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Chapter 1

Introduction

String theory turns out to be a good candidate, if not the only one so far, for a unified
description of the fundamental laws of Nature. Its main feature, in fact the one that
made its first discoverers trembling on their chairs, is that it can include both general
relativity and gauge theories in a quantum mechanically consistent way. Since its early
birth, people realized that the spectrum of string theory contains a spin two particle,
the graviton, as well as spin one particles, the gauge bosons. Later supersymmetry
was introduced, in order to avoid tachyons in the spectrum (that would indicate an
instability of the theory or of its perturbative vacua). Supersymmetry is a particular
type of symmetry that relates bosons and fermions, and as a by-product a consistent
string theory contains fermions as well. Eventually, it was checked that all the potential
anomalies of the theory cancel, so that string theory is fully consistent from a quantum
mechanical point of view.

General relativity and gauge quantum field theories are the two main understand-
ings we have of the fundamental laws of Nature. General relativity (GR) explains the
behavior of our Universe at very large length scales, from the size of the Universe itself
providing the laws of its expansion, down to the motion of satellites in the Solar System
and in the Earth orbit. Experimental evidences confirm the deviation from Newtonian
mechanics even on the Earth surface. On the other hand, quantum field theories (QFT)
and in particular gauge theories, describe the behavior of elementary particles at very
small length scales. Our more refined theory of fundamental particles and forces is the
Standard Model, tested with high experimental precision.

Unfortunately, the two theories cannot shack up. So far we do not have a consistent
quantum field theory of gravity. The difficulties in the quantization of general relativity
reside in its high-energy divergences, and the problem is far from being just technical.
One could think this is not big deal, as they describe physics at so different scales.
However there are phenomena that fall into the influence spheres of both theories, such
as black hole physics, early time cosmology and the birth of the Universe, and more
generally all Planck scale physics. Here comes the great excitement around string theory:
with the introduction of a conceptually new theoretical framework, it provides a unified
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and quantum mechanically consistent setup where both gauge theories and gravity take
place.

In the first decade of investigations on superstring theories (see [1,2] for a comprehen-
sive presentation), the focus was on the spectrum of string theory, its formal properties
and the quantum consistency (in particular the cancellation of anomalies), and the pos-
sibility of finding the Standard Model realized into the theory. Let us spend some words
on this. String theory differs from a quantum field theory in the fact that its fundamen-
tal objects are not point-like particles, but rather one-dimensional strings. These can be
close strings (with topology of a ring) or open strings (topology of a segment). Actually,
consistency of the theory requires to have both of them. The only parameter entering
in the definition of the theory is the string length ¢, = v/, which sets a length scale.
There are no dimensionless constants at all: any parameter turns out to be the vacuum
expectation value of a dynamical field — for instance the string coupling is the dilaton
field.

From the quantization of a free string one obtains the perturbative spectrum of the
theory. It consists of equally spaced levels and corresponds to the vibrational modes of
the string. Each mode can be interpreted as a different particle. At the massless level we
always find a spin two particle, the graviton, plus spin one particles, the gauge bosons,
and other scalars. Then we have an infinite tower of massive modes with masses n/ Vao! ,
n € Z. At energies of order of the string mass m, ~ 1/v/o/, the string-like character of
the theory is manifest, while at lower energy scales only the massless level is accessible;
as we said, this lower level does contain gravity and gauge theories.

It is interesting to see how string theory resolves the high energy divergences one
encouters in trying to quantize gravity. From a geometrical point of view, the length
of the string ¢, provides a natural cut-off for high energy processes, and the scattering
between strings is no longer point-like but rather spread over their length. On the other
hand, from the field theory point of view, high energy divergences are cancelled with
the introduction of an infinite tower of new massive fields. In any case, string theory
furnishes a new setup conceptually different both from QFT and GR.

String theory is a strongly constrained theory. First of all, fermions are required in
order to avoid tachyons in the spectrum, which would simply signal instabilities in the
vacuum used for the weak coupling quantization. Superstring theories require spacetime
supersymmetry and require a ten-dimensional spacetime at weak coupling. There are
only five consistent superstring theories: type IIA, type IIB, type I, Heterotic SO(32)
and Heterotic Fg x Eg. One of the achievements of the first decade of investigations was
that in fact the five theories are all dual to each other. This means that starting with one
of them at weak coupling, and moving to regions of the space of vacua where it becomes
strongly coupled, it happens that a dual (i.e. equivalent) description of the physics is
available in terms of another string theory at weak coupling. It was conjectured that
the five theories are different manifestations, in different regions of the space of vacua or



moduli space, of a unique eleven-dimensional theory called M-theory [3,4] (see also [1,2]
for later developments).

If one is interested in the low energy behavior of a string theory, she can focus on an
effective field theory description of the lightest degrees of freedom. As we said, such an
effective description contains both the graviton and, possibly, gauge and scalar bosons as
well as some fermions which are their superpartners if any supersymmetry is preserved.
It is in fact a field theory, and containing the graviton is a (super)gravity theory. We
know that there is no fully consistent quantum description for the system, because the
whole tower of massive modes would be required; nonetheless at energies sufficiently
small it is a perfectly sensible effective field theory (EFT) description. From the five
string theories one obtains type ITA, type I1IB and type I supergravity (SUGRA), the
latter possibly endowed with an SO(32) or Eg x Eg gauge sector. Also M-theory, in
spite of it not having a well-understood weakly coupled description, has a low energy
limit which is the unique eleven-dimensional supergravity.

After the duality revolution, the community was newly shaken up by the discovery
that string theory not only contains strings, but also higher dimensional membrane-like
objects, called D-branes [5]. Among its other values, this is a beautiful example of open-
closed duality. D-branes were originally discovered in the quantization of open strings.
It was realized that their two ends, besides fluctuating in free space (Neumann boundary
conditions) can also be firmly hang (Dirichlet boundary conditions) to hypersurfaces,
called D-branes indeed. The degrees of freedom carried by these surfaces are in fact the
modes coming out of the quantization of open strings on them, because these modes are
“localized” on the branes. At the massless level, the spectrum contains gauge bosons,
and hence this turned out to be an extremely efficient and versatile way of embedding
gauge theories in string theory.

On the other hand, people had already realized that the low energy descriptions of
the five closed string sectors (and M-theory), that is supergravities, contain solitonic
membrane objects. As any soliton, these are very massive in the weak coupling limit.
After the discovery of D-branes, it was immediately clear that they were one and the same
object. The amazing fact is that the two descriptions of D-branes come from different
sectors of the theory: open versus closed strings. Moreover, as we will extensively
discuss in the forthcoming, the two descriptions are reliable for complementary choices
of parameters. When the number of D-branes is small, the open string description is
reliable while the supergravity solitonic solution is highly curved and higher derivative
corrections to the theory would be needed. When the number is large, the supergravity
solution is almost flat while the open string modes become interacting. This observation
was at the origin of Maldacena’s proposal, on which we will have to say much hereinafter.

Early ideas of 't Hooft [6,7] (see also [8,9] for some properties of the 1/N expansion)
and the experimental evidence for stringy behavior in hadronic physics suggested that
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aspects of strongly interacting gauge theories, and in particular QCD, the theory of
nuclear strong interactions, can be understood, described and predicted using a (not yet
known) string theory.

A concrete realization came up in 1997 with the birth of the gauge/gravity correspon-
dence: Maldacena realized [13] that the low energy dynamics of a stack of N D3-branes
placed in flat spacetime in type IIB string theory is equivalent (dual) to an N' = 4 super-
symmetric Yang-Mills theory with gauge group SU(N). This duality was immediately
recognized as a marvelous tool. For a choice of parameters (for instance the gauge cou-
pling) such that the field theory is strongly coupled, methods are not known to reliably
compute generic observables. But it turns out that (at least when N is large) the dual
string theory is weakly coupled and computational methods are in fact known. The low
energy limit of IIB string theory is IIB supergravity, and in this context the presence
of the D3-branes is described with a warping of spacetime. Summarizing, Maldacena’s
conjecture, also known as AdS/CFT, is the mathematical claim that IIB string theory
on the space AdS5 x S® is dual to N' =4 SU(N) super-Yang-Mills (SYM).

The importance of the discovery is that it provides a computational tool to handle
otherwise elusive strongly coupled gauge theories. In some sense, it supplies a comple-
mentary expansion parameter around the strongly coupled point. And even if string
theory would be found not to be the theory of Nature, this tool will still be there.

Unfortunately the field theory considered in the first realization of the duality, namely
N =4 SYM, does not have great phenomenological interest nor immediate relevance to
hadronic physics: it is a conformal theory with a large amount of supersymmetry. The
final and most ambitious goal is to capture QCD, the theory of the strong interactions
between quarks and gluons, or at least pure Yang-Mills theory. This is of course an
extraordinary challenging task. The necessity of finding extensions of those ideas to
phenomenologically more appealing theories was then well motivated. A first step in this
direction was the extension to gauge/gravity pairs with less supersymmetry [17]. For us
it will be particularly important the example of branes at conical singularities [20-22],
and in particular of D3-branes at a conifold singularity (see, among the more relevant
papers, [58-64,73]) as it exhibits a surprisingly rich dynamics. The second step was the
breaking of the conformal symmetry, realized in this example as well.

A characteristic of all models realized with branes at singularities is that the dual
field theory only contains fields in the adjoint or bifundamental representation of the
gauge factors. Obviously, both for theoretical reasons and phenomenological applications
(in primis to QCD), the third step is the inclusion of matter in the fundamental repre-
sentation. A beautiful example appeared in [25-27], where the new degrees of freedom
where introduced in the brane picture through extra non-compact flavor branes. In the
open string description of the system, the original color branes give rise to the vector
bosons (and possibly to bifundamental matter and the corresponding superpartners),
while open strings attached to the flavor branes with only one end effectively transform



in the fundamental representation of the color group, and give rise to quarks. Lastly,
the flavor branes themselves give rise to a “gauged” flavor group, that must (and can)
be decoupled in some way.

The difference between color and flavor branes is thus substantial. Color branes
undergo a so-called geometric transition and “disappear”: the open string dynamics
on them is equivalently described by a dual closed string background with fluxes, but
without the branes. Flavor branes instead are still present into the dual background
after the geometric transition: they correspond to the open strings which are suggested
by Veneziano’s topological expansion [10-12] of large N. gauge theories. Being non-
compact, they do not have a, say, 4d gauge dynamics. On the other hand they do support
an higher dimensional gauge theory which, according to the AdS/CFT dictionary, is dual
to a global symmetry in field theory. Moreover, in an appropriate large N, and small g,
regime, the system can be described in supergravity; the action must however be enriched
with a Dirac-Born-Infeld and a Wess-Zumino piece to describe the flavor branes:

S =SB+ Sppr+ Swz .

Many ideas and examples originated from the previous setup ( [28-34] and references
therein). All those frameworks are good for a regime where the number of flavors Ny is
much smaller than the number of colors N.. In this limit one can use a probe approxi-
mation in which the added flavor branes do not backreact on the closed string sector,
i.e. they do not deform the space in which they lie. From a field theory diagrammatic
point of view, this correctly reproduces the physics in the 't Hooft large N, limit with
Ny = fixed [6,7]: the approximation amounts to suppressing Feynman diagrams with
quarks in internal loops, so that they are only external legs, and is called in lattice liter-
ature the quenched approximation. From experience in lattice field theory, the quenched
approximation is good to compute static properties (like the spectrum of QCD), but
works poorly when trying to address thermodynamical properties, phase transitions or
finite density problems; of course one expects to miss much when the number of colors
and flavors are comparable (as in QCD).

One is then pushed towards the fourth step, that is the study of fully dynamical
quarks. This correspons to the Veneziano large N, expansion [10-12] in which the ratio
Ny /N, is kept fixed. The motivations for considering this more intricate limit are many:
there are indeed a lot of phenomena that become better visible, if not only visible, when
the number of colors and flavors are comparable. We just mention the screening of
color charges, the breaking of flux tubes, of more theoretical interest Seiberg duality,
metastable supersymmetry breaking vacua established through the ISS mechanism [127],
etc. .. From the gravity point of view, the task is that of finding fully backreacted solu-
tions for non-parallel branes, on non-trivial backgrounds and possibly of diverse dimen-
sions.

One can find on the market a bunch of this kind of solutions, see for instance [25,
26,35-39]. The main problem is technical: the inclusion of flavor branes on a D-brane
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background generically breaks the original symmetries of the configuration; one is then
led to partial differential equations which are difficult to solve, or can be solved with a
series expansion that is usually obscure and not easy to handle for actual computations.

A possible way out is a distributing (or smearing) procedure, initiated in [84, 85]
and more recently applied in [86-88]. Since the limit under consideration envisages a
large number (actually Ny — oo) of flavor branes, one could choose the flavor branes
to be not all on top of each other, but rather distributed in a sort of “spherically
symmetric” configuration. In such a way the original isometries of the background are
preserved. Moreover, a continuum limit in which the discrete branes are substituted by
a continuous distribution can be adopt as well. It turns out that this is enough to get
ordinary differential equations, that in some instances can even be analytically solved.
This is obviously a huge improvement, especially if one plans to use the solutions to
compute observables. We stress that in this procedure supersymmetry plays a key role
to assure the stability of the system; nevertheless non-supersymmetric setups could be
considered as well, provided the stability issue is honestly taken into account.

The setup considered in [85] consists of N, color D5-branes wrapped on S? (with an
N = 1 supersymmetric twist), whose low energy dynamics includes N' = 1 SYM, plus Ny
orthogonal flavor D5-branes touching them at a point, which provide Ny pairs of quarks
and give rise to N’ = 1 super-QCD. The type IIB supergravity solution describing the
near-horizon of the wrapped D5’s is the famous Maldacena-Nunez (MN) solution [92,93].
The authors previously mentioned where able to construct a new supergravity solution
that includes the backreacting flavor branes, and thus describes N' = 1 SQCD. The
result is remarkable, as the number of checks performed. Unfortunately the low energy
theory contains the Kaluza-Klein (KK) modes on S? at the scale of its inverse size; in
a parameter regime where the supergravity approximation is reliable, the dynamically
generated scale Agep (which is the mass gap scale) is approximately the same as the
KK scale, and the extra modes cannot be decoupled. Hence the supergravity solution
only describes a theory in the same universality class as SQCD.

This problem is generic to supergravity duals of SYM. There is an argument for
expecting this: in supergravity there are light fields up to spin two, while in SYM one
expects glueballs of arbitrary spin; thus a theory with supergravity dual must be coupled
to another sector that effectively lifts higher spin fields. However, the main problem of
the MN solution is that the KK sector is difficult to handle (for a study of it see [94,95]).

A different setup, that can reproduce at low energies a theory in the same universality
class as SYM, is that of D3-branes at the conifold tip. The dynamics of this system is
extremely rich (we will talk about it lengthy). With the inclusion of fractional branes,
the dual field theory exhibits a cascading flow: at some energy scale, the physics is
effectively described by a gauge theory of some rank; as we go down in energy, the
effective number of colors reduces. In the infra-red (IR) we are left with SYM, plus the
remnants of the higher steps. However, in this setup the field theory is perfectly known.
For this reasons we will be interested in the flavoring of the conifold system.



We conclude this long introduction turning to a different problem, that has caught
attention since the first cries of string theory, i.e. string phenomenology. The topic aims
to connect the theory with real world. Since we live in a four-dimensional reality whereas
the perturbative string theory is constructed around a ten-dimensional vacuum, the usual
strategy is to compactify six dimensions on a small and non-observable manifold. One
of the main problems is that, in the easiest realizations, the manifold has some number
(typically huge) of moduli: they are deformations of the six-dimensional manifold that do
not have a cost in energy and are thus free — they parametrize a continuous degeneracy
of consistent vacua. They translate into massless fields in the 4d effective FT, which are
however not compatible with experiments. The problem, called moduli stabilization, is
thus to lift these modes.

A celebrated solution is the introduction of fluxes on the internal manifold. String
theory, and its low energy limit supergravity, has many p-form electric and magnetic
fields, and non-vanishing fluxes can be wrapped on non-trivial cycles of the geometry.
On one hand these fluxes are quantized and thus do not admit deformations; on the
other hand the energy they carry depends on the volume of the cycle they wrap. This
provides a nice way of generating a potential for the moduli, and then of lifting them.
Some nice reviews on the subject are [40-42].

There are two main approaches one can embraces: either 10d or 4d. In the ten-
dimensional approach, one uses the supergravity equations to find the space of degenerate
backgrounds and thus the number of moduli. In the four-dimensional approach, one
computes an effective 4d supergravity theory describing the light modes coming out
from the compactification, and then establishes the moduli potential and whether they
get a mass.

In both cases, most of the literature adopts a so-called Calabi- Yau with fluzes ap-
proximation: it amounts to neglect the backreaction of the fluxes on the geometry, which
then turns out to be Calabi-Yau. Such approximation is reliable in the large volume
limit, because the flux energy gets diluted in the bulk and its contribution to the equa-
tions of motion — in particular the Einstein equation — is suppressed. Nevertheless one
could still question that in general, even a single unit of flux, if properly considered, can
induce a discrete change in the topology of the manifold, for instance modifying Betti
and Hodge numbers; one could then wonder how much robust the approximation is.

A nice model of moduli stabilization in which all moduli are lifted was proposed
by de Wolfe et al. [148]: it is a compactification of type IIA with orientifolds. The
authors performed both a 4d and a 10d analysis, reaching the same conclusion; anyway
the computation rests upon the CY with fluxes approximation. For this reason it would
be desirable to have a fully backreacted 10d description of the model. As we will see,
exploiting the smearing procedure this is in fact achievable and even easy.
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Summary of the thesis and results

In the first part of this thesis, we address the problem of finding fully backreacted
solutions for systems of color and flavor branes in type IIB supergravity. The particular
setup we will focus on is given by regular and fractional D3-branes on the conifold,
plus flavor D7-branes. In the second part, we tackle a rather different problem: the
investigation of moduli stabilization in a class of type IIA models, taking into account
the backreaction of fluxes on the geometry. However we will adopt a technique similar
to that of the first part, namely the smearing procedure. The thesis is structured as
follows.

In chapter 2 we collect some introductory and background material, entering in more
details. We start discussing the usual AdS/CFT correspondence in full generalities, and
how to include flavors in the gauge/gravity correspondence. Then we summarize the
examples of regular and fractional D3-branes on the singular and deformed conifold,
describing the dual field theory as well. Lastly we present two interesting classes of
D7-embeddings, called Ouyang and Kuperstein embedding, describing in details their
geometry and the dual field theory, and we go through the smearing procedure. Some
previously unpublished computations are included.

In chapter 3 we consider a system of D3-branes plus Ouyang D7-branes on the
singular conifold, which is the subject of [44]. This represents a chiral flavoring of the
Klebanov-Witten setup [20]. The starting point is a super-conformal SU(N.) x SU(N..)
theory; the addition of flavors makes it running with positive S-function for both groups.
We will present an easy supergravity solution, with fully backreacting D7-branes, that in
practice is a deformation of AdS; x T"!. The main properties we can infer are that the
field theory has an asymptotic conformal behavior in the IR opposed to a Landau pole
in the UV; many known properties are matched with field theory, such as g-functions,
R-symmetry anomaly and vacua. On the other hand, we argue that the FT counterpart
of the smearing is a just a modification of the superpotential, and we propose the exact
expression for it.

The homogeneous distribution of D7-branes can be described by a charge distribution
2-form €25. We develop general techniques to handle the smeared approximation, in
particular to write €25, to exploit it to re-express the Wess-Zumino and Dirac-Born-Infeld
actions, to compute the stress-energy tensor from it and thus to check the satisfaction
of the supergravity equations of motion.

The construction can be extended to the case of a generic conical singularity with
Sasaki-FEinstein radial section, up to the unknown metric of such spaces. The amazing
result is that exactly the same set of functions provides supersymmetric solutions of I1B
supergravity. Lastly, we considered the issue of massive flavors. They can be described
by flavor D7-branes that do not intersect the color branes, but are rather displaced by a
distance m a/: the open strings connecting them have then a mass of order m. We will
consider a smeared version of this, finding nice results such as holomorphic decoupling.



In chapter 4 we move to the more interesting case of fractional D3-branes plus
Kuperstein D7-branes on the singular as well as the deformed conifold, subject of [46].
This is a non-chiral flavoring of the Klebanov-Tseytlin [60] and Klebanov-Strassler [61]
solutions. This time the field theory before the inclusion of D7-branes has gauge group
SU(N + M) x SU(N), and a peculiar RG flow takes place: the ranks effectively reduce
descending in energy. The inclusion of the D7’s further intricates the cascade: not only
the ranks reduce, but even their difference. This opens two possibilities: either one
of the ranks vanishes at some point (and we are left with SYM plus flavors), or the
ranks become equal and we flow in the situation discussed above. We will find analytic
supergravity solutions with 3-form flux for both situations.

Furthermore we will propose a matching between gauge ranks and Page charges: the
latter, being quantized, appear quite suitable to such identification. On the other hand
they are not gauge invariant and shift by integers under large gauge transformations: this
has a natural interpretation in terms of Seiberg duality. Lastly, our solutions will furnish
for the first time a nice example of an exotic phenomenon: a duality wall. Approaching
the UV, the ranks increase so fast that at a finite energy scale an infinite number of
degrees of freedom would be needed to describe the physics.

In chapter 5 we considered again the case of fractional D3-branes on the singular
conifold (i.e. the Klebanov-Tseytlin background) but flavored with Ouyang D7-branes.
This represents a chiral flavoring of the field theory: a simple FT analysis shows that
everytime the ranks increase, new gauge singlet fields originate. This phenomenon has a
nice supergravity description: the 3-form flux radiated by the fractional branes induces
a worldvolume flux on the flavor branes; on the other hand the D7’s mutually intersect
and, due to the worldvolume flux, localized zero modes live at the intersection. We will
give an analytic supergravity solution for the system, and we will provide many checks
of our proposal.

In chapter 6 we turn to a rather different problem, that is moduli stabilization. We
consider the type ITA orientifold model of [148] and we look for a fully backreacted 10d
supergravity background for it. The starting point is a classification of SU(3)-structure
type ITA vacua with fluxes due to Liist and Tsimpis [159]. We will include orientifold
6-planes in the construction, to reproduce the model of de Wolfe et al.. In order to write
a simple solution, we will exploit the techniques presented in the previous chapters, that
is the smearing approximation. This will allow us to check that, in fact, all moduli are
lifted. We extend the construction to rather general type ITA orientifold models.

Eventually, in a series of appendices we collect conventions and various computa-
tions. Appendix A and B are devoted to the type IIB and ITA supergravity Lagrangian
in the presence of sources, and to their EOM’s. Appendix C deals with the conifold
geometry and its complex properties. In Appendix D we summarize and compute the
supersymmetry variations.

This thesis is based on the following papers:
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Chapter 2

Adding flavors to the AdS/CFT
correspondence

About thirty years after the discovery of asymptotic freedom [49], quantum chromody-
namics (QCD), the theory of the strong interactions between quarks and gluons, remains
a challenge. There exist no analytic, truly systematic methods with which to analyse its
non-perturbative properties. Some of these, for instance its thermodynamic properties,
can be studied by means of the lattice formulation of QCD. However, other more dy-
namical ones, for example the transport properties of the quark-gluon plasma (QGP),
are very hard to study on the lattice because of the inherent Euclidean nature of this
formulation. A long-standing hope is that a reformulation of QCD in terms of a new set
of string-like degrees of freedom would shed light on some of its mysterious properties.

The expectation that it ought to be possible to reformulate QCD as a string theory
can be motivated at different levels. The following summary is mainly taken from [50].
Heuristically, the motivation comes from the fact that QCD is believed to contain string-
like objects, namely the flux tubes between quark-antiquark pairs responsible for their
confinement. Modelling these tubes by a string leads to the so-called Regge behavior,
that is the relation M? ~ J between the mass and the angular momentum of the tube.
The same behavior is observed in the meson spectrum, i.e. quark-antiquark bound
states. This argument however would not apply to non-confining gauge theories.

A more precise motivation for the existence of a string dual of any gauge theory
comes from the consideration of the 't Hooft large N. limit [6,7] (see also [8] for a
beautiful review). Asymptotically free theories like QCD do not have a small expansion
parameter at low energies. The idea is to consider a generalization of QCD obtained
by replacing the gauge group by SU(N,), to take the limit N, — oo and to perform an
expansion in 1/N..

The degrees of freedom are the gluon fields (A,)%, and the quark fields ¢}, where
a,b=1,...,N.and i = 1,..., Ny with Ny the number of quark flavors. The number
of gluons is ~ N2, which in the large N, limit is much larger than the number of quark
degrees of freedom NyN., so we may expect (correctly) that the dynamics is dominated

11
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Figure 2.1: Two vacuum Feynman diagrams in double line notation. The one on the
left is a genus-zero diagram of order A2N2. The one on the right is a genus-one diagram
of order A\2N?.

by the gluons. We will therefore start by studying the theory in this limit as if no quarks
were present, and then examine the effect of their inclusion.

Consider the one-loop gluon self-energy Feynman diagram. There are two vertices
and one summed free color index, so this scales as gi,,N.. For this diagram to possess
a smooth limit as N, — oo, we must take at the same time gy); — 0 while keeping
the 't Hooft coupling A = g%,,N, fixed. This corresponds to keeping the confinement
scale Agep fixed. In fact notice that the one-loop G-function when written in term of A
becomes independent of N,:

0
dlog

Ao —A2. (2.1)

The determination of the N, scaling of Feynman diagrams is simplified by the so-called
double line notation, some of whose examples are in Figure 2.1. It consists in drawing
the line associated to a gluon as a pair of parallel lines associated to a quark and an
antiquark. All closed internal lines, due to summation over gauge indices, carry a factor
of N,.

Feynman diagrams naturally organize themselves in a double series expansion in
powers of 1/N, and A\. The expansion in 1/N. leads to a topological classification of
diagrams, which makes the connection with string theory. Let us consider vacuum
diagrams for simplicity. Two examples with different genus are in Figure 2.1. In double
line notation each line in a Feynman diagram is a closed loop that we think of as
the boundary of a two-dimensional surface or face. The Riemann surface is obtained by
gluing together these faces along their boundaries as indicated by the Feynman diagram.
In order to obtain a compact surface, we add the point at infinity to the face associated
to the external line in the diagram. Restricting to the case of cubic vertices (as a quartic
vertex is topologically equivalent to two nearby cubic ones), the amplitude for a vacuum
diagram is ~ g¥,, NF = \V2NI7Y/2 where V is the number of cubic vertices and F the
number of faces. We recognize that the power of V. is precisely y, the Euler number of
the corresponding Riemann surface. For a compact, orientable surface of genus g with
no boundaries we have y = 2 — 2¢g. On the other hand, the dependence on the 't Hooft
coupling is A~!, with ¢ the number of loops. We therefore conclude that the expansion
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of any gauge theory amplitude in Feynman diagrams takes the form

A= i]\fe"icgm)\” : (2.2)
g=0 n=0

where ¢y, are constants. The first sum is a loop expansion in Riemann surfaces for
a closed string theory with coupling constant g; ~ 1/N.; the expansion parameter is
therefore 1/N2. As we will see later, the second sum is associated to the so-called o
expansion in string theory.

The above analysis holds for any gauge theory with Yang-Mills fields and possibly
matter in the adjoint representation, since the latter is described by fields with two
colour indices. In order to illustrate the effect of the inclusion of quarks, or more gen-
erally of matter in the fundamental representation which is described by fields with one
color index only, consider the substitution of a gluon loop with a quark loop in a given
Feynman diagram. This leads to one fewer color line and hence to one fewer power of
N., but on the other hand since the flavor of the quark running in the loop must be
summed over too, it also leads to one additional power of Ny. We conclude that internal
quark loops are suppressed by powers of N;/N, with respect to gluon loops. In terms of
Riemann surfaces, the replacement with a quark loop corresponds to the introduction of
a boundary. The power of N, is still NX, but in the presence of b boundaries the Euler
number is x = 2 — 2g — b. This means that in the large N, expansion we must also sum
over the number of boundaries, and so we recognize it as an expansion for a theory with
both closed and open strings. The open strings are associated to the boundaries, and
their coupling constant is gopen ~ g;/ °N ¢ ~ Ny/N.. The expansion of any amplitude
takes then the form

o0

A= iim N egnnd™ . (2.3)
n=0

g=0 b=0

The main conclusion is that the large N, expansion of a gauge theory can be identified
with the genus expansion of a string theory. Through this identification, the planar limit
of the gauge theory corresponds to the classical limit of the string theory. However, the
above analysis does not tell us yet how to construct explicitly the string dual to a specific
gauge theory.

2.1 The AdS/CFT correspondence

In this summary we continue following mainly [50]. However, standard and quite tech-
nical references are also [51,52].

The first example of gauge/gravity duality, which is the simplest but also the most
detailed and studied one, is the equivalence between type IIB string theory on AdSs x
S® and N = 4 super-Yang-Mills (SYM) theory on four-dimensional Minkowski space
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[13]. Since this gauge theory is conformally invariant, this duality is an example of an
AdS/CFT correspondence.

Consider a solution of type IIB string theory in the presence of N, D3-branes. The
spacetime around them is not flat but rather curved, since D-branes carry mass and
charge. Far from the branes the spacetime is flat ten-dimensional Minkowski space,
while close to them a “throat” geometry of the form AdSs x S® develops. Conceptually
such a space could be constructed by resumming an infinite number of tadpole-like string
diagrams with boundaries on the D3-branes, describing a closed string propagating in
the presence of the branes.

The solitonic solution of type IIB supergravity that describes N. D3-branes is a
non-trivial ten-dimensional spacetime whose metric is:

dsfo = h(r)_1/2 N datdx” + h(r)1/2 (dr2 + 72 ds%s) , (2.4)

where p, v =0, ..., 3 are Minkowski coordinates along the branes, r is a radial coordinate
around the branes, and the harmonic function h is

h(r) =1+ — (2.5)

with some length scale R. The solution has other fields excited, that we will extensively
analyzed hereinafter.

We want to compare the gravitational radius R of the D3-branes (essentially the
curvature radius they induce) with the string length [, (the notation o/ = [? is also
used). D3-branes are solitonic objects whose tension scales as an inverse power of the
coupling: Tps ~ 1/gslt. Tt follows that the gravitational radius in string units must

scale as g;IN.; to be precise
4

% — 4mg.N, (2.6)
When ¢g;N. < 1 the description in terms of essentially zero-thickness objects in an
otherwise flat spacetime is a good description. In this limit, the D3-branes are well
described as a defect in spacetime, or more precisely as a boundary condition for open
strings. In the opposite limit gsN. > 1, the backreaction of the branes on a finite region
of spacetime cannot be neglected, but fortunately in this case the description in terms
of an effective geometry for closed strings becomes simple, since in this limit the size of
the near-brane AdSs x S° region becomes large in string units.

We can motivate the AdS/CFT correspondence by considering excitations of the
ground state in the two descriptions outlined above, and taking a low energy aka decou-
pling aka near-horizon limit. In the first description the excitations of the system consist
of open and closed strings. At low energies we may focus on the light degrees of freedom.
Quantization of open strings lead to a massless N' = 4 SU(N,) SYM multiplet plus a
tower of massive string modes. All these modes propagate in 3+1 flat dimensions — the
worldvolume of the branes. Quantization of closed strings leads to a massless graviton
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supermultiplet plus a tower of massive modes, all propagating in ten dimensions. The
strength of interactions of closed string modes with each other and with open string
modes in controlled by the ten-dimensional Newton constant G:

167G = (2m)"g21% | (2.7)
thus the dimensionless coupling at energy E is GE®. This vanishes at low energies and
so closed strings decouple from open strings. On the other hand interactions between
open strings are controlled by the N' = 4 SYM coupling constant in four dimensions,
given by g%, ~ ggpen ~ ¢s, and the massless sector remains interacting in the low energy
limit.

In the gravitational description of the system, the low energy limit consists in focus-
ing on excitations that have arbitrarily low energy with respect to an observer in the
asymptotically flat Minkowski region. As above there are two sets of degrees of freedom:
those propagating in the Minkowski region and those in the throat. The modes in the
Minkowski region decouple at low energy from each other since their interactions are
governed by GE® as before. They also decouple from modes in the throat, since the
wavelength of the Minkowski modes becomes much larger than the size of the throat. In
the throat, however, the whole tower of massive string states survives. This is because a
mode in the throat must climb up a gravitational potential in order to reach the asymp-
totically flat region, thus a closed string of arbitrarily high proper energy in the throat
may have arbitrarily low energy as seen by an observer outside, provided the string is
located sufficiently deep down the throat. We thus conclude that the system reduces to
interacting closed strings in AdS5 x S°, plus decoupled free sectors.

Comparing the two descriptions one conjectures that 4d N' = 4 SU(N,.) SYM and
type 1IB string theory on AdSs5 x S% are two equivalent descriptions of the same physics.
Our motivation is not a proof because the two descriptions are valid in mutually exclusive
regions of parameter space. Nevertheless the AdS/CFT correspondence received an
astonishingly large amount of evidences, and we will give it for granted in the following.

The relations between the gauge theory parameters and the string theory ones are
easily determined. The gauge theory is specified by the rank of the gauge group N,
and the 't Hooft coupling A = g&,,N.. The string theory is determined by the string
coupling g, and the size R of the AdS5 and S° spaces, that for a D3-brane solution have
equal radius. We already obtained the relations: one is

RZ

Oé/

= g%/MNc = \/X ] (2'8)

This means that the o/ expansion in string theory, which controls corrections associated
to the finite size of the string, corresponds to a strong coupling 1/ VA expansion in field
theory. It follows that a necessary condition in order for the particle or supergravity
approximation of the string theory to be a good one is that A — oo. However this
condition is not sufficient: we must require gs — 0 (which implies N, — o0) as well in
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order to suppress string loops and ensure that additional degrees of freedom, such as
D-strings whose tension scales as 1/g;, remain heavy.
The string coupling is related to the gauge theory parameters through

A
Amgs = gy p = N (2.9)
This means that for a fixed-size AdSs x S° geometry, the string loop expansion corre-
sponds precisely to the 1/N, expansion in field theory. Equivalently one may note that
the radius in Planck units is
U ~ s ~ N, (2.10)
l]% \/@ C
so quantum corrections on the string side are suppressed by powers of 1/N,.. In partic-
ular, the classical limit on the string side corresponds to the planar limit of the gauge
theory.
As a final piece of evidence, we match the symmetries between the two descriptions.
The metric on AdSs in the “Poincaré patch” is

7”2

d52 = ﬁ(_

2
dt* + dx3 + das + da3) + %dr2. (2.11)
The coordinates z# may be thought of as the coordinates along the worldvolume of the
original D3-branes, and hence may be identified with the gauge theory coordinates. The
coordinate r and those on S° span the directions transverse to the branes. As r — oo
we approach the conformal boundary of AdSs. On the other hand, at r = 0 there is a
coordinate horizon where the norm of 9/0t vanishes.

N =4 SYM is a conformal field theory (CFT), in particular invariant under the
dilation operator
D: o' — Azt (2.12)

where A is a constant. On the gravity side this is also a symmetry of the metric (2.11),
provided this is accompanied by the rescaling » — r/A. This means that ultra-violet
(UV) physics in the gauge theory is associated to physics close to the AdSs boundary,
whereas infra-red (IR) physics takes place close to the horizon. Thus r can be identified
with the renormalization group (RG) scale. Since a quantum field theory is defined by
a UV fixed point and an RG flow, one may think of the gauge theory as residing at the
boundary. More generally, N” = 4 SYM is invariant under the conformal group SO(2,4),
has N' = 4 supersymmetry which is doubled with the addition of the superconformal
generators and has SO(6) R-symmetry. In the dual string theory SO(4, 2) is the isometry
of AdSs, the N' = 8 supersymmetries are those of type IIB supergravity compactified on
AdSs x 8% and SO(6) is the isometry group of S°. In a word, the symmetries on both
sides form the superconformal group SU(2,2|4).

It is important to note however that on the gravity side the global symmetries arise
as large gauge transformations. In this sense there is a correspondence between global
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symmetries in the gauge theory and gauge symmetries in the dual string theory. This
is consistent with the general belief that the only conserved charges in a theory of
quantum gravity are those associated to global symmetries that arise as large gauge
transformations.

2.1.1 The field-operator correspondence

The AdS/CFT correspondence in a more general form relates a four-dimensional CET
to a critical string theory in ten dimensions on AdSs x H. If H is compact, the string
theory is effectively five-dimensional. The AdSj factor guarantees that the dual theory
is conformal, since its isometry group SO(4,2) is the same as the group of conformal
transformations of a four-dimensional quantum field theory.

To define the correspondence, we need a map between the observables in the two
theories and a prescription for comparing physical quantities and amplitudes. We will
present this dictionary following [52]. The correspondence is via holography [15]. Let us
start by writing the AdS metric as

ds* = dy* + e*/Bdxdat (2.13)

where the radial coordinate y is related to that in (2.11) by r/R = exp(y/R). The
conformal boundary is at y = oo. The CF'T is specified by a complete set of conformal
operators. In a gauge theory at large N, a distinguished role is played by single-trace
operators (multi-trace operators are usually associated to multi-particle states in AdS).
The fields in AdS, on the other hand, are the excitations of the string background.
They certainly contain the metric and many other fields. We may assume that, when
a semi-classical description is applicable, their interaction is described by an effective
action S(gu, Ay, @, ... ). Suppose that we have a map between observables in the two
theories. We can formulate a prescription to relate correlation functions in the CFT with
scattering amplitudes in AdSs. In CFT we can define the functional generator W (h) for
the connected Green functions for a given operator O. h(z) is the source, depending on
four coordinates, which is coupled to the operator O through

L= Lcpr + / d*x h(z) O(x) . (2.14)

The operator O is associated with a scalar field INz(x, y) in AdS which, for simplicity, we
assume to be a canonically normalized scalar:

SAdS: —/d4xdy\/§{(8l~z)2+m2ﬁ2+...} . (2.15)

The two solutions of the equation of motion (EOM) of h for large y are

h(x,y) ~ e WAW/ER (1) h(x,y) ~ e 2/ Eh(2) (2.16)
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where

A =2+ V4 +m2R2 and A4 —A)=-m*R*. (2.17)

Since we expect that the large y behavior of h reflects the conformal scaling of the field
we identify A with the quantum dimension of the dual operator O. The prescription
for identifying correlation functions with scattering amplitudes is the following: given a
solution of the equations of motion derived from Su4g that reduces to heo(x) = h(z) at
the boundary, it holds® [15]

eWh) (efd4z h(1)0(1)> — o Saas(h) (2.18)

This prescription is valid in the low energy limit where supergravity is valid. In the
full string theory, the right hand side of the last equation should be replaced by some
S-matrix element for the state. Notice that we used equations of motion in AdS: an off-
shell theory in four dimensions corresponds to an on-shell theory in 5d. This is a generic
feature of all the AdS-inspired correspondences. The previous prescription allows to
compute Green functions for a strongly coupled gauge theory at large N, using classical
supergravity. For more details on the subject, the reader is referred to [51].

The map between CFT operators and AdS fields should be worked out case by case.
For specific operators the dual field can be found using symmetries. For example, the
natural couplings

L= Lcpr + /d% V{9 T + J A + ¢F,, F*™ + ...} (2.19)

suggest that the operator associated with the graviton is the stress-energy tensor and the
operator associated to a gauge field in AdS is a CFT global current. We also included
a coupling that is very natural in string theory: the string coupling g, = e?. Notice
that any translationally invariant theory has the set of conserved currents in the energy-
momentum tensor operator 7T),,,. Thus in general the dual of a translationally invariant
gauge theory must involve dynamical gravity.

2.2 Flavor branes in the duality

An elegant and efficient way of adding flavors — we mean fields in the fundamental
representation of the gauge group — to the gauge/gravity correspondence was proposed
by Karch and Katz in [27] (see [25,26] for former examples). The idea is to add higher
dimensional branes in the open string picture. Let us consider a system of N, “color”
branes, that for concreteness and continuity with the previous section we can think
being D3-branes, intersecting N; “flavor” branes. We analyze the two sides of the
duality separately.

!The equations of motion in AdS are second-order, but the extension of the boundary value inside
the space is unique. What we implicitly impose is regularity in the interior of AdS.
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In the “open string” picture, that is for g;N. < 1 and g,/Ny < 1, the spectrum is
the following. From the closed string sector we get 10d supergravity at the massless
level, plus an infinite tower of massive string modes. From the open N.- N, sector we get
an SU(N.) gauge theory living on the color branes. The open N.-N; strings transform
in the fundamental representation of SU(N,), and then give rise to flavors localized at
the intersection. Eventually we get an higher dimensional SU(Ny) gauge theory from
N¢-Ny open strings. Obviously there are all the massive open string modes as well.

In order to decouple all unwanted fields, we focus on lower and lower energy modes,
keeping fixed the gauge theory parameters. We already saw that massive string modes
as well as gravity in the bulk effectively decouple. The gauge theory on the flavor
branes, being higher dimensional, decouples as well because its gauge coupling has larger
dimension in mass units; the gauge dynamics gets frozen and we are left with a global
flavor symmetry. Thus in the low energy limit we are left with an SU(N.) gauge theory
with flavors, as wished.

In the “closed string” picture, that is for g;N. > 1 (for the time being gsN; can
be either large or small), we must adopt a different description, namely a deformed
background. In the latter a throat has developed whereas the color branes are replaced
by the fluxes they radiate. In this case, focusing on the low energy dynamics, the modes
outside the throat decouple while the ones inside, including massive string states, are
fully dynamical because they are arbitrarily light for an external observer. The same is
true for the open string modes on the Ny flavor branes. Hence the physics is described
by closed and open strings in a near-horizon background. This perfectly matches with
what found in (2.3) considering the topological expansion of Feynman diagrams: one
expects flavor loops to be described by open strings.

Still there is a difference according to gsN¢ being small or large. When g, Ny < 1,
the flavor branes are in fact probes even in the “closed string” picture. This means that
they can be reliably described by open string boundary conditions in a non-trivial back-
ground. On the other hand, when gs;Ny > 1 the branes backreact on the closed string
background, that means that they deform the space. However they never disappear
leaving just their fluxes: the reason is that flavors involve a global symmetry in field
theory. In the gravity description, it arises as boundary large gauge transformations
for a dynamical gauge theory, and such gauge theory is the one living on the N; flavor
branes.

In the literature it is extensively taken a probe limit. This is justified by taking
the limit where g, — 0 with Ny fixed, such that g;N; — 0, which is the strength with
which the Ny D-branes source the metric, dilaton and gauge fields. At the same time
one takes N. — oo, holding as usual 47 gsN. = A fixed. So the D3-brane backreaction is
large, and we replace the D3-branes with their near-horizon geometry. The flavor probe
branes will minimize their worldvolume action in this background without deforming it.
In particular this means that one takes Ny < N, that is in the large N. gauge theory
one introduces a finite number of flavors. In the lattice literature this limit is known as
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the quenched approximation: the full dynamics of the glue and its effect on the fermions
is included, but the backreaction of the fermions on the glue is dropped. In the probe
limit this approximation becomes exact.

2.3 The conifold

Before discussing the example of the conifold in details, we would like to briefly state the
AdS/CFT correspondence in the original setup of AdSs x S®, corresponding to a stack
of a large number N of D3-branes in flat spacetime. The curved background produced
by the stack is

ds® = h™"2das, + B2 (dr? + r2d63) (2:20)
where dZ is the metric of a unit 5-sphere and the warp factor is
L4
h(r) =1+ el (2.21)

Moreover the dilaton is constat, ¢ = 0, and the self-dual 5-form flux is given by
Fs=Fs +xFs5 with % Fs = 16ma’?g N dvolgs . (2.22)

The normalization is due to the quantization of the D3-brane charge? :
/ Fy = (47%d/)?g,N (2.23)
S5

and the volume of a unit 5-sphere is Vol(S®) = 73. We refer the reader to Appendix A
for more details and conventions. The 5-form field can also be written as

!/

h
F5 = —(1 + *) dhil VAN dV01371 = ﬁ dV01371 Adr — 7’5h/ dVOlss . (224)

Then one obtains that L* = 47ra2g,N. In the near-horizon limit, r — 0, the warp factor
reduces to h(r) = L*/r* and the metric (2.20) to that of AdSs x S°, where both spaces
have curvature radius L.

An interesting generalization of the basic AdS/CFT correspondence is found by
studying branes at conical singularities [17-22]. Considering D3-branes placed at the
apex of a Ricci-flat six-dimensional cone whose base is a 5d Einstein manifold X5 and
following the same steps as before, one is led to the conjecture that type IIB string
theory on AdS5 x X5 is dual to the low energy limit of the worldvolume theory on the
D3-branes at the singularity. The curvature radius is in this case

3

L* = dma?g,N — 2.25

2For sestetical reasons, we actually use what in our conventions are anti-D3-branes, without further
specification. See Appendix A for details.
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where Vol(X5) is dimensionless. One of the most fruitful examples is the space X5 =
TH = (SU(2) x SU(2))/U(1), called the conifold, that we are now going to study in
detail.

2.3.1 D3-branes on the singular conifold

In the following we quickly review the theory of regular and later fractional branes at
the tip of a conifold geometry, mainly following [53].
The conifold may be described by one equation in four complex variables:

w? 4+ ws +wi +wi=0. (2.26)
Alternatively, with a linear change of variables it can be written as
2129 — 2324 =0 . (2.27)

Since the equation is invariant under a real rescaling to the coordinates, this space is a
cone. The five-dimensional base of the cone is a Sasaki-Einstein space called T [20,54].
The conifold is a CY non-compact manifold, thus admitting a Ricci flat metric:

dsg = dr® +1*dsa.
2 2
1 2 (2.28)
d6? + sin® ; d? —(d - &di>.
;( ~ 4 sin gpl)—i—g Y Zcos ®

=1

|~

2
dST1,1 =

The periodicities are ¥ € [0,47), ¢; € [0,27) and 6; € [0, 7] with the following identifi-

Y1 Y1 Y1+ 27 Y1
©2 ~ ©2 ~ ©2 ~ ®2 + 27 . (229)
(0 Y+ 4 Y+ 27 Y +27

One sees that TH! is a U(1)-bundle over S? x S? moreover its topology is S? x S3.

