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ABSTRACT

Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass
ratio inspirals (EMRISs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer
Space Antenna is expected to detect sufficient EMRISs to probe the underlying source population, testing theories of the formation
and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI
parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability
of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural
network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating
detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data
generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in
population inference analyses. We apply our method to an astrophysically motivated EMRI population model, demonstrating
the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that with 116
EMRI detections LISA will measure the MBH mass function slope to a precision of 8.8 per cent, the CO mass function slope to
a precision of 4.6 per cent, the width of the MBH spin magnitude distribution to a precision of 10 per cent, and the event rate

to a precision of 12 per cent with EMRISs at redshifts below z = 6.
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1 INTRODUCTION

The Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al.
2017) is a planned space-based observatory capable of observing
gravitational waves (GWs) with frequencies ~107°-10"! Hz.
Promising sources of GWs in this band are extreme mass ratio
inspiral (EMRI) systems, comprising a compact object (CO) orbiting,
and gradually inspiralling towards, a massive black hole (MBH;
Amaro-Seoane et al. 2007, 2023). EMRI systems typically complete
~10*-10° orbital cycles in the LISA band and generate GWs with an
intricate frequency evolution. Relativistic effects, including Lense—
Thirring precession and pericentre precession, generate many distinct
sideband modes in the signal spectrum (Barack & Cutler 2004;
Hughes et al. 2021). The amplitude and phase evolution of these
modes is strongly dependent on the parameters of the MBH-CO
system, enabling precise measurements of these parameters (Babak
et al. 2017). In particular, the (redshifted) MBH and CO masses,
MBH spin, and orbital eccentricity may be determined to accuracies
of ~ 1073 per cent, and the sources localized in space to better than 10
per cent relative precision (Amaro-Seoane et al. 2007; Berry et al.
2019). This level of measurement precision for MBHs surpasses
both existing electromagnetic techniques (Daly 2011) and LISA
observations of MBH binaries (Klein et al. 2016).
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The number of EMRIs that will be detected is uncertain, largely
due to poorly constrained astrophysical parameters in current for-
mation channel theories, but the detection rate is likely to be of
order 10'-10% yr~! (Babak et al. 2017; Pan, Lyu & Yang 2021;
Viazquez-Aceves et al. 2022; Amaro-Seoane et al. 2023). During
LISA’s proposed 4 yr mission, we therefore expect to attain a
sufficiently large catalogue of EMRIs (each of which providing
excellent measurements of their parameters) to probe and resolve
features of the MBH mass and spin populations. For example, we
expect to match the precision of current observational estimates
of an MBH mass power-law spectral index, even for pessimistic
EMRI detection rate predictions (Gair, Tang & Volonteri 2010).
Such a catalogue also enables the testing of the wide array of EMRI
formation channel theories. Several EMRI formation channels have
been suggested, including loss-cone scattering of COs into inspiral
orbits (Alexander 2017), radial migration of COs by dynamical
interaction with an accretion disc (Pan et al. 2021), capture via
the Kozai-Lidov mechanism due to the presence of a binary MBH
system (Naoz et al. 2022), and the tidal disruption of main-sequence
or helium stars on highly eccentric orbital trajectories around MBHs
(Bortolas & Mapelli 2019). For a given formation channel, the rate of
EMRI production depends on astrophysical parameters (e.g. Broggi
etal. 2022, for loss-cone or TDE channels) that are poorly constrained
by existing observations. Determining the relative contributions of
the formation channels to the overall EMRI rate therefore places
constraints on these parameters; this could be estimated from a cata-
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logue of EMRI observations in a similar manner to how ground-based
GW observations are used to constrain their source astrophysics (e.g.
Zevin et al. 2021).

Extracting information about the astrophysical population requires
a hierarchical inference where the parameters of each EMRI in
the catalogue (and their associated uncertainties) are collectively
used to constrain the parameters of a chosen population model.
However, the catalogue only contains sources loud enough to cross a
detection threshold, and these are generally not representative of
the underlying population: if these selection effects are ignored,
the inferred population parameters will be biased. EMRIs that are
intrinsically fainter (depending on their masses, spins, or orbital
parameters) and more distant are less likely to be detected than
their nearer and louder counterparts. In practice, one may correct for
this by determining the fraction of the proposed population that is
detectable, and re-weighting the population likelihood accordingly
(Mandel, Farr & Gair 2019; Alsing et al. 2023).

In the absence of a standard EMRI detection pipeline, the de-
tectability of a given EMRI is typically assessed with respect to the
signal-to-noise ratio (SNR) of the EMRI waveform (Gair et al. 2004,
2010; Babak et al. 2017). The detectable fraction of a proposed
population (the selection function) may therefore be estimated by
randomly drawing EMRI events from the population and computing
their SNRs to determine the fraction of these samples that are
detectable. These selection function estimates may then be used to
re-weight the population likelihood and obtain unbiased inferences
of the population parameters.

The function that maps EMRI parameters to the waveform SNR
is complicated, so bias correction is computationally expensive.
This high cost comes from both the generation of complex long-
duration waveforms and the manipulation of these large data sets.
Even exploiting graphics processing unit (GPU) acceleration and
vectorization, each SNR takes of order 1 s to compute for a 4 yr
data-stream duration. Using conservative estimates, if one draws 10°
EMRIs for each candidate population, and a population inference
sampling run consists of 10° candidate populations, full selection
bias correction would require 10'© GPU s. This is too costly for
analyses including selection bias correction in this manner to be
conducted in a reasonable amount of time.

Previous studies have addressed the issue of computational cost
by indirectly approximating the behaviour of the selection function
via: proxy distance thresholds (Laghi et al. 2021); a reduction in
EMRI parameter space complexity, for instance by neglecting the
dependence of eccentricity or inclination on detectability (Gair et al.
2010); a reduction of waveform complexity by only computing a
small number of sideband modes with faster, less accurate waveform
models (Chua & Cutler 2022). These approaches permit the rapid
computation of the selection function, but do not account for
more complex correlations between EMRI parameters and may
introduce systematic biases due to the approximations made. For
instance, the evolution of orbital eccentricity and inclination during
an inspiral is correlated with mass ratio, and the mode amplitudes
(and therefore the overall SNR of the waveform) are correlated
with both eccentricity and inclination evolution. Therefore, even for
parameters not directly of interest to a given population study, the
correlations between these parameters and event detectability must
still be taken into account to avoid biases in the results obtained.

