training efficiency are (1)
collecting training samples using the VEGAS algorithm, and (2) scaling the training data using the nth-root
scaling defined in Eq. (6).

The performance of the proposed ML integrator is compared with that of the VEGAS algorithm on six differ-
ent integrand families listed in Eq. (8). Three ML regression algorithms of MLP, GBDT, and GP are examined, and
the best performing algorithm is selected for each integrand family. For all test cases, the ML integrator shows
better performance than the VEGAS for a given total number of integrand evaluations. In most of the cases, the

Figure 1.   Integrands fi(x) and their ML predictions f̃i(x) (left), and the prediction errors fi(x)− f̃i(x) (right)
for N ≈ 5000 , D=8, and ||c||1 = 8.0 . Those are plotted as a function of x1 , while rest of the x are fixed to
xi=2,3,...,8 = 0.5.

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

ML integrator is able to provide integration results with more than an order of magnitude smaller uncertainty
than the VEGAS algorithm. The performance gain is presented in Table 1.

In this study, we compared the precision of the algorithms for a fixed number of integrand evaluations, ignor-
ing the computational cost used for the ML training and predictions. Depending on the ML algorithm, when the
ML cost is very expensive, the application of this algorithm could be limited to the problems whose integrand is
expensive to evaluate, such as the problems reported in Ref.6. To make the algorithm applicable to a wider class
of problems, a study of cost effective ML regression models will be needed in the future.

We find that the performance and the stability of the proposed algorithm largely depend on the smoothness
of the regression output. Developing a ML algorithm specifically targeting the ML integrator will be able to
improve the performance and stability of the algorithm. One possible approach is to augment the training data
by adding a small amount of noise to the training data29,30, which could improve the smoothness of the MLP
and GBDT models. We also find that the GP regression algorithm with a RBF kernel fails in describing C0 and
discontinuous functions because of the singular points in the integrands. For a given integrand with known such
singular points, one would be able to build a combination of multiple GP models defined on each domain divided
by the singular points for a better performance. It will be also promising to explorer different types of kernels31
and to develop a hybrid model of decision tree and GP that can be generically applicable for such integrands.

Received: 22 June 2021; Accepted: 3 September 2021

References
	 1.	 Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes 3rd Edition: The Art of Scientific Computing 3rd

edn. (Cambridge University Press, Cambridge, 2007).
	 2.	 Melnikov, K. & Petriello, F. Phys. Rev. D 74, 114017. https://​doi.​org/​10.​1103/​PhysR​evD.​74.​114017 (2006). arXiv:​hep-​ph/​06090​70.
	 3.	 Gavin, R., Li, Y., Petriello, F. & Quackenbush, S. Comput. Phys. Commun. 182, 2388. https://​doi.​org/​10.​1016/j.​cpc.​2011.​06.​008

(2011). arXiv:​1011.​3540 [hep-ph].
	 4.	 Denner, A. & Dittmaier, S. Nucl. Phys. B 734, 62. https://​doi.​org/​10.​1016/j.​nuclp​hysb.​2005.​11.​007 (2006). arXiv:​hep-​ph/​05091​41.
	 5.	 Taruya, A., Nishimichi, T. & Bernardeau, F. Phys. Rev. D 87, 083509. https://​doi.​org/​10.​1103/​PhysR​evD.​87.​083509 (2013). arXiv:​

1301.​3624 [astro-ph.CO].
	 6.	 Sievert, M. D., Vitev, I. & Yoon, B. Phys. Lett. B 795, 502. https://​doi.​org/​10.​1016/j.​physl​etb.​2019.​06.​019 (2019). arXiv:​1903.​06170

[hep-ph].
	 7.	 Peter Lepage, G. J. Comput. Phys. 27, 192. https://​doi.​org/​10.​1016/​0021-​9991(78)​90004-9 (1978).
	 8.	 Lepage, G. P. VEGAS—an adaptive multi-dimensional integration program, Technical Report CLNS-447 (Cornell University

Laboratory of Nuclear Studies, Ithaca, NY, 1980). http://​cds.​cern.​ch/​record/​123074
	 9.	 Lepage, G. P. J. Comput. Phys. 439, 110386. https://​doi.​org/​10.​1016/j.​jcp.​2021.​110386 (2021). arXiv:​2009.​05112 [physics.comp-ph].
	10.	 Bendavid, J. (2017). arXiv:​1707.​00028 [hep-ph]
	11.	 Bali, G. S., Collins, S. & Schafer, A. Comput. Phys. Commun. 181, 1570. https://​doi.​org/​10.​1016/j.​cpc.​2010.​05.​008 (2010). arXiv:​