Proceeding as before, one is led to the near-horizon solution AdSs x TH! with N units
of 5-form flux and constant dilaton ¢. Since Calabi-Yau (CY) spaces preserve 1/4 of
the supersymmetries, the dual field theory leaving on a stack of D3-branes at the tip of
the conifold geometry must be an N/ = 1 superconformal theory. This field theory was
constructed in [20]: it has gauge group SU(N) x SU(N), with two bifundamental chiral
multiplets A; in the representation (N, N) and two bifundamental B; in the (N, N).
Moreover it has a superpotential

W = eef Tr A;BLA; By . (2.30)

The corresponding quiver diagram is in Figure 2.2. The global symmetries of the theory
are SU(2), x SU(2), x U(1)g x U(1)p X Zy. The charges of the fields are:
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Al; A2

B1, By

Figure 2.2: Quiver diagram of the unflavored KW theory.

SU2), | SU2), |Ug | U(1)p
A, 2 1 1/2 1
B, 1 2 1/2 1

The U(1)g symmetry is a non-anomalous R-symmetry, while Z, exchanges the two
gauge groups. In string theory the first three factors and Z, are realized as geometrical
isometries of TH!, while U(1)p is realized as a gauge symmetry after compactification
of the RR 4-form potential C}.

The matching between field theory and geometry is made by noticing that in the case
N =1 the gauge theory has group U(1) x U(1) and the moduli space corresponds to
the possible free motions of a single D3-brane. Since supersymmetry allows it to move
everywhere on the geometry, the moduli space must be the conifold itself. With the
identification of gauge invariants

21 = AlBh Z9 — AQBQ, zZ3 = AlBQ, Z4 = AQBl y (231)

the conifold equation (2.27) is automatically solved and coincides with the moduli space
of F and D-term equations.

2.3.2 Fractional branes on the singular conifold

There are many ways of wrapping branes over cycles of T™!. Consider for instance a
D5-brane wrapped on the 2-cycle, with the other directions spanning R3!. If this object
is located at some fixed 7, it is a domain wall in AdSs. The analysis in [58] showed
that on one side we have the original SU(N) x SU(N) theory, whereas on the other
side the theory is SU(N + 1) x SU(N). Computing the tension of the wrapped D5 as a
function of r shows that is scales as r*/L?, thus the domain wall is not stable and moves
towards r = 0. The wrapped D5-brane falls behind the horizon and it is replaced by its
3-form flux in the supergravity background. Repeating the construction with M D5’s,
one obtains a string dual of the SU(N + M) x SU(N) theory.

The SU(N + M) x SU(N) theory is no longer conformal. The two gauge couplings
1/g? and 1/¢3 run logarithmically, the biggest group towards strong coupling and the
smaller towards weak coupling. In [59] the supergravity equations corresponding to this
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situation were solved at leading order in M/N. In [60] the solution was completed to all
orders; the conifold suffers logarithmic warping and the relative gauge coupling g; % — g5 2
runs logarithmically at all scales, the sum keeping constant. The D3-brane charge that
is the 5-form flux decreases logarithmically as well. However the logarithm is not cut off
as small radius, thus the D3-charge eventually becomes negative and the metric becomes
singular.

In [60] it was suggested that this solution corresponds to a flow in which the gauge
group factors repeatedly drop in size by M units, until finally the gauge groups are
SU(2M) x SU(M) (for suitable initial conditions in the UV). It was further suggested
that the strong dynamics would resolve the naked singularity in the metric, and this is
in fact the case as we will see in the next subsection.

The supergravity dual of the SU(N + M) x SU(N) field theory, found by Klebanov
and Tseytlin (KT) in [60], involves M units of RR 3-form flux sourced by M D5-branes,
as well as N units of 5-form flux sourced by N D3-branes, all of them at the tip of the
geometry:

1 1
_— Fs=M —_— Fs=N. 2.32
47’(’20/95 /53 3 (471'20/)295 /T1,1 > ( )

Anyway one has to be careful because in the presence of a non-trivial NSNS 3-form
flux and a D5-charge, the Maxwell D3-charge ceases to be a quantized charge and gets
non-localized contributions from the bulk.

The metric is a warped product of Minkowski space R*! and the singular conifold
(2.28), supported by the 5-form flux:

dsty = h™"?dx3 ) + B (dr® + rPdsta)

. (2.33)

F5 = —(1 + *) dVOng ANdh™ y
where the warp factor, as all other scalar dependencies, is a radial function. The axion-
dilaton 7 = Cjy +ie~? is constant, and we can take it to be 7 = i. The 3-form fluxes are
given by

3g. Mo/ 3g:Ma' d Mo/
By = %% s log — | Hy=dBy= 2" % py Fy= 25w,
2 To 2 " .
(2.34)
where
1
Wy = 3 ( sin 0y dfy; A dpy — sin 6y dbs N dSOQ) ws = g° Nws (2.35)

¢° = dip — cos by dby A dpy — cos By dby A des .

One can check that, since [o, ws = 47 and [y ws = 872, the quantization of the RR
3-form flux is obeyed. We refer the reader to Appendix C for more details on the conifold
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geometry. Moreover F3 and Hj are closed and satisfy xg F3 = Hsz. Thus the complex
3-form G satisfies the imaginary-self-duality condition:

X6 Gg = ZGg with Gg = Fg - ZHg . (236)

In fact one can prove (see [23-25] and also [40]) that type IIB supergravity on a warped
product of R*! and a CY manifold, with holomorphic axion-dilaton, a 5-form flux cor-
rectly related to the warp factor, and (2,1) primitive imaginary-self-dual 3-form flux is
a supersymmetric solution.> This is the case here as shown in Appendix C. Finally the
warp factor can be found either from the Bianchi identity dF5 = —Hs A F3 or from the
Einstein equation, getting:

27ma/? 3 1 T
- N+ 2 (g M?(= +10g 1) . 2.
hr) = =4 [95 + 5 (95M) (4 Tog roﬂ (2.:37)

Here ry and N come from the same integration constant.

The novel feature of this solution is that the 5-form flux acquires a radial depen-
dence. One may compute an “effective number of D3-branes” by integrating fTLl 5=
(4720 )2gs Ness(1):

Nesp(r) =N + %QSMQ logri0 - (2.38)
Due to the presence of an Hj background, which is required by supersymmetry, the
D3-charge is no longer quantized and receives a bulk contribution described by the
Bianchi identity. In particular, even starting with some 5-form flux N at r = rq, it
may completely disappear in the IR. A related fact is that |, 52 B2 is no longer a periodic
variable in supergravity, and as the By flux goes through a period from r; to ro =
r1exp(—2m/3gsM) < rq, the 5-form flux reduces by M units: N.sp(re) = Ness(r1) — M.

At special radii where the effective number of D3-branes N.;; is integer we may
identify it with the rank of the gauge group SU(Ngss + M) x SU(N.ss). The con-
tinuous logarithmic variation of N.sr(r) may be related to a continuous reduction in
the number of degrees of freedom as the theory flows in the IR. Some support for this
claim comes from studying the high temperature phase of this theory using a black hole
embedded into the asymptotic KT solution [65-67]. The effective number of degrees of
freedom computed from the Bekenstein-Hawking entropy grows logarithmically with the
temperature, in agreement with (2.38).

We conclude by noticing that the metric in (2.32) with warp factor (2.37) has a naked
singularity at r = r; where h(rs) = 0. As later understood in [61], this is due to the
fact that the dual field theory undergoes spontaneous chiral symmetry breaking in the
IR, while this ingredient is not yet contained in the KT solution. Inclusion of this effect
does in fact resolve the singularity.

3Tt is a solution, provided that tadpoles are cancelled as well. This is a non-trivial issue on compact
manifolds [24], but does not pose any problem in our non-compact example.
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2.3.3 Fractional branes on the deformed conifold

The RG flow of the SU(N + M) x SU(N) gauge theory under consideration was fully
understood in [61]. After the addition of M fractional branes the theory is no longer con-
formal. The perturbatively exact S-functions of the two gauge groups can be computed
either from field theory or supergravity, and the two results agree.

The field theory computation is based on the Shifman-Vainshtein formula [68] for
N =1 gauge theories: 9/0logu (87%/g*) = 3N, — Ny(1 — v), where N, is the rank
of the group, Ny is the number of flavors in the fundamental representation and -y is
their anomalous dimension.* The theory is far from a perturbative point; rather, for
M/N small it is close to the superconformal point where the anomalous dimensions
are fixed by the superconformal algebra and the U(1)r charges. Using a symmetry
argument [61], i.e. the theory is invariant under (N, M) — (N + M, —M), one concludes
that the anomalous dimensions are only corrected at the second-order in M /N, so that
v =—1/2+ O(M/N)? Substituting in the formula one gets

0 8rn? 0 8r?
= =3M 2= _3M 2.39
dlogpu g7 dlogpu g3 ’ (2:39)

where g, refers to the larger group and g, to the smaller one. The supergravity com-
putation relies on the fact that, at least for gauge/gravity pairs of non-chiral quiv-
ers, there are formule to extract the gauge couplings from the gravity solution, which
are derived by considering the worldvolume action of probe D3 and fractional D3-
branes [17,18, 20,22, 70, 71]. Let y, = 87%/g>. Considering regular D3-branes one
concludes that ) x, = 27/g,; then the integral of By on some 2-cycle Cj is related to
the gauge coupling on the probe D5-brane, which in turn is related to the sum of the
x’s corresponding to the ranks increased by the D5. In our simple case we get:

8r2 812 21 872 21 1
91 95 s 91 gs LAmal Jgo

We refer the reader to [48, 71] for more intricate examples. Then defining the en-
ergy /radius relation by identifying the energy scale with the mass of a string stretched
from the horizon to radius r, one obtains A ~ r. Substitution of the actual behavior of
Bs in the KT solution reproduces the result in (2.39).

The conclusion is that, moving towards the IR, the group with larger rank flows to
strong coupling until some energy scale where its coupling g; diverges [61]. Below that
scale the SU(N + M) x SU(N) gauge theory description is no longer useful. Rather we
may switch to a new description according to Seiberg duality [72], ending up with an
SU(N — M) x SU(N) theory that strongly resembles the original one, in particular it

“Notice that this differs from the usual NSVZ formula [69] missing the denominator: this is because
in our scheme the gauge field kinetic term in the action is normalized with 1/4¢2, as comes from
supergravity.
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has the same superpotential. Then the story repeats for the other gauge group, and so
on. This phenomenon, which involves a stepwise reduction of the gauge ranks, is called
the cascade, and it reproduces the decreasing number of degrees of freedom observed in
supergravity. Full details on how Seiberg duality applies to the KT theory can be found
in [73].

It is clear that this process cannot continue indefinitely and something different must
happen in the IR when one of the ranks would otherwise become negative. Suppose we
reach a step with group SU(2M) x SU(M). Now the larger group has as many flavors
as colors, and then does not undergo Seiberg duality but rather it has a modified moduli
space [74] (see [75] for a nice review) where mesons M and baryons B, B are related by

det M — BB = A*M . (2.41)

There is a branch in the moduli space, called the baryonic branch, where M = 0. A
particularly simple point is where B = B = iA?™; such a point exhibits confinement,
gaugino condensation and chiral symmetry breaking. The supergravity solution that
incorporates these effects was constructed by Klebanov and Strassler (KS) in [61], and
in fact it resolves the IR singularity of the KT solution [60] while asymptoting to it in the
UV. Due to the baryonic vacuum expectation value (VEV) the SU(2M) x SU(M) group
is broken to a diagonal SU (M) without matter. The IR dynamics is hence in the same
universality class of SU(M) N = 1 SYM, which does exhibit gaugino condensation,
chiral symmetry breaking and confinement. This is the most exciting aspect of the KS
solution. Anyway, we only are in the same universality class as SYM because, due to
the full cascading theory, there are extra fields at the scale A, for instance responsible
for the fact that the spectrum contains glueballs up to spin two only. The existence of
a full baryonic branch, that must be described by a family of supergravity solutions,
was first observed on the gravity side in [62] and the family was construct at first-order.
Later the family of solutions was solved at all orders in [63].

On the gravity side, the inclusion of gaugino condensation and chiral symmetry
breaking that removes the naked singularity is achieved by deforming the geometry,
that is replacing the singular conifold with the deformed conifold

2129 — 2324 = €2 . (2.42)

The U(1)g isometry of the singular conifold that rotates the phase of all z; is conse-
quently broken to Zs. The singularity of the conifold is removed through the blowing
up of the S? of T%!. Again the axion-dilaton Cy +ie~? is constantly equal to i, whereas
the 10d metric and the 5-form flux take the warped form:

ds3, = h(T)_1/2 dxal + h(r)Y? dsg

- (2.43)
F5 = —(1+ %) dvolzy Adh(T)™",
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where ds? is the metric of the deformed conifold, and we used the radial coordinate
7. The metric was discussed in some detail in [54-57]. To make it diagonal, we firstly
introduce the following basis:

o, = db, Y1 = cos v sin By dipy + sin ¢ dby
o9 = sin by dpy Yo = —sin sin#y dpy + cos i db, (2.44)
o3 = — cos 61 dy, Y3 = dy) — cos by dps
and
-3 -3
glzm 1 g2:02 2 5 =gyt Dy

V2 V2 (2.45)

93201+21 92 O'Q—l—EQ
V2 V2o

Then the metric is

et/3 1
ds? = TK(T){?)K—(T)3 [dr* + (¢°)?] + cosh? (2) [(6°)* + (9%)?]
+ sinh? 6) [(g")? + (¢°)°] } . (2.46)
where
(sinh(27) — 27)1/3
21/3ginh 7 '
The unwarped volume form is: dvols = (¢*/96) sinh® 7 dr A g° A g* A g° A g2 A g

For large 7 one recovers the singular conifold metric (2.28) after the redefinition
r? = (3/2%3)e*/3e*>7/3. On the other hand, at 7 = 0 the angular metric degenerates into

K(r)=

(2.47)

E4/3
a4 = 57 [(93)2 + (9" + —(95)2] , (2.48)

which is the metric of a round S3. The other two directions, corresponding to the S?2
fibered over S® and represented by ¢' and g%, shrink as 72 and combine with d7? to
give a smooth R3. The deformed conifold is in fact topologically the total space of the
cotangent bundle T*S3.

The ansatz for the 3-form field strengths is

sMo!
=7 2a[(1—F)g5/\g3/\g4—|—Fg5/\glAgZ—F’dTA(glAg3+gQAg4)]
Mo
By="Y 5 [fgl/\92+k’g‘°’/\g4}
Mo/ —k
ngngzg [dT/\(f’gl/\g2+k’93/\g4)+ng5/\(gl/\gg+g2/\g4)},

(2.49)
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where F(7), f(7) and k(7) are three unknown radial functions to be determined. Notice
that

1
(gl NG+ @A 94) =3 (sin 01 dby N dpy — sin 6y dfy A dgog) =Wy . (2.50)

N | —

As we will momentarily see, F'(0) = 0 and F'(oco0) = 1/2 while f(o0)/k(c0) = 1, so that
the fluxes reproduce the KT solution in the UV.

There are different ways of finding functions h, F, f, k that give solutions of I1B
supergravity. First of all, in searching for supersymmetric backgrounds the second-order
equations should be replaced by a system of first-order ones. In [61] the equations
followed from a superpotential for the effective radial problem [76]. Alternatively one
can directly solve the supersymmetry equations with an ansatz for the Killing spinor (as
will be done in the next chapters); or using the fact that a (2,1) primitive and imaginary
self dual 3-form flux G3 on a warped CY geometry with 5-form flux and holomorphic
axion-dilaton provides supersymmetric solutions. In any case, the resulting equations
are:

f’:(l—F)tanhzg

"2
2 e8/3 K2(7) sinh® 7 ( )
F = k—f
2
The 3-form flux solution is
sinhm — 71
F(r)= ———
(7) 2sinh 7
Tcotht — 1
- hr—1 2.52
f(r) = T (cosh 7 1) (252)
Tcotht — 1
= h 1) .
k(7) Py (coshT +1)
One verifies that *xGs = ¢G'5. Moreover
h(t) = (gsM&’)222/36*8/3 I(7) (2.53)
where we define the integral
o tha — 1
I(r) = / do T 2 (sinh 22 — 20) 7 (2.54)
- sinh” z

The integration constant in h is fixed by requiring that h goes to zero for large 7, that
corresponds to asking for the decoupling limit. Moreover I — «q + O(7?) for small T,
where ag ~ 0.72, since the integral converges, and this is a signal of the mass gap.
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2.4 Probe D7-branes on the conifold

In order to discuss the addition of flavors to the gauge theories presented in the previous
sections, a very promising way is the inclusion of non-compact D7-branes in the dual
supergravity solutions. These D7-branes fill the four Minkowski directions parallel to
the D3-branes and also wrap four directions in the conifold. It is natural to suppose that
we will obtain a supersymmetric solution if the equation specifying the embedding is
holomorphic [27] — then the submanifold corresponding to the D7-brane worldvolume
inherits a complex structure and a closed Kahler form from the original CY space, and
should therefore inherit some fraction of the original supersymmetry.

To be more specific, in [77] it was considered the class of type IIB backgrounds with
warped product metric

ds® = h%da} | + 2G pdZ™dZ" (2.55)

where h(Z) is a generic warping function of the internal coordinates Z™, and G,,; is
an Hermitian metric of SU(3)-structure in holomorphic coordinates. In addition one
puts self-dual 5-form flux Fjy, (2,1) primitive imaginary-self-dual 3-form fluxes G3 and
holomorphic axion-dilaton 7 (which includes an F; flux). An SU(3)-structure metric is
specified by a globally defined 2-form J and 3-form Q, J? o< Q A Q, as in a Calabi-Yau,
but J and €2 are no longer closed nor co-closed. Their differential and co-differential
define the so-called torsion classes. In case the background is supersymmetric and thus
possesses a Killing spinor 7, (with complex conjugate 7_), they are given by

I = —1 Uirmﬁmr anp = nT—anpn+ ) (2'56)

in holomorphic indices. The conditions that a spacetime-filling D-brane wrapping a
2n-cycle in the internal manifold and supporting a worldvolume gauge flux F preserves
such a supersymmetry, are that:

A A .
= e b dvoly, , QAT =0, m=1,2,3. (2.57)

2n \/m 2n

Here F = By + 21a’F is the gauge-invariant combination, we keep only the form of
degree 2n, and 1, denotes the interior contraction with 9/0Z™. Finally ¢ is a phase
that parametrizes the embedding of a U(1) family of N’ = 1 algebras inside the bulk
N = 2 superalgebra, and is constant in our examples.

The second equation in (2.57) can be shown [78] to be equivalent to the condition
that the 2n-cycle Y, is holomorphic and F*? = 0. In the case of a 4-cycle, the first
equation gives F A J = 0, that combined with F being of (1,1) type is equivalent to
F = — x4 F. Thus a supersymmetric D7-probe must wrap a holomorphic embedding
and support a (1,1) anti-self-dual (ASD) or primitive flux.

In the following we are going to consider two particular (class of) embeddings with
interesting properties, under the name of Ouyang embedding and Kuperstein embedding.

ezJ—]:
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In this section we will consider the addition of a small number (say one for concreteness)
of probe D7-branes to a conifold solution: the KW solution without 3-form flux, the KT
solution with 3-form flux on the singular conifold, or the KS solution with 3-form flux
on the deformed conifold. We will in particular show what is the resulting dual field
theory.

Ouyang embedding
This embedding was analyzed in [79]. Consider the holomorphic equation
21 =0, (2.58)

where z; is one of the holomorphic coordinates defining the conifold in (2.27), and
whose relation with the real angular coordinates of (2.28) is given in (C.13). Any other
equation obtained by an SU(2), x SU(2), isometry of the conifold has obviously the
same properties. Having in mind the origin of z; as the gauge invariants A;B; (2.31),
we can construct a matrix Z;; and write the equation as:

_[”A1 k3 _ AlBl A1Bz _An o
Zi = (24 22> = (A231 AQBQ) = A;B; detZ =0 (2.59)

Then an SU(2), x SU(2), rotation is Z — M, Z MT, where M, € SU(2), acts on A,

as a doublet and M, € SU(2), acts on Bj; U(1)g rotates the phase of all z;, while Z,
exchanges z3 <+ z4. The embedding equation can be written as

Tr [Z- (é 8)] ~0. (2.60)

The equation describes two branches:

21:{21223:0}:{141:0}:{02:0}

Yo={zn1=2=0}={B, =0} ={6, =0} . (2.61)

Each branch has its own worldvolume gauge field, without constraints between the two;
there is then an SU(Ny) global symmetry associated with each branch of a stack of N;
D7-branes, and we expect the existence of a global SU(N¢) x SU(Ny) flavor symmetry.
Cancellation of gauge anomalies requires that we add two quarks to each gauge group,
with opposite chiralities. This translates in supergravity in the cancellation of the RR
tadpole of Cy: the modified Bianchi identity (BI) reads

dFl = —Js QQ (262)

which states that D7-branes are magnetic sources for Fy. Here ()5 is a localized 2-form
orthogonal to the D7-brane such that

/ ag — /Oég N QQ (263)
D7
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for every 8-form ag (€2 is in the same homology class as the Poincaré dual to the
D7). For an holomorphic embedding C = {f(z;) = 0} the form can be written as
Qy = —i6%(f, f) df Adf. Thus in general for localized (and even smeared) holomorphic
D7-branes €, is a closed real (1,1)-form. Moreover it must be exact in order to solve
the BI for Fi, and this condition is precisely tadpole cancellation. It is easy to see that
the two branches give rise to opposite tadpoles so that both are required to cancel it
each other. Anyway, it is a general result that any embedding specified by a globally
defined holomorphic equation has no tadpole, because it is homologically trivial (a global
holomorphic equation defines a trivial line bundle).

As is apparent from the defining equation (2.60), Ouyang embedding breaks the
SU(2), x SU(2), isometry of the conifold to the toric subgroup U(1)?, while keeping
U(1)g preserved. Each branch has the topology of a real cone over S3  and hence it is
a C? plane with singular origin. Different modifications of the ambient conifold end up
in different modifications of the singularity. After resolutigll of the conifold singularity,
one branch becomes a smooth C? while the other one a C2 blown up at a point. The
role of the two is exchanged by the flop transition. On the other hand, after deformation
of the conifold the two branches combine in the IR into a single divisor: z3z4 = €2, V2o,
with the topology of C x C*. The recombination of the branches is responsible for the
breaking of the SU(Ny) x SU(Ny) flavor symmetry, in a similar way to the massive case.

In the singular case the two embeddings intersect along the radial direction and a
circle S?, that combine giving the topology of C with singular origin. In the resolved
case, the topology of the intersection is a smooth C, which touches the exceptional S?
at a point, while in the deformed case as in the massive case there is no intersection,
strictly speaking.

Massive flavors can be obtained with the embedding

ZHn=m. (2.64)

In this case the branes do not go down to the tip of the conifold but stop at a distance
r3/2 o« m. Moreover there is a recombination of the two branches into mz, = 2324,
with the topology of a smooth C2. The isometry group is now further broken from
SU(?)g X SU(?)T X U(l)R to U(1>2

Denote the resulting set of flavors as ¢, §, Q, Q. We give their color and flavor
representations and the corresponding quiver diagram in Figure 2.3. Each “triangle” in
the quiver diagram comes from one branch. The superpotential proposed in [79] is:

WOuyang = hquQ_‘_hQqu_{_ljqu_‘_lLLQQ . (265)

We set the two coupling constants equal because z; = 0 does not break the z3 < 24
Zo symmetry that exchanges the two gauge groups, while the question whether the two
masses are equal is more subtle. Notice that for © = 0 this superpotential correctly
breaks SU(2), x SU(2), to the toric subgroup. The superpotential for any other em-
bedding obtained from 2z; = 0 with an SU(2)? rotation is easily written, since we know
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q (N, 1) (1, Ny)
q (N, 1) (Ny, 1)
Q (1, N.) (NVy,1)
Q (1,N) (L, Ny)

Figure 2.3: Ouyang embedding on the conifold: color and flavor representations, and
quiver diagram. Circles are gauge groups while squares are non-dynamical flavor groups.

the action on the doublets A; and B;. Turning on p the R-symmetry is broken, and the
flavor symmetry is broken to the diagonal subgroup as well.

This superpotential can be motivated in the following way [79]. First of all write the
superpotential in the mass matrix form:

Wouang = (@ Q) (h/lél h;h) (g) . (2.66)

Then probe the geometry with a single D3-brane. This corresponds to give A; and B; a
VEV respecting the conifold equation. When the D3-brane touches the D7-brane, some
of the quarks that arise as 3-7 strings become massless. In other words, the determinant
of the mass matrix: det = —h%A;B; + 2, should vanish when the D3-probe is on the
D7 locus. With appropriate redefinition we exactly get the equation z; = m.

Kuperstein embedding

This embedding was analyzed in [80]. Consider the holomorphic equation, where we
give the matrix form as well:

25— 24 =0 Tr [Z-(_OZ. é)} ~0. (2.67)

The equation describes a single branch:

Y = {23 — 24 = 0} = {91 =0y, p1 = 902} . (2-68)

Thus the dual field theory has a single flavor group SU(Ny). Moreover there are no tad-
poles, as for any global holomorphic embedding. Equation (2.68) states that the angular
coordinates on the two S? of T1! must be the same; equivalent rotated embeddings have
instead equal coordinates up to a fixed SO(3) rotation.

The equation breaks the isometry group SU(2), x SU(2), to a diagonal subgroup
SU(2)p only, and the U(1)r R-symmetry is preserved. The topology of the embedding
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Q A,
SU(N.) x SU(N.) | SU(Ny)

(N, 1) Ny N @ @

(N, 1) N Z
’ 3 B, ,

Figure 2.4: Kuperstein embedding on the conifold: color and flavor representations, and
quiver diagram.

e
Q

is C?/7Z, with singular origin substituting the embedding equation into the conifold
equation we get 2125 = z2. Resolving the conifold, the embedding has the topology of

the resolved orbifold C2/Z, and it wraps the finite size S of the conifold. Deforming the

conifold, the embedding has again the topology of blown up (C/Z/Z, but this time due
to a complex deformation: 2;2y — 25 = €%; the exceptional S? in the embedding wraps a
trivial equatorial S? in the finite size S at the origin.

The fact that the embedding in the singular case, and more generally at the UV
boundary in all cases, is a real cone over the Lens space S3/Z, has important conse-
quences. S®/Z, has fundamental group Z, and admits a flat connection with a discrete
Zy Wilson line. Thus the same geometrical D7 embedding gives rise to two different
flavorings of the same field theory. This is because the Zs; Wilson line is a bound-
ary condition at r — oo, and it influences the bare Lagrangian. We can think of the
two states as two different fractional D7-branes. The same effect is found by studying
dibaryonic operators [58,81] in quiver theories from branes at conical singularities, where
dibaryons are D3-branes wrapped on 3-cycles on the 5d base of the cone. The same D3-
brane corresponds to different dibaryons according to its Zy Wilson line [82]. Our D7’s
wrap the cone over the 3-cycle. Finally, notice that under large gauge transformations
of B, our Zy Wilson line W = ¢'/4 can change sign.

Massive flavors are described by the equation

Z3—z4=Mm . (2.69)

Also in this case the D7-branes do not reach the tip of the singular conifold. The

topology of the massive embedding is that of a blown up C?/Z, (described by the
equation zyzy — Z2 = —m?/4, with z3 = Z3 + m/2). The mass term breaks U(1)r, but
not the diagonal SU(2)p. Nothing happens in the resolved conifold, whereas in the
deformed conifold there is an interesting phenomenon [80]: for |m| > |e| the embedding
does not reach the tip of the geometry, where for tip we mean the finite size S® at
minimal radius; on the other hand, for |m|/§\|e| the embedding reaches it, even if with
deformed shape. The topology is always C2/Zs.

Kuperstein embedding, as generically any irreducible holomorphic one, adds only
one pair of flavors Q, Q to the field theory. Their representation and the corresponding
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quiver diagram for the flavored KW theory is in Figure 2.4. Notice that flavors couple to
one gauge group only, and the Z, symmetry that exchanges the groups is broken. The
breaking is not geometrical but rather due to the Zy, Wilson line. Turning it on one has
flavors coupling with the other gauge factor. Using the same argument as before, the
superpotential is [38,79,80]:

WKuperstein =h Q(AlBQ - AQBI - m)Q + hl QQQQ : (270)

The quartic quark coupling is not apparent from the type IIB picture, and one needs
to go to a type ITA description to argue for it. Anyway, notice that it is compatible
with all symmetries of the setup, and thus one expects it to be present. More generally,
one expects a full tower of couplings like Q(AiBj)”Q or (QQ)": the reason why we have
not included them is because they are irrelevant couplings. On the contrary, in the field
theories we will be interested in with order one anomalous dimensions, the coupling
(QQ)2 will become important in the IR. For instance, in the cascading theory with
flavors analyzed in Chapter 4, it is produced by Seiberg duality at each step [46].

2.5 Smearing and computation of (),

In this section we will explicitly compute the SU(2), x SU(2), invariant D7-charge
distribution 2-form €25, for all cases considered in the following examples. On the singular
conifold we will impose U(1)g invariance as well, whereas this is not possible on the
deformed conifold since it is explicitly broken in the IR; however one can still impose
asymptotic invariance in the UV.

Let us start with Ouyang embedding in the singular conifold. Consider the prototype
of (2.61) in angular coordinates: each branch wraps one sphere and the 1) fiber, spans the
radial coordinate whereas is localized on the other sphere. Acting with SU(2), x SU(2),
we can generically obtain the two branches:

S = {6, =0, 0y = oV} Yo = {0 =0, o1 = 1"} . (2.71)

Given a codimension-two submanifold specified by two real equations f;(y;) = 0 with
¢ = 1,2 and y; the coordinates, the charge distribution form is

Qo = 8*(f1, f2) dfs A df = /M Qpo = /Qz Nap 2o, (2.72)

where n is the dimension of the space, a,,_5 is any pulled-back (n — 2)-form and there
is no canonical orientation. For an holomorphic embedding f(z;) = 0, one can write
Qy = —i6@(f, f)df Adf, and the orientation is canonically induced. In the present
case, the localized charge distribution is:

Qbe = 520y — 0, oo — oV dby Adps + 6201 — 07, o1 — 0\ V) dby Adpy . (2.73)
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Then we produce an homogeneous distribution of Ny D7-branes, each made of two
branches, in the continuum limit Ny — oo. The distribution is homogeneous with
respect to the SU(2)? action, where each factor acts on a sphere. It is clear that, for
each branch, we must distribute the branes homogeneously on the sphere; this amounts
to summing (actually integrating) over 9(" , gpf with ¢ = 1,2 and n = 1... Ny counts
the branes, homogeneously. We get for the first branoh.

Qpreed — I / sin 0 dp (52(92 — 00 gy — ) 4y A d@) L (274)
The result, including the second branch as well, is:
N
Ouyang: Q%meare‘i = 4—f (sin 01 dby N dpy + sin 6y dby A dg02) ) (2.75)
T

The result is still valid on the warped flavored conifold. The only input we need is
the expression of the embedding z; = 0 in angular coordinates. It turns out that the
warped flavored conifold is a complex SU(3)-structure manifold, and the expression of
complex in terms of angular coordinates is in Appendix C. Ouyang embedding takes
the same form as in (2.71), thus € is the same.

Now consider Kuperstein embedding in the singular conifold. The prototypical ex-
ample of (2.68) is: Xx = {23 — 24 = 0} = {01 = 02, v1 = p2}. Since the expression
of a generically transformed embedding in angular coordinates is quite involved, we will
fully exploit the SU(2)? symmetry of the final charge distribution: we compute Qgmeared
in two points p, say 0; = 0y = 7/2, ¢1 = @y = 0, 7, and then we extend it by SU(2)?
symmetry. The localized charge distribution is

leo(czx) = 6%(61 — b, 01 — pa) (dfy — dba) A (dipy — dip2)

) . ' (2.76)
= §°(cos O — cos by, 1 — @2) (sinby dby — sin by dby) A (dp1 — dps) .

One reaches the same conclusion using the holomorphic expression with f = 23 — 24,
but the computation is longer. Another embedding passing through the same point
is obtained with a rotation of the second S? by 7 around 6y = 7/2, ¢y = 0, which
corresponds to y — T — 02, Y2 — —ps. The new embedding is: ¥ = {21 — 220 =0} =
{6 =7 — by, o1 = —po}, and its charge distribution is

Elzo(c = 62(cos Oy + cos ba, o1 + p3) (sin by dfy + sin Oy dfy) A (dp1 + dipy) . (2.77)
The sum of the two, at the point p we are looking at, is:

ElQO(CEK) + ElZO(CE,K)]p =26%(p) (sin 01 dO, N dpy + sin Oy dby A dgpz) ) (2.78)

This expression already shows SU(2)? invariance. Any other embedding passing through
p can be obtained with a rotation of ¥ around p: Xk is invariant under SU(2)p C
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SU(2)?, it is transformed by SU(2), and the little group of p is the U(1) we are talking
about. Thus, an SU(2)?-invariant superposition of D7-branes preserves the form of
(2.78). The extension of Q5@ t0 all other points is obtained by SU(2)? action:

N
Kuperstein: Qreared — 4—f (sinf doy A dpy +sinbydfy Adips) . (2.79)
T

Again, the result is valid on the warped flavored conifold as well. Remarkably, the
homogeneous charge distributions for the two class of embeddings are the same. This
does not mean the physics is the same: we will see in Chapter 4 and 5 how much the
supergravity solutions are different in the presence of 3-form fluxes.

Eventually, consider Kuperstein embedding in the deformed conifold. Surprisingly
enough, even if the equation of the ambient space is deformed: 2,20 — 2324 = €2, the
expression of the embedding in angular coordinates is the same (see Appendix C), and
thus the charge distribution is still (2.79). Unfortunately we cannot reach the same
conclusion for Ouyang embedding.

2.6 The holographic relations

In the next chapters, we will need some formulae relating the gauge couplings and theta
angles in field theory to fields in supergravity. We already saw an example in eq. (2.40).
To obtain the holographic relations, we consider a D3-brane and a D5-brane wrapped on
the 2-cycle S2. The rule is that the low energy field theory living on a D3-brane is the
diagonal sum of the various (here two) gauge theories, while the theory on a D5-brane
is the sum of the groups activated by that fractional brane.

Looking at the DBI part of the action, in particular at the coefficient of the F' A xF
term, we get:

2w 27 1
’ == - | B, 2.80
X1+ X2 g9 X1 g% Antal /52 2 ( )

where we defined y; = 8%/ 9]2-. Looking at the WZ part of the action, in particular at
the coefficient of the F' A F' term, we get:

efMJregM:Q_”co, 0y M 2m </ CQ+CO/ Bz>. (2.81)
52 S2

s T an’aly,

From these, we can also compute the differences, as usually appear in the literature:

A ( 1 /B 1)
XX = gs€® \dr2a! [ 7 2
1

AT 1 1
oYM — yM — Cy+ —C (—/B - 5)-
! 2 TG Jor i g5 \dr2a Jo TP 2

(2.82)
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We warn the reader that these formula can be rigorously derived only in N' = 2 orbifolds
(17,18, 20,22, 70, 71]; they would need to be corrected for small values of the gauge
couplings and are only valid in the large 't Hooft coupling regime (see [44,64,73,105]),
which is the case here. Moreover, they give positive squared couplings only if by =
(1/47%’) [ B is in the range [0,1], otherwise a large gauge transformation is required
to shift by by integers and bring it into the interval.






Chapter 3

Unquenched flavors in the
Klebanov-Witten model

In this chapter we will study the addition of flavors to the conformal KW solution
without cascade, and for concreteness we will choose Ouyang embedding. The starting
point is the type IIB solution dual to an SU(N.) x SU(N.) N' =1 SCFT also known
as the Klebanov-Witten field theory/geometry [20]. One of the aims of this chapter is
to add an arbitrarily large number of flavors to each of the gauge groups. The addition
of fundamental degrees of freedom is an important step towards the understanding of
QCD-like dynamics.

A very fruitful idea is Karch and Katz’ one [27] of adding a finite number Ny of
spacetime-filling D7-branes to the N, — oo color D3-branes extended in the Minkowski
directions. When the usual decoupling limit (g; — 0, gsN. = \/47 fixed) on the D3’s is
performed, the number Ny of flavor branes is kept fixed. The D3-branes generate the ge-
ometry and the flavor branes only minimize their worldvolume action in this background
without deforming it. This is the “probe” or “quenched” limit. It is interesting to go
beyond this “non-backreacting” approximation and see what happens when one adds a
large number of flavors, of the same order as the number of colors, and the backreac-
tion effects are considered. Many phenomena that cannot be captured by the quenched
approximation, might be apparent when a string backreacted background is found.

In this chapter we will propose a type IIB dual to the field theory of Klebanov and
Witten, in the case in which a large number of flavors (Ny ~ N,) is added to each gauge
group. We will also present interesting generalizations of this to cases describing different
duals to N’ =1 SCFT’s constructed from D3-branes placed at conical singularities.

3.1 Supergravity plus branes, and the smearing

Let us briefly describe the procedure we will follow, inspired mostly by the papers
[83-85] and more recently [86-89]. In those papers (dealing with the addition of many

39
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fundamentals in the non-critical string and type IIB string respectively), flavors are
added via the introduction of Ny spacetime-filling flavor branes, whose dynamics is
given by a Dirac-Born-Infeld action which is intertwined with the usual Einstein-like
action.

We will add Ny spacetime-filling D7-branes to the KW geometry, in a way that
preserves some amount of supersymmetry. This problem was specifically studied in
[79,90] for the conformal case and in [80,91] for the cascading theory. We will use probes
along Ouyang holomorphic embedding z, = 0 [79], with worldvolume coordinates {f'y,
whose two branches in angular coordinates read:

€ = {2 2t 2% 23 v 0p, 01, 01} Ay = const 9 = const a1

€ = {2 2t 2%, 23 v 0, 0y, 00} 6, = const 1 = const . (3:1)
Since the two embeddings are noncompact, the gauge theory supported on the D7’s has
vanishing 4d effective coupling; therefore the gauge symmetry on them is seen as a flavor
symmetry by the 4d gauge theory of interest. The two sets of flavor branes introduce
an S(U(Ny) x U(Ny)) symmetry (the axial U(1)4 is anomalous), the expected flavor
symmetry with massless flavors.

We will then write an action for a system consisting of type IIB supergravity® plus
D7-branes described by their Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) action,
in Einstein frame. We will not excite the worldvolume gauge fields. These two sets of
D7-branes are localized in their two transverse directions, hence the equations of motion
would be quite complicated to solve due to the presence of source terms (Dirac delta
functions) and the small amount of isometry in the setup.

But we can take some advantage of the fact that we are adding lots of flavors.
Indeed, since we will have many (N; ~ N. — oo) flavor branes, we might think about
distributing them in a homogeneous way on their respective transverse directions. This
smearing procedure boils down to a continuous approximation in the DBI and WZ action:
specifically, a sum of eight-dimensional integrals is approximated with a unique ten-
dimensional integral. This is much like describing a large number of electrons with a
continuous charge distribution instead of a large sum of delta-functions. Thus, in the
large Ny limit the approximation must be exact.

For the particular embedding chosen, the 10d integral for the WZ action is:

N
™y /08 N Tzlﬁf / [VOI(S(zl)) +Vol(5(22))} ACs, (3.2)
Ny

where Vol(S(Qi)) = sin 6; d; A dyp; the volume form of the S?’s. A similar manipulation
can be done to the DBI action, and we will see it in Section 3.3.3. Our conventions for
the action are in Appendix A.

IThe problems with writing an action for type IIB that includes the self-duality condition are well
known. Here, we just mean a Lagrangian from which the equations of motion of type IIB supergravity
are derived. The self-duality condition is imposed on the solutions.
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From the action one derives the equations of motion (EOM’s), which are the Einstein
and dilaton equations, the EOM’s for form-fields and their Bianchi identities. The pres-
ence of the D7-branes appears of course in the Bianchi identities, as they are magnetic
sources for the RR flux F;. Moreover they have a tension, and their stress-energy tensor
appears in the Einstein and dilaton equations. After the smearing, the stress-energy
tensor is given by:

2k% 6Sq N; e 1 / N
TMN _ avor _ 1Vf 2 : €in @ = _géj) géj)aﬂ sM sN (3_3)
_ — ? a Yp o

V=9 0gunN A/ P rr 2

where «, (# are coordinate indices on the D7’s. Anyway, we will see in Section 3.3.3 a much
more efficient way of computing the stress-energy tensor for smeared configurations. In
the subsequent sections we will solve the equations of motion and will propose that the
resulting type IIB background is dual to the Klebanov-Witten field theory enriched with
two sets of Ny flavors for each gauge group.

Regarding the solution of the equations of motion, we will proceed by proposing a
deformed background ansatz of the form:

29 2f
ds® = b 'daf 5 + hl/z{drz - % Z (dO? + sin? 0; dp?) + %(dw — Z cos 0; dgpi)Q}
i=1,2 i=1,2
F5 = —(1 + *) dV01371 AN dh_l
Ay

F =
! A7

(dip — cos By dpy — cos by dpy) .

(3.4)
Thanks to the smearing procedure, all the unknown functions h, f, g and the dilaton ¢
only depend on the radial coordinate 7.

We will study in detail the dual field theory to the supergravity solutions mentioned
above, making a considerable number of matchings. The field theory turns out to have
positive g-function along the flow, exhibiting a Landau pole in the UV. In the IR we
still have an interacting superconformal fixed point. We will also generalize all these
results to the interesting case of a large class of different N' = 1 SCFT’s, deformed by
the addition of flavors. In particular we will be able to add flavors to every gauge theory
whose dual is AdS5 x My, where My is a five-dimensional Sasaki-Einstein manifold.
Finally, a possible way of handling massive flavors is undertaken.

3.1.1 The smearing procedure and its subtleties

We have explained the strategy we adopt to add flavors, so this is perhaps a good place
to discuss some interesting issues. The reader might be wondering about the “smearing
procedure” discussed above, what is its significance and effect on the dual gauge theory,
among other questions. It is clear that we smear the flavor branes just to be able to write
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U(Ng) U(Ng)

)N ud )Nf

Figure 3.1: We see on the left side the two stacks of Ny flavor-branes localized on each of
their respective S%'s (they wrap the other 5?). The flavor group is S(U(Ny) x U(Ny)).
After the smearing on the right side of the figure, this global symmetry is broken to
UMNr=t x U1)N=t x U(1)pr.

a ten-dimensional action that will produce ordinary (in contrast to partial) differential
equations without Dirac delta-function source terms.

The results we will show and the experience obtained in [85,86] show that many
properties of the flavored field theory are still well captured by the solutions obtained
following the procedure described above. In particular, the dual field theory is under
full control in the sense that the smearing procedure is dual to a modification of the
superpotential, and we will explicitly write this superpotential in (3.48). Nevertheless,
it is not clear what important phenomena on the gauge theory we are losing, if any, in
smearing.

One relevant point to discuss is related to global symmetries. Let us go back to the
weak coupling (gs/N. — 0) limit, in which we have branes living on a spacetime that is
the product of four Minkowski directions and the conifold. When all flavor branes of
the two separate stacks (3.1) are on top of each other, the gauge symmetry on the D7’s
worldvolume is given by the product S(U(Ny) x U(Ny)). When we take the decoupling
limit for the D3-branes o/ — 0, with fixed g,/N. and keeping constant the energy of
excitations on the branes, we are left with a solution of type IIB supergravity that we
propose is dual to the Klebanov-Witten field theory with N; flavors for both gauge
groups [79]. In this case the flavor symmetry is S(U(Ny) x U(Ny)). This background
would be for sure very involved, since it would depend on the coordinates (r,6;,60s)
explicitly. When we smear the Ny D7-branes, on one hand we recover the original
isometries of the background, but on the other hand we break U(N;) — U(1)N7 (see
Figure 3.1).

It is natural to compare our setup with the one of [85], where flavor D5-branes are
put into the Maldacena-Nunez solution [92,93], corresponding to D5-branes wrapped on
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an 52, and the smearing procedure is exploited to construct a backreacted solution. In
that case, the dual field theory is a version of N/ = 1 SQCD with a quartic superpotential
in the quark superfields, coupled to a complicated Kaluza-Klein (KK) sector arising as
in all backgrounds constructed from wrapped branes (see [94,95] for a study of the KK
modes). Because of the smearing, the flavor symmetry is broken from U(N;) to U(1)"7
(the symmetry is not chiral in that case) as in our setup, but for energies below the KK
scale one effectively does not see the breaking and the theory possesses the full U(Ny)
flavor symmetry.

In contrast, the backgrounds obtained by placing D-branes at conical singularities,
like [20,58-63] as well as our solutions, describe a four-dimensional field theory all along
the flow. Nevertheless, we will see in Section 3.2.6 that in the far IR the full flavor group
is recovered in our setup as well. This is because in the smeared configuration we chose,
all D7’s cross each other at the origin, and there the non-Abelian open string modes
become massless.