In this work, we propose an alternative approach that leverages the
speed of the recently developed GPU-accelerated EMRI waveform
package FastEMRIWaveforms (FEW; Katz et al. 2021) and machine-
learning techniques to interpolate the EMRI SNR function, directly
correcting for an SNR-based selection bias without the need for
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major systematic approximations or simplifications. In Section 2, we
outline the Bayesian population inference framework employed, in-
cluding the correction for selection biases. In Section 3, we introduce
our approach for estimating the selection bias with machine learning,
which we achieve by replacing the bottleneck in the selection
bias calculation (the EMRI SNR function) with a neural network
interpolator. The effectiveness of our framework is demonstrated
in Section 4 for a typical EMRI population, presenting clearly the
manifestation of the selection bias in the obtained results and how this
is corrected for in practice; the corrected results provide an unbiased
estimate for the precision to which LISA observations could constrain
the astrophysical EMRI population. Finally, in Section 5, we perform
a global posterior consistency check to verify the analysis.

The method we describe in this paper is implemented in our open-
source code package popLAR (Chapman-Bird 2023), which we plan
to use for (and develop alongside) future EMRI population studies.

2 HIERARCHICAL BAYESIAN INFERENCE
FRAMEWORK

Our goal is to infer the properties of an EMRI population model
using a catalogue of many EMRI observations.

For each EMRI in the catalogue, information about its parameters
0; is encoded in the data, d, where the subscripti € [1, Ny ] identifies
the particular EMRI in the catalogue of N, detections. The posterior
distribution for @; given the data is

w(0:)L(d|0;)
Z(d) ’

where 7(6;) is the prior distribution on 8;, £(d|;) is the likelihood
of observing the data given a set of source parameters, and Z(d) is
the evidence (marginalized likelihood). We estimate the parameters
of the EMRI by stochastically sampling the posterior distribution,
obtaining a set of posterior samples {¥0;} (Christensen & Meyer
2022), where the superscript k € [1, S;] denotes each posterior sample
for a given event. The posterior p(#;|d) provides information about
a single EMRI source; by combining together the properties of the
catalogue of sources, we can constrain a population model.

The population model p,q, (@A) describes the astrophysical dis-
tribution of EMRI source parameters. It is described by a set of
hyperparameters A that determine the shape of the population, and a
Poissonian mean event rate R that parametrizes how often EMRIs
occur. We use the hyper prefix to differentiate these population-level
(hyper)parameters from the event-level EMRI parameters. By esti-
mating the hyperparameters, we constrain the relative probabilities
of different population shapes and event rates in accordance with the
contents of the catalogue. We perform this hyperparameter estimation
in a hierarchical Bayesian inference framework (Mandel et al. 2019).

To obtain an estimate of A and R, we sample the hyperparameter
posterior distribution

T (R)LAOHMLAONR)
Z{o}h
where 7 (L) and 7 (R) are hyperprior distributions, and Z({6}) is the

hyperevidence. The hyperparameter likelihood L£({#}|1) is defined
as

p0;ld) = ey

P, RI{O}) = ; @)

Nobs

cqoymn =]

i=1

s .
1 ~ Ppop('0i})
P : 3)
Sie) &= 7))

where, in general, the population probability of each posterior sample
must be re-weighted by the prior used in the EMRI parameter
estimation step (Mandel et al. 2019). In our case, we adopt uniform
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priors on all EMRI parameters and this re-weighting simplifies to a
proportionality constant. The rate likelihood L({0}|R) is

L({0}IR) = exp[—Ra ()] [Rar(r)]Ver . “)

Here, the selection function «(A) is a corrective factor applied to
account for the presence of selection bias on the observations: of the
(unknown) number of events that occurred, only a subset N,y were
detected. It may be written as

a(d) = /pdel(o)ppop(ol)") do, (&)

for some detection probability pge(#), and represents the fraction of

a population (described by a particular set of hyperparameters A) that

is detectable. Performing an inference including the selection effects

should produce results unbiased by detectability (Mandel et al. 2019).
To use this inference framework, one must specify:

(i) A method for obtaining {0};
(ii) The form of ppo,(0|1);
(iii) The selection effects for the observations.

Once these three ingredients have been formally defined, we can
construct (and ultimately, sample) the hyperposterior, equation (2).
We introduce the approach we use to obtain posterior samples for
each detected EMRI in Section 2.1; we detail the form of our
population model in Section 2.2, and we outline our treatment of
detectability and the modelling of selection effects in Section 2.3.

2.1 EMRI parameter estimation

Despite recent reductions in EMRI waveform computation time to
the sub-second level (Katz et al. 2021), standard Bayesian parameter
estimation techniques are too costly for the event posteriors to be
sampled directly en-masse as is required in population studies. We
instead opt to approximate the EMRI likelihood (and by extension,
posterior) with a Fisher matrix approach, operating under the linear
signal approximation (LSA; Cutler & Flanagan 1994), in which the
likelihood is approximated by a multivariate normal distribution,

p(d|e)~N (6.T7"), (6)

where the covariance matrix of the distribution is the inverse of the
Fisher information matrix (FIM) I' of the EMRI waveform. The
LSA is only valid in the high-SNR limit (which may lie far above
the detection threshold), which should be verified before it is used to
approximate likelihoods (Vallisneri 2008). The FIM is given by

Com = (alh|amh)a @)

where 0,h refers to the derivative of the waveform strain A(f) with
respect to the £-th parameter of 6, evaluated at 8. The noise-weighted
inner product is defined as

=X (NI
= 4R MRELASENTAR 8

where X( f) is the Fourier transform of a time-domain strain x(¢), &
refers to the real part and S, (f) is the one-sided power spectral density
(PSD) of the detector (Maggiore 2008). We adopt the analytic fit to
the LISA PSD derived in Robson, Cornish & Liu (2019). Using the
FIM, we can rapidly produce posterior distributions for a catalogue
of EMRIs.

Specifics of our EMRI event catalogue simulation pipeline, includ-
ing both waveform generation and FIM computation, are discussed
in Appendix A.
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Table 1. The functions, free parameters, and limits of the sub-population
distributions py (x|Ay), the product of which is the EMRI population chosen.
The hyperparameters A, are estimated via population inference. The upper
limit for fplunge is reduced to 2 yr for our validation analysis (Section 5).

