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Abstract It is shown that the vacuum state in the presence of Lorentz violation
can be followed by a universe filled with particles at late times similar to the
current status of the universe. In this model a modification in dispersion relation
(Lorentz violation) appears representing the regime of quantum gravity which has
been dominant in the early universe. The existence of the particles can be inter-
preted as an evidence for quantum effects of gravity at early times. It is concluded
that the present observable particles have a geometrical origin due to the well-
known correspondence between geometry and gravity.
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1 Introduction

The big-bang singularity is a prediction of classical general relativity and it has to
be removed in the final theory. This fact1 points to a regime where general relativ-
ity (gravity) is the dominant field with a very high density. From another angle, our
knowledge of quantum physics says that in this regime due to enormous density
of a the fields, the classical physics is broken and quantum fields become essen-
tial. The big-bang and the black-hole, theoretical evidences of quantum gravity,
challenge the final theory (at least in its gravity sector). Until now different quan-
tum gravity approaches have grown up e.g. string theory [1; 2] and loop quantum
gravity [3; 4]. For a theory, including quantum gravity, it is very crucial to pos-
sess some non-trivial accessible predictions, besides the compatibility with their
classical counterparts. However, due to the complexity of quantum gravity it is so
hard to calculate any physical prediction, verifiable by the present experiments. To
make this comparison possible, test theories are needed which fill the gap between
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the full theories’ predictions and experiments. These test theories should possess
the structure of the main theories as much as possible. Also there is another layer
between the full quantum gravity theories and test theories which is named falsi-
fiable “quantum gravity theory of not everything” [5]. The latter makes it possible
to transit the great gap between test theories and full theories step by step, e.g.
noncommutative geometry [6; 7; 8].

As a candidate to model quantum gravity effects is a deviation [5; 9; 10; 11;
12; 13; 14; 15] from the standard dispersion relation among energy and momen-
tum of a particle (Lorentz violation) i.e. ω2 = k2 + m2 where ω, k and m are the
energy, momentum’s norm and mass of the particle, respectively. Actually, it is
well-known that modification to dispersion relation can appear as a consequence
of discretization of the space-time on a lattice [5; 16]. Observationally in some
cases the modified dispersion relation’s imprints can be found in cosmic ray spec-
trum [17; 18; 19; 20; 21]. This deviation can be represented by a modification to
the dispersion relation such that ω2 = k2 +m2−α2k4 which is a famous example
[11]. However, this form of deformation is not a unique choice e.g. introducing a
cubic term has been studied in detail [12] and a more general form in [13] which
contains an observer independent length besides velocity. The coefficient α2 is a
factor proportional to the minimum length `P that makes the semi-classical limit to
standard form of the dispersion relation trivial due to exiting the quantum gravity
regime by taking `P → 0. It is worth mentioning that this deviation is a candidate
to go further in the phenomenology of quantum gravity [5; 14; 15]. As mentioned
above, the phenomenological aspects of quantum gravity is a controversial issue
in theoretical physics. It seems tracing quantum gravity is difficult at the present
status of our experiments (due to the large difference between energy levels of
theoretical predictions and achievable experiments). But it is believable to accept
domination of quantum gravity in the early universe. Therefore, focusing on the
physics of the early universe may shed some light on the nature of quantum grav-
ity.

In general, to understand properties of a physical system, understanding of the
dynamical rules and the correct initial conditions, are essential. For our universe
the common belief is that the initial state is a quantum gravitational state due to
domination of gravitational field at early times. This state has reached the present
state containing particles without any quantum effects of gravity.2 So the question
is that how the particle-full universe has risen up from an unknown initial quan-
tum gravitational state? Note that the initial state is an unknown state at least at
the present. However as it is usual, for different theories with exactly similar pre-
dictions, the simpler one is more convenient to choose (Occam’s razor). At least,
lacking any knowledge on the correct initial state, makes the simpler choice of
the theory calculable and hence results in a general understanding of the theory
though it would not be complete. The simplest choice for the initial state is the
vacuum state, if it does not fall in a trivial prediction. If this simplest choice can
predict non-trivial, particle-filled present status of the universe then this assump-
tion is remarkable. Note that the vacuum state is not only the simplest choice but
also is a special one. This choice makes the proposal of creation from nothing
meaningful [22]. The idea of vacuum creation theory has been considered also in
different aspects such that under the action of strong fields which predicts the pos-

2 To be more precise, in very very tiny effects of quantum gravity.
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sibility of creating a particle-anti particle plasma system [23; 24]. As mentioned
in [24] the time dependent masses can cause particle creation that makes these
kind of models comparable to our model which has a time dependent dispersion
relation as it will be shown.