Another point that is worth elaborating on is whether there is a limit on the number
of D7-branes that can be added. Indeed, since a D7-brane is a codimension-two object
(like a vortex in 2 4+ 1 dimensions) its gravity solution will generate a deficit angle;
having many seven-branes, will basically “eat-up” the transverse space. This led to
the conclusion that solutions that can be globally extended cannot have more than a
maximum number of twelve D7-branes [96] (and exactly twenty-four on compact spaces).
In this paper we are adding a number Ny — oo of D7-branes, certainly larger that
the bound mentioned above. Like in the papers [25,35], we will adopt the attitude
of analyzing the behavior of our solutions close to the D7-brane locus, neglecting the
fact that a geodesically complete solution cannot be found. We will see that this gives
sensible results, and that the breakdown at some radial distance from the core of D7’s
do has a dual field theory interpretation, as a Landau pole.

We conclude stressing that one advantage of the approach proposed in [85] is that the
flavor degrees of freedom explicitly appear in the DBI action that allows the introduction
of U(Ny) gauge fields in the bulk that are dual to the global symmetry in the dual field
theory, while it is difficult to see how they will appear in a type IIB solution that only
includes RR fluxes. Indeed, we are just following the idea of [27] for a large number of
flavor branes.

3.2 Flavored KW field theory and geometry

Our starting point, i.e. the Klebanov-Witten (KW) field theory, was extensively pre-
sented in Section 2.3.1. This theory can be flavored in different ways, and in Section 2.4
we presented two particularly interesting possibilities. In this chapter we use Ouyang
embedding: Ny D7-branes along it add two pairs of chiral superfields ¢, ¢, @, Q, trans-
forming under an SU(Ny) x SU(Ny) x U(1) g flavor group. We refer to Section 2.4 for
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SU(N,) x SU(N,) | SU(N;s) x SU(N;) | SU©2)? | U()g | UMN)s | UQ)p
A (N, N.) (1,1) (2,1) | 1/2 1
B (N, N.) (1,1) (1,2) | 1/2 -1
g (N, 1) (1,7;) (1L1) | 3/4 | 1
q (N, 1) (Ng, 1) (1,1) | 3/4 -1 —-1
Q (1) (N7, 1) (1,1) | 3/4 | 0 1
Q (1,N,) (1, Ny) (1,1) | 3/4 0 ~1

Table 3.1: Field content and symmetries of the KW field theory with massless flavors.

details. The gauge and flavor invariant superpotential proposed in [79] is
W = Wgxw + Wf , (3'5)

where

Wigw = A Tr (A;ByA; By) €7 M (3.6)

is the SU(2), x SU(2), x U(1)g invariant Klebanov-Witten superpotential for the bi-
fundamental fields. The coupling between bifundamentals and quarks is

Wi =hy ¢“A1Qq + ho Q"Biq, - (3.7)

This coupling arises from the D7 embedding z; = 0. The explicit indices are flavor
indices. This superpotential, as well as the holomorphic embedding z; = 0, explicitly
breaks the SU(2), x SU(2), global symmetry to its maximal torus (this global symmetry
will be recovered after the smearing). The field content and the relevant gauge and flavor
symmetries of the theory are summarized in Table 3.1, while the quiver diagram is in
Figure 2.3.

The U(1)r R-symmetry is preserved at the classical level by the inclusion of D7-
branes embedded in such a way to describe massless flavors, as can be seen from the fact
that the equation z; = 0 is invariant under the rotation z; — €*®z; and the D7 wrap the
R-symmetry circle. Nevertheless the U(1)g turns out to be anomalous after the addition
of flavors, due to the nontrivial Cjy gauge potential sourced by the D7’s. The baryonic
symmetry U(1)p: inside the flavor group is anomaly free, being vector-like.

As was noted in [79], the theory including D7-brane probes is also invariant under a
rescaling z; — (3z;, therefore the field theory is scale invariant in the probe approxima-
tion. In this limit the scaling dimension of the bifundamental fields is 3/4 and the one
of the flavor fields is 9/8, as required by power counting in the superpotential. Then the
[B-functions for the holomorphic gauge couplings in the Wilsonian scheme are

1672 3 1 3Ny
— B, =—-N = A 3.8
f /8)\1 (47T)2 QNC (A ( )
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with \; = g?N, the 't Hooft couplings. In the strict planar 't Hooft limit (zero order
in Ny/N,), the field theory has a fixed point specified by the afore-mentioned choice of
scaling dimensions, because the (-functions of the superpotential couplings and the 't
Hooft couplings are zero. As soon as N;/N, corrections are taken into account, the field
theory has no fixed points for nontrivial values of all couplings. Rather it displays a
“near-conformal point” with vanishing g-functions for the superpotential couplings, but
non-vanishing [-functions for the ’t Hooft couplings. In a N;/N, expansion, formula
(3.8) holds at order Ny/N. if the anomalous dimensions of the bifundamental fields A;
and B; do not get corrections at this order. A priori it is difficult to expect such a
behavior from string theory, since the energy-momentum tensor of the flavor branes will
induce backreaction effects on the geometry at linear order in N;/N,, differently from
the fluxes, which will backreact at order (Ny/N,)2.

Moreover, since we are adding flavors to a conformal theory, we can naively expect a
Landau pole to appear in the UV. Conversely, we expect the theory to be slightly away
from conformality in the far IR.

3.2.1 The setup and the BPS equations

The starting point to add backreacting branes to a given background is the identifi-
cation of the supersymmetric embeddings in that background, that is the analysis of
probe branes. In [90], by imposing k-symmetry on the brane worldvolume, the following
supersymmetric embeddings for D7-branes on the Klebanov-Witten background were

found:

£ = {a% 2t 2 2% 0, 01, 01} Ay = const. 9 = const. 29

€ = {2 2t 2%, 23, r,0p, 0y, 00} 0, = const. 1 = const. (39)
They are precisely the two branches of the supersymmetric embedding 2; = 0 first
proposed in [79]. Each branch realizes a U(Ny) symmetry group, giving the total fla-
vor symmetry group S(U(Ny) x U(Ny)) of massless flavors (a diagonal axial U(1), is
anomalous in field theory, which is dual to the corresponding gauge field getting massive
in string theory through Green-Schwarz mechanism). We choose these embeddings be-
cause of the following properties: they reach the tip of the cone and intersect the color
D3-branes; wrap the U(1)g circle corresponding to rotations ¢ — ¥ + «; are invariant
under radial rescalings. So they realize in field theory massless flavors, without breaking
explicitly the U(1)g and the conformal symmetry. Actually, they are both broken by
quantum effects. Moreover the configuration does not break the Z, symmetry of the
conifold solution which corresponds to exchanging the two gauge groups.

The fact that we must include both branches is due to D7-charge tadpole cancellation,
which is dual to the absence of gauge anomalies in field theory. An example of a (non-
singular) 2-submanifold in the conifold geometry is Dy = {61 = 05, 1 = —p2, 1) = const,
r = const}. The charge distributions of the two branches are

wh = ZNf 5@ (02, p2) dfy N\ dps w? = ZNf 5(2)(91, @1) db A depr, (3.10)
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where the sum is over the various D7-branes, possibly localized at different points.
Integrating the two D7-charge distributions on D, we get:?

/w“):—Nf /w@):Nf. (3.11)
DQ DQ

Thus, whilst the two branches have separately non-vanishing tadpole, putting an equal
number of them on the two sides the total D7-charge cancels. This remains valid for all
(non-singular) 2-submanifolds.

The embedding can be deformed into a single D7 that only reaches a minimum radius,
and realizes a merging of the two branches. This corresponds to giving mass to flavors
and explicitly breaking the flavor symmetry to SU(N;) x U(1)p and the R-symmetry
completely. These embeddings were also found in [90].

Each embedding preserves the same four supercharges, irrespectively of where the
branes are located on the two 2-spheres parameterized by (61, ¢1) and (6, p2). Thus we
can smear the distribution and still preserve the same amount of supersymmetry. The
2-form charge distribution is readily obtained to be the same as the volume forms on the
two 2-spheres in the geometry, and through the modified Bianchi identity it sources the
flux F}. We expect to obtain a solution where all functions have only radial dependence.
Moreover we were careful in never breaking the Zs symmetry that exchanges the two
spheres. The natural ansatz is:

ds* = h(r)_l/Qdaci3 + h(r)l/Q{dr2 +

2g(r 2f(r
i 3 (d6? +sin® 6, d?) + - v (v — 3~ cost, d%)Z}
i=1,2 =12 (3.12)
¢ = o(r)
F5 = —(1 + >|<) dVOl371 N dh(?”)_l
F = —%(dd} — cos By dp; — cos by dgog) = 3Ny h(r)’l/‘le’f(r) ev |
T 4

which automatically solves the BI for Fi:
Ny . :
dFl = —4— (Sll’l 91 d«91 A ngl -+ sin 92 d92 VAN dQOQ) . (313)
s

The unknown functions are h(r), g(r), f(r) and ¢(r). The angular coordinates 6; are
defined in [0, 7] while the others have fundamental domain ¢; € [0,27) and ¢ € [0, 47)

2Qbviously the overall sign depends on the orientation of Ds.
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with appropriate patching rules®. The vielbein is:

et = b7V dat e" = h'ar
1
0; __ 1/4 . 1
et = % h eg del eQDi — % h1/4€g Sin de(pl (314)

1
o — 5 h'/4el (dyp — cos Oy dgy — cos by dp,) .

With this ansatz the field equation al(eQQ5 « F1) = 0 is automatically satisfied, as well as
the self-duality condition F5 = *F5. The Bianchi identity dF5 = 0 gives:

—We't = 277N, . (3.15)

The normalization comes from Dirac quantization of the D3-brane charge:
/ Fy = 2x*13 N, = (47%)°N,. , (3.16)
71,1

using that Vol(T!) = 167 /27. In the following we will set o/ =1 and g, = 1.

We impose that the ansatz preserves the same four supersymmetries as the probe
D7-branes on the Klebanov-Witten solution. To this purpose, let us write the supersym-
metry variations of the dilatino and gravitino in type IIB supergravity. For a background
of the type we are analyzing, these variations are:

1
66/\:§FM<8M¢—1'6¢F§41)>6
. . (3.17)
5. by =V & p L g [PPQRST 1
e Wy = M€+7/_ M€+— PQRST M €,

4 16 - 5!

where we have adopted the formalism in which € is a complex Weyl spinor of fixed ten-
dimensional chirality (see Appendix D). It turns out (see Section 3.3.2) that the Killing
spinors € (which solve the equations d. A = 0.1y = 0) in the frame basis (3.14) can be
written as:

€ =h75 2 (3.18)

3 The correct patching rules on T! are:

©1 Y1+ 27 V2 o + 27
=Y +4r, = , = .
v (w) (w+2w> (w) <w+2w
In fact the space is a U(1) fibration over S? x S?. The first identification is just the one of the fiber.
On the base 2-spheres we must identify the angular variables according to ¢; = ¢; + 2w, but this
could be accompanied by a shift in the fiber. To understand it, draw the very short (in proper length)
path around the point 6; = 0: 0; < 1, p1 = ¢ =t with t € [0,27] a parameter along the path. To

make it closed, a rotation in ¢; must be accompanied by an half-rotation in v. This gives the second
identification.
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where €, is a constant spinor which satisfies
F0123 €y — iEo Frw €y — F91501 €y — FQQ@Q € — iﬁo . (319)

Moreover, from (3.17) we get the following system of first-order BPS differential equa-
tions:

( g/ — f29
= eff(g _ 262f*29) — % e?=f
8
(3.20)
o = 3Ny ot
4
(W' = —27aN, e /49

Notice that taking Ny = 0 in the BPS system (3.20) we simply get equations for
a deformation of the Klebanov-Witten solution without any addition of flavor branes.
Solving the system we find both the original KW background and the solution for D3-
branes at a conifold singularity, as well as other solutions which correspond on the gauge
theory side to giving VEV to dimension 6 operators. These solutions were considered
in [101,102], and follow from our system.

In order to be sure that the BPS equations (3.20) capture the correct dynamics, we
have to check that the Einstein, Maxwell and dilaton equations are solved. This can be
done even before finding actual solutions of the BPS system. We checked that the first-
order system (3.20) (and the Bianchi identity) in fact implies the second-order Einstein,
Maxwell and dilaton differential equations. An analytic general proof will be given in
Section 3.3.3. In coordinate basis the stress-energy tensor (3.3) is computed to be:

N
SN 4 g Topio; = —ﬁed’ [4e2f_29 cos® ; + 3sin? 0,
T,ul/ = ——27T h™'e 77#” Nf o422
SN, s Torpo = o cos 0 cos 0,
— _ —2g
1., = 5 € Ny yoass (3.21)
T, = —€ 9 cos b;
Nf é Py 67T
T9i9i = _ge Nf 2f
Tww = —g@qﬂr 9

It is correctly linear in Ny.

One should also check that the Dirac-Born-Infeld equations for the D7-brane distri-
bution are satisfied as well. We proceed in this way: we show that a probe D7-brane
is K-symmetric (supersymmetric, and thus its Dirac-Born-Infeld equations are solved as
well) on the flavored background. Then, because of the no-force condition, the statement
is true for each of the N; branes in the distribution.

To check supersymmetry, we use the following fact [77]: a spacetime-filling D7-
probe, in a background which is a warped product of 4d Minkowski space and an
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SU (3)-structure manifold with suitable 5-form flux and (2,1) primitive imaginary-self-
dual 3-form flux, is supersymmetric whenever the embedding is holomorphic and the
worldvolume gauge flux is (1,1) anti-self-dual.

In our case, there are no 3-form fluxes nor worldvolume gauge flux, thus we only have
to check that the embedding is holomorphic in the flavored background. In (C.13) we find
the holomorphic functions z; on the flavored conifold, confirming that the embedding
z1 = 0 and its transformed relatives are holomorphic.

3.2.2 Addition of RR flat potentials

We can generalize our set of solutions by switching on non-vanishing VEV’s for the bulk
gauge potentials C5 and By. We show that this can be done without modifying the
previous set of equations, and the two parameters are present for every solution. The
condition is that the gauge potentials are flat, that is with vanishing field-strength. They
thus correspond to (higher rank) Wilson lines for the corresponding bundles.

Let us switch on the following fields:

CQ = CWo B2 == bu)g s (322)
where the 2-form w, wraps the non-trivial conifold 2-cycle Ds:
Dy = {6, = 05, o1 = —p9, 1) = const, r = const} (3.23)

W9

(sm 01 db, A dpy — sin By dfy N d@g) , / wy = 471 . (3.24)
Do

l\DIH

We see that F3 = 0 and Hz = 0. So the supersymmetry variations are not modified,
neither are the gauge invariant field-strength definitions. In particular the BPS system
(3.20) does not change.

Consider the effects on the action (the argument is valid both for localized and
smeared branes). It can be written as a bulk term plus the D7-brane terms:

S = Sbulk_7'7/d8§€¢\/ det g+e ¢/2.'F —|-7'7/ [Z C Ne :| , (325)

with F = By + 21a/ F} is the D7 gauge invariant field strength, and hatted quantities
are pulled back. To get solutions of the k-symmetry conditions and of the equations of
motion, we must take F' such that

F=DBy+21d/ F=0. (3.26)

Notice that there is a source-free solution for Fy because B, is flat: dBy = d/B\Q = 0.
With this choice k-symmetry is preserved as before, since it depends on the combination
F. The dilaton equation is fulfilled. The Bianchi identities and the bulk field strength
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equations of motion are not modified, since the WZ term only sources Cs. The stress-
energy tensor is not modified, so the Einstein equation is fulfilled. The last steps are
the equations for By and A; (the gauge potential on the D7). For this notice that they
can be written as:

025 _ onar qOrane _
3F; a (3.27)
55 _ 5Sbulk + 5Sbrane -0.

0Bs 0B OF

The first is solved by F = 0 since in the equation all terms are linear or higher order in
JF. This is because the brane action does not contain terms linear in F, provided that
Cs = 0 (which in turn is possible only if Cy is flat). The second equation then reduces
to 8Spur /0By = 0, which amounts to d(e~? * Hs) = 0 and is solved.

As we will see in Section 3.2.5, being able to switch on arbitrary constant values ¢ and
b for the (flat) gauge potentials, we can freely tune the two gauge couplings (actually the
two renormalization invariant scales A’s) and the two theta angles [20,22]. This turns
out to break the Z, symmetry that exchanges the two gauge groups, even if the breaking
is mild and only affects C5 and Bs, while the metric and all field strengths continue to
have that symmetry, and so this does not modify the behavior of the gauge theory.

3.2.3 The solution
The BPS system (3.20) can be solved through the change of radial variable

;d _d

— — - = 2
e i = e dr=dp. (3.28)

We get the new system:
( g — 62f—29

f =3 — 22729 _ —SNf e?

8w
3.29)
. 3N (
b="te

' 47

\ h=—27nN,e %

where derivatives are taken with respect to p.
The dilaton equation in (3.29) can be solved first. By absorbing an integration
constant in a shift of the radial coordinate p, we get

A7 1
= = = <0. 3.30
e 3N, p (3.30)

The solution is thus defined only up to a maximal radius pyax = 0 where the dilaton
diverges. As we will see, it corresponds to a Landau pole in the ultraviolet of the gauge
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theory. On the contrary for p — —oo, which corresponds in the gauge theory to the
infrared (IR), the string coupling goes to zero. Note however that the solution could
stop at a finite negative pyn due to integration constants. Then define

1
uw=2f—2g = u:6(1—e“)+;, (3.31)

whose solution is 68
e’ = . 3.32
(1 —6p)eb? + ¢ (3:32)
The integration constant c¢; cannot be reabsorbed, and according to its value the
solution dramatically changes in the IR. A systematic analysis of the various behaviors
is presented in Section 3.2.4. The value of ¢; determines whether there is a (negative)
minimum value for the radial coordinate p. The requirement that the function e* be

positive defines three cases:

-1<¢ <0 — prin < p <0
c1 =0 — —o0<p<0
cp >0 — —oc0<p<0.
In the case —1 < ¢; < 0, the minimum value pyn is given by an implicit equation. It
can be useful to plot this value as a function of ¢;:

OM N
G

0= (1 — 6PMIN) €6pMIN +c1

As it is clear from the graph, as ¢; — —17 the range of the solution in p between the IR
and the UV Landau pole shrinks to zero size, while in the limit ¢; — 0~ we no longer
have a minimum radius.

The functions g(p) and f(p) can be analytically integrated, while the warp factor
h(p) and the original radial coordinate r(p) cannot (in the particular case ¢; = 0 we
found an explicit expression for the warp factor). By absorbing an irrelevant integration
constant into a rescaling of r and z%%?3, we get:

1/6 P
ed = [(1 — 6p)e® + cl] h(p) = —277TNC/ e + ¢
0

~1/3 p
ef =/—6pe* [(1 —6p)e” + cl] r(p) = / el

(3.33)
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This solution is a very important result of this chapter. We accomplished in finding a
supergravity solution describing a (large) number N of backreacting D7-branes, smeared
on the background produced by D3-branes at the tip of the conifold.

The constants ¢; and ¢y correspond in field theory to switching on VEV’s for relevant
operators, as we will see in Section 3.2.5. Moreover, in the new radial coordinate p, the
metric reads

3 1 2
ds> =h I/dei3 + h1/2{62f [dp2 + §(d¢ - Z; cos 0; dg;) } -
29

+ % Z (d@? + sin? 6, d(p?)} . (3.34)

i=1,2

3.2.4 Analysis of the solution: asymptotics and singularities

We perform here a systematic analysis of the possible solutions of the BPS system, and
study the asymptotics in the IR and in the UV. In this section we will make use of the
following formula for the Ricci scalar curvature, which can be obtained for solutions of
the BPS system:

R= 22N pngaever gy g 305 a0arve| (3.35)
AT AT

The solution with ¢; =0

Although the warp factor h(p) cannot be analytically integrated in general, it is possible
for ¢; = 0. Introducing the incomplete gamma function defined as:

[la,z] = /OO t* e tdt — e e (é)l_a {1 + (9<é>} , (3.36)

we can integrate

9, 3 1/3 [1 2 } 27T N, —9/3 —4p
T 4y o~ — 3.37
h(p) 9 (262) NC 3, 3 4() Co 1 ( 6/)) e ( )

for p — —oo. The warp factor diverges for p — —oo, and the integration constant cy
disappears in the IR. Moreover, if we integrate the proper line element ds from a finite
point to p = —o0o, we see that the throat has infinite invariant length.

The function r(p) cannot be given as an analytic integral, but using the asymptotic
behavior of e/ for p — —oo we can approximately integrate it:

(o) = 67°((—p)"%e + ér[%,_p}) (3.38)
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in the IR, where an integration constant has been fixed to zero requiring r — 0 as
p — —oo. We approximate further on:

r(p) ~ (—6p)/%" (3.39)

Substituting r in the asymptotic behavior of the functions appearing in the metric, we
find that for r — 0, up to logarithmic corrections of relative order 1/|log(r)|,

27t N, 1
4 4

eI ~ )~y h(r) ~ (3.40)

Therefore the geometry approaches AdSs x Th! with logarithmic corrections in the IR
limit p — —o0.

UV limit

The solutions with backreacting flavors have a Landau pole in the UV (p — 07), since
the dilaton diverges, see (3.30). The asymptotic behaviors of the functions appearing in
the metric are:

2

6p 3
e +O(p )}

e~ —6p (14 ¢,)" 3 [1 +6p+ O(,oQ)} (3.41)

o+ 0]

e~ (14 ¢)? [1 —

h ~ cy + 271N, (1 +cl)_2/3[— P i,
Note that we have used (3.33) for the warp factor. One concludes that h(p) is monoton-
ically decreasing with p; if it is positive at some radius, then it is positive down to the
IR. If the integration constant ¢, is larger than zero, h is always positive and approaches
¢y at the Landau pole (UV). If ¢o = 0, then h goes to zero at the pole. If ¢y is negative,
then the warp factor vanishes at pyax < 0 before reaching the pole (and the curvature
diverges there). The physically relevant solutions seem to have ¢ > 0.

The curvature invariants, evaluated in string frame, diverge when p — 07, indicating
that the supergravity description cannot be trusted in the UV. For instance the Ricci
scalar R ~ (—p)~%/? if ¢y # 0, whereas R ~ (—p)~3 if ¢; = 0. If ¢; < 0, then the Ricci
scalar R ~ (pyax — p) "2 when p — pyax-

IR limit

The IR (p — —o0) limit of the geometry of the flavored solutions is independent of the
number of flavors, if we neglect logarithmic corrections to the leading term. Indeed, at
the leading order, flavors do not backreact on the theory in the IR (see the discussion
below eq. (3.8)). The counterpart in our supergravity plus branes solution is evident
when we look at the BPS system (3.20): when p — —oo the e? term disappears from
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the system, together with all the backreaction effects of the D7-branes (see Section 3.2.6
for a detailed analysis of that), therefore the system reduces to the unflavored one.

c; = 0. The asymptotics of the functions appearing in the metric in the IR limit

p — —00 are:

277N,
4

ed ~ ef ~ (—6p)t/0er h ~ (—=6p) Y3 e (3.42)

Formula (3.35) implies that the scalar curvature in string frame vanishes in the IR
limit: R®) ~ (—p)~%/2 — 0. An analogous but lengthier formula for the square of
the Ricci tensor gives

160 N;

S
RO = 150

(—p)+0(1) — oo, (3.43)

thus the supergravity description presents a singularity and some care is needed
when computing observables from it. The same quantities in Einstein frame have
limiting behavior R¥) ~ (—p)~'/2 — 0 and RE\?])VR(E) MN 5 640/ (277 N,.).

c1 > 0. The asymptotics in the limit p — —oo are:

ed ~ ci/ﬁ ef ~ 61_1/3(—6p)1/263p h ~ 277N, 01_2/3(—p) :
(3.44)
Although the radial coordinate ranges down to —oo, the throat has finite invariant

length. The Ricci scalar in string frame is R ~ (—p) =3¢ — oo.

c1 < 0. In this case the IR limit is p — pyin. The asymptotics in this limit are:
1/6
ed ~ ( - 6pMIN66pMIN> / (6p — 6pMIN)1/6

ef ~ ( _ 6pMIN66pMIN>1/6<6p _ GPMIN)_1/3 (345)
h ~ const > 0.

The throat has finite invariant length. The Ricci scalar is R® ~ (p— pyn) ™2 —
0.

Using the criterion in [97], that proposes the IR singularity to be physically accept-
able if gy is bounded near the IR problematic point, we observe that these singular
geometries are all acceptable. Gauge theory physics can be read from these supergravity
backgrounds. We call them “good singularities”.

3.2.5 Detailed study of the dual field theory

In this section we are going to undertake a detailed analysis of the dual gauge theory
features, reproduced by the supergravity solution. The first issue we want to address is
what is the effect of the smearing on the gauge theory dual.
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As we wrote above, the addition to the supergravity solution of one stack of localized
noncompact D7-branes at z; = 0 puts in the field theory flavors coupled through a
superpotential term

W = ATr (A;ByA;By) €7¢ + hy §°A1Qu + ha QB (3.46)

where we explicitly wrote the flavor indices a. For this particular embedding the two
branches are localized at 6§, = 0 and 6; = 0 respectively. One can exhibit a lot of features
in common with the supergravity plus D7-branes solution:

e the theory has SU(Ny) x SU(Ny) x U(1)p flavor symmetry, each group corre-
sponding to one branch of D7’s;

e putting only one branch there are gauge anomalies in QFT and a tadpole in
SUGRA, while for two branches they cancel,

e adding a mass term for the fundamentals the flavor symmetry is broken to the
diagonal SU(Ny) x U(1)p/, while in SUGRA there are embeddings moved away
from the origin for which the two branches merge.

The SU(2), x SU(2), part of the isometry group of the background without D7’s
is broken by the presence of localized branes. It amounts to separate rotations of the
two S%’s in the geometry and shifts the location of the branches. Its action is realized
through the superpotential, and exploiting its action we can obtain the superpotential
for D7-branes localized at other places. The two bifundamental doublets A; and B;
transform as spinors of the respective SU(2). So the flavor superpotential term for a
configuration in which the two branches are located at x and y on the two spheres can
be obtained by identifying two rotations that bring the north poles to x and y. There is
of course a U(1) x U(1) ambiguity in that. Then we have to act with the corresponding
SU(2) matrices U, and U, on the vectors (A, A2) and (B, By) (which transform in the
(2,1) and (1,2) representations) respectively, and select the first vector component. In
summary we can write:

Wi = hiq" [Ux (ﬁ;)] le + hy Q¥ |:Uy (i;)} v (3.47)

where the notation ¢*, ), stands for the flavors coming from a first D7 branch being at
x, and the same for a second D7 branch at y.

To understand the fate of the two phase ambiguities in the couplings h; and hs, we
appeal to symmetries. The U(1) action which gives (¢, ¢, @, Q) charges (1, —1,—1,1) is
a symmetry explicitly broken by the flavor superpotential. The freedom of redefining
the flavor fields acting with this U(1) can be exploited to reduce to the case in which
the phase of the two holomorphic couplings is the same. The U(1) action with charges
(1,1,1,1) is anomalous with equal anomalies for both the gauge groups, and it can be
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used to absorb the phase ambiguity into a shift of the sum of Yang-Mills theta angles
oYM 4 XM (while the difference holds steady). This is what happens for D7-branes on
flat spacetime. The ambiguity we mentioned amounts to rotations of the transverse R?
space, whose only effect is a shift of Cy. As we show in the next section, the value of Cj
is our way of measuring the sum of theta angles through probe D(—1)-branes. Notice
that if we put in our setup many separate stacks of D7’s, all their superpotential U(1)
ambiguities can be reabsorbed in a single shift of Cj.

From a physical point of view, the smearing corresponds to put the D7-branes at
different points on the two spheres, distributing each branch on one of the 2-spheres. This
is done homogeneously so that there is one D7 at every point of S?. The non-anomalous
flavor symmetry is broken from U(1)p x SU(N¢) x SU(Ny) (localized configuration) to

U(l)p x ULy " x U(1)}" ™" (smeared configuration).*

Let us introduce a pair of flavor indices (z,%) that naturally live on S? x S? and

specify the D7. The superpotential for the whole system of smeared D7-branes is just
the sum (actually an integral) over the indices (z,y) of the previous contributions:

g A ~ B
W = ANTe(A;BoA;By) €9 + Iy / &2z [Ux ! ] Q. + ho / 2y QY [Uy ! ] g .
S2 Ag 1 S2 BQ 1
(3.48)
Again, all the U(1) ambiguities have been reabsorbed in field redefinitions and a global

shift of 67 + 03 M.

In this expression the SU(2), x SU(2), symmetry is manifest: rotations of the bulk
fields A;, B; leave the superpotential invariant because they can be reabsorbed in ro-
tations of the dummy indices (z,y). In fact, the action of SU(2), x SU(2), on the
flavors is a subgroup of the broken S(U(Ny) x U(Ny)) flavor symmetry. In the smeared
configuration, there is a D7-brane at each point of the spheres and the group SU(2)?
rotates all the D7’s in a rigid way, moving each D7 where another was. So it is a flavor
transformation contained in U(Ny)?. By combining this action with a rotation of A; and
Bj, we get precisely the claimed symmetry.

Even if written in an involved fashion, the superpotential (3.48) does not spoil the
features of the gauge theory. In particular, the addition of a flavor mass term still would
give rise to the symmetry breaking pattern

Nj—1 Ni—1 Ni—1

U(l)B/ X U(l)v X U(l)A — U(l)B/ X U(l)v

4The axial U(1) which gives charges (1,1, —1,—1) to one set of fields (¢, ", Qz, Q%) coming from a
single D7, is an anomalous symmetry. For every D7-brane we consider, the anomaly amounts to a shift
of the same two theta angles of the gauge theory. So we can combine this U(1) with an axial rotation
of all the flavor fields, and get an anomaly free symmetry. In total, from Ny D7’s we can find Ny — 1
such anomaly free axial U(1) symmetries.
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Holomorphic gauge couplings and g-functions

In order to extract information on the gauge theory from the supergravity solution, we
need the holographic relations between gauge couplings, theta angles and supergravity
fields. These formulee can be properly derived in the N = 2 C?/Z, orbifold. Anyway,
the latter theory is a parent of the KW theory, as it can flow to it giving mass to the
adjoint fields [20]. As a result, it turns out that the formulae give reliable results even
in N/ = 1 instances, see [61] or [48,71] for more intricate examples. The holographic
relations are:

4 Vo =
X1 T X2 gc?

4dm 1 1
—x2=—|—— [ Bs— = (modl
XX gse? [4772a’ /52 29 (mo )}

- X (3.49)
0NM=—Cy+ / Cy (mod 27)

1
oM — o / C 42
2 s 0 27705/93 S 2 (mo 7T)7

where we define x; = 87%/g7. Notice that, for simplicity, in the relations for 6" angles
we set [ By = 2n%a/; compare with the general relations in Section 2.6.

The first ambiguity is the 27 periodicity of (1/47%a’) [ By which comes from the
quantization condition on Hjz. A shift of 27 amounts to move to a dual description
of the gauge theory. The ambiguities of RR fields are more subtle and correspond to
the two kinds of fractional D(—1)-branes appearing in the theory. The angles 67
and 0™ come from the imaginary parts of the action of the two kinds of fractional
Euclidean D(—1) branes. Both of them are defined modulo 27 in the quantum field
theory: (Y™, ¥M) = (OYM + 27, O¥M) = (OYM 9YM 4 27). On the string theory
side the periodicities exactly match: an Euclidean fractional D(—1)-brane enters the
functional integral with a term: exp{—8w?/g7 4+ 0} } 5 Hence the imaginary part in
the exponent is defined modulo 27 in the quantum string theory. The periodicities on
the field theory side translates on the string side to the slanted torus:

1 1 1
(mC, —/ Cy)=wCo+m, — | Co+rm)=@Co+m, — [ Co—m). (3.50)
2w J g2 2w J g2 21 J g2

The lattice is shown in Figure 3.2. The vectors of the unit cell drawn in the figure are
the ones defined by fractional branes.

Let us now make contact with our supergravity solution. In the smeared solution,
since dF; # 0 at every point, it is not possible to define a scalar potential Cy such that
Fy = dCy. We by-pass this problem by restricting our attention to the non-compact

5We have written the complexified gauge coupling instead of the supergravity fields for the sake of
brevity: the use of the dictionary is understood.
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i / B ale\I _ 9%/4\1
o Js2 2T 2

oYM o gYM
* 7Cy = JQF 2

Figure 3.2: Unit cell of the lattice of Yang-Mills 6 angles and RR fields integrals.

4-cycle defined by {p,v,0; = 05,01 = —¢p2} [98] (note that it wraps the R-symmetry
direction 1), so that we can pull-back on it and write

. N ¢ N
R =~ Lay = o'l = =2 (w0 ). (3.51)

Now we can identify:

2

== o = vy, (352
where we suppose for simplicity the two gauge couplings to be equal (¢; = g2 = g). The
generalization to an arbitrary constant B, is straightforward since the difference of the
inverse squared couplings does not run.

Let us first compute the S-function of the gauge couplings. The identifications (3.49)
allow us to define a “radial” g-function that we can directly compute from supergravity
[99]:

gz 08T _ 0w _ 3N
X T 0p g> Oped 4
(Compare this result with eq. (3.8)). The physical g-function defined in the field theory
is of course: (3, = (0/0logu)x. In order to get the precise field theory [-function
from the supergravity computation one needs an energy-radius relation p(u). Anyway,
even without knowing it exactly, there is some physical information that we can extract
from the radial S-function; for instance, being the energy-radius relation monotonically
increasing, the signs of the two beta functions are both negative.

In our case, using the conformal relation » = p/A, one gets matching between (3.8)
and (3.53).

(3.53)
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R-symmetry anomaly and vacua

Now we move to the computation of the U(1)g anomaly. On the field theory side
we follow the convention that the R-charge of the superspace Grassmann coordinates
is R[¥] = 1. This fixes the R-charge of the gauginos R[A] = 1. Let us consider an
infinitesimal R-symmetry transformation and calculate the U(1)g — SU(N,) — SU(N,)
triangle anomaly. The anomaly coefficient in front of the instanton density of a gauge
group is ), R;T[RY], where the sum runs over the fermions f, R; is the R-charge of
the fermion and T[R)] is the Dynkin index of the gauge group representation R) the
fermion belongs to, normalized as T[RU*"4)] = 1 and T[R(%)] = 2N.. Consequently
the anomaly relation in our theory is the following:

Nf 1 a Tpv a Ypv
—5 353 (Eg, FL +Go,GhY) (3.54)

9, =

or in other words, under a U(1)y transformation of parameter ¢, for both gauge groups
the theta angles transform as

M grM %5 | (3.55)

On the string/gravity side a U(1)g transformation of parameter ¢ is realized by the

shift ¢ — 1 4 2e. This can be derived from the transformation of the complex variables

(2.27), see also (C.13), which under a U(1)y rotation get z; — e*z;, or directly by the

decomposition of the 10d spinor € into 4d and 6d factors and the identification of the 4d
supercharge with the 4d spinor. By means of the dictionary (3.52) we obtain:

N
oyM gy M 9{M+9§M—27fa, (3.56)

in perfect agreement with (3.55).

The U(1)g anomaly is responsible for the breaking of the symmetry group, but a
discrete subgroup survives. Disjoint physically equivalent vacua, not connected by other
continuous symmetries, can be distinguished thanks to the formation of domain walls
between them, whose tension could also be measured. We want to read the discrete
symmetry subgroup of U(1)g and the number of vacua both from field theory and
supergravity. In field theory the U(1)g action has an extended periodicity (range of
inequivalent parameters) € € [0,87) instead of 27, because the minimal charge is 1/4.
However when ¢ is a multiple of 27 the transformation is not an R-symmetry, since
it commutes with supersymmetry. The global symmetry group contains the baryonic
symmetry U(1)p as well, whose parameter we call « € [0,27), and the two actions
U(1)r and U(1)p satisfy the following relation: Ug(47) = Up: (). Therefore the group
manifold U(1)gr x U(1)p is parameterized by ¢ € [0,47), a € [0,27) (this param-
eterization realizes a nontrivial torus) and U(1)p is a true symmetry of the theory.
The theta angle shift (3.55) allows us to conclude that the U(1)g anomaly breaks the



60 Unquenched flavors in the Klebanov-Witten model

symmetry according to U(1)g x U(1)p — Zn, x U(1)p/, where the latter is given by
e=4nw/Ny (n=1,...,N¢), a €10,2m).

Coming to the string side, the solution for the metric, the dilaton and the field
strengths is invariant under arbitrary shifts of 1. But the nontrivial profile of Cy, which
can be probed by D(—1)-branes for instance, breaks this symmetry. The presence of
DBI actions in the functional integral tells us that the RR potentials are quantized,
in particular Cy is defined modulo integers. Taking the formula (3.51) and using the
periodicity 47 of ¢, we conclude that the true invariance of the solution is indeed Zy;,.

One can be interested in computing the domain wall tension in the field theory by
means of its dual description in terms of a D5-brane with 3 directions wrapped on a
3-sphere (see [53] for a review in the conifold geometry). It is easy to see that, as in
Klebanov-Witten theory, this object is stable only at » = 0 (p — —o0), where the
domain wall is tensionless.

The UV and IR behaviors

The supergravity solution allows us to extract the IR dynamics of the KW field theory
with massless flavors. Really what we obtained is a class of solutions, parameterized by
two integration constants c¢; and c;. Momentarily, we will say something about their
meaning but we will concentrate on the case ¢; = co = 0, and anyway some properties
are independent of them.

The fact that the dilaton always runs towards vanishing string coupling tells us that
the theory is irreparably driven to that point, unless the supergravity approximation
breaks down before (¢; < 0). In cases where the string coupling falls to zero in the IR,
the gravitational coupling of the D7’s to bulk fields also goes to zero and the branes
tend to “decouple”. The signature of this is in the equation for f in the BPS system
(3.29): the quantity e” Ny can be thought of as the effective size of the flavor backreaction
which indeed vanishes in the far IR. The upshot is that flavors can be considered as an
“irrelevant deformation” of the AdSs x T geometry.

The usual technique for studying deformations of an AdS5 geometry is through the
GKPW [15,16] formula in AdS/CFT. Looking at the asymptotic behavior of fields in
the AdSs effective theory:S

60 =ar® 4 cr® (3.57)

we read, on the CFT side, that the deformation is H = Hopr + a O with ¢ = (O) the
VEV of the operator corresponding to the field ®, and A the quantum dimension of

6Notice that usually the GKPW prescription or the holographic renormalization methods are used
when we may have flows starting from a conformal point in the UV. In this case, our conformal point
is in the IR and one may doubt about the validity in this unconventional case. See Section 6 in the
paper [100] for an indication that applying the prescription in an IR point makes sense, even when the
UV geometry is very far away from AdSs x Ms5. We thank Kostas Skenderis for correspondence on this
issue.
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the operator O. Alternatively, one can compute the effective 5d action and look for the
masses of the fields, from which the dimension is extracted with the formula:

A=2+vV4d+m?, (3.58)

with the mass expressed in units of the inverse AdS radius. We computed the 5d effective
action for the particular deformations e/, ¢9) and ¢(r) and including the D7-brane
action terms (the details are in Section 3.3). After diagonalization of the effective Kahler
potential, we got a scalar potential V' containing a lot of information. First of all, minima
of V' correspond to the AdSs; geometries, that is conformal points in field theory. The
only minimum is formally at e? = 0, and has AdSs x T"! geometry. Then, expanding the
potential at quadratic order the masses of the fields can be read; from here we deduce
that we have operators of dimension 6 and 8 taking VEV, and a marginally irrelevant
operator inserted.

The operators taking VEV where already identified in [60,102]. The dimension 8
operator is TrF* and represents the deformation from the conformal KW solution to
the non-conformal 3-brane solution. The dimension 6 operator is a combination of
the operators Tr(W,W*)? and represents a relative metric deformation between the
S? x 52 base and the U(1) fiber of T™!. The marginally irrelevant insertion is the flavor
superpotential, which would be marginal at the hypothetic AdSs (conformal) point with
e® = 0, but is in fact irrelevant driving the gauge coupling to zero in the IR and to very
large values in the UV. Let us add that the scalar potential V' can be derived from a
superpotential W, from which in turn the BPS system (3.20) can be obtained.

One could think that, since the string coupling e? flows to zero in the IR, the theory
flows to a perturbative point there. Anyway this is not quite correct, as in that regime the
string frame volume of AdSs is small and the orbifold holographic relations (3.49) for the
gauge couplings get strongly corrected. In the following section, combining supergravity
and field theory arguments, we will give an interpretation of the IR RG flow.

Contrary to the IR limit, the UV regime of the theory is dominated by flavors and
we find the same kind of behavior for all values of the relevant deformations ¢; and cs.
The gauge couplings increase with the energy, irrespective of the number of flavors. At
a finite energy scale that we conventionally fixed to p = 0, the gauge theory develops a
Landau pole, as told by the string coupling that diverges at that particular radius. This
energy scale is finite, because p = 0 is at finite proper distance from bulk points with
p <0.

At the Landau pole radius the supergravity description breaks down for many rea-
sons: the string coupling diverges as well as the curvature invariants (both in Einstein
and string frame), and the v circle shrinks. It would be an interesting problem to
find a UV completion. One could think about obtaining a new description in terms
of supergravity plus branes through various dualities. In particular T-duality will map
our solution to a system of NS5, D4 and D6-branes, which could then be uplifted to
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Figure 3.3: RG flow phase Figure 3.4: KW model with flavors. The A-C flow

space for the Klebanov-Witten has backreacting D7’s in the A piece and then follows

model. the KW line in the C piece; it corresponds to Ny <
N.. B flows are always far from the KW line, and
correspond to Ny 2 N,.

M-theory. Anyway, T-duality has to be applied with care because of the presence of
D-branes on a non-trivial background, and we actually do not know how to T-dualize
the Dirac-Born-Infeld action. We leave this interesting problem for the future.

3.2.6 The IR dynamics

Here we try to understand the RG flow of the flavored KW theory in the IR, combining
supergravity and field theory arguments. The main point is the analysis of the Klebanov-
Witten model at small values of the string coupling, and the fact that the orbifold
holographic relations (3.49) for the gauge couplings are not valid for any value of the
parameters in the KW model, as extensively pointed out in [73]. In the whole analysis
that will follow, we will consider for clarity only the case of equal gauge couplings
g1 =92=49-

The curve of conformal points in the Klebanov-Witten model is obtained by requiring
the anomalous dimension of the fields A, B to be v4(g, \) = —1/2, which assures (3, =
B5 =0 (5\ is the dimensionless coupling in the quartic superpotential). The qualitative
shape of the curve is depicted in Figure 3.3, as well as some possible RG flows. The
important feature is that there is a minimum value g, > 0 that fixed points can have (due
to the perturbative 3, being negative, so that g = 0 is an unstable IR point). One way to
determine this curve of fixed points is to apply the a-maximization procedure originally
spelled in [103] by using Lagrange multipliers enforcing the marginality constraints [104],
and then express the Lagrange multipliers in terms of the gauge and superpotential
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couplings. This computation for the Klebanov-Witten model was done in [105, 106].7
One can show that the curve of fixed points does not pass through the origin of the
space of Lagrange multipliers, which is mapped into the origin of the space of couplings
(free theory). In a particular scheme the curve of fixed points is an arc of hyperbola
with the major axis along A = 0. The exact shape of the curve is scheme-dependent, due
to scheme-dependence of the relation between Lagrange multipliers and couplings: we
choose a scheme in which the Lagrange multipliers are quadratic in the couplings. This
choice fixes a conic section, and it is such a hyperbola because the one-loop anomalous
dimensions of the chiral superfields get a negative contribution from gauge interactions
and a positive contribution from superpotential interactions. The conclusion that the
curve of conformal points does not pass through the origin of the space of coupling
constants is physical.

The family of KW supergravity solutions describes the fixed curve. It is parameter-
ized by e? that can take arbitrary constant values. For sufficiently large values of it, we
can trust the orbifold formula (we continue setting g5 = 1):

EA— for  e’N.>1. (3.59)

The 't Hooft coupling g? N, is large (at least of order 1, so the theory is strongly coupled
and the anomalous dimensions are of order 1) and the string frame curvature Rg ~
1/(e?N,) is small. For smaller values ¢’ N, < 1, (3.59) cannot be correct: it would give
small 't Hooft coupling while the gauge theory is always strongly coupled. The bottom
end of the line corresponds to:

{e? — 0} -  {g=g,A=0}, (3.60)

and the curvature is large even if the field theory is still strongly coupled. Anyway some
quantities, for instance the quantum dimension of A, B, are protected and do not depend
on the coupling, so they can be computed in supergravity even for small values of e? N.,.

The supergravity solution of our system with D7-branes is in the IR quite similar
to the KW geometry: the IR asymptotic background is AdSs x T'! (with corrections),
but with running dilaton. The field theory is thus deduced to be close to the KW fixed
line, but running along it as e — 0 in the IR. Moreover, e? controls the gravitational
backreaction of the D7-branes (as well as the gauge coupling), and as soon as e’ N; < 1
the branes behave as probes. In this regime, we expect the quantities computable from
the background to be equal to the KW model ones: in particular y4 = —1/2.

We can distinguish different regimes, starting from the UV to the IR. Depending on
the values of N, and N they can be either well separated or not present at all. A section
of the space of couplings and some RG flows are drawn in Figure 3.4, but one should
include the third orthogonal direction i which is not plotted.

"We thank Sergio Benvenuti for making us aware of this method and of the literature on the subject.
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e For 1 < e? we are in the Landau pole regime, and the dilaton (string coupling e?)

is large.

For NL < e? < 1 we are in a complicated piece of the flow, quite far from the KW

fixed line, as in the type A and B flows of Figure 3.4. In particular the D7-branes

are backreacting. In this regime our SUGRA solution is perfectly behaved (as long
1 ¢

as 5 < e?).