X Px(x[Ay) Ay [Xmin» Xmax]
M Power law AMs> Miin, Mmax [Mmnin, Mmax]
13 Power law )‘M’ Mmin> Mmax [/'Lmin’ Nmax]
a Trunc. Normal Has O‘az [0.001, 0.999]
eo Uniform — [0.1, 0.5]

coS (g Uniform — [0, /3]

sinfg Uniform — [0, ]

sin O g Uniform — [0, ]

A¢ Uniform — [0, 27 ]

Iplunge Uniform — [0, (2, 10)] yr
z p:(2) — [0, 6]

2.2 Population model

For simplicity, we choose a population model that is a product of
independent univariate subpopulations, such that

Prop(@12) = [ ] prxIno), ©
xeb

where x denote EMRI parameters and A, the corresponding hy-

perparameters that describe the shape of the subpopulation. The

mathematical form of these subpopulations is summarized in Table 1,

and in detail:

(i) Mass functions for both MBHs and stellar-mass black holes are
well approximated by power laws, albeit with additional substructure
present when examined in detail (Shankar 2013; Abbott et al. 2023).
We therefore model the MBH and CO mass distributions py (M| Ay,
Mmin, Mimax) and p, (|2, mins Mmax) as power laws, with index A,
and limits [Xmin, Xmax ], Which have the form

14+a,
Px(X] Ay, Xmin, Xmax) = ﬁxkx . (10)
max — Amin

(ii) The form of the MBH spin magnitude distribution p,(a|w,
o,) is dependent on a number of astrophysical processes during the
formation and evolution of MBHs and their host galaxies (Volonteri
2010; Sesana et al. 2014). Incorporating these into our population
model and characterizing their impact on inference results is beyond
the scope of this study. For simplicity, we instead choose a truncated
normal distribution with mean 1, and variance o2 as has been done
in previous analyses of the stellar-mass binary black hole (BBH)
mergers (Roulet & Zaldarriaga 2019; Miller, Callister & Farr 2020).
This is written as

1 VI = p)/04]

oWv [(B - MX)/Jx] - [(A - Mx)/ax]’
where (x) and W(x) are the probability density and cumulative
distribution functions (CDF) of the standard normal distribution,
respectively. The limits [A, B] are chosen to be [0.001, 0.999] as
waveform generation is unstable at extremal spins beyond these
limits.

(iii) High initial orbital eccentricities (>0.99) are expected for
EMRIs formed by relaxation mechanisms, but significant orbital
eccentricity will be lost before the GW emission of the system
enters the LISA band (Peters & Mathews 1963), broadening the
distribution and shifting it to lower eccentricities (Amaro-Seoane
2020). To reflect this behaviour, we choose a uniform eccentricity
distribution ey € [0.1, 0.5], with upper limit chosen to reflect that
the waveform model is a series expansion in eccentricity and should

px(x“"-xvax) = (1)
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therefore not be trusted for high eccentricities (Fujita & Shibata 2020;
Isoyama et al. 2022). The waveform model also consists of a system
of ordinary differential equations (ODEs) that must be solved (Katz
et al. 2021). The lower limit of the eccentricity distribution is chosen
due to increasing stiffness in this ODE system at lower eccentricities
leading to high computational cost (Burden & Faires 1993). We do
not anticipate the validity of our approach to be affected by this lower
eccentricity cut-off.

(iv) Orbital inclination ¢y is similarly truncated due to ODE
stiffness issues, but is otherwise distributed uniformly on the unit
sphere along with other angular parameters.

(v) We choose a redshift distribution that is uniform in comoving
volume and in comoving time (Hogg 1999); this has the form

(l + Z)E(Z) 0 E(Z/) ’
Where

E()=vQu(l+2) +Qa, (13)

and we assume a standard cosmology with Qy = 0.3 and Q, =
1 — Qm = 0.7. The upper redshift limit for this distribution is chosen
to be z = 6 such that the detectable region of parameter space is not
significantly truncated (otherwise, selection effects will be artificially
suppressed). Increasing the redshift limit leads to high computational
costs as the event rate /R must also be increased accordingly, as the
event rate density has remained constant but the comoving volume
over which we are distributing events has grown.

p-(2) x

The chosen form of these subpopulations is motivated primarily
by computational simplicity. However, our approach is flexible and
can be applied to the hierarchical inference of any population model.

2.3 Selection effects

In the absence of a specific EMRI search pipeline, we model the
detection probability as a binary SNR threshold, as is typical for
EMRI studies (Gair et al. 2010; Babak et al. 2017; Bonetti & Sesana
2020). This may be written as

Paer(0) = H(on — po)s (14)

where p, is a (noise-realized) SNR, H(x) is the Heaviside step
function, and p, is a chosen threshold SNR. We obtain p? by drawing
a sample from a non-central x? distribution with two degrees of
freedom and non-centrality parameter pgpl (Maggiore 2008),

1 P2+ P2
P (pﬁ pfpr) = 5 exp (—") Io (PnPops) - 15

2 2

where Ip(x) is a modified Bessel function of the first kind
(Abramowitz & Stegun 1964), and P§p1 is the square of the optimal
matched-filter SNR

Py = (hIR). (16)

We assume that p, is the positive square root of p2; while noise
fluctuations can lead to negative values, this is not expected for
large values around our detection threshold. One may analytically
compute the mean detection probability in equation (14) over all
noise realizations by directly computing the non-central x> CDF
p(ps > p71pgy), such that

P2) (17)

where an overline denotes the mean.

m(0)=l—p(p§>p3
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We approximate the selection function equation (5) by evaluating
the Monte Carlo sum

Ny
a(h) ~ % > Paal80), (18)
t k=0
where {0;} are sampled from pp,p(@]A). As the variance on this
approximation scales inversely with N, one must compute pge(8)
(and therefore pqp) of the order of 10° times for each computation of
a(A) to achieve per cent-level accuracy; even with parallelization, this
would be prohibitively expensive with typical computing resources
(taking of the order of minutes) for use in a typical sampling run,
in which «(X) must be computed once per hyperlikelihood call. We
address this problem by replacing the SNR function with an accurate
and rapid interpolator, allowing for equation (18) to be evaluated in
parallel at a sufficiently low computational cost to be practical for
use in inference problems.

3 INTERPOLATING OVER SNR

The principal requirements for our SNR interpolator are that it
must be accurate and unbiased across the EMRI parameter space:
inaccuracies may bias the results of our population inference. It must
also be sufficiently fast as to not bottleneck the sampling process,
capable of estimating SNRs for 10° sets of EMRI parameters in <1 s.
These constraints are particularly challenging to meet due to the
high dimensionality of the EMRI parameter space (13 dimensions,
as defined in Appendix A).

Fortunately, we can reduce the number of parameters that we
need to interpolate over by considering how the SNR of an EMRI
waveform depends on each parameter. We can ignore the orbital
phase parameters (®,, @y, Pgy) due to their negligible correlation
with SNR, as the initial phase becomes relatively unimportant for
an inspiral with ~10* orbital cycles. Additionally, as SNR scales
inversely with luminosity distance di, we may further reduce the
dimensionality of the parameter space by fixing di in training data
and applying this scaling post-interpolation: we use di, = 1 Gpc for
convenience.