In this work, in a toy model we have shown that the above argument is viable.
To construct our toy model we pick up the method of particle creation in the
context of the quantum field theory in curved space-times [25]. The deformed
dispersion relation is used to model the quantum gravitational regime i.e. ω2 =
k2 + m2 −α2k4. We will propose that the quantum gravity parameter α2 has a
time dependence such that for very early times is one and vanishing for late times.
This dynamical behavior is appropriate to study the effects of very early quantum
gravity at the present time and it is also consistent with what was discussed above.

2 Model

It is generally believed that the notion of particle and as a consequence the notion
of vacuum in quantum field theory is not a straightforward manner specially in
curved space-times. The crucial point of the definition of states in field theory is
the selection of the basis. A field can be expanded due to the appropriate basis
uk(x) as follow

ϕ(x) = ∑
k

(akuk(x)+a∗ku∗k(x)) (1)

where ak is a complex number, x and k are four-vectors of position and momen-
tum respectively. In the Minkowskian space-time the choice is trivially e±iEk.Exe±iωt

such that ω2 =Ek2 + m2. The next step is the quantization procedure that transi-
tion from complex number coefficients ak to their corresponding operators âk and
consequently a∗k to â†

k , such that the commutation relation
[
âk, â

†
k′

]
= ih̄δi j is satis-

fied by âk and â†
k . Due to this relation âk and â†

k can be interpreted as annihilation
and creation operators respectively. Finally an nk-particle state with momentum
k, |nk >, is defined as N̂k = â†

k âk|nk >= nk|nk >. In the above we reviewed very
quickly the structure of definition of states containing particles. As mentioned be-
fore the starting point is definition of the appropriate basis that is not trivial for
curved space-times [25]. In general cases the symmetries help us to define the
appropriate basis. This rapid review was needed to commence our model.

In our model we will suppose a Minkowskian space-time as the background
but the dispersion relation is different for two sides of the time interval. For the
very early times, i.e. for t →−∞, it has the form ω2 =Ek2 +m2−α2

0
Ek4 where α2

0
is the Lorentz violation parameter represents the quantum gravity regime in our
model. And for very late times, i.e. t → +∞, the dispersion relation becomes the
standard one, ω2 =Ek2 + m2. For the late times the natural choice of the basis is
e±iEk.Exe±iωt where ω2 =Ek2 + m2. But for the early times these basis are not the
suitable ones since the dispersion relation ω2 =Ek2 + m2 has not any significance
in this time region. The natural alternative for this region of time is e±iEk.Exe±iωt

where ω2 =Ek2 +m2−α2
0
Ek4. Since the definitions of basis for these two different
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regions are not equivalent then the equivalence of the vacuum’s notion for them is
not a trivial concept and must re-study again. This feature can cause a deviation
between the initial vacuum state and the final vacuum state. This deviation can be
interpreted as particle creation during transition from the initial to the final state.
Note that this kind of interpretation is a standard one in quantum field theory in
curved space-times [25]. The aim of this paper is to study this concept. To do
more, supposing the time evolution of the Lorentz violation parameter is

α(t)2 =
α2

0
1+ et , (2)

where α2
0 is the initial value of the Lorentz violation parameter and the general

behavior is such that the parameter for the early times and the late times satisfies
our above propositions. Otherwise, the form of the function is picked only to make
the equations exactly solvable. It must be noted that the origin of this form of time
dependence has not been discussed in this work and it seems that this subject
belongs to the quantum gravity and specially that branch discussing on the semi-
classical limit of quantum gravity.3 We consider a mass-less scalar field without
any loss of generality. To reach to the Klein-Gordon equation it is sufficient to
replace ω and Ek in the dispersion relation by their corresponding operator forms
−i∂t and −i∂Ex respectively. So the Klein-Gordon equation4 becomes[

∂
2
t −∂

2
Ex −α(t)2

∂
4
Ex
]

ϕ(x) = 0, (3)

where x is position four-vector. Letting ϕ(x) ∝ eiEk.ExTk(t) reduces the above equa-
tion to [

∂
2
t + k2−α(t)2k4]Tk(t) = 0, (4)

where k = |Ek|. The solution of the above second order differential equation is

Tk(t) = C1e−i
(√

k2−α2
0 k4

)
t
2F1

(
a,b;c;−et)

