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Abstract Isospin symmetry, as the most precise flavor sym-
metry, can be used to extract information about hadronic
dynamics. The effective Hamiltonian operators of bottom
quark weak decays are zero under a series of isospin lower-
ing operators 1", which permits us to generate isospin sum
rules without the Wigner—Eckart invariants. In this work, we
derive hundreds of isospin sum rules for the two- and three-
body non-leptonic decays of bottom baryons. They provide
hints for new decay modes and the isospin partners of pen-
taquark states.

1 Introduction

Bottom baryon decays provide ideal laboratories for studying
strong and weak interactions in heavy-to-light baryonic tran-
sitions. In recent years, a number of bottom-baryon decay
modes have been observed at the Large Hadron Collider
(LHC) [1], allowing us to extract information about the
dynamics of bottom-baryon decays. Flavor symmetry is a
powerful tool for analyzing weak decays of heavy hadrons.
Flavor symmetry analysis has been applied to bottom baryon
decays in the literature [2—10]. Flavor symmetry results in
certain relations between several decay modes, known as
flavor sum rules. Isospin symmetry is the most precise fla-
vor symmetry. Isospin breaking is naively expected to be
81 = (my —mg)/Aqcp ~ 1%. Isospin sum rules may pro-
vide hints for the isospin partners of exotic hadrons through
bottom baryon decays.

In Refs. [11-13], we propose a simple approach to gener-
ate isospin sum rules for heavy hadron decays, in which the
Wigner—Eckart invariants [14,15] are not needed. The effec-
tive Hamiltonian operators of heavy quark weak decays are
zero under isospin lowering operators I”. This fact allows
us to generate isospin sum rules by acting with 7” on the

4 e-mail: wangdi@hunnu.edu.cn (corresponding author)

Published online: 03 June 2025

initial and final states of heavy hadron weak decays. In this
work, we apply this approach to bottom baryon decays, and
we derive master formulas for generating isospin sum rules
for two- and three-body bottom baryon decays. Many new
isospin sum rules are obtained from these master formulas.

The rest of this paper is structured as follows. The theoret-
ical framework for generating isospin sum rules for b-baryon
decays is presented in Sect. 2, and phenomenological anal-
ysis of the isospin sum rules is discussed in Sect. 3. Section
4 provides a brief summary. The coefficient matrices gener-
ated by /_ operating on hadron states and decay modes are
listed in Appendix A. The isospin sum rules for two- and
three-body b-baryon decays are listed in Appendices B and
C, respectively.

2 Theoretical framework

Taking the B, — DBg decays (where D is a charm meson
and By is a light octet baryon) as examples, we demonstrate
the basic idea of generating isospin sum rules by /" as fol-
lows. In the SU (3) picture, the effective Hamiltonian of the
b — cugq transition can be written as

3
Heir = Y HLO', ey
i,j=1

where O } denotes the four-quark operator and H is the 3 x 3
coefficient matrix. The initial and final states of the weak
decay, such as the light octet baryon, can be written as

1B§) = (Bg)'; 1B, )

where |[Bg]i/) is the quark composition of the meson state
and (BY) is the coefficient matrix. The decay amplitude for
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the BZ — D"‘B’g mode is constructed as

A(B] — D*Bf) = (D*BE [Heit|B))
= (D" (D" (B! (IBsY., || HY O] [1(B]): [1By);)

= (DB, |0 11By1:) x (D*)"(B)!, H] (B));

= X (Co)™, 3)

where ) represents summing over all full contractions of
tensor (D" [Bg]in | O,{ |[Bp];), i.e., the invariant tensor such as
(Di[Bg]’]‘.|0,'(i [[By]i), etc. According to the Wigner—Eckart
theorem [14,15], the invariant tensor X,, is independent of
decay channels, i.e., indices «, 8 and y. All the information
for initial/final states is absorbed into the Clebsch—Gordan
coefficient (C,,)*P7.
The isospin lowering operator /_ is

000
100 ). )
000

I_:

If the effective Hamiltonian (1) is zero under a series of oper-
ators I”,ie, I" H=1_{I_...{I_H}...} =0, we have

(DYBEII" Her|BY) = Y (D" (B}, 10{11Bs1i)

w

(DY) (B (1 B! (BY); =0, )

since zero multiplied by any quantity is zero. The times of
operation n is obtained through the following calculations.
The effective Hamiltonian of the b — cugq transition is given
by [16]

G
Het = — 3 VepViiy [C1L(1) 01 (1) + Co(12) O (10)]
ﬁ qg=d,s

+h.c., (6)

where O and O, are

O1 = (qautp)v-a(cgba)v—a,
02 = (Gatta)v—-a(Cpbp)v_a. @)

In the SU (3) picture, the nonzero coefficient of 0;. includes
HP =V Vg, Hi = Va Vi ®)
le and H13 are responding to the b — cud and b — cus

transitions, respectively. Operator 0; can be decomposed
into irreducible representations as 3 ® 3 = 8 @ 1. The coef-
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ficient matrices H (8) and H (1) are

0 Vep Vu*d Ver Vi

H8=|0 o0 0 ., and H()=0. (9)
0 0 0
Under 1", H(8) is transformed as
I_H®) =1_-H(®) — H(8)
— C},V:d 0 0
= 0 Vo Vg Ve Vi | (10)
0 0 0
0 00
PHE@) =I_{I_H®)} = | —2V4,V5 00 |, (11)
0 00
PHES =I1_{I_{I_H®))}=0. (12)

Thus, the effective Hamiltonian of the b — cud (b — cus)
transition is zero under I withn > 3 (n > 2).