Despite eliminating four dimensions of the EMRI parameter space,
we are still in a regime where standard interpolation schemes are inef-
fective. As arepresentative example, we consider spline interpolation
schemes with piecewise polynomials of zeroth, first, and third order:
these are more commonly known as nearest neighbour, linear, and
cubic spline interpolation, respectively (Piegl & Tiller 1987). Our
requirement for a fast interpolator prevents us from interpolating
over points randomly distributed in the parameter space, as the
complexity of the algorithms used for this scales quadratically with
the number of basis points (Barber, Dobkin & Huhdanpaa 2013) and
the computational cost of these methods quickly becomes imprac-
tical. Instead, we may use grid-based versions of these techniques.
However, these methods suffer from the curse of dimensionality:
the Euclidean distances between neighbouring grid verticies grows
as the dimensionality of the space increases, which leads to poor
interpolation accuracy.

To demonstrate the unsuitability of linear interpolation in practice,
we generate pop on a regular grid with 10° total grid points and
construct the aforementioned spline interpolators with this grid as a
basis. We then compute a testing set of 10° SNRs from randomly
sampled sets of EMRI parameters and compare the interpolator
output at these points by calculating the discrepancies between the
true and predicted SNRs, denoted pyye and ppreq, respectively. The
cumulative distribution of the (i) absolute and (ii) relative differences
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Figure 1. Cumulative distribution functions for the (left) absolute and (right) fractional differences between the SNR predictions of (linear, nearest neighbour,
cubic spline, and neural network) interpolation methods and the true values. The former three grid-based interpolation methods perform poorly, with at least 47
per cent of SNRs inaccurate by at least 10, and at least 75 per cent predicted to less than 10 per cent accuracy. Conversely, the latter method precisely estimates
SNRs: 95.3 per cent of SNRs are determined to within 1, and 89.6 percent within 10 per cent of the true values.

between prediction and truth for the three spline interpolation
schemes we consider are shown in Fig. 1. As expected, the grid-
based interpolator performance is poor regardless of the order of
the piecewise polynomial used. While linear or spline interpolation
offers marginal improvement over nearest neighbour interpolation,
the low spatial resolution of the grid limits the improvements.
The majority of the interpolated SNRs are inaccurate by at least
50 percent, with absolute errors typically exceeding 10 (or even
as high as 100 in extreme cases). As we will demonstrate in
Section 35, this performance is inadequate for unbiased population
inference.

3.1 Interpolation with neural networks

Neural networks are highly flexible mathematical tools that are ca-
pable of learning complex relationships in high-dimensional spaces
(Goodfellow, Bengio & Courville 2016). For our purposes, we
need a neural network that takes a vector as an input (the EMRI
parameters) and produces a scalar output (the SNR estimate). We opt
for the multilayer perceptron (MLP) algorithm (Hastie, Tibshirani &
Friedman 2001) as it fits this specification. MLPs are fast and
capable of high accuracy, satisfying our requirements well. The
design and training of this MLP are discussed in Appendix B. The
trained network achieves two orders of magnitude of improvement
in accuracy compared to other interpolation approaches, as shown
in Fig. 1; the majority of the test data are predicted to per cent-level
accuracy. This network is capable of producing 103 SNR estimates
in <0.1 s, which is six orders of magnitude faster than calculating
the SNR directly.

As the MLP was trained with an L1 loss function, which minimizes
the absolute difference between the prediction and truth (Goodfellow
et al. 2016), it does not perform as well in terms of fractional error
for popi < 1. This manifests as a larger upper tail in the relative CDF.
However, this does not translate to a reduction in performance, as
these signals are too weak to be detectable across the majority of the
luminosity distance distribution. If adequate performance across all
SNR scales is required, this may be achieved with the appropriate
choice of loss function, for instance by training on the log of the
SNR. By choosing not to train on log SNRs, we prioritize the regions
of parameter space corresponding to larger SNRs in the data set

(at the fiducial luminosity distance of 1 Gpc). As these SNRs will
be pushed towards the detection threshold at larger distances, and
the majority of our luminosity distance distribution is above 1 Gpc,
estimating these larger SNRs well has the greatest impact on accurate
detectability estimates.

3.2 Interpolating over the selection function

Using our trained interpolator network to produce SNR estimates,
we are now able to approximate «(A) via equation (18) with the
interpolated SNR as an input. However, two issues still remain that
must be addressed before this may be applied in practice. First,
this set-up still requires that the parameter set {#} is drawn from
Ppop(811) for each hyperlikelihood call; this is a slow operation,
even for the relatively simple population models in Table 1. It
is also inefficient, because «(A) will typically not vary signifi-
cantly across the high-probability region of the posterior, where
the majority of samples are drawn. Second, the stochastic nature
of the Monte Carlo selection function estimates itself presents
challenges in sampling: the hyperlikelihood surface becomes noisy,
which can be problematic for the reliable convergence of sampling
algorithms. These issues prohibit the use of our stochastic selec-
tion function estimates in hyperposterior sampling and must be

solved.
To address these problems and further accelerate our bias-

corrected likelihood, we extend the idea of interpolating over high-
dimensional spaces with MLPs further. A second MLP trained prior
to sampling can be used to interpolate directly over «(A). The
architecture and training settings for this MLP are discussed in
Appendix B. Using this second MLP step greatly reduces the time
per likelihood call, achieving a further order of magnitude of speedup
with respect to stochastic estimation of the selection function. For
our chosen population model, the resulting computational cost of
the numerator and denominator in equation (2) become roughly
equivalent. Further speedup is achieved with vectorized evaluation
of the hyperlikelihood, as the selection function MLP is capable of
handling many sets of hyperparameters at no additional cost provided
that sufficient GPU memory is available. This vectorization would
not be practical if one were to estimate the selection function values
with the stochastic approach. With the main limitations of our method
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addressed, we are now able to produce selection function estimates
usable in sampling at low computational cost.

4 UNBIASED POPULATION INFERENCE
RESULTS

With our strategy for selection bias correction formulated, we are
now properly equipped to tackle an EMRI population inference
problem. We begin by simulating a catalogue of EMRI observations.
To estimate how well LISA will resolve the shape of the EMRI
population in a realistic scenario, we choose hyperparameter values
supported by recent black hole population studies:

(i) While constraints have been placed on the slope of the MBH
mass function by current observations (Shankar 2013), the mass
function for MBHSs hosting EMRISs is subject to additional selection
effects that are poorly understood at present (Babak et al. 2017).
Recent work has estimated that the spectral index of this power law
after the inclusion of selection effects is Ay, & —1.43 in the mass
range [Myin, Mmax] = [10°, 107] M, (Babak et al. 2017). We assume
that the slope of the CO mass function is equal to the median value
observed in stellar-mass BBH mergers of A, =~ —3.50 in the mass
range [3, 90] M, (Abbott et al. 2023), assuming that the progenitors
of these mergers are representative of the universal stellar-mass BH
population. The selection effects that translate this into the EMRI CO
mass function are poorly understood and would require a dedicated
set of N-body simulations of stellar cusps to properly quantify (Babak
et al. 2017; Broggi et al. 2022), so we do not consider them in this
study. Despite this caveat, the slope observed via BBH mergers is
the strongest constraint placed on the mass function for black holes
in this mass range available and is a reasonable starting point for
estimating LISA’s ability to resolve the CO mass function with EMRI
observations.