+C2e+i
(√

k2−α2
0 k4

)
t
2F1

(
b∗,a∗;c∗;−et) (5)

where 2F1 is the hypergeometric function and

a = −ik− i
√

k2−α2
0 k4 =−i(ωin +ωout)

b = +ik− i
√

k2−α2
0 k4 =−i(ωin−ωout) (6)

c = 1−2i
√

k2−α2
0 k4 = 1− i 2ωin

3 It is not too bad mentioning this branch of re-
search is an active part without any final conclusion
[3; 4; 26; 27].

4 It is worth mentioning that to reach to Klein-Gordon equation the quantization process is
crucial. The details of reaching to above equation is in [28; 29]. It should be notice that in the
quantization process the concept of symmetry transformations in presence of Lorentz violation
are not trivial. This subject is considered in details in [30].
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To go further, we concentrate on the behavior of the both infinite limits. For the
very early times, t →−∞, the above solution reduces to

Tk(t →−∞) = C1e−iωint +C2e+iωint , (7)

where the identity 2F1(a,b;c;0) = 1 for arbitrary a, b and c is used [31]. The result
is fully in agreement with our expectation since for the very early times the energy

is ωin =
√

Ek2−α2
0
Ek4. So the first term in (7) can be interpreted as the temporal

part of uin
k that we will need it in the following calculations. For the second infinite

limit, the very late times, the solution becomes more complicated such that

Tk(t →+∞) =
[
C1

Γ (c)Γ (a−b)
Γ (a)Γ (c−b)

+C2
Γ (c∗)Γ (b∗−a∗)
Γ (b∗)Γ (c∗−a∗)

]
× e−iωout t

+
[
C1

Γ (c)Γ (b−a)
Γ (b)Γ (c−a)

+C2
Γ (c∗)Γ (a∗−b∗)
Γ (a∗)Γ (c∗−b∗)

]
× e+iωout t , (8)

where Γ (x) is the gamma function. The important point in the above solutions is
that for incoming waves, i.e. e−iωout t , there is a combination of the two terms of the
general solutions (5) i.e. C1 and C2 both appear in the coefficient of the incoming
waves and the same is true for the outgoing waves. This means that the vacuum
state of the very early universe, t →−∞, does not coincide to the vacuum state of
the very late times, t →+∞. As mentioned before, this interpretation is a standard
interpretation in the subject of quantum field theory in curved space-times [25]. To
continue we must calculate the Bogolubov coefficients, γ and β , as follows [25]

uin
k (x) = γkuout

k (x)+βkuout∗
−k (x), (9)

where x is the position four-vector. Note that uin
k and uout

k are the first terms in
relation (1) corresponding to annihilation operator for in-region and out-region
respectively. The non-vanishing β results to contrast with vacua for in-region and
out-region e.g. in our model, the very early times and the very late times respec-
tively. In mathematical language due to relation (7) in our model uin

k (x) is the first
term in relation (5) times eiEk.Ex i.e. it contains only the C1 factor. But for the out-
region the result is more complicated such that due to relation (8), uout

k (x) contains
a combination of both of terms in (5). The temporal part of the solutions for both
of the in- and out-regions are

T in
k (t) =

1

(4πωin)
1
2

e−iωint
2F1

(
a,b;c;−et)

T out
k (t) =

(4πωout)
1
2

(4πωin)
×

(
e−iωint Γ (c∗)Γ (a∗−b∗)

Γ (a∗)Γ (c∗−b∗) 2F1
(
a,b;c;−et)

−e+iωint Γ (c)Γ (b−a)
Γ (b)Γ (c−a) 2F1

(
b∗,a∗;c∗;−et)) ,

such that by taking the limits, the above solutions reduce to the first terms in their
counterpart relations (7) and (8).5 Note that in the above results the pre-factors

5 It is worth mentioning again that for the second relation, T out
k , the combination has picked

up such that the above relation reduces to its asymptotic counterpart in (8).
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Fig. 1 The parameter α2
0 = 1 is positive then the plot is not shown for the forbidden region

where the ωin is imaginary (in this case k > 1 represents forbidden region)

Fig. 2 This plot is for two negative α2
0 with no forbidden region. The solid line presents the

spectrum of created particles for α2
0 =−1 and the dashed line for α2

0 =−3

guaranty the normalization of the basis. The second Bogolubov coefficient shows
the spectrum of the created particles with respect to the energy i.e. the |β 2

k | is the
number of particles with energy k, is in the following form

Nk = β
2
k =

sinh2(π(ωout −ωin))
sinh(2πωin)× sinh(2πωout)

. (10)

The above result can be deduced by some algebra (see the Appendix) from def-
inition of Bogolubov coefficients (9) that has been used for relations (10). The
figures show the above number density spectrum for different values of α2

