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* DUNE Is a long-
baseline neutrino
experiment currently
under construction

* Will constrain the

three flavor paradigm

« Measure o_, and

mass ordering by
studying vV, -V,

Fermilab

4

* Liguid argon time projection chamber oscillations
(LArTPC) technology for high resolution

neutrino interaction imaging
e 4x17 kton LArTPC modules
* Near Detector
* 574 m baseline
* Multiple detector systems
* 147 ton LArTPC component

* Truth-level study of atmospheric tau neutrinos
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Background rejection efficiency

suggested excellent hadronic v /NC

discrimination using simple kinematic cuts [2]
* Optimistic assumption: near perfect e/y and

w/m discrimination in LArTPC

* Suggests 30% signal efficiency and 0.5% NC  ~

background efficiency possible
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* Use as a first estimate of sensitivity 7
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Signal selection efficiency

» ProtoDUNE Simulation True labels
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* More realistic reconstruction relies on the
transverse plane kinematic approach
suggested in Ref. [3]

* Can be applied to hadronic decays If the
tau-lepton products can be identified
* First attempt in Ref. [4] applied

approach to t —» p decays

* [nvestigating machine learning
approaches for improved particle ID and
reconstruction
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Tau Neutrino PhySiCS at DUNE @& ENERGY
Adam Aurisano, for the DUNE Collaboration
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U | ' -1 e+ Current generation of neutrino experiments
: | ! : 4  provides nearly complete description of
L D'r?& ;?@U[Ei”ngg : i 4 three flavor paradigm |
L cterile data : ;] < Almost all knowledge of tau neutrino sector
iy 1 L .
I : _: i IS taken from
. Assuming ; ;4  *Lepton universality for cross sections
e, unitarity ; i * PMNS unitarity for oscillations
L E ey .Fn" . * Critital that these assumptions are tested
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* At atmospheric maximum, almost
all muon neutrinos oscillate to tau
neutrinos

* Excellent opportunity to probe:

Probability

* Unitarity by measuring all three o
oscillation modes — P,

e Standard model cross section
assumptions
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sing,, = 0.31, sin’9,, = 0.022
sin%0,, = 0.58, 8., = 217°
AmZ, = 7.39x10° V2, Am2, = 2.53x10° eV?
Baseline = 1300 km

First Oscillation Maximum
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DUNE Neutrino Flux

- * Default beam configuration peaks ~2 GeV
007}~ . to maximize sensitivity to CP violation
b [ U YT * High energy tail is above kinematic
= Interactions

: . threshold
0.05 possible

: * Expected counts/year (1.2 MW beam)
0.04 . -

- n « ~130 v_in neutrino mode
0.03F — Optimized v, flux _ = _ _

= U

H  ~30 v_In antineutrino mode
0.02 i — v, flux .. : :

| g * Tau optimized configuration
0.01 .
, * Higher energy
e e s w e Possible configuration after CP program
« ~800 v_per year
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* Ref. [6] showed that DUNE can = z= ¥
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« If we assume non-unitarity is due : RV
to kinematically inaccessible . //_
sterile neutrinos, can set strong I3
limits on o, e
* Tau optimized configuration Is g - 1
particularly useful for this = s
| (6% Ax?
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7~ Decay Mode Branching Ratio * Kinematically forbidden at typical

R 17.4% beam energies
e Vevr 17.8% » Even above threshold, still
T Ur 10.8%
5 s suppressed
T T U 25.5%
72700 9.3% * Tau leptons have many decay
o v, 9.3% modes
2m m vy 4.6% » Mimic v,CC, v CC, or NC events
depending on decay
» Outgoing neutrino — mMIssing energy === Invisible or Shortived <
* Worse for leptonic decay modes T 3
* Hadronic decay modes can be Ly
complicated ‘B
* Difficult to separate hadronic rd

systems from tau decay and nucleus -

« Due to kinematic threshold, beam v_are
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20— -1 < c0os(B,,,) < -0.5 —

only detected above the atmospheric - sl Amsohos Neins, 550 on s rpou
oscillation maximum A romcurosuigon
 Causes a degeneracy between Am?_, g | ==
and sin?0,, g "
* Due to long baseline of atmospheric 5
neutrinos, atmospheric maximum is a
above kinematic threshold L . ——
 Complements beam neutrinos
" Selected Beam and |.0\trlnoslphleri(|:v,l,-hslidl ] ® EXpeCt ~1 VT/ ktOn-year
T okerepee E * Lower statistics, but clear signal at
20 yslemalc unceriany : atmospheric maximum
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* Breaks degeneracy
* Interplay between atmospherics and

Q ) beam important
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- * Atmospherics have favorable L/E
: Cipected 6% CL. sesivies * Beam has defined direction and Near
b CoONeComeay, - Detector for systematic uncertainty
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See posters:
#199 Studies of tau neutrinos appearing at the DUNE Near
Detector Complex
#418 Tau Neutrino Cross Section at DUNE
for details about the tau neutrino program at DUNE
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