(i) The MBH spin magnitude distribution is also poorly con-
strained by observational data. Current measurements are limited
to MBHs in active galactic nuclei (Daly 2011), which may not be
representative of the full MBH spin magnitude population as dif-
ferent formation channels will yield different MBH spin magnitude
distributions (Amaro-Seoane et al. 2023). Self-consistent simulations
of MBH growth with cosmic evolution predict that most MBHs have
spins greater than 0.9 in the MBH mass range quoted above, with a
fairly narrow spread below 107 Mg, (Sesana et al. 2014). We include
this characteristic shape of a narrow spin distribution above a = 0.9
in our population by choosing [u,, 0,] = [0.93, 0.06].

(iii) The time that each EMRI plunges with respect to the start of
the observational data #,jung. is randomly distributed in the range [0,
10] yr. In line with the planned LISA mission duration, we assume a 4-
yr observational window (Amaro-Seoane et al. 2017): some EMRIs
will not plunge until after the end of our observational data, but
may still be detectable if they are bright enough. We assume that
EMRIs occur at a rate of R = 700 yrfl, which is conservative
(considering our redshift cut-off of z = 6) when compared with
EMRI rate estimates from astrophysical modelling (Babak et al.
2017; Broggi et al. 2022; Vazquez-Aceves et al. 2022).

After discarding the signals too faint to be detected, we obtain a
catalogue of 116 EMRISs.

To demonstrate the selection biases present, we perform two
sampling runs: one in which selection biases are corrected for with
our interpolation scheme, and another in which selection effects
are not accounted for, i.e. replacing a(A) with 1 in equation (3)
and equation (4). We sample the hyperposterior equation (2) with
the nessai nested sampler (Williams 2021; Williams, Veitch &
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Figure 2. Recovered hyperposteriors for our example scenario with selection
effects corrected for (solid) or ignored (dashed). The true values of each
hyperparameter are indicated by the cross-hairs. Significant bias is present in
the recovery of A, with minor bias also visible in the recovery of Ay. The rate
R is accurately recovered with the inclusion of selection effect correction.

Messenger 2021), using default settings. The convergence of all
sampling runs with these settings was verified by examining the
results of internal consistency checks built into nessai. The
hyperposteriors obtained from these sampling runs for a subset of
hyperparameters are shown in Fig. 2. The full hyperposterior is shown
in Appendix C, which demonstrates minor discrepancies between the
two hyperposteriors for the other hyperparameters, with marginal
posteriors that are too narrow (overconstrained) but otherwise fairly
consistent with the set hyperparameter values.

The bias that results from ignoring selection effects on the
observations is visible here as a discrepancy between the credible
interval contours of the two hyperposteriors at the 99 per cent level.
For Ay, the uncorrected posterior is inconsistent with the true value
at the 99 percent credible level; the marginal posteriors for A,
that include or exclude selection bias correction disagree to an even
greater extent. There is also a clear difference between the marginal
posteriors on R: this is symptomatic of the presence of selection
effects, as it indicates that predicting the overall event rate solely
from the size of the detection catalogue will result in a significant
underestimate of the actual event rate.

After accounting for selection effects, our results serve to probe
how well LISA can resolve the form of this EMRI population.
We estimate (quoting the median and the 90 percent credible

interval) that Ay = —1.397013 and A, = —3.58"015, corresponding
to precisions of 8.8 percent and 4.6 percent, respectively. The
+0.008

MBH spin distribution is well recovered, with pt, = 0.9247 7 and
0, = 0.0547900¢; these hyperparameters are recovered to within 0.87
percent and 10 per cent, respectively. The EMRI rate is estimated
with 12 percent precision to be R = 678f§§ yr~!. The precision
achievable by LISA will roughly scale with the square root of the
true event rate, which we have assumed a conservative value for in
this study: for the most optimistic scenarios, this could improve by
as much as an order of magnitude (Babak et al. 2017).
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Table 2. Hyperprior distributions chosen for all sampling runs. As the range
of plunge times is reduced by a factor of 5 for our probability—probability
plot analysis (Section 5), our prior bounds on the EMRI rate are adjusted
accordingly: this is indicated by (*).

Parameter Distribution Limits

v Uniform [—4, —1]

Mmin Uniform [5, 50] x 10* Mg
Miax Uniform [5,50] x 10° Mg

A Uniform [—4,1]

HMmin Uniform [1,5] Mg

Mmax Uniform [80, 100] Mg

Ha Uniform [0.05, 0.95]

o4 Uniform [1073, 2]

R Log-uniform [350, 10501 ([75, 1501*) yr’1

The number of detected events depends on the underlying popula-
tion. For example, if the number of events is skewed to high redshift
with respect to our assumed distribution of uniform in comoving
volume and comoving time, then the number of detected events will
decrease accordingly. Our choice of redshift distribution is equivalent
to assuming that the probability of an EMRI occurring for a given
MBH is constant across cosmic time. In reality, we expect that the
physics of EMRI formation, such as cusp erosion (Babak et al. 2017),
will lead to deviations away from this. Similarly, we expect that the
distributions of MBH and CO masses will differ in reality from
our assumptions. Hence, the results presented here should only be
considered illustrative. A comprehensive study of how population
inference results vary with the underlying population (which would
require a computationally efficient method, such as ours) is necessary
to fully map out how well LISA could measure the EMRI source
population.

5 VERIFYING THE ACCURACY OF RESULTS

In the previous section, we demonstrated the capability of our
approach for a single example. However, this is not sufficient to
ensure that the selection function estimates output by our MLP are
sufficiently accurate and unbiased that population inference will
return hyperposteriors that are consistent with the truth across the
hyperparameter space.

To assess whether this is the case, we opt for the probability—
probability (P—P) plot test (Cook, Gelman & Rubin 2006). First,
we draw N sets of hyperparameters from the hyperpriors described
in Table 2, and generate the corresponding population catalogues.
We then perform hyperposterior sampling runs to produce estimates
of the hyperparameters in each case, and determine the confidence
interval g, of the true hyperparameters with respect to the posterior
obtained. Last, we plot the CDF of g,. When the trial sets of
hyperparameters are drawn from the hyperprior, we expect that the
true value of a hyperparameter will fall within the x per cent credible
interval in x per cent of realizations (i.e. a plot of g, against its CDF
will be diagonal) if our hyperposteriors are consistent with the true
values in all cases. We test the accuracy of our inference framework
by comparing the calculated CDF with the expected diagonal trend.

