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A B S T R A C T

The charge radius is a fundamental parameter of the proton and being investi-
gated for more than 60 years [1]. When in 2010 results of the spectroscopy of
muonic hydrogen were published, the proton radius puzzle arose [2]. These
results differ for about 6 standard deviations from the CODATA value, deter-
mined from elastic electron-proton scattering experiments and hydrogen spec-
troscopy [3, 4]. To understand this discrepancy more precise measurements
are necessary. For this purpose measurements of the proton electric form fac-
tor at Q2 < 4 · 10−3 (GeV/c)2 are essential. Unfortunately, this cannot be done
by measuring elastic electron-proton scattering processes at the existing exper-
imental facilities. To reach the form factor at even lower values of Q2 a method
based on initial state radiation (ISR) was developed and realised. By measur-
ing the scattered electrons in the radiative tail at the Mainz Microtron (MAMI),
information about the electric form factor as low as Q2 ≈ 1 · 10−4 (GeV/c)2 can
be obtained.
The experiment was performed at MAMI in the A1 spectrometer hall using
two high resolution spectrometers. One was employed to measure the scat-
tered electrons and the other one as a relative luminosity monitor. To minimise
systematic uncertainties only the momentum acceptance of the spectrometer
recording the electrons in the radiative tail was changed during the experi-
ment. All other parameters were kept untouched. To compare the results of
the ISR experiment with former results of the electric form factor, the measure-
ments were performed at three different beam energies .
During the analysis the data were compared with a simulation. The simulation
exactly calculated the Bethe-Heitler and Born Feynman diagrams and used ef-
fective corrections to consider also higher order Feynman diagrams. When
applying the form factor of Bernauer et al. [5], the simulation matched the new
data within 1%. This justified the usage of the ISR method.
Finally, under the assumption that the scattering processes were described per-
fectly by the simulation, the form factor was adjusted to the new data. As
a result the form factor was determined as low as Q2 = 1.3 · 10−3 (GeV/c)2.
With these results the following value of the charge radius of the proton was
determined:

rE =
(
0.810± 0.035stat. ± 0.074syst. ± 0.003mod.

)
fm .

This result has large uncertainties and cannot distinguish between the CO-
DATA value [3] and the result of the spectroscopy of muonic hydrogen [2]. In
a succeeding experiment the ISR method will be used to determine the form
factor with smaller uncertainties as low as Q2 ≈ 1 · 10−4 (GeV/c)2 [6].
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Z U S A M M E N FA S S U N G

Der Ladungsradius ist eine fundamentale Größe des Protons und wird seit
über 60 Jahren untersucht [1]. Als 2010 Ergebnisse der Spektroskopie von myo-
nischem Wasserstoff veröffentlicht wurden, führte dies auf das Protonradius-
puzzle [2]. Die Ergebnisse weichen um ca. 6 Standardabweichungen von dem
CODATA Wert ab, welcher mit elastischer Streuung von Elektronen an Proto-
nen und der Spektroskopie von Wasserstoff bestimmt wurde [3, 4]. Um den Un-
terschied zu verstehen, sind präzisere Messungen notwendig. Dazu sind Mes-
sungen des elektrischen Formfaktors des Protons mit Q2 < 4 · 10−3 (GeV/c)2

unerlässlich. Mit elastischer Elektronenstreuung an Protonen kann dies mit
den vorhandenen Experimentieranlagen leider nicht erreicht werden. Um noch
kleinere Werte von Q2 zu erreichen, wurde eine Messmethode auf Grundlage
der Abstrahlung eines Photons im Anfangszustand entwickelt und realisiert.
Am Mainzer Mikrotron (MAMI) können durch die Messung der gestreuten
Elektronen im Strahlenschwanz Informationen über den elektrischen Formfak-
tor bis zu Q2 ≈ 1 · 10−4 (GeV/c)2 erhalten werden.
Das Experiment wurde an MAMI in der A1 Spektrometerhalle mit zwei hoch-
auflösenden Spektrometern durchgeführt. Eins wurde benutzt, um die gestreu-
ten Elektronen zu messen, das andere, um die relative Luminosität zu bestim-
men. Um systematische Unsicherheiten zu minimieren, wurde lediglich die Im-
pulsakzeptanz des Spektrometers geändert, welches die Elektronen im Strah-
lenschwanz detektierte. Alle anderen Parameter blieben unverändert. Um die
Ergebnisse des Experiments mit früheren Resultaten des elektrischen Formfak-
tors vergleichen zu können, wurde die Messung bei drei verschiedenen Strahl-
energien durchgeführt.
Während der Analyse wurden die Daten mit einer Simulation verglichen.
Diese berechnete die Bethe-Heitler und Born Feynman-Diagramme exakt
und benutzte effektive Korrekturen, um höhrere Ordnungen von Feynman-
Diagrammen zu berücksichtigen. Beim Verwenden des Formfaktors von Ber-
nauer et al. [5] in der Simulation wurde gezeigt, dass sie mit den neuen Daten
innerhalb von 1% übereinstimmte. Dies rechtfertigte die Benutzung der Metho-
de auf Grundlage der Abstrahlung eines Photons im Anfangszustand.
Unter der Annahme, dass die Streuprozesse von der Simulation einwandfrei
beschrieben wurden, wurde der Formfaktor an die neuen Daten angepasst. Als
Ergebnis wurde der Formfaktor bis zu Q2 = 1, 3 · 10−3 (GeV/c)2 bestimmt. Mit
diesen Ergebnissen konnte der Ladungsradius des Protons zu:

rE =
(
0, 810± 0, 035stat. ± 0, 074syst. ± 0, 003mod.

)
fm

bestimmt werden. Dieser Wert ist mit großen Unsicherheiten behaftet und kann
nicht zwischen dem CODATA [3] Wert und dem Ergebnis der Spektroskopie
von myonischem Wasserstoff [2] unterscheiden. In einem Nachfolgeexperiment
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soll die Methode auf Grundlage der Abstrahlung eines Photons im Anfangszu-
stand dazu benutzt werden, um den Formfaktor mit kleineren Unsicherheiten
bis zu Q2 ≈ 1 · 10−4 (GeV/c)2 zu bestimmen [6].
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1
M O T I VAT I O N

The proton is a basic constiuent of matter [7]. It was identified by Wien
(1898) and Thomson (1919) and named by Rutherford (1920). Its mass is
938.2796(27)MeV/c2 and it has a positive charge of 1.602 · 10−19C [7]. It has
a spin of 12  h. If the proton would be a point-like particle, its magnetic moment
would be given by [8]:

µ =
g

2
· Ze
M
·
 h

2
, (1)

where g = 2 is the g-factor, Ze is its charge, M is its mass and  h is Planck’s
constant divided by 2π. The measurements described in Ref. [9] and [10]
determined that the magnetic moment of the proton was 2.5 times bigger
than expected. Later measurements determined the more precise value of
2.792847351(9) proton magnetons [3]. This deviation from the expected value
of 1 cannot be explained, like it can be for the electron, where consider-
ing higher order corrections in quantum elctrodynamics (QED), the weak in-
teraction and quantum chromodynamics measurements result in a value of
1.00115965213073(28) [11] in accordance with theory. This directly indicates
that the proton has an inner structure and is not a point-like particle. As it is
understood today, the proton is not an elementary particle, but actually con-
sists of three quarks, two up quarks having 2

3 times the elementary charge and
one down quark having −1

3 times the elementary charge. Since it consists of
three quarks it is called a baryon and has a baryon quantum number of 1 [12].
The three quarks are bound by the strong force [7]. Although it is kinematically
possible that a proton decays into a pion and a positron for example [13], no
such events have been observed. The proton therefore is called a stable particle
and has a life time greater than 6.6 · 1033 years [13].
To describe the cross section in the scattering theory, for example when an
electron scatters off a proton, some modifications to a hypothetical point-like
proton have to be applied, see chapter 2. For over 60 years experiments, see for
example Ref. [1], [5] or [14], have been performed to study the structure of the
proton. One important value which can be determined in such experiments is
the charge radius of the proton. This radius is given by [8], see also chapter 2:

rE
2 ≡ −6 h2

dGE
(
Q2
)

dQ2

∣∣∣∣∣
Q2=0

. (2)
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This radius can be determined by electron proton scattering experiments or
atomic spectroscopy. The results of both kinds of experiments are consistent
and in average yield 0.8751(61) fm [3]. But there is a puzzle about the charge
radius of the proton, because the result of the spectroscopy of muonic hydro-
gen, this is a proton surrounded by a muon rather than an electron, yields
a quite different result of 0.84087(39) fm [2]. This is a deviation of about 6
standard deviations and the reason for this is yet an open question. One an-
swer could simply be, that the determination of the radius has not been done
properly, leading to the discrepancy. It is also possible that the interactions
of electrons and muons are not universal, breaking lepton universality in the
Standard Model, which would indicate that new theoretical models would be
needed to describe the phenomenon [4].
In this work a new method using electron proton scattering will be presented
to determine the charge radius of the proton more accurately. This method en-
ables to measure at lower values of Q2 than before. This is very important for
determining the charge radius of the proton, as can be seen from equation 2.
When determining the charge radius of the proton by scattering experiments,
usually just the cross section of elastically scattered electrons (elastic peak) is
measured. Hence, using the available experimental facilities, there is a limit for
the lowest accessible value of Q2. To avoid these limitations the method used
for this experiment did not only include the elastic peak but also electrons
which radiated a photon before being detected (radiative tail), thus enabling a
more accurate determination of the charge radius of the proton, see chapter 3.
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2
T H E O R E T I C A L F O U N D AT I O N S

The basic concepts necessary for dealing with scattering experiments will be
explained here. During an experiment the kinematics of the scattering process
define the observables of the studied particles. For this experiment only the
four-vectors of the particles are needed, see Fig. 1. In this plot two particles
with initial four-vectors ki and pi scatter and two particles with four-vectors
kf and pf emerge. The time evolution is always from the left side to the right
side.

pi

ki kf

pf

t

Figure 1: Kinematics for a scattering process. Two particles with four-vectors ki and
pi scatter and after the scattering process, black blob, two particles with four-
vectors kf and pf emerge. The time evolution is from the left side to the right
side.

The probabilty that a reaction between two particles, here given for one inci-
dent particle and a particle at rest, takes place is described by the cross section
σ which is given by [8]:

σ =
numbers of particles scattered per time unit

incident particles per time unit · target particles per area unit
. (3)
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For convenience often the differential cross section, depending on the solid
angle, is given, because many detectors only cover a fraction of the full solid
angle:

dσ

dΩ
=

numbers of particles scattered in solid angle per time unit
incident particles per time unit · target particles per area unit

. (4)

Another important variable is the luminosity L:

L = incident particles per time unit · target particles per area unit . (5)

In an experiment the quantity which can be measured is the number of parti-
cles, N, in a certain fraction of the full solid angle in a certain amount of time.
It is connected with the cross section and the luminosity by:

N =

∫
t

L · dσ
dΩ
·∆Ω · dt . (6)

∆Ω is the fraction of the full solid angle covered by the detector. In this work
elastic scattering of electrons off protons will be investigated. Assuming a
point-like proton the cross section for such scattering processes would be given
by the Mott formula [8]:

(
dσ
dΩ

)

Mott
=
4 ·
(
Zα hcE

′
)2

|qc|4
·
(
1−β2 sin2

(
θ

2

))
. (7)

Here Z is the charge number of the proton, c is the velocity of light, E
′

is the
energy of the scattered electron, θ is the scattering angle of the electron, q is
the four-vector of the virtual photon exchanged between the eletron and the
proton and β is the velocity of the particle divided by c. q2 is needed often, but
as for scattering processes its value is always negative, the variable Q2, which
is −q2, is used instead for convenience. For a visualisation of this process, see
Fig. 2.
Before the reaction the proton is at rest. The scattering process is mediated by a
virtual photon, a carrier of electromagnetic interaction in the space-like region.
The electron is scattered in a random direction and in accordance with energy
and momentum conservation the proton is also scattered. The angle between
the incoming and outgoing electron is the scattering angle θ. The following
approximation can be used to calculate E

′
from E and θ [8]:

E
′
=

E

1+ E
Mc2

(1− cos (θ))
. (8)

When measuring electrons scattering off protons, a deviation from the Mott
cross section was detected, see Fig. 3. Since protons are not point-like, form
factors need to be introduced to the Mott cross section to correctly describe the
scattering process of an electron from a proton. These form factors describe
the inner structure, the spread in space, of the proton, analogous to these used
to describe the cross sections for heavy nuclei [15].
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ein

eout

θ

q pin Pout

Figure 2: Kinematics for elastic scattering of an electron from a proton being at rest.

To describe scattering of a relativistic electron from a proton first the Dirac
spinors, the gamma matrices and the Pauli matrices need to be introduced
(here in Dirac representation) [16]:

u (l, ↑) =
√
E+mc2

c




1

0
c·pz
E+mc2
c(px+ipy)

E+mc2




, u (l, ↓) =
√
E+mc2

c




0

1
c(px−ipy)

E+mc2

−c·pz
E+mc2




,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, (9)

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

u (l, ↑) is a spin 1/2 particle spinor with a spin of +1/2, u (l, ↓) is a spin 1/2
particle spinor with a spin of −1/2, where the direction of the spin is with
respect to the z-axis. m is the mass of the respective particle, E is its energy
and px, py, pz are its momentum components, l = (E,px,py,pz) and u (l) =

u (l)† γ0. The dagger symbol is the conjugate transpose operator [17].
The scattering processes can be visualized with so called Feynman diagrams,
see Fig. 4. The first step in determining the cross section is to calculate the
transition amplitude using Feynman rules [16]:

M = jµ
1

q2
Jµ . (10)

The current density jµ for the point-like electron is given by [18]:
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Figure 3: Cross section for elastic scattering of electrons from hydrogen. The ex-
perimental data show a distinct deviation from the Mott cross section.
(source: [1])

jµ = −e (u (lout)γ
µu (lin)) . (11)

u (lout) and u (lin) are Dirac spinors. γµ is a Dirac γ-matrix.
On the other hand, the proton is no point-like particle and needs a different
four-vector current density than the Dirac one used for the electron. The most
general ansatz for the proton current density is [18]:

Jµ = e (u (pout) Γµ (pout,pin)u (pin)) = e
(
u (pout)

(
A
(
q2
)
γµ +B

(
q2
)
(pout)µ

+C
(
q2
)
(pin)µ + iD

(
q2
)
(pout)µ σµν + iE

(
q2
)
(pin)µ σµν

)
u (pin)

)
;

σµν =
i

2
(γµγν − γνγµ) . (12)

The new current density has of course to fulfill gauge invariance [18]:

qµu (pout) Γµ (pout,pin)u (pin) = 0 . (13)
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pin

lin loutq

pout

jµ

Jµ

Figure 4: Feynman diagram for elastic scattering of an electron from a proton in the
Born approximation. lin, lout, pin, pout and q are the four-vectors of the
respective particles.

Applying this restriction and the Gordon decomposition [18], the most general
expression for a transition current fulfilling the condition of Lorentz covariance,
Hermiticity and gauge invariance is:

Jµ = e

(
u (pout)

(
γµF1

(
q2
)
+

i

2M
F2

(
q2
)
qνσµν

)
u (pin)

)
,

Γµ = γµF1

(
q2
)
+

i

2M
F2

(
q2
)
qνσµν . (14)

F1 and F2 are functions of q2 only and are known as Dirac form factors. For
this work the spin of the particles was randomly distributed, therefore only a
squared spin averaged transition amplitude is necessary [16]:

〈
|M|2

〉
=

1

(2sA + 1)(2sB + 1)

∑
all spin states

|M|2 . (15)

Here sA and sB are the spins of the incoming particles. The cross section for
the scattering of two spin-12 -particles in the labatory frame, where the target
particle is at rest, is [17]:

(
dσ
dΩ

)
=

(
 h

8πMc

)2
·
〈
|M|2

〉
. (16)

Here M is the mass of the target particle. Using this current density for the
proton, the cross section for scattering an electron from an initially resting
proton yields [16], [19], [20]:

(
dσ
dΩ

)
=
4 ·
(
Zα hcE

′
)2

|qc|4
·
(
1−β2 sin2

(
θ

2

))

·
[
F21

(
q2
)
+ τ

(
κF22

(
q2
))

+ 2τ
(
F1

(
q2
)
+ κF2

(
q2
))2
· tan2

(
θ

2

)]
,

(17)
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κ = (2.792847350(9) − 1) · µN = (µp − 1) ·
e h

2M
[21] ,

τ =
Q2

4M
,

Q2 = −q2 = 4EE
′
sin2

(
θ

2

)
. (18)

κ is the anomalous magnetic moment of the proton. To give these form fac-
tors a more meaningful interpretation linear combinations of F1 and F2 can be
used [19], [22]:

GE

(
Q2
)
= F1

(
Q2
)
− τκF2

(
Q2
)

,

GM

(
Q2
)
= F1

(
Q2
)
+ κF2

(
Q2
)

. (19)

GE and GM are the so called Sachs form factors. GE measures the charge distri-
bution of the proton and GM the distribution of magnetization [19]. With these
form factors the cross section for elastic electron-proton scattering becomes:

(
dσ
dΩ

)
=

(
dσ
dΩ

)

Mott
·
(

GE
2
(
Q2
)
+ τGM

2
(
Q2
)

1+ τ
+ 2τGM

2
(
Q2
)

tan2
(
θ

2

))

=

(
dσ
dΩ

)

Mott

εGE
2
(
Q2
)
+ τGM

2
(
Q2
)

ε · (1+ τ) , (20)

ε =

(
1+ 2 (1+ τ) tan2

(
θ

2

))−1

. (21)

ε is the level of longitudinal polarization of the photon exchanged in the scat-
tering process.