For N% <e? < Nif (this regime exists for Ny < N,) we are in a region with almost

probe D7-branes®, so we are close to the KW line, but with large 't Hooft coupling,
so we can trust (3.59). We can expect the energy /radius relation to be quite similar
to the conformal one, thus we can compute the gauge [-function and deduce the
flavor anomalous dimensions ~y,. Apart from corrections, we get:
1 1 1 3
~ —— Ry~ - ~ — Rp~—. 3.61

YA 9 A= Q 1 Q=Y ( )
The R-symmetry is classically preserved but anomalous as in supergravity. The
various [-functions are computed to be

3. ¢
=-N

47 1672
We want to stress that this regime in not conformal, and in fact the theory flows
along the KW fixed line, as in the type C flow of Figure 3.4. The smaller is N;/N.,

the longer is this piece of the flow. For Ny 2 N, this regime does not exist, and
the theory follows the type B flows of Figure 3.4.

By

For e < Min(NLc,Nif) we are close to the end of the KW fixed line, and the
gauge coupling is close to g,. Again the D7’s are almost probes. The string frame
curvature is large, as in the KW model at small g;N.. Since the gauge coupling
cannot go below g,, its S-function vanishes even if the string coupling continues
flowing to zero. We get in field theory:

1
Yo =1 Rg ~

e~ w

(3.63)

All the flows accumulate at the point {g = g., A = 0} of Figure 3.4, but the theory
is not conformal. In fact the coupling h always flows to smaller values, and the
theory moves “orthogonal” to the figure. For this reason vo and R do not satisfy
the relation of superconformal theories.

8The dual in field theory of the D7’s being probes is that graphs with flavors in the loops are

suppressed with respect to gauge fields in the loops, since Ny < N..



3.3 The smearing on 5d Sasaki-Einstein spaces 65
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Figure 3.5: Flavor 1-loop correction to the  Figure 3.6: Regimes of KW with flavors
gauge propagator. for Ny < N..

e The end of the flow is the superconformal point with A = 0 (and g = g.), which
should correspond to e? = 0 and cannot be described by supergravity. Without
the cubic superpotential one can construct a new anomaly free R-symmetry with
Rg = 1, by combining the previous one (Rg = 3/4) with the anomalous axial
symmetry which gives charge 1/4 to every flavor. This R-symmetry only exists
at the conformal fixed point, as required by known theorems on superconformal
theories. Moreover, in string theory all the D7’s go through the origin and at that
point the full non-Abelian S(U(Ny) x U(Ny)) group should be recovered: this is
achieved by A — 0 in field theory.

Note that when N; > N, and the D7-branes are probes (this is the regime e? <
NLf < Ni and g = g,) one could think hard to see in field theory a suppression of graphs
with flavors in the loops, with respect to gauge fields in the loops. Consider the gauge
propagator at 1-loop with flavors (Figure 3.5). It is of order g>Ny, not suppressed with
respect to the graph with gauge fields in the loop of order g2N,. But if we sum all the
loops with flavors, we must obtain the flavor contribution to the S-function, which for
g ~ g, and so 79 ~ 1 is indeed very small.

A summary of the phase space for Ny < N, is in Figure 3.6. The computation in [79]
is valid in the region NLC <e? < NLf of the phase space.

3.3 The smearing on 5d Sasaki-Einstein spaces

In this section we extend the smearing procedure for D7-branes to the more general
case of a geometry of the form AdS; x M;, where M; is a five-dimensional compact
manifold. The general method could then be applied to other Dp-branes as well. The
requirement of supersymmetry greatly restricts the allowed forms of M. We will verify
that when Mj is Sasaki-Einstein, the formalism of Section 3.2 can be easily generalized.
As a result of this generalization we will get a more intrinsic formulation of the smearing,
which eventually could be further generalized to other types of flavor branes in different
geometries.
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First of all we rewrite the Wess-Zumino action as:

SWZ = T7 Z . Cg — T7 / QQ VAN Cg R (364)
Nf 7 MlO

where (25 is a two-form which determines the distribution of the RR charge of the D7-
branes in the smearing and the right hand side integral is on the full ten-dimensional
space Mg. For a supersymmetric brane the charge density is equal to the mass density
and, thus, the smearing of the DBI part of the D7-brane action must be also determined
by the 2-form 2.

First of all, suppose that €y is decomposable, i.e. that it can be written as the
wedge product of two one-forms. Then at any point {25 determines an eight-dimensional
orthogonal hyperplane: the tangent space of the D7-brane worldvolume. A general two-
form 5 will not be decomposable. However, it can be written as a finite sum of the

type: ‘
Q=3 0, (3.65)

where each Q;i) is decomposable. At any point, each of the Q®’s is dual to an eight-
dimensional hyperplane, thus 25 determines locally a collection of eight-dimensional
hyperplanes. In the smearing procedure, to each decomposable component of €2, we
associate the volume form of its orthogonal complement in M. Thus, the contribution
of every Qg) to the DBI action will be proportional to the ten-dimensional volume
element. Accordingly:

Sppr = —T7 Z/ d*EN/—gs e — —77/ Az /=g e? Z |Q§)‘ . (3.66)
N; D7 Mo !

where |Qg)‘ is the modulus of Qgi) and represents the mass density of the i piece of (s
in the smearing. When Q%) = (1/2!) Qg\l/[)Nd:UM A dx™ | then

7 1 7 )
09 = \/5 Q) Qe g1 ghe . (3.67)

()9 acts as a magnetic source for F; and the Bianchi identity reads:
dF1 = —2I<L27'7 Qg . (368)

See Appendix A. Of course supersymmetry highly constrains the charge distribution €25.
And only because of mutual supersymmetry between the branes and the background we
were allowed to first compute probe branes, and then substitute their energy/charge
distribution back into the action, to get equations for the bulk. The key point is the
no-force condition. We will see in the following some possible {25 we can consistently
write.
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3.3.1 General smearing and DBI action

Here we will elaborate on the previous construction: writing the DBI action for a gen-
eral smearing of supersymmetric D7-branes. We mean that in general on an N = 1
background there is a continuous family of supersymmetric 4-manifolds® that the D7-
branes can wrap corresponding to quarks with the same mass and quantum numbers.
All these configurations preserve the same four supercharges, so we can think of putting
D7’s arbitrarily distributed (with arbitrary density functions) on these manifolds. We
want to write the DBI plus WZ action for this system.

Supersymmetry plays a key role. The fact that we can put D7’s and not anti-D7’s
implies that the charge distribution completely specifies the system. For D7-branes the
charge distribution is a 2-form €5, which can be localized (a “delta-form” or current) or
smooth (for smeared systems). The Bianchi identity reads dF} = —$y (setting g5 = 1)
and is easily implemented through the WZ action (3.64): Swz = 77 [ Q2 A Cs. Notice
that a well defined 25 not only must be closed (which is charge conservation) but also
exact. Moreover the supersymmetry of this class of solutions forces 2 to be a real (1,1)-
form (with respect to the complex structure). Supersymmetry also guides us in writing
the DBI action, because the energy distribution must be equal to the charge distribution.
But there is a subtlety here, because the energy distribution is not a 2-form, and some
more careful analysis is needed.

Let us start considering the case of a single D7-brane localized on Mg. We can write
its DBI action as a bulk 10d integral by using a localized distribution 2-form €25 such

that
/ dBee? \/—ig = /dl% e? /=g || . (3.69)
Mg

Q5 is loosely speaking the Poincaré dual to Mg. For a D7 embedding defined by the
complex equation f = 0, it can be (locally) written as Qy = —i 6 (f, f) df Adf. It turns
out that df and df are two 1-forms orthogonal to the 8-submanifold.’® In particular
such 2-form is decomposable.

The decomposability of a 2-form can be established through Pliicker’s relations, and
the minimum number of decomposable pieces needed to write a general 2-form is half
of its rank as a matrix!!. So the decomposability of a 2-form at a point means that it
is dual to one 8d hyperplane at that point; in general a 2-form is dual to a collection of
8d hyperplanes.

If we do a parallel smearing of our D7-brane we get a smooth charge distribution
2-form, non-zero at every point. This corresponds to putting a lot of parallel D7’s and
going to the continuum limit. Being the smearing parallel, we never have intersections

9Fven if we try to be general, we still stick to the case with vanishing F on the brane.

10T his orthogonality does not need a metric. A 1-form is a linear function from the tangent space to
R, and its kernel is a 9d hyperplane. The 8d hyperplane, tangent to the submanifold, orthogonal to the
two 1-forms, is the intersection of the two kernels.

1The rank of an antisymmetric matrix is always even.
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of branes and the 2-form is still decomposable. As a result (3.69) is still valid. If instead
we construct a smeared system with intersection of branes, the charge distribution €25 is
no longer decomposable. Every decomposable piece corresponds to one 8d hyperplane,
tangent to one of the branes at the intersection. Since energy is additive, the DBI action
is obtained by summing the moduli of the decomposable pieces (and not just taking the
modulus of €),). Each brane at the intersection defines its 8d hyperplane and gives its
separate contribution to the DBI action and to the stress-energy tensor. We simply sum
the separate contributions because of supersymmetry: the D7’s do not interact among
themselves due to the cancellation of attractive/repulsive forces. Notice that in doing
the smearing of bent branes, one generically obtains unavoidable self-intersections.

Summamzmg, glven the splitting of the charge distribution 2-form into decomposable
pieces {2y = the DBI action reads

SDBI == —7'7/d101‘ —g €¢ Zk"ng)| . (370)

The last step is to provide a well defined and coordinate invariant way of splitting the
charge distribution €25 in decomposable pieces. It turns out that the splitting in the
minimal number of pieces compatible with supersymmetry is almost unique.

In our setup, €2 lives on the internal 6d manifold, which is complex and SU(3)-
structure. This means that the internal geometry has an integrable complex structure
7 and a non-closed Kéhler form J compatible with the metric: Ju, = g4 Z,¢ (for the
singular conifold these objects are given in Appendix C). We can always find a vielbein
basis that diagonalizes the metric and block-diagonalizes the Kéhler form:

= e’ ®e”
9=2., (3.71)

J=e' N2+ Net +e®Neb.

This pattern is invariant under the structure group SU(3) (without specifying the holo-
morphic 3-form, it is invariant under U(3)), as is also clear by expressing them in local
holomorphic basis: e* = €271 +je% &% = 27! —je? with i = 1,2,3. One gets the
canonical expressions: g = Y . e ®g €% and J = 5621 A &%

In our class of solutions, the supersymmetry equations force the charge distribution to
be a real (1,1)-form with respect to the complex structure (see [40]). Notice that such
a property is shared with J. The dilatino equation is e¢F1(0’1) = i0¢ (which without
sources amounts to the holomorphicity of the axion-dilaton 7 = Cy +ie~?). From this
one gets

Qy = —dFy =2ie ?(0¢ N dp — 00¢) . (3.72)

It is manifest that Qy is (1,1) and QF = y. Going to complex components 2y =
O et Ae* | the reality condition translates to the matrix €2,z being anti-hermitian. Thus
it can be diagonalized with an SU(3) rotation of vielbein that leaves (3.71) untouched,
and the eigenvalues are imaginary.
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Going back to real vielbein and summarizing, there is always a choice of basis which
satisfies the diagonalizing condition (3.71) and in which the charge distribution can be
written as the sum of three real (1,1) decomposable pieces:

Qo =Mt A2+ e Aet+ X 3e® Ael . (3.73)

Supersymmetry forces the eigenvalues A\, to be real and, as we will see, positive. More-
over, as inferred by the previous construction, the splitting is unique as long as the
three eigenvalues A\, are different, while there are ambiguities for degenerate values, but
different choices give the same DBI action.

We conclude noticing that, in order to extract the eigenvalues |Ag| = [Q5] it is not
necessary to construct the complex basis: one can simply compute the eigenvalues of the
matrix (Q2)ypg?™ in any coordinate basis. But in order to compute the stress-energy
tensor, the explicit splitting into real (1,1) decomposable pieces is in general required.

3.3.2 The BPS equations for any Sasaki-Einstein space

The BPS system (3.20) for the flavored AdSs x T™! geometry can be derived in the
more general situation that corresponds to having smeared D7-branes in a space of the
form AdSs x My, where M is a five-dimensional Sasaki-Einstein (SE) manifold (as T,
for instance). Every SE manifold is a one-dimensional (either U(1) or R) bundle over a
four-dimensional Kéhler-Einstein (KE) space. Accordingly, we will write the Mj; metric
as

ds%, = ds%p + (dr + A)? (3.74)

where 9/07 is a Killing vector and ds%j stands for the metric of the KE space with
Kahler form J; it turns out that J = dA/2. In the case of T™! the KE base is just S? x S?,
where the S?’s are parametrized by the angles (6;, ;) and the fiber 7 is parametrized
by the angle 1.

Our ansatz for the ten-dimensional metric in Einstein frame corresponds to a squash-
ing of the manifold M; between the KE base and its fiber, as well as a warping h(r):

ds? = h(r)’l/de;l + h(r)}2 [ dr® + e dskp + 2O (dr + A)Q] . (3.75)
In addition our background must have a RR 5-form flux:
Fy = —(1+ %) dvolz; Adh(r)™", (3.76)

and a RR 1-form flux F} which violates Bianchi identity, as a consequence of having a
smeared D7-brane source in our system. Our proposal for F} is the following:

P =—C(dr+ A), (3.77)

where C' is a constant which should be related to the number of flavors. This choice
comes from the fact that we set 2y = 2C'J, and then dF} = —()y is automatically
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solved.'? To proceed we have to solve the Killing spinor equations by imposing the
appropriate projections. Notice that the ansatz is compatible with the Kahler structure
of the KE base and this is usually related to supersymmetry.

To make contact with the explicit case of the conifold studied in the previous section,
we reconstruct its metric as:

dsyp = é Z (d6? + sin® 6; de?) A= —% Z cos 6; dp; (3.78)

i=1,2 i=1,2

while the 1-form dual to the Killing vector 0/07 is dr = di/3, and indeed dA = 2.J.
The constant C' was set to 3N /47 in that case.

Let us now choose the following frame for the ten-dimensional metric:

& = hM dat ¢ =h'"dr (3.79)
e = ntef (dr + A) ér = ht4ed et '
where €%, a = 1,...,4 is the one-form basis for the KE space such that ds%, = e%.
The equation dF5 = 0 immediately implies:
27m)4N,
_p etoes — 2TV Ne 3.80
‘ Vol(M;) (3:80)

where the constant has been obtained by imposing the quantization condition (3.16) for a
generic Ms. It will also be useful to write F} in frame components: F; = —Ch~/*e=f ¢,
Let us list the non-zero components of the spin connection:

~ahr W éx“ (;)07“ — 4h‘f, + 1 ~0 djab — wab o ef—Qg Jab éO
Ah5/4 Ah5/4 hl/4
~ar 4hg/ + W ~a ~0 6f*29 ~b
= i € o = i T
(3.81)
where w® are components of the spin connection of the KE base.

We now show that our ansatz preserves some amount of supersymmetry. To address
this point we show that, for a particular choice of the Killing spinor, the variations of
dilatino and gravitino vanish. The variations are collected in Appendix D, but for our
case without 3-form fluxes they are given in (3.17). From the dilatino variation we get:

0 i 0ot _
(E%—@C’e Fm)e_o. (3.82)

12We are considering that J = (1/2) J,p dz® A dz® and that the Ricci tensor of the KE space satisfies
Ry, = 6 gab-
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Here and in the following the indices of ['-matrices refer to the vielbein components
(3.79). Let us move to the gravitino variations d.¢)p;. The space-time component is
solved, provided that

F$0$1$2$3 €E=1€ Fr01234 €= —1¢€ s (383)

that is compatible with 10d chirality: ['yo_.3.01234¢ = €. The first projection is the
D3-brane one. The radial component gives:

Oe N
— 4+ —€e=0. 3.84
or * 8h © ( )
This is solved by €(r) = h™'/8¢.
It is useful to write the covariant derivative along the SE directions in terms of the
covariant derivative in the KE space. The covariant derivative, written as a one-form:
D=d+ (1/4) 0" Ty, is given by:

€f72g ab 50 ef*QQ 0b sa 4hg,+h/ ar sa 4hf/+h/
4h1/4F é —Jab2h1/4F é +—8h5/4 rere +—8h5/4

D=D—J, ¢ | (3.85)
where D is the covariant derivative in the internal KE space.
The equation for the SE components of the gravitino transformation is

/

R h )
D[E + —FTIG—FE

T < FPe=0. (3.86)

It is convenient to represent the frame 1-forms e and the fiber 1-form A in a coordinate
basis of the KE space:

e = E¢ dy™ A=A, dy", (3.87)

with 4™, m =1,...,4 a set of space coordinates in the KE space. The previous equation
can be split into a part coming from the coordinates in the KE space and one coming
from 7. After a bit of algebra one can see that the equation obtained for the space
coordinates y™ is simply:

1 2(f-9) ab effZg a 10b 4hg/ + W a ar
DmG_ZJabe AmF E—Ja52h1/4EmF €+WEmF €+
4hf/+h/ f or n a Tra 1/4 f 70 ¢ ¢
— g, ¢ AnT €+W(Emr +hthel A, T )E—Ze CAne=0, (3.88)

whereas the equation obtained for the fiber coordinate 7 is:

a 2f—2g 4h / h/ h/ .
a—E—Jabe4 F“be—fg—hjLefF’ﬂoe—i—@efFroe—ied’Ce:O. (3.89)
-
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In order to solve the equations, we need to know how I'" matrices act on €. Since the
6d Kéahler form is constructed from the Killing spinor: Jy,z = —i el qe (see Section
2.4), we know that € must be an eigenvector of the appropriate I'y, matrices in vielbein
indices. Taking a canonical vielbein basis e* on the KE such that J = e! A e? + €3 A e,
the correct solution is:

Foe=Tpe=Tye=1¢. (3.90)

This is consistent with (3.83). Moreover J,;'® ¢ = 4ie. Now use the fact that any KE
space admits a covariantly constant spinor n satisfying D,,n = —(3i/2) A, . Here n
turns out to satisfy I'1on = I'syn = i 1. Then the Killing spinor of the 5d SE space is

e=h"l8e3/2y (3.91)

By plugging all of this information into (3.88) and (3.89), and combining with the
dilatino equation (3.82) and the 5-form BI (3.80) we arrive at a system of first-order
BPS equations for the deformation of any space of the form AdSs x Ms:

( ¢l — Ceqﬁ—f
g/ — f29
Loy of20y _ C oy 3.92
fr=elB-e7) — e (3.92)
h/ - _ (27T)4NC e*f*4g
L VOI(M5) '

This system is the one in eq. (3.20) for the conifold, with C' = 3N} /47 and Vol(T"!) =
1673 /27. To count the number of supersymmetries of type (3.91), we divide thirty-two
by the number of independent algebraic projections imposed, which is 23. It follows that
our deformed background preserves four supersymmetries.

3.3.3 The dilaton and Einstein equations

In this section we will prove that the BPS system implies the fulfillment of the second-
order Euler-Lagrange equations of motion for the combined gravity plus brane system.
To begin with, let us consider the equation of motion of the dilaton, which can be written

as:
1 21{2 5SDBI
——0n (9" V=g o) = e R - = 2228
\/_—g M N ‘ 1| \/_—g 5o
where gpn is the ten-dimensional metric. Using the DBI action (3.66) for smeared
D7-brane configurations, we find:

(3.93)

2
25" 0SpBI _ o Z }Qg)| ' (3.94)
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The charge density distribution is Qy = 2C'J (see eq. (3.77)). Since we are in a basis
in which the Kahler form J of the KE base manifold has the canonical expression, see
above (3.90), 2, has two decomposable components:

O =20 Ne? = 2002 e e N6

(3.95)
O =20 net = 200 e WP N et

The moduli of the Qgi)’s can be straightforwardly computed: |ng)‘ = 2|C|h~ 2 e 2.
With this, eq. (3.93) becomes:

¢+ (49 + )¢ = C*e*7H 4+ 41C| 7% | (3.96)

This equation is solved whenever the functions ¢, f and g satisfy the BPS system
(3.92), provided that C' > 0. This is a nice result, because confirms that we only have
a supersymmetric solution with D7-branes, and not anti-D7-branes. In the following we
shall assume that C' > 0.

The Einstein equation can be checked in a similar way. Essentially, one substitutes
the ansatz for the metric, dilaton and form-fields, as well as the stress-energy tensor
of the smeared configuration of branes, into the Einstein equation. Then one checks
that the fulfillment of the BPS system (3.92) implies the satisfaction of the second-order
equations.

We are not going to give full details, but only some useful ingredients. To check the
Einstein equation one needs the Ricci tensor. In vielbein indices, the expression of the
curvature two-form in terms of the spin connection is

RMN = dd)MN + ("A)MP /\Q)PN , (3.97)
with the curvature 2-form defined as
N 1 ~ N ~
M _ M P Q

The Ricci tensor is then straightforwardly derived. We give for reference the scalar
curvature:

R = —hW(hH + hl;ﬁ Ay +8¢" +20(g )2+ 8¢ f/ +2f" 4+ 2(f)* 4 4e2 19 —246*29> .
The contribution of the DBI action to the Einstein equation is just '3 (399
Ty = —% iiﬁjvf . (3.101)

13 Alternatively, since g™V dgarn — —gusn 0N
oy _ 267 05pp: (3.100)

- V=9 dgun
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By using the expression (3.66) for Sppr, we arrive at the following expression of the
stress-energy tensor of the D7-brane configuration:

¢ 1
Tun = —% (QMNZ ‘ng)’ - Z |Q(k)‘ QE\?P QE\% QPQ) ) (3.102)
k k 2

where we have used 2k27; = 1. Substituting the supersymmetric configuration in (3.95)
and expressing it in vielbein indices, see (3.79), we arrive at the simple result:

Tyini = —2C B2 029 iz T, =Ty = —2C B2 g2

3.103
Ty=—Ch e85, (ab=1,- 4). o

One can explicitly verify that the expression (3.21) in coordinate indices for the conifold
reduces to this expression in vielbein coordinates.

With all this information we can write, component by component, the set of second-
order Einstein differential equations for h, g, f and ¢, and verify that they are satisfied
when the functions solve the first-order system (3.92).

To finish this section, we show that the on-shell DBI action in (3.66) can be written
in a different and very suggestive fashion, similar to the one of the WZ term (3.64).
Actually:

Sonspell — / e?Qy N g, (3.104)
Mo
where =g is the following 8-form:
1
Zg = h™tdvols; A ST NT = dvol(D7) (3.105)
and J is the Kahler form of the warped 6d internal manifold:
T =h'"P[e* ]+ el dr A(dr+ A)] . (3.106)

The last equality in (3.105) is true if the D7 worldvolume is, in the internal 6d space, a
4-cycle calibrated by J, which, in the class of solutions we considered, is a requirement
of supersymmetry.

3.3.4 A superpotential for the BPS equations

One can obtain the first-order BPS system (3.92) from a superpotential, using a different
approach. The following method was developed in [107-109] and later exploited, for in-
stance, in [60] to find actual solutions of the second-order gravity equations. Generically,
consider a one-dimensional classical mechanical system in which 7 is the “time” variable
and A(n), ®™(n) are generalized coordinates. Let us assume that the Lagrangian of this
system takes the form:

L= Alr (@4 - %Gmn@) 5,0™ 9,0" — V()] | (3.107)
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where £ is a constant and V(®) is some potential, which we assume independent of the
coordinate A. If one can find a superpotential W such that:
1 Gmn ow oW 1 9

V() = 5 oo™ 9on A

(3.108)

then the equations of motion are automatically satisfied by the solutions of the first-order
system:
dA 1 do™ ow
—=——W — =G""—. 3.109
dn 2K dn oPn ( )
We now show that our BPS system (3.92) can be recovered with this formalism.
The first step is to look for an effective Lagrangian for the functions ¢(r), f(r), g(r)
and h(r) in our ansatz whose equations of motion are the same as those obtained from
the Einstein and dilaton equations of type IIB supergravity. One can show that such a

Lagrangian is:

1/2 4g+f h'2 e @7 5/2 —8g—2f % 1/2 2¢-2f 1/2 ¢—2
L = 9 — N2 _ X ph— —89-2f _ — p— —2f _ACh~ —2g
eff=h'"e R 5 (¢") 5 h™"e 5 h=<e Ch™/<e
(3.110)
where R is the scalar curvature as written in (3.99) and @) is the constant:
(27)4N,
= . 3.111
@ Vol(M5) ( )

Notice that the Ricci scalar contains second derivatives. To make contact with the
expression in (3.107), we perform the following redefinition of fields:

SA/ _ p1/2 Agt] 020 — /2020 o2f — p1/2p2f (3.112)

In addition, we do a change of radial coordinate: dr/dn = e/ 4=83/3=2f/3 from r to
n. The modification in the Lagrangian is L.s; = (dr/dn) Le.ss. With the previous
redefinitions, the Lagrangian takes the form:

3 28 4 = 1 . -

L = AL A2 = 2 6P — 57 S0 - 5@ ~ V@ fe)]. By

where dot means derivative with respect to n and V'(g, f , @) is the following potential:

- . 2 ~ 2 N
V(G f, ) = e 2Uath)s <4€2f—4§ C o2 & 205ep) L C 0D Lo 6¢—2g>
) ) 2 2
(3.114)

The above Lagrangian has the desired form and we can identify the constant x and the
elements of the kinetic matrix G,,, as:

5 Gii=3. Gi=735. Ges=1. (3.115)
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The scalar potential V' derives from the superpotential:
W = e~4ithH/3 [Q e 19F _ 4ef=% _ ge=F 4 0t . (3.116)

One can finally check that the first-order equations stemming from the superpotential,
when written in terms of ¢, f, g and h, precisely match with the BPS system (3.92).

We can use the previous results to study the 5d effective action resulting from the
compactification along Ms, and derive interesting field theory results. The fields in this
effective action are the functions f and g, which parameterize the deformations along
the fiber and the KE base of Mj respectively, and the dilaton. In terms of the radial
variable n the ten-dimensional metric can be written as:

ds? = e~2/+49)/3 [6’4/2 dz"dz, + dn?] + € dsip + = (dr + A)*. (3.117)

The corresponding analysis for the unflavored theory was performed in [60,102]. The
constant @ is just Q@ = 4L*, and we can work in units in which the AdSs radius L is
one. To make contact with the analysis of refs. [60,102], let us introduce new fields ¢
and p which substitute f and g:

0= (f+49) p=—2(F-3). (3118)

In terms of the new fields the effective Lagrangian takes the form:

L, . :
Lesp=V=95 | Bs = 50" = 209" = 304" =V |, (3.119)
where g5 = —e?4 is the determinant of the 5d metric ds2 = e*/2datdz, + dn* and

Rs; = —[2A + 542 /4] is its Ricci scalar. The expression for V can be computed as well.
Its only minimum is at p = ¢ = e® = 0, which corresponds to the conformal AdSs x Ms;
geometry. Moreover, by expanding V around this minimum at second-order we find
out that the fields p and ¢ diagonalize it. The corresponding masses are mfo = 12 and
m2 = 32. By using these values in the mass-dimension relation (3.58) or (2.17), we get:

m:=12 = A, =6, m;=32 = A;=8. (3.120)

These scalar modes p and ¢ are dual to the dimension 6 and 8 operators discussed in
Section 3.2.

3.3.5 General deformation of the KW background

We can allow for a more general deformation of the AdSs x T! background. Since 7!
is a U(1) bundle over S? x S?, we can squash each of the two S?’s of the KE base with
a different function g;. In the unflavored case this is precisely the type of deformation
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that occurs when the singular conifold is resolved. Thus consider the following metric
ansatz:

ds* :hfl/zd:cf hl/Q{dT + Z ? +sin 0; dy?) +— (dp — ZCOSG dp;) }
1=1,2 1=1,2

(3.121)
The ansatz for F5 and Fy is the same as in (3.12): F5 = —(1 + *) dvolz; A dh™!, while
Fy = —(3Ny/4m)(d — > cosb; dp;). The unknowns are the radial functions ¢(r), g;(r),
f(r) and h(r). The BI dF5 = 0 immediately implies: —h/e21 292/ = 277 N,. Proceeding
as in Section 3.2.1 we derive a first-order BPS system from the vanishing of the fermionic
supersymmetry variations, which is more concisely expressed in terms of p: dr = ef dp.
We get:

(. 3Ny
R N
AT c
h = —Q 6_291_292
3.122
G = e2f—29i ( )
f: 3 — e2f291 _ p2f-292 _ 3Nf e
\ 8T
The equation for the dilaton is integrated, with the same result as before:
A7 1
¢ _
€= "o o p<0. (3.123)
3Ny p

By combining the equations for g; and g, one gets that the combination e?%! — 292 is

constant, thus:
e = ¥ 4 o . (3.124)

where a is an integration constant. The remaining equations for g, and f are integrated
to:

3 6p €5
692 2 492 o . 6p 2f
bk =(1—-6p)e” + ¢, S eyl (3.125)

where ¢; is an integration constant. Finally the warp factor is

dp
h(p) = —277TNC/ m +co . (3126)

All the functions are now expressed in terms of g9, which is the solution of the algebraic
equation (3.125). In order to solve it, we introduce the following functions:

&) = (1—6p) e + ¢4 Cp) = 4€(p) — o + 4\/5<p>2 ~Telp). (@a20)



78 Unquenched flavors in the Klebanov-Witten model

The solution is then:
1

5 () —a* +a' (o)) (3.128)

In expanding these functions in series near the UV (p — 0) one gets a similar behavior
to the one discussed in section 3.2.3. Very interestingly, in the IR of the field theory,
p — —o0, we get a behavior that is “softened” respect to what we found in section 3.2.3.
Nevertheless, the solutions are still singular. Indeed, the dilaton is not affected by the
deformation a.

e292 —

3.4 Massive flavors

In the ansatz we have been using up to now we have assumed that the density of RR
charge of the D7-branes is independent of the holographic coordinate. This is, of course,
what is expected for a flavor brane configuration which corresponds to massless quarks.
On the contrary, in the massive quark case, a supersymmetric D7-brane has a non-trivial
profile in the radial direction [90], and in particular it ends at some non-zero value of
the radial coordinate. These massive embeddings have free parameters which could be
used to smear the D7-branes. It is natural to think that the corresponding charge and
mass distribution of the smeared flavor branes will depend on the radial coordinate in a
non-trivial way.

It turns out that there is a simple modification of our ansatz for F| which gives rise
to a charge and mass distribution with the characteristics required to represent smeared
flavor branes with massive quarks. Indeed, let us simply substitute in the ansatz (3.12)
the constant Ny by a radial function Ny(r):

Ny(r)

Fy = 0 (dp — Zcos 0; dp;) 5.120)

!

dF; = —Ni—f:) > sinf; do; A dep; — Ni—? dr A (dy =) cost;de;) .
The SUSY analysis of Section 3.2.1 remains unchanged since only F}, and not its deriva-
tive, appears in the supersymmetric variations of dilatino and gravitino. The final result
is just the same BPS system (3.20), where now one has to understand that Ny(r) is
an arbitrarily fixed function of r, which encodes the non-trivial profile of the D7-brane
smeared configuration. We will momentarily see what are the constraints imposed on
Ny(r) by the second-order equations. Notice that N;(r) determines the running of the
dilaton which, in turn, affects the other functions of the ansatz.

A natural question is whether or not the solutions of the modified BPS system solve
the equations of motion of the supergravity plus branes system. In order to check this
fact, let us write the DBI action, following our prescription (3.66). In the present case,
Q9 = —dF7 is the sum of three decomposable pieces:

0 = o + ol 4 of) (3.130)
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where Q3 and Q) are just the same as in eq. (3.95):
Ny 3N
QY = 2L gin g, dfy Adpy = L p 2 e 6l A 2
Am 2T
Ny 3N
0 = o L sin 6y dfy A dipy = : S 229 63 (3.131)
m
N 3N
3 C1/2 —f ar A
0f) = 4—7:dr/\(d¢— > " cost; dg;) = 4—7Tfh V2e=Ter p e .
Their moduli are:

12, _ 3INyl, _yge - g SING i
51 = S e 7] = = F n e (3.132)

With this we get the expression of the DBI action of the smeared D7-brane configuration:

—— / 10 =g 123" (4|Nf( e+ N e ) . (3.133)
Map
It follows the equation for the dilaton:

¢" + (g + )¢ = (3_M>262¢—2f g 3N oy VA oy (3.134)
47 s 47
The first-order BPS system (3.20) imply the fulfillment of eq. (3.134), provided that
N¢(r) > 0 and Ni(r) > 0. This is the only new constraint, with respect to the BPS
system, that a full solution of the second-order EOM’s must satisfy.
It remains to verify the fulfillment of the Einstein equation. The stress-energy tensor
of the brane can be computed from the formula (3.102). The result, in vielbein indices,
is:

Ty =~ (200) e + 3 IO ) s (1 =0,..,3)
T, = Too = —2|C(r)| b2 e~ 29 (3.135)
Ty = —h~'2 e (|C(r)] e 24 1 S )b (ab=1,...,4),

where we put C(r) = 3N,(r)/4m, also to make contact with the previous sections. As for
the dilaton equation, one verifies that Einstein equation is solved provided that N (r)
and N}(r) are non-negative functions.

These results are very interesting. The meaning of the function N¢(r) is that of an
effective number of flavors, at the scale p(r). In order to study flavors with a particular
mass m one should consider a D7 embedding corresponding to them, see Section 2.4, and
then smear them along all the angular directions exploiting the SU(2),xSU(2), xU(1)g
action. This would produce a specific profile function Ny(r,m), that depends on the
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parameter m. We have not computed this function, but we know that it must be zero
for r < r,, (where r,, is the minimal radius reached by the D7’s) and it must approach
the integer number Ny for Ny D7-branes.

This is already quite interesting. At radii r < r,,, the BPS system is just the one of
the unflavored KW model, and the solution is the usual undeformed KW solution. This
means that below r simply there are no flavors: they decouple from the dynamics, both
in field theory and supergravity.

On the other hand, one could want to add flavors with different masses. In this
case one should superpose embeddings with different values of the parameter m, that
is summing different profiles Ny(r, m) with different values of m, getting a new profile
N 7(r). Linear superposition in the bare Lagrangian translates to linear superposition
in Ny(r). Arguing as before, we see that all the flavors with 7,, > r decouple from
the physics at r, so that really Ng(r) represent an effective number of flavors, which
takes into account threshold corrections as well: supergravity nicely realizes holomorphic
decoupling of massive flavors.

Moreover it is clear that, playing with all the masses, one can obtain “almost” any
function N¢(r). Anyway there are constraints: since Ny(r) represents an effective num-
ber of flavors and decoupling happens only in the IR, on physical grounds Ny (r) must be
a non-decreasing function of r. Surprisingly, supergravity exactly tells us that N ]’c (r)y>0
must hold!

To conclude, suppose that the function Ny(r) has a Heaviside-like shape “starting” at
some finite value of the radial coordinate. Then our BPS equations and solutions will be
the ones given in Section 3.2.3 for values of the radial coordinate larger than the “mass of
the flavors” r,,, and the ones of Klebanov-Witten with a non-running dilaton for smaller
radii. Besides from decoupling in the field theory, this clearly indicates that giving a
mass to the flavors “resolves” the singularity. Physically this behavior is expected and
makes these massive flavors even more interesting.

3.5 Conclusions and discussion

Let us briefly summarize the results of this chapter. Following the method of [85] we
constructed a supergravity dual to the field theory defined by Klebanov and Witten
in [20] enriched with Ny flavors of quarks and anti-quarks. We wrote a BPS system of
equations, and we found solutions of it which also solve the second-order EOM’s. We
then proposed a formulation for the dual field theory, with a precise 4d superpotential
that takes into account the smearing in supergravity. We studied these solutions ex-
hibiting many checks with field theory expectations; moreover we used the IR behavior
of the solutions to predict the field theory RG flow, obtaining a result conceivable and
highly non-trivial at the same time. We then generalized the technical approach to any
geometry of the form AdSs x Ms, with M5 a Sasaki-Finstein space. It is surprising
that the same structure and BPS equations repeat for all the manifolds described above.
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This clearly points to some “universality” of the behavior of 4d N’ = 1 SCFT’s with
fundamentals. We gave a geometrical interpretation of the smearing through the charge
distribution 2-form €25, and developed some technical tools easily generalizable even to
other dimensions. In particular, we used these tools to treat the case of massive flavors.

Many things can be done following these results. It is natural to extend the method
to the Klebanov-Tseytlin [60] and Klebanov-Strassler [61] solutions, and this will be
presented in the next chapter. Another thing is to study the dynamics of moving strings
in these backgrounds, details related to dibaryons, flavor symmetry breaking, etc. Even
when technically involved, it should be nice to understand the backreaction of probes
where the worldvolume fields have been turned on, since some interesting problems may
be addressed. An example of this [47] will be given in Chapter 5. Finding black hole
solutions in our geometries, even not an elementary task, would be quite interesting:
this will produce a “well-defined” black hole background where studying, among other
things, plasmas that include the dynamics of color and flavor at strong coupling.

A point that we want to address is what could be the application of these results to
physics. Indeed, it is not easy to find an interesting physical system displaying a Landau
pole (without a UV completion, like QED has, for example). Some applications recently
appeared in the literature [110,111], where the Landau pole or its cousin in cascading
theories (that is a duality wall) is exploited.






Chapter 4

Backreacting flavors in the
Klebanov-Strassler background

In this chapter, we will consider the addition of new degrees of freedom to the Klebanov-
Tseytlin (KT) [60] and Klebanov-Strassler (KS) [61] solutions. These new excitations
will be incorporated in the form of D7 flavor branes, corresponding to fundamental
matter in the dual field theory. The addition of flavors to these field theories was first
considered in [27,79,80].

Let us describe the main achievements of this chapter. We present analytic solutions
of the equations of motion of type IIB supergravity coupled to the DBI + WZ action of
the flavor D7-branes that preserve minimal SUSY in four dimensions; we show how to
reduce these solutions to those found by Klebanov-Tseytlin/Strassler when the number
of flavors is taken to zero. Using them, we make a precise matching between the field
theory cascade (that, enriched by the presence of the fundamentals, is still self-similar)
and the string predictions. We will also match anomalies and beta functions by using
our new supergravity background. The UV of both solutions is dominated by an exotic
phenomenon: a duality wall.

An important new concept introduced in this chapter is that of so-called Page charges.
On the contrary of usual Maxwell charges, Page charges are quantized, conserved but
not gauge invariant. Being quantized, they are more suitable to be identified with ranks
of gauge groups. On the other hand, they transform under large gauge transformations
of the NSNS potential By, and we will give a nice interpretation of this change in terms
of Seiberg duality. Everthing is matched with field theory.

4.1 The setup and the ansatz
We are interested in the addition of a number of flavors comparable to the number

of colors to the Klebanov-Tseytlin (KT) and Klebanov-Strassler(KS) cascading gauge
theories [60,61].

83
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Let us then consider a system of type IIB supergravity plus Ny D7-branes. In this
chapter we will adopt Kuperstein embedding. As extensively discussed in Section 2.4,
the two kinds of embedding give rise to rather different physics when 3-form fluxes
are present. Here we will study Kuperstein embedding on the deformed as well as
singular conifold, in the presence of 3-form flux. Ouyang embedding with 3-form flux
will be considered in Chapter 5, but not on the deformed conifold. The reason and the
difficulties are sketched in Section 2.5.

The dynamics of the branes will be governed by the corresponding Dirac-Born-Infeld
(DBI) and Wess-Zumino (WZ) actions. Our solution will have a non-trivial metric and
dilaton ¢ and, as in any cascading background, non-vanishing RR three and five-form
fluxes F3 and F5, as well as a non-trivial NSNS three-form Hj. In addition, the D7-branes
act as magnetic sources for the RR one-form flux F; through the WZ coupling:

SV%:T?Z/ Cs + -, (4.1)
Ny D7

which generically induces a violation of the Bianchi identity dF} = 0. Therefore our
configuration will also necessarily have a non-vanishing value of F;. The ansatz we shall
adopt for the Einstein frame metric is the following;:

ds® = h(r)~1/? dai 5 + h(r)Y/? {dr2 + ) (o] + 03) +
62G3(r)

9

. 2 2
62G2( )[(21 —+ g(’l") 0‘1)2 + (22 + g(?") 0’2) i| —+ (23 + 0'3) } , (42)
where dz7 5 denotes the four-dimensional Minkowski metric and o; and ¥; (i = 1,2, 3) are
one-forms that can be written in terms of the five angular coordinates (6, 1, 02, @2, 1)
as follows:

o1 = db, Y1 = cos Y sin Oy dpy + sin ) dby
09 = sin 6y dip; Yo = —sin v sin by dps + cos 1 dbs (4.3)
03 = —cos 01 dp; Y3 = dip — cos by dps .

This basis is the same one introduced in Section 2.3.3, however the metric ansatz (4.2)
seems to be different. It depends on five unknown radial functions G;(r) (i = 1,2,3),
g(r) and h(r). However we recover the (warped) singular conifold with the particular
choice: g = 0, €291 = €262 = r2/6, %3 = r%; we recover the (warped) deformed conifold
with the choice:

1 2G, /3 sinh? 7 e 4 3
= — - K 3 — /3 -
97 Coshr ‘ “" Ycoshr (7) ¢ ‘ 2K (1)? (4.4)
G: '
dr = e dr G2 = /3 —COShT K(7),

3
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where K(7) is the function defined in (2.47). More details can be found in Appendix C.
The ansatz for F5 has the standard form, namely:

F5 = —(1 + *) dVOlg}l AN dh(r)*l . (45)

As usual for flavor branes, we will take D7-branes extended along the four Minkowski
coordinates as well as other four internal coordinates. The k-symmetric embedding
of the D7-branes we start from will be discussed in Section 4.5. In order to simplify
the computations, following the same approach as in Chapter 3 [44], we will smear the
D7-branes along the two transverse directions, transforming the prototype embedding
with the SU(2), x SU(2), action, in such a way that the symmetries of the unflavored
background are recovered. As explained in Chapter 3, this smearing amounts to the
following generalization of the WZ term of the D7-brane action:

511?/722772/ Cg 4 -+ — 77/ QNCg + -+, (4.6)
Nf D7 Maio

where ()5 is a two-form which determines the distribution of the RR charge of D7-branes
and My is the full ten-dimensional manifold. €2y acts as a magnetic charge source for
F} which generates a violation of its Bianchi identity. From the equation of motion of
Cg one gets:

dF, = —Q, . (4.7)

We will work in units in which o/ = 1 and g, = 1, if not otherwise specified. In
what follows we will consider the case that the flavors introduced by the D7-branes
are massless, which is equivalent to require that the flavor brane worldvolume reaches
the origin in the holographic direction. Under this condition one expects a D7-brane
charge density independent of the radial coordinate. Moreover, the D7-brane embeddings
that we will smear imply that €, is symmetric under the exchange of the two S%’s
parameterized by (61, 1) and (s, 2), and independent of ¢ (see Section 4.5). The
smeared charge density distribution for Kuperstein embedding, both in the singular and
deformed conifold, is computed in Section 2.5 and is given by (2.79), which turns out to
be equal to the one already adopted in Chapter 3 [44], namely:

N N
QQ = 4—f (Sin91 d(gl A ngl -+ sin92 d92 A d(pg) = 4—f (0'1 N oy — 21 A 22) s (48)
7 7

where the coefficient N;/47 is determined by normalization. With this ansatz for €2,
the modified Bianchi identity (4.7) determines the value of Fj, namely:

N
Fy = —4—f (X5 +03) . (4.9)
T
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The ansatz for the RR and NSNS 3-forms that we propose is an extension of the one
given by Klebanov and Strassler [61] and it is:

M
By = [fgl/\92+k’g3Ag4}

M —k

ngdBQ:?[dr/\(f/glAgz+k/93/\g4)+f2 95/\(91A93+92Ag4)} (4.10)

FS:M{gM[<F+&f>g1/\g2+<1—F+ka>93/\g4]_ .
2 47T 47T

—F’dr/\(gl/\gg+92/\g4)},

where M is a constant, f(r), k(r) and F(r) are functions of the radial coordinate, and
the ¢g'’s are the set of one-forms:

1 o1 — 2 2 o9 — 2o

g \/§ g \/§ g 3 3
(4.11)
93_01+21 gg_Uz—l—EQ
V2 V2o
The forms F3, H3 and Fy must satisfy the following set of Bianchi identities:
ngZ—Hg/\Fl ngZO dF5:—H3/\F3. (412)

The equations for F3 and Hj are automatically satisfied by our ansatz (4.10). In par-
ticular we can always add a flat term Béo) to the NSNS 2-form potential in (4.10), and
still get solutions. As we will see, in the deformed conifold case regularity requires that
/. g2 B2 vanishes at the tip, and hence that term cannot be added; in the singular coni-
fold case instead it can be done. The Bianchi identity for Fj gives rise to the following

differential equation:

d 302 N
W 2G1+2G2+G3} _ [ 1—F+ L4+ (F
e |- F+ R+ (F+

%f)k’+ (k= NF|, (413)

which can be integrated, with the result:

3M? N
B 21ttt — 1 [f —(f—k)F+ 4—ffk + constant . (4.14)
s
Let us now parameterize Fj as
Fs = % (1) g" NG A g* A g* A g® + Hodge dual , (4.15)

such that it holds [, . F5 = (47%)2Ness(r), and Negs(r) can be interpreted as the effective
D3-brane charge at the value r of the holographic coordinate. Moreover we define the
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five-manifold Mj as the section of the 6d internal manifold at some constant value of r.
From our ansatz (4.5), it follows that: 3w Ns;(r)/4 = —h' e2@17262%C3  and taking into
account (4.14), we can write:

2
Neff(T)E@/M F5=N0+M7 f—(f—k)F—i-%fk] , (4.16)

where Nj is the integration constant. It follows that the RR five-form Fj is algebraically
determined once the functions F, f and k that parameterize the three-form flux are
known. Moreover, (4.14) allows us to compute the warp factor as an ordinary integral
once the functions G; and the three-form flux are determined. Similarly, the effective
D5-brane charge is obtained by integrating the gauge-invariant field strength F3 over
the 3-cycle S? defined in M by: {6, = const, py = const}. The result is:

1 N
Meff(’l") 54—’”2/53 F3:M[1+4_7f(f+k)] . (417)
The strategy to proceed further is to look at the conditions imposed by supersymme-
try. In particular, we will propose an ansatz for the Killing spinor which is the same as
the one of the unflavored KS solution. We will smear, as in [44], D7-brane embeddings
that are k-symmetric and, therefore, the supersymmetry requirement is equivalent to
the vanishing of the variations of the dilatino and gravitino of type IIB supergravity
under supersymmetry transformations. These conditions give rise to a large number
of BPS first-order ordinary differential equations for the dilaton and the different func-
tions that parameterize the metric and the forms. In the end, one can check that the
first-order differential equations imposed by supersymmetry imply the second-order dif-
ferential equations of motion, as was proven in Chapter 3 for the case without 3-form
flux.
From the variation of the dilatino we get the following differential equation for the
dilaton: aN
1 _ 2V ¢—Gs
¢ =¢ : (4.18)
A detailed analysis of the conditions imposed by supersymmetry shows that the fibering
function ¢ in the metric ansatz (4.2) is subjected to the following algebraic constraint:

glg® =142 =0, (4.19)

There are two possible solutions, corresponding to two topologically distinct geometries.
The first solution is ¢ = 0, which corresponds to the cases of the flavored singular
conifold and the flavored resolved conifold. The second solution is g? = 1 — e(G1-G2),
which gives rise to the flavored version of the warped deformed conifold. The flavored KT
solution, constructed on the singular conifold, will be presented in Section 4.4, whereas
the flavored KS solution, constructed on the deformed conifold, will be analyzed in

Section 4.3.
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4.2 Maxwell and Page charges

Before presenting the explicit solutions for the metric and the forms of the supergravity
equations, let us discuss the different charges carried out by our solutions. In theories,
like type IIB supergravity, that have Chern-Simons terms in the action (which give rise
to modified Bianchi identities), it is possible to define more than one notion of charge
associated with a given gauge field. Let us discuss here, following the presentation of
ref. [112], two particular definitions of this quantity, namely the so-called Maxwell and
Page charges [113]. Given a gauge invariant field strength Fy_,, the (magnetic) Maxwell
current associated to it and the corresponding Maxwell charge in a volume Vy_, are
defined through the following relations:

_ L Maxwell Mazwell - Mazwell
dFs—p = *jpy Qpp ~ / *1Dp , (4.20)
Vo_p

where the charge requires a suitable normalization. Taking 0Vy_, = Mjg_, and using
Stokes theorem, we can rewrite the previous expression for the charge as:

af ~ [ ey, (121)
Mg

-p

This notion of current is gauge invariant and conserved and it has other properties
that are discussed in [112]. In particular, it is not “localized” in the sense that for a
solution of pure supergravity (for which dFs_, = —Hj3 A Fs_,) this current does not
vanish but rather there can be a continuous distribution of charge in the bulk. These
are the kind of charges we have computed in (4.16) and (4.17), namely:

arwe 1 arwe 1
Mazwell _ =~ [ By Magwell — N .. = e /F5 . (4.22)

472
An important issue regarding these charges is that, in general, they are not quantized.
Indeed, we have explicitly checked that Nes(r) and Ms¢(r) vary continuously with the
holographic variable r (see egs. (4.16) and (4.17)).