Some variation of each CDF from the diagonal due to small-
number statistics is expected. For the P-P plot to be meaningful
N needs to be large, so we modify our population to reduce the
computational cost of waveform generation by reducing the length
of the observational window from 4 to 2 yr and the range of EMRI
plunge times from [0, 10] to [0, 2] yr. To further reduce the cost
of generating each population, we lower the overall event rate by
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limiting our population to a maximum redshift of z = 1. Adjusting
the event rate to account for these reductions in both duration and
sensitive volume, the number of expected EMRIs for each population
decreases by a factor of 35. The simulation and analysis configura-
tion remains otherwise unchanged from the analysis described in
Section 4. We perform three analyses to compare their results: first,
we exclude selection effect correction; second, we include selection
effect correction by means of a linear interpolation scheme, and
last, we include selection effect correction with our neural network
interpolation scheme. The P-P plots obtained from these analyses
are shown in Fig. 3, broken down by hyperparameter and compared
to the expected 68 per cent, 90 per cent, and 99 per cent deviations
for the N = 208 sets of drawn hyperparameters (Ibe 2013).

We first examine the P—P plot for the hyperposteriors obtained
when selection effects are excluded, setting «(A) = 1, as shown in
the top panel of Fig. 3. The resulting posteriors exhibit strong biases
with respect to the true values, and the PP test fails; the majority of
the hyperparameter CDFs deviate beyond the 99 per cent confidence
interval.

The P-P plot is a useful diagnostic for how the posterior deviates
from what is expected on a dimension-by-dimension basis. We can
identify that A, Mmin, min, and 1, are typically overestimated when
selection effects are ignored, and conversely that pmax and Ay are
underestimated. This can be understood by considering how the SNR
of an EMRI waveform is correlated with the parameters associated
with these hyperparameters. The SNR is positively correlated with
W, so the power-law slope is flattened off by the suppression of low
CO mass events; similarly, SNR is higher for larger MBH spins,
so the mean of the truncated Gaussian shifts to the right due to
the suppression of the lower spin events. For 4, the opposite is
true: the number of detectable higher MBH mass EMRIs (which
are at lower frequencies) is suppressed due to the shape of the
LISA sensitivity curve and so the observed power-law steepens. The
parameters that pass the P-P test, My« and o,, are not strongly
influenced by selection bias. The mean of the MBH spin truncated
Gaussian may shift, but the change in the width of the distribution
will be proportionally smaller, and is therefore less sensitive to
this selection effect. Likewise, as the high MBH mass EMRIs are
typically unobserved and occupy a small fraction of the overall
EMRI population, small changes to the maximum MBH mass do
not strongly affect the detectable fraction of the population. This is
not the case for the CO mass distribution: the high mass events in
the upper end of the power law are also the brightest events in the
population, so adjusting the upper limit of the power law leads to
larger changes in the fraction of events expected to be detectable. As
the observed deviations from consistent hyperposteriors align with
our expectations, we are confident they are the result of selection
effects.

To demonstrate the impact of the low interpolation accuracy seen
in Fig. 1, on the resulting selection function estimates, we repeat this
analysis with an MLP selection function trained on SNR estimates
produced by the linear interpolator described in Section 3. The
resulting P—P plot, shown in the middle panel of Fig. 3, demonstrates
that although modest correction is achieved in this case, it is still far
too biased and inaccurate to result in consistent hyperposteriors.
In the case of A,, this even results in an overcorrection of the
selection bias when compared to the uncorrected case. The danger of
overcorrection implies that it is not sufficient to include a selection
function term in the population likelihood: the selection function
must also be accurately calculated to obtain good results.

Finally, we present the P—P plot obtained for this analysis with our
MLP selection function estimator in the bottom panel of Fig. 3. In
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Figure 3. Probability—probability plots showing the fraction of hyperparam-
eters within a given credible interval (CI) for N = 208 hyperprior draws.
Leaving selection biases uncorrected, setting «(A) = 1, demonstrates the
presence of significant selection biases in the population inference (top).
These biases are successfully rectified with our approach (bottom), whereas
standard interpolation techniques fail to produce unbiased results (middle).
The expected 68 percent, 90 percent, and 99 per cent confidence intervals
are shown in grey.
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stark contrast to the previous two plots, the hyperparameter CDFs
are fully consistent with the expected confidence intervals. This con-
clusion is supported by the results of Kolmogorov—Smirnov (Dodge
2008) tests for each hyperparameter. Combining the p-values from
each test with Fisher’s method (Mosteller & Fisher 1948) returned
a combined p-value of 0.3. This indicates that all hyperparameters
(including the EMRI rate R) are consistently recovered: the MLP is
capable of producing selection function estimates that are sufficiently
accurate for consistent posteriors to be obtained. This result verifies
the application of our method in the treatment of selection biases in
population inference.

6 CONCLUSIONS

Population inference with EMRIs has the potential to probe the
evolution of both MBHs and their galactic neighbourhoods to
unprecedented precision. However, the computational cost of com-
ponents of this analysis is prohibitively high. Estimating selection
biases in EMRI populations is computationally expensive due to
a combination of the need for costly waveform models and the
resources required to perform SNR calculations for long-duration
data. As the SNR calculation is the computational bottleneck, we
substitute it for an interpolation over pre-computed SNRs. We find
that commonly employed interpolation schemes are not sufficiently
fast or accurate for this problem, so we instead use machine-
learning techniques. Using a neural network trained on a data set
of SNRs distributed uniformly in the EMRI parameter space, we
achieve a speedup of six orders of magnitude over direct SNR
evaluation. We then replace the stochastic estimation of the selection
function obtained via Monte Carlo integration with a second neural
network that is trained on these stochastic estimates distributed
uniformly in the hyperparameter space. This further improves the
speed of hyperlikelihood evaluation by an order of magnitude,
and enables vectorized estimation of the selection function for
further reductions in computational cost. To verify the robustness
of our approach against systematic biases, we globally evaluate
hyperposterior consistency by simulating 208 EMRI populations
and checking the results of selection bias-corrected hyperparameter
estimation with a PP test. This test confirmed that (i) the presence of
selection effects significantly biased inferences that did not correct
for them appropriately, and (ii) our approach successfully corrected
for selection effects to produce unbiased results.

We apply our method to the inference of an astrophysically
motivated EMRI population (assuming sources distributed uniformly
in comoving volume and time) to study LISA’s ability to probe the
structure of such populations. We estimate that Ay = —1.39%013 (a
precision of 8.8 percent) and that A, = —3.58f8:%$ (a precision of
4.6 percent). For the MBH spin magnitude distribution, we find
that p, = 0.924700% and that o, = 0.0541000%, resolving the width
of the MBH spin magnitude distribution to within 10 per cent. The
event rate is estimated to be R = 6781’52 yr~! (a precision of 12.0
per cent).