Proton radius

To extract GE and GM from the measurements of cross section data the Rosen-
bluth separation can be used. It exploits the fact, that for constant Q2 but
different values of ε in equation 20 the experimental cross section devided by
the Mott cross section and multiplied only with kinematic variables is a linear
function of GE

2 and GM
2 with slope GE

2/τ and intercept GM
2:

(
dσ
dΩ

)

Exp.

/(
dσ
dΩ

)

Mott

ε (1+ τ)

τ
=
ε

τ
GE

2 + GM
2 . (22)

To obtain measurements at different values of Q2 and ε the detectors need to
be set to different angles and accepted momenta to measure the scattered elec-
trons. But these experimental parameters have a certain uncertainty leading
to a systematic uncertainty in the analysis, which is the main disadvantage of
the method.
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only by 855-MeV data, the allocation of the cross-section
strength to the electric or magnetic part is undetermined,
giving rise to the larger spread of the models.

4. Fits including the world cross section and polarization
data; possible two-photon exchange effect

The addition of the world data extends the range in Q2

considerably, with data points reaching above 30 GeV2.
However, their uncertainty and density vary widely. Fits
with high-order polynomials are therefore problematic
and spline fits with a constant knot spacing small enough
to accommodate the low-Q2 data are impossible. We
therefore extended the spline × dipole model to noncon-
stant knot spacing and placed knots roughly according
to the data point density at 0, 0.25, 0.5, 0.75, 1, 1.5, 3,
5, 10, and 40 GeV2.

A fit including only external Rosenbluth data in
addition to the new Mainz data results in χ2

red =
2074.64/1810 = 1.146, well comparable to the numbers
above.

Including all available data, i.e., also polarization
data on the form factor ratio, raises this to χ2

red =
2282.24/1868 = 1.222, a rather large increase in χ2 of
207.6 for only 58 additional data points. This demon-
strates that the difference between the Rosenbluth and
polarization methods seen at higher Q2 does not vanish
with our floating normalization of the cross-section data.

The most likely explanation for this discrepancy is the
effect of hard two-photon exchange which is believed to
have a larger effect on the Rosenbluth separation than
on the ratio determined from polarization measurements
[11]. The data basis is not broad enough to disentangle
the contributing amplitudes over the whole Q2 range as
has been done in Refs. [83, 84] for a single Q2 point.
In fact, the experimental information is just enough to
constrain rather simple models. Therefore, we assume a
simple linear dependence on ε which vanishes at ε = 1
and a logarithmic dependence on Q2, similarly to Ref.
[85], as an additional multiplicative term (1 + δTPE) on
top of Feshbach’s Coulomb correction Eq. (20),

δTPE = −(1− ε) a ln(bQ2 + 1), (49)

where a and b are fit parameters. The global fit of Al-
berico et al. [7] uses a similar approach, with a two-
parameter model introduced by Chen et al. [86]. In con-
trast to our approach, their model assumes a given Q2

dependence, but gives more freedom in the epsilon de-
pendence. The fit including our TPE parametrization to
all data gives χ2

red = 2151.72/1866 = 1.153 now as good
as the “good” fits above.

We also performed fits of all data with a low order
Padé model,

GE,MPadé(Q2) =
1 +

∑3
i=1 a

E,M
i Q2·i

1 +
∑5
j=1 b

E,M
j Q2 j

, (50)
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FIG. 9. (Color) The cross sections and the fits for 855, 720,
585, 450, 315 and 180 MeV [(a)-(f)] incident beam energy di-
vided by the cross section calculated with the standard dipole,
as functions of the scattering angle (red: measured with spec-
trometer A; blue: spectrometer B; green: spectrometer C).
The normalization parameters nj applied to the measured
cross section data are taken from the spline fit. The cross
sections of the fits that achieve a good χ2 < 1600 differ by
at most 0.7%. The normalization parameters nj from the
double-dipole fit would shift the data down by 1.6% at most.
Accordingly, its curve lies below the data with the normaliza-
tions from the spline fit.

Figure 5: Depiction of the elastic cross section data of the experiment from 2010 and
the different fits to the data. The different coloring of the data (red, blue,
green) displays the different spectrometers taking the data. On the ordinate
the relative difference between the determined form factor and the standard
dipole function is shown. An apparent deviation from the standard dipole
function in the data is visible. (source: [5])
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To describe the proton form factors the dipole function has been used for a long
time and only in recent years deviations from the so called standard dipole
function in the experimental data were found. The standard dipole function is
the following [8]:

GE

(
Q2
)
=

(
1−

Q2

0.71 · (GeV/c)2

)−2

. (23)

In Fig. 5 the data for over 1400 elastic cross section measurements are plotted.
An apparent deviation from the standard dipole function is clearly visible.
For a static target, indicating that the proton gains no recoil energy, the form
factors GE and GM are the Fourier transforms of the charge and magnetic den-
sity distribution of the proton respectively. If the proton gains recoil energy, the
assumption ~q2 ≈ −q2 is no longer valid, hence the form factors are no longer
directly related to the Fourier transforms of the density distributions [23]. In
the Breit frame, where the initial momentum of the proton is equal to its neg-
ative momentum after the scattering process: ~p = −~p

′
, the form factors are

still related to the Fourier transform [24, 25] of the charge or magnetic dis-
tributions. Unfortunately the Breit frame is without physical reality because
for every value of Q2 there is a different Breit frame. But there exist model
dependent methods to transform these distribution from the Breit frame to
the laboratory frame [26]. Nevertheless at low momentum transfer the form
factors are approximately related to the density distribution by a Fourier trans-
formation [8]:

GE/M (~q) =

∞∫
−∞

ρE/M(~x) · exp
(
i~q ·~x

 h

)
d3x ,

∞∫
−∞

ρ(~x)Ed
3x = 1 ,

∞∫
−∞

ρ(~x)Md
3x = µp . (24)

G is one of the form factors and ρ is the respective charge distribution. By the
virtue of the normalisation condition it follows [16]:

GE (0) = 1 ,
GM (0) = µp . (25)

By expanding the exponential function in equation 24 it is possible to deter-
mine the charge and magnetic mean square radii of the proton assuming that
ρ (x)E/M is spherically symmetric [8]:
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GE/M

(
Q2
)
=

∞∫
−∞

ρ (x)E/M

∞∑
n=0

1

n!

(
i |q| |x| cos (ϑ)

 h

)n
d3x

=

∞∫
0

+1∫
−1

2π∫
0

ρE/M (r)

(
1−

1

2

(
|q| |x|

 h

)2
cos2 (ϑ) + . . .

)
dφd cos (ϑ) r2dr

= 4π

∞∫
0

ρE/M (r) r2dr−
4π |q|2

6 h2

∞∫
0

ρE/M (r) r4dr+ . . . . (26)

The mean square charge radius is given by [8]:

〈
rE/M

2
〉
= 4π

∞∫
0

r2 · ρE/M (r) r2dr . (27)

Using this definition in equation 26, the following is obtained:

GE

(
Q2
)
= 1−

Q2
〈
r2E
〉

6 h2
+ . . . ,

〈
rE
2
〉
= −6 h2

dGE
(
Q2
)

dQ2

∣∣∣∣∣
Q2=0

. (28)

In the last expression the mean square charge radius is given by the derivation
of the form factor where Q2 equals zero. If there is any energy transfer to
the proton during the scattering process then the charge density distribution
and the form factor are not connected via a Fourier transform any more. In
this case equation 28 does not describe the mean square charge radius which
would be derived from the charge density distribution. But to be consistent
with the formalism for heavy nuclei, where the energy transfer to a nuclus
during a scattering process is negligible, the radius is still calculated in the
same way:

rE
2 ≡ −6 h2

dGE
(
Q2
)

dQ2

∣∣∣∣∣
Q2=0

. (29)

To experimentally obtain this radius, measurements at the lowest possible val-
ues of Q2 have to be performed. Applying these formulas to the standard
dipole function yields a charge radius of:

rE ≈ 0.81 fm .

2.1 Radiative corrections to elastic scattering

The cross section given by equation 20 cannot be measured. It is the lowest
order of Feynman diagrams, the Born approximation (graph (Born) in Fig. 6),
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where the scattering of the electron off the proton is mediated by just one ex-
changed virtual photon. When the cross section for electron-proton scattering
is measured, also other Feynman diagrams contribute to the cross section and
need to be included in the cross section calculation. However, since the fine
structure constant α is much smaller than 1 and every additional vertex in a
Feynman diagram contributes a factor α to the cross section calculation, these
higher order diagrams become less and less important the more vertices they
contain. Therefore only few corrections have to be included in the cross section
calculation to obtain the needed level of precision. For elastic scattering there
exist corrections to the cross section given in equation 20, which correct for
higher order contributions, shown in Fig. 6.
The radiative corrections contribute up to 30% of the total cross section [28]
and can be added as correction factors to the cross section [29]:

(
dσ
dΩ

)

Corr.
=

(
dσ
dΩ

)

Born
(1+ δ) . (30)

The factor δ is divided into different parts correcting for different Feynman
diagrams. The first factor corrects for the vacuum polarization (diagram (v1)
in Fig.6) [29]:

δvac =
2α

3π

((
v2 −

8

3

)
+ v

3− v2

2
ln

(
v+ 1

v− 1

))
Q2�m2−→ 2α

3π

(
−
5

3
+ ln

(
Q2

m2

))
,

v = 1+
4m2

Q2
, (31)

where m is the mass of the electron. The next factor is the vertex correction
(diagram (v2) in Fig. 6) [29]:

δvertex =
α

π

(
v2 + 1

4v
ln

(
v+ 1

v− 1

)
ln

(
v2 − 1

4v2

)
+
2v2 + 1

2v
ln

(
v+ 1

v− 1

)
− 2+

v2 + 1

2v

×
(
Sp

(
v+ 1

2v

)
− Sp

(
v− 1

2v

)))

Q2�m2−→ α

π

(
3

2
ln

(
Q2

m2

)
− 2−

1

2
ln2

(
Q2

m2

)
+
π2

6

)
,

Sp (x) ≡ −

x∫
0

dt
ln (1− t)

t
. (32)

Following is the correction for the emission of a real photon (diagrams (r1) and
(r2) in Fig. 6) [29]:

δR =
α

π

(
ln

(
(∆ES)

2

EE
′

)(
ln
(
Q2

m2

)
− 1

)
−
1

2
ln2
(
E

E
′

)

+
1

2
ln2
(
Q2

m2

)
−
π2

3
+ Sp

(
cos2

(
θ

2

)))
,
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(Born)
p = (EN,~pN)

k = (E,~p) k
′
=
(
E
′
, ~k ′
)

q

p
′
=
(
E
′
N, ~p ′N

)

(v1) (v2)

(v3) (v4)

(v5)

(r1) (r2)

(r3) (r4)

Figure 6: Feynman diagrams considered in the interpretation of elastic scattering data.
(source: [27])
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∆ES = η
(
E
′
el − E

′)
=
E

E
′
el

(
E
′
el − E

′)
. (33)

E is the energy of the incoming electron, E
′

is the energy of the detected scat-
tered electron and E

′
el is the energy of an assumed elastically scattered electron

at angle θ, i.e. no photon was emitted. Less important are corrections on the
proton side (graphs (v3), (v4), (v5), (r3) and (r4) in Fig. 6), because they are
suppressed by the mass of the proton [28]:

δ1 =
2α

π

(
ln

(
4 (∆ES)

2

Q2x

)
ln (η) + Sp

(
1−

η

x

)
− Sp

(
1−

1

ηx

))
,

δ2 =
2α

π

(
ln

(
4 (∆ES)

2

M2

)(
E
′
N∣∣~p ′N
∣∣ ln (x) − 1

)
+ 1+

E
′
N∣∣~p ′N
∣∣
(
−
1

2
ln2 (x)

− ln (x) ln
(
ρ2

M2

)
+ ln (x) − Sp

(
1−

1

x2

)
+ 2Sp

(
−
1

x

)
+
π2

6

))
,

x =

(
Q2 + ρ

)2

4M2
; ρ2 = Q2 + 4M2 . (34)

M is the mass of the proton, E
′
N is the energy of the scattered proton and ~p

′
N is

the momentum vector of the scattered proton.
The last correction is the Coulomb correction which is due to the interaction of
the electron with the Coulomb field of the target [30, 31, 32]:

δC = απ
sin (θ/2) − sin2 (θ/2)

cos2 (θ/2)
(35)

This correction is in the order of 1% and depends only on the angle of the
scattered electron. Now these corrections need to be combined in the following
way to correct the Born approximation and acquire a more realistic description
of the cross section [29]:

(
dσ
dΩ

)

corr.
=

(
dσ
dΩ

)

Born

exp (δvertex + δR) + δ1 + δ2 + δC

(1− δvac/2)
2

(36)

2.2 Proton radius measurements

There are different kinds of experiments which can determine information
about the proton form factors and consequently about the charge radius of the
proton. Following some of these types of experiments are being introduced.

Elastic cross section measurements

The first measurements to determine the proton form factors took place in the
1950s [1], [14]. To determine the form factors, electrons of different energies
(100MeV, 188MeV and 236MeV) were scattered from protons. At different
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angles ranging from 35◦ to 138◦ elastically scattered electrons were measured
using magnetic spectrometers. The obtained cross sections were analysed us-
ing the Rosenbluth formalism [20]. Deviations from the Mott cross section
were already detected in that experiment, see Fig. 3. The proton charge and
magnetic radii were both determined to be (0.77± 0.10) · 10−13 cm [14].
There have been further experiments [33] [34] of this kind and getting more
and more precise in their results. Also more sophisticated radiative corrections
were applied to the data as time advanced. In 2010 an experiment took place
at the Mainz Microtron (MAMI) where over 1400 different elastic cross section
measurements were performed using electron energies ranging from 180MeV
to 855MeV and a wide range of scattering angles covering a Q2 range from
0.004 (GeV/c)2 to 1 (GeV/c)2 [35], [5]. There the charge radius of the proton
was determined to be 0.879(5)stat(4)sys(2)model(4)group fm. This value was in
accordance with other measurements of that kind in the recent time. For the
analysis of these data the Rosenbluth separation was not applied. Instead a
direct fit of models for GE was applied to the cross section data and this way
the most suitable form factor parametrisation was determined. Different fit
models were tested and in the final analysis a spline fit was used [5]. Other
models which were tested were dipoles, dipoles multiplied by polynomials,
double dipoles, simple polynomials and some others, all described in detail in
Ref. [5]. In Fig. 5 the data for all elastic cross section measurements are plotted.
The different functions tested to fit the data are shown as well as the spline
model which was used for that experiment to extract the charge radius of the
proton.
It is also possible to extract the proton form factors from muon-proton scatter-
ing. Since it is rather elaborate to produce muons, not so many and rather un-
precise elastic cross section measurements have been accomplished, for exam-
ple see Ref. [36]. To improve the situation a new experiment at PSI (Paul Scher-
rer Institute) is being prepared to measure both muon-proton and electron-
proton and also antimuon-proton and positron-proton elastic scattering cross
sections [37]. The designation is to determine the charge radius of the proton
at a level of precision of about 0.01 fm. As this experiment will measure both
particle and antiparticle scattering cross sections, it is possible to determine
also the two-photon scattering amplitudes which are needed as corrections to
the elastic cross section especially for the muon-proton scattering data [37].
This renewed interest is due to results from atomic spectroscopy as described
below.

Polarization measurements

Another method to obtain knowledge about the proton form factors are po-
larization measurements [25, 38]. When scattering longitunally polarized elec-
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trons off unpolarized protons, the polarization transferred to the proton con-
tains information about the ratio of the proton form factors [39]:

GE

GM
= −

Ee + E
′
e

2M
tan
(
θ

2

)
Pt

Pl
. (37)

Here Pt are the transverse and Pl the longitudinal polarization transferred to
the proton, respectively. With these kinds of measurements the extracted ratio
of the form factors does significantly differ from unity down to the lowest
values of Q2 of the measurement in Ref. [39], which is in contradiction with
the cross section experiments where the ratio is almost unity. One possible
explanation for this discrepancy are uncertainties in the two-photon exchange
processes on which the elastic scattering cross section depends more strongly
than the polarization measurements [40, 41].