On the other hand, if we apply /" to the initial and final
states, the LHS of Eq. (5) becomes

(D*BL 11" Heir|BY) = Y (D"[Bsll, 0] 1Bsi)

x [ (o) B, HY (B
+(D)" (1 B, HY (B
+(DY" B, HL (1 (B ]

(13)

and the RHS of Eq. (5) is still zero since (D% Bgﬂ [ Heff|BZ)
is invariant. One can expand the matrices 7" (D), I" (Bg ),
and 1" (BZ) by the coefficient matrices of the initial and final
states. Then Eq. (13) becomes a sum of decay amplitudes
with appropriate factors. For example, the equation

LB HY=1_-B)-B) I

000 010 010 000
=1100 000]—-(000 100
000 000 000 000
-100 1/¥2 0 0

=|lo0o10|=-v2| 0 -1/4/20
000 0 0 0
= V28 (14)

indicates that

(DSt Hert|B)) = Y (D"[Bsl, |0} [[Bpli) x [+

w

— V2D (BE Y. HI (B )i + -]
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= —V2A®B] - Dz ...
(15)

Summing over all the contributions arising from /_ (D%),
1_ (Bgﬂ ),and [ (B};), the sum of decay amplitudes generated

by I_ for the B} — D®Bf mode is derived to be

SumlI_ [y, o, B]
=Y [~ 1pY Ay
%

U8 Ay + (U1, Yo Aumap ] (16)

in which [/_]p, [/-15;, and [/_]p, are the coefficient matri-
ces given in Appendix A, and A, _, 8, Ay op, and Ay p
are the decay amplitudes of the B}; — DM Bgﬂ , BZ — D% Bg ,
and Bl’: — D“ BS’S modes, respectively. The minus sign in the
first term matches the minus sign in /_ operating on the octet
baryon, where I_(Bg| = I_ - (Bg| — (Bg| - I—. One can apply
Eq. (16) three times (two times) or more with appropriate
o, B, and y to obtain an isospin sum rule for the b — cud
(b — cus) modes.

It is found in Refs. [11,13] that the effective Hamiltonian
operators for the b — cud, b — cus, b — uud, b — uus,
b — ccd, b — ccs, b — ucd, and b — ucs transitions
are zero under I" withn > 3,n > 2, n > 3, n > 2,
n>2n>1,n>2and n > I, respectively. The values
of n for which 1" H = 0 holds for all types of transitions
are listed in Table 1. Similarly to Eq. (16), the summations
of amplitudes for other b-baryon decay modes generated by
I_ can be obtained using the coefficient matrices given in
Appendix A. Itis noted that minus signs should be introduced
for the D meson and the anti-triplet charmed baryon to match
the minus sign of the commutator in meson and baryon octets.

The isospin sum rules for two- and three-body b-baryon
decays are listed in Appendices B and C, respectively. Many
isospin sum rules are derived for the first time. One can verify
these isospin sum rules by writing the isospin amplitudes for
each decay mode and substituting them into the isospin sum
rules to check whether they are zero. The isospin sum rules
(B28)~(B37) were found in Refs. [5,6], and (B36) was also
found in Ref. [4]. The relative minus signs between Refs.
[5,6] and this work arise from the different conventions of
initial and final states.

It is noted that the order of final states in the isospin sum
rules for three-body decays cannot be exchanged arbitrar-
ily; otherwise the isospin relations of intermediate resonance
strong decays are violated [12]. The isospin sum rules listed
in Appendices B and C are valid for excited states. For exam-
ple, the pseudoscalar mesons v and K in the isospin sumrules
can be replaced by the corresponding vector mesons p and
K*.

The decay modes dominated by the b — ccd/s (b —
uud/s) transitions also receive contributions from the b —
uud/s (b — ccd/s) transitions. According to Table 1, the
isospin sum rules derived from 1" H,z4/; = O are not vio-
lated by the b — ccd /s transitions, but the isospin sum rules
derived from I" H.z4/s = O are violated by the b — uud/s
contributions. The breaking induced by I H,;; # 0 and
I" Hyq # Oisnaively predicted tobe (Vyp Vy5)/ (Vep Ves) ~
O %) and (VypVya)/(VepVea) ~ O(10%), respectively.
Thus, we discarded the isospin sum rules derived from
I" H.zg = O where I H,z4 # 0, while retaining the isospin
sum rules derived from I" H.sz = 0 where I" H,z; # 0 in
Appendices B1 and C1.

3 Phenomenological analysis

The isospin sum rules are useful tools in the phenomenolog-
ical analysis of bottom baryon decays. The decay amplitude
for the B, — BM mode is given by

ABp — BM) = iug(A — Bys)up,, a7

where A and B are the parity-violating S-wave and parity-
conserving P-wave amplitudes with strong phases s and 6 p,
respectively. The decay width I" and Lee-Yang parameters o,
B’, and y’ are computed as

2 2
By
o — 2k|A*B|cos(8p — 8s)
|A|? +«2|B|?
g = 2k|A*B|sin(6p — &s)
|A|?2 +«2B]?
A2 —«2|BP2

A2 +«2B1¥’

’

/

(18)

where p, is the center of momentum (CM) three-momentum
in the rest frame of the initial baryon, and « is defined as
Kk = pc/(Eg +mp) = (Eg—mp)/(Eg+mp). The
isospin sum rules work for all partial waves. Therefore, if
two decay channels form an isospin sum rule, their branching
fractions are proportional, and their decay asymmetries o/,
B’,and y’ are identical. One can use the isospin sum rules and
experimental data to test isospin symmetry and predict the
branching fractions and Lee-Yang parameters of unobserved
decay modes. If three decay channels form an isospin sum
rule, their decay amplitudes form a triangle in the complex
plane. One can use the isospin triangle to extract the rela-
tive strong phases between different modes. For three-body
decays, the resonance states do not violate the isospin sum
rules. The isospin sum rules can be used to study the isospin
multiplets of exotic hadrons in bottom baryon decays.