0 . Now
let us examine the behavior of the result in well known limits. For α2

0 = 0 the
expectation is, vanished Nk due to no difference between the early and late times.
Obviously since in this case ωin = ωout it causes vanishing “sinh(π(ωin−ωout))”
in the numerator of the fraction results in vanished Nk, as expected. Another point
is that we have two different choices for α2

0 , a positive one and a negative one.
It must be noted that for the positive one, we must restrict the plots to an upper-
bound for k’s since for the greater values of k, ωin becomes an imaginary number
that makes no sense in our conclusions. But for the negative values of α2

0 the spec-
trum is valid for all the k’s. The Fig. 1 shows the behavior of the Nk with respect
to k for a positive α2

0 . In this case as mentioned before, there is a forbidden region
due to non-real values of energy ωin. The second figure presents the spectrum of
the number of created particles with respect to their energy but for two negative
values of α2

0 (Fig. 2). It is obvious from the plots that in this case, the maximum
of the spectrum is changed by different values of Lorentz violation parameters.
The energy, that has the maximum number of created particle, decreasing due to
increasing of the absolute value of α2

0 . In this case for smaller value of α2
0 the plot

falls and for α2
0 → 0 it coincides to Nk = 0 for all k’s, as one expected.

3 Conclusions

We have studied a toy model to describe the effects of Lorentz violation in particle
creation [28; 29] in the presence of a time dependent deformed dispersion relation.
In this paper, we have shown that the existence of Lorentz violation at very early
times’ vacuum can result in the existence of particles but in the absence of any
Lorentz violation. In the other words, we have combined two legitimate individual
ingredients, modification to the dispersion relation [11; 12; 13] and time variation
of a fundamental parameter [32; 33], to peruse any interesting features. According
to above discussions and the close relation between Lorentz violation and quantum
gravity a suggestion can be introduced: quantum gravitational vacuum causes a
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particle-filled state in classical gravity.6 This final state is obtainable by making a
semi-classical limiting process. It means that particle-filled states are obtained by
taking semi-classical limits of the quantum gravitational vacuum. In other words,
particles are only some excitations of quantum gravitational vacuum, that is not
an obsolete idea in theoretical physics [34; 35]. In this viewpoint, the particles are
the evidence of the past existence of Lorentz violation [or, quantum structure of
the geometry (gravity)]. Since our model is a toy model and far from complete
quantum gravity theory, to see the correctness of our proposal in this paper we
should wait until the emergence of a full quantum gravity theory. This can also
shed light on the origin of the time-dependence of Lorentz violation parameter
that is an ambiguity in our model. Finally, it is again worth mentioning that in
our model only the Lorentz violation is picked up, presenting the quantum gravity
regime.7 To present a more accurate discussion we need to study all the quantum
gravitational effects in the presence of the curved background and its dynamics.

Finally, it is proper to consider that the origin of the present particles and even
the large scale structures can be explained by proposing an inflationary era in the
early universe [36]. May be the inflationary scenario would make the results of
this paper irrelevant. But it is important to note that the inflationary era is not the
first stage after the big-bang where quantum gravitational effects are dominant
[37; 38]. Our conclusion is that the created particles by Lorentz violation are just
before the inflationary era i.e. in contrast to the standard approach in inflationary
models the initial state for this era is not vacuum state. In this viewpoint [37; 38]
the natural question will be how one can find any traces of these particles after
inflationary era in the last scattering surface or even at present time? Consider-
ably, since the old.8 particles are created by a geometric effect, they should show
themselves by a geometric feature e.g. gravitational waves [39; 40] This way of
thinking is still open and in this work we did not consider this problem e.g. the
effects on CMB temperature fluctuations etc.
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6 This suggestion is not provable until reaching a full theory of quantum gravity. But the
current results, in the context of a toy model, make the validity of this claim possible.

7 As mentioned before, this choice makes questionable the validity of the concluding remarks
in all the quantum gravity regime. But at least, it sheds some lights on the behavior of this
unaccessible regime by analytical results.

8 Before inflation.
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Appendix

In the body of the paper we have used alternatively the following identities among
the hypergeometric functions

F(a,b;c;z) = F(b,a;c;z) =
Γ (c)Γ (b−a)
Γ (b)Γ (c−a)

(−z)−aF
(

a,1−c+a;1−b+a;
1
z

)
+

Γ (c)Γ (a−b)
Γ (a)Γ (c−b)

(−z)−bF
(

b,1−c+b;1−a+b;
1
z

)
and the following properties for gamma functions

Γ (1+ iy) = iyΓ (iy)

Γ (iy)Γ (−iy) =
π

ysinh(πy)

where y is a real number.
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