Atomic spectroscopy

Yet another method to determine the charge radius of the proton is to measure
transition frequencies in hydrogen [42]. For this purpose a transition frequency
has to be chosen which depends on the charge radius of the proton. This is
true for S-state wave functions where electrons spend most of their time inside
the proton itself. In a simplified picture the energies of the S-state in hydrogen
are given by [4]:

E (n) ' −
R∞
n2

+
L1S
n3

,

L1S '
(
8.172+ 1.56 · rE

2
)

MHz . (38)

Here rE is expressed in femtometers. R∞ is the Rydberg constant and L1S is the
Lamb shift of the 1S ground state. By measuring two different transition fre-
quencies, for example 1S− 2S [43] and 2S− 8S [44], both the Rydberg constant
and the charge radius of the proton can be determined. Otherwise it is also
possible to extract the charge radius of the proton directly from the 2S − 2P
transition which is not sensitive to the Rydberg constant [4]. The determina-
tions of the charge radius of the proton done with different transitions, see
Fig. 7, are in agreement with the nuclear cross section determinations.

Spectroscopy of muonic hydrogen

It is also possible to determine rE by measuring transition frequencies in
muonic hydrogen. Muonic hydrogen consists of a proton and a muon in-
stead of a proton and an electron like in hydrogen. Since a muon is about
200 times as heavy as an electron the probability of it being inside the proton
is increased for a factor of about eight million [45]. This indicates that muonic
hydrogen is much more sensitive to the charge radius of the proton than nor-
mal hydrogen [2]. It is possible to determine the charge radius of the proton
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H avg = 0.8779 ± 0.0094 fm

Muonic hydrogen = 0.84087 ± 0.00039 fm

Proton charge radius (fm)

0.80 0.85 0.90 0.95 1.00

2S1/2−2P1/2

2S1/2−2P1/2

2S1/2−2P3/2

1S−2S+2S−4S1/2

1S−2S+2S−4D5/2

1S−2S+2S−4P1/2

1S−2S+2S−4P3/2

1S−2S+2S−6S1/2

1S−2S+2S−6D5/2

1S−2S+2S−8S1/2

1S−2S+2S−8D3/2

1S−2S+2S−8D5/2

1S−2S+2S−12D3/2

1S−2S+2S−12D5/2

1S−2S+1S−3S1/2

Figure 2
Proton charge radii, rp, obtained from hydrogen spectroscopy. According to Equation 4, rp can best be
extracted from a combination of the 1S–2S transition frequency (20) and one of the 2S–8S,D/12D transitions
(21, 22). The value from muonic hydrogen (1, 2) is shown with its error bar (red line).

L1S � (8,172 + 1.56 r2
p ) MHz when rp is expressed in femtometers, so the finite size effect on the

1S level in hydrogen is ∼1.2 MHz.
The different n dependence of the two terms in Equation 4 permits the determination of

both the Rydberg constant and the proton radius from at least two transition frequencies in
hydrogen. Ideally, one uses the most accurately measured 1S–2S transition (20) and one of the
2S–8S,D/12D transitions (21, 22). The former contains the maximal 1S Lamb shift, L1S, and
therefore is maximally sensitive to the proton radius. The latter contain only smaller Lamb shift
contributions due to the 1/n3 scaling in Equation 4 and, thus, determine the Rydberg constant.
Figure 2 shows the difference values of the proton radius obtained by combining the 1S–2S
transition and each of the other precisely measured transitions in hydrogen. In addition, it contains
three values of the proton radius obtained from a direct measurement of the 2S–2P transitions in
hydrogen. These transitions are not sensitive to the Rydberg constant.

Figure 2 shows that all proton radius values from hydrogen favor a larger proton radius around
0.88 fm. Still, half of the individual proton radius values agree with the muonic hydrogen value of
0.84 fm at the level of 1 σ . Only the 2S–8D5/2 transition (21) disagrees with the muonic proton
radius value at the level of 3 σ . The discrepancy between the combined value from hydrogen, as
obtained in the elaborate CODATA adjustment of the fundamental constants (3), and the muonic
hydrogen value is ∼4.4 σ .

2.2. Elastic Electron–Proton Scattering

Elastic electron scattering has been used to measure the electromagnetic structure of nucleons and
nuclei for ∼60 years and has been the subject of reviews for almost as long (23, 24). For the proton
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Figure 7: Proton charge radii determined with hydrogen spectroscopy using different
transition frequencies. The result of the spectroscopy of muonic hydrogen is
also plotted. (source: [4])

by measuring the energy difference for the 2SF=11/2 − 2PF=23/2 transition where the
transition energy is given by [46]:

∆E = 209.9779(49) − 5.2262 · rE
2 + 0.0347

√
rE
2
3

meV . (39)

Here rE is expressed in fm. rE amounts to about 1.8% of ∆E. Fig. 8 shows the
measured resonance spectrum for this transition. The extracted charge radius
of the proton for muonic hydrogen is [2]:

rE = 0.84087(39) fm . (40)
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Figure 8: Resonance spectrum of the 2S− 2P transition in muonic hydrogen, the peak
displays the frequency of the measured resonance. (source: [4])

The Proton Radius Puzzle

The results from elastic cross section measurements in hydrogen and hy-
drogen spectroscopy, where the charge radius of the proton is found to
be rE = 0.8751(61) fm [3], disagree with the results from muonic hydro-
gen spectroscopy, where the charge radius of the proton is found to be
rE = 0.84087(39) fm [2]. In Fig. 9 important measurements of the charge ra-
dius of the proton are displayed to visualise the discrepancy. The discrepancy
is about 4% or 6 standard deviations. The theory of QED tells that the charge
radius of the proton should be the same for the extraction with electrons or
muons. As there exists no explanation for this discrepancy it has been called
the proton radius puzzle. To solve this puzzle more precise measurements are
needed. In particular measurements of the electron cross section at the lowest
possible values of Q2 are needed which would allow for a more precise deter-
mination of the charge radius of the proton. Dealing with measurements at
the lowest known values of Q2 is the basis of the experiment described in this
work.
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Figure 9: An overview of important measurements of the charge radius of the proton.
Full circles show findings of the scattering experiments. Full squares repre-
sent values obtained from hydrogen spectroscopy. The values determined
from the muonic measurements are represented by pentagons. The uncer-
tainties of muonic data are enlarged for a better visualization. The CODATA
value is symbolised by the dark orange line while the orange band symbol-
ises its uncertainty. (source: [47, 48])
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3
I N I T I A L S TAT E R A D I AT I O N

To measure the cross section for elastic electron scattering at very low values
of Q2 a very low beam energy or a very low detected scattering angle are
needed, as can be seen from equation 18. At the MAMI facility both are lim-
ited, and already in the experiment of 2010, mentioned above, measurements
at the lowest possible scattering angle and energy were performed [5]. The
lowest beam energy with stable beam conditions is 195MeV, this limitation is
due to the design of the accelerator. The lowest detectable scattering angle is
limited to about 15◦ because of the configuration of the spectrometer hall. This
implies that the lower limit, when measuring elastically scattered electrons,
for Q2 is 0.004 (GeV/c)2. Therefore another method is needed to be able to
measure cross sections at even lower Q2 without changing the overall setup of
the accelerator or the detection facility. One possible method to do this is to
measure not only the elastic cross section but also the radiative tail. This ap-
proach has already been used in particle physics to measure e+e− into hadrons
cross sections in a single experiment over a large range of center of mass en-
ergies [49, 50]. The radiative tail arises predominantly from electrons emitting
Bremsstrahlung, see Fig. 11 (bottom) and Fig. 12 (top). Unfortunately with the
detector setup at MAMI the emitted real photon cannot be detected, just the
scattered electron is measured. In Fig. 10 a simulation of the elastic peak and
the radiative tail in terms of the energy of the scattered electron is shown for
a beam energy of 195MeV. The boundary between elastic peak and radiative
tail in the plot is somewhat arbitrary. On the top abscissa Q2calc is calculated
only with information from the scattered electrons assuming elastic scattering.
Considering equation 18 with equation 8 gives the following equation:

Q2 =
4 · E ′2 · sin2

(
θ
2

)

1− (Mc2)−1 · (1− cos(θ))
. (41)

Equation 8 is only valid for elastic scattering. This indicates for the calculated
Q2calc in Fig. 10 an initial state radiation process has been assumed where the
incoming electron emitted a real photon before its interaction with the proton.
In this case the electron has already lost part of its initial energy and when the
scattering process takes place its energy is lower than the beam energy was. In
this case the usage of equation 41 to calculate Q2calc yields the value of Q2 at
the vertex with which the proton is probed. Consequently Q2 is lower than for
elastic scattering. Hence the cross section at lower values of Q2 than in elastic
cross section experiments can be detected without changing anything about
the setup.
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Figure 10: Simulation of the elastic peak (blue) and radiative tail (red) in terms of the
energy of the scattered electron for an incoming electron energy of 195MeV.
On the second abscissa also the Q2calc calculated with the energy and scat-
tering angle of the scattered electron is shown. The boundary between the
peak and tail is arbitrary and was for this plot chosen at 190MeV.

However, if the electron emits a real photon after the scattering process, the
so called final state radiation (FSR), then the usage of equation 41 is no longer
valid and therefore the calculated Q2calc as well as the form factor it implies is
not correct. The measured spectrum in Fig. 10 arises from initial as well as
from final state radiation and of course further Feynman processes. Therefore
the calculated Q2calc and the form factor it implies which is displayed on the
second abscissa is correct only for a part of the events. To learn the overall
correct Q2 and form factor distribution a sophisticated simulation is used [51].
In the simulation the Bethe-Heitler diagrams, initial and final state radiation, as
well as the Born diagrams are explicitly calculated, see Fig. 11 and 12. Higher
order diagrams are considered as effective corrections. Thus information about
Q2 and the underlying form factor distribution are available and can be used
to distinguish initial from final state radiation. In Fig. 13 the correct Q2 is
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displayed on the ordinate as well as Q2calc which is calculated using only the
scattering angle θ and E

′
.

(elastic)
p = (EN,~pN)

k =
(
Ee,~ke

)
k
′
=
(
E
′
e,~k

′
e

)

Q2 = −q2 = −
(
k− k

′
)2

p
′
=
(
E
′
N,~p

′
N

) proton

electron

(BH i) p = (EN,~pN)

k =
(
Ee,~ke

)
k
′
=
(
E
′
e,~k

′
e

)

Q2 = −q2 = −
(
k− k

′
− q

′
)2

p
′
=
(
E
′
N,~p

′
N

)

q
′
=
(
|~q
′
|,~q
′
)

Figure 11: Top: Feynman diagram for elastic electron-proton scattering. Bottom: Bethe-
Heitler diagram where the electron emits a real photon before the scattering
process, also called initial state radiation.

In the plot the downwards curved red line is caused by initial state radiation.
In this case Q2 of the initial state radiation diagram is the same as if it is
calculated from E

′
and θ using equation 41. The horizontal red line in the

plot is caused by final state radiation. In this case Q2 is the same as for elastic
scattering where no photon is emitted because the photon is emitted after the
scattering process hence it does not affect Q2. For most events the photon
is emitted in the direction of the electron emitting it, see Fig. 14. The events
between, above and below the two distinctive red lines are caused by photons
emitted in directions different than the directions of the incoming or outgoing
electron.
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Figure 12: Top: Bethe-Heitler diagram where the electron emits a real photon after the
scattering process, also called final state radiation. Middle: Born diagram
where the proton emits a real photon before the scattering process. Bottom:
Born diagram where the proton emits a real photon after the scattering
process.
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Figure 13: Results of the full simulation as a function of Q2 at the vertex on the or-
dinate and the energy of the scattered electron and Q2calc on the abscissa
for a beam energy of 195MeV. Q2calc is calculated using the energy of the
scattered electron and θ assuming only an ISR process. (source: [52])
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Figure 14: Simulation as a function of the angle of the emitted photon θLab
γ with respect

to the direction of the beam. The scattered electron was detected at about
15◦. The peak at about 0◦ arises from electrons emitting a photon before the
scattering process (ISR), the peak at about 15◦ arises from electrons emitting
a photon after the scattering process (FSR).

By measuring just the scattered electron during the actual experiment together
with a simulation it is possible to distentangle the different contributions in the
radiative tail. In the simulation the only parameter which can be varied is the
proton electric form factor. As this experiment will take place at a scattering
angle of about 15◦ and low Q2 the contribution of GM to the cross section is
below 0.5%. Therefore it suffices to use the already known behaviour of GM
for the simulation from Ref. [27]. Then the only free parameter is GE and this
has to be adjusted in order to match the data from the experiment and the data
from the simulation. This is the idea behind the usage of initial state radiation
in order to acquire the proton electric form factor at very low values of Q2

without changing the overall setup of the MAMI facility.

3.1 Next order corrections

Using the Feynman rules for the leading order Bethe-Heitler and Born dia-
grams in Fig. 11 and 12 the amplitudes are as follows (here in Heaviside-
Lorentz units):
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ε is the photon polarization vector, m is the electron mass, M is the proton
mass and p, p

′
, k, k

′
and q are four-vectors like in Fig. 11. To calculate the

cross section, equations 15 and 16 have to be used.
But as already mentioned also higher order diagrams contribute to these four
diagrams. Therefore to get even more precise results the next order diagrams
can be used as an effective correction. These diagrams need different efforts to
be calculated. Diagrams which contain loops take a lot of time to be calculated,
but fortunately they do not vary much with respect to Q2 for this kind of
experiment and can be used as an effective correction for a whole setup, see
also chapter 6.1. These diagrams are visualised in Fig. 15. A more detailed
description about these diagrams may be found in Ref. [29].
Another group of diagrams considered as effective correction to the first order
exact calculation are soft photon corrections on the electron side. These dia-
grams are shown in Fig. 16. The correction for these diagrams are currently
approximated as an effective correction using elastic corrections to the cross
section, see chapter 6.1, applying the following expression [29]:
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All variables in the brakets in equation 43 are explained in Ref. [29]. δR repre-
sents the finite part of the correction and contributes to the overall cross section.
The rest cancels out against corresponding terms in the virtual corrections. δR
is calculated in the limit that Q2 � m2 [29]:
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To calculate the correction given by equation 44 a special coordinate system is
needed, see Ref. [29]. The energies Ẽe and Ẽ

′
e and the scattering angle of the

electron θ̃ are given in this coordinate system by:
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Here l is the four-vector of the soft photon.
There are also corrections on the proton side which are again included in terms
of an elastic approximation see chapter 2.1, equation 34. The diagrams for these
processes are illustrated in Fig. 17. In the same way the Coulomb correction is
applied like in equation 35.
These corrections then need to be applied in the following way to the Bethe-
Heitler and Born cross section analogous to equation 36 [29]:

(
dσ
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)
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=

(
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exp (δvertex + δR) + δ1 + δ2 + δC

(1− δvac/2)
2

. (46)
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Figure 15: Next order virtual correction diagrams to the Bethe-Heitler and Born dia-
grams.
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Figure 16: Next order soft photon emission contribution on the electron side to the
Bethe-Heitler and Born diagrams. The soft photons are colored in red.
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Figure 17: Next order proton vertex correction diagrams. The colors are used to make
the diagrams clearer in the cases where the lines cross each other.
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4
E X P E R I M E N TA L S E T U P

Figure 18: Floor plan of the MAMI facility; the red lines display the electron beam lines.
The actual experiment took place in the hall labeled A1. (source: [53]).

The experiment to determine the proton electric form factor took place at the
MAMI (Mainz Microtron) facility. The facility encompasses an accelerator and
three experimental areas: X1, A2 and A1, as well as the new MESA accelera-
tor which is under construction, see Fig. 18. The MAMI accelerator provides
an electron beam and consists of five different stages: injector, RTM1, RTM2,
RTM3 and HDSM. The injector is a linear accelerator and has an extraction
energy of 3.97MeV. RTM1, RTM2 and RTM3 are race track microtrons. They
have an extraction energy of 14.86MeV, 180MeV and 855MeV respectively. The
HDSM is a harmonic double sided microtron and its nominal extraction energy
is 1.5GeV [54]. For experiments beam energies between 160MeV and 1604MeV
in various steps can be delivered from RTM3 or the HDSM [55]. The (1σ) en-

33



ergy spread is 30 keV at 855MeV and 110 keV at 1.5GeV [56]. The accelera-
tor produces a high quality continuous wave electron beam with a maximum
beam current of 100µA [57]. There are two different electron sources, one for
an unpolarized and one for a polarized beam.