@ Springer
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Table 1 The values of n for which the Hamiltonian operators of b — ¢1g,¢3 transitions are zero under /"

Mode b — cud b — cus b — ccd b — ccs b — uud b — uus b — ucd b — ucs
n >3 >2 >2 >1 >3 >2 >2 >1
According to the isospin sum rule =0, (23)
. o . o SumI_[E), E%, J /1y, w1 = —V2A(E) — E%J/yx®)
SumI_[Ay, p, J/¥, K 1= ANy, = nJ/YK") .
0 - _A(Eb — &7 J/ymn")=0,
- .A(Ab — pJ/l//K ) = 0, (24)
19
(19 Suml _[E,, E™, J/y, ] = —A(Eg — B J/yn™)
and the branching fraction of Ag — pJ /YK~ decay [1], so - «/EA(E; — E*J/wno)
we predict that the branching fraction of the Ag —nJ/ wfo =0, (25)
decay is SumlI_[€,, E%, J/ . 7°] = —A(E) — E°J/yx")
=2 750 -
Br(A) — nJ/tﬁ?O) ~Br(A2 - p]/wK_) +V2AE, ~ By
o o 0y
(26)
The Large Hadron Collider beauty (LHCb) collaboration )
reported pentaquark states P.(4312)", P.(4440)*, and W© obtain
P.(4457)T in the A) — PF(— pJ/y)K~ decay [17- o B o
19]. If the isospin symmetry is exact, the neutral isospin AE, — EVJ/Yyr™) = ‘/_A( g J/Yr)

partners of these pentaquark states will contribute to the
Ag — nJ/lpfO decay with Ag — PCO(—> nJ/w)fO.How-
ever, the isospin breaking is naively predicted to be O(1%),
which is comparable to the relative mass differences and
decay widths of the three pentaquark states. Therefore, it is
an uncertain possibility that three neutral pentaquark states
contributing to the Ag —nJ/ WKO decay.
The recent LHCb measurement found that [20]

Br(A) — E-J/YK™)
Br(AY — AOJ /)

= (1.17£0.14 £ 0.08) x 1072

2D
According to the isospin sum rule

2% /W K?)

g J/yK)=0,
(22)

SumI_[AY, E%, J /¥, K1 = A(AY) —
—A(A) —

the ratio Br(AY) — EJ /¥ K)/Br(A) — A%J/y) is pre-
dicted tobe (1.1740.16) x 1072, According to the following
isospin sum rules given in Appendix Cl1,

SumI* (&€, , B, J/y, n"] = 2[V2AE) - E%J/yn")
+ AGB) — 27 J/yn™)
—A(g, — &%J/yr")

+V2AE, - E7J/yn0)]

@ Springer

= V2AE) - B /yn®) = —AE) - E7J/yx ™).
27

The recent LHCb measurement showed that [20]

Br(E) —
Br(g, — E~

B J/yn)
J/Y)

=(11.9+1.4+0.6) x 1072

(28)

The ratios between other 8, — EJ/¥ 7 modes and E, —
&~ J /¢ are predicted to be

Br(8) — 8°J/yn°
i b > 2 V7 (6040.8) x 10-2,
Br(E, — E-J/¥)
Br(E; — B /yn—
P& 2 STV (1h616) x 1072,
Br(g, — E~J/¥)
Br(g, — &8~ J/yn")

= (6.34+0.8) x 1072, (29)

Br(E, — E~J/¥)

4 Summary

Flavor symmetry is a powerful tool for analyzing the weak
decays of heavy hadrons. Isospin symmetry is the most pre-
cise flavor symmetry. In this work, we derive isospin sum
rules for the two- and three-body non-leptonic decays of bot-
tom baryons using a systematic approach. The isospin sum
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rules can be used to test isospin symmetry and provide hints
about new decay modes and the isospin partners of exotic
hadrons.
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Appendix A: Coefficient matrices derived by I_ acting
on states

The bottom-baryon anti-triplet is defined as

0 =0
0. A) B
B =[-42 0 7 |. (A1)

=20 ==
which can be expressed using the Levi-Civita tensor as

=
=

IB,3)ij = eijklBz)* with (B =| —E2|. (A2)

A
If we use the beauty baryon anti-triplet basis as |[B,3]g) =
(IE;). |1ED), |AD)), the coefficient matrix [1_]p, . is

000
—-100
000

-5, = (A3)

If we use the charmed baryon anti-triplet basis as |[B z]g) =
(129, |EF), |AF)), the coefficient matrix -1 is a
transposition of Eq. (A3), [/_] B; = [1—]215’ since the anti-
tripletin the final state can be regarded as a triplet in the initial
state. The charm meson anti-triplet and triplet are |D) =
(ID%. |D*), |DF) and [D) = (D). [D). [Dy)).

respectively. The coefficient matrix [/_]p is derived as

010
000 ],
000

[-1p = (Ad)

and [I_15 = [1-1%.
The pseudoscalar meson octet is expressed as

\/LGo—i- %ang, T, Kt
— 1 1
|Ms) = R L
K-, K, —/2/3n3

(A5)

If the basis of the pseudoscalar meson octet is defined as

_ —0
(IMslo| = ((x ), (= (x71, (KT], (K%, (K|,
(K™1, (nsl), (A6)
the coefficient matrix [1_]pz is
0 0000000
—v/2 00000 00
0 2000 0 00
0 0000000
Iy = A7
L= 0 0010000 (A7)
0 0000000
0 0000-100
0 0000000
The light baryon octet is
150 1 A0 +
ﬁz N ﬁA 1 OE 1 0 P
B O —V2/3A°
(AB)

Matrix [/_]pq is the same as [/_ ]y if the light baryon octet
basis is defined as

([Bslgl = (¥, (Z°1, (7L (pl. (nl. (E°, (7], (A%).
(A9)
The charmed baryon sextet is
ntt Lyt L =t
lc ﬁoc' JF C0
Bes) = | 725 E 78 (A10)
1 gt LE*O Qo
ﬁ c ﬁ c c