0910.​3970 [hep-lat].
	12.	 Blum, T., Izubuchi, T. & Shintani, E. Phys. Rev. D 88, 094503. https://​doi.​org/​10.​1103/​PhysR​evD.​88.​094503 (2013). arXiv:​1208.​

4349 [hep-lat].
	13.	 Yoon, B., Bhattacharya, T. & Gupta, R. Phys. Rev. D 100, 014504. https://​doi.​org/​10.​1103/​PhysR​evD.​100.​014504 (2019). arXiv:​

1807.​05971 [hep-lat].
	14.	 Rojas, R. Neural Networks: A Systematic Introduction (Springer, Berlin, 1996).
	15.	 Breiman, L., Friedman, J., Stone, C., & Olshen, R. Classification and Regression Trees, The Wadsworth and Brooks-Cole statistics-

probability series (Taylor & Francis, 1984). https://​books.​google.​com/​books?​id=​JwQx-​WOmSy​QC
	16.	 Friedman, J. H. Ann. Stat. 29, 1189. https://​doi.​org/​10.​1214/​aos/​10132​03451 (2001).
	17.	 Rasmussen, C. & Williams, C. Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning 248 (MIT

Press, Cambridge, 2006).
	18.	 Hahn, T. Comput. Phys. Commun. 168, 78. https://​doi.​org/​10.​1016/j.​cpc.​2005.​01.​010 (2005). arXiv:​hep-​ph/​04040​43.
	19.	 Genz, A. A package for testing multiple integration subroutines. In Numerical Integration: Recent Developments, Software and

Applications (eds Keast, P. & Fairweather, G.) 337–340 (Springer, Netherlands, 1987). https://​doi.​org/​10.​1007/​978-​94-​009-​3889-2_​
33.

	20.	 Pedregosa, F. et al. J. Mach. Learn. Res. 12, 2825 (2011).

Table 2.   Wallclock time (s) spent for training (upper) and prediction on 105 random samples (lower) for
different ML algorithms with the integrand parameters of N ≈ 5000 , D = 8 , and ||c||1 = 3.0 . Ntrain = 2500 for
integrand families 1, 2, 4, and 5, Ntrain = 3500 for integrand family 4, and Ntrain = 1500 for integrand family 6.
The results are averaged over 36 runs of random integrands as described in “Numerical experiments” section.
The numbers in the parentheses are the standard deviation of the mean. The wallclock time is measured using
a single core of an Intel Xeon E5-2695 v4 processor at 2.10GHz.

Integrand family 1 2 3 4 5 6

Training MLP 31.8 (1.0) 32.0 (1.0) 40.97 (93) 31.11 (81) 48.0 (2.3) 13.77 (82)

cost GBDT 3.235 (32) 3.169 (24) 4.276 (24) 3.092 (21) 3.248 (22) 1.9468 (81)

(secs) GP 114.0 (6.7) 111.8 (5.7) 240.9 (9.8) 102.3 (5.8) 42.09 (78) 13.39 (37)

Pred. MLP 0.5016 (27) 0.5392 (42) 0.5220 (38) 0.5430 (43) 0.5596 (49) 0.5423 (24)

cost GBDT 2.554 (34) 2.877 (21) 2.674 (16) 2.800 (12) 2.967 (17) 2.242 (46)

(secs) GP 9.412 (37) 9.589 (63) 14.65 (13) 9.587 (45) 8.25 (14) 5.006 (89)