Figure 19: Picture of the A1 hall where the experiment was performed. The three
spectrometers A (red), B (blue) and C (green) are visible. The shielding
houses of Spec. A and Spec. C are opened and the detectors are visible.
(source: [27])

This experiment took place in the A1 experimental hall using unpolarized
beam energies of 495.25MeV, 330.26MeV and 195.15MeV with beam currents
ranging from 10nA to 1µA. There are three spectrometers called Spec. A,
Spec. B and Spec. C, see Fig. 19. For the measurement Spec. A and Spec. B were
used. Spec. A consists of a quadrupol, a sextupol and two dipoles, see Fig. 20
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Spec. A Spec. B

Central scattering angle [deg] 23− 155 15− 57

Maximum central momentum [MeV/c] 665 810

Maximum solid angle [msr] 28 5.6
Momentum acceptance ±10% ±7.5%
Momentum resolution 10−4 10−4

Angular resolution at target [mrad] 6 3 6 3

Position resolution at target [mm] 3− 5 6 1

Length of central path [m] 10.75 12.03

Table 1: Main parameters of the spectrometers A and B. The momentum acceptance is
with respect to the central momentum.

left. The quadrupol and the sextupol are used to enlarge the acceptance in the
non-dispersive plane and to correct for optical aberrations respectively [58, 59].
To achieve a high momentum resolution a point-to-point focusing was chosen
in the dispersive plane. In the non-dispersive plane a parallel-to-point focusing
was chosen in order to determine the scattering angle with high precision [58].
Spec. B consists only of a clamshell dipole [58], to be able to measure at small
scattering angles, see Fig. 20 right. It has a point-to-point focusing in the dis-
persive as well as in the non-dispersive plane. The spectrometers’ main pa-
rameters are listed in Table 1. They are installed such that they can be rotated
around a central axis for measuring at variable scattering angles. At their pivot
the target is installed. The electrons from the accelerator interact with the tar-
get and scattered particles can be detected using the spectrometers’ detector
setup.
The setup of the detectors is basically the same for both spectrometers. It
consists of vertical drift chambers (VDCs) for track reconstruction, plastic scin-
tillators for triggering and a gas Čerenkov detector for particle identification,
see Fig. 21. The detectors are placed in a shielding house, see Fig 19, with 40 cm
thick Boron carbide loaded concrete walls covered with a 5 cm thick layer of
lead on the inside [58], to prevent particles randomly hitting the detectors and
causing background signals.
After exiting the magnetic field of the spectrometer the particles first traverse
the VDCs to achieve the best possible position resolution. A VDC is a chamber
filled with gas through which wires are spanned. Particles passing through ion-
ize the gas and the wires detect the ejected electrons resulting in a detectable
electronic signal, details may be found in Ref. [60]. VDCs are well suited for
determining particle tracks with a high resolution. Multi wire proportional
chambers for example have a worse resolution than VDCs [60]. Also horizontal
drift chambers have a worse resolution than VDCs. And if a wire stops work-
ing the efficiency in a horizontal drift chamber is much more reduced than in a
VDC [60]. There are four VDCs installed in each spectrometer in the vicinity of
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Figure 20: Left: Magnet arrangement of Spec. A. Right: Magnet arrangement of
Spec. B. (source: [27])

the focal plane. Two of them are the so called X-layers and two the so called S-
layers whose wires are rotated for 40◦ with respect to the X-layers. Ideally two
VDCs would be enough to determine the two coordinates of the crossing par-
ticle as well as its angles with respect to the chambers. However, by installing
two further VDCs 20 cm above the first two VDCs the angular resolution was
improved by an order of magnitude [58]. The resolution is approximately
100µm for the spatial coordinates and 1mrad for the angular coordinates [60].
To optimally determine the coordinates of the particles the drift velocity of the
ejected electrons in the gas mixture has to be known. Therefore the drift veloc-
ity was monitored during the whole experiment and the best drift velocity was
determined from the data. This procedure is described in Ref. [27]. During
the analysis the information of the particles crossing through the VDCs are
inserted into so called transfer matrices. These matrices are polynomials and
they emulate the magnetic properties of the spectrometer. The result after their
application are the properties of the particle after the scattering process at the
scattering vertex in the target. The momentum of the particle, its coordinate
along the beam direction and the two Cartesian angles are reconstructed.
After the VDCs the particles pass through two layers of scintillators. The first
layer (dE-plane) is 3mm thick and used as a timing detector for low energy
protons or deuterons [58]. The second layer (ToF-plane) is 10mm thick and
provides a fast timing signal which can be used as a reference signal for the
VDCs [58]. Each layer consists of about 15 scintillator bars, which are read out
by photomultiplier tubes. The scintillator bars also determine the energy de-
position of the particles and hence can also be used for particle identification
purposes.
A gas Čerenkov detector is passed at last. It can also be used as a trigger. In
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Figure 21: Model of the detector equipment. A particle first crosses the four layers of
VDCs (blue) , then two layers of scintillators (red) and at last a gas Čerenkov
detector (green). (source: [27])

normal operating mode it is used to distinguish electrons or positrons, depend-
ing on the polarization of the spectrometer’s magnets, from heavier charged
particles. The detector is filled with a gas called 1,1,1,3,3,3-Hexafluoropropane
which has an index of reflection of 1.001045 [61]. When charged particles are
faster than the velocity of light in this gas, Čerenkov light is emitted which
is detected by photomultiplier tubes. For this kind of gas only electrons or
positrons with momenta higher than 9MeV/c can produce Čerenkov light. The
next heavier charged particles, pions, need momenta higher than 2.5GeV/c to
produce Čerenkov light, which is not possible in this facility [62].
As the goal of this work is to determine the proton electric form factor, a target
of protons is needed. The best target for this experiment is hydrogen. To
obtain a small statistical uncertainty, it is necessary to yield a high luminosity.
Therefore employing hydrogen in a liquid state is much more convenient than
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gaseous hydrogen. In the A1 hall a cryogenic liquid hydrogen target has been
used many times before [5, 63], see Fig. 22. The target cell has an oval form
of 49.5mm length and 11.5mm width and is surrounded by 10.16µm of havar
foil. The hydrogen inside the target cell is circulated through a so called “Basel-
Loop” by a ventilator to prevent local variations of temperature in the target,
see Fig. 22 (right). Inside the target chamber a heat exchanger is installed to
absorb energy from the Basel-Loop. It is connected to a secondary loop filled
with hydrogen which is cooled by a Philips compressor. The hydrogen inside
the target is undercooled for 1 − 2K to ensure that little local temperature
variations do not evaporate the hydrogen [64].
The scattering chamber including the target cell is under vacuum. The chamber
consists of aluminium and has windows where the scattered electrons enter
the spectrometers. Through these windows which are made of 120µm thick
Kapton, a polymide film, some amount of air still can diffuse into the chamber
and then freeze at the target cell. To even further reduce the possible amount
of these cryogenic depositions at the target cell, the windows were sealed with
a 6µm thick film of Kevlar.

Scattering chamber

"Basel-Loop"

Heat
exchangerVentilator

Target cell

49.5 mm

11.5 mm

Electron-
beam

liquid
hydrogen

10 µm Havar

Figure 22: Top left: Geometry of the target. Bottom left: Picture of the target. Right:
Model of the target chamber. (source: [27])
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To monitor the position of the beam at the target a beam stabilisation modul
was installed. Every three minutes it stopped the data acquisition and changed
to a diagnostic mode. During this time the beam position was checked auto-
matically and corrected to a predefined position if any change in its position
would have been detected. Whilst this time also a pA-meter was read out to de-
termine the beam current. The pA-meter works like a common ampere meter
by measuring the potential drop across resistors. During the measurement the
electron beam is deflected on a circular aperture, while during regular beam
time the beam is guided through the circular aperture. At this stage in the ac-
celerator the beam has an energy of about 100 keV. The aperture is well isolated
and is grounded across the pA-meter which measures the current [65]. The pA-
meter was used to measure currents smaller than 1µA. For currents greater
than 1µA a Foerster probe is used instead [27]. A Foerster probe consists of a
magnetically susceptible core surrounded by two coils of wire. Through one
coil an alternating current is sent and this current is compared with the one in
the second coil. In the absence of an external field the two currents match, but
in the presence of an external field they are shifted depending on the magnetic
field and such can be used to reliably determine the current of the beam in the
region above 1µA [66, 67]. Parallel to the beam monitors Spec. A was used
to monitor the relative beam luminosity. For the further analysis Spec. A was
rather used than the pA-meter because it was more stable and its behaviour is
known better. There are also other advantages by using the relative luminosity
over the beam current for the analysis. For example any possible fluctuation
in the density of the liquid hydrogen or in the beam position are considered in
the luminosity measurement, but if only the beam current is measured, such
effects would have to be considered by external determinations.
As a supplementary beam current measuring device a SEM (secondary elec-
tron emission monitor) was installed behind the target cell, still in the scatter-
ing chamber. The monitor consisted of three aluminium foils, the beam had to
pass. The beam ejects electrons from the foils [68]. The two outer foils were
kept at a positive potential to absorb low energy secondary electrons. The foil
in the middle was connected to an electronic integrater measuring the charge
lost by the foil due to secondary electron emission [69]. The charge was con-
verted to a frequency and then read out. However, the overall performance of
the SEM was not precise enough to determine the beam current reliably, see
Fig. 23. This figure shows that while the rate of the data acquisition is quite
stable the rate of the SEM varies for over 20%. Consequently it could not be
used to determine the beam current.
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Figure 23: Comparison of the SEM rate (top) to the data acquisition rate (bottom). The
rate of the SEM varies for over 20% while the rate of the data acquisition is
almost stable. The short periods every three minutes during which the rate
drops to 0 is the above mentioned diagnostic mode. During this time the
beam position was checked and the pA-meter was read out.

The actual data taking took place from 29 July to 4 August 2013 and from 12

August to 2 September 2013. During the experiment Spec. B was used for the
cross section measurement and Spec. A was used to monitor the luminosity.
Spec. B was kept at the same angle with respect to the beam line at 15.207◦,
which is the smallest possible angle the spectrometer can be positioned to.
Spec. A was placed at 60◦ for the first part of the experiment and at 50◦ for
the second part of the experiment. Originally it had been planned not to move
Spec. A at all, but the monitoring of the target walls and the cryogenic deposi-
tions was considered to be more convenient at 50◦. By keeping the conditions
of Spec. A during each energy setup constant, systematic uncertainties in the
luminosity determination were drastically reduced. For Spec. B only the mag-
netic field was changed after each setup to measure the radiative tail of the
elastic peak and such measure the cross section at smaller Q2. In Table 2 an
overview of the beam time is given. In appendix A all setups are listed. The
setups were chosen such that they did overlap for one half of the acceptance
with their neighbouring setups. This way it was possible to check that the se-
tups in the overlapping regions gave consistent results. For each setup about
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Beam Energy [MeV] 495.25 330.26 195.15
Duration [days] 5.7 6.6 11.2
Setups 9 12 21

Central Momentum [MeV/c] 289.2− 485.9 155.9− 325.9 48.0− 193.6
Q2 Range [10−3 · (GeV/c)2] 6.01− 17.06 1.74− 7.64 0.16− 2.69

Table 2: Overview of the beam time. Each setup has a different central momentum.
The uncertainty of the beam energy is always 0.16MeV. In appendix A all
setups are listed

107 events were recorded for Spec. B aiming, for a precision of one percent
in the final analysis. The data were divided into 30 minutes lasting runs. To
obtain this number of events for each setup about 10 runs were taken. The
magnetic field of Spec. B was measured before every run. After each setup
the magnetic field was changed to record the next part of the radiative tail.
The radiative tail was measured at three different beam energies, such that the
radiative tail of one energy measurement did overlap with the elastic peak of
the next measurement. This way it was possible to justify usage of the initial
state radiation method by comparing the results of the overlapping parts of the
measurements.
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5
C A L I B R AT I O N S

Prior to the actual form factor determination a thorough investigation of pa-
rameters concerning the data had to be performed, thus ensuring that the later
extracted values of the form factor are not biased by some external influence.
For this purpose the stability of the spectrometers’ magnetic fields, the perfor-
mance of the detectors and the density of the hydrogen inside the target had
to be examined.
In Fig. 24 the different coordinate systems used during the analysis are shown.
The coordinate system called vertex (x, y, z) has its origin at the center of the
target. The vertex coordinate z, which is often used, has the same direction as
the incoming beam. The non-dispersive angle is the angle in the floor of the
spectrometer hall, while the dispersive angle is the angle with respect to the
floor plane. The focal (x, y) coordinate system is in the focal plane of each spec-
trometer and it is parallel to the plane of the detectors. The tracks determined
with the VDCs are given in this system.

5.1 Detector calibration

The overall performance of all detectors needed to be checked such that ineffi-
ciencies could be corrected for in the following analysis. There the Čerenkov
detector was used to make a cut accepting only electrons. Therefore it was
important to know the performance of the Čerenkov detector for the whole
momentum acceptance. Hence it was necessary to measure elastic electron
peaks distributed over the whole momentum acceptance. For the calibration of
the Čerenkov detector dedicated data was used. During these beam times the
central momentum was changed only for a few per cent such that the measured
elastic peak was at a different position in the momentum acceptance, ensuring
that almost the whole momentum acceptance was covered with elastic peaks.
To determine the Čerenkov detector’s efficiency first a cut accepting the elastic
peaks was made as well as a cut accepting good tracks in the VDCs requiring
that in every single layer more than two wires detected a signal. To determine
a track, a signal in two VDC layers would have been enough. For each of these
selected events the Čerenkov detector also should have detected a signal. Then
the ratio of these selected events to the events where the Čerenkov detector
also did have a signal was made. This ratio determined the efficiency. The
efficiency over the whole momentum acceptance for the 330MeV beam energy
setting of Spec. B is shown in Fig. 25. The results for Spec. A and the other
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Figure 24: Model of the A1 hall: In particular, the coordinate systems used during the
analysis are highlighted. (modified version of source: [70])

energies are similar. The gaps in the plot are caused by the lack of data for
these momenta. The efficiency depending on the momentum of the scattered
electrons is almost constant and the data were corrected applying this informa-
tion. In Table 3 the Čerenkov detector’s mean efficiency for the three energy
settings for Spec. A and Spec. B are listed.

Beam Energy [MeV] Efficiency Spec. A Efficiency Spec. B
495.25 99.85% 99.69%
330.26 99.83% 99.75%
195.15 99.64% 99.20%

Table 3: Efficiency of the Čerenkov detectors for Spec. A and Spec. B depending on
the beam energy. The uncertainty of the beam energy is always 0.16MeV, the
uncertainty of the efficiency is 0.12% for all setups.
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Figure 25: Efficiency of the Čerenkov detector depending on the momentum of the
scattered electrons. The momentum is described as the deviation from the
central momentum of Spec. B. Where the gaps in the plot are, no data was
available.

The efficiency of the trigger detector was also determined. During the experi-
ment the thick ToF scintillator layer was used for triggering, hence dedicated
data had to be taken to determine its efficiency. For this purpose the thin layer
called dE was used as trigger detector. In the analysis an additionally cut on
the Čerenkov detector was made to be sure that the particles were really elec-
trons and had not already been stopped by the thin dE layer. The efficiency
was calculated as the ratio of these events when the ToF layer also had a signal
divided by all events. In Fig. 26 the efficiency is displayed for Spec. A and
Spec. B. The dips in the efficiency arise from the edges of the scintillator bars,
the sharp dip at −10% for Spec. A and about ±8% for Spec. B are the limits
of the spectrometers’ acceptances. As the efficiency is not homogenous over
the momentum acceptance, in the analysis the data were corrected according
to the efficiency given in Fig. 26.
The VDCs’ efficiency needed to be determined also, since they provide infor-
mation about the momentum and the scattering angle of the particles. The
efficiency of a single VDC layer is not important, relevant is the efficiency for
the track reconstruction. To obtain enough information to reconstruct a parti-
cle track at least one X-layer and one S-layers has to have a signal. In a first

45



80%

85%

90%

95%

100%

-10% -5% 0% 5% 10%

E
ffi

ci
en

cy

Deviation from central momentum

Spec. A
Spec. B

Figure 26: Efficiency of the ToF scintillator layer for Spec. A and Spec. B depending on
the momentum of the scattered electrons. The momentum is described as
the deviation from the central momentum of Spec. A or Spec. B.

step the efficiency of each single layer was determined and then the track effi-
ciency with the above mentioned condition was calculated. Fig. 27 displays the
efficiency of the first X-layer of Spec. B for a beam energy of 330MeV depend-
ing on the two spatial coordinates. The efficiencies for the other energies and
layers are similar. The white area is out of the acceptance and consequently
the efficiency is 0. Fig. 28 shows the track efficiency for the same conditions as
in Fig. 27. As the efficiency is almost constant with respect to the focal plane
coordinate y, in the analysis the efficiency was corrected with respect to the
focal plane coordinate x, as can be seen in Fig. 29, which is the projection of
Fig. 28 on the focal plane coordinate x.
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Figure 27: Efficiency of the first X-layer of Spec. B for a beam energy of 330MeV de-
pending on the two spatial coordinates. The white area is out of the accep-
tance and therefore the efficiency is 0.
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Figure 28: Track efficiency of Spec. B for the 330MeV beam energy setting depending
on the two spatial coordinates. The white area is out of the acceptance and
therefore the efficiency is 0. (source: [52])
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5.2 Determination of external effects

Besides of the detector efficiencies there were different other effects which
could influence the extraction of the form factor and therefore were studied.