If we define the charmed baryon sextet basis as ([Beslgl =
(ST (2 Q2 (ZFL (251, (E10)). the coefficient

@ Springer
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matrix [1_]p, is derived as + A, - BD;) =0, (B4)
— —~05=0
000000 SumI_[A), F, D'1 = A(A) — 20D")
0 00v200 + A > EFD7) =0, (BS)
0 00000 50 0
[I_]Bcb: ﬁoo 000 (AL1) Suml _ [ub,QO ]—_A(ub—)QOD)
000000 +A(E, - QD7) =0, (B6)
000010 Suml_[E;, 87, D7) = —A(E) — E7D;)
The light baryon decuplet is given by + A(E, — D7) =0, (B7)
1 1 s 1 1 1 s 0 s++ p-—
N e Wt Al
R Al AT 5 = V2 AN - =FD) =0, (B8)
Loyt L oss0 L 20 L0 L og— L oo g § 0
\/1§E*+ \/162*0 \f f— ve v v Suml_ [AO H*+ D] = A(AO - E:OB )
3 ﬁ ﬁd O —~k4
U0 Dsie 1 mse + A(A EXTDT)=0. B9
x | T T S8 (A12) (Ap — ) (B9)
1 E*O LE*f Q-
3% A
2. b — cud/s modes
If the light baryon decuplet basis is defined as
([Biolgl = (ATT], (AT], (A°, (A7),
(S, (20, (2L (B0, (B QD (A13) sumlP[E;, Tt DY) = —6[V2 AE) — =°D%)
—~AE) > 2 DN - AE, - = D] =0, (B10)
the coefficient matrix [1_]p,, is derived as 5 0 0 00
SumlI” [E,, E°, DT] =2[ A(E) — E'D")
00000 00000 0 e — 0
50000 00000 + Ay > ETDT)+ A(E, - D] =0, (Bl
02000 00000 SumlI? [AY, E+,D+]=2[\/§A(A2—> »9p%
00300 00000 —AA) - =" DNH] =0, (B12)
00000 00000 _ H
U-180=| 4 o o 043 0 0000 (Al4)  SumlI®[E;,=*", DT1=6[vV2 AE) — D)
00000 20000 —A(E) —» £ DY) - AE, — £ D)] =0,
00000 00000 (B13)
00000 00100 SumlI® [A), A*F, DT = 2V/3[ A(A) — A°DO)
00000 00000 0 -
+V/3 A - A"DH] =0, (B14)
J /W is the isospin singlet, and then [/_];,¢ = 0. Sumlz (55, E*O, D= Z[A(Eg N E*ODO)
— A(8) - E* DY) — A, —» " D] =0,
Appendix B: Isospin sum rules for two-body decays (B15)
SumI? [A), T*F, DT = —2[V2 A(A) — =*°D0)
1. b — ccd/s modes —.A(AO N Z*_D+)] —o, (B16)
SumI® [, EF, 7t = 6[V2 AE) - Ex*)
o o . +AE) - Efn7) — A(E, — B )] =0, (BI7)
Suml_[E;, 8% J/w] = —[ A(EY — 8°J/ W)
0 85I [AE, / SumI®[8), €5, K 1=2[ AE) - B} K™)
+ A(E, - E7J/V)] =0, (B1) e
Suml_[E;, B*, J/W] = —A(E) — E*J/ W) —AE) - BYK) - A(E, — B2k )] =0, (BIS)
+ABy > B J/W) =0, ®2) SumiZ[A) BT, 7] = -2 [V2 A} — En)
SumlI_[AY, =T, J/ W] +AA) > BF ‘)]—0 (B19)
:ﬁA(A%-) 207/ Ww) =0, B3) SumI}[E;, =} K 1=6[vV2AE) > 5FK")
Suml_[E;, B, Dy 1= —A(E) - ED;) — AE) - 2%k )—A(a; — ECK_)] =0, (B20)
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SumlI® [E,, B, n T = 6 [V2 AE) — E'n°)

+ A(E) — B n7) — A(E, — Bz )] =0, (B21)
SumI? [A), 25T, 77 = —6v2[ A(A) — =070)

+ AA) - BFr)] =0, (B22)
SumI? [E,, 2, 771 =2[V2 AE) - @)

- A(g, - Q)] =0, (B23)

SumlI? [E,, BXT, ]——2[ AE) - g K)

— A(B) — EﬁK )+ AGE, — g:0 KD =
(1324)
SumI® [A), =}, K] = -2 [IA(A - 2FK7)
— AA? > 20_0 )] = (B25)
SumlI® [AY, B, 7+ = =2 [f 2 AN — 8979
+ A(AY — E;‘+n—)] =0. (B26)

3. b — uud/s modes

SumI® [E;, 2T, 7% = 6[ -2 A(E) — =)
+ A(E) - =771
+ A(E) - =ta7)
+ \/EA(E; — 2077
+V2AE;, - 57 72%] =0,
(B27)
K1=2[V2AE) > =K
+AB) - =FTK™)
+V2AE, - =°k)
—AE; > = K)] =0,
(B28)

SumI* [E,, 2%, K

SumlI* [, B n*] =2 [V2 AE) — E°70)
+A(ab — B ")

SumI? [A), =%, 7T =2[2 A(A) - 2°70)
—AAY) - =7aT)
—AA) - T =
(B30)
K'1=6[—v3AE] > A%’
+V3AE) - ATK)

— \@A(ab — A%K)

SumI® [E,, ATT,

+A®E;, > ATE)] =0,

(B31)
SumlI? [E), £*T, 2) — %979

*—JT-‘,-)

nt]=6[2.A(
—AE) - %
—AEY) - =% ™)
~V2AE, - =077

~V2AE, - = 1%] =0,
(B32)
SumI® [A), AT, 7] = —6 [V6 AA) — A7)
+ VAN - Atr)
—AA) - A D] =0,
(B33)
K1=2[ - V2 AE) - =YK
+ AE) - =*TK")
~V2AE; - =k")
+A®E;, > 2K =0,