There is another notion of charge one can consider, called Page charge. The idea
is first to write the Bianchi identities for F3 and F5 as the exterior derivatives of some
differential form, which in general will not be gauge invariant, and then introduce the
Page current as a source. In our case, we can define the following (magnetic) Page

currents:
d(F3+ By A Fy) = jpa%
1 P (4.23)
d(F5 + BQ VAN F3 + 582 N BQ VAN Fl) = *ngge .

Alternatively, following the formalism of polyforms introduced in Appendix A, one can

write:
P9 = PP = d(eP N F) (4.24)
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where jP%9¢ [Pa9¢ and F are polyforms, i.e. formal sums of forms of different degree.

The currents defined by the previous expressions are “localized” as a consequence of the
Bianchi identities satisfied by F3 and Fy: dF3 = —H3 A Fy and dF5; = —Hs A F3. The
Page charges Qggge and Qg?,)ge are just defined as the integrals of *j l];gge and *7 l];gge with
the appropriate normalization:

1 1
Page -Page Page -Page
D5 T i v *J D5 D3 = g2y /Vo *Ip3~ > (4.25)

where V; and Vg are submanifolds in the transverse space to the D5- and D3-branes

respectively, which enclose the branes. By using the expressions of the currents jpe?°

and *j1% given in (4.23), and by applying Stokes theorem, we get:

1
= — (F3+BQAF1)

47'(' S3 426)
page _ 1 /<F+B/\F+1B/\B/\F> ('
D3 _(47r2)2 . 5 2 35 D2 2 1)

where S® and Mj are the same manifolds used to compute the Maxwell charges in eqs.
(4.16) and (4.17). It is not difficult to establish the topological nature of these Page
charges. Indeed let us consider, for concreteness, the expression of Q529 in (4.26). The
three-form under the integral can be locally represented as the exterior derivative of a
two-form: F3+ By AF} = dCy+d(Bs A Cp), with Cy being the RR two-form potential. If
Cy were well-defined globally on the S?, the Page charge Q1% would vanish identically
as a consequence of Stokes theorem. Thus, Qg‘;ge can be naturally interpreted as a
monopole number and it can be non-vanishing only in the case in which the gauge field
is topologically non-trivial. Non-trivialities in Cjy do not contribute, since Cy — Cy + ¢
is accompanied by Cy — C5 — ¢ By. On the other hand, large gauge transformations on
B, do change Page charges, by an integer amount. For the D3-brane Page charge Qe
a similar conclusion can be reached.

Due to the topological nature of the Page charges defined above, they are quantized
and, as we shall shortly verify, obviously independent of the holographic coordinate.
This shows that they are the natural objects to count the number of branes that create
the geometry in these backgrounds with varying flux, and to be matched with gauge
ranks in field theory. However, as it is manifest from the fact that Qg‘;ﬁe and Qg‘;ﬂe are
given in (4.26) in terms of the Bs field and not in terms of its field strength Hj, Page
charges are not gauge invariant. In subsection 4.6.1 we will relate this non-invariance to
Seiberg duality on the corresponding field theory.

Let us now calculate the Page charges associated to our 3-form flux ansatz (4.10).
We shall start by computing the D5-brane Page charge for the three-sphere S® defined
by: {6y = const, ps = const}. We already know the value of the integral of F3, which

gives precisely M. s (see eq. (4.17)). Taking into account that

/9395/\g1A92:/SSgE’/\g?’/\g4287r2, (4.27)
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we readily get:

1 M Ny
— BoANF} = ——21 k 4.28
and therefore: MN
Page — M,zs — —47Tf (f+k)=M, (4.29)

using the expression of M, ¢ given in (4.17). Thus the value of the Page D5-charge is in
fact quantized and independent of the radial coordinate.

Let us now look at the D3-brane Page charge, which can be computed as an integral
over the angular manifold Mj5. Taking into account that

/ G ANPANF NG NG = (4r)?, (4.30)
Ms

we get that, for our 3-form flux ansatz (4.10):

! /MSBQAFB——M{ (= mF+ oL k]

2\2
(47; ) 1 . 2m (4.31)
Tt /M5§Bg/\Bg/\F1 = 7Efk’
and thus: 9

using the explicit expression of N.ss(r). Again the Page charge is independent of the
holographic coordinate, and must be quantized. Recall that these Page charges are not
gauge invariant and we will study in Section 4.6.1 how they change under large gauge
transformations.

We now proceed to present the solutions to the BPS equations of motion.

4.3 Flavored warped deformed conifold

Let us now consider the following solution of the algebraic constraint (4.19):
g*=1—d1=C2) (4.33)

In order to write the equations for the metric and dilaton in this case, let us perform
the following change of variable:

3e % dr =dr . (4.34)

In terms of this new variable, the differential equation for the dilaton is simply:

Ny
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where the dot means derivative with respect to 7. This equation can be straightforwardly
integrated, namely:
R |

6¢ —_

with 0<7<m, (4.36)

where 7 is an integration constant. Let us now write the equations imposed by super-
symmetry to the metric functions G, G5 and G3, which are:

0= Gl . i GQGg—Gl—GQ . 1€G2_G1 + 1 eGl—Gg

18 2 2
. 1 1 1
0 = G2 — E €2G37G17G2 + 5 €G27G1 — 5 €G17G2 (437)
0= Gg + 1eQG?’_Gl_GZ’ — el 4 & e? .
9 8

This system of differential equations can be explicitly solved. In order to compactly
write the solution, let us define the following function:

1/3
[2(7’ — 70)(7 — sinh 27) + cosh 21 — 277y — 1]
AT) = ) 4.38
(7) sinh 7 ( )
Then, the metric functions G; are given by:
26 _ ﬁ sinh? 7 T) (205 _ a0 T
4 coshr A(7)?

s (4.39)

62 = ET cosht A(7) ,

where € is an integration constant. The range of the variable 7 chosen in (4.36) is the
one that makes the dilaton and the metric functions real. Moreover, for the solution we
have found, the fibering function ¢ is given by:

1

= ) 4.40
97 Coshr (4.40)

By using this result, we can write the metric as:
ds? = h(r)~Y/? dzi 5 + h(T)Y? ds? (4.41)

where ds? is the metric of the “flavored” deformed conifold, namely

, 3
d86 = 7 A(T)

A(1o — T)

() (0 27) e (3) (8 5 677)

2
+ sinh? (%) ((91)2 + (92)2)} . (4.42)
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Notice the strong similarity between this metric and the one corresponding to the “un-
flavored” deformed conifold [61], reported in (2.46). To further analyze this similarity,
let us study the Ny — 0 limit of our solution. By looking at the expression of the
dilaton in (4.36), one realizes that this limit is only sensible if one also sends 75 — 400
with Ny7 fixed. Indeed, by performing this scaling and neglecting 7 versus 7, one gets
a constant value for the dilaton. Moreover, the function A(7) reduces in this limit to
A(T) =~ (479)Y3K(7), where K(7) is the function appearing in the deformed conifold
metric, namely:

( sinh 27 — 27') /3

21/3sinh 7
By using this result one easily verifies that, after redefining e — €/(47)
(4.42) reduces to the one used in [61] for the unflavored system.

The requirement of supersymmetry imposes the following differential equations for
the functions k, f and F' appearing in the fluxes of our ansatz:

K(r) = (4.43)

/4 the metric

(. N T
_ ¢ Ny ) 2T
b= <F+47Tf coth”
f=e? (1—F+?k5> tanh? = (4.44)
T 2
.1
_ =9 _
kF—Qe (k—f).

Notice again that for Ny = 0 the system (4.44) reduces to the one found in [61], reported
in (2.51). Moreover, for Ny # 0 this system is solved by:

tht —1 inhr —
e_‘z’f:TCO- T (cosh 7 — 1) F:sm .7' T
2sinh 7 2sinh 7 (4‘45)

Tcotht —1
_— h 1
2sinh 7 (cosh7 +1).,

where e? is given in eq. (4.36). Now, by using the solution for the metric (4.45) and the
one for the 3-form flux (4.39) in the differential equation for the warp factor h(7) (4.14),

we can integrate it. Actually, if we require that h is finite at 7 = 0, the integration
constant Ny in (4.16) must be chosen to be zero. In this case, we get:

hr) 7 M? /T zcothx — 1
T)=— :
4 €8/3Ny (x — 7)?sinh® z
—cosh2z +42° — dary +1 — (v — 27p) sinh 233 dr (4.46)
(cosh 2z + 222 — dx7y — 1 — 2(z — 7o) sinh 2z)

The integration constant of this last integral can be fixed by requiring that the analytic
continuation of h(7) goes to zero as 7 — 400, which should correspond to the decoupling
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limit. This at least is true when one takes the (scaling) limit to the unflavored Klebanov-
Strassler solution. Then, close to the tip of the geometry, h(7) ~ hy — O(7?).

We should emphasize now an important point: even though at first sight this solution
may look smooth in the IR (7 ~ 0), where all the components of our metric and 3-form
flux approach the same limit as those of the KS solution (up to a suitable redefinition of
parameters) and none of them diverges, there is actually a curvature singularity. Indeed,
in Einstein frame the curvature scalar behaves as Rg ~ 1/7.} This singularity of course
disappears when taking the unflavored limit, using the scaling described above.

The solution presented above is naturally interpreted as the addition of fundamentals
to the KS background [61]. In the next section, we will present a solution that can be
understood as the addition of flavors to the KT background [60].

We conclude by noticing that in (C.29) we find holomorphic coordinates on the fla-
vored deformed conifold, with which one can show that the D7-brane embedding is
holomorphic on the flavored background as well and thus the D7’s are still supersym-
metric.

4.4 Flavored singular conifold with 3-form flux

Let us now consider the solutions with ¢ = 0. First of all, let us change the radial variable
from r to p, where the later is defined by the relation dr = e“? dp. The equation for the
dilaton can be integrated trivially:

1

¢ o .
e = ——— with p<0. (4.47)

3Ny (=p)
Supersymmetry requires now that the metric functions G; satisfy the following system
of first-order differential equations:

. 1
Gi = 6 €2G372Gi (7, = 1, 2)
4.48)
. 1 1 3N (
Gla — 3 — = ¢2G3=2G1 _ ~ 2G3-2Gy _ I
5 6° 6° st

where dot indicates derivative with respect to p. This system is equivalent to the one
analyzed in Chapter 3 [44] for the Klebanov-Witten model with flavors. In what follows
we will restrict ourselves to the particular solution with GG; = G5 given by:

1
200 = 202 — 5 (1—6p)t/3e* 2% = —6p (1 —6p) 23e> . (4.49)
There are also solutions with G; # (G5, describing a resolution of the conifold; some
of them has been discussed in Section 3.3.5. As in Chapter 3, the range of values of p

e

!The simplest example of this kind of singularity appears at r = 0 in a 2-dimensional manifold whose
metric is ds? = dr? + r?(1 + r)de>.
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for which the metric is well defined is —oo < p < 0. The equations for the 3-form flux
functions f, k and F are:

f—l%;:2e¢F
f+l%:3e¢[1+iv—7i(f+k)} (4.50)
Py (- 5hu -]

Here we will only focus on the particular solution of this system with f = k and constant
F', namely:
1 27 r

F= k= <(_p) 1) , (4.51)
where I' is an integration constant. By substituting these values of F', f and k in the
3-form flux ansatz (4.10), we obtain the form of F5 and Hz. The constants M and I’
only appear in the combination MT'. Accordingly, let us define M as M = MI'. We
will write the result in terms of the function:

MT M
Mesi(p) = — = —— . (4.52)
1 —p) ~ (-p)
One finds: Masi ()
Fy = eJZP 95/\(91/\92—{—93/\94)
4.53)
m Meff(ﬂ) 1 2 3 4 (
Hy = — dpN(g Ng"+g°Ng") .
Ny (=p) ( )

The RR five-form Fj can be written as before in terms of the effective D3-brane charge
Negr(p), obtained by integrating it over M. For the present solution (4.51) one gets:

~ M? 1
N, =Ny+— —, 4.54
11(0) = No+ 0 (4.54)

where we wrote the integration constant as the different combination: NO = No—M?/N £
By using the warp factor differential equation (4.14), one can integrate it:

M? 1 e~r

h(p) = —277r/dp [N0+ Ny ) 6 (4.55)

To interpret the solution just presented, it is interesting to study it in the deep IR region
p — —oo. In this limit the three-form fluxes F3 and Hj vanish. Actually, it is easy to
verify that for p — —oo the solution obtained here reduces to the one studied in Chapter
3 [44], corresponding to the Klebanov-Witten model [20] with flavors. To understand
the asymptotic geometry in this IR region, it is convenient to go back to our original
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radial variable r. The relation between r and p for p — —oo is r ~ (—6p)/%e”. For
p — —oo (or equivalently r — 0), the warp factor h and the metric functions G; become:

27N, 1 T

T © T %
This implies that the IR Einstein frame metric is AdSs x T%! plus logarithmic corrections,
exactly as the solution found in Chapter 3. The interpretation of the RG flow of the
field theory dual to this solution will be explained in Sections 4.5 and 4.6.

Finally, let us stress that the UV behavior of this solution, which is the same as for
the flavored deformed conifold solution of Section 4.3, presents a divergent dilaton at
the point p = 0 (or 7 = 7 for the flavored deformed conifold). Hence the supergravity
approximation fails at some value of the radial coordinate that will be associated in
Section 4.6 with the presence of a duality wall [114] in the cascading field theory.

h(r) =~ %~ r? . (4.56)

4.5 The field theory: a cascade of Seiberg dualities

The field theory dual to our supergravity solutions can be engineered by putting stacks
of two kinds of fractional D3-branes (color branes) and two kinds of fractional D7-branes
(flavor branes) on the singular conifold. The smeared charge distribution introduced in
the previous sections can be realized by homogeneously distributing D7-branes among
a class of localized k-symmetric embeddings. The (complex structure of the) deformed
conifold is described by one equation in C*: 2129 — 2324 = €2. This has isometry group
SU(2), x SU(2),, where the non-Abelian factors are realized through left and right
multiplication on the matrix (2 %). We can also define a U(1)p action, which is a
common phase rotation, that is broken to Zs by the deformation parameter €. Consider
the embedding [80]:

21+ 29 = 0 s (457)

which is called Kuperstein embedding and was described in Section 2.4.2 This is invariant
under U(1)g and a diagonal SU(2)p (and a Zs which exchanges z3 < z4). Moreover it
is free of Cy tadpoles and it was shown to be k-symmetric in [80]. It could be useful to
write it in the angular coordinates of the previous section:

Yk ={bb=m—01, po =1 — 1, VO, V7}. (4.58)

The relation between angular and complex coordinates is in Appendix C. We can obtain
other embeddings with the same properties by acting on it with the broken generators.
It was shown in Section 2.5 that the charge distribution obtained by homogeneously
spreading the D7-branes in this class is (4.8):

N
QQ = 4—f (Sin 91 d91 A d§01 + sin 92 d02 A dSOZ) ) (459)
T

2We used there the equation z3 — z4 = 0, which gives a more elegant form in angular coordinates.
Here we just take an equivalent SU(2)-transformed equation, giving a more elegant superpotential term.
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Figure 4.1: The quiver diagram of the gauge theory. Circles are gauge groups, squares
are flavor groups, and arrows are bifundamental chiral superfields. Ny and Nyy sum up
to N f-

where Ny is the total number of D7-branes.

Notice that one could have considered the more general embedding: z; + 20 = m,
where m corresponds in field theory to a mass term for quarks. These embeddings and
their corresponding supergravity solutions are not worked out here.

Different techniques have been developed to identify the field theory dual to our
type IIB plus D7-branes background, which can be engineered by putting r; fractional
D3-branes of the first kind, r, fractional D3-branes of the second kind, Ny, fractional
D7-branes of the first kind, and Ny, fractional D7-branes of the second kind (I,s = 1,2
stand for larger and smaller gauge ranks) on the singular conifold, before the deformation
has dynamically taken place.

Here a subtlety arises. As explained in Section 2.4, the difference between the two
fractional D7-branes is a Wilson line at the UV boundary Lens space S®/Z,. In the UV
this does not change the embedding, nor the worldvolume fluxes, nor the supergravity
solution. As a result, the UV gauge dynamics is effectively the same independently of
what gauge group the flavors couple to (the flavor dynamics is instead different). On the
contrary, a supersymmetric Wilson line forces one to introduce some worldvolume flux
in the IR, and then the IR supergravity solution is strongly affected. This is especially
apparent on the deformed conifold and its field theory dual. Since in this section we
analyze UV properties, we will consider generic Ny and Ny, even if our solutions in the
IR describe flavors on one side of the quiver only.

The properties of the different kinds of fractional branes will be explained at the end
of this section and in Section 4.6; what matters for the time being is that this brane
configuration gives rise to a field theory with gauge groups SU(r;) x SU(r,) and flavor
groups U (Ny;) and U(Ny,) for the two gauge groups respectively, with the matter content
displayed in Figure 4.1. The most convenient technique for our purpose has been that of
performing a T-duality along the isometry (z3,24) — (€23, "“24) (one does not need
the metric, only the complex structure). The system is mapped into type ITA: neglecting
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the common spacetime directions, there is a NS5-brane along z*?, another orthogonal

NS5 along 29, r; Dd-branes along 2% (which is a compact direction) connecting them on
one side, other 7y D4’s connecting them on the other side, Ny; D6-branes along z” and at
a /4 angle between z*° and 2, touching the stack of r; D4-branes, and Ny D6-branes
along 27 and at a m/4 angle between %% and x*°, touching the stack of r, D4-branes.
Then the spectrum is directly read off, and the superpotential can be deduced from the
analysis of the moduli space. In our cascading theories, we will give an independent
argument for the superpotential, based on Seiberg duality.

The field content of the gauge theory can be read from the quiver diagram of Figure
4.1: it is an extension of the Klebanov-Strassler field theory with non-chiral flavors for
each gauge group. The superpotential is 3

W = X(A1B1AyBy — A1 ByAsBy) + hy (A1 By + AsBs)q + he Q(BIAI + By A2)Q +
+aqqgq + BRAQQ . (4.60)

The factors A1 By + Ay By directly descend from the embedding equation (4.57), while
the quartic term in the fundamental fields is derived from type IIA. This superpotential
explicitly breaks the SU(2), x SU(2), global symmetry of the unflavored theory to a
diagonal SU(2)p, but this global symmetry is recovered after the smearing (see Section
3.2.5 for a careful treatment of the smearing procedure and its effect on the field theory).
It’s worth here to stress that the smearing procedure does not influence at all either the
duality cascade, which is the main feature of our solutions that we want to address here,
nor (presumably) the infrared dynamics.

We consider the Ny flavors split into Ny and Ny, groups, according to which gauge
group they are charged under. Both sets come from D7-branes along the embedding
(4.57). As we said, what discriminates between these two kinds of fractional D7-branes
is their coupling to the C5 and C) gauge potentials. On the singular conifold, before
the dynamical deformation, there is a vanishing 2-cycle, living at the singularity, which
the D7-branes are wrapping.* According to the worldvolume flux on it, the D7’s couple
either to one or the other gauge group. Since this flux is stuck at the origin, far from the
branes we can only measure the D3, D5 and D7-charges produced. Unfortunately three
charges are not enough to fix four ranks. This curious ambiguity will show up again in
Section 4.6.

4.5.1 The cascade

Let us start assuming that, as in the unflavored case, the -functions of the two gauge
couplings have opposite sign. When the coupling of the gauge group with larger rank
diverges, one can go to a Seiberg-dual description [72]: the quartic superpotential is such

3Sums over gauge and flavor indices are understood.
4Since the D7-brane has 4 internal directions, even if it wraps the two-cycle living only at the
singularity, still, outside of it, it is four-dimensional.
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that the field theory is self-similar, namely the dual field theory is a quiver gauge theory
with the same field content and superpotential, except for changes in the ranks of the
groups. Notice that this is not the case for the chirally flavored version of Klebanov-
Strassler theory proposed by Ouyang [79], and for the flavored version of non-conformal
theories obtained by putting branes at conical Calabi-Yau singularities [115]. In those
realizations the superpotential is cubic, and the theory is not self-similar under Seiberg
duality: new gauge singlet fields appear or disappear after a Seiberg duality, making the
cascade subtler. This will be the subject of Chapter 5.

More strongly, even starting with a superpotential that lacks the quartic coupling in
(4.60), such a coupling is immediately produced by Seiberg duality at the lower step.
This proves that, generically, the quartic coupling is present.

Let us define the theory at some energy scale to be an SU(r;) x SU(r,) gauge theory
(I, s stand for larger and smaller gauge group), with flavor groups U(Ny;) and U(Nys)
respectively. At some step we can set, conventionally, r; = ry, 75 = 79, Ny = Ny,
N¢s = Nyo; after a Seiberg duality on the gauge group with larger rank, the field theory
is SU(2ry —r1 + Ng1) x SU(ry), with again Ny and Ny, flavors respectively. But now
the role of larger and smaller group is exchanged, and we have to relabel the ranks:
1y =713, s =2rg — 11+ Nys1, Njy = Nz and Ny, = Ny;. Schematically:

Ny — SU(ry) x SU(rg) — Nyo
| (4.61)
Npy — SU(ry) x SU(2ry =11+ Npy) — Np

that generates the following flow of ranks:

T —>7“2:7’5 Nfl HN}l:Nfs 462
7’5—>T;:27’5—T1+Nﬂ NszN}s:Nfs- ( )

The assumption leads to an RG flow which is described by a cascade of Seiberg
dualities, similar to [60,61]. In the UV the ranks of the gauge groups are much larger
than their disbalance, which is much larger than the number of flavors. Hence the
assumption is justified in the UV.

The supergravity background on the deformed conifold of Section 4.3 is dual to
a quiver gauge theory where the cascade goes on until the IR, with non-perturbative
dynamics at the end, as in the Klebanov-Strassler solution.

In the background on the singular conifold of Section 4.4, the cascade does not
take place anymore below some value of the radial coordinate, and it asymptotes to the
flavored Klebanov-Witten solution of Chapter 3. In field theory this reflects the fact that,
because of a suitable choice of the ranks, the last step of the cascade leads to a theory
where the (-functions of both gauge couplings are positive. The infrared dynamics is
the one previously discussed, but with a quartic superpotential for the flavors.

The description of the duality cascade in these solutions and its interesting ultraviolet
behavior will be the content of the next section.
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4.6 The cascade: supergravity side

Integrating fluxes over suitable compact cycles, we can compute three effective D-brane
charges, which will be useful to read off the changes in the gauge group ranks under
Seiberg dualities: the D7-charge, that is constant along the RG flow, and the D3- and
D5-charge, which instead run. The (Maxwell) D3-charge N.¢¢(7) and D5-charge M. ¢(7)
has been computed for our ansatz in Section 4.1, see (4.16) and (4.17). The D7-charge
is computed by integrating dF; on a 2-manifold with boundary, that intersects each
D7-brane exactly once, for instance Dy = {05 = const, s = const, ¥ = const}. This
quantity is constant along the flow, since it is equal to the total number of D7-branes:

Niovor = — / dF, = Ny . (4.63)
Do

Another useful quantity is the integral of By over the 2-cycle of TV S% = {6, = 0,,
p1 = —9, ¥ = const}. We get:

1 My, 59 (0
bo(T) = R/Sz By = ?<fs1n2 ) + k cos® 5) . (4.64)

This quantity is important because string theory is invariant as it undergoes a shift of
one unit. For instance, in the KW background it amounts to a Seiberg duality, and the
same happens here. So we will identify a shift in the radial coordinate T such that by(7)
is reduced by one unit, and we will ask what happens to M.ss(7) and N.s(7) under the
same shift.

Actually, the cascade will not work along the whole flow down to the IR but only
in the UV asymptotic region (below the UV cut-off 75 obviously). The same happens
for the unflavored solutions of [60] and [61]: in the KT solution one perfectly matches
the cascade in field theory and supergravity, while in the KS solution close to the tip of
the warped deformed conifold the matching is not so clean. On the other hand, this is
expected, since the last step of the cascade is not a Seiberg duality. Thus we will not be
worried and compute the cascade only in the UV asymptotic region for large 7 which
also requires 75 > 1 (we neglect O(e~7)): in that regime the functions f and k become
equal, and by is Y-independent.

Defining 7" < 7 as the radius such that by reduces by one unit, the shift suffered by
the functions f and k, moving towards the IR, is:

fr) = f(7) = f(r) -

bo(T) — bo(7") = bo(7) — 1 = /
k(t) — k(') = k(1) —

(4.65)

SEEE
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Correspondingly, the effect of one Seiberg duality towards the IR is:

Nf — Nf
) Ny
Mess(T) — Mepp(T') = Megpp(7) — o (4.66)
N
Nepp(T) = Negp(m') = Nepp(1) — Megp(7) + Tf :

This result is valid for all of our solutions.

We want to compare this result with the action of Seiberg duality in field theory, as
computed in Section 4.5 and summarized in (4.62). To do that we need an identification
between supergravity brane charges and field theory ranks.

The field theory has gauge group SU (r;) x SU(rs) (1, > r5), and flavor groups U(Ny)
and U(Ny;) respectively. It can be engineered, at least effectively at some radial distance,
by the following objects: r; fractional D3-branes of the first kind (D5-branes wrapped on
the shrinking 2-cycle), r, fractional D3-branes of the second kind (D5-branes wrapped
on the shrinking cycle, supplied with —1 quanta of worldvolume flux on the 2-cycle),
Ny, fractional D7-branes without worldvolume flux on the 2-cycle, and Ny; fractional
D7-branes with —1 units of flux on the shrinking 2-cycle. This description is good for
bo € [0,1].

This construction can be checked explicitly in the case of the N' = 2 C x C?/Z,
orbifold [26, 116], where one is able to quantize open and closed strings for the case
by = 1/2 that leads to a free CFT [117]. That is the N = 2 field theory which flows
to the field theory we are considering, when opposite masses are given to the adjoint
chiral superfields (the geometric description of this relevant deformation is a blowup of
the orbifold singularity) [20,22]. Fractional branes are those branes which couple to the
twisted closed string sector.’

Here we will consider a general background value for Bs. In order to compute the
charges, we will follow quite closely the computations in [25].

We compute the charges induced by D7-branes and wrapped D5-branes on the sin-
gular conifold, or more precisely on the resolved conifold (charges are independent of
the resolution parameter). The D5 Wess-Zumino action is

SD5:7-5/ {C6+(27TF2+BQ)/\C4} y (467)
R3,1x 52

where S? is the conifold 2-cycle, vanishing at the tip, that the D5-brane wraps. We write

®Notice that one can build, out of a fractional D3 of one kind and a fractional D3 of the other kind, a
regular D3-brane (i.e. not coupled to the twisted sector) that can move outside the orbifold singularity;
on the contrary, there is no regular D7-brane: the two kinds of fractional D7-branes, extending entirely
along the orbifold, cannot bind into a regular D7-brane that does not touch the orbifold fixed locus and
is not coupled to the twisted sector [26].
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also a worldvolume gauge field F, on S2. Then we expand:
By = 412 by o F=2n®0,, (4.68)

where @y is the 2-form on the 2-cycle, which satisfies f g2 w2 = 1. In this conventions, by
has period 1, and ® is quantized in Z. We obtain (using 7,(47?%) = 7,_2):

Sps =7 / Co+ 3 / (®+bo) Cs . (4.69)
R3.1xS2 R3.1

The first fractional D3-brane [70] is obtained with ® = 0 and has D3-charge by, D5-charge
1. The second fractional D3-brane is obtained either as the difference with a D3-brane,
or as an anti-D5-brane (global — sign in front) with & = —1, and has D3-charge 1 — by,
Db5-charge —1. These charges are summarized in Table 4.1.

Now consider a D7-brane along the surface z; 4z, = 0 inside the conifold z; 2o — 2324 =
0. It describes the surface 2z} + 2324 = 0, which is a copy of C?/Z,; = 3. The D7 Wess-
Zumino action is (up to a curvature term considered below):

1
SD? = T7/ {Cg+ (27T F2+BQ) /\C6+ 5(27TF2 +Bg) A (27’(’ F2+B2) /\04} . (470)
R3:1x¥®

The surface Y has a vanishing 2-cycle at the origin, which coincides with the one of the
conifold. Hence we can expand 2-forms on ¥ using the pull-back of @, again. Moreover,
since there is only one 2-cycle on X, @y must be proportional to its Poincaré dual; the
normalization is fixed by the self-intersection of S?, which is —2. Then

1
/(IJQ/\CYQ:—/ 9 (471)
by 2 52

holds for any closed 2-form .5 There is another contribution of induced D3-charge
coming from the curvature coupling [118]:

R
(QW)Q/ CiATrRy ARy = —73/ con R (4.72)
R3.1x5 R3.1 %% 48

T7

96

This can be computed in the following way. On K3 p;(R) = 48 and the induced D3-
charge is —1. In the orbifold limit K3 becomes T*/Zy which has 16 orbifold singularities,
thus on C?/Z, the induced D3-charge is —1/16. Putting all together we get:

SD7=T7/ Cs + 2 (@+00)Co + = | [(@+bo)?
R3:1xX2

Cy. (473
2 Jrsirso 4 Jpsa ] v (47)

1
4

6To do things properly, Jg2 @2 = —1. Then the second term in (4.69) has a minus sign, which is
compatible with the fact that our background has actually anti-D3-branes, see Sections 2.3 and A.
Eventually, [, &2 A g = (1/2) [o ap and [ &y A @y = —1/2, consistently. This also matches with the
self-intersection being —2.
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Object frac D31y frac D39 frac D7y frac D7(g)
4(bg —1)2 =1  4b2 —1

D3-charge bo 1— b (b 16) 016

by — 1 bo

D5-ch 1 -1 —
charge 5 5
D7-charge 0 0 1 1

Number of objects 7 rg Ny Ny,

Table 4.1: Charges of fractional branes on the conifold

The second fractional D7-brane (the one that couples to the second gauge group) is
obtained with ® = 0 and has D7-charge 1, D5-charge by/2 and D3-charge (462 — 1)/16.
The first fractional D7-brane (coupled to the first gauge group) has ® = —1 and has
D7-charge 1, D5-charge (by—1)/2 and D3-charge (4(bp—1)*—1)/16. This is summarized
in Table 4.1. Which fractional D7-brane provides flavors for the gauge group of which
fractional D3-brane can be determined from the orbifold case with by = 1/2 (compare
with [26]).

Given these charges, we can compare with the field theory cascade. First of all we
construct the dictionary:

Ny = Nyg+ Ny
by — 1 bo
Meff:rl_rs"i_ 9 Nfl—i_ENs (474)
4(1 —by)? -1 A2 — 1
Neff:borl+(1—bo)7“s+‘( 12) Np+ =g Nos

To derive this, we have only used the brane setup that engineers the field theory, and
summed up the D7-; D5- and D3-charges.

It is important to remember that by is defined modulo 1, and shifting by by one unit
amounts to go to a Seiberg dual description in field theory. At any given energy scale
there are infinitely many Seiberg dual descriptions of the field theory, because Seiberg
duality is exact along the RG flow [73]. Among these different pictures, there is one
which gives the best effective description of the degrees of freedom around that energy
scale, and has positive squared gauge couplings: it is the one where by has been redefined,
by means of a large gauge transformation, so that by € [0, 1] (see Section 4.6.1). This is
the description that we use.

As before, consider the action of Seiberg duality on the field theory ranks, schemat-
ically summarized in (4.61) and (4.62). The effective D5- and D3-brane charges of the



4.6 The cascade: supergravity side 103

brane configuration before the duality are:

by — 1 b
Meffzrl—TQ—i- 0 Nf1+—0Nf2
X 4(12b)2 1 a2 -1 (4.75)
Ny =Db 1—0p Sl 7 V¢ Y
1 ="bor1+( 0) 12 + 16 1 16 2
After the duality they become:
by — 1 b N
Méff:(Tl—TQ—Nfl)—’— 02 Nf2—|—§0 leMeff_Tf
41 —by)* -1 42 — 1
Néff:b0T2+(1—bo)(2T2—T1+Nf1)+%NfQ+ 016 Nfl (476)
Ny
= Nepp = Megs + -

They ezactly reproduce the SUGRA behavior (4.66).

We conclude with some remarks. Even though the effective brane charges N.;(7)
and M.sr(7) computed in supergravity are running and take integer values only at
some specific radii, the ranks of gauge and flavor groups computed from them with
the dictionary (4.74) are constant and integer (for suitable choice of the integration
constants). This is because, as the charges run, by(7) runs as well. Anyway, in the next
section we will see a more efficient way of identifying ranks.

Notice also that the fact that M., shifts by N;/2, instead of Ny, confirms that the
solution we are describing has non-chiral flavors (with a quartic superpotential), rather
than chiral flavors (with a cubic superpotential) like in Chapter 3 where we used Ouyang
embedding [79], in which case the shifts would have been in units of Ny.

4.6.1 Seiberg duality as a large gauge transformation

Here we present an alternative way of understanding Seiberg duality in supergravity at
a fired energy scale. For a given value of the holographic coordinate 7, the value of b
lies generically outside the interval [0, 1]. However, the flux of the Bs field is not a gauge
invariant quantity in supergravity and can be changed with a large gauge transformation.
Let us define wy as the following 2-form:

1 1
w =5 (GNP +gPNgh) = 3 (sin6y dby A dpy — sinby dfs A dips) | (4.77)
and let us change B, as follows:
BQ — BQ + ABQ s ABQ = —NT Wy ne. (478)

Since dw, = 0, the field strength Hj3 does not change and our transformation is a gauge
transformation of the NSNS field. However the flux of By does change as:

/B2 — By — 47 n | (4.79)
52 52
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that is by — by —n. The non-invariance of the flux shows that the transformation of B, is
a large gauge transformation which cannot be globally written as ABy = dA. Moreover,
as always happens with large gauge transformations, it is quantized.

In the next section we will need the transformation induced on a potential Cy, defined
as: F3+ By AN F| = dég. We find that d6~’2 must change as

. aN
AdCy = % wa A g° (4.80)

The corresponding variation of Cy can be written as

~ N
ACy = r f (v —3) (sin @y dby A dpy — sin Oy dOy N dps) + cos By cos by dpy A dgpg] ,
(4.81)

where 1] is a constant.

Let us now study how Page charges change under large gauge transformations. From
their definition in (4.26), the variation is easily computed. Plugging in our ansatz for
Fy, F3 and B, (4.10) we get:

Nf

N
5 AQTH = n M + n? = (4.82)

A Page _
@ps 4

The variation under a single transformation is obtained with n = 1. Recall that for our
ansatz Qe = M and QLY = Ny, see eqs. (4.29) and (4.32). Thus we can rewrite
them as:

AQPage o % AQPage - Page +n ]Zf (483)

At a given holographic scale 7 we should perform as many large transformations as
needed to have by € [0, 1]. Given that by is a monotonically increasing function of the
holographic coordinate, the transformation (4.83) with n = 1 corresponds to the change
of ranks under one Seiberg duality towards the UV, while n = —1 corresponds to going
towards the IR.

Exploiting the relations we found in Section 4.2 between Maxwell and Page charges
in our solutions (again, what we use is just the flux ansatz (4.10)), and the dictionary
(4.74) that we constructed between Maxwell charges and the field theory ranks, one
could get an explicit expression of QDage and Qp3 Page i1 terms of the ranks ry, rs, N 7l
and Ny,. Unfortunately, this method is not very powerful and we will only perform the
computation in a region of the RG flow where the functions f = k. First of all, in our
ansatz the relation between the NSNS flux by and f is (4.64)

bo(7) = % f(r). (4.84)
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With this, we can rewrite the Page charges (4.29) and (4.32) in terms of by, obtaining:
Ny
2
age N
D3 = Negs(7) = Mbo(r) = = bo(7)*

D¢ = Megs(7) bo(T) = M

(4.85)

In the second expression, we can eliminate M in favor of M.s;. Eventually, we can
assume that we have chosen our gauge such that, at the given holographic scale, by €
[0,1]. In that case, we can use the dictionary (4.74) that relates M.s¢ and Ness to the
field theory ranks, in the sensible description. The result is:

3N — Ny,
Dy =TI —Ts— —— ggge =Ts+ —ﬂm I (4.86)

As they should, the two expressions are independent of by, as far as by € [0, 1]. We stress
that the derivation of this result only holds when f = k. However, a fast look at Table
4.1 reveals that the Page charges are equal to the Maxwell charges for probes, with
bp = 0. This is a general result, valid everywhere in the solution: Page charges are only
sourced by branes and worldvolume fluxes, but not by a pulled-back NSNS potential
(the corresponding WZ action term is cancelled by the bulk Chern-Simons term). Thus
(4.86) is always true.

Finally, let us point out that in this approach Seiberg duality is performed at a fixed
energy scale and M,y; and N,y; are left invariant: Maxwell charges are gauge invariant.

From eqs. (4.86) it is clear that the Page charges provide a clean way to extract the
ranks and number of flavors of the corresponding (good) field theory dual at a given
energy scale. Actually, the ranks of this good field theory description change as step-like
functions along the RG flow, due to the fact that by varies continuously and needs to
suffer a large gauge transformation every time that, flowing towards the IR, it reaches

the value by = 0 in the good gauge. This large gauge transformation changes Qe and
ggge in the way described above, which realizes in supergravity the change of the ranks

under a Seiberg duality in field theory.

4.6.2 R-symmetry anomalies and [-functions

We can compute the G-functions (up to the energy-radius relation) and the R-symmetry
anomalies for the two gauge groups both in supergravity and in field theory, in the spirit
of [26,119,120]. In the UV, where the cascade takes place, they nicely match. For the
comparison we make use of the following holographic formulee (see Section 2.6):

(4.87)
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2
oM oM = 22 ¢,
Js (4.88)

1 47 1 1
gYM _ gvM _ /C ilg) (—/B ——>.
! B T gs Jg2 2 g5 " \dr2e/ 52 ? 2

We defined yx; = 87°/g7, and again [, s stand for larger/smaller rank group. We recall
that this formulae can be derived in the N' = 2 orbifold by looking at the low energy
Lagrangian of (fractional) D3-probe; they would need to be corrected for small values
of the gauge couplings and are only valid in the large 't Hooft coupling regime (see
[44,64,73,105]), which is the case here. Moreover, they give positive squared couplings
only if by = (1/47?) [ By is in the range [0, 1]. This is the physical content of the cascade:
at a given energy scale we must perform a large gauge transformation on Bs, shifting b
by integers in order to get a field theory description with positive squared couplings.

Instead of using the RR potential C5, that refers to the gauge invariant but not
quantized field strength F3 = dCy+ H3 Cy, it is convenient to use a new potential Cs, that
refers to the non gauge invariant but quantized Page field strength F3 + By A Fy = dCh.
It is related to Cy by: Cy = Cy + Cy Bs. The last holographic relation in (4.87) can then
be rewritten as

oy M — ¥ M = 1 / Cy — n Co . (4.89)
T gs Jg2 Js

In this form, it does not contain the continuous dependence on by(7) anymore, but
transforms under large gauge transformations, as found in (4.81).

In supergravity, due to the presence of magnetic sources for Fj, we cannot define
a potential Cy. Therefore we project our fluxes on the four-manifold: {6, = 6, = 0,
01 = —ps = @, Vo, 7}. From our ansatz (4.9) and (4.10) for the fluxes, in the UV limit
we get the effective potentials:

. N . ~0 M Ny[b]- o
o' ==L (0 — ) =15+ % (& — ) sindf Adp . (4.90)
Here the floor function [z]_ gives the greatest integer less than or equal to x. The
integer [by] - = n in C;f ! comes from a large gauge transformation on Bs, as we saw in
the previous section in (4.81). It shifts by(7) € [n,n + 1] by —n units — so that the
gauge transformed BP™3(7) = bo(7) — [bo]_ is between 0 and 1 — and at the same time

shifts ACS/ = (N¢lbo)—-/4) sin@df A de A dip, while Cp is invariant.

The field theory possesses an anomalous R-symmetry which assigns charge % to all
chiral superfields.” The field theory anomalies under a U(1)g rotation of parameter &
are:

(5591 = [2(7”1 — Ts) — Nfl]€

Field th :
ield theory 0c0s = [—2(r; — rs) — NyJ] € .

(4.91)

"Although the R-charges of the chiral superfields are half-integer, an R-rotation of parameter ¢ = 27
coincides with a baryonic rotation of parameter o = 7. It follows that U(1)r x U(1) g/ is parameterized
by € € [0,27], « € [0, 27].
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At each Seiberg duality along the cascade, the coefficients of the anomalies for the two
gauge groups change; what does not change is the unbroken subgroup of the R-symmetry
group. To match with supergravity, let us rewrite the anomalies in the following form:

5.(0,+6,) = —Nje

Field th :
1 oty 55(91—(93): [4(T1—T5)+Nf5—Nfl]€.

(4.92)

An infinitesimal U(1)g rotation parameterized by ¢ in field theory corresponds to
a shift ¢¥» — 1 4 2¢ in the geometry. Therefore, making use of (4.90), we find on the
supergravity side:

5.0, +0,) = —N;e

SUGRA:
55((91 — (95) = (4M + 2Nf[b0], + Nf) €.

(4.93)

These formulee exactly agree with those computed in the field theory. In particular, to
match the difference of the anomalies we identify

4M + QNf[bo]_ = 4(7"1 - T’S) - QNfl . (494)

We have to check that the field theory quantity [4(r; — rs) — 2Nyg] decreases by 2Ny at
each Seiberg duality towards the IR. Using the shifts in (4.62) this is done. As we will
see, the same identification makes the matching of S-functions working.

The holographic relations (4.87) allow us to compute also the S-functions of the two
gauge couplings and check further the picture of the duality cascade. Since we will be
concerned in the cascade, we will make use of the flavored KT solution of Section 4.4,
to which the flavored KS solution of Section 4.3 asymptotes in the UV.