https://doi.org/10.1103/PhysRevD.74.114017
http://arxiv.org/abs/hep-ph/0609070
https://doi.org/10.1016/j.cpc.2011.06.008
http://arxiv.org/abs/1011.3540
https://doi.org/10.1016/j.nuclphysb.2005.11.007
http://arxiv.org/abs/hep-ph/0509141
https://doi.org/10.1103/PhysRevD.87.083509
http://arxiv.org/abs/1301.3624
http://arxiv.org/abs/1301.3624
https://doi.org/10.1016/j.physletb.2019.06.019
http://arxiv.org/abs/1903.06170
https://doi.org/10.1016/0021-9991(78)90004-9
http://cds.cern.ch/record/123074
https://doi.org/10.1016/j.jcp.2021.110386
http://arxiv.org/abs/2009.05112
http://arxiv.org/abs/1707.00028
https://doi.org/10.1016/j.cpc.2010.05.008
http://arxiv.org/abs/0910.3970
http://arxiv.org/abs/0910.3970
https://doi.org/10.1103/PhysRevD.88.094503
http://arxiv.org/abs/1208.4349
http://arxiv.org/abs/1208.4349
https://doi.org/10.1103/PhysRevD.100.014504
http://arxiv.org/abs/1807.05971
http://arxiv.org/abs/1807.05971
https://books.google.com/books?id=JwQx-WOmSyQC
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
https://doi.org/10.1007/978-94-009-3889-2_33
https://doi.org/10.1007/978-94-009-3889-2_33

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:18965 | https://doi.org/10.1038/s41598-021-98392-z

www.nature.com/scientificreports/

	21.	 Kingma, D. P., & Ba, J. Adam: A method for stochastic optimization (2014). cite arxiv:​1412.​6980C​omment: Published as a confer-
ence paper at the 3rd International Conference for Learning Representations, San Diego, 2015 arXiv:​1412.​6980

	22.	 Byrd, R., Lu, P., Nocedal, J. & Zhu, C. SIAM J. Sci. Comput. 16, 1190. https://​doi.​org/​10.​1137/​09160​69 (1995).
	23.	 Lepage, P. gplepage/vegas: vegas version 3.4.5 (2020a). https://​doi.​org/​10.​5281/​zenodo.​38971​99
	24.	 Lepage, P. vegas Documentation (2020b). https://​vegas.​readt​hedocs.​io/​en/​latest/​index.​html
	25.	 Liu, H., Ong, Y.-S., Shen, X., & Cai, J. When gaussian process meets big data: A review of scalable gps (2019). arXiv:​1807.​01065

[stat.ML]
	26.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,

Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., L. Fang, Bai, J., & Chintala, S. In Advances in
Neural Information Processing Systems 32, edited by Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R.
8024–8035 (Curran Associates, Inc., 2019). http://​papers.​neuri​ps.​cc/​paper/​9015-​pytor​ch-​an-​imper​ative-​style-​high-​perfo​rmance-​
deep-​learn​ing-​libra​ry.​pdf

	27.	 Chen, T. & Guestrin, C. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16 (ACM 785–794 (New York, NY, USA, 2016).

	28.	 Matthews, A.G. d.G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z., & Hensman, J.
GPflow: A Gaussian Process Library using TensorFlow. J. Mach. Learn. Res. 18, 1. http://​jmlr.​org/​papers/​v18/​16-​537.​html (2017).

	29.	 Holmstrom, L. & Koistinen, P. IEEE Trans. Neural Netw. 3, 24 (1992).
	30.	 An, G. Neural Comput 8, 643 (1996).
	31.	 Schulz, E., Speekenbrink, M. & Krause, A. J. Math. Psychol. 85, 1. https://​doi.​org/​10.​1016/j.​jmp.​2018.​03.​001 (2018).

Acknowledgements
Computations were carried out using Institutional Computing at Los Alamos National Laboratory. This work was
supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Contract
No. 89233218CNA000001, and the LANL LDRD program.

Author contributions
B.Y. designed the research, conducted numerical experiments, and wrote the manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​98392-z.

Correspondence and requests for materials should be addressed to B.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://arxiv.org/abs/1412.6980Comment
http://arxiv.org/abs/1412.6980
https://doi.org/10.1137/0916069
https://doi.org/10.5281/zenodo.3897199
https://vegas.readthedocs.io/en/latest/index.html
http://arxiv.org/abs/1807.01065
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v18/16-537.html
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1038/s41598-021-98392-z
https://doi.org/10.1038/s41598-021-98392-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A machine learning approach for efficient multi-dimensional integration
	Method
	Machine learning models.
	Training data.
	Data scaling.
	Evaluation of and .

	Numerical experiments
	Test integrands.
	ML regression algorithms and hyperparameters.
	VEGAS setup.
	Results.

	Conclusion
	References
	Acknowledgements