Precision of the spectrometer’s central momentum

The knowledge of the spectrometers’ magnetic field is very important. Using
the track information of the VDCs the momentum of the scattered particle
could be determined. But the algorithm needed the spectrometers’ magnetic
field as an input variable in order to work. To measure the magnetic field
each spectrometer is equipped with Hall probes as well as with a NMR (Nu-
clear Magnetic Resonance) system [27]. The NMR system is more stable than
the Hall probes, whose results are more temperature and radiation dependent.
Consequently the NMR results were used as input variables for the VDCs’
tracking algorithm. For every run recorded during the experiment the mag-
netic field of Spec. B was measured. To check the stability during the setups,
all values belonging to one setup were averaged and then the relative difference
of the average was evaluated for all runs depending on the NMR system, the
Hall probe, and the current of the dipole, see Fig. 30 and Fig. 31. The standard
deviation for these values of the NMR system is 8 · 10−5 which can be regarded
as the relative precision of the momentum determination. The standard devi-
ation for these values of the Hall probe is 2 · 10−4 which is larger than the one
for the NMR system as expected. The standard deviation for these values of
the current measurement is 9 · 10−4. There is no apparent correlation between
the NMR system and the other two, indicating that the variations arise from
the uncertainties of the devices.

Angle of the spectrometer

In addition to these examinations also the accuracy of Spec. B’s angular posi-
tion was checked. To measure the angle, each spectrometer is equipped with a
readout system. This system was reviewed by measuring the scattering angle
of the spectrometer with a theodolite and comparing it with the value of the
readout system. Thereby a small deviation was detected, see Fig. 32. A linear
function was fitted to describe this deviation:

Readout Angle − Measured Angle = −0.034 · Readout Angle − 0.00056◦ .

Using this result the read out angle of the spectrometer system of 15.25◦ was
corrected to the above mentioned 15.207◦.

Density of liquid hydrogen

A parameter which had to be monitored during the data taking was the den-
sity of the liquid hydrogen inside the target cell. During the experiment the
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Figure 30: Relative deviations of the NMR readouts from the average versus the rel-
ative deviations of the Hall probe readouts from the average. The orange
ellipse displays the 1σ confidence ellipse.

temperature and the pressure of the hydrogen inside the target were measured.
With these values the density of the hydrogen could be determined. But first
the sensors themselves were calibrated. For that purpose the theoretical satu-
rated vapour trend [71] was compared to the measured values when warming
up the undercooled hydrogen, see Fig. 33. The measured values of the pressure
sensor were compared to a local weather station after the beam time, when the
target cell was ventilated. It was detected that the pressure sensor had an offset
of 21mbar. The data were corrected for this value but yet they did not match
the theoretical trend. Thus the temperature data were also corrected for 0.06K
to match the theoretical trend, the result is the red curve in Fig. 33.
The density of the undercooled hydrogen was calculated with the Hankinson-
Thomson model [72]. The calculated density of the hydrogen inside the target
depending on the time after the beginning of the experiment is shown in Fig. 34.
During the time without data the experiment was halted. There was practically
no density fluctuation during the entire experiment, the fluctuations which can
be seen are basically only due to the resolution of the sensors.
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6
D ATA A N A LY S I S

In the analysis the acquired data were compared to a simulation to extract
the proton electric form factor. Also background events had to be considered
and were simulated. For the analysis a software package called Cola++ was
used [27]. Cola++ reads the raw data from the experiment and determines the
tracks of the scattered electrons at the VDCs. Then it applies the transfer ma-
trices to calculate the scattering angle, momentum and scattering vertex of the
electron with respect to the beam axis. A second program, Lumi++, was used
to determine parameters related to the luminosity. For this experiment Lumi++
was used only to determine the dead time of the spectrometers, while Spec. A
was used to determine the relative integrated luminosity for every data run.
A third program called Simul++, described in the next section, simulated the
cross sections and acceptances for the interactions of electrons with hydrogen,
havar, nitrogen and oxygen among others.

6.1 Simulation

The purpose of a simulation is to mimic the behaviour of real experiments.
Therefore it needs algorithms describing reality as good as possible. The simu-
lation for this experiment did not only calculate the cross section for an electron
scattering from a proton in the Born approximation, but it exactly calculated
the Bethe-Heitler and Born diagrams together with higher order corrections,
which were added as effective corrections to the cross section, see chapter 3.1.
It also modelled the energy losses of electrons traversing the target cell and
spectrometer. The acceptance of the real spectrometer was also included into
the simulation. In the simulation the incoming electron beam was first gener-
ated. Its properties, the energy and momentum, were known from the accelera-
tor data. Then a scattering vertex in the interior of the target cell was generated.
For this a model of the target cell was implemented, see also appendix B. For
this model the geometry of the real cell was employed. It consisted of a havar
foil confining the hydrogen in the inside. It was also possible to add a layer
of cryogenic depositions on top of the havar foil. After the generation of the
scattering point the electron was corrected for external Bremsstrahlung [73]
and for the multiple scattering effects in the region from the entrance point to
the target cell to the scattering point. Next the cross section for the scattering
process:
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e−p→ e−
′
p
′
γ

was calculated. In the simulation the four-vectors of all particles were known.
The amplitudes in equation 42 were evaluated explicitly. Detailed information
about this calculation may be found in Ref. [27].
The calculation of the cross section for hydrogen was done in several steps.
After the generation of the scattering angles of the scattered electron, see ap-
pendix C, the energy of the scattered electron was generated with an approxi-
mate angular distribution given by the expression:

E
′
= E

′
el · r

1
t , t =

2 ·α
π

(
ln
(
Q2

m2

)
− 1

)
, (47)

where r is a random number uniformly distributed over the interval r ∈ [0, 1].
In the next step the angle φ between the emitted photon and the electron
emitting it was generated with the following expression [27]:
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The inverse of the function F (r) was calculated with the bisection method
which could be applied since F is a monotone function [74]. Then the cross
section for the event was calculated applying equations 42 and 16. The distri-
butions used for generating the energy of the scattered electron and the photon
angle approximate the correct cross section and such the uncertainty of the cal-
culated events was smaller than with a uniform distribution. This approach is
called importance sampling [74]. In the end the weight for the generation of the
scattered electron energy and the photon angle were multiplied with the cross
section and the weight of the generation of the energy of the scattered electron
was taken out [27]. Applying this approach for the generation of the scattered
electron energy also had a second advantage. In the limit of the energy of the
emitted photon becoming 0 the cross section is divergent. Therefore there was
a limit in the simulation for the smallest photon energy. This limit should be
as small as possible, because events, where the energy of the emitted photon
is very small, have a very large cross section. By using the above mentioned
distribution for the generation of the scattered electron energy this limit could
be as small as 10−10 GeV due to programming knacks, instead of 10−5 GeV
when using a uniform distribution. Hence, the cross section calculation was
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Figure 35: Contribution of the virtual corrections to the cross section for the setting
ISR_330_03 (left) and ISR_330_04 (right) depending on the polar and az-
imuthal angle of the emitted photon, given in the center of mass system.

more precise. After the scattering process the Bremsstrahlung and multiple
scattering of the scattered electron from the scattering point to the entrance
of the spectrometer were calculated. For a sketch of the electron’s path see
appendix B. At this point also the effective radiative corrections described in
chapter 3.1 were employed. The calculation of the effective virtual corrections
described by the diagrams shown in Fig. 15 was computational very costly,
therefore a stand alone simulation was used to calculate these corrections once
for each momentum setting. This could be done because the relative difference
for neighbouring momentum settings was small. As an example the correction
for two neighbouring settings is shown in Fig. 35. The correction depended
on the scattering angle of the emitted photon which was known in the simula-
tion. The overall effect of the different corrections on the cross section for the
330MeV beam energy setting is displayed in Fig. 36. There can be seen that
especially the next order soft photon correction was very important for the
simulation. The energy loss contribution of the electrons in the target cell and
the spectrometer’s entrance windows was crucial to the simulation of the cal-
culated energy of the scattered electrons, as the position of the elastic peak and
consequently the radiative tail would have been shifted without this correction.
The contributions of the external Bremsstrahlung, the proton correction and
the virtual correction were smaller but still of vital importance as this experi-
ment aimed for a precision better than one per cent.
The results of these calculations were the four-vectors of the scattered electron
and emitted photon and the weight for the event determined during the cross
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section calculation. These results could then be used for further analysis where
cuts were applied on certain parameters.
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Figure 36: Contribution of different corrections to the full cross section calculation for
the 330MeV setting depending on the energy of the scattered electron.
Top: In red the complete simulation is plotted, in green the complete sim-
ulation without the contribution of the next order soft photon correction is
shown and in black the complete simulation without the contribution of the
next order photon correction and external Bremsstrahlung and the energy
loss of the electron during its way through the target cell into the spectrom-
eter is presented.
Bottom: The ratio between the simulation without the proton corrections
and the complete simulation is plotted in blue, in indigo the ratio between
the simulation without the effects of the external Bremsstrahlung and the
complete simulation is shown and in orange the ratio between the simu-
lation without the virtual corrections and the complete simulation is pre-
sented.

Background simulation

To complete the analysis of the experiment, simulations for electron scattering
from nitrogen, oxygen and havar targets were needed because processes on
these nuclei contributed background to the experimental data. Havar is an
alloy of 42.5% cobalt, 20% chromium, 17.86% iron, 13% nickel, 2.8% tungsten,
1.6% molybdenum, 0.2% carbon and 0.04% beryllium [75]. To model the cross
section for these nuclei the Mott cross section, see equation 7, multiplied by an
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appropriate form factor was used [15]. These form factors were approximated
by the so called Helm’s model [76]. Within this model is the charge distribution
modelled as a convolution of a homogeneously charged sphere with radius R
and a Gaussian distribution of variance σ:

ρH (r,R,σ) = ρh.s. (r;R) ∗ ρG (r;σ) . (49)

The form factor is given by the product of the Fourier transforms of ρh.s. and
ρG:

FH (q) = Fh.s. (q) · FG (q)

=
3

(qR)2

(
sin (qR)

qR
− cos (qR)

)
· exp

(
−0.5 (qσ)2

)
. (50)

The proper values for R and σ for the considered elements are given in Ref. [76].
For the nitrogen form factor another model is used, which is described in
Ref. [77]. There the form factor is given as follows:
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J is the angular momentum of the ground state of nitrogen, therefore J = 1.
A = 14 is the atomic number of nitrogen and Z = 7 its charge number. aP is
0.63 fm according to Ref. [77]. a = 1.75, λ = 0.44 and µ = 30 were determined
by fits to the data taken in Ref. [76]. In Fig. 37 a comparison between nitrogen
data and the model given with equation 51 is shown [76].
The simulation for nitrogen, oxygen and havar was much more simple than
the one for hydrogen. The radiative corrections were considered in the peak-
ing approximation. This was not problematic during the analysis because with
the data from the target walls the simulation was corrected. This was possible
since in the vertex plots the peaks of the walls could clearly be identified, while
the underlying contribution of hydrogen was modelled exactly with the simu-
lation, see Fig. 49. Therefore any discrepancy between data and simulation in
the region where the peaks from the walls were, was assumed to be due to the
approximated form factor model of the simulation for nitrogen, oxygen and
havar.
The generation of events was done such that they appeared only at the location
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Figure 37: Fit to elastic nitrogen data at 400MeV beam energy. M1 corresponds to F2T
in equation 51 and the sum of C0 and C2 corresponds to F2L in equation 51.
The solid line is the total curve of the three terms. (source: [76])

of the foil or the cryogenic depositions. The calculation of the energy loss as
the electron passes through the target cell into the spectrometer is explained in
appendix B.

Pion simulation

When measuring the radiative tail it is also possible to detect electrons with low
momentum which do not originate from elastic scattering processes. As for this
experiment the beam energy was always high enough to produce pions, some
events in the radiative tail originated from the pion production processes which
contributed to the background in the data. To consider these contributions
the MAID model which was already included in the Simul++ software was
used [78]. With this simulation the two possible processes:

e− + p→ e
′− +n+ π+ ,

e− + p→ e
′− + p

′
+ π0 ,
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from which the spectrometer could detect a scattered electron were modelled.
The electrons originating from pion production contributed up 14% of all
events. But the contribution is only important in the radiative tail, if the elec-
tron lost enough energy to produce a pion, see Fig. 50 (bottom).

6.2 Data preparation

In the first step the integrated luminosity needed to be determined. Since
the data contained also background contributions, they had to be cut away in
the analysis or to be considered in the simulation. Electrons scattered off the
target cell frame were also recorded and needed to be removed. Also events
due to backscattering of elastically scattered electrons off the entrance flange of
Spec. B were recorded and needed to be subtracted. There were contributions
due to the target walls and the cryogenic depositions which condensed at the
target walls during the experiment. These events were simulated and such
taken into account.

Integrated luminosity

In the experiment Spec. A was used as a relative luminosity monitor. Dur-
ing each energy setting its conditions were not changed at all, such that no
systematic uncertainty during the luminosity determination would occur. Its
conditions were set such that it detected the elastic peak for each momentum
setup. Hence the events it counted during each data run were directly related
to the integrated luminosity for the run. During the analysis a cut on the ver-
tex position was made to remove contributions of the cryogenic depositions
which are explained below. Also a cut on the energy of the scattered electron
was made to accept only elastically scattered electrons. For the same reason a
cut on the Čerenkov signal was made. The dead time of the applied detector
system was also corrected for. For each energy setting one run was selected to
serve as a relative normalisation for the integrated luminosity. The obtained in-
tegrated relative luminosity was then used for the further analysis with Spec. B
as an input parameter for the simulation. As this was only a relative luminos-
ity determination, for each energy setting one global normalisation factor still
remained undetermined, see chapter 7.

Target frame

In the experiment some of the scattered electrons scattered one more time off
the frame of the target back into the acceptance of Spec. B. This had not been
expected before the experiment. The target frame can be seen in Fig. 22. The
frame consisted of four metal bars visible in the middle of the picture. Already
during the experiment it was learned that the target position was set too high,
such that some scattered electrons hit the target frame. The effect can be seen
in Fig. 38 and 39. For the explanation of the phenomenon see appendix D.
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The vertex z axis is in the direction of the incoming electron beam, where the
0 position is at the center of the target chamber. Most of the scattered elec-
trons coming from the liquid hydrogen scattered elastically. If they scattered
again off the target frame, they lost some energy and were not recorded in
the elastic setup because they were not in the momentum acceptance of the
spectrometer any more. This effect caused the deficiency of events in the up-
per left corner in Fig. 38 which shows the results for the elastic 330MeV beam
energy setting. However, these lost events reappeared in the acceptance for
settings in the radiative tail which can be seen in Fig. 39. It shows data for the
second setup of the 330MeV beam energy setting. The abundance of events in
the upper left corner is due to these electrons. As there was no possibility to
verify which events exactly did originate from the target frame, a general cut
rejecting events with a dispersive angle greater than −1◦ for the whole anal-
ysis was implemented. The abundance of events at the left and right side at
vertex z ±25mm was due to the target walls and was expected.
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Figure 38: Effect of the target frame on the hydrogen data for the setting ISR_330_00.
The deficiency of events in the upper left corner (positive dispersive angles)
is due to the target frame which represents an obstacle for events scattering
in forward direction. The vertex z axis is in the direction of the incoming
electron beam (see Fig. 60), where the 0 position is at the center of the target
chamber. Due to this problem a cut rejecting events with a dispersive angle
greater than −1◦ was made.