SumlI? (E,, E*+

(B34)
SumI® [E,, 8* 71 =2[V2 AE) - &%)
—A(E) » ¥ 1)
- \/E.A(nh — 8779
- A, —» ")) =0,
(B35)
SumI® [A9, AYF, K] = 2V3[ A(A) - A'K")
—AA) - ATK )] =0,
(B36)
SumI? [A), =*F, 7] =2[ =2 AA) — =*720)
+ AAY) - =% 1)
+AA) - = )] =0
(B37)
4. b — ucd/s modes
Sumi*[8;, o+, D1 =2[V2 AE) > 2°D")
—AE) - =tD)
~V2A(E; - =£°D7)
—A(E, - =~ )] =0,
(B38)
SumI_[E,, 2%, Dy 1= —[A(E) - =7Dy)
+V2AE; - =°D;)] =0,
(B39)
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o’—O 050)
+A(E, - E'D7)

—A(E; > &8 D) =0,

Suml_[E,, E

Il

|
=
[1]
o9

[x

(B40)
SumI_[AY, £+, D] = —v2 A(A? — £°D°)
+A(A) - =TD7) =0,
(B41)
SumlI*[€,, AT, D71 =2V3[ — A(E) - ATD;)
+ A(E, — AOD )] =0,
(B42)
Sumi* [8;, 2", D1 =2[ - V2 AE) - =D’

— A(E) - =*tD7)
+V2AE,
+ A(E;

— x¥p7)
— E*_BO)] =0,
(B43)
SumI® [A), A*+ D] = 2V3[ A(A) — A°D")
+ AA) - ATDT)] =0,
(B44)
SumlI_[E,,*", D;]1= —A(E) - =*' D))

+V2 A8, - D) =0,

(B45)
Suml_[E; . 8%, D"] = —A(E) — gD’
+ A, — 20p7)
+AE; —> & D) =0,
(B46)
SumI_[AY, = D’1 = V2 A(A? — £9D°)
+ AAY) - = D7) =0,
(B47)
Suml_[A), ATF, D7 1=+vV3AA) - ATD) =0.
(B48)

Appendix C: Isospin sum rules for three-body decays

1. b — ccd/s modes

sumi*[E;, 8F, D%, 771 = —6[A(E) — ugD_n )
- ﬁA(Eb —
— V2A(E) -
- A(Eg — Ej’ﬁon_)

+V2A(8, — 82D 70

r;*+*0
ucDﬂ)

@ Springer

+A(E; — 800% )

+AE, - BfD 7))

=0, (C1)
, Dy KT =—2[A@E) - %Dy K™T)

+AE) - gfpyKY)

- A8, — g0p; k%]

=0, (C2)

]_A(Ab—>A+D x%

2 ’;‘_
SumI_[ub R ._‘

Suml_ [Ab A+
— AN - AFD k)
=0, (C3)
SumI_[AY, AL, Dy, 7= —vV2AN) — Af Dy 70
=0, (C4)
sumI_[AY, 85, D°, ngl = ALY — 89Dg)
+A(A) — EF D ng)
=0, (C5)
SumlI_[AY, EF, Dy, KT = AA) — E0D7 KT)
+ A - F Dy K0
=0, (C6)
1= —AE) > AFD; K
- A8, > AfDyK™)

=0, (€N
g5, D’ K1 = —2[AE) - g°D°K")

SumI_[Z;, A}, Dy, K"

SumI? (&},
+A(‘-‘b — B
— A(‘-‘b — B
- A(g, — 8D~
—_— =0
+ AE, — B,
+ A8, - EfDK7)]
-0, (C8)
SumI®[8, , Ef, Dy . nt] = —2[AE) — 2Dy 7 )
—V2AEY) - gf Dy 70
+ «/EA(_:b — Dch 79)
+ A8, » B D7)
=0, (C9)
SumI_[E;, 8F, D . ng]l = —A(E) — EF Dy ng)
+ A8, — EID; ng)
=0, (C10)

=0 —0 - —0—=0
5D K1=AE)- DK

Suml_ [ub, )
+AE) - EfDTK)
—A(ub — BD K™)
=0, (C11)

Sumi_[g;, 80, D", K
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+AE, — E

-A(E, - &

=0, (C12)
SumI_[2;, F, D7, K] = —A(E) - 2/ D"K")

+A(E, - 8D7K")

- A8, - BfD"K)

=0, (C13)
Suml_[E;, gf, D Kk 1=-AEY) > 8Dk )

+A(E,; - 8D'K")

+AE, - BfDTK")

-0, (C14)
SumlI_[EY), 8, Dy, 7t = AE) — €Dy )
~V2AE) - &f Dy 70
=0, (C15)
SumI_[8, , 8, Dy, n"] = —AE) - Dy 7 ™)
—«[A(.:b — HOD 79
=0, (C16)

SumI_[€, , 8F, Dy, 7% = —A(E) -
+ A(g, — 82Dy
+V2A(E, - BfDyn™)
=0, (C17)

;a1 =6AA) - 22D 7 )

— 6[v2A(A) > £0D"70)

+2A(AY - =F D770

+V2AMY = =D )

+ AN - = D))

=0, (C18)

sumi[g;, 23, D’ K] = —6[AAY) - 20D"K")

+V2A(E)
~V2AE) - 2Dk )
—AEY) - = DK

—_0
&pyY)

sumi[AY, 5+, D°

R &)

~ AE; - 20D K")
+AE, - 20Dk )
+V2AE, — =FDTK7)]
=0, (C19)
SumI}[8, , 55, Dy 7T = —6[AE) - =Dy 7 ™T)
—2A(EY) - =Dy %)
—A@E) - = Dra)
+V2(AE, — 20D; 7%
+ AE, > =FDyn7))]