At any fixed value of the radial coordinate p, we shall shift by(p) by means of a
large gauge transformation in such a way that its gauge transformed bghys = by — [bo] -
belongs to [0, 1]. In doing so, we use a good field theory description with positive squared
couplings.

Recall that:

3N
e ?® = >

oM [ T
== (~p) i) = 3 (m 1) (4.95)

Then we compute the following “radial” [-functions: Sf) = J/0p(xi + Xs)s B =

d/0p (xi — xs)- Notice that the holographic relation for (y; — xs) contains now the
gauged transformed bghys. The derivatives can be written as:

3 3
By = -2 Ny B9 = 2Ny +4M + 2Ny b)) - (4.96)

The quantity (4M + 2Ny[bo]—) is the same as the one appearing in the difference of the
R-anomalies (4.93): it decreases by 2Ny at each Seiberg duality towards the IR, both in
field theory and supergravity.
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Using the NSVZ g-function: 8, = 3N, — Zq(l —7,), where the sum is over all pairs
of quarks and ~, are the anomalous dimensions, we get the field theory S-functions:

B =P+ Bs = (ri+ 7)1+ 274) = Ny(1 =) (4.97)

Bo=0—Bs=(5—=27a)(ri = 75) + (Nys = Np)(1 = 7,) - '
In order to match the above quantities with the gravity computation (4.96), an energy-
radius relation is required. Although it is not really needed to extract from our su-
pergravity solutions the qualitative information on the running of the gauge couplings,
we can start making two assumptions, which can be viewed as an instructive simpli-
fication. Let us then assume that, in some piece of the RG flow, the radius-energy
relation is the conformal one: p = In /A, where A is some cut-off scale. Then we as-
sume that the anomalous dimensions only acquire corrections at order (Ny/N,)?, so that
Y4 =, = —1/2. Then [, exactly matches, and also 5_ if we identify

AM + 2N¢[b]— = 4(r; — r5) — 2Ny, . (4.98)

Both of them correctly decrease by 2Ny at each Seiberg duality towards the IR.

Actually, the qualitative picture of the RG flow in the UV can be extracted from
our supergravity solution even without knowing the precise radius-energy relation, but
simply recalling that the radius must be a monotonic function of the energy scale.

It is interesting to notice the following phenomenon: as we flow up in energy and
approach the far UV p — 07, since by(7) in (4.95) diverges, a large number of Seiberg
dualities is needed to keep bghys varying in the interval [0, 1]. Seiberg dualities pile up
the more we approach the UV cut-off Fyy. Meanwhile, looking at the radial g-functions
(4.96) reveals that, when going towards the UV cutoff Eyy, the “slope” in the plots of
X; = 812/ 9]2- versus the energy scale becomes larger and larger, whilst the sum of the
inverse squared coupling goes to zero at this UV cutoff. At the energy scale Eyy the
effective number of degrees of freedom needed for a sensible description of the gauge
theory becomes infinite. Since p = 0 is at finite proper radial distance from any point
placed in the interior p < 0, Eyy is a finite energy scale.

The picture which stems from our flavored Klebanov-Tseytlin/Strassler solution is
that Eyy is a so-called “duality wall”, namely an accumulation point of energy scales at
which a Seiberg duality is required in order to have a sensible description of the gauge
theory [114]. Above the duality wall, Seiberg duality does not proceed and a sensible
description of the field theory is not known. See Figure 4.2.

Duality walls were studied in the context of quiver gauge theories first by Fiol [121]
and later in a series of papers by Hanany and collaborators [122,123]. Their analysis of
this phenomenon was in the framework of quiver gauge theories with only bifundamen-
tal chiral superfields, and was restricted to the field theory. To our knowledge, these
solutions are the first explicit realizations of this exotic ultraviolet phenomenon on the
supergravity side of the gauge/gravity correspondence.
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Figure 4.2: Qualitative plot of the running gauge couplings as functions of the logarithm
of the energy scale in our cascading gauge theory. The blue lines are the inverse squared
gauge couplings, while the red line is their sum.

4.7 Conclusions

In this chapter we have presented a very precise example of the duality between field
theories with flavors and string solutions that include the dynamics of flavor branes.
We focused on the Klebanov-Tseytlin/Strassler case, providing a well defined dual field
theory, together with different matchings that include the cascade of Seiberg dualities,
beta functions and anomalies. More importantly, we have found an efficient way of
matching the ranks of gauge groups with string theory computations: we gave a rigorous
definition of ranks in terms of Page charges.

The change of gauge ranks in field theory is precisely captured by the transformation
properties of Page charges under large gauge transformations of the NSNS potential B,
and the same is true for S-functions and global anomalies.

Many other things can be done with the solution presented here. The study of
implications of these new backgrounds to cosmology and D-brane inflation seems a
natural project. On the supergravity side, finding new solutions describing the motion
along the baryonic branch of this field theory [63], finding and studying the dynamics
of the massless Goldstone mode (that should exist) [62]; what determines the dual to
baryonic operators and their VEV [124] and of course, the possibility of softly breaking
SUSY and studying the new dynamics [125,126], are some of the ideas that naturally
come to our mind given these new solutions.






Chapter 5

A chiral cascade via backreacting
D7-branes with flux

In this chapter we extend the smearing technique to a case of chiral fundamental matter.
The new ingredient is that the flavor branes needed to realize such a field theory have
a non-trivial gauge bundle on them. First of all taking into account the flux raises new
issues about supersymmetry. Then the gauge flux induces new charges which have to
be taken into account, and it could give rise to new modes at the intersection of flavor
branes. The chapter can thus be thought of as a generalization of the smearing technique
to the case of non-trivial gauge bundles. The interest resides in the fact that the chiral
case is much more generic than the non-chiral one, when one tries to extend the flavoring
of cascading theories done in Chapter 4 [46] to fractional branes at more generic conical
singularities. The non-chiral case (flavor branes with trivial gauge bundle) seems to be
quite special.

The KT and KS supergravity solutions have a field theory dual whose RG flow can
be understood as a cascade of Seiberg dualities. When the ranks of the gauge factors
are different, they reduce along the flow while their difference remains constant. In
the presence of flavors also the difference reduces along the cascade (see Section 4.5.1),
possibly reaching an IR theory with equal ranks that does not cascade any more. This
is the flow considered in this chapter. Moreover in the chiral case there is a further
issue: along the cascade new gauge singlet fields appear/disappear, in order to preserve
a global anomaly. They have a beautiful interpretation as chiral zero modes living at the
intersection of flavor branes with flux. The existence of these modes was already noticed
in [115], where the authors used a similar chiral cascade to realize ISS vacua [127] at the
bottom.

As in Chapter 4, Seiberg dualities are interpreted in supergravity as large gauge
transformations. This gets nicely married with the fact that gauge ranks are measured
by Page charges, rather than Maxwell charges.

111
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Figure 5.1: Quiver diagram of the elec- Figure 5.2: Quiver diagram of the magnetic
tric theory. The ranks are 7 and 7. theory after Seiberg duality on node 1. The
ranks are 2ry — 1 + Ny and 5.

5.1 A field theory cascade

Consider a field theory whose quiver diagram is depicted in Figure 5.1. It consists of two
gauge groups SU(ry) x SU(ry) (where for definiteness we take 7 > r5) and two flavor
groups U(Ny) x U(Ny). Part of the flavor group is generically anomalous: the axial
U(1)s4 always has a flavor-gauge-gauge triangle anomaly, while for ry # ro both U(Ny)
factors have a flavor-flavor-flavor anomaly with only the diagonal U(Ny) sy anomaly-free.
There are four bifundamental fields A; and B; with ¢ = 1,2 and four (anti)fundamental
fields ¢, ¢, Q, Q. The superpotential we consider is:

W = h (A B1A3By — A1ByAyBy) + A (GAIQ + QBiq) (5.1)

where traces on color and flavor indices are meant. The SU(2),x SU(2), flavor symmetry
of the theory without fundamental fields (acting on A; and B;) is broken to its toric
subgroup by the superpotential. Moreover there are two baryonic symmetries U(1)p
(which extends the usual baryonic symmetry transforming A; and B; in the unflavored
theory) and U(1)p (which actually is the diagonal U(1) subgroup of the flavor group),
and an anomalous R-symmetry U(1)g. The theory is chiral, in the sense that we cannot
construct mass terms without breaking the flavor symmetry. All the relevant charges
are summarized in Table 5.1.

The theory without flavors and with r; = ro = N, has a complex line of conformal
points [20,105], where the anomalous dimensions can be derived from the non-anomalous
R-charges. If we take the number of colors r; and r, much larger than the number of
flavors Ny, and we suppose that the anomalous dimensions of the bifundamentals only
take corrections at second-order in N;/N, (this hypothesis was supported by a dual
gravity analysis in [44,79,137] and other examples), we can compute the NSVZ gauge
[-functions [68,69]:

N 3gs N
[rl—rz—_f] B = 2 [ =+ =L (5:2)

O = = 1672 4



5.1 A field theory cascade 113

SU(r1) x SU(rz) | U(Ny) x U(Ny) | SU(22)* | U(L)r | U(1)p | U(D)m

A (r1,72) (1,1) (2,1) | 1/2 1
B; (71, 72) (1,1) (1,2) | 1/2 —1

q (r1,1) (1, Ny) (L,1) | 3/4 1

i (71, 1) (Ny, 1) (1,1) | 3/4 —1 —1
Q (1,72) (N, 1) (L,1) | 3/4 0 1
Q (1,73) (1, Ny) (1,1) | 3/4 0 —1
by, (1,1) (Ng, Ny) (L) | 5k 0
Dy, (1,1) (Ny, Ny) (LY |5k 0

Table 5.1: Field content and symmetries of the chirally flavored KT theory.

We find that, if the difference (r; — o) is larger than N;/4, in the IR SU(r;) flows to
strong coupling while SU(r3) flows to weak coupling. We can then perform a Seiberg
duality [72] on node SU(ry). The mesons are: B;A; = M;;, A, = N;, Biq = N;,
qq = Y. The superpotential in the magnetic theory is

~ ~ 1 ~
W/ =h <M12M21 — M11M22) + A (NlQ —+ QNl) -+ X [ijbiMij + CLZ‘TNZ' + szNz + 7:7’20] s
(5.3)

where we sum over i, j = 1, 2. A is the dynamically generated scale involved in Seiberg
duality [72], and represents the energy scale where we transit from a good electric de-
scription to a good magnetic description. Then we integrate out M;;, Ny, Ni, Q, Q.
The relevant F-term equations are:

1 1
_hM22+Ta1b1:O )\Q+TCL1T:O
1 A (5.4)
hMQl‘l—Kale:O )\Q_’_X?:bl:()a
so that we obtain
1 -~
W' = h[\? (a1b1a262 — CleQCLle) -+ X (NQCLQ'T’ + beNQ -+ Eof’l”) . (55)

Notice that the mesonic fields have non-canonical mass dimension 2, and after canonical
normalization of all fields some order one coupling constants could arise from the Kéahler
potential.

The magnetic quiver is depicted in Figure 5.2. To compare it with the original
electric quiver, we relabel the fields: a;,b; — A;, B; exchanging 1 < 2; r,7 — Q,Q
and Ny, Ny — ¢, §; recall that the biggest rank is now r5. We see that the theory has
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reproduced itself, apart from the new gauge singlet field 3 in the (Ny, Ff) representation
of the flavor group and a shift in gauge ranks: (rq, 72) — (72, 2rs — 1 + Ny). Even the
superpotential has reproduced itself, with the quarks coupling with A; and B;, apart
from the new superpotential term %EOQQ. Notice that the gauge singlet X is there
because of “conservation” of the global flavor-flavor-flavor anomaly of the axial U(Ny) .
In particular, the axial U(1)f4 is broken by the anomaly to Z,;_,2, and this is true both
in the electric and magnetic quiver. The dual gravity interpretation of this will be
discussed in Section 5.6.

Now let us ask what is the fate of the gauge singlet field. The theory continues flowing
in the IR until another Seiberg duality is required. So we can generically consider
a theory as in Figure 5.1 but with an extra gauge singlet ®; in the (Nj, Ny) flavor
representation from the beginning, and superpotential:

W = h(A1BiAyBy — A1 ByAyBy) + A (GAIQ + QB1q) + M @ Q(BaA2)FQ,  (5.6)

not summed over k. As will be clear momentarily, it is better to consider a general
superpotential depending on k, even if here we are interested in & = 0. We perform
a Seiberg duality on node SU(r;) as before, and integrate out M;;, Ny, Ny, Q, Q (the
F-term equations are still (5.4)). We obtain:

1 1 -
W' = —— (a1byasby — a1byashy) + = (Nyagr + 7by Ny + Yo7r) +
hA2(1122 1b2asby) A(22 2 No o7'T)

Ak

+ W (i)k f(blal)k“r . (57)

We learn that at each Seiberg duality a new gauge singlet field in the (N f,ﬁf)
representation is generated, while the existing ones develop longer and longer super-
potential terms. We can try to estimate the behavior of the superpotential terms
O = 9y Q(BgAg)kQ under the RG flow. We consider again a regime of parameters
where r; and ry are much larger than (ry —rg) and Ny, so that the theory is close to its
conformal points. Then the quantum dimensions of the fields A, B, ¢, 4, Q, Q can be
derived from the R-charges (see Table 5.1) through the relation D[O] = 2Rp, strictly
valid at a conformal point. From the supergravity computation of the gauge coupling
[B-functions and their matching with field theory, one deduces that the quantum dimen-
sions of A and B take corrections of order (Ny/N.)?, whilst the quark field ones of order
Ny /N, [44,79]. The gravity computation does not tell us nothing about the quantum
dimension of ®;, since it does not enter in the S-functions, and in fact the dimension
must take corrections of order one. Recall that gauge singlet scalars must have quan-
tum dimension bigger than or equal to 1, around a conformal point. We conclude that
the superpotential terms Oy, = @y, Q(BQAQ)kQ not only are irrelevant (their quantum
dimension is bigger than 3), but become more and more irrelevant going towards the
IR (their quantum dimension runs). Notice that the fields ®,, always couple with the
quarks of the smaller gauge group.
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Figure 5.3: Quiver diagram of an electric theory with a gauge singlet field @ in the
(N¢, Ny) flavor representation. The ranks are ry and 7.

Apart from this, the theory reproduces itself and cascades down, with both the ranks
and the difference of the ranks reducing. From this point of view this chiral theory is
similar to the one studied in Chapter 4 [46], but with the important difference that in
this one (r; —r3) scales by Ny, while in the latter it scales by N¢/2. We will match this
behavior with the dual gravity description in Section 5.6.

Last but not least, we want to understand what happens if we start with a gauge
singlet field ®; in the opposite flavor representation: (Ny, N;) (this implies that it
couples to the quarks of the larger gauge group). The quiver is in Figure 5.3. We will
consider two cases at the same time: with minimal superpotential and with a larger one:

W =nh <A1B1A2B2 —A132A231)+)\ (QA1Q+Qqu)+()é0 <I>0q~q—|—ozk @kd(Ang)kq . (58)
We perform a Seiberg duality going to the magnetic description as before:
W' = h (MyaMayy — M1 Mag) + A (NIQ + QNl) + g oo +

~ 1 ~
—I— (673 (I)kNQ(MZQ)k_lNQ + X [ajbiMij + (LiTNi + szNz —|— f’l"EQ] . (59)

This time we can integrate out ®y and X as well. After doing it we obtain:

1 1 - N « ~ _
W/ = h[\2 (alblagbg — &1b2a2b1) + K (NQCIQ?" + TbQNQ) + hkT};k—l (I)kNQ(albl)k 1N2 .
(5.10)

The operators O}, = ®; G(A2B2)*q behave quite differently from the previous Oy.
They are still irrelevant, but actually dangerous irrelevant (see [73] for a similar discus-
sion in SQCD with quartic superpotential). Their quantum dimension becomes smaller
and smaller going towards the IR, until some point when they behave as mass terms
and the corresponding gauge singlet ®g is integrated out together with the would-be-
generated gauge singlet ¥y in the opposite (N f,ﬁf) representation.
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We can define a relative number Ng counting the number of (N, Ny) fields (®y)
minus the number of (N, Ny) fields (®5). This number decreases by one unit at each
Seiberg duality, either because a field contributing +1 is integrate out or because one
contributing —1 is generated. We could say that our theory is self-similar along the
cascade just adding this number Ng to the list of running ones.

The flow of the theory drastically depends on the choice of initial ranks, as also
observed in [79] (see also the end of Section 4.5.1). Since along the flow both ranks r;
and ro and their difference reduce, we could either reach a point were one of the ranks
is zero (or order of their difference), or a point where the difference is zero (or order Ny)
while the ranks are still large. We are interested in the latter situation. Notice from
(5.2) that if (11 — r2) < Ng/4 both [-functions are positive and there are no Seiberg
dualities anymore.

Thus we can imagine the following flow, from the bottom up. In the far IR the two
gauge ranks are equal (say Np), the theory has no exotic gauge singlet fields (Ng = 0)
and there are no flavor-flavor-flavor (f-f-f) anomalies at all. Both S-functions are positive.
This theory was extensively studied in Chapter 3 [44] where a proposal was made for the
full low down to a conformal fixed point with flavors. To go up in energy, we perform
Seiberg dualities.! So at step one the gauge group is SU(Ny + N;) x SU(Np) and there
is one gauge singlet @ (thus Ny = 1) with superpotential coupling Oy. Still there are
no f-f-f anomalies. This theory correctly flows in the IR to what we stated above. Going
generically up by n steps, the gauge ranks are as prescribed by the cascade, and there are
n gauge singlets ®x_o 1 (N = n) with their corresponding superpotential couplings
Ok.

In order to study this theory at strong coupling and for a large number of flavors
(Ny of order N.), we are going to construct a supergravity dual to this flow.

5.2 SUSY D7 probes on the warped conifold

Our aim is to realize a supergravity dual of the previous theory and its RG flow. The
starting point is the easiest of its steps, namely the flavored SU(r) x SU(r3) theory
without extra gauge singlets. We can realize it as the near-horizon theory of a stack of
(fractional) D3-branes at a Calabi-Yau singularity plus non-compact D7-branes.
Supersymmetry requires the D7-brane embedding to be an holomorphic curve. As
extensively explained in Section 2.4, among the many, there are two classes of holomor-
phic divisors which are interesting for us. The first class of 4-cycles is represented by
Yk = {z3 — 24 = 0} and was studied in [80]. This embedding was then used in Chapter
4 to add non-chiral matter to the KS [61] and KT [60] theories. The other class is
represented by Yo = {z; = 0} and was extensively studied in [79]. The latter 4-cycle

'Recall that the RG flow is irreversible: the UV determines the IR but not the opposite. So we
always have to think in terms of describing a possible UV completion.
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has very different properties from the former: for instance it is made of two separate
intersecting branches. As argued in [79] it introduces chiral matter exactly in the way
we are looking for: according to the quiver of Figure 5.1 and with the superpotential
(5.1).

In order to create a disbalance in the gauge ranks we have to add D5-branes wrapped
on the non-trivial 2-cycle of the conifold [58]. Their presence generates, among the other
effects, background values for the 3-form fluxes F3 and H3. The main difference between
the two classes of D7-brane embeddings is that on the non-chiral ¥ g the pull-back of Hg
is zero, whilst on the chiral X is not. If Hs (hatted quantities are pulled-back) is zero
we can always gauge away a possible pull-back of By by a choice of Fs, so that F = 0.2
We defined the gauge invariant flux on the brane as F = Bg + 27 F5, where Fy = dA is
the usual field strength of the gauge bundle. If H, # 0 we cannot gauge away F in any
way and we have to worry about it. As we will see its effects are many: first of all it
affects the supersymmetry constraints on the brane configuration, moreover it generates
new induced charges and modifies the running of bulk fluxes.

The first step in the construction of a fully backreacted solution with this kind of
D7-branes is to understand which are the supersymmetric embeddings and what is the
flux induced. These two issues are addressed by studying probe branes.

To start with, we consider a probe D7-brane along ¥o = {z; = 0} in the singular
conifold with 5-form flux (the KW theory [20]), and look for possible SUSY gauge
bundles. As in Section 2.3.1, the metric of the supergravity solution is

ds® = h(r)"?dz3, + h(r)'/? {dr2 + 72 ds?m} = h(r) " da, + ds*(Me)
, 1 . ) 1 ) (5.11)
dsiin = 8 ijl,Q (d67 + sin® 0; dip?) + 9 (dyp — > ;cost; dej)”,

where the warp factor is given by h(r) = L*/r*. In the following we will set o/ = 1 and
gs = 1. The unwarped Calabi-Yau (CY) geometry is described by a real (1,1) Kéahler
form and an holomorphic (3, 0)-form, both closed and co-closed:
r s T ,
J==drNg’+ — (Slﬂ@l dby N dpy + sin 0y dbs /\dg02>
3 0 (5.12)
Q= - (dr+i 5 g") A (A0 +i siny dipy) A (d6s + i sindy dips)
We defined ¢° = dip — > jcos0;jdp;. More details on the CY geometry are written in
Appendix C.
As shown in [78] the conditions for a spacetime-filling D7-brane to be supersymmetric
(which means that there is a k-symmetry on the brane that preserves some Killing spinors
of the bulk) on a CY background with closed NSNS potential By can be rephrased as:

2Some care has to be paid to possible sources for F on the brane, arising whenever Cs # 0. Moreover
F5 is quantized on 2-cycles.
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e the embedding is holomorphic;
e the gauge invariant field strength F = By + 27/ F, is a (1,1)-form;

e it holds 1
j/\]—":tanﬁ(voh—é]:/\}") (5.13)

for some constant ¢ (that depends on which combination of Killing spinors is
preserved).® Here J is the 6d Kéhler form and vol, = %J A J.

Then in [77] it was shown that these conditions still assure k-symmetry on a background
Mg with SU(3)-structure and NSNS and RR fluxes, provided that we substitute J with
the 2-form that defines the SU(3)-structure J,, of Mg. When Mg is a warped CY, as
in (5.11), J, = h'/2J.

The holomorphic embedding we are considering is made of two branches: ¥; =
{63, p2 = const} and 3y = {6;, 1 = const}. For definiteness we concentrate on Xi;
then the pull-back of J is easily derived from (5.12). We are looking for gauge bundles
on the D7-brane such that F is a real (1,1)-form, closed and co-closed. We take the

(1,1) ansatz
2

F = fl(r)gdr/\gS + f(r) % sin 6y doy A s . (5.14)

When imposing closure and co-closure with respect to the unwarped metric (it is a linear
system) we get two solutions:

1 L1
FASD _ ~33 dr A §° + = sin 0, df, A\ dyq (5.15)
2
FS = Zdr n g % sin 0y doy A dy; . (5.16)

The first solution solves the s-symmetry condition (5.13): it is anti-self-dual (ASD:
F = — %, F) and primitive (F A J = F A J,, = 0). The second one instead is not super-
symmetric: it is self-dual (SD) and in fact proportional to the unwarped Kéhler form
(F o J =h"12],) so that it cannot solve (5.13) unless the warp factor is constant.

Then we consider a probe D7-brane in the Klebanov-Tseytlin background [60] dis-
cussed in Section 2.3.2. The metric is still that of a warped singular conifold (5.11), but
with different warp factor:

B 27> 3

1 r
2N+ 2 (g M)? (= +10g )] 1
Mr) = =g 9N + 57 (9:M) (4+ ©8 r0>] (5.17)

3The expression for 6 depends on how the 10d Killing spinors are constructed from the 6d one. In
our class of SU(3)-structure solutions 6 is a constant, but in general it can be a function of the 6d
manifold. See an example in [124].

4This is consistent with the fact that on D3-brane backgrounds a self-dual bundle cannot be super-
symmetric as it carries anti-D3 charge. Without D3-branes, instead, the warp factor is constant.
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The logarithmic behavior is dual to the cascade of gauge ranks [61]. The fluxes are:

_ gsMdo/

3gs Mo/ 3g. Mo’ d
i awglogi Hz = 0 =

B
2 2 o 2 r

N\ wa F3 w3 , (518)

where we define
1
Wy = 5 (Sil'l 01 d(91 AN ngl — sin 92 d092 VAN dg02)
Wy = ¢F Aws = (A — 5 cos 0 dip) A (sin 6y dy A dipy — sin 0 dBy A digy)  (519)
3 =4 Wo = 5 jCOS AP Sin vq 1 ©®1 S U9 dU9 V2
w5:—2w2/\w2/\g5:sin01d91/\d(pl/\sinegdé’g/\dgpg/\dq/)

The 3-form fluxes are such that xg F3 = Hs.

In this case the pull-back of H3 on the D7-brane is non-zero, and since dF = ﬁg we
are forced to consider a non-trivial gauge flux. Thus we will use again for F the (1, 1)
ansatz of (5.14) and impose that

AF = I, JANF=0. (5.20)
The solution is:
IM C r . r?
FASD _ (F + 7’_41> <_§ dr A §° + 5 sin 6, df; A dc,Ol) ) (5.21)

with C] an arbitrary constant. This flux is anti-self-dual. Notice that the homogeneous
solution is exactly F49P of (5.15).
Also in this case we could find a self-dual gauge flux with still dF = Hj:

IM
42

FobD = < + CQ) (g dr A §° + %2 sin 0y dth A d@l) : (5.22)

Again this configuration is not supersymmetric.

5.3 Type IIB supergravity with sources

In the previous section we understood that the Klebanov-Tseytlin background supports
probe D7-branes which are spacetime-filling, non-compact, supersymmetric and along
the embeddings we need to realize the chiral cascading field theory we are interested in.
Such branes, in order to be SUSY, need to have a non-trivial anti-self-dual gauge flux
JF on them. We are going to construct a fully backreacted solution for this system.

To do that, we need to know how the type IIB supergravity EOM’s are modified by
the various charges induced on the D7-branes. The action in our conventions is written
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in Appendix A, as well as the resulting EOM’s. Including only the contribution of the
D7’s and the charges induced on them, they are:

dF;, = —(y d(e*® x Fy) = e’ Hy N F3 — 2i4f4AQQ

dFy = —H3 A Fy + F A d(e¢*F3):H3/\F5—%]-"3/\Qg
dF5:—H3/\F3—%]-“2/\QQ d* Fy = dFy

dH; =0 d(e_¢*H3) = ¢® « F3 A Fy + F5 A F3 + sources .

(5.23)
These have to be supplemented with the equation Fy = %Fj, which is not derived from
the action (see [128] for a solution to this problem). Notice that these BI's and EOM’s
are consistent with d*> = 0. The relations between dual field strengths are:

F; = —e? % Fy Fy=e¢"xF) . (5.24)

The equation of motion for Hj gets contribution only from the DBI part of the D7-brane
action, and the complete expression and derivation can be found in Appendix A.

In Appendix A the reader can also find a proof that the x-symmetry condition (5.13)
together with supersymmetry in the bulk assure that the EOM for the gauge connection
on the D7-brane is satisfied. This was also shown on more general ground in [129,130].
On the other hand in [131] it was shown that supersymmetry and Bianchi identities
implies the satisfaction of the EOM’s for form-fields, for the dilaton and of the Einstein
equation, for localized as well as smeared backreacting branes.

5.4 The backreacted solution

We have now collected enough elements to write down the backreacted solution. From
the probe analysis we learned that the D7-branes source D7-charge as well as D5- and
D3-charge, due to the non-trivial gauge flux F on them. The gauge invariant flux F is
constrained to be (1,1) and primitive. Then we only have to produce an ansatz and set
to zero the supersymmetry variations in the bulk, as well as imposing BI’s and EOM’s
for the form-fields.

As observed in the previous chapters and in other works of this kind [85-88], finding
the fully backreacted solution for a system with color and flavor branes on a topologically
non-trivial manifold is a very challenging task, due to the low amount of symmetry. In
general, and in our case too, the addition of non-compact D7-branes breaks some symme-
tries of the background where they are put; consequently one should write a complicated
ansatz which would lead to partial differential equations, difficult or impossible to solve.
Our main tool will be an angular smearing.
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The procedure is the same as before. The smeared charge distribution for Ny D7-
branes, each made of two branches, is (see Section 2.5):

N
Q= L (sin by dby A dipy + sin by by N dpy) (5.25)

The metric ansatz is

ds* = h(p) ™ dud, + h(p)" ds?
(5.26)

29(p)

dsg _ 62u(p) |:dp2 + é (dw . Zj cos 9]’ dg0])2] + € ; Zj (d@jz + sin? 9]' d@?) )

which depends on three unknown functions u(p), g(p) and h(p). Led by the Bianchi

identity dF; = —{)y we put
Ny
Fi=-—"Lg. 5.27
1 . g ( )
The ansatz for B is as in the KT solution, because D7-branes do not source any F1-
charge:
M M
B2 = (?f(p) + ngo)> wWa H3 = ?f,(p) d,O Nwsy . (528)
We put a constant shift in By for later convenience. In fact our solution will have
lim, .o f(p) = 0, so that bgo) represents the constant value in the far IR. We will see
in Section 5.6.1 what is the meaning of the constant M.
In order to compute the gauge flux on a single D7-brane we need the 6d unwarped
Kahler form:
2u 2g

e e
Jg = 5 dp A ¢° + - (sin By dOy A dpy + sin by dby A dps) | (5.29)
which is directly derived from the metric. Then we can write the gauge flux 7 on
each brane. It must satisfy d7 = Hj and, in order to preserve s-symmetry, it must
be real (1,1) and primitive (F A J = 0). Let us start considering the branch ¥;. The
k-symmetry constraints are easily encoded in the ansatz

(5.30)

€2u 62g
= p(p) [—? dp NG + = sin 6 dfy / dgpl} ,
which is also consistent with the SU(2), x SU(2), symmetry of the field theory. Then
the relation dF = Hj gives the following equation:

0
T = 300 + 5 5 () (531)

On the other branch Y, the gauge flux is the same but with opposite sign, namely:

f

62u €2g
= —p(p) [—? dp N G° + = sinfdt A d<p2] :

(5.32)

Yo
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with the same function p(p) as before.

We conclude the ansatz with an expression for F3 which automatically solves its
Bianchi identity df3 = —Hs A Fy + F A €)3. Here we have to put some care in the
computation of the effect of the smearing on F A €2y, starting from the localized ex-
pressions for the two branches. For each branch, the localized charge distribution is
a sum of delta functions at the different locations of the Ny branes on the sphere:
Qe = Zivzfl 5@, — Qj(-a), 0; — gpg-a)) df; A dy,. Here (9](-&) and gpga) are the positions of
the a-th brane, branch ¢ # j. In the smearing we substitute such sum of delta functions
with the homogeneous distribution Q§m¢@d = (N, /47) sin 6; df; A dp;. We simply have
to repeat the same procedure for F A §2s:

. N
FEIAQF) = FOCI AP0, ¢;)d0; Adp; —  FE)A 4—7: sin; d; A dep; . (5.33)
Summing the contributions from the two branches, we eventually get:

N
(F A Qy)smeared — 6—; e* plp)dp A g° Awy . (5.34)

Here it is worth stressing a subtle point. Naively one could have thought that since
Hs A Qgmeared — () then there is no pull-back of Hz on the smeared configuration of
branes, and thus it is consistent to put their gauge flux to zero. But, as we saw, this is
not actually correct. What is correct is computing the flux on a single (probe) brane,
then evaluate F A Q¢ and smear the latter. The content of Hs A Q§meaed = () is that,
in fact, d(F A Qg)smeared = [ A Qgmeared — (),

Eventually, using equation (5.31) we obtain

MN; 0
—Hg/\Fl—F(f/\Qz)Smeared — f _[

2 29 5
st Op f+rf e p] dp N g° Nws . (5.35)

3M

It is nice to observe that —H3 A Fj contributes f in brackets while (F A Qz)smeared
contributes the other f. This doubling with respect to the non-chiral case discussed in
Chapter 4 (where the term (F A Qy)™e@ed was not present) is dual in field theory to the
fact that in the chiral theory the difference of gauge ranks gets reduced by Ny at each
step of the cascade, while in the non-chiral theory it scales by N;/2.

The ansatz for F3 is then

~ MN; 1

F _
347rf3M

e p] g ANwy . (5.36)

Notice that we should have allowed an integration constant C' in brackets; this constant
can be absorbed in a redefinition of f(p) and then appears in By, as we accordingly took
into account.
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For completeness we report the expression of the gauge field strength and connection
on the branes, as derived from the definition F = By + 27 F, and equation (5.31):

2u 29 M
2 Fy :—e—pdp/\g5+(6—])——f—zbgo))sineldﬁl/\dgol
53 6 V1) T3 (5,37
oral — <e29 M f 7r b(0)> A5 '
My T\ Py T )9

The expressions on Y, are the same but with opposite sign.

Now that the ansatz is complete we can solve it. We impose that the supersymmetry
variations vanish. The details of the computation can be found in Appendix D. We find
that the equations for the 3-form flux decouple from the other ones, that can be solved
first. Being the ansatz the same as in Chapter 3, the equations and their solutions are
also the same. We find the system:

3N,
I ¢
4 ¢
g = e (5.38)
u =3 —2e*729 — 3Ny e®

8

which can be (explicitly) integrated first. Its solution is®

Ar 1 e = —6p(1 — 6p) /3%
b= L ) L 1 3p)2 (5.39)
3N; (—p) e’ = (1—6p)'/2 ™.
The range of the radial coordinate is p € (—00,0]; p = —oo corresponds to the IR

while p = 0 is an UV duality wall. The equations for the 3-form flux impose that the
combination G5 = F3 —ie~?Hs is imaginary-self-dual, that is e? xq F3 = Hs. Notice that
it is also primitive by construction. We get

f=a76"p

M
4r 3M 2

7 (5.40)

The equations for the gauge flux (5.31) and the 3-form flux (5.40) can be rewritten
in terms of p = e?p and f = e~ 2 f. We write the second one and their difference:

, 3N, X (5.41)
2 [9p2u—29 5 ~/] _ ¢[ 2 F ~] ‘
3M[6 e ke Vs

5We suppress many integration constants. For a general discussion see Chapter 3.
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Substituting the first into the second we get a second-order linear ODE:

3N

N
f// 2<3 f d) e2u 2g>f 2<
4

= ) e f=0, (5.42)

where we could also substitute the actual profile of the functions. The equation can be
analytically integrated. Let us first remark the dependence of the functions on M and
Ny: if we take f of order one then f is of order NJ% and p is of order M.

5.4.1 Solutions

Equation (5.42) is a second-order linear ODE, so there is a two-dimensional vector space
of solutions. The first solution is

1—6 2/3
f: ( p) 672/) )
I 3M 1202 —12p+1 _,
3M 12p% — 12p + 1 T2 Lo —6p2B ¢ ' (5.43)
P p p _2p p p

2 (—p)(1—6p)5°

Actually this is not the solution physically relevant for us, because both the 3-form flux
and the gauge flux diverge in the IR (while we would like them to vanish, according to
the field theory discussion). Nevertheless we can notice some interesting features. In
the IR (large |p|) the function f is suppressed by 1/(—p) with respect to p/M; thus the
gauge bundle dominates over the 3-form flux and determines the IR physics. In fact
using the approximate IR relation log p = r we get the ASD solution (5.15) in the KW
background.
The second solution is expressed in terms of the E,(z) function® defined as

oo —zt 1
E.(z) = / etn dt = / e M2 dn . (5.44)
1 0

For completeness here are some of its properties:
0.E,(2) = —E,-1(2) nE,1(z) =e*—2FE,(2) (5.45)

and the series expansions around z — 0 and z — oc:

J+1
. . 1 J
z—=0: FE,(2) ra —i—Z ]+1_nz
- F( )1 (5.46)
- _e gy tntg) 17 e” ¢
cTee En(2) z []2:;( 1 I'(n) 23} z * O( 22 ) '

6Tn Mathematica it is called ExpIntegralE.
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Figure 5.4: Plot of some relevant functions: f(p), 2p(p)/3M, 2p(p)/3M and Ng(p).

The solution is:

f= -0 )
p= % ﬁ [3 —6p— (12p> = 12p + 1) /372 Ez/gg — 2p)] (5.47)
3M e 2

1
- 3 6p— (1202 — 120+ 1) /32 (——2)].

The expansions of f(p) and p(p) around p — —oo (IR) and p — 0~ (UV) are:
1 1 171 ( 1 )

f=—+ e

7 Ty

IR :
sSM¢ 1 171 1
S_8My 1 171 01
b 2{ 26 A <p5>} (5.48)
F=-262—a)—6ap+O(?
uv o
' .3 o 9

with o = 3 — €'/3Ey3(1/3) ~ 1.48. The plots of all these functions are in Figure 5.4.

In this case, in the IR the function p/M is negligible with respect to f, and the
solution asymptotes the non-homogeneous piece of the ASD probe solution (5.21) in the
KT background.
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5.4.2 5-form flux and warp factor

The ansatz for the self-dual 5-form flux is related to the warp factor in the usual way.
This is imposed by supersymmetry in the bulk, and we set:

h et

F5 = —(1 + *) dVOl3’1 A dh_l = —dV01371 A dh_l - 108

Wws , (549)

with ws defined in (5.19). We solve the Bianchi identity dF5 = —H3 A F3 — %f/\f/\ Q.
The first term is readily computed. In order to evaluate (F A F A Q)54 we proceed
as before: we first compute the localized expressions for the two branches and then we
sum them, obtaining:

1 N
—5(}" A F A Qg)smeared — ﬁpz 22 dp A ws . (5.50)

Combining the two pieces we get the second-order equation:

8<h’e4g>_M2N (f— 1

_Z — fopr =
9p \ 108 =) 3m P

Nf 2 2u+2g
— v ) bl
16 >+367Tp6 (5:51)

As we expect from supersymmetry, this equation can be integrated to a first-order
equation. Making use of the BPS equation (5.31) we get:

B e*9 7TN MQNf

_ Nf ~9
T8 40T 3o,

2 —_
U g

(5.52)

Here Ny is an integration constant. This expression also fixes the effective D3-charge,
and Ny represents the D3-charge in the far IR.

The warp factor is obtained by integration. Thus:

h(p) = /0276—49<x>{—7rzv0 _MEN, [y - 1 (215(“'))2]}619; (5.53)

81 2\ 3M

As in the previous chapters, the integration constant can be chosen such that the ana-
lytic continuation of h at plus infinity vanishes. This expression cannot be analytically
integrated, but we can provide the expansions in the IR and the UV. We find:

e~ 1
‘ 2T, a? '
UV == N 1+ O0)

In the IR we recognize the almost conformal behavior of the flavored KW solution of
Chapter 3 [44]. In the UV the warp factor diverges to negative values, signaling that
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at some p < 0 it becomes zero and the supergravity description breaks down, as in the
UV region of the KS and KT solutions flavored with non-chiral fundamental matter of
Chapter 4 [46].

From Figure 5.4 and the plot of p, one could think that the worldvolume flux diverges
in the IR, invalidating the solution. Instead what matters is the modulus |F|? computed
with the full 10d metric, including the warp factor. One gets in the IR:

2

2
% - 6]7\:[N0 ﬁ O(%)

Thus the flux vanishes and its energy is integrable in the IR.

IR: |FP=

(5.55)

5.5 Charges in supergravity

We go on with the analysis of the solution just found. Our main goal in this section
is to match the cascade and the running of gauge ranks between supergravity and field
theory. The way we proceed is similar to the analysis performed in Chapter 4. We start
computing Maxwell charges, defined as the integral of the corresponding R-R fluxes:

1 1
Nps = —= | I Nps = — | I Npr=— | Fi. (5.56

3

For sign conventions see Appendix A.

The integration is done on the 3-cycle S? = {6y, o = const} in T"! and on the
whole Th! respectively. We integrate By on the 2-cycle S? = {0; = 6, p; = —o} as
well, obtaining:

1 MN
Mesp(p) = R/Ss Fs = f(f— )
| M Nf Ny
Negs(p) = 167 /Tl,l F5 = No + 1A= 5.3 P P (5.57)

1
(o) = 55 [ e = 7f+b§°)

The integral by is an axionic field defined modulo 1. Shifting it by one does not
affect physical quantities; nonetheless it corresponds to a Seiberg duality [61]. We can
understand the cascade by following by: everytime we lower the radial coordinate (and
thus we lower the energy scale) such that by — by — 1, we have descent one step of the
cascade. Then we can look at the shift of Maxwell charges in this process.

In our solution the functions are such that in the IR we can neglect p/M with respect
to f. Then in one cascade step we experience:

() (i—1) ~ ()
7O, pmn ) 2T N Moy = M = My = Ny (5.58)
— = _— .
M N0 N o @0 Ny

eff = Neps eff ~ Mepr T 5"
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Here 7 is an integer that counts the number of Seiberg dualities from the bottom up.
Without taking the IR limit, both M.;¢(p), Ners(p) and by(p) are positive monotonically
increasing functions, of which we give the IR and UV expansions:

MN
Mgy = MANy 1 + O<i> My =~—~1 C 100
R 2 p? P UV - 2m 2(—p)
NN, Ny L (i> N, N, = MINy o® 0(1)
eff 0™ "gr2 o e eff 0™ g2 202 P
(5.59)

The relations (5.58) are not satisfactory. In the IR they only work approximately;
in the UV the functions f and p are of the same order giving a very different result,
and in the middle there in no clear pattern. The reason is that we are looking at
the wrong objects. As fully explained in Section 4.6.1, Maxwell charges are gauge
invariant and conserved, but are not quantized nor localized: they gain contributions
from the whole bulk and from the charges induced on the D7-branes. Thus they are not
suitable for identifying gauge ranks. The correct objects to look at are Page charges:
they are quantized and localized on the D3 and D5-branes that source them (they
are not even sourced by the induced charges on the D7’s). On the other hand they
are not invariant under large gauge transformations. These ones, which are quantized
themselves, precisely correspond to Seiberg dualities and we expect Page charges to
change accordingly.

5.5.1 Chiral zero modes

Before going on with the computation of Page charges, we want to give a physical
explanation of the origin of the chiral gauge singlet fields ®; transforming in the (Ff, Ny)
flavor representation. For this, we need to do a little digression.

Consider the following brane configuration: put two stacks of Ny spacetime-filling
intersecting D7-branes on R*! x T (we are interested in the local physics, so we neglect
tadpole cancellation issues). Each stack wraps a T* in T° and they intersect along a
T? (times Minkowski spacetime). The theory at the intersection is an N' = 1 6d chiral
gauge theory with 8 supercharges, gauge group U(Ny) x U(Ny) and bifundamental chiral
matter. Of course, when compactified to 4d, the theory is N' = 2 non-chiral. Moreover
in the decompactification limit and from a 4d point of view, the whole theory gets frozen
(being higher dimensional).

The situation is different if we put some (supersymmetric) gauge flux on the D7-
branes. The number of supercharges is reduced to 4, signaling that a 4d dynamics is
taking place. This is in fact the case, as the system is T-dual to D6-branes in type IIA
intersecting at angles. Due to the non-trivial flux F; in IIB, the D6-branes intersect at
non-right angles on all of the six directions; the intersection is four-dimensional and 4d
chiral modes arise there, transforming in the bifundamental representation. The honest
computation in IIB was performed in [132] (actually in the context of magnetized D9-
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branes). The net effect of the flux, which is pulled-back to the intersection, is to twist
the Dirac operator so that there are a number of zero modes. This number is given by
the difference between the fluxes on the stacks:

1
Ne = — / (Y — B9y (5.60)
T2

:27T

In [132] it was also shown that the zero modes are localized at a point in the 6d inter-
section, developing a 4d identity. This obviously corresponds to the intersection being
four-dimensional in ITA. Moreover, in the decompactification limit the gauge theory de-
couples but the zero modes preserve their 4d essence. As the fluxes on the D7’s are
quantized so is the number of zero modes, which corresponds to the number of intersec-
tions in ITA.

In our setup we have a very similar situation. We have two stacks of D7-branes” which
intersect along an holomorphic submanifold of complex dimension one and with topology
of C*. On the branes there are opposite gauge fluxes, which one expects giving rise to
chiral zero modes with 4d dynamics and transforming in the (N, Nj) representation
of the flavor group. The intersection is non-compact thus an equally clean derivation
as in [132] is not possible. Nevertheless, in our supersymmetric setup (where charges,
being equal to masses, always sum and never cancel each other) we can interpret F» as
providing a density of zero modes. This is much like Landau levels in an homogeneous
magnetic field. This means that integrating F; on a region we get the number of zero
modes originating from there.

We take the gauge field strength in our solution (5.37) and pull-back F2(22) — F;Zl)
on the intersection II = ¥, N Y5, We get:

2
2w F = (27rF2(E2) - 27TF2(21)) =3 e* p(p)dp A di . (5.61)
I

Notice that in the far IR the gauge field strength on the branes goes to zero, confirming
that the IR field theory does not have extra gauge singlet fields. Then we produce a
function that counts the number of zero modes from the far IR p = —oo to some energy
scale p by integrating the gauge field strength Fj,; on the intersection II up to the radius
p:

1 1

M
Nalp) = 1 / o= 5 S0 ) (5.62)

Now we can perform an IR analysis in the region |p| > 1. Neglecting the function
p/M with respect to f, in the shift f(p) — f(p—Ap) = f(p) — 27 /M which corresponds
to one Seiberg duality towards the IR we have a shift

Ne(p) = No(p — Ap) ~ No(p) — 1. (5.63)

TAfter the smearing all the branes in a stack are separated, that means that the gauge theory on
them is in the Coulomb phase and U(Ny) is broken to U(1)Ns. This does not change the conclusion.
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This result confirms that, at least in the IR, in each Seiberg duality we lose one chiral
zero mode @ in the bifundamental flavor representation.