To estimate the remaining contribution of the target frame despite the above
described cut on the dispersive angle, data with two different cuts on the ver-
tex z coordinate were compared. The first cut was the one used during the
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Figure 39: Effect of the target frame on the hydrogen data for the setting ISR_330_02.
The abundance of events in the upper left corner is due to electrons scat-
tered from the target frame back into the acceptance of the spectrometer.
Due to this problem a cut rejecting events with a dispersive angle greater
than −1◦ was made.

final analysis accepting events ranging from 1.5mm to 11.5mm with respect
to the vertex coordinate z. The second cut was more restrictive and accepted
events ranging from 6.5mm to 11.5mm with respect to the vertex coordinate
z. Then the results of the two data sets were compared for every momentum
setup. The events in the restrictive cut were normalised by a factor of 2 to the
cut used during the analysis by comparing the number of bins with respect to
the vertex coordinate z. The comparison of the two cuts is shown in Fig. 40. To
estimate the contribution of events originating from the target frame, the ratio
of the cut used during the analysis and the more restrictive cut was calculated,
see Fig. 41. In this plot the result of this ratio is shown for all momentum
setups. These results were used to correct the data during the further analysis.
The background coming from the target frame, together with the accompany-
ing cuts represents a serious restriction for this experiment. Because of it more
than one half ot the statistics was lost and introduced a significant source of
systematic uncertainty. For future experiments of this kind an improvement
would be to construct a new target cell where the target frames would be fur-
ther apart. On the other hand the application of a windowless and frameless
gas jet target would solve this problem once and for all.
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Figure 40: Estimation of the remaining target frame contribution for the setting
ISR_330_04. In red the data with the regular cut accepting events rang-
ing from 1.5mm to 11.5mm with respect to vertex z are plotted. In blue
the data with a more restrictive cut accepting events ranging from 6.5mm
to 11.5mm with respect to vertex z and scaled by a factor of 2 are plotted.
The ratio of the two sets in the region, where the dispersive angle is smaller
than −1◦, was used to estimate the remaining target frame contribution.
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Cryogenic depositions

Besides the elastic peaks of hydrogen and elements inside the target walls the
data of Spec. A contained also peaks belonging to electrons which scattered
from nitrogen or oxygen. These contributions were expected because the resid-
ual air still being in the target chamber predominantly froze at the cold target
walls. For the analysis it was important to determine the amount of this cryo-
genic depositions in order to properly include it in the simulation. During the
330MeV and 195MeV settings the elastic peaks of the cryogenic depositions
were measured with Spec. A such that for each momentum setup of Spec. B
the amount of cryogenic depositions could be analysed. This was possible as
the conditions of Spec. A were constant during any setting, as described in
chapter 4. In Fig. 42 an example of this analysis for the 195MeV beam energy
setting is shown. In black the data are plotted and in red the simulation for
the havar foil and the resulting amount of cryogenic depositions. The analysis
was done such that the integral of the data and the simulation were matched.
Therefore the amount of cryogenic depositions in the simulation was adjusted.
The distribution of the data and simulation do not match perfectly which is
because there was no exact model for the cross section calculation available
and the models described in chapter 6.1 were used as the best approximation.
The peaks in this plot belong to cryogenic depositions, consisting mostly of ni-
trogen, and havar target foils. For the 495MeV beam energy setting the elastic
peak of nitrogen was not in the acceptance of Spec. A, hence the data acquired
with Spec. B had to be used to determine the amount of the cryogenic deposi-
tions for this energy setting. Since only in the first and last momentum setup
of this energy setting the elastic nitrogen peak was in the acceptance of Spec. B,
the amount of cryogenic depositions in the setups in between was determined
by applying a linear fit to the two obtained values.
The resulting amount of cryogenic depositions, given as the area density, for all
three energy setups is shown in Fig. 43. Each point represents one momentum
setup of Spec. B and these values were added to the analysis especially for
the simulation of cryogenic depositions. For the comparison: The mean area
density of liquid hydrogen was 346mg/cm2 during this experiment and the
one of the havar foil was 17mg/cm2.
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Beam 
direction

Figure 42: Cryogenic depositions for the setup with the beam energy of 195MeV. In
black the data and in red the simulation for the havar foil and the cryogenic
deposition is plotted. The amount of cryogenic depositions was adjusted
such that the integral of the data and the simulation matched. The four
peaks, connected via the dashed lines to the model of the target cell, be-
long to electrons scattering off cryogenic depositions or the havar foil when
entering or exiting the target cell. In the target model liquid hydrogen is
plotted in gray, the havar foil in black and cryogenic depositions in cyan.
The peak at 194.7MeV was caused by electrons scattering off the havar foil
at the entrance of the cell. The peak at 194.1MeV was caused by electrons
scattering off cryogenic depositions which were on top of the havar foil at
the entrance. The peak at 193.6MeV belongs to electrons scattering at the
exit of the cell and the one at 192.9MeV belongs to electrons scattering off
cryogenic depositions on the exit of the cell. These two peaks are shifted
because electrons lost energy when traversing the liquid hydrogen and the
havar foils on their way through the target cell.
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Figure 43: Result of the analysis of cryogenic deposition as a function of time. Each
point belongs to one momentum setup. The time axis starts at the beginning
of the beam time. The three energy settings are plotted in the displayed
colors.

Entrance flange of Spec. B

In Fig. 44 the entrance flange of Spec. B is shown, which caused additional
background. The effect which caused this is the same as for the target frame:
It happened that scattered electrons interacted with this flange, scattered back
into the acceptance of Spec. B and got recorded. These electrons would without
the flange be out of the acceptance of the spectrometer. In the case of a setup for
elastic scattering almost all of these background events could be successfully
cut away. Unexpectedly this was not the case when measuring the radiative
tail where the accepted momenta of the scattered electrons were far away from
the elastic peak. To account for this effect a fit to the recorded data was made
in order to estimate the amount of events stemming from the flange.
To fit the data an exponential function with an offset was considered. In Fig. 45

the fit to the data for the setting ISR_195_00 is shown. The contribution of
events originating from the flange in the region of interest, which is on the ver-
tex coordinate z from 1.5mm to 11.5mm, is very small as expected. Fig. 46 top
shows the same plot for the setting ISR_195_05. There the amount of events
stemming from the flange is comparable to the amount of events from the hy-
drogen itself and even in the region of interest a considerable amount of events
came from the entrance flange, as can be seen by the approximation given by
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Entrance flange

Target chamber

Spec. B

Figure 44: Photo of the entrance flange of Spec. B.

the fit. Fig. 46 bottom displays the same plot for the setting ISR_195_19 as
an example of the conditions when measuring at low momenta. Here no fit
is shown because it would be not precise enough. In the setups with low ac-
cepted momentum at 195MeV beam energy almost all events originated from
scattering processes on the entrance flange. Therefore the setups ISR_195_06
to ISR_195_19 (see appendix A) had to be excluded from the final analysis.
In Fig. 47 the relative contribution of events originating from scattering pro-
cesses at the entrance flange in the region of interest (ranging from 1.5mm to
11.5mm with respect to the vertex coordinate z, see below) is displayed for all
three energy setups. To obtain these results the integral of the fit function in
this region was divided by the integral of all events in this region. For the elas-
tic settings this amount is very small and was rising with the decreasing value
of the central momentum of Spec. B. For the fitting procedure an uncertainty
of 3.5% was determined.
To avoid contributions of the entrance flange in future experiments of this kind
it is necessary to replace the existing flange with a different construction. This
replacement should have very thin walls, such that the cross section for elec-
tron scattering would be reduced for some orders of magnitude in comparison
with the existing flange. Since such a construction would not be stable enough
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Figure 45: Data, shown in red, for the setting ISR_195_00 depending on vertex z. The
amount of events stemming from the entrance flange of Spec. B is very
small, visible on the right side. With a cut on the region of interest it could
almost be completely eliminated. In blue a fit to approximate the amount of
events coming from the entrance flange is shown. The green area illustrates
the design width of the target cell.

to contain vacuum, it should be filled with helium, which has a much longer
radiation length than air.
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Figure 46: Top: Data, shown in red, for the setting ISR_195_05 depending on vertex z.
The amount of events coming from the entrance flange of Spec. B is compa-
rable to the amount of events stemming from the liquid hydrogen. In blue
a fit to approximate the contribution of events coming from the entrance
flange to the total number of events in the region of interest is shown. The
green area illustrates the design width of the target cell.
Bottom: Data for the setting ISR_195_19 at the smallest measurable momen-
tum. The amount of events coming from the entrance flange of Spec. B is
larger than the number of events originating from liquid hydrogen.
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Resolution determination

In Fig. 48 a qualitative picture of the analysis, which contains no actual data,
in terms of the vertex coordinate z is shown.
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Figure 48: Qualitative example of the vertex z histogram in the analysis. This plot con-
tains no actual data. During the experiment only the orange curve “Sum”
would be measured. In this picture also the different contributions adding
up to the orange curve are plotted, but they cannot be isolated in the ac-
tual analysis. Therefore the simulation will be needed, which is able to
simulate the “Hydrogen” contribution, the “Target wall” contribution, the
“Ice” contribution and the “Pion” contribution. The simulation will need
the distribution of the “Edge” as an input parameter, which can be deter-
mined from the orange curve. This distribution depends on the resolution
of Spec. B. The “Entrance flange” contribution will be estimated by the fit-
ting procedure described above. The green area displays a possible cut for
the final analysis such that the contributions from the target walls and the
ice would be minimal.

There all the contributions, which were measured during the experiment, are
plotted separately: In red the contribution from the hydrogen, in gray the con-
tribution from the target walls, in blue the contribution from the cryogenic
depositions, in dark red the contribution from the entrance flange and in green
the contribution from the pions. In the actual data it was not possible to dis-
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tinguish between these different contributions. In the data only the sum of
all these contributions, which is shown in orange, was measured. Since only
the contribution from hydrogen is relevant for the determination of the form
factor, the simulation described above was needed to calculate all different con-
tributions, in order to isolate the events originating only from hydrogen. An
exception are the events originating from the target flange for which no simula-
tion was available, therefore the fitting procedure described above was applied.
In the simulation the resolution at the vertex coordinate z reconstruction was
needed as an input parameter. It would be adjusted so that the edges, see
Fig. 48, of the simulation matched the ones in the data. The vertex coordinate
z would also be used to determine a cut which would removed most of the
events originating from the havar foils or the cryogenic depositions. A possi-
ble cut condition is shown in Fig. 48.
In the actual analysis the chosen cut accepted events from 1.5mm to 11.5mm
with respect to the vertex coordinate z for the entire analysis, see Fig. 49. This
cut had to be applied to the data as well as to the simulation. In the simulation
the quality of the cut depended on the knowledge of the vertex resolution of
Spec. B. Therefore the resolution had to be determined for every single setup,
because it depended on the central momentum of the spectrometer. To model
the resolution a superposition of two Gaussian distributions was fitted to the
data. This superposition was implemented in the simulation during the anal-
ysis of this experiment. At this point the simulation for the target wall and
cryogenic deposition contribution was also scaled to match the height of the
target walls in the simulation with the data. This scaling was needed because
the form factors for the simulation of the target wall and the cryogenic depo-
sition were only approximately known, see chapter 6.1. In Fig. 49 the result
of the fitting procedure and the scaling is shown. For the scaling the interval
ranging from vertex z ∈ [19mm, 26mm] was used. The scaling factor was
adjusted such that the integral of the data and the simulation in this interval
agreed. For the adjusting of the resolution the right edge in the plot was used
as a reference point. The left edge was not chosen because there was the pos-
sibility that minor contributions stemming from the target frame would have
influenced the result. During the adjusting process the parameters were tuned
such that the data and simulation did agree best. An uncertainty of 3.5% was
determined for these results. In the plots the different parts of the simulation
are shown. In Fig. 49 (top) the results for the setting ISR_330_00 are displayed.
Here no events originating from pion production were present and the effect of
the entrance flange was so small, that it would not be visible, therefore this is
not plotted. In Fig. 49 (bottom) the results for the setting ISR_330_10 are shown.
Also the simulated events originating from pion production are shown. The
data without the subtraction of the contribution from the entrance flange are
shown as well. In Fig. 50 the contribution of the target walls and the cryogenic
depositions determined with this procedure as well as the contributions from
pion production for all analysed settings are plotted. The calculation of the
pion production processes has an uncertainty of 5% due to the MAID model.
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Figure 49: Top: Vertex plot for the setting ISR_330_00. The vertex resolution has been
adjusted in the simulation such that it agreed with the one in the data.
Data are plotted in black and the full simulation in orange. Simulation for
electrons scattering only off liquid hydrogen is plotted in red, only off the
target walls in gray and only off cryogenic depositions labeled “Ice” in blue.
Inside the green band the events remaining after the vertex cut in the final
analysis are shown.
Bottom: Vertex plot for the setting ISR_330_10. Electrons originating from
pion production is plotted in green, data without the subtraction of the
contribution of the entrance flange in dark red.
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Figure 50: Top: Relative amount of events originating from the target walls and cryo-
genic depositions for all analysed settings.
Bottom: Relative amount of events originating from pion production for all
analysed settings.
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7
R E S U LT S

In Fig. 51 a qualitative picture for the comparison of data and simulation is
shown. This plot contains no actual data and serves only as an illustration
of how the comparison between data and simulation was done and what a
difference between data and simulation implies. In this example each of the
three beam energy configurations consists of three momentum settings. The
settings have some overlap such that it can be checked, that the overlapping
regions are consistent with each other. Also the data from the different beam
energies are overlapping so that it can be checked if a possible deviation from
the simulation is present in both energy settings. The simulated events are a
combination of events from hydrogen, the target walls, cryogenic depositions
and pion production. The data are corrected for the effect of the entrance
flange. The cuts mentioned above are applied to the data, as well as to the
simulation. In the part of the simulation, where the electron scatters off a
proton, an established form factor will be used to calculate the cross section.
It is not expected that the combined simulation will match the data perfectly,
since the form factor was determined from a different experiment. The effect
of an incorrect form factor is shown in Fig. 51. But if it would agree with
the simulation in the order of a few per cent, this would justify the usage of
the ISR method. Differences between data and simulation could also be due
to higher order effects or uncovered backgrounds. However, if it would be
assumed that the calculation of the cross section worked flawlessly, then the
differences between data and simulation could be used to extract new values
of the form factor. To determine these values, the form factor in the simulation
will be adjusted, such that the data and simulation will match perfectly.
In the actual analysis a substantial discrepancy between data and simulation
was observed for the elastic settings of all three beam energies. This discrep-
ancy was greater than 10% between the elastic peak and 10MeV below the
elastic peak. This effect is shown in Fig. 52 for the setting ISR_495_00. To find
the reason for this discrepancy first all possible inconsistencies concerning
the data were investigated: The efficiencies of the detectors were examined
in detail to check, if there was any inconsistency at the position where the
elastic peak was measured, but none was found. The data taking rate was
also checked, because in runs including the elastic peak many events were
measured in a relatively small area of the detectors. Also there no problem
could be found. The transfer matrices which translate the positions in the
VDCs to the position at the target were investigated and it was found that they
worked as expected. Also the cuts applied to the data and the simulation were
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Figure 51: Qualitative example of the simulated and measured spectra in term of the
energy of the scattered electron. The “data” are displayed greenish for the
495MeV beam energy setting, blueish for the 330MeV one and reddish for
the 195MeV one. Due to the limited acceptance of Spec. B only a part of the
radiative tail can be covered with each setup. The “simulation”, displayed
in dashed lines for the three energy setups of the experiment, covers the
whole range from the elastic peak to the point where the scattered electron
virtually has no kinetic energy left.

checked and it was concluded that they worked as well as expected. Hence,
all potential problems related to the data were excluded. Later the suspicion
rose that the external radiative corrections are responsible for the discrepancy
because they were not calculated with the same order of precision as the
internal radiative corrections [79]. In Fig. 36 bottom the contribution of the
external radiation is shown. It can be seen, that this distribution is almost flat
in the radiative tail with a significant rise only in the immediate vicinity of the
elastic peak. This significant rise of the correction might lead to an incomplete
description of the momentum distribution. Therefore it was concluded
that this might be the reason why no significant discrepancy appeared in
the radiative tail. Especially in the region where the radiative tail of one
energy setting overlapped with the elastic peak of another energy setting, no
discrepancy in the radiative tail between the data and the simulation of more
than about 1% was obtained, see Fig. 53 and 54. Within the scope of this
study it was not possible to further investigate this matter. For future analyses
the code underlying this simulation will have to be thoroughly checked and
special attention will have to be paid to the external radiative corrections.
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Figure 52: Comparison of data and simulation for the setting ISR_495_00. For the two
bins with the highest energy of the scattered electrons there is a discrepancy
between the data and simulation for more than 10%. This is probably due
to an incomplete description of the external radiative corrections.