SumI?[8, , =T, Dy,

=0, (C20)
sumi*[g;, 85, D%, 711 = —6[A(E) —
— V2A(E) -
— V2A(E) -
- -A(‘-‘b — "‘:""5071_)
+V2A(8, — &%=
+A(E, — 2007 7)
+AE, - EffD )]
=0, (C21)

1=2[AY - 29D°KY)

=0 np—__+
E.°D )
=%0730_0
E°D m”)

=%+ n—_0
uLDT[)

sumi*[A9, =3+ D° K°
+V2AM) > =FDEY)
—V2AMY - =Dk )
— AN - s D7k )]
=0, (C22)
7T =2[ALY) - =0D; )
—2A(A) - st D; 20
—AA) - = D))

SumI?[AY, =3+, Dy,

=0, (C23)
SumI_[AY, 5%, Dy, gl = V2AAY — =Dy ng)
=0, (C24)

sumI2[A9, 85, D, 71 = 2A(A) - E2D 7 )
—2[V2AA) - E29D°x0)
+V2AA) —
+ AN - 25D )
=0, (C25)
SumI_[A9, 55, D°, ngl = AAY — 220D g)
+AAY - 25D g)
=0, (C26)
SumI_[AY, 85%, Dy KT = AA) — EX%D; k)
+ AN — gDy K0)
-0, (C27)
Q0. D% kT =AY - Q0D k)

g+ p =0

SumI_[AY,
+ AN - 29D k)
=0, (C28)
K1 =2 - V2AE) - 2 Dy KD
+AE) - =Dy K
+ A(E; — 20Dy &)
—V2A(E, - 2} Dy K7)]
=0, (C29)
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—_—0

+AE) - gt p7K) SumiI_[AY, €2 D° ;a1 =AW - g% 2t
~AE) - gDk ) — V2AY - =990
—AE;, - gD K" =0, (C41)
+AE; > mk()D Ko) SumlI_ [AO ”*f"" D ,nt]= A(Ag — Ef,OD_rr"')
0 . mktp—0
+AE, — DK 7)] —V2AWN) - g5t D7 20)
o0, (C30) =0 (C42)
=+ 0 5070
Sumlz[Eb_, :?+’ Dy, at] = —Z[A(Hb N __‘*OD ) Suml_ [AO *+ ’7.[0] = A(Ag — L“kaOD 7_[0)
_ [A(Hb R u?+D_” ) + A - g5t D™ 20
—~x=0
+ A(E, — aﬁps w )] B =0, 4 (C43)
=0, (C31)  Suml_[E). 31T, D7 K 1=V2AE) - 5Dy K)
Suml_[8,, 85", Dy ngl = —A(E) — €7Dy ng) —AE) > £FTD7K )
+ A(E, — gDy ng) =0, » (C44)
=0, (C32) Suml_[E, 2F, Dy X' = ~AE) - FD;K)
—_— —_50
Sumi?[g;, @0, D°, 7+ = —2[AE) - D7) +V2AE; - D7 K)
—V2AEY) > 22D°x0) — A, - =}DyK7)
+V2AE, - QD =0 =0, (C45)
— I_[E, .5t D7 Kk 1=-AE) - =FtD K~
+ A&y — QD7) Suml-[E,, 2", Dy, K71 = —A(E, > % D; )
— 0’ (C33) + \/E.A(Eb — Zc DS K )

_ =0, C46
sumi_[2;, 20, D, ng] = —AE? — 20D ng) (C46)
’ L sumi_[89. 7. D’ K" = AE) — 22°D"K")

_ _ uml_[E}, , = A(E;, — E;
+AE, — 22D ng) b b o
=k —
=0, (C34) +A(ub — E¥DTK))
k4770 —
SumI_[E;, 0, Dy, K*] = —AE) - @Dy K T) - AE) - E"DK7)
_ =0, c47
+ A, — @Dy K9 o o oo (C47)
=0, (C35) SumI_[E,, 8% D", K1 = -AE) - D'K)
—_— - _—0
sumi_[A, 5, D°, K] = v24A) — =00k +A(E, - 8D7K")
—_— —~x07=0 . —
+ AN - 3D K" — A, - g'D°k")
— A - =Dk ) =0, (C48)
=0, (C36)  Suml_[E;, 8, D7, K= —AE) - gD K"
sumI_[A9, 57+, D7, K% = v2AA) - DK +AE, - gD K"
—AA) - =Dk - A8, - E}TDK")
=0, (C37) =0, (C49)
SumI_[A9, 55+, D°, k1= v2AA) - Dk ) sumi_[g;, &, D’ K1 = —A@E) - gD’k )
+AM) — BHDTKT) +AE, — 2Dk )
=0, (C38)

SumI_[AY, =F, Dy, 7t = V2[AA) — =077
— AN - sFD; 0]
=0, (C39)
SumI_[AY, =5+, Dy, 7% = V2[AA) - =Dy 7Y

Suml_[2, &5, Dy x*] = A(E) > 520D 7
_[A(ub — u*"‘D—ﬂ )
=0, (C51)

0 4+ = —

+ A(Ay —> 57D )] Suml_[E, u*o Dt = —A(Eg R E:OD;T[JF)

=0, (C40)
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- V2A(g, - 8°%D; 70
=0, (C52)
g, Dy, 7% = —AEY) - gt Dy 20
+A(E, — g%; =%
+V2A(E, — E¥tD )
=0, (C53)
SumlI_ [ub,szo D, 7= AEY)
—V2A(E) -
=0, (C54)
SumI_[E},Q0, D™, nT] = —AE) — Q2D x )
—V2A(g, - @D~ 70)
=0, (C55)
(70 = —AE) - 20D"x0)
+A(g, —» D=
+V2AE; - 22D'7 )
=0, (C56)
SumI®[E,, £, J/y, nT1=6[-2A(E) — =07 /y=0)
+AEY) - =7y /yn)
+AEY) - st y/yn)
+V2(AE, >0y )
+AE, — =7 J/yrY)]
=0, (C57)
K= A > nJ/yK°)
- A(Ab - pJ/YyK™) =0,