It would be nice to give an interpretation to the scaling of Ng in the UV. Moreover
it would be interesting to give a more rigorous counting of the zero modes contained in
the throat up to some radius (energy scale) ro; a possible solution could be to appeal to
the index theorem with boundary.®

5.5.2 Page charges

Page dual currents [112,113] can be obtained by writing the Bianchi identities with
sources as total differentials. The only terms that cannot be written in this way are
the source delta functions corresponding to the D3 and fractional D3-branes at the tip
of the conifold that produce our background, and that are replaced by their fluxes in
the geometric transition. In particular the Page charges obtained by integration do not
get contributions from the bulk nor from the induced charges on the D7-branes, are
independent of the radial coordinate where we measure them and are quantized, making
them very suitable to measure gauge ranks.

In general by takes in the far IR some limiting value béo), that we conventionally
choose in the range bgo) € [0,1]. This range is special because it returns us positive
square gauge couplings when exploiting usual formulee [53]. Then, moving towards the
UV, by starts growing, ending up out of that range at a generic energy scale. We could
say that the field theory is still the one of the IR, but such a description is not useful
because the gauge couplings have grown diverging and then becoming imaginary. Thus
we had better shift by by —n units bringing it back to the range [0, 1]; this process is a
large gauge transformation or a Seiberg duality. We end up with a new equivalent field
theory description, with different gauge ranks but real positive gauge couplings. In this
way making large gauge transformations at a fixed energy scale (which changes the Page
charges) is a way of understanding the cascade.

Our Page dual currents are:

*jggge = F3+B2/\F1 —27TA/\QQ (564)
1 1
#jpa’ = Fs + By AFy + 5By ABy A Fy + 52w AN 2mdA A Qs (5.65)

One can check they are in fact closed forms. Page charges are obtained by integrating
their differentials:

1 1
Page _ d * -Page Page _ ____~ d * jPage 5.66
e Rt B = Gy, R 656)

8We thank B. Acharya and G. Shiu for this suggestion.
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where V; and Vg are bounded by S® and T'!. Using Stoke’s theorem we eventually get:

1
gggezﬁ <F3+B2/\F1—27TA/\QQ>
T s (5.67)
1 1 1 '
Page _ = Fy+ByANFy+ By ANBy ANFy 4+ =2nAN2 dA/\Q)
D3 (4%2)2L1,1<5+ 2 3+2 2 \ D2 1+27T T 2

We compute the Page charges of our solution. Some care is needed in the evaluation
of the smeared forms (see the discussion at page 122). We get:

Page — Page — N . (5.68)

The careful reader could have obtained a result that depends on bgo), the value of By
at infinity; however it should not be included, as just thinking about the flavored KW
theory without 3-form flux (Chapter 3) and the fact that Bs is not quantized, suggests.
After having identified a dictionary between supergravity and field theory, we will match
these charges with the IR of the theory.

Then we are interested in how these quantities change under a large gauge transfor-
mation of By. We perform By — By + ABy with

ABy = —nmwy nerz. (5.69)

It is a gauge transformation because AHs = 0 and (1/47%) [o, ABy = —n (n identifying
the number of Seiberg dualities) and is large because A By is not an exact form. A shift
of By must be accompanied by a shift of the gauge connection A on the branes, since F
is the gauge invariant quantity. Thus 27dAA = —AB,. We find:

2ndAA| =n g sin 6, df; A dpq 2nAA

P

:ng§5. (5.70)

31

The variations on Y5 are the same but with opposite sign.

The variation of the D5 Page charge is readily obtained: AQL¥* = nN;. In the
computation of the D3-charge we imagine having already shifted B, by m units, so that
we use:

= (%H(bg’) —m) 7r) wo

After some algebra we get

(L. M, oo 5
L= (T 50 -m) . 57

N
AQTYe = nme+n27f . (5.72)
Notice that in the first term appears the D5-charge before the shift.

We can summarize here the result:

AQE = 5 N, -
N 5.73
A Page o Page 2 _f '
Q D5 +n 5
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The formula is consistent with subsequent shifts and with (5.68). The case n = —1
corresponds to one Seiberg duality towards the IR. Notice that it gives the same ap-
proximate IR result derived with Maxwell charges in (5.58). Anyway Page charges give
us an exact and much cleaner result.

5.6 Brane engineering

In this section we engineer the effective field theory at some energy scale with probe
branes on the singular conifold, and compute the charges generated by such a config-
uration. In this way we will construct a dictionary between the supergravity charges
and the field theory ranks. Initially the goal is to construct a generic theory with gauge
group SU(r1) x SU(ry) (r1 > rg), flavor group U(Ny) x U(Ny) and k gauge singlet fields
in the (N¢, N;) flavor representation. As we will see this is not easy, and we will restrict
to the class of non-anomalous theories. Nonetheless this is enough to understand the
cascade.

The gauge theory is realized as the near-horizon theory on a stack of fractional
D3-branes, which can be thought of as D5-branes wrapped on the 2-cycle of 7! and
possibly with gauge flux on them. The computation is as in [25,46] and Section 4.6.
The Wess-Zumino action for a D5-brane with flux is

SD5 == 7'5/ [06 + (BQ + 27TF2) A 04] . (574)
R3:1x 82

We consider a flat background value for B, proportional to we, and F; can be expanded
on the pull-back of ws on the brane:

BQ = 7Tb0 %) 27TF2 = 7T¢0 d}Q s (575)

so that (1/47%) [o By = by and (1/47°) [ 27F, = ¢o. The gauge bundle is quantized
according to ¢y € Z. We read that the D5-charge is 1 and the D3-charge is (b + ¢). For
an anti-D5-brane the charges are the opposite: D5-charge —1 and D3-charge — (b + ¢p).
The gauge theory of interest is realized with r1 D5-branes and ro anti-D5’s with ¢y = —1
units of flux. The charges are summarized in Table 5.2.

Then we consider the case of a D7-brane without flux, with two branches: one along
Y1 = {02, ¢2 = const} and one along ¥y = {0, ¢; = const}. The Wess-Zumino action
is:

. 1, - !
5D7:T7/ [CS+(BZ+27TF2)/\CG+§(Bg+27TF2)2AC4—%p1(R)AC4 . (5.76)
R3:1xX®

The topology of the branches in the singular conifold is C? with singular origin and a
resolution of the conifold is needed in order to understand the physics. In the resolution

one branch participates to the blowing up of the 2-cycle, giving rise to C2 (C? blown up
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at a point), while the other one is not modified and only touches the exceptional cycle
at a point (see Appendix E). Which one of the branches is blown up is reversed by a
flop transition, anyway the charges do not depend on this choice.

The case without flux is the one considered in Chapter 3, and the case we expect to
be realized in the far IR of our solution. Even if we are not putting flux on the brane, we
cannot just take Fy = 0 because the resulting F would not be supersymmetric (moreover
the pull-back of By does not go to zero at infinity and one would get an infinite induced
charge). Thus we set an F, that kills the tail of B, at infinity but has no flux on S? (in
the C2 case). The resulting F is zero on the C? branch and is the Poincaré dual to S?
on the C2 branch. The details of this computation are in Appendix E.

Let us call o5 the Poicaré dual to S? on the C? branch; it satisfies®

/ &2:/062/\0'2 /0'2/\0'2:]. (577)
S2

for every (normalizable) closed 2-form «s. Thus the gauge fluxes on the two branches
turns out to be:

f

—0 f‘A — 472y 05 . (5.78)

(o C2

Then the two reduced actions are:

Spr(C?) —77/ Cs + (curv) Ty Cy
R3:1x(C2 R3.1

- B2 (5.79)
SD7((C2> = 7'7/ . Cs + bo 7'5/ C(; + [50 + (CU.IV)] 7'3/ Cy.
R3.1% 52 R3.1

R3:1x(C2

In the formulae we omitted the curvature couplings, that do not play an important role
here. The induced charges can be immediately read from these expressions, and are
summarized in Table 5.2.

At this point we can readily obtain the charges sgllrced by a D7-brane with flux as
well. Obviously we can only put some F5 flux on the C? branch, since the other one does
not have any 2-cycle. To add ¢y units of Fy flux on S? we substitute by with (by + ¢g)
in the expression of . Again the result is in Table 5.2.

One could think that the number ¢, of units of flux on the D7-branes corresponds to
the number Ng of zero modes arising at the intersection, thus to the number of gauge
singlets in field theory. Actually this is not exact. The reason is that for generic values
of the gauge ranks and of the number of gauge singlets, the chiral flavor symmetry is
anomalous. From the gravity point of view, the action of the gauge theory living on the
D7’s is not gauge-invariant; the variation is a boundary term, and since the branes are

9To do things properly: JoaNos = #(S2,5?) = —1 which is the self-intersection of S2. Then both
on the D5 and the D7-brane there is an induced anti-D3-charge, compatible with our background (see
Sections 2.3 and A and Footnote 6).
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frac D31y | frac D39 D7% 4 D7>2
D3-charge bo 1—by | 5(bo+ ¢o)* + (curv)
Db5-charge 1 -1 (bo + o)
D7-charge 0 0 1+1
Number of objects o] T Ny

Table 5.2: Effective charges for fractional D3-branes and D7-branes with flux.

non-compact this is not an inconsistency and only represents an anomaly for a global
symmetry in field theory.

There are two kinds of possible sources of anomaly. The first one arises as a would-be
tadpole on the D7-branes: since dF = Hs, if the cohomology class of Hy on the 4-cycle
is non-vanishing there is a tadpole [133]. In our case f63 H; = 0 for every compact
3-submanifold on the D7 worldvolume so that there are no tadpoles. The second one is
precisely the anomaly for the chiral flavor symmetry. It could be computed by performing
a gauge variation dA = d\ of the Wess-Zumino action for a D7-brane, along the lines
of [134,135] and more recently [136]. An anomaly is seen as a non-vanishing variation
of the boundary term, so that the absence of f-f-f anomalies translates into 6,Swz = 0.

Thus suppose starting with a configuration of Ny D3-branes and Ny D7-branes with-
out flux, which is the non-anomalous flavored KW theory. We can put one unit of flux
(¢ = 1) on each C? branch of D7. This gives us a new non-anomalous configuration.
From Table 5.2, the modification of the charges is that of the addition of Ny D5-branes
wrapped on S? and a D3-charge of % On the other hand, we know that a non-trivial
cohomology class 27 F, for the D7 gauge bundle represents D5-branes dissolved (or even
localized) into the D7’s. In particular a flux on S? represents D5-branes that wrap the
2-cycle.!® The new non-anomalous theory is thus engineered by Ny D3-branes, Ny D5-
branes and N; D7-branes, and being non-anomalous there must be one gauge singlet
field. What we have found is precisely our field theory at the first (from the bottom)
step of the cascade.

This is a general pattern. Each unit of flux on the D7’s corresponds to the addition
of Ny fractional D3-branes (thus increasing the difference of the gauge ranks by Ny), one
gauge singlet field to preserve the anomaly and a number of D3 branes. We will match
this pattern with the field theory cascade in the next section. If we want to isolate the
charge contribution of one gauge singlet field, it is just a D3-charge of % In Table 5.3
we report this different counting of charges.

10Notice that since one of the D7 branches wraps the shrunk 2-cycle, the D5-branes wrapped on it
must necessarily lie inside the D7.
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frac D3y | frac D39 D7*' 4+ D7*2 | Ng
D3-charge bo 1—bo 0% + (curv) %
Db5-charge 1 -1 bo 0
D7-charge 0 0 1+1 0
Number of objects 71 T Ny k

Table 5.3: Effective charges for fractional D3-branes, D7-branes without flux and Ng
gauge singlets.

5.6.1 The cascade

We conclude with the matching of the cascade between field theory and supergravity.
We consider at step (¢) a theory with gauge group SU (r1) x SU(r3) (with ry > r3), flavor
group U(N;) x U(N;) and k gauge singlet fields in the (N, N;) flavor representation.
It is realized with r fractional D3-branes of type one and r of type two. The Page
charges sourced by this configuration are (Table 5.3):

M(Z) =71 —"T2 +b0Nf

A b2 N (5.80)
N =byry + (1 —bo)ry + EONf + 7fk—|— (curv) .
After one Seiberg duality towards the IR we have at step (i — 1) a theory with gauge
group SU(ry) x SU(2ry 4+ Ny —11), the same flavor group and k — 1 gauge singlet fields.
The new Page charges are:

M(i_l) :7“2—(27“2—|-Nf—7“1)+b0Nf

(i) b2 Ny (5.81)
NV =boryg+ (1 —bo)(2re + Ny — 1) + 5Nf+7(k_ 1) + (curv) .
Thus we verify that
MY — A Ny
NG = N0 g 4 Ni (582)
2 )
in perfect agreement with the supergravity computation (5.73) with n = —1, that is one

Seiberg duality towards the IR.

The careful reader could wonder what is the role of the constant M in the supergravity
solution. In the field theory there is no rank controlled by it: in the IR the gauge ranks
are equal and controlled by Np; then, going towards the UV, at some energy scale they
start growing and the cascade is controlled by N;. The parameter M does not enter,
and in fact it is not even quantized.
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It turns out that M fixes the energy scale of the last (lower) Seiberg duality. This
last step (after which the theory does not cascade any more) takes place at a radius
ro such that by(rg) = (1/47%) [o, Bs is 1. Then, negletting for clarity bgo), one finds
f(ro) = 2n/M. The biggest is M, the smaller is the energy scale of the last Seiberg
duality compared with the duality wall scale, and the larger is the number of dualities
contained in the weakly coupled supergravity description.

5.7 Conclusions

In this chapter we presented a field theory obtained as a chiral flavoring of the Klebanov-
Tseytlin theory. The RG flow is understood as a cascade of Seiberg dualities in which
flavors actively participate, and new gauge singlet fields have to be taken into account.
Then we proposed a gravity dual, constructed by putting backreacting flavor D7-branes
with flux in a background. The existence of a gravity dual gives more sturdy ground to
the cascade, and allows us to predict the full non-perturbative RG flow.

The UV theory presents a duality wall as well as a Landau pole, as it happens in
Chapter 4 [46]. The fact that by(p) diverges as approaching the Landau pole tells us that
an infinite number of Seiberg dualities would be necessary to reach a finite energy scale,
and the number of degrees of freedom diverges as well. Of course this has to be taken
with a grain of salt as the string coupling (and the gauge coupling) diverges as well.
On the other side, along the cascade the difference between the gauge ranks reduces
going towards the IR. At some point they get equal and there is no cascade anymore.
The string coupling always decreases, which initially translates into both gauge groups
having positive S-function and the gauge couplings flowing towards zero. As explained
in Section 3.2.6, at some point gsNy becomes small, the flavor branes do not backreact
any more and the gravity solution asymptotes the KW one but with smaller and smaller
string coupling. On the field theory side the gauge coupling stops at some minimal
value g, (the extreme of the line of conformal points, where the quartic superpotential
vanishes) and what still flows to zero is the flavor superpotential coupling. Eventually
the theory reaches a fixed superconformal point with flavors, vanishing superpotential
and gauge coupling g,. This is badly described by supergravity.

The flavoring of the KT cascade is interesting for another reason. When trying to
generalize it to fractional branes at more generic conical singularities (see [137] for an
example), an IR problem arises: if there are no complex deformations the singularity
cannot be resolved, the field theory presents a runaway behavior and/or it breaks super-
symmetry [138-141]. The addition of flavor branes can cure this problem, as fractional
branes can disappear in the IR and the field theory still flows to a superconformal point.
When trying to flavor these theories with D7-branes one discovers that generically it
is not possible to do it in the non-chiral way of [46]. The flavors generically couple to
operators with non-zero baryonic numbers; on the gravity side, generically the pull-back
of H3 on the 4-cycles is different from zero. Thus the most general situation is the one
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exemplified in this chapter.

For instance the authors of [115] used the last step of a cascade obtained by flavoring
the cone over dP; (equivalently Y*1) to study realizations of the ISS mechanism [127] in
string theory. The flavoring they consider is of chiral type, with a cascade quite similar
to the one presented here. It would be interesting to explicitly realize the gravity duals
to those models.

Lastly, the appearance of 4d chiral zero modes along the intersection of branes with
flux could have a relevance for the construction of phenomenological models. In [45] it
was considered a mechanism for localizing fermions in the bulk of a Randall-Sundrum
throat. Here we explicitly see another possibility.






Chapter 6

Fixing moduli in exact type IIA flux
vacua

In this chapter we turn to a rather different problem. Anyway, it is very instructive
to see how much the smearing technique is a powerful tool to handle otherwise elusive
supergravity solutions. The issue we want to tackle here [43] is moduli stabilization.

String vacua with magnetic fields along the extra dimensions (“flux compactifica-
tions”) have been intensively studied in recent years (see [40-42] for recent reviews).
One reason for their relevance is that, since the flux contribution to the energy depends
on the geometrical moduli of the internal manifold, it gives them a four-dimensional
effective potential and can thus stabilize some or all of them, lifting undesired massless
fields [24,142-147].

Type ITA flux vacua are perhaps the best understood amongst flux vacua (see [148—
152] and references therein). This is because all the moduli are stabilised classically
i.e. the effective moduli potential generated by the tree level supergravity action in ten
dimensions (supplemented with orientifold 6-plane sources) has stable isolated critical
points. This has been demonstrated in detail in [148]. We would like to mention [153]
as another model where all moduli are stabilized, and the analysis is performed through
an effective four-dimensional supergravity description.

Specifically, if we consider type ITA string theory on a Calabi-Yau threefold, switching
on the RR fluxes gives rise to a potential which depends on the Kéahler moduli. In order to
stabilise the complex structure moduli one can introduce NSNS 3-form flux, H, however
this leads to a tadpole for the D6-brane charge, which can be cancelled by introducing
orientifold six-planes (O6). The full system of fluxes and O6-planes then stabilises all
the moduli, essentially at leading order in o’ and g;.

In particular, de Wolfe et al. [148] have described the effective 4d potential for the
moduli in the large volume limit, when the backreaction of the fluxes on Einstein’s equa-
tion can be ignored (since their contribution to the stress tensor is volume suppressed).
This class of vacua is an excellent arena to study aspects of moduli stabilisation in de-

139



140 Fixing moduli in exact type ITA flux vacua

tail, since the vacua are essentially classical solutions of ten-dimensional ITA supergravity.
However, until now, very little is known about what these ten-dimensional solutions look
like, since most of the prior studies have used the effective four-dimensional description.
The purpose of this chapter is thus to fill this gap.

The basic questions we will ask are: does the ten-dimensional solution actually exist
(i.e. is the four-dimensional description valid)? If so, what, precisely, is the backreaction
of the fluxes and how does it modify the Ricci flat Calabi-Yau metric? Can we understand
moduli stabilisation from a ten-dimensional perspective?

Our main results can be summarized as follows: we prove that the exact ten-
dimensional solution is not Calabi-Yau. The precise modification of the Calabi-Yau
geometry can be described by a particular type of half-flat SU(3)-structure [154]. No-
tably, they appear in the mirror-symmetric picture of “Calabi-Yau with fluxes” com-
pactifications [155,156]. Even though we were unable to find the full solution (for which
we will have to await further developments in the mathematical literature), in the ap-
proximation that the O6-plane source is smoothed out, we found an exact solution. This
solution is Calabi-Yau.

With an explicit background at hand, we can perform an analysis its deformations
and degenerations, if any. In particular we studied the moduli stabilization issue from
the ten-dimensional point of view. What we found is exactly the same results as [148],
namely that all moduli are stabilized in this particular class of models when the fluxes
are switched on. Finding the same results of [148] in a complementary approximation
gives them more steadiness.

We will start by shortly reviewing a class of solutions of type ITA supergravity found
in [157,158] and [159]. These will form the basis of the solutions with O6-planes.
They describe compactifications on an internal SU(3)-structure manifold down to four-
dimensional AdSs. Then we will introduce orientifold 6-planes in supergravity, discussing
the issue of supersymmetry preserving configurations and how the original solutions are
modified by their presence. In particular, we present an exact “smeared” solution in
which the orientifold charge is smoothed out. Finally we will turn to moduli stabiliza-
tion. We find that all the geometrical moduli are lifted at tree level in supersymmetric
vacua.

We would also like to mention that Banks and van den Broek [160] have also been
studying similar issues to those discussed here.

6.1 Massive type IIA supergravity on AdS,

Recently, a large class of supersymmetric four-dimensional smooth compactifications of
massive type IIA supergravity have been classified [159]. In this section we will briefly
review these solutions in order to set the notation for our results. Following this, we will
describe how the solutions are modified when O6-planes are added.

The massive ITA theory has bosonic fields consisting of a metric g, a RR 1-form
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potential A (with field strength F') and 3-form potential C' (with field strength G), a
NSNS 2-form potential B (with field strength H) and a dilaton ¢.

We are interested in the ten-dimensional description of the supersymmetric vacua
with non-zero cosmological constant discussed by de Wolfe et al. from an effective field
theory point of view in [148]. Therefore, without loss of generality, we can take the
ten-dimensional spacetime to be a warped product AdSy x A Xg, where Xj is a compact
manifold and the ten-dimensional metric is given by:

gMN(x,y) _ ( AQ(y)guu<x> gmg(y) ) ’ (61)

where x and y are coordinates for AdS, and Xg respectively and the warp factor is A.
All the fluxes have non-zero y-dependent components only along the compact directions,
except for G which has a non-zero four-dimensional component

Glvpe = @f(y) €uvpo (6.2)

and f is a function on Xj4. These assumptions are dictated by local Poincaré invariance
on AdS4

N = 1 supersymmetry in four dimensions implies that the compact manifold Xg
has a globally defined spinor, 7. As a consequence, the structure group of Xg reduces
(at least) to SU(3). As usual, the existence of the spinor 1 implies the existence of a
globally defined 2-form J and 3-form €2

I = Z‘UT—PYmnnf = -1 nimennJr (6 3)
Qunp = 77T—’7mnpn+ Q:nnp = _UL'anpn— .

With these properties J and §2 completely specify an SU(3)-structure on Xg. J defines
an almost complex structure with respect to which € is (3,0). From the SU(3) de-
composition of their differentials d.JJ and df2, one can read off the torsion classes which
characterize the SU(3)-structure:

3
dJ:—5 Im OV, ) + Wy AT +Ws
dQ=WrJANJ+WoaANJ+W5 AQ.

(6.4)

By requiring the fluxes to preserve precisely N' = 1 supersymmetry in four dimen-
sions, the ten-dimensional supersymmetry parameter has to be of the form [40]:

e=erte=(ab@n —a"0-®@n )+ (B0 —0_@n). (6.5)

Here 6, and 6_ (with ., = 67C) are the two Weyl spinors on AdSy, satisfying the
Killing spinor equations

Vil =WAb- V.0 =W'3,0, (6.6)
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where W is related to the scalar curvature R of AdS, through R = —24|W|%. On the
other hand, n, and n_ are chiral spinors on Xg related by charge conjugation, so that e
is a Majorana spinor.

By substituting this ansatz into the supersymmetry equations dA = 0, 0¥ ,; = 0 (the
10d ITA action, the supersymmetry variations and conventions are set in Appendix B),
Liist and Tsimpis found the following solutions:

e if |a| # |/, one gets the usual Calabi-Yau supersymmetric compactification, i.e.
Xg is a Calabi-Yau manifold, all the fluxes vanish and W = 0, so the four-
dimensional space is Minkowski;

e if |a| = ||, one can, without loss of generality, choose v = 3 and:
F= ge_"w J+F
H = %m e™/* ReQ
G:fdvol4—|—3?me¢J/\J (6.7)
W= A( >_2< L e ife¢/4>
|| 5 6

o, A, f, Arg(a) = constant .
Here F is the 8 component in the SU(3) decomposition of F (see Appendix B) and

it is not determined by supersymmetry. On the other hand, by imposing the Bianchi
identities, one finds a contraint on its differential:

~ 2 108
dF = — e/ <f2 2 2¢) Re() . (6.8)
From the last equation one can in particular compute:
8 _ 8 108
PP = e <f2 m? 2¢) £z (6.9)

The further non-trivial constraint one gets from the Bianchi identities is |a| = constant.
Note that the Bianchi identities are crucial to obtain a solution of all the equations of
motion.

From these results we can obtain a characterization of the SU(3)-structure of these
backgrounds:

J = ; fe?*ReQ

A4 . (6.10)

dQ = —gfe‘z’/‘lj/\J—ie?"z’/‘lJ/\F.
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Thus the nonvanishing torsion classes of Xg are:
—_ A i3

A manifold with such an SU(3)-structure is a special case of a so-called half-flat manifold.
(Compactifications on half-flat manifolds are considered in [155,156, 161]).

From these results we can see that the only Calabi-Yau solution (which has zero
torsion) is the standard one with zero fluxes and zero cosmological constant. The only
other special class of solutions which can be considered have W, = 0 (because of (6.9),
putting f = 0 implies m = 0 and then also F =0, so that the solution is fluxless CY).
This requires f? = 108 m?e?? /5. These manifolds are called nearly-Kdhler, and solutions
of this kind were obtained in [157,158].

6.2 IIA supergravity with orientifolds

Our main result will be the ten-dimensional description of the vacua discovered in [148]
(an example of such vacua is also given in [162]). Since these vacua must also have
O6-planes we need to understand how the solutions of [159] change in the presence of
the O6’s. The O6-plane is not a genuine supergravity object, but rather something
defined by the superstring compactification. Nevertheless, the supergravity action can
be enriched with terms that describe the interactions of such an object with the low
energy fields.

In ITA string theory, an orientifold 6-plane is obtained by modding out the theory
by the discrete symmetry operator O:

0=Q,(-1)ro", (6.12)

where Q, is the world-sheet parity, (—1)** is the left-moving spacetime fermion number,
while ¢ is an isometric involution of the original manifold. The fixed point locus of ¢ is
the orientifold 6-plane. In type IIA string theory an O6-plane is a BPS object, which
preserves half of the supersymmetries: those such that e = O e, where e are the two
Majorana-Weyl supersymmetry parameters (6.5).

We are going to add an O6-plane parallel to the AdS, factor, so three-dimensional in
the internal manifold. Since the background preserves only four supercharges, in general
an O6-plane will break all of them. On the other hand, in order to get an N' = 1 four-
dimensional theory, we must take the O6 such that it preserves the same supercharges
as the background. As in the case of a D6-brane, this is achieved by wrapping the plane
on a supersymmetric 3-cycle.

The operator O does not act on the four-dimensional spinors #, while it exchanges
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ny and n_.! Thus

Jmn = —1 ﬁi%mm Kl —1 UT—’Ymnnf = —Jmn

1 t " (613)
anp = N—"YmnpT+ N+ YmnpTl— = _anp .

Supersymmetry forces o to be anti-holomorphic with respect to the almost complex
structure J.

The fixed locus of the isometry o (if any) on the internal manifold is the supersym-
metric 3-cycle ¥ the O6 wraps. In particular, we get for the pull-back to the plane:

J|2 =0 RGQ|2 =0 s (614)

which imply
JNd3=0 ReQ2Aéd3=0. (6.15)

The 3-form d3 (in the previous chapters we used the symbol €2, for it, but here we do not
want to confuse it with the holomorphic 3-form), localized on the 3-cycle X, is defined
in (6.25). Moreover (2 is a calibration and ¥ is calibrated with respect to —Im Q. In
fact one can compute

49(x)
X /64

These indeed show that ¥ is a supersymmetric 3-cycle (in fact special Lagrangian) [163].

One obtains the spatial parity of the other form fields by considering their worldsheet
origin and imposing them to be invariant under the orientifold operator (6.12): so, under
o*, F and H are odd whilst 3, GG are even.

/ ImQ = ImQ A3 =— dvolg = —Voly, . (6.16)
s Xs

Now consider the modifications to the equations of motion (EOM) and the Bianchi
identities (BI) of type IIA massive supergravity given by the O6-plane . The bosonic
action is, at leading order in o’:

SOG = 27—6/ d7€ €3¢/4 \/ —g7 — 27—6/ 07 s (617)
06 06

where the first piece comes from the Dirac-Born-Infeld action, the second one from
the Wess-Zumino’s. Moreover g7 is the pulled-back metric determinant on the plane,
76 = [(27)%g,0/7/?] ~is the Dp-brane charge and tension (while 2k%75 = 2mgsV/a’), and
we have taken into account that the charge of an Op-plane is —2P~° times that of a
Dp-brane.

These terms are only the first ones in an infinite expansion in /. Keeping just them
and working with the leading supergravity action (B.1) is consistent. In A/ = 2 10d

INote that Qp(—l)F L acts trivially on the supersymmetry parameters, since they have the same
parity properties as the metric.
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supergravity theories, the first corrections coming from string theory are of order o/* R*,
where R* stands for various contractions of four Riemann tensors, to be compared to
the leading term R.?> The orientifold leading action is instead of order v/o/. Classical
solutions will be reliable only in regions where o R < 1.

The Born-Infeld term gives a contribution to the Einstein and dilaton equations,
while the Wess-Zumino term represents an electric coupling to C7;. The Born-Infeld
term brings a localized contribution to the energy momentum tensor?

5 (06
T]l\jﬁv = — = 2/€2T6 €3¢/4HMN ( )

V=g ogM~ g

where T,y is the projected metric on the plane and g} = ¢19/g7 is the determinant of the
transverse metric. In case of a warped product metric as in (6.1) and for a submanifold
wrapping the four-dimensional factor, II,, = g,,. In the following we will set 2% = 1,
however recall that this factor should always precede 4.

The equations of motion are:*

(6.18)

1 1 1
OZRMN—§3M¢5N¢— E€¢/2GM'GN+E8€¢/29MNG2
1 1 1 1
- ZG_¢HM'HN+4_8€_¢9MNH2 - 563¢/2FM‘FN+§@3¢/29MNF2 (6.19)
1 : ¥ (06) 7 §® (06
-3 m2 e5%/2 JMN — T e30/4 My ( t ) + § 6 e39/4 guN (_t )
V93 V 93
0=V?¢p— ie(b/QGQ—Fie_(‘SH2 - §63¢/2F2 — 5m? >/
96 12 8
ERROALICT)
93
1
Ozd(e_¢*H)+§GAG—6¢/2F/\*G—2me3¢/2>|<F (6.21)
0=d(e*?«F)+e’? HA+G (6.22)
0=d(e’?+G) —HAG. (6.23)

Here X ;- Xy means contraction on all but the first index. Moreover the fourth equation
is not independent but can be obtained from the third one by differentiation. Notice
that the only equations that get modified with respect to [159], due to the presence of
an orientifold plane, are the Einstein and dilaton equations.

The Wess-Zumino term in (6.17) describes the coupling of the plane to C7, which
is the gauge potential dual to A, and so the O6 is a magnetic source for A. This term

2For N’ =1 10d theories the first corrections are of order o/ R?.
3Recall that g = g g™V dgun = —g gundg™ .
4We set: F,? = p!|F,|?. Moreover the equation of motion for A is given by the differential of (6.21).
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does not modify the equations of motion, but only the Bianchi identity. The way this
modification can be evaluated is taking the dual description in terms of Fg, so that the
BI is obtained by varying with respect to C7. We obtain

The other BI dG = H A F is satisfied. We refer to Appendix B for the derivation.

In the derivation it has been convenient to express integrals on the plane as integrals
on the whole space, through the 3-form ds3, transverse to the plane and localized on it:

/‘sz/ceA@. (6.25)
06

In local coordinates yy;, where the O6-plane is located ad 37 = ... = ¢ = 0, we have
65 = 03 (y7, 4%, 9) dy” A dy® A dy® expressed through a usual delta function. Notice the
closure

which means nothing more than charge conservation. A precise treatment of distribu-
tional forms would be to consider the embedding of a seven-dimensional manifold M
into the target space f : M; — Z, so that |, , /7C7 1s a nondegenerate linear map from
7-forms to real numbers. The Poincaré dual to f(My;) is now, by definition, an object
03 which realizes (6.25) as a linear map on 7-forms. It turns out that the differential
dds is defined by [Cg A dd3 = — fBM7 f*Cs on 6-forms. In our case the O6-plane has
no boundary, hence closure. We stress however that d3 is a well defined 3-form, and not
just a cohomology class.

Summarizing, the introduction of the O6-plane does not modify the SUSY variations
in (B.11); it changes the Bianchi identity for the 2-form field strength and induces some
additional terms in the Einstein and dilaton equations of motion.

In order to find the new solution, we follow the same procedure as in [159], i.e.
we solve the SUSY equations dA = 0 and vy, = 0, and then we impose BI’s and
EOM’s for form fields. In fact, one can show that the Einstein and dilaton equations
are automatically satisfied (a part from the minor requirement on the Einstein equation
Eop = 0 for M # 0, which is granted with the ansatz (6.1)). We will partly verify it in
Appendix B.

The system of relations (6.7) solves also the form field equations (6.21), (6.23) and
the BI for G. So we are left with only the modified BI for F' (6.24). Substituting the
solution (6.7) into the modified BI and using the expression (6.10) for d.J, one gets

) 2
_ _ 2 /4 2 _
dF = —e (f

%erQ‘z’) Re ) — 27405 . (6.27)
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From this we can compute |F'[2. Start from 0 = QA F, which is true because Q is the 1
and F' the 8 of SU(3), take its differential and use again (6.9), (6.16) and (B.21) to get

- 8 108 P
‘F‘z = 2—7 €_¢ (f2 — Tm2€2¢) + 27—6 6_3¢/4L (628)

Vs

The first term is constant on Xg, while the second one has support on the cycle X. |F|2
is positive definite, so we find two conditions:

> —m?%* and 76 > 0. (6.29)

Note that the latter is perfectly expected: changing the sign of the charge of the O6-plane
gives an anti-O6-plane, which however preserves orthogonal supersymmetries incompat-
ible with the background. The discussion of the possibility of getting a Calabi-Yau
geometry is parallel to section 6.1. One would have to put f and F to zero, but this
would also imply m vanishing. The massless limit has to be taken with care, and one
finds Calabi-Yau without flux. Moreover, as long as the localized contribution is present,
there will always be a singular behavior on it, captured by (6.10).

6.2.1 A smeared solution

To find exact solutions in the presence of localized objects is not easy, mainly because,
as we saw, in no case with non vanishing mass parameter does the geometry reduce to
Calabi- Yau. Nevertheless, as a first step, we can consider a long-wavelength approxi-
mation in which this situation is realized. In a Calabi-Yau metric the torsion classes
vanish:

f=0 F=0 F=0 m?>0. (6.30)
In the long-wavelength approximation the charge of the orientifold plane, localized on X,
is substituted with a smeared distribution (obviously keeping the total charge the same).
Thus the 3-form describing the new charge distribution must be in the same cohomology
class as d3. Integrating the Bianchi identity (6.24) on 3-cycles gives the tadpole cancel-
lation conditions. Actually, requiring F' = 0 and imposing the supersymmetry equation
for H (6.7) implies the smeared charge distribution to be:

4 2
T 6§meared — 7; e7¢/4 Re(). (631)

Direct inspection of (6.27) shows that in fact we can consistently put f and F' to zero.

Equation (6.31) is quite strong: since the smeared charge distribution is in the same
cohomology class as the original localized distribution, also the class of Re(2 is con-
strained (on the solution of the equations of motion). Let the cycle I' be the symplectic
partner of the O6 cycle ¥, such that 1 = 'NY = [[¥] = [[[]A[E]. The Poincaré duals
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to X and I are, on the solution, respectively cRe 2 and c¢Im §2, where the proportional-
ity constant c is fixed by (B.20) to be (4Volg)~'/2. Having this in mind and integrating
(6.31) on I we get the value of the dilaton:
4m2 /4 _ T6

£ e = VoL (6.32)
This fixes also the value of the four-dimensional cosmological constant. Summarizing,
the solution is completely described by the internal Calabi-Yau manifold defined by
SU (3)-invariant forms J and €2, with an anti-holomorphic isometric involution o: the
background fields G and H are determined by (6.7) with f = 0, F' = 0; the dilaton is
given by (6.32) where in turn the volume is set by J. Further constraints come from
the integral quantization of fluxes, and this mechanism provides the stabilization of
geometrical moduli in the geometry. Thus J and Q2 are (completely) determined by the
integer fluxes. This will be analyzed in the next section.

6.2.2 Tadpole cancellation and topology change

In the exact localized solution, the fact that Re (2 is exact implies that H must be exact.”
The most important consequence is that the modified BI implies that mH — ), 76 6?51)
must vanish in cohomology; here ¢ runs over all localized sources. Therefore from the
tadpole cancellation conditions one gets that the possible configurations of localized
charges are constrained: charge cancellation must work among localized charges only.

Specifically, it must be that:
/ > o =0 (6.33)

on all closed 3-cycles. This is different from the smeared CY solution (in which f = 0),
where a non-trivial closed H was allowed by the supersymmetry equations and could be
used to cancel the O6-charge.

In the case of a single source we see that d3 is exact. Since d3 is the Poincaré dual of
the homology class of the O6-plane, we learn that the 3-cycle that the O6-plane wraps
is contractible. This is in stark contrast to the smeared Calabi-Yau case in which the
O6-plane is necessarily non-trivial in homology. Therefore, we learn that the transition
from the Calabi-Yau approximation to the exact solution necessarily involves a topology
change.

6.3 Moduli stabilization

In this section we will describe from the point of view of ten-dimensional supergravity,
how the introduction of the fluxes stabilizes the moduli which are present in the zero

5Actually the exact forms are e?/*ReQ and e 3?/2H (as one reads from the equations (6.7) and
(6.10)). But ¢ is constant.
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flux, Calabi-Yau limit. After a brief general discussion, we will first discuss the moduli
VEV’s in the examples studied in [148] and then go on to discuss the general case.

We begin with the axions. A background value for the field strength of a gauge form
potential can be separated in two pieces:

H=H'4+dB. (6.34)

The former, cohomologically non-trivial, when integrated on cycles gives the integer
amounts of flux, whilst the second term is globally exact. H/ must be closed (so that
the flux depends only on cohomology), and we can choose an harmonic representative
of the integral cohomology class (appealing to Hodge decomposition). Note however
that this separation is arbitrary. From the exact solution the total field strength H is
harmonic so that dB = 0. We can then use the gauge freedom B — B + d\ to choose B
harmonic. The internal harmonic components of B are four-dimensional axions. This
shows that all other Kaluza-Klein modes have a zero vacuum expectation value and are
hence massive.
In the same way, we split the other field-strengths:®

F=F +dA+2mB

g ) (6.35)
G=G"+ fdvoly + dC+ BANdA+ mB* .

Arguing as before, F/ is the integrally quantized flux of the gauge potential A while G
is the flux of C'; all of them can be taken harmonic exploiting the gauge redundancy.
Note that being A harmonic, it is actually vanishing on our Calabi-Yau solution because
of the vanishing of H'(CY,R).

So one simply expands fluxes (quantized), gauge potentials and the SU(3)-structure
forms defining the metric. The right basis is dictated by the exact solution, and by
the constraints imposed by the orientifold projection. In the special example at hand,
everything is harmonic. On the other hand, with this method we can only study the
vacuum and we can not go off-shell, so we can not determine the superpotential.

In order to discuss the stabilization of axions coming from C', we need to consider
the BI for Gg = e¢?/? x G, or equivalently the EOM (6.23). Splitting the field strength
according to (6.34) and (6.35) and recalling that A = 0 one can recast it in the form of
an exact differential:

1
d(e¢/2*G+HAC—B/\Gf—§mB3):0. (6.36)

When f # 0, C' must contain also a four-dimensional piece C'y; such that dCy; = f dvoly.
Being a BI, the term in parenthesis is recognized as the closed component of Gg, which
can be further split into flux and an exact piece:

1
G£+d05:e¢/2*G+HAC—B/\Gf—gmB?’. (6.37)

SNotice that the field strengths F' and G are not automatically closed. They are indeed closed in
the smeared solutions we are considering, as it turns out from the BI's (6.24).
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6.3.1 Example: the T°/(Z3)* orientifold

The smeared solution in the long-wavelength approximation can be exploited to compare
results with another widely used approximation: what is called Calabi-Yau with fluxes.
In the latter, one keeps the contribution of fluxes small compared to the curvature of the
compactification manifold. Note that fluxes can not be taken arbitrarily small: Dirac
quantization condition puts a lower bound F, ~ (¢/ )% to the amount for a p-field-
strength. So one requires the contribution of fluxes to the action to be small compared
to the Einstein term R, which is of order L=2 with respect to the characteristic length
of the manifold. This gives (o//L?*)P~! < 1. In other words, we must be in the limit
of large compactification manifold with respect to the string length, which anyway is
the regime of applicability of supergravity. Under these conditions, one can neglect the
backreaction of fluxes on geometry, and work with the Calabi-Yau metric. Of course
one has to be careful to remember that in the action there are factors of the dilaton,
and both the dilaton and the volume are (possibly) determined by fluxes themselves, so
it is not always possible to keep the fluxes to their minimal amount while increasing the
volume. On the other hand, the smeared solution is valid for large flux.

A simple example studied in detail by [148] is the T°/(Z3)? orientifold and will
be useful as a concrete model. The model is constructed by compactifying type ITA
supergravity on a 6-manifold which is (the singular limit of) a Calabi-Yau: a torus
T® firstly orbifolded by (Z3)? and then orientifolded. It has Hodge numbers h?! = (
and ht! = 12, where 9 of the 12 Kihler moduli arise from the blow-up modes of 9 Zs
singularities. There are no complex structure moduli. The O6-plane wraps a special
Lagrangian 3-cycle and is compatible with the closed SU(3)-structure of the CY. The
resulting theory has 4 preserved supercharges. The number of moduli from the form-
fields are: 3 from the NSNS 2-form potential B (odd under ), no one from the RR
1-form potential A and 1 from the RR 3-form potential C' (even). Fluxes are switched
on as described above.

In [148] the stabilization of the moduli, due to the fluxes, is analysed by a compu-
tation of the four-dimensional effective moduli potential. We are going to apply to this
model the machinery previously developed, in the long-wavelength approximation.

Let us introduce an integer basis of harmonic forms for the even cohomology groups.
The 2-forms (odd under o) w; (i = 1,2, 3):

w; o %dzi/\dii /wl/\wg/\wg,:l. (6.38)

The 4-forms (even under o)

W= Eék w; A wy = /wa AP = 6" . (6.39)

Start with the decomposition of F' (6.35). Expand the fields on harmonic forms (of
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correct parity) ' '
FI = fi, B =bw, (6.40)

where f' are quantized in units of 7. Imposing the smeared solution F' = 0, we get

fi

Com

= (6.41)
The “moduli”” b corresponding to four-dimensional axions are fixed by the fluxes f°.
We can take for simplicity F/ = 0, as in [148], then B = 0 and the axions are fixed to
b® = 0. The general case is dealt with in the next section.

Then expand the 4-form flux G' and the SU(3)-structure fundamental form:

Gf:Zeiﬁ)i, J:e*‘ﬁﬂZU"wi v' >0, (6.42)
where e; are quantized in units of 74, and we put a power of the dilaton for later conve-
nience. Note in particular:

viot® = e39/2 Volg = Volrne frame. (6.43)

Substituting into the decomposition of G (6.35) and in the solution (6.7) with f = 0
and b' = 0, we get

6 .

?m viok =e; | (6.44)
where i # j # k #1iin 1,2, 3.

We find a series of relations on the possible fluxes that characterize a supersymmetric

vacuum: Sgn(m ejeges) = Sgn(me;) = + and the sign of e; is independent of i. These
are in agreement with [148]. Moreover we can invert to

1

N el

i €1€2€3
v

g (6.45)

m

So the Kahler moduli are fixed. In the more general case b° # 0 they are still fixed, apart
from changing the range of fluxes for which the supergravity approximation is reliable.

The stabilization of the dilaton comes from the decomposition of H (6.34). Expand
H in a basis of harmonic forms for the third cohomology group, odd under the spatial
orientifold operation o*. In the present example there is only Re(). Note that this is
consistent with the solution (6.7). So let us put

H=H =p Re ) . (6.46)

1
RV 4V016

"We call them moduli because they are so in the Calabi-Yau compactification without fluxes, but
here the exact solution fixes completely B, and so there are no moduli at all.




152 Fixing moduli in exact type ITA flux vacua

The normalization comes from [.d; = 1 (see also the discussion after (6.31)), so p is
integrally quantized in units of 75. Integrating the BI for F' on the cycle I' we get the
only nontrivial tadpole cancellation condition

/mHzmpzn;, (6.47)
r

whose only two solutions are® (m, p) = +(75/2, 275) and +(73, 75). Comparing with the
solution, the dilaton gets stabilized to

3 /5 1 1/
¢ ==z - . 6.48
© 470 (6 mP 616263) ( )

The last issue is the stabilisation of possible axions coming from the 3-form potential
C. Being it odd under ¢* and harmonic, there is only one axion:

Im Q2
YV 4V016 .

This must be substituted into the decomposition of the field-strength Gg dual to G
(6.37), with quantized flux [ G = ey. We get:

—p&=e¢p. (6.50)

The result is that, in this simple model, all Kahler moduli, the dilaton and the only
axion are geometrically stabilized, whilst there are no complex structure moduli. All the
results found in this section are in precise agreement with those found in [148]. Really
one should discuss the moduli associated to the 9 resolved singularities as well, which
are one Kahler modulus each. One would find that the singularities are blown up to a
finite volume. However in the next section we will discuss how this example generalizes
to any Calabi-Yau, of which the resolved orbifold is just a particular case.