The results of the analysis are shown in Fig. 53 and 54. In the simulation
the values of the form factor determined in Ref. [27] were applied. Data and
simulation matched to about 1% along the whole radiative tail of each of
the three different energy setups. Notably in the region, where two energy
settings were overlapping, the results of both settings also matched to about
1%. Altogether this justifies the application of the initial state radiation
method and is an important result of the analysis.
The remaining differences between data and simulation, apart from statistical
fluctuations, could be due to higher order effects missing in the simulation or
uncovered backgrounds. However, if it is assumed that the calculation of the
cross section works flawlessly and the background processes are well under
control, the discrepancies would be due to the difference between the true
form factor in the data and the model of the form factor used in the simulation.
Using this assumption it has been possible to determine new values of the
proton electric form factor in the radiative tail.
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Figure 53: Results of the analysis of all momentum setups and energy settings. The
three different beam energies are displayed in different colors. The data
are plotted with open circles and the simulation is plotted with histograms.
The contributions arising from the target walls, the cryogenic depositions,
the target frame and the entrance flange are displayed in gray boxes. The
contributions from pion production are displayed in green boxes. For the
elastic setting of each beam energy no simulation is shown, because of the
probably incomplete description of the external radiative corrections. The
labelled bars at the bottom represent the acceptance of Spec. B for the cor-
responding settings (list of settings: appendix A). For the simulation the
values of the form factor obtained in Ref. [27] were applied.
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Figure 54: Top: Final results of the analysis of all momentum setups at all three energy
configurations. The setups including the elastic peak are excluded because
of the probably incomplete description of the external radiative corrections.
The three different beam energies are displayed in different colors and the
according momentum setups are displayed in variations of the same color
to emphasise the different momentum settings. The data are plotted with
dots at the position of the central momentum of the according setup. The
simulation is plotted with histograms to display the covered momentum
range. The contributions arising from the target walls, the cryogenic depo-
sitions, the target frame and the entrance flange are displayed with the gray
boxes. The contributions from pion production are displayed with green
boxes.
Bottom: Relative difference between data and simulation for every momen-
tum setup. The statistical uncertainty is displayed by the error bars of the
according dots. The systematic uncertainty is displayed by the gray error
band. For the simulation the values of the form factor obtained in Ref. [27]
were applied.
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Therefore the form factor in the simulation was adjusted such that simulation
and data matched perfectly. This needed to be done for every momentum setup
separately. To obtain the value of the form factor, where data and simulation
matched, the values of the form factor from Ref. [27] were changed for ±5%
in steps of 0.1%. Thus for every momentum setup of the three different beam
energies 101 individual simulations were performed. Each of these simulations
was compared with the corresponding one, where the original form factor
was applied. For the comparison of the results with the changed form factors
and the results with the not modified form factors it was not enough to only
calculate the ratio of the corresponding cross sections and relate this to the ratio
between the form factor models. To calculate the cross section in the radiative
tail two different values of the form factor are needed. For the calculation
of FSR processes the same value of the form factor as for elastic scattering
processes is used. This value is constant for the entire radiative tail. But for
the calculation of ISR processes a different value of the form factor is needed
for each momentum setting. When changing the model of the form factor,
all values of the form factor were changed including the value for the FSR
processes, see Fig. 55. However, only the contribution of the ISR part is needed.
Therefore, for a faithful comparison, the result of each simulation was cut into
two parts depending on the angle of the emitted photon, see Fig. 56. The first
part contained events which originated from ISR processes. The second part
contained events which originated from FSR processes. In order to determine
how much the cross section depended on the change in the form factor, the
simulation with the form factor model from Ref. [27] was compared with the
changed form factor using the following expression:

CS. deviation =
ISRscaled + FSRunscaled

ISRunscaled + FSRunscaled
. (52)

ISRunscaled and FSRunscaled are the contributions of ISR and FSR processes for
the simulation with the form factor model from [27]. ISRscaled are the contribu-
tions of ISR processes for the simulation with the changed form factor model.
The deviation of the cross section depending on the deviation of the form fac-
tor from the form factor of Ref. [27] is for the setting ISR_330_09 shown in
Fig. 57. For small variations, like in this analysis, the difference of the cross
section depended approximately linearly on the difference of the form factor.
In Fig. 58 the slope of the cross section deviation depending on the form factor
deviation for all analysed setups is shown. Therefore the corresponding data,
exemplarily shown in Fig. 57, were fitted with a linear function. Using these
results the values of the form factor of each setup were adjusted such that data
and simulation matched exactly. The determined values of the form factor may
be found in Fig. 59 and in appendix E.
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Figure 55: Qualitative illustration (this plot contains no actual data) of the measured
distributions with the original and those with the changed form factors. For
the results shown in Fig. 54 the form factor model from Ref. [27] was ap-
plied. The goal was to determine the values of the form factor for which
the data exactly matched the simulation. In the simulation the form fac-
tor could only be adjusted simultaneously for all Q2 by the same amount.
However, for the purpose of this analysis only the value of the form factor
for ISR processes should be adjusted, since for FSR processes the value of
the form factor is the same as for elastic scattering for the entire radiative
tail. The red curve and the red Feynman diagrams represent a qualitative
example when the original form factor (from Ref. [27]) was applied. The
blue curve represents a qualitative example of the change in the count rate
(and the cross section) if the form factor was reduced for 5%. As mentioned
above, this implies that for ISR and FSR processes the value of the form
factor changed, which is illustrated by the blue Feynman diagrams. But the
goal was to learn how the count rate (and the cross section) changed if only
the value of the form factor for ISR processes changed and the value of the
form factor for FSR processes did not change, which is illustrated by the ma-
genta Feynman diagrams. The count rate for this situation is qualitatively
shown by the magenta curve. To obtain the desired results the cuts shown
in Fig. 56 and then equation 52 had to be applied. The variables used in
equation 52 are attributed to the corresponding Feynman diagrams in the
plot.
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Figure 56: The plots show the distribution of the emitted photon for different setups
as a function of the polar angle θγ between the emitted real photon and the
direction of the beam. The dashed black line shows the cut which was made
to distinguish ISR from FSR processes. Top left shows the simulation for the
setting ISR_330_01 where the form factor from Ref [27] was used, top right
shows the same plot but the form factor was increased by 5%. Bottom left
shows the simulation for the setting ISR_330_10 where the form factor from
Ref [27] was used, bottom right shows the same plot but the form factor
was increased by 5%.
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viation of the form factor in the simulation from the form factor determined
in Ref. [27] for the setting ISR_330_09.
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Figure 58: For every analysed setup the slope of the cross section deviation for a given
form factor deviation is shown. The slope was determined by fitting a
linear function to the cross section deviation depending on the form factor
deviation, as it is shown in Fig. 57 for the setting ISR_330_09.
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7.1 Systematic uncertainties

One advantage of the initial state radiation method is that the sources of sys-
tematic uncertainties are much reduced because the parameters of the spec-
trometers, except for the magnetic field of Spec. B, were not changed during
the entire beam time. Furthermore the relative luminosity was monitored by
Spec. A rather than measuring only the beam current. Nevertheless some
sources of systematic uncertainties occurred during the analysis and are de-
scribed below:

• The events originating from the pion production have an uncertainty of
5% due to the usage of the MAID model. For the entire analysis this
contributed an uncertainty smaller than 0.5%.

• The simulation of background events and the determination of the vertex
resolution caused a systematic uncertainty. These two factors are comple-
mentary, because a change in the vertex resolution automatically changes
the contribution of background events in the analysis, see chapter 6.2,
and vice versa. By varying the resolution this uncertainty was found
to be 3.5% of the contribution of the background events. For the entire
analysis this contributed an uncertainty smaller than 0.5%.

• The determination of the contribution of events originating from the en-
trance flange led to an uncertainty of 3.5% of the events originating from
the entrance flange. This is due to the fit which determined the contri-
bution of these events. For the entire analysis this contributed an uncer-
tainty smaller than 0.2%.

• The contamination with events coming from the target frame led to an
uncertainty of 0.4%.

• The simulation for the electron proton scattering cross section led to an
uncertainty of 0.3% due to higher order corrections which were not in-
cluded.

• The relative luminosity determination with Spec. A led to an uncertainty
of 0.2% for each momentum setup.

• The uncertainty of the determination of the detector efficiency is 0.2%.

7.2 Proton radius

Finally the obtained values of the form factor could be fitted with an appropri-
ate model and the charge radius of the proton could be determined. Unfortu-
nately the major part of the 195MeV setting, which would provide values of the
form factor at very small Q2, could not be analysed. This implies that the data
which could constrain the normalisation, because of the boundary condition:
GE
(
Q2 → 0

)
= 1, are still missing. Additionally the obtained data have also a
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limited reach at high Q2 giving only limited strength for a precise enough de-
termination of the parameters of a fit. Therefore a simple polynomial fit model
with two parameters was chosen, given by the following expression:

GE

(
Q2
)
=

(
1−

r2E
6 ·  h2Q

2 +
a

120 ·  h4Q
4 −

b

5040 ·  h6Q
6

)
, (53)

r2E is the squared of the charge radius of the proton. a = (2.59± 0.19) fm4 and
b = (29.8± 14.7) fm6 were adopted from Ref. [80]. For each energy setting
one global normalisation factor was also still unknown, because with Spec. A
only the relative luminosity was determined. These factors were used as open
parameters during the fitting procedure. They were adjusted such that the
boundary condition: GE (0) = 1 was fulfilled. The result for the normalisation
yielded: n195 = 1.006± 0.002stat. ± 0.003syst., n330 = 1.002± 0.001stat. ± 0.003syst.
and n495 = 1.005± 0.002stat. ± 0.008syst.. The fit has a χ2 of 58.0, where only
the statistical uncertainties were considered, and 18 degrees of freedom. This
indicates that the results are dominated by systematic uncertainties. In Fig. 59

the resulting values of the form factor and the resulting fit function are shown.
The orange band around the fit displays the statistical uncertainty and the yel-
low band shows the combined statistical and systematic uncertainty. The error
bars of the form factor represent the statistical uncertainty while the systematic
uncertainty is plotted as the gray band at the bottom. As the two parameters
a and b from Ref. [80] also have uncertainties, a model dependent uncertainty
was calculated. The result of the fit yields:

rE =
(
0.810± 0.035stat. ± 0.074syst. ± 0.003mod.

)
fm . (54)

This value has a large uncertainty and cannot distinguish between former re-
sults of elastic electron scattering experiments [3] and the result from muon
spectroscopy [2].
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Figure 59: Form factor obtained with the ISR experiment. The error bars of the data
points are the statistical uncertainties while the systematic uncertainties are
represented by the gray band at the bottom. The fit to the data is shown
with the black line. The orange band surrounding the fit represents the
statistical uncertainty and the yellow band represents the statistical and the
systematic uncertainties of the fit, added in squares. The range of the fit is
given just for the Q2 range investigated during the experiment.
The two values of the form factor at about 0.0018 (GeV/c)2, which are
both smaller than the surrounding values were obtained from the settings
ISR_330_10 and ISR_195_03. Since the form factor is supposed to be a
smooth distribution, both setups were carefully investigated, but no reason
for the deviation was found.
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8
C O N C L U S I O N A N D O U T L O O K

The objective of the presented experiment was to justify the usage of a new ex-
perimental technique based on initial state radiation and to use this approach
to precisely determine the proton electric form factor at values of Q2 as low as
Q2 ≈ 10−4 (GeV/c)2 in the A1 hall of the MAMI facility.
In the analysis the experimental data were compared with a simulation, which
exactly calculated the Bethe-Heitler and Born diagrams and included higher
order diagrams as effective corrections to the cross section. The results of
the comparison presented in this work demonstrate that electro-magnetic pro-
cesses responsible for the radiative tail are understood below a per cent level
in regions that are more than 200MeV away from the elastic peak. Also the
overlapping parts of the three energy settings are in agreement to about 1%,
thus proving the ISR method to be a valuable experimental technique, which,
under the assumption of the flawless description of the calculation of the cross
section, can be employed to determine the proton electric form factor at very
small four momentum transfers.
Unfortunately, in the present experiment the determination of the form factor
at the smallest measured values ofQ2 was obstructed by huge amounts of back-
ground events, that were not foreseen before the experiment. There were two
major contributions to the background: the entrance flange of Spec. B and the
support construction of the target frame. Although the effects of these contri-
butions were studied thoroughly, it was not possible to analyse the setups with
Q2 below 1.3 · 10−3 (GeV/c)2. This was mostly due to the immense systematic
uncertainty related to these corrections. Additionally, the incomplete descrip-
tion of the momentum distribution, which is possibly due to the incomplete
description of the external radiative corrections, in the vicinity of the elastic
peak prevented the inclusion of these setups in the final analysis. In spite
of these hindrances, the experiment provided first measurements of the proton
electric form factor atQ2 between 1.3 · 10−3 (GeV/c)2 and 4 · 10−3 (GeV/c)2. The
newly obtained data were then fitted with a simple polynomial model and a
value for the proton charge radius was extracted:

rE =
(
0.810± 0.035stat. ± 0.074syst. ± 0.003mod.

)
fm .

Due to large uncertainties, related to the huge amount of backgrounds, the
obtained result cannot distinguish between previous results of scattering ex-
periments [3] and the results from muon spectroscopy [2].
However, this was only the first experiment of this kind. To fully exploit the
potential of the initial state radiation method and improve the present result, a
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next generation experiment is already being commissioned at the A1 setup at
MAMI. The new experiment will eliminate the shortcomings of this experiment
by replacing the metal entrance flange of Spec. B with a balloon filled with he-
lium, and by substituting the traditional cryogenic cell with a windowless gas
jet target. The gas jet target is already being developed and tested for the oper-
ation in the A1 hall [6]. These measures will remove the backgrounds coming
from metal parts of the experimental equipment and cryogenic depositions
which limited the reach of the present experiment. Employing a point-like gas
jet target will also minimise the external radiative corrections.
After the application of the gas jet target in the A1 hall it is planned to be
moved to the future MESA (Mainz Energy recovering Superconducting Ac-
celerator) accelerator facility [6]. There the MAGIX experiment will utilise it
together with two high resolution magnetic spectrometers and with an elec-
tron beam energy of 105MeV it will offer further measurements of the proton
electric form factor at even smaller values of Q2 [81].
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A
E X P E R I M E N TA L S E T U P S

Setup Momentum [MeV/c] Q2 [(GeV/c)2]

ISR_495_00 486.320 0.01704
ISR_495_01 447.244 0.01540
ISR_495_02 415.999 0.01288
ISR_495_03 386.976 0.01105
ISR_495_04 360.203 0.00952
ISR_495_05 335.094 0.00820
ISR_495_06 311.741 0.00709
ISR_495_07 289.964 0.00613
ISR_495_08 486.371 0.01704

ISR_330_00 326.680 0.00781
ISR_330_01 297.980 0.00694
ISR_330_02 279.811 0.00597
ISR_330_03 260.166 0.00511
ISR_330_04 242.191 0.00441
ISR_330_05 224.725 0.00379
ISR_330_06 209.324 0.00328
ISR_330_07 194.783 0.00283
ISR_330_08 181.240 0.00245
ISR_330_09 168.329 0.00211
ISR_330_10 156.663 0.00183
ISR_330_11 326.364 0.00781

Table 4: Setup name, central momentum of Spec. B and mean measured Q2 for the
experimental settings when measuring with a beam energy of 495MeV and
330MeV. The last setting of each beam energy is the repetition of the first one,
which was used for the control of systematic effects.
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Setup Momentum [MeV/c] Q2 [(GeV/c)2]

ISR_195_00 194.511 0.00273
ISR_195_01 179.025 0.00257
ISR_195_02 166.332 0.00211
ISR_195_03 154.709 0.00181
ISR_195_04 143.868 0.00156
ISR_195_05 133.658 0.00134
ISR_195_06 124.267 0.00116
ISR_195_07 115.382 0.00100
ISR_195_08 107.193 0.00086
ISR_195_09 99.6290 0.00074
ISR_195_10 92.3967 0.00064
ISR_195_11 85.9388 0.00055
ISR_195_12 79.7060 0.00047
ISR_195_13 73.9986 0.00041
ISR_195_14 68.6424 0.00035
ISR_195_15 63.7212 0.00030
ISR_195_16 59.1592 0.00026
ISR_195_17 54.9190 0.00023
ISR_195_18 51.6505 0.00020
ISR_195_19 48.1317 0.00017
ISR_195_20 194.637 0.00273

Table 5: Setup name, central momentum for Spec. B and mean measured Q2 for the
experimental setting when measuring with an electron of 195MeV. The last
setting is the repetition of the first one, which was used for the control of
systematic effects.
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B
TA R G E T C L A S S