Suml_[E;,

- Q'pxt)

07”00
Q.D 7")

SumI_[g; , @0, D°

SumlI_ [Ab p,J/Y, K

(C58)
SumI-[AY, 0, 7/, k1= AA) — 2%/ KO
—AA) - 87u/wK )
-0, (C59)
SumI_[AY, A%, 77y, 7t = —V2AY) — A% /yn0)
=0, (C60)
SumI_[AY, =+, 17y, ngl = —V2AAY — =07 /yng)
=0, (Co61)
SumI?[8, . 2T, J/¥. K X% = 2[V2A(E) — 07 /4K

+AE) — =TI/yKT)

+V2AE, - =%/yK)

— A, — = JED)]

=0, (C62)
L8 I/, ) = 2[V2AEY) - E%/yn0)

+AE) - g u/ynt)

- A&, —» 8% /yr7)

+V2A(E, — &7 J/yrY)]

2im—
Sumlf[ub

=0, (C63)
Suml_[8, . €%, J/y.ng] = —A(E]) — E%J/¢g)

— A8y — &7 J/Yng)

=0, (C64)

SumI_[;, A, /9, K1 = —AE) — A%J/yK")

— A&, - A%J/yKT)

-0, (C65)
SumI-[AY, £°, J/y, 7 F1=v2[-AA) > 207 /97 0)

+ A = =TI /Y]

=0, (C66)
SumI-[AY, =¥, 1/y, n0=v2[-AA)—> =071 /y70)

+ A = =Hy/yn)]

=0, (C67)
SumI_[2), 2%, J /v, K] = —v2AE) - 207 /9 &)

—AE) - =TJ/yK )]

=0, (C68)
SumI_[E;, 3%, J /v, K’ = —AE) - %7 /yK")

- A, - 2%/wK)
+V2ZAE;, - 2TI/YED)
=0, (C69)
Suml_[E,, 2%, J/y, K™ 1= ~AEY) » =TI/ KT)
~V2AE, - 2%/vK")
=0, (C70)
LB J/y, T = —V2AE) — % /yn0)
—AEY) - g7 J/ynh)
=0, (C71)
SumI_[E,, 87, J/¥.n 1= —AE) - & J/ynT)
~V2A(E, — 8 J/yn")
=0, (C72)
SumI_[E;, 8%, J/y, 701 = —AE) — %7 /yn0)
+V2A(E, — &%/yn7)
— A&, — & J/yn")
=0, (C73)
SumI3[A), ATF, T/, 1=—6[VOAA)— AT /)
+VBANY - AtI/yrT)
—AAY = AT Iy )]
=0, (C74)
2 1y, n T =—6[-2AE)—» 5% /yn0)
+AE) - =¥ J/yr )
—AE) - =¥ yn)
+V2(AE, - =0 /yn)

SumI_[E}

SumI? (g,
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+AE, = 2 J/yn)]
=0, (C75)
K1=6[—VBAE)—> "I /YK
+V3AE) > AT/ YKT)
—V3AE, — AJ/pKT)
+ AE, — A J/WE))]
=0, (C76)
SumI-[AY, 8%, 17y, K11 =AY - 2°00/yK°)
+ A — B J/yKT)
=0, (C77)
SumI2[A), =, 7y, at1=—2[2AA) - =07 /9 70)
+ AN - =¥y /ynT)
— AAY) = = /gy )]
=0, (C78)
V2ANY = %0 yng)
-0, (C79)
K=2v3[ A A%y )
— AN = AT I ET)]
=0, (C80)
SumI_[8, , Q" J/Y, K] = —AE) - Q J/yK™)
+AE, = @ J/yKY)
=0, (C81)
80, 1/, 1t = 2v2AE) — &0 /yn)
—2[AE) - gy ynt)
+AE, — 0/ yn)
+V2AE, - E*J/yn")]
=0, (C82)
—A(E) — &0 /yng)
+A(E, — B J/yng)
=0, (C83)
1=2[—V2ZAE) > 07 /7y K
+AE) - =¥t /yK )
—V2AE, -2 /yK )
+ A(Ey — = J/yE))]
=0, (C84)
SumI_[A), =%, J/p, 7T = V2[ - AA) — =07 /yn0)
+ ALY - =]
=0, (C85)
SumI_[AD, =%, J/y, 7% = V2[AAY — =07 /y70)
+ A - =¥ /yn )]
=0, (C86)

SumI> (8. a1 I/ K

SumI_[AD, %%, T /¢, ngl =

Sumi?[AY, A*YF, 1y, K

SumI? (&8,

SumI_[&, , 8",

J/¥, ngl =

SumI?[&, , T*F, I, K°

@ Springer

SumI_[AY, AT, 7/, K'1 = 2AA) > A% /y K"
— AN = ATIpK)
=0, (C87)
SumI_[AY, AT, J/y, K71 = V3A) — ATI/WK)
=0, (C88)
SumI_[E9), %0, J/y, n ] = —V2AE) - 00 /yn0)
+AEY — g J/yn™)
-0, (C89)
E*. /Y. n ) = —AE) — E* J/yrT)
—V2A(E, —» & J/yn")
=0, (C90)
.80 1y, 70 = —AE) - &0 /yn0)
+V2A(8, — 80 /yn7)
+AE, —» g J/yn")
=0, (C91)
K = v2A@E) - =907 /9K
- AE) - =¥ I/yK)
=0, (C92)
50 19 K0 = —AED > =07 /y K
—AE, - =0/yK™)

Suml_ [ub

Suml_[E;