The capability of our approach for treating selection effects in the
case of a simple population model, which excludes substructure or
correlations due to astrophysical effects, paves the way for future
work to investigate more complex EMRI population models. The
EMRI population we expect to be present in reality is multifaceted
(Babak et al. 2017), and by introducing these features systematically
to the population inference problem we can begin to characterize
their measurability with space-based detectors such as LISA. As
population inference is intimately tied to other hierarchical inference
problems, including cosmological inference (MacLeod & Hogan
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2008; Laghi et al. 2021) and tests of general relativity (Chua
et al. 2018), proper treatment of selection effects for EMRIs has
direct implications for these analyses as well. Ultimately, a joint
hierarchical inference over this problem space may be required, of
which our approach can be an integral part.

As our method is not predicated on a particular population
model, it is applicable to a wide variety of population inference
problems. Similarly, as any waveform model may be used, this
approach is capable of accommodating future changes to EMRI
waveform models with little tuning required. While our approach
specifically targets the EMRI population inference problem, it may
be generalized to any problem with an SNR-threshold selection bias
due to this model-agnostic nature. The reduction in computational
cost achieved by employing our method will be most pronounced in
cases where the SNR function is expensive to compute and of high
dimensionality, but the ability to form a vectorized SNR approximant
will still offer a notable speedup for waveform models that are not
easily parallelizable or vectorizable (e.g. due to memory constraints).

Our code package porLAR, containing the tools used in this paper,
has been released as an open-source package (Chapman-Bird 2023)
for use in future population studies.
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APPENDIX A: EMRI PARAMETER
ESTIMATION AND CATALOGUE GENERATION

The generation of a catalogue of EMRI observations is multifaceted.
We first describe the generation of EMRI waveforms, including our
treatment of initial conditions and our choices regarding waveform
model and detector response, in Section A1l. In Section A2, we outline
our procedure for obtaining posterior samples for EMRIs that pass
the detection threshold, along with consistency checks we perform to
ensure the approximations made in this process are justifiable. These
two steps are performed for each set of EMRI parameters drawn from
the population to construct a catalogue of EMRI detections and their
corresponding posterior samples.

A1 Parametric conventions and waveform generation

The EMRI parameter space is complicated, consisting of 18
parameters:

(i) The intrinsic parameters of the EMRI describe the properties
of the two objects and their initial orbital configuration. The primary
MBH is described by its mass M and spin vector a, and the secondary
CO similarly by mass u and spin vector aco. As aco is not predicted
to have a significant effect on EMRI detectability (Huerta & Gair
2011), it is not currently included in state-of-the-art waveform
models, including the model used in this study (Katz et al. 2021).
The inspiral orbit is described by the initial eccentricity e(, semilatus
rectum py, and orbital inclination ¢, along with three orbital phases
®,, Oy, and P, (Fujita & Shibata 2020).

(i1) The extrinsic parameters describe the orientation of the system
and its location with respect to the detector. The position of the system
is described by the luminosity distance vector dy , the magnitude of
which may be described by a redshift z via the relation

c [* d7
= (1 —_ —_— Al
s (+z>HO/0 e (Al)

where Hj is the Hubble constant (Hogg 1999). We separate out
vectors into their magnitudes and angular components, such that
dy, = {dp, 6s, ¢s}. Similarly, we decompose the primary spin mag-
nitude vector a = {a, Ok, ¢x}. The sets of angles describe the
orientation of the MBH spin-angular momentum vector and the sky
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position vector, respectively, with 6 and ¢ referring to polar and
azimuthal angles, respectively.

(iii) The plunge time of the system with respect to the start of
the observation is described by the parameter fpunge. However, the
concept of initial conditions on a population level is not well defined
unless a common reference point in the waveform is set. Therefore,
we adjust po such that the EMRI waveform will plunge after 10
yr (Stein & Warburton 2020). For our fiducial example outlined in
Section 4, we assume a LISA observing window of 4yr in line with
the current mission proposal (Amaro-Seoane et al. 2017). Our choice
to allow for EMRI plunges to occur up to 10 yr after the beginning
of LISA observation is made to accommodate the presence of EMRIs
in the data that plunge after the end of the observation window.
Neglecting these events as being undetectable is not typically a
reasonable approximation. In many cases, pop > 0 even for fpjupge =
10 yr, so some detectable events in the data are ignored despite this
extension of EMRI plunge times to the post-window regime. By
excluding these events that plunge after 10 yr, the results of our
population inference will be conservative. We include this effect
to demonstrate that our approach is capable of accommodating a
post-window cut on Zyjunge, but acknowledge that the tuning of such
a cut-off point with respect to the detectability of the excluded
signals is an issue that warrants further investigation in future
work.

Waveform generation also includes some additional considera-
tions to transform from the source frame to the detector frame. Prior
to waveform generation, we convert source-frame masses to detector-
frame masses with the mapping My, = (1 + z)M (Krolak & Schutz
1987). For convenience, we do not include a detector response in
our EMRI waveform modelling and instead work in terms of the
waveform strain [as opposed to the TDI combinations that the LISA
detector outputs will be used to construct (Tinto & Dhurandhar
2021)]. This choice leads to a degeneracy between ¢g and ¢sg,
which we navigate by defining a new parameter A¢ = ¢s — ¢k.
Our approach can incorporate a chosen LISA response by reverting
back to the separate angles and including the response function in
waveform generation. As the addition of a response function does
not significantly alter EMRI SNRs, we do not expect its exclusion to
affect the validity of our approach.

For our waveform model, we choose the fifth-order post-
Newtonian Augmented Analytic Kludge recently implemented in
the FEW package (Chua, Moore & Gair 2017; Katz et al. 2021). The
validity of our population inference framework should not depend
strongly on this choice, as the EMRI SNR function should remain
well behaved and smooth for any reasonable choice of waveform
model, although the specific numerical results may vary for different
waveforms.

To accommodate our choice of initial conditions, we generate 10
yr EMRI waveforms in the time domain with a sampling rate of
0.1Hz, and crop them according to their (randomly sampled) #,unge
values. We calculate the waveform’s pop value via equation (16) and
produce a noise-realized SNR estimate p, by drawing a sample from
equation (15). Detection is evaluated via equation (14).