The class cryo_ewald_2014 takes care of the cryogenic hydrogen target in the
Cola++/Simul++ analysis package. This class calculates the energy losses of
electrons along their path from the scattering chamber to the spectrometer.
The class has several functions of which different ones are called depending
whether Cola++ or Simul++ is used.
In order for the class to work correctly with Simul++ it needs input pa-
rameters which are stored in a text file called run.db [64]. There the
length of the target cell (Target.Length in mm), the thickness of the
cryogenic depositions (Target.SnowThickness in mm), density of the cryo-
genic depositions (Target.SnowDensity in g/cm3), the thickness of the tar-
get wall (Target.WallThickness in mm), the density of the target mate-
rial (Target.Density in g/cm3) and the flags related to radiative corrections
(Target.externalRadiation and Target.internalRadiation) have to be en-
tered. The basic geometry of the target cell is hard coded, but the length of the
long side may be varied from the default setting. In the run.db the area, where
scattering takes place, also has to be stored. It is possible to choose between
Cryo.2014_hydrogen, Cryo.2014_wall and Cryo.2014_ice, the reaction then
takes place in the liquid hydrogen, the havar foil or the cryogenic depositions
respectively. Once the desired part of the target is selected, the energy loss of
the electron traversing the target cell is calculated, which is the main purpose
of this class, see Fig. 60. After this calculation is done, the model to calculate
the cross section for each option has to be chosen.
When Simul++ is executed the values from the run.db are read, for example for
the Cryo.2014_hydrogen target this is ElasticProton. Later a member of the
class cryo_ewald_2014 is initialised. Then the function setPara is called and
appropriate values from the run.db are stored in the class variables. The in-
coming electron four-vector is defined by the direction and energy of the beam
given in the run.db. The simulation randomly determines a scattering vertex
in a rectangle. This vertex is passed to the function Generate_Vertex which
checks, if this vertex is inside or outside of the designated reaction area. If it
is inside, the event is further processed, otherwise the event is ignored. If it
is accepted the function EnergyLossSimBeam is called which calls the function
getLength_in_Target. It calculates the distances in the liquid hydrogen, havar
and cryogenic depositions from the point where the electron enters the target
to the vertex point. Then the most probable energy loss through this three
paths is calculated using the Landau’s Theory [82]. Also the energy loss due
to external and internal Bremsstrahlung is corrected for. The correction of the
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internal Bremsstrahlung is deactivated for this experiment because the gener-
ator for the cross section calculation already includes this correction. There
is also a correction to the scattering angle due to multiple Coulomb scatter-
ing [82]. Then the four-vector of the scattered electron is calculated. After that
the function EnergyLossSim is called. This basically does the same as the func-
tion EnergyLossSimBeam, except that it uses the distances from the scattering
vertex to the exiting point of the scattered electron for the correction. Then the
function EnergyLossSimChamber is called which corrects the scattered electron
for Coulomb multi scattering and the most probable energy loss through the
windows between the scattering chamber and the detectors as well as the air
gap between the scattering chamber and the entrance of the spectrometer.
The calculation of the energy loss is different if the analysis of data is done with
Cola++. When using Cola++ the trajectories of the incoming electron and the
scattered electron are already known because of the information from the detec-
tors. The purpose of the energy loss correction is to determine the energy of the
incoming electron and scattered electron at the scattering vertex. Therefore first
the function EnergyLossCorrChamber is called which applies the Bethe-Bloch
formula [82] to calculate the energy losses in the windows between the scatter-
ing chamber and the detectors as well as the energy loss in the air gap between
the scattering chamber and the entrance of the spectrometer. The scattered
electron is corrected for this energy loss. Then the function EnergyLossCorr is
called. This function calls the function getLength_in_Target which calculates
the distances of the electron from the scattering vertex to the exiting point of the
scattered electron of the target cell through the liquid hydrogen, the havar foil
and the cryogenic depositions. The energy losses through these three paths are
again calculated with the Bethe-Bloch formula and the energy of the scattered
electron is corrected for this value. Then the function EnergyLossCorrBeam is
called. This function also calls the function getLength_in_Target which now
calculates the distances of the electron from the scattering vertex to the entrance
point of the incoming electron into the target cell through the liquid hydrogen,
the havar foil and the cryogenic depositions. The energy losses through these
three paths are again calculated with the Bethe-Bloch formula and the energy
of the incoming electron is corrected for this value.
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Figure 60: Schematic drawing of the scattering process and the material the incoming
and scattered electron has to go through.
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C
A N G U L A R C O O R D I N AT E S

In Fig. 61 and Fig. 62 the comparison of the non-dispersive and dispersive
angle in the simulation and in the data for the setting ISR_330_10 is shown.
For these plots all cuts used during the analysis, which are described above,
were applied.
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Figure 61: Comparison of the non-dispersive angle obtained with the simulation and
reconstructed from the data for the setting ISR_330_10.
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Figure 62: Comparison of the dispersive angle obtained with the simulation and recon-
structed from the data for the setting ISR_330_10.
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D
TA R G E T F R A M E

During the online analysis of the experimental data, effects caused by the target
frame, which are shown in Fig. 38 and 39, were found. It was not instantly
apparent where the events causing the effect originated from. At some point
during the experiment the frame of the target cell was assumed to be the source
for the effect. To verify this, the beam was rastered with high amplitudes of
a few millimeters. The result of this test is shown in Fig. 63. On the right
side the actual target with the target frame and the havar foil is displayed. In
the left plot the contribution of the lower frame is clearly visible as well as
the target foils. The barycenter of the beam is in the origin of the coordinate
system. The obtained plot indicated that in the vertical direction the beam was
not pointing to the center of the target cell but at least a few millimeters too
low. Consequently the beam position was raised for two millimeters to reduce
electrons scattering at the target frame. This measure did reduce the amount of
electrons scattered at the target frame drastically. During the actual experiment
the beam was rastered using a much lower amplitude than during this test.
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Havar foil

Target frame

Figure 63: Photo of the target cell including a plot showing the data when the
beam was rastered with high amplitudes. The target frame, ranging from
−5mm < target y < 2mm, is clearly visible in the plot. The havar foils on
the sides are also visible in the plot where target y is greater 2mm.
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E
VA L U E S O F T H E F O R M FA C T O R

The values of the proton electric form factor which were determined in the ISR
experiment are listed in Table 6.

Setup Q2 [(GeV/c)2] GE

ISR_495_01 0.01540 0.9561± 0.0025± 0.0045
ISR_495_02 0.01288 0.9605± 0.0017± 0.0045
ISR_495_03 0.01105 0.9694± 0.0018± 0.0045
ISR_495_04 0.00952 0.9667± 0.0016± 0.0045
ISR_495_05 0.00820 0.9756± 0.0024± 0.0049
ISR_495_06 0.00709 0.9748± 0.0020± 0.0065
ISR_495_07 0.00613 0.9775± 0.0020± 0.0077
ISR_330_01 0.00694 0.9833± 0.0040± 0.0050
ISR_330_02 0.00597 0.9733± 0.0030± 0.0048
ISR_330_03 0.00511 0.9839± 0.0029± 0.0046
ISR_330_04 0.00441 0.9810± 0.0033± 0.0046
ISR_330_05 0.00379 0.9904± 0.0031± 0.0046
ISR_330_06 0.00328 0.9895± 0.0035± 0.0046
ISR_330_07 0.00283 0.9959± 0.0038± 0.0047
ISR_330_08 0.00245 0.9987± 0.0030± 0.0050
ISR_330_09 0.00211 1.0008± 0.0040± 0.0056
ISR_330_10 0.00183 0.9810± 0.0045± 0.0065
ISR_195_01 0.00257 0.9986± 0.0047± 0.0058
ISR_195_02 0.00211 0.9941± 0.0032± 0.0057
ISR_195_03 0.00181 0.9829± 0.0036± 0.0059
ISR_195_04 0.00156 0.9948± 0.0033± 0.0065
ISR_195_05 0.00134 1.0051± 0.0041± 0.0070

Table 6: Setup name, central momentum of Spec. B, mean measured Q2 for all three
beam energy settings and determined value of GE. The given uncertainties
are the statistical and the systematic uncertainties respectively.

99





B I B L I O G R A P H Y

[1] Hofstadter, Robert and Robert W. McAllister: Electron Scattering from
the Proton. Phys. Rev., 98:217–218, Apr. 1955.

[2] Antognini, Aldo et al.: Proton Structure from the Measurement of 2S-2P
Transition Frequencies of Muonic Hydrogen. Science, 339(6118):417–420, 2013.

[3] Mohr, Peter J., David B. Newell and Barry N. Taylor: CODATA recom-
mended values of the fundamental physical constants: 2014*. Rev. Mod. Phys.,
88:035009, Sep 2016.

[4] Pohl, Randolf, Ronald Gilman, Gerald A. Miller and Krzysztof

Pachucki: Muonic Hydrogen and the Proton Radius Puzzle. Annual Review
of Nuclear and Particle Science, 63(1):175–204, 2013.

[5] Bernauer, J. C., M. O. Distler, J. Friedrich et al.: The electric and magnetic
form factors of the proton. Phys. Rev. C, 90:015206, Jul. 2014.

[6] Aulenbacher, Stephan: Design and Simulation of the Internal Gas-Target
for MAGIX. Diploma thesis, Institut für Kernphysik, Johannes Gutenberg-
Universität Mainz, 2014.

[7] G., Lerner Rita and Trigg George L.: ENCYCLOPEDIA OF PHYSICS.
VCH Publishers, Inc., Second edition, 1991. ISBN:3-527-26954-1.

[8] Povh, Bogdan, Klaus Rith, Christoph Scholz, Frank Zetsche and
Werner Rodejohann: Teilchen und Kerne; Eine Einführung in die physikalis-
chen Konzepte. Springer-Verlag GmbH, Nineth edition, 2014. ISBN: 978-3-
642-37821-8.

[9] Frisch, R. and O. Stern: Über die magnetische Ablenkung von Wasserstoff-
molekülen und das magnetische Moment des Protons. I. Zeitschrift für Physik,
85(1-2):4–16, 1933.

[10] Estermann, I. and O. Stern: Über die magnetische Ablenkung von Wasser-
stoffmolekülen und das magnetische Moment des Protons. II. Zeitschrift für
Physik, 85(1-2):17–24, 1933.

[11] Hanneke, D., S. Fogwell and G. Gabrielse: New Measurement of the Elec-
tron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett.,
100:120801, Mar. 2008.

[12] Demtröder, Wolfgang: Experimentalphysik 4, Kern-, Teilchen- und Astro-
physik. Springer-Verlag, fourth edition, 2014. ISBN: 978-3-645-21475-2.

101



[13] Nishino, H., S. Clark, K. Abe, Y. Hayato et al.: Search for Proton Decay
via p→ e+π0 and p→ µ+π0 in a Large Water Cherenkov Detector. Phys. Rev.
Lett., 102:141801, Apr. 2009.

[14] Chambers, E. E. and R. Hofstadter: Structure of the Proton. Phys. Rev.,
103:1454–1463, Sep. 1956.

[15] Rose, M. E.: The Charge Distribution in Nuclei and the Scattering of High
Energy Electrons. Phys. Rev., 73:279–284, Feb. 1948.

[16] Halzen, Francis and Alan D. Martin: QUARKS AND LEPTONS: An
Introductory Course in Modern Particle Physics. John Wiley & Sons, Inc.,
First edition, 1984. ISBN: 0-471-88741-2.

[17] Griffiths, David: Introduction to Elementary Particles. WILEY-VCH Verlag
GmbH & Co. KGaA, Second edition, 2008. ISBN: 978-3-527-40601-2.

[18] Greiner, Walter and Joachim Reinhardt: QUANTUM ELECTRODY-
NAMICS. Springer-Verlag Berlin Heidelberg New York, Third edition,
2003. ISBN: 3-540-44029-1.

[19] McAllister, R. W. and R. Hofstadter: Elastic Scattering of 188-Mev Elec-
trons from the Proton and the Alpha Particle. Phys. Rev., 102:851–856, May
1956.

[20] Rosenbluth, M. N.: High Energy Elastic Scattering of Electrons on Protons.
Phys. Rev., 79:615–619, Aug. 1950.

[21] A. Mooser, S. Ulmer, K. Blaum K. Franke H. Kracke C. Leiteritz W.
Quint C. C. Rodegheri C. Smorra and J. Walz: Direct high-precision mea-
surement of the magnetic moment of the proton. Nature, 509(7502):596–599,
May 2014.

[22] Ernst, F. J., R. G. Sachs and K. C. Wali: Electromagnetic Form Factors of
the Nucleon. Phys. Rev., 119:1105–1114, Aug. 1960.

[23] Vanderhaeghen, Marc and Thomas Walcher: Long Range Structure of
the Nucleon. Nucl. Phys. News, 21:14–22, 2011.

[24] Carlson, Carl E. and Marc Vanderhaeghen: Empirical Transverse
Charge Densities in the Nucleon and the Nucleon-to-∆ Transition. Phys. Rev.
Lett., 100:032004, Jan. 2008.

[25] Perdrisat, C.F., V. Punjabi and M. Vanderhaeghen: Nucleon electromag-
netic form factors. Progress in Particle and Nuclear Physics, 59(2):694 – 764,
2007.

[26] Kelly, James J.: Nucleon charge and magnetization densities from Sachs form
factors. Phys. Rev. C, 66:065203, Dec. 2002.

102



[27] Bernauer, Jan C.: Measurement of the elastic electron-proton cross section and
separation of the electric and magnetic form factor in the Q2 range from 0.004
to 1 (Gev/c)2. PhD thesis, Institut für Kernphysik, Johannes Gutenberg-
Universität Mainz, 2010.

[28] Maximon, L. C. and J. A. Tjon: Radiative corrections to electron-proton scat-
tering. Phys. Rev. C, 62:054320, Oct. 2000.

[29] Vanderhaeghen, M., J. M. Friedrich, D. Lhuillier, D. Marchand,
L. Van Hoorebeke and J. Van de Wiele: QED radiative corrections to virtual
Compton scattering. Phys. Rev. C, 62:025501, Jul. 2000.

[30] Friedrich, Jan M.: Messung der Virtuellen Comptonstreuung an MAMI zur
Bestimmung Generalisierter Polarisierbarkeiten des Protons. PhD thesis, Insti-
tut für Kernphysik, Johannes Gutenberg-Universität Mainz, 2000.

[31] Tsai, Yung-Su: Radiative Corrections to Electron-Proton Scattering. Phys.
Rev., 122:1898–1907, Jun. 1961.

[32] McKinley, William A. and Herman Feshbach: The Coulomb Scattering of
Relativistic Electrons by Nuclei. Phys. Rev., 74:1759–1763, Dec 1948.

[33] McCord, Miles, Hall Crannell, L.W. Fagg, J.T. O’Brien, D.I. Sober,
J.W. Lightbody, X.K. Maruyama and P.A. Treado: Preliminary results of a
new determination of the rms charge radius of the proton. Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Mate-
rials and Atoms, 56â57, Part 1:496 – 499, 1991.

[34] Simon, G.G., Ch. Schmitt, F. Borkowski and V.H. Walther: Absolute
electron-proton cross sections at low momentum transfer measured with a high
pressure gas target system. Nuclear Physics A, 333(3):381 – 391, 1980.

[35] Bernauer, J. C. et al.: High-Precision Determination of the Electric and Mag-
netic Form Factors of the Proton. Phys. Rev. Lett., 105:242001, Dec. 2010.

[36] Kostoulas, I., A. Entenberg, H. Jöstlein et al.: Muon-Proton Deep Elastic
Scattering. Phys. Rev. Lett., 32:489–493, Mar. 1974.

[37] R. Gilman, E.J. Downie, G. Ron et al.: Studying the Proton "Radius" Puzzle
with µp Elastic Scattering; The MUon proton Scattering Experiment (MUSE)
Collaboration. http://arxiv.org/pdf/1303.2160v3.pdf, Jul. 2013.

[38] Crawford, C. B., A. Sindile, T. Akdogan, R. Alarcon et al.: Measurement
of the Proton’s Electric to Magnetic Form Factor Ratio from 1

→
H (

→
e , e

′
p). Phys.

Rev. Lett., 98:052301, Jan. 2007.

[39] Zhan, X., K. Allada, D.S. Armstrong et al.: High-precision measurement
of the proton elastic form factor ratio at low. Physics Letters B, 705(1–2):59 –
64, 2011.

103

http://arxiv.org/pdf/1303.2160v3.pdf


[40] Chen, Y.-C., A. Afanasev, S. J. Brodsky, C. E. Carlson and M. Van-
derhaeghen: Partonic Calculation of the Two-Photon Exchange Contribution
to Elastic Electron-Proton Scattering at Large Momentum Transfer. Phys. Rev.
Lett., 93:122301, Sep. 2004.

[41] Tomalak, O. and M. Vanderhaeghen: Two-photon exchange correction in
elastic unpolarized electron-proton scattering at small momentum transfer. Phys.
Rev. D, 93:013023, Jan 2016.

[42] Melnikov, Kirill and Timo van Ritbergen: Three-Loop Slope of the Dirac
Form Factor and the 1S Lamb Shift in Hydrogen. Phys. Rev. Lett., 84:1673–
1676, Feb. 2000.

[43] Parthey, Christian G., Arthur Matveev, Janis Alnis et al.: Improved
Measurement of the Hydrogen 1S–2S Transition Frequency. Phys. Rev. Lett.,
107:203001, Nov. 2011.

[44] Beauvoir, B. de, F. Nez, L. Julien, B. Cagnac et al.: Absolute Frequency
Measurement of the 2S − 8S/D Transitions in Hydrogen and Deuterium: New
Determination of the Rydberg Constant. Phys. Rev. Lett., 78:440–443, Jan.
1997.

[45] Bernauer, Jan C. and Randolf Pohl: The Proton Radius Puzzle. Scientific
American, 310:32–39, 2014.

[46] Pohl, Randolf et al.: The size of the proton. Nature, 466(7303):213–216, Jul.
2010.

[47] Patrignani, C. and Particle Data Group: Review of Particle Physics. Chi-
nese Physics C, 40(10):100001, 2016.

[48] Olive, K.A. and Particle Data Group: Review of Particle Physics. Chinese
Physics C, 38(9):090001, 2014.

[49] Aubert, B., R. Barate, D. Boutigny et al.: J/ψ production via initial state
radiation in e+e− → µ+µ−γ at an e+e− center-of-mass energy near 10.6 GeV.
Phys. Rev. D, 69:011103, Jan. 2004.

[50] Arbuzov, Andrej B., Eduard A. Kuraev, Nikolay P. Merenkov and
Luca Trentadue: Hadronic cross sections in electron-positron annihilation
with tagged photon. Journal of High Energy Physics, 1998(12):009, 1998.
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