SumlI_[EY), =*F, J/y, K

SumI_[E)

+V2AE, - 2 I/WEKD)
=0, (C93)
LB I/ KT = —AEY - =TI /wK )
+fA(ab — 207K
=0, (C94)
SumI2[A9, 5T, D, D" = —2[v2A(AY - 2°DD°)
+V2AAY - =Dt D7)
—AA) - =+DD7)

SumI_[u

+ AR > 3~ ptDY)]
=0, (C95)
SumI_[AY, p, D¥, Dy 1= AA) — nDTDy)
+AAY - pD°Dy)
=0, (C96)
1= AR -
— A\ - & D D)
=0, (C97)
D% = AAY > A°DODY)
+ ALY - A°DFD7)

Sumi-[AY, €°, D}, g2'pFp7)

SumI_[A), A%, DY,

=0, (C98)
Sumi_[AY, =+, D}, D7 1= —v2AAY) - =D Dy)
=0, (C99)
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SumI*[g,, =%, DF, Dy] = 2v2A(E) — =D Dy) +V2A(8, - 27D D)
—2[A@E) - =tD%D)) =0, (C109)
+v2A8, - =°D°D;) Suml_[8,, =%, D% Dy 1= —AE) — =+ D'D;)
+A(E, - 7 DTD)] —-V2A(g, - 2°D°Dy)
=0, (C100) =0, (C110)
Sumi?[E, , €%, DT, D] = —2[A(E) — E°D"D") sumi_[g), 8%, D+, D] = A(E) — E°D°D")
+AE) - 8°pTD7) +AE) - °pTD")
— AE) > & p™D") —AEY > 5 DD
- A(g, — g°0°p™) =0, (C111)
+A(E, - & "D’ Sumi_[E;, 5", D", D’ = —AE) -~ - D*D")
+AE, - E DD +A(E; - 8 D°DY)
=0, (C101) +AE, - 8 D'D")
SumI_[g), €% DJ, Dy 1= —A(E) — °D} D)) =0, (C112)
- A(E, - B~ D} D) SumI_[&, , &%, p°, % = —~A(E) — =0p'pY)
-0, (C102) +Ag, — g°p°p7)
SumI_[8,,A°, DT, D71 = —A(E) - A°DTDy) A8, — & DD
+A@E, - A°D°Dy) -0, (C113)
=0, (C103) SumI_[g,, 8%, D", D7) = —AE) - °D*D")
sumI*[E;, 57, DT, D" = 6[V2AE) - 2°D°D") +AE, - g°p°p7)
+V2AE) - =D D7) — A8, - 8 DtD")
—AE) - =TpDp7) =0, (C114)
+AE) > = p+D") Sum3[AY, ATF, DT, D) = 6[V3AA) — A'DOD)

SumI_[AY, =9, p*t. D"

SumlI_[AY, =1, p°. p°

- V2AE, - 2°D°D")

— A(g; — = D'D")
- A(E, - " DTD7)]

=0,

D'1= ALY - £°

(C104)

pD%)

+ ALY - =%ptD7)

+V2AA) > =~ pt DY)

=0,

(C105)

—V2AA) - =°p°D°)

+ A(Ag -

:O7

»tpOp)
(C106)

SumI-[AY, =+, D%, D71 = —v2AA) - =D D7)
+ ALY - =tp%p7)

SumI_[E

0 =T, DT, Dy 1=

:O,

=0,

(C107)

—V2AE) - =Dt ;)
+ AEY

- =tpp;)
(C108)

SumI_[8,, 2%, DT, Dy 1= -AE) - =D Dy)
+A(g, — =°0°py)

Sum13[._‘

SumI_[AY, 8%, D}, D"

+V3AMN) - A°DTD7)
+V3AMN) - ATD'D7)

+ AA) —
=0,

A~ DYDY
(C115)

=, b, D] = —6[vV2A(E) - »*p°D")

+V2AE) - =*p* D7)

+ A(E

9 - x*pp)

+AEY) > =+ p+DY)

—V2A(E;,
- A(E, -
-AE, -
:0,

SumI3[8, , A*T, DY, D1 = 6] — V3AE)
- \@A(Eg —

+V3AE,
+AE, —
:O7

1= A@) -

- *p0p™)

— »*p'p%

2* DT D7)]
(C116)

— A'D* DY)

AtDDy)

- A'DOpyy)

A™DTD{)]

(C117)

g9p}F D7)
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+AA) - g DF DY) + AR > ATDOD])
=0, (C118) =0, (C129)
Sumi2[A), 2%+, DF, D" = 2[V2A(A) — £*0D0D) SumI_[A), AT+, DO, D71 = V3AA) — ATDODY)
L VBAMY > 290D+ po) =0 (C130)
+ A - 5+ DOD) sumI_[9, 8, p+ D" = A8} — &*0p°D")
+ AR - 2% DtDY)] +AE) - gDt D)
=0, (C119) +A®EY) > g p*tD°)
SumI_[AY, =*F, Df, Dy 1= V2AA) - =D} D)) =0, (C131)
=0, (C120)  SumI_[g;,E*", DT, D] = —A(E) — & D*D")
SumI?[AY, A*+, DY, Dy 1= 2v3[AA) - AD D) + AE; — =5 DD
+ Ay — ATDD)] +AE, » & DTD)
-0, (CI121) -0, (C132)
SumI_[g;, @, D}, D] = —AE) - @~ D} D°) Sumi_(55, 50, D0, %) = —A(E) — 29 pVT")
+A(E, - Q DfD7) +AE; - &0p°D")
2rm— =#0 pt+ o - =0 _ =0 oﬂ(CIZZ) +AE, E*_DOBO)
SumIZ[E,,E*, D", D"] = -2[A(E, -» E*'D"D") —o. (C133)
+AE) —» 8p* D7) SumI_[E;, &%, DT, ™| = —AE) - 5D D™)
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