We can determine the four-dimensional cosmological constant as well, that is the
vacuum energy in AdS;. The exact solution (6.7) gives the scalar curvature R = —24|WW |2
of the AdS, factor in ten-dimensional Einstein metric (note that the constant A cancels
out). Then we must express it in four-dimensional Einstein frame, through

C=—¢ (6.49)

1 - 24, 5 €92

RYE = M — R=-—"M —. 6.51
pr VolG 25 P Volg ( )
Eventually, choosing conventions for the Einstein equation R, — % gl = —% G\
3\ (6 ot \**
A=-0Cm)" (=) (- ——— M} . 6.52
(2m) (4) (5 m€1€2€3) P ( )

8Note, in quantizing m, that it is not canonically normalized in the action (B.1); then it is quantized
in units of 75/2.
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6.3.2 General Calabi-Yau with fluxes

The generalization of this example to any Calabi-Yau model with an orientifold projec-
tion is straightforward. We will continue to adopt the long-wavelength approximation
as done in the previous section. First of all the anti-holomorphic involutive isometry o
divides the cohomology groups of the internal manifold into even and odd components.
In particular, H' = H}' @ HY' with dimensions ' = hY' + A5 Let {w;} be an
integer basis for H"', with intersection numbers

Kabe = /wa A wy A w, (6.53)

and {@'} the dual basis for H>? (since J* is odd):

/wi A =6 (6.54)

The third cohomology group H? = H? @ H? is halved in two spaces of real dimension
h*! + 1. We consider an integer symplectic real basis for H®: {ag, 8%} with k[ :
0,...,h%% Tt satisfies [ ax A 3% = §%; moreover ay are even under the projection o*
while 8% are odd. Let the Poincaré dual basis of integer cycles be {4, '®} so that
NaNTP =65, Tt satisfies [, ax = 0%, [ 8" = 0f while the other vanishing. The
orientifold homology class Y will be a combination of > 4’s.

Then we expand the various fields and forms on these basis, according to their
behavior under the orientifold operation O. The Kahler form J, the field B and the
flux F/ are odd and follow (6.40), (6.42).° In particular

1
Volg = 8 e 32 %P0 Kupe - (6.55)

The flux G/ is even and follows (6.42). The treatment of the holomorphic 3-form needs
a little bit more of care. On a Calabi-Yau it can be expanded on the full H3:

Q=g%ax + 7Z.8" . (6.56)

We can take Z; as projective coordinates on the complex structure moduli space of
the Calabi-Yau, while g% as functions of Z; on this space. Nonetheless, we choose the
particular normalization Q A Q = —8i dvols, and this fixes the overall factor. Then the
orientifold projection requires Re (2 and Im () to be respectively odd and even under o;
this translates to

ImZ, = Reg" =0. (6.57)

9A possible axion coming from B lying on the four-dimensional space is forbidden by the orientifold
projection.
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Notice that while the first set of relations really cuts out half of the moduli space,
the second set is automatically guaranteed on a CY manifold which admits the anti-
holomorphic isometry o. The flux H/ is odd and the gauge potential C is even, so

H=H'=p 3" C=Rag . (6.58)

The stabilization proceeds on the same track as before. We substitute the expansions
given above in the equations determining the solution. From (6.35) we get:

B I 3m

The axions b are all fixed, as well as the Kahler moduli v¢. For these last ones we have
as many quadratic equations as unknowns (provided that there is no a such that rg;;
is always zero), and, as pointed out in [148], one has only to check that the solution
lies in the supergravity regime (among the other conditions, one asks for large positive
volumes v'). Integrating the BI for F' on the cycles T';, yields

Re ZL (6 60)
m = T ————— . .
This fixes all the remaining complex structure moduli.’® Then subsituting in the solution
(6.7) we find the dilaton:

5 6
€¢ = 76

= - — 3/ —. 6.61
8 m? V vaUpVe Kape (6.61)
Eventually, by direct application of (6.37) follows
1
—PL gL = €p —+ biei -+ gm babbbc Rabe - (662)

Note that only this particular combination of the axions can be fixed, while for the
other ones non-perturbative effects and o’ corrections must be invoked. Anyway, the
stabilization of axions is a minor problem, because their configuration space is periodic
and compact, so any contribution which generate a non-constant potential fixes them at
a finite value.

As noted in [148], there is a gauge redundancy in the solutions described above, i.e.
solutions which are transformed into each other by the gauge transformations (B.4) and
following, are equivalent. In the four-dimensional low energy theory those translate in
Peccei-Quinn symmetries that shift the axions:

bV —b+1  or el (6.63)

0The equations are not invariant under scaling (what one would have expected for the projective
coordinates), but this relies on the fact that a normalization for € is chosen, for example in (B.20).
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These are accompanied by translations of the fluxes, and the correct transformation rules
are obtained from (6.35) and (6.37) by noticing that F'; G and G are gauge-invariant.
The point is that one can always reduce to the case of b* and ¥ of order unity, and the
large volume limit (the one reliable in supergravity) is controlled just by the fluxes e;.
This simplifies considerably the equations in the limit.

As in the particular case studied in the previous section, we have found the same
results as [148]: all the geometric moduli and the axions coming from B are fixed, whilst
only one combination of the C' axions is fixed.

6.4 Conclusions

In this chapter we discussed the moduli stabilization issue in a wide class of type IIA
vacua. These are compactifications of ITA supergravity on a warp product of AdS, and
an SU(3)-structure manifold. All fluxes compatible with supersymmetry were allowed,
including the zero-form field strength Fy which is a mass parameter m from the super-
gravity point of view, and O6-planes were added both to cancel the tadpole and to cut
undesired moduli. SU(3)-structure manifolds are, even though not the most general, a
quite copious class of supersymmetric vacua.

The first step was the actual construction of supergravity solutions. We showed that,
apart from the trivial example of fluxless CY compactifications, the internal manifold
is never Calabi-Yau: its structure belongs to a particular subset of half-flat geometries.
Unfortunately very few is known about their metric, and so we could not find complete
solutions with localized O-planes. On the other hand, we exploited a long-wavelength
approximation in which the RR charge of the planes is spread over the manifold. In this
limit solutions do exist, and they are even simple: they have CY geometry.

We would like to stress that the approximation in which such solutions are derived is
complementary to the widely adopted “Calabi-Yau with fluxes” approximation. In the
latter one assumes that the energy and RR charge carried by the fluxes and the O-planes
(and possibly by D-branes) do not deform the geometry. This can be justified in a large
volume limit, although some perplexity could remain due to topology-change effects that
take place even for minimal amounts of flux. On the contrary, in our approximation the
backreaction of the fluxes is fully taken into account and the fluxes can be large as well.

With the set of solutions at hand, we analysed the possible deformations they admit.
These correspond to flat directions, and thus to massless moduli. The upshot is that,
in fact, there are no moduli in the class of models considered. Moreover, we computed
the value of the would-be moduli fixed by the fluxes, finding exact agreement with [148]
where the same class of vacua was considered, in the CY with fluxes approximation. The
fact that the two complementary approaches agree gives much steadiness to the results.






Appendix A

Conventions: IIB action, charges
and equations of motion

We follow conventions in which the type IIB supergravity action and the Dirac-Born-
Infeld action for a Dp-brane in string frame read:

- 1 !
Sbtrlng _ {/dl()l. _G 6_2<I> R + /6_2q> |:4d(b A xdP — §H3 A >I<[_]3:|

IIB 253%0

1 1
—5/[Fl/\*F1+F3/\*F3—|—§F5/\*F5—C4AH3/\F3}}

— up/ dPHee™® \/— det(Glu + Fu) + ,up/C Net AQg,, (A1)

P

where F, = dC,_; + H3 A\ Cp_3, Hy = dBy and F = By + 2ma' Fy (hatted quantities
are pulled-back). Moreover C' is a polyform C' = > C, and Qy_, is a d-form localized
on the Dp-brane worldvolume (loosely speaking the Poincaré dual to the cycle) and
closed (branes without boundaries). This does not take into account branes ending
on branes. Moreover 2x%, = (27)7a™ and u, = [(27)Pa/®+V/2]71. We go to Einstein
frame by rescaling the metric by the fluctuating part of the dilaton and rescaling the
RR potential by the string coupling g, = e®°:
CE
Giu — (2=0)/2 gfy 6=o— P, C;}S’ _ gp (A2)

We get the following type IIB supergravity action in Einstein frame:

1 1 1
Siup = 2—2{/d10x\/—gR—§/ [dgb/\*d¢+62¢F1/\*F1+§F5/\>X<F5
K

+ €_¢H3 A *Hg + €¢F3 VAN *Fg — 04 VAN H3 A F3:| } s (A3)
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where now 2x? = 2k¥,g> = (27)"g2a’ is the ten-dimensional Newton coupling constant
and 7, = p,/gs = [(27)Pg./PtD/271 Notice that in the equations of motion will
appear 2x%7, = g,(47%a’)("P/2_ In our conventions the RR fields are normalized so
as to appear in the action in a democratic way with respect to the NSNS fields, that
is the Newton coupling constant k enters as an overall factor in front of the Einstein
frame supergravity action. As a consequence, the dilaton field ¢ appearing in the action
(A.3) is its fluctuating part only and its VEV has been absorbed into k. With these
conventions, the worldvolume action for a Dp-brane is

Spp = —Tp/ dPtig or=3)0/4 \/_ det (g 4 e—9/2 j-“) + Tp/C’ Net AQg . (A4)
Dp

We compute the EOM’s and BI’s, taking into account all possible branes but D9-
branes (because they are contrained by the tadpole and require an orientifold). Notice
that when varying with respect to C; we must put a factor of 1/2 in front of the D-
brane Wess-Zumino terms because only the “electric part” contributes (generically, in
the presence of electric and magnetic sources a Lagrangian formulation is not possible).
The comparison between the BI's and the EOM’s allows us to set:

6¢*F3:—F7 €2¢*F1:F9 , <A5)
and then the complete set of BI/EOM'’s is:

dFl :—2R2T7QQ
AF; + Hy AN Fy = 252 (75 Q, +r7f/\92)

f2
dF5+H3/\F3:—2Ii2 <7_396+T5f/\94+7—77/\92>

f2 f3
dF7+H3/\F5: 2/@2(Tlﬂg—f-TgJT/\Qﬁ—f—Tg,?/\Q4+7’7§/\QQ>
fQ 'f'3 f’4
dF9+H3/\F7:—2R2 (T_lQlo—f-TlF/\Qg—f—Tg?/\Q6+T5§/\Q4+T7E/\QQ)

(A.6)
Notice that the various F are actually different fields, depending on what €, they appear
with. This is because each Dp-brane brings its own worldvolume gauge fields.
We can write all of this in a compact form with polyforms. Define

cC=> 0, F=YF =  F=(d+HNC. (A7)

Here (d + H3A) is the K-theory differential operator, which is nilpotent and defines a
cohomology. Then sources can be incorporated as

(d%Hg/\) F= 6_]:/\9 with Q= 2/{2(—T7QQ+T5Q4—7396+7198—T_1910> (AS)
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It is easy to verify that the right-hand side is closed under (d + H3A).

Actually, it will be sestetically convenient for us to use anti-D3-branes instead of
D3-branes, without further specification. This amounts to send g — —{, and in
particular the number of 3-branes is

1
N:m/ﬂ—,. (A9)

Let us make a couple of observations. Without sources the Bianchi identities are
(d+ H3N\) F = 0. Being F twisted-closed, it is locally twisted-exact: F' = (d + H3A) C.
However C' is defined up to gauge transformations: C' — C + (d + H3N\) .

One can define charges by integrating the flux, however integrating F' does not lead to
a quantized charge because dF' # 0 and the integral depends on the manifold. Thus the
charge is defined as Q@ = [ dC where, due to the presence of patches, the integral is non-
zero on non-contractible manifolds. Under a gauge transformation dC' — dC' + Hs A dA
so that the charges are quantized by not gauge invariant. The variation of the charges
is quantized (because A must give a globally well-defined gauge transformation). In
particular 0 [ dC = [, A\AHs. One can also define Page field strengths (without sources):

FPose = P2 N F (A.10)

It is easy to see that
xjlase = qprase — ¢=2m'F2 p () (A.11)

Page fluxes are different from dC, but [FF%9¢ = [dC on compact manifolds (the
difference is an exact term), thus Page charges are quantized as well. In the presence of
sources, Page charges can be corrected with terms sourced on the branes.

We still miss the EOM/BI for Hs. Without sources they are:

dH3 =0 d(e % H3) = e’ « Fs NFy + F5 A Fy . (A.12)

The source terms will be discussed below.

Our convention on the Hodge dual in six and ten dimensions is that F, A *F, =
|Fp[2dvol,, where |Fp1* = 1/p!(E)) . n (Fp)vrwn g™ ... g*n. Then the Euclidean
Hodge dual in 6d and the Lorentzian one in 10d (mostly plus signature) act on a vielbein
basis respectively as:

a1..apbi by
s (€A - A ™) = Ep—‘pebl A--- A ebnrp
(n=p) (A.13)

€a1...apb1...bn,p ap,0
(=1)" et A Al

s10 (€A -+ A e) =

(n —p)!
where 0,4, ¢ is 1 only when one of the a; is the time component. The square of the Hodge
dual on a p-form is 2 F, = (—1)P""P) T F where § = 1 for Lorentzian signature.
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The Hodge dual operator can be decomposed as:

*10(Qp A By) = (ka0p) A (x6/3) (A.14)

for all o, living on R*»! and 3, on R®. Be careful that #4 and ¢ refers to the respective
warped metrics.

D7-brane probes and equation for Hj

The EOM involving d(e~? x H3) in the presence of D7-brane sources is problematic. The
bulk computation involves in general all gauge potentials, which are not defined in the
presence of the sources we want to take into account. A similar example is the derivation
of the equations for electric and magnetic charges: we cannot derive them from the same
Lagrangian. We can instead derive the various contributions to the EOM’s separately,
with a Lagrangian formulation.

Thus our strategy will be that of introducing sources one-by-one. At the level of
EOM’s, all the sources can be introduced at the same time.

The variation of the type IIB bulk action with respect to By is:

55 1
2M3§§:EdQLA*&+Qe¢*Hﬁacm¢*&—CQA&+CMLAHQ.(Aw)
2

Working out the differential without any substitution, the equation we get is:

1 1
d(eid)*Hg) :€¢*F3/\F1+F5/\F3+§C4/\dF3—§CQAdF5+CQdF7+

1 1
+ 5 Ca NHy N Fy — o Cy NHy A Fy+ Co Hy A Fs + (DB + WZ) . (A.16)

Without sources, we substitute the BI’s and all but the first two terms cancel, reproduc-
ing (A.12). Anyway, in the presence of sources there are obstructions. If dF3+H3AF; # 0
then C5 is not defined, and if dF5+ H3 A F3 # 0 then C} is not defined. In these situations
the equation is meaningless.

Then we perform a partial integration in (A.15), exploiting that d* = 0:

k2

0S 1
B _ _d<2e—¢*H3—H3A02A02+202AF5—2COF7) (A.17)
0By 2

so that the equation is:

d(6_¢*H3) :Fl/\F7+F5/\F3—OQ/\dF5+OodF7
—Cy NH3 AN F3+ CyHy A Fs + (DBIL + WZ) . (A.18)
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Now we can consistently take dF5 + Hs A F3 # 0 and dF; + H3 A F5 # 0. Then perform
a different partial integration in (A.15) to get:

o 1
2/‘62 (;S;B = §d<2€7¢*H3—204/\F3+H3/\02/\CQ—|—2F1/\06> (A19)
2

so that the equation is:
d(e_d)*Hg) :F1/\F7+F5/\F3—CG/\dFl+O4/\dF3+C4/\H3/\F1+... (AQO)

In this case we can consistently set dF} # 0 and dF3 + Hsz A Fy # 0.
Now we can substitute the BI's in the last two equations (A.18) and (A.20), to get
the correct source terms from the bulk action. The result is:

1 1
d(e xH3) = Fy ANFr+Fs ANFs+ <06+C4/\}"+502AJ-“2+§CO}“3> AQo+... (A.21)

The terms we are still missing are the ones from the DBI and WZ action.
The contribution from the D7-brane action is obtained by recalling that 6Sp;/dBy =
6SD7/5./TZ

21@2—55137 = —¢? 0

R A —¢/2 (2)
5B, 5}_\/ det(g + e=¢/2 F) 09 (D7) +

1 1
+ (06 +CONT + 56, ANF?+ 6(]0?3) Ay . (A22)

Notice that the first piece is not explicitly written as a form. As we show below, it
considerably simplifies in our setup: a spacetime-filling D7-brane in a warped product
space, along an holomorphic 4-cycle and with (1,1) anti-self-dual flux. In this case the
variation can be written as:

5
9
¢ SF

Eventually, summing the bulk and brane contribution to the equation, we get:

V= det(§ + 902 F) §O(DT) = ht dvolgy AF AQ, | (A.23)

5
d(e™ x Hy) = Fy AN Fy + F5 A Fy + ¢? s \/— det(§+e¢2F) 6P (D7) .  (A.24)

One can check that the equation is solved in our backgrounds, and it is essentially
related to the condition e? x4 Fy = Hj.

SU(3)-structure manifolds and submanifolds

We give here some useful formulee. In our setup the D7-brane wraps an holomorphic 4-
cycle in a 6d complex SU(3)-structure manifold. The 4-cycle inherits a complex structure
and a (non-closed) Kéahler form J. Moreover the gauge flux F on it is real (1,1) and
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primitive (F A.J = 0). This is equivalent to F = — %, F [77]. We give an expression for
\/det |g + F| and its derivatives in this particular case.

F=—xF = Vdet gy + F| d'z =

Moreover one can check that

1 - A
M&%@y+fhfxz§@HM]—FAjﬂ, (A.26)

(JANJ—=FAF). (A.25)

N |

and the inequality is saturated only for an holomorphic embedding and F = — %4 F.
The order relation is meant after formal simplification of the volume form.

To check these statements, one considers a vielbein basis, where F = (1/2!) fu ¢®
has six components, and compute:

det g+ F| = [1 - (f12f34—f13f24+f23f14)]2+ (fr2+ fsa)? + (f1s — faa)® + (fas + f14)* .
(A.27)

The last three terms are positive, and vanish if and only if F is ASD. Moreover
1
[1 = (fiz2faa = fisfaa + fasfra)]dvoly = dvoly — 5-7:/\ F, (A.28)

and we conclude the proof observing that dvol, > (1/2!).J A J, being J a calibration and
holomorphic surfaces the calibrated ones.
Then we compute the variation of the determinant under a general variation of F:

1
§/det|g + F| = ix/det G+ F| (g +F) bl sF, . (A.29)

This expression evaluated for an ASD F (but still completely general §F) gives:
§+/det|gy + F| d'x

With this formula one can compute (A.23).

— _FAOF. (A.30)
F=—x4F

Probes: SUSY vs EOM’s

With formula (A.30) at hand it is easy to verify that the k-symmetry constraints for the
D7-brane imply also that the equation of motion of the gauge connection A is satisfied.
Making use of the actual warped product shape of the metric and taking advantage of
the k-symmetry constraints, the variation of the DBI plus WZ action is evaluated to be:

0Sp7

. 1. 1.
M?:h*¢mmAF+CVHLAf+§@A}ﬂ+a%f? (A.31)

2k2
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This was also presented previously. The EOM for A states that this must be closed:

0Spr

0=2xkd
MATsE

— dh™dvolgy A F + h™t dvolsy A Hs +
S 1. 1.
+E+ﬂAf+5&Aﬁ+gﬂAfﬂ(Aw)

vyhere we already substituted dF = H 3. In our class of solutions the terms Fg A F? and
Fy A\ F3 automatically vanish, while the first four terms cancel provided that

F5 = —(1 + *) dhil A dVOng e¢ *6 F3 = H3 . (A33)

In particular Fy = —e? 9 F3 = —e? h™t dvols; A %6 F3 = —h ™' dvols; A H.






Appendix B

Conventions: IIA action,
supersymmetry and SU(3)-structure

The bosonic action of type ITA massive supergravity [164] with mass parameter' m is
given, in Einstein frame, by?

1 1 1 1
— %eSWZF/\ *F — 2m2e®/2 5 1 + %alC2 NB+ %alC’/\dA/\B2
1 2
+édAz/\B3+%dC/\BS+%dA/\B4+T—OBE’}, (B.1)

where the invariant field strength with their BI’s are (notice that sign convetions are
different from the IIB case):

F=dA+2mB dF" =2mH
H=dB dH =0 (B.2)
G =dC + B ANdA+mB? dG =FANH,

and the EOM’s for form-fields are:

d(e¥? « F) = —e®? H N %G
d(e??xG)=HAG (B.3)

1
d(e_d)*H) =—§GAG+€¢/2F/\*G+2me3¢/2 x F .

In string theory, this parameter is really a flux Fy, in fact quantized.

2In order not to clutter formulas, sometimes we will omit the factor 2xk? = (2m)7g2a’* in the La-
grangian. To discuss the supergravity limit and the various orders in ', this term has to be taken into
account.

165
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The gauge transformations which leave the action invariant are:

1 1 1

as well as 0A = dAg and 6C = dAs.
For a canonically normalized field strength, Dirac quantization condition states:

/ F,=2k’15_p,n, = gs(47r2o/)p%1 ny n, € Z, (B.5)
Ep

where 7, = 11,/ 9s = [(ZW)pgsa’(p“)/?] s the Dp-brane charge and tension.
In order to obtain the modified BI for F' in the presence of magnetic sources, we first
of all introduce the dual field strengths Gg and Fg with BI:

The definition of G and Fy is readily obtained. Then, by comparison with the EOM’s
(B.3), we get the relations:

F =e392 « F G=—e*? %G, (B.7)

and recall that *2, = —1 on even-degree forms. Then, in the presence of O6-planes we
consider the piece of action:

1 1
532—52 {_56_3¢/2F8/\*F8}_27—6/07/\53 + ... (B8)

from which the modified BI is derived:

dF =2m H — 2 (2k*7%) 65 . (B.9)

Supersymmetry

The condition for a background to be supersymmetric, is that it satisfies the equations
oWy =0 and oA=0, (B.10)

where

m 65<z>/4F N e~ /2
16 M 96
€3¢/4 e¢/4 20

64 Fyp(Ty™" — 1465T") Ty + %GNPQR (I, V7o — §5A]\/IIFPQR) €

oWy = |Vy —

Hypo(T,, N9 — 95N P9 Iy
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1 5m e/t em9/2
A= | — §FMVM¢ - 1 + o1 HMNPFMNPFH
3 e3¢/4 e®/4
+ 16 FMNFMNFH - @GMNPQFMNPQ €. (Bll)

In order to solve this, one substitutes the ansatz for € (6.5), for the metric and for the
forms and contracts the resulting six-dimensional equations with nlfy(”). In this way,
one obtains separate equations for each SU(3) representation in the decomposition of
forms [159]: one can decompose the tensors F', H and G in terms of irreducible SU(3)
representations. For example, for I’ one gets:

1

1 . 1
Fpp = =, SFOO 4~ spOY (B4 =, FO B.12

where the different pieces can be extracted through
FO=F, J"m ~1 F1O —q "F  ~ 3, (B.13)
and F' ~ 8 is such that

Fppn ™ = Fp Q™™ = F ()™ = 0. (B.14)

p

By different contractions one has a set of equations, and then recasting together the
various pieces one gets (6.7) (in case |a| = |3]).

Check of the equations of motion

In Section 6.2 we sketched an argument to find that if the solution to the supersymmetry
equations satisfies also the BI and the equations of motions for the forms, then it satisfies
Einstein and the dilaton equations as well. Here we check that it is true for the dilaton
and the four-dimensional components of Einstein equation.

The dilaton EOM (6.20) is the same as in [159], but with the addition of the O6
term. Moreover, the fields take the same values on the solution as in [159], except for
F. The value of F? is the one of [159] plus

1 ==
§F? = 176 zg 53 (D) e 3¢/4 (B.15)
—96

So if the [159] EOM’s are satisfied, all the terms in (6.20) sum up to zero, except for

S 25 pP 4 S VI8 sy ol (B.16)
8 2 V=9

By substituting (B.15) into (B.16) one gets exactly zero and the dilaton EOM turns out
to be solved.
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Consider, now, the Einstein EOM in the u,v = 0, ..., 3 directions. The piece of the
equation which is not automatically zero if the [159] EOM’s are satisfied is:

1 3¢/2 2 1 VvV —33 3 3
— JOLF | — =7 0°(X) g $/4 B.17
32 € g,u | | 8 6 /_g6 ( )gu € ( )

Again the result is zero and the eom is satisfied.

SU (3)-structure conventions

As stated in Section 6, the existence of the spinor 7 implies the existence of a globally
defined 2-form J and 3-form €:

. N="Ymn i7+’7 N+ T (B.18)
Qunnp = N2 Ymnphs anp = N3 YmnpTl-
with the normalization 77177+ =nln_=1. J and Q satisfy:
I I = =0k,
(H+)mn9npq = inpg (H_)an”Pq =0 (B.19)
n_ 1 .
(I1*),,," = 3 (6 Fid,") .

So J defines an almost complex structures with respect to which €2 is (3,0). Moreover

QNJT =0 and JP = %Q/\Q* = 6.dvolg (B.20)
and ]
xJ ==JNJ x (JANJ)=2J xQ=—iQ
27" - ) (B.21)
«F'=—FNJ x (FANJ)=—F.

The last relation is the one at the origin of (6.9) and (6.28).



Appendix C

The conifold geometry

Here we collect various results on the conifold geometry, used throughout this thesis.
We shall start considering the singular conifold

2129 + 2324 = 0 (Cl)
The Ricci flat metric is
dsg = dr® + r’dsi..
1 . 1 2 (C.2)
2 _ 2 209 7.2\ 4 * _ o .
dsia = A i;; (d@i + sin” 6; d(pi) + 5 (d@b Z; cos 0; dcpz> .

The periodicities are ¢ € [0,47), ¢; € [0,27) and 6; € [0, 7]. The topology of the base
T is S% x S3. We can provide two representatives of the respective homology classes
in the coordinates above:

S? ¥ = const, 01 =0y, p1 = —p9 (©3)
S3 0, = const, @y = const, Vi), 01, ¢ . '

In order to check the Hodge degree of forms, we need to define the full Calabi-Yau
structure in the unwarped 6d geometry. To this purpose define the forms:

1o\l Y _gin ¥
772 X2 _ CQS 2 Sln¢2 . db, ‘ df, ' (C.4)
n° X sing  cosg sin 0y dpy  sin By dps

2

Then we define the real 6d unwarped ordered vielbein:

r r r s T r
& =dr, &=z4" é'=—72n, E=—1n, &=—7y, &=-—2x*, (C5
39 ik 7" T X 75X (©5)
which satisfy ds?mq = _;(67)? and e'#* = ¢2dr A dvolpii as expected. Then we

define the complex vielbein:

El=¢"+iéY, E?=¢' +ié?, E3 =& +iét, (C.6)
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which also diagonalizes the complex structure. Finally the CY structure is:

J=-(E'ANE'+E*NE*+ E® A EP)

2 (C.7)
drng + = ( sin 6y dfy A dgy + sin 0y dfa A dg02>

Wl 3 N =

and

Q=E'ANE*NE?
P (C8)
=W 5 (dr + 1 3 g5) A (d91 + 17 sin 6, dgpl) A (d@g + 7 sin 6, dgpz) )
It is easy to verify that they satisfy all the required properties: dJ = 0, d*.J = 0 because
xJ = 2JNJ, dQ =0, d*Q =0 because *Q) = —i€), and finally J* = 6r°dr A dvolyi. =
3iQNAQ/4

We can express G3 of Section 2.3.2 in terms of the complex vielbein:

Mo/ d Ma' 9 _ _
. 2a{w3—3ilAw2}:g C T RIANEPAER-ESAEY.  (C9)
T

G
3 2 23

Then we see that G is primitive, G3AJ = 0, and (2,1). The extension of these results to
the flavored singular conifold is straightforward; notice however that the flavored conifold
is an SU(3)-structure manifold (J and € still define the metric) but not Calabi-Yau (d.J
and df) are non-vanishing).

Supersymmetric D7-branes wrap holomorphic cycles, which are defined by holomor-
phic equations. Thus we need holomorphic coordinates on the singular conifold and its
flavored (squashed) versions. Consider the following general 6d metric and Kéhler form:

2 e/ 2 512 e 2: 2 .9 2

of ) e (C.10)
e ey

J = ?dp/\g5+F > " sind; do; Adg;

J=1,2

where f and g are arbitrary functions. They define a complex structure Z,” = J,,, g,
which satisfies 7? = —1. Interestingly, Z," does not contain f and g:

0 1 0 0 0
-1 0 0 0 0
I v 0 cotby 0 csc 01 0
uwoo cosfhpy 0 —sinf; O 0
0 cotbs 0 0 0

cosfz 0 0 0

0
0
I (C.11)
0

We can then construct holomorphic and anti-holomorphic projectors:

_1-iZ 5_ 1+iT (€.12)

P
2 2
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One verifies that PJP' + PJP! = J and PJP' = 0. The holomorphic projector is
useful to define the holomorphic derivative: d = Pd. A function is holomorphic when
0f =Pdf = 0. On the singular conifold we define the four functions:

2 = eP/? e 2WHerten) gy L sin @ 23 = eP/? e/ 2=p1te2) g ﬁ sin @
g g 92 92 (C.13)
2

5 -
One can verify that they are holomorphic functions; moreover they satisfy z120—2324 = 0.

For the particular case 2/ = €29 = 72, that implies r = /3, we get the Ricci-flat singular
conifold. Eventually, it turns out that

Q:_édzl/\d@/\dz;;’ (014)
9 Z3

matching with (C.8).

To compute %15 we can use the vielbein:

et = b /A dgt, e" = h'/4dr,

0, _ T ;174 s T o1
e’ = —h'db;, ¥t = —h'/"sinb; dp;,
NG Vo 7
e = ShVH(d — Y cosbidy,)
(C.15)
The order of the vielbein is: €°, e!, €2, €3, €7, e¥, €1, e¥1, %2, e#2. The 5-form flux is
Fs = —(1 + *)dhil N dVOngI

/

Fs = 72 dvols 1 A dr =

/

0 3 r
h5/46 AN Ne’Ne

/

(C.16)
*xFs = ~ AP A e N et Ae? = —rPh dvolpia .
The 2-form and 3-form are:
L, . ~0 ~0
Wy = —(sm 01 dO, N dpy — sin Oy dby A dapg) 5 (e71P1 — g"2¥2)
2 0 r (C.17)
w3 = g5 Awy = _3(é91<{>1¢) _ é92w2w) ]
r
where the tilded vielbeins €' are the ones of the unwarped 6d metric. It holds
dwy = dws =0 wa Awy A g° = =54 dvolpua . (C.18)
Then the ¢ Hodge dual acts as
dr

*GW3:37/\WQ.

(C.19)
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Notice that one should specify whether x4 refers to the warped or unwarped metric;
however for 3-forms is the same. From the expression of the 3-form flux (2.34) one
deduce that *¢F3 = H3 and then, defining G3 = F3 — i H3, *¢G3 = iG3 (¥ = —1 on
3-forms). Eventually one easily check that

dC6:F7—H3/\C4:—*Fg—Hg/\C4:O, (CQO)

with Cy = —hildvol;;’l. And using the KT result:

27ma? 3 1 r
h(r) = N+ (g M 2(- 1 —)} C.21
one verifies the Bianchi identity dF5 = —Hs A F3:
81 o dr

dF5 = —H3 VAN F3 = —(5T4h, + 7"5]1”) dr A\ dVOlTl,l = ?(QSM) A dVOlTl,l s <022)

r

with dVOlTl,l = (1/108) sin 01 sin 92 d91 A ngl N d92 VAN dQOQ AN dw

The deformed conifold

We start from the basis:

o = db, Y1 = cos ) sin by dipy + sin ) dby
o9 = sinf; dp; Yo = —sin ) sin Oy dps + cos 1) dby (C.23)
03 = —cos by dp; Y3 = dip — cos by dys |
which satisfies 0; A 0 = €51, doy, and X; A X; = —¢€;5; dX;. Then we construct:
- -
91:0—1 1 92202 2 g5ZU3+E3
V2 V2 (C.24)
3_0'1"‘21 2_02+22
VG VG
Some properties are:
" AN g®+ g3 A gt =sinb dby A dpy — sin by dby N dpg = 2wy (C.25)
GNP NG NG NG = —sinb sinby,db; A dpy Ady Adpy A dip = —ws '
and the differentials:
dg' NG+ NG ) =" N Ng' =g NgP)
1
d(g' Ng*) = —d(g° Ng") = 5" N (g N g* +g* A gh) (C.26)

2
A Ng'ANg)=d(® Ng® ANg") =0
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Now we find holomorphic functions (coordinates) on the deformed conifold and on
its flavored (squashed) versions. Consider the following general 6d metric

(2f(7)

2 _ 2 5\2 2g(1) 2T (/ 3\2 4\2 12T 1)2 242
dsg 5 <d7‘ ~|—(g)>+e [cosh2<(g)+(g)>+smh2<(g)+(g)>}
(C.27)
and Kahler form
2f 29 ginh
J = % dr A ¢ + % (sin 6, dby A dgy + sin 6y df, A dgy) | (C.28)

for arbitrary functions f and g. In particular, the Calabi-Yau deformed conifold cor-
responds to €2/ = 3¢*/3/2K(7)?, €% = ¢*3K(7)/2 (and in fact dJ = 0). The flavored
deformed conifold of Section 4.3 corresponds to €2/ = €293, 29 = 2¢2%1 cosh 7/sinh® 7 =
2¢%¢2 [ cosh 7. The expression of the holomorphic (3, 0) form is quite involved, and we re-
fer to [57]. Then we construct a complex structure Z,” = .J,,,g” which satisfies 7% = —1.
Again 7 does not contain f or g. The holomorphic and anti-holomorphic projectors are
defined as in (C.12), and 0 = Pd is the holomorphic derivative. We define the four
functions:

2, = et eiterte2)/2 (e TH¥)/2 gin il Sln% — e THw)/2 cos L cos %)
im/d_ i(—p1—92)/2 ( (r+i)/ 02 — (i) /2 62)
29 = e ee e cos—cos——ze sm—51 =
2 2 (C.29)
- 0, 0, '
23 = /4 pim¥1te2)/2 (e i)/ cos L gin B +ie (T2 sm 2 cos 5)
. 0y . 9 0
24 = €4 iHr1m92)/2 (e T+i)/ sm 2 cos B +ie T2 ¢og B sin 52) )

They satisfy: 2120 — 2324 = €2; one verifies that they are holomorphic functions: 5zj = 0.

Eventually, it is easy to see that the embedding z3 = 24 corresponds to #; = 60,
p1 = g, while the embedding z; = 29 is ) =7 — 05, Y1 = —o.






Appendix D

IIB SUSY transformations in string
and Einstein frame

The supersymmetry transformations of type IIB supergravity were found long ago in
[165]. Here we will follow the conventions of the appendix A of [166], where they are
written in string frame. Let us recall them:

1 1 1
56)\(8) = 5 (F(S)M8M¢ + 2—3' HMNP F(S) MNP (73) E(s) — 5 e‘b (FJS) F(S) M (ia'z) +
. !
g P LM ) o)
1 1 '
Sy = Vife? + 1o HMnp PONE ggel) 4 3 e’ (FJ(VI) TN (i) +
1 3 .5 ]' 5 S . S S
+ 31 FJ(\U)DQ PONPQ gy 4 3.5 F](VI)JQRT [ NPQRE <202)> Fgw) e,

where the superscript s refers to the string frame and o;, © = 1,2, 3 are Pauli matrices,
H is the NSNS three-form and F", F®) and F©®) are the RR field strengths, and € is a
doublet of Majorana-Weyl spinors of positive chirality.

We can study how these equations change under a rescaling of the metric like:

© ¢/2 gMN- (D'2)

Iun = €
In doing that it is useful to follow Section 2 of [167]. Under the above change for the
metric, there are some quantities which also change:

Tl = 94Ty, () — o9/8 ¢
0 1 (D.3)
A — o9/8 ) by = €913 (1/11(\4 ) _ 7 ) A(s)) _

The equation for the dilatino in the new frame can be easily obtained whereas in doing
the same for the gravitino equation we will use that

9 (s 1 |
Vel = /8 [vMe + <D (Vo) + (vM¢)] . (D.4)
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After some algebra with gamma-matrices, the SUSY transformations in Einstein frame
we obtain are the following ones:

1 1
56)\ = 5 FM <8M¢ — €¢F]E/})(Z.02)> €+ ﬂ FMNP <6_¢/2HMNPU3 — 6¢/2FZ§51))3VP01> €

1 , 1 .
Oy = Ve + 1 €¢FJ§41)(W2)€ + 165! FJ&ZSI)DQRTFNPQRT(ZUQ)FM € —

- 9i6 (e*WQHNPQag - e¢/2F](\,31)3Q01> (FMNPQ - 95Af§FPQ> c.

(D.5)
In order to write the expression of the SUSY transformations, it is convenient to change
the notation used for the spinor. Up to now we have considered the double spinor
notation, namely the two Majorana-Weyl spinors €; and ey form a two-dimensional
vector € = (2;) We can rewrite the double spinor in complex notation as € = €; — i €9
(there is an ambiguity in the choice of the relation between complex and real spinors). It

is then straightforward to find the following rules to pass from complex to real spinors:
€« o3¢ — i€ — o€ i€ > log€, (D.6)

where Pauli matrices act on the two-dimensional vector (Z;) We can perform these
substitutions, to get the variations for a Weyl spinor e:

) .
S = 5T (om0 —ieF}) e + TR PN (Fip =i Hup) €
Sy =0 1 NP T 3 ¢ () L F®) [NPQRST . (D.7)
Un = M€+4w MNP€+46 M€+16_5! NPQRS M€ :
_ % /2 (Fﬁgvp _ i6_¢HMNP> (PMNPQ - 95ﬁFPQ> €.

In these notations, I'’s are real matrices.

SUSY variations: flavored singular conifold

We give here some useful notations for the computation of the supersymmetry variations
on the various flavored singular conifolds. Take a vielbein for the metric in (3.12):

1/4
el = h™/da" e" = h'/4dr o=
Y 7 3 Y
0 h1/4eg ‘ h1/4eg ' (DS)
et = ———db;, e¥t = sin6; dy; .
V6 V6
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The spin connection in vielbein indices is:

!/
Wt == h5/4 ¢ 4nf + I
4h VT — '+ "
o _ dhg' + 1 o Ap5/4
T 4RS/A 6, ef—29 7_
o Ahg' +H YT e (D-9)
we = e ¢ ef—29
e 9cotl; ef=29 Wi = = L1/4 e
0i¢i — /6 ——J o _ ____
W = \/6 h1/4 e” hl/4 €
Moreover recall that dyr¢p = (e™ )", 0¢/dx", so that:
¢ Oe 3e=f Oe V6e 9 cotf; De
_<r —-1/4¥% _ ST —-1/4¥~ P e Pj J =
On& =00 hg s Oue =0 g 0 G g T OM T gy

(D.10)
From the ansatz for the 5-form flux we get, contracting with the I'’s and lowering the
indices:

h/
5
Fypons IV = 5] ho/4 (Tor23r + Torg160000) » (D.11)
while F, = —(3N;/47) h=*/4e=f. The ansatz for the Killing spinor is:
€ = h_l/S e“/’/Q €0 F0123€ =€ (D 12)
Lo123r901 016200 € = € Lrype=Tope=Tppe=ic.

Notice that in the lower right projections we expect equal signs since J is derived from
the Killing spinor.

With this information, one can check that the supersymmetry variations vanish:
O\ = 01y = 0. The terms containing € and €* give independent equations. Let us start
with the ¢ ones. The dilatino variation gives the equation for ¢, while the gravitino
variations give the equations for the metric functions (called g, f in Chapter 3, G123
in Chapter 4 and ¢, v in Chapter 5). Then consider the ¢* terms (recalling that I's
are real): the equations we obtain are equivalent to imposing e % 3 = Hj (given our
primitive (2,1) ansatz).

The case of the flavored deformed conifold is worked out in a similar way. Of course
the spin connection is more involved, and the algebra is lengthier. Let us give the Killing
spinor of the background. In the notation of (4.2), the unwarped 6d metric ansatz reads:

02Gs
ds% = 9 (dT2 + (95)2) -+ 62G1 [((7% + (75) + m
where we defined 6; = ¥, 4+ ¢(7) 0;, and used that for the (flavored) deformed conifold
g =1/cosht and %2 = e coth T, see Section 4.3. The Kihler form is
2G's 2G1

_dr A g+
9Tg tanh 7

(63 +59)] . (D.13)

J:

(sin 01 del A ngl + sin (92 d(92 A d@g) . (D14)
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We can introduce a suitable vielbein:

Gs G
. €

. A (& .
= —d = — s J = Gl iy J = 57 3 D15
e 547 e g el =e" g ¢/ =0 ( )

with j = 1,2. Making use of (4.8), the Kéhler form can be rewritten as

- 1 A
J— ™ 1 tanh 7 (e!2 — e12) & = (12 4 pl2) D.16
€™ + tanh 7 (e e )+COShT(6 +e'?) ( )
In this basis, the Killing spinor is:
1
e=h"18e /2y with cos a = tanh 7, sina = (D.17)
cosh 7

where 7 is a constant spinor with 'y = 1 subject to the projections:
Isn=in Ion=in Lisn=—in. (D.18)

Eventually I'jo,1,2,3 € = ie. Notice that exp{aT';;} = cosa + sinal'j;, and one can
derive the action of I' matrices on € as well.
A first check is that
Jap = —i B/ e Ty e (D.19)

agrees with (D.14) and (D.16). With these expression, one can check the supersymmetry
of the backgrounds in Chapter 4.



Appendix E

Poincaré duals and exceptional
divisors

On compact oriented manifolds Poicaré duality is a canonical isomorphism between
H,(M,R) and H"?(M,R), established through the two canonical isomorphisms with
H?(M,R) defined using the two linear pairings:

(Cp, ) = / a, and (atpy Brp) = /ap A Boep - (E.1)
c

P

Equivalently, the duality C, <+ w,_, can be established requiring that for every coho-

mology class a:
/ a, = /ap A W_p (E.2)
Cp

Given a metric, one can also define Hodge duality from HP(M,R) to H" P(M,R).
Poicaré duality maps the intersection operator N in homology to the wedge operator A
in cohomology. If the dimension of M is n = 2[ then the intersection number is given
by

#(OZ,DZ) :/C 5 1= /wl /\O’l . (E3)

In order to understand the geometry and the induced charges of probe branes at the
conifold singularity it is better to resolve it. This process in general breaks supersym-
metry, but it is a good way of computing topological quantities such as charges. The
metric and the Kéhler form of the resolved conifold are [54,76]:

r? + a? 2

1 2
s+ () (6°) + (463 -+ sin’ 6, dig}) + - (d65 + sin” B dp3)

k(r) 9

2 2 2
U0 00, doy A dey + = sinfy df A dis

2 _
dsg =

J = gdr A g° +
(E.4)
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where >4 o2
r a
k= 1 6a? (E.5)
The coordinates have range: r € [0,00), ¢ € [0,4m), 0; € [0, 7] and ¢; € [0, 27).

Consider the two non-compact 4-cycles ; = {6;, ¢; = const} with ¢ # j. From the
expression of the metric it is easy to see that X; has a non-vanishing 2-cycle at the origin
and thus it is C? blown up at a point. Of course the 2-cycle is exactly the same as the
one blown up to resolve the conifold. Instead ¥, still has the topology of C? and only
touches the 2-cycle at a point. Under a flop transition the role of the two 4-cycles gets
exchanged.

We construct a resolved By on the resolved conifold following the requirements: Bs
is (1,1), closed and primitive (By A J A J = 0). We start with an ansatz constructed
taking the three pieces of J with general functions fj_;23(r) in front. Primitivity fixes
the relation fi; + fo + f3 = 0. Closure gives us a system of two linear first-order ODE’s.
Only one of the two solutions is regular at the origin:

m by 2ra
By = {—
2 2 (1?2 4 a?)

2 2 2 2
5 re+2a r )
er/\g +m81n91d91Ad¢1—m81n92d92/\dgp2}.

(E.6)
The normalization is fixed such that [, By = 4mby, where S? = {0, = 0, ¢1 = —¢;
r, 1) = const}. Notice that By approaches a constant non-zero value at infinity. This is
because the geometry has a 2-cycle supporting it.

Now we go on with the construction of F = By + 21 F, on the 4-cycles of interest.
We are looking for fluxes that fall off at infinity, because in the singular limit we only
want finite induced charges. Consider X5, with topology of C2. Not there being any
2-cycle we can simply set Fy to cancel By, so that F |5, = 0. On X; with topology of C?
the situation is different. We cannot set 27 F5 equal and opposite to ég, because its flux

is quantized on S2. We can instead set a closed F, with vanishing flux on S? that kills
the tail of Bs:

2 2
2dr/\§f’+

. by 4dra
Fl =B+ ok = {—
ol 2T 2 (12 4+ a?)

One can explicitly verify that F A J = 0, Joo F = 4n%bg and [ F A F = —(47%by)*.
On the other hand, with a different choice of F, we could also add further flux on S2,
obtaining the same F of (E.7) but with by — by + ¢y.

Such an F is in fact proportional to the anti-self-dual (and primitive) Poincaré dual

sin 61 d(gl A d@l} . (E?)

r2 + a?

of S? on ¥;. The two integrals tell us that the self-intersection number of S? in C2 is
—1. This is true in general: the exceptional S? arising in the blowing up of a smooth
point has self-intersection number —1.

We would like to conclude with the 4-cycle Y = {6 = 05,1 = o} which has the
topology of C?/Z, blown up at the origin. In this case B, falls off at infinity (indeed in
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the singular limit B, = 0) but BonJ # 0 so that again we need to add a suitable fluxless
Fy. Again By is proportional to the Poincaré dual to the 2-cycle, even if it is not the
anti-self-dual representative in the cohomology class. One can compute |, g2 B2 = 472b,
and fEK By A By = —1(4mby)?, confirming that the self-intersection number of S% in X
is —2.
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