A2 Parameter estimation

For waveforms that pass the detection threshold, we proceed to
draw samples from the posterior distribution on 6. Operating under
the LSA, we determine the FIM I' from numerical waveform
derivatives computed using the five-point stencil method (Sauer
2012). Appropriate step sizes that produce accurate (and stable)

€20z ke Gz uo J1asn AS3( Uos04youAg usuoape|g seyosina AQ 9€/6S L Z/S09/v/ZZS/21oNle/seluw/woo dno olwapeoae//:sdiy Woll papeojumoc]


http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/https://doi.org/10.1016/0010-4485(87)90234-X
http://dx.doi.org/10.1088/1361-6382/ab1101
http://dx.doi.org/10.1093/mnras/stz226
http://dx.doi.org/10.1088/0004-637X/794/2/104
http://dx.doi.org/10.1088/0264-9381/30/24/244001
http://dx.doi.org/10.1103/PhysRevD.101.064007
http://dx.doi.org/10.1093/mnras/stx1764
http://dx.doi.org/10.1007/s41114-020-00029-6
http://dx.doi.org/10.1103/PhysRevD.77.042001
http://dx.doi.org/10.1093/mnras/stab3485
http://dx.doi.org/10.1007/s00159-010-0029-x
http://dx.doi.org/10.21105/joss.03021
http://dx.doi.org/10.1103/PhysRevD.103.103006
http://dx.doi.org/10.3847/1538-4357/abe40e

numerical derivatives were determined empirically by computing
(0¢h|0¢h) (the FIM diagonal terms) on a grid and identifying regions
of step-size space for which this converged. This stability was then
verified across the EMRI parameter space. With I' computed, we
then invert it to obtain the covariance matrix of the LSA likelihood.
FIMs for EMRI waveforms typically have large condition numbers,
which can cause issues when performing matrix inversion; we
mitigate this by employing singular value decomposition (SVD) to
compute the pseudoinverse of I' (Ben-Israel & Greville 2003). The
numerical stability of this inversion can also be problematic, even
for double precision; to alleviate this, we perform the SVD with
500-point decimal precision using the mpMaATH package (Johansson
et al. 2013). We also perform some additional verification of the
validity of the LSA likelihood as a substitute for the full likelihood
as recommended in Vallisneri (2008). This check is performed by
examining the ratio between the LSA and full likelihood, which
we denote r. By sampling the 1 standard deviation isoprobability
contour in the LSA likelihood and computing |log;or| for each of
these samples, we can examine whether the high-probability regions
of the LSA and the full likelihood are consistent. Following Vallisneri
(2008), we accept the LSA likelihood as a suitable approximation
if and only if 90 percent of the samples satisfy |logjor| < 0.1. We
found that for waveforms with pop > 10 that this condition was
satisfied in all cases, which is well below our chosen SNR threshold
of 20.

Our goal is to obtain posterior samples via the LSA that are
representative of those that would be obtained from sampling the
true posterior. In the absence of noise, the likelihood will peak on
the true values provided there are no degeneracies in the parameter
space. For EMRIs, this is not generally true, but the degeneracies
are non-local and therefore do not affect the morphology of the
posterior near the true values (Chua & Cutler 2022). However,
when noise is included, the likelihood shifts in a random direction
in parameter space such that the true values are no longer at the
maximum likelihood point. To simulate this measurement effect, we
draw one sample from the posterior (which, assuming broad uniform
priors, is equivalent to the event likelihood) and recompute the FIM at
this new point (Stevenson, Berry & Mandel 2017). Finally, with our
second FIM computed, we invert it and draw S = 10* samples from
the corresponding multivariate normal distribution. The posterior
samples in d are converted to samples in z assuming a standard
cosmology, and detector-frame masses then converted back to the
source frame by dividing through by (1 + z) on a per-sample basis.
This modified set of posterior samples is the final product of the
individual EMRI event simulation.

APPENDIX B: NEURAL NETWORK DESIGN
AND TRAINING

MLPs are tuneable mappings between input and output vectors
(of specified lengths) that consist of a layered structure of matrix
multiplications which are passed through non-linear functions. The
non-linearity between each layer, combined with a large number
of tuneable parameters in each matrix multiplication, enables the
resulting neural network to mimic complex mappings between
high-dimensional spaces (Goodfellow et al. 2016). This tuning is
performed in a process known as training, in which the performance
of the neural network is maximized with respect to a pre-computed
data set.
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Table B1. Architecture and training settings chosen for our two MLP neural
networks introduced in Section 3.

Setting SNR MLP a(r) MLP
Number of (hidden) layers 10 8
Neurons per layer 128 128
Activation function SiLU SiLU
Rescaling Unit normal Unit normal
Optimizer Adam Adam
Learning rate 5% 107 5% 1074
Batch size 10* 10°
Max epochs 10 103
Loss function L1 L1

The number of required neurons and layers (which describe the
dimensions of each matrix multiplication) in an MLP depends on
the complexity of the function to be interpolated and the num-
ber of interpolation dimensions. Due to the stochastic nature of
training neural networks, tuning of the learning rate, batch size,
and number of iterations employed during training is required to
maximize performance. For complicated problems, optimization
techniques may be employed to explore the space of network
settings and identify a sensible configuration (Feurer & Hutter
2019). In our case, the problem is sufficiently low-dimensional
that we were able to obtain effective MLPs through the manual
tuning of network settings. Network complexity was gradually
increased through the addition of neurons or layers until overfit-
ting (Goodfellow et al. 2016) was observed. This is characterized
by the performance of the network on testing data degrading
despite continued improvement in performance on training data.
At this point, training settings were adjusted to minimize this
overfitting. The choice to rescale training data to that of a unit
normal distribution, and to use the Adam optimization algorithm
(Kingma & Ba 2014), was made following current best practices
(Goodfellow et al. 2016): use of other optimization or rescaling
functions was not found to significantly affect network perfor-
mance.

The resulting network settings chosen for the SNR and selection
function MLPs, summarized in Table B1, are almost identical. Two
extra hidden layers are added for the SNR MLP, which is to be
expected given the higher dimensionality of the EMRI parameter
space in comparison to the hyperparameter space.

APPENDIX C: FULL HYPERPOSTERIOR
OBTAINED FROM 4-YR SCENARIO

The full hyperposteriors from the population inference in Section 4
are shown in Fig. C1. By including the mass range parameters, we
can observe a more subtle consequence of the presence of selection
biases: overconstrained hyperposteriors. Neglecting selection effects
leads to an underestimation of the error on parameters: this is reflected
in the P-P plot analysis of Section 5, where it is demonstrated that
these effects lead to globally inconsistent hyperposterior effects at a
statistically significant level.
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Figure C1. Full recovered hyperposteriors for our example scenario with selection effects corrected for (solid) or ignored (dashed). The true values of
each hyperparameter are indicated by the cross-hairs. Significant bias is present for A,, with more minor bias for Aj. The rate R is accurately recovered
with the inclusion of selection effect correction. For other hyperparameters, the dashed hyperposteriors are overconstrained when compared to the corrected
hyperposteriors.
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