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Abstract
Artificial collisions during particle tracking with self-

consistent space charge lead to diffusion-like, numerical

effects. The artificial collisions generate a stochastic noise

spectrum. As a consequence the entropy and the emittance

can grow along periodic focusing structures. The growth

rates depend on the number of simulation macro-particles

and on the space charge tune shifts. For long-term track-

ing studies the numerical diffusion can lead to incorrect

beam loss predictions. In our study we present analytical

prediction for the numerical friction and diffusion in 2D sim-

ulations. For simple focusing structures we derive a relation

between the friction coefficient and the entropy growth. The

scaling of the friction coefficient with the macro-particle

number and the space charge tune shift is obtained from 2D

simulations and compared to the analytic predictions.

INTRODUCTION
The prediction of beam loss and emittance growth in in-

tense beams relies on particle tracking codes with space

charge solvers. The Particle-In-Cell (PIC) scheme is em-

ployed in order to obtain the space charge force self-

consistently at every time step. Because of the finite amount

of simulation macro-particles the PIC scheme also adds

noise to the dynamics of the computer beam. The noise

in PIC codes can be related to artificial collisions in the

computer beam, similar to Schottky noise and intra-beam

scattering in real beams. In a number of studies the artifi-

cial noise in computer beams has been used to predict the

Schottky noise in real beams (see e.g. [1]). The artifical

collisions cause an undesired emittance growth in computer

beams [2, 3]. Especially for long-term tracking studies or

for very intense beams the effects of artificial collisions and

noise should be well controlled. This is usually achieved

by an increase of the macro-particle number in combination

with higher order interpolation or smoothing of the beam

density on the grid. In order to estimate the required number

of marcro-particles for given machine and beam parameters

this study aims to provide scaling laws for the emittance

growth induced by artificial collisions.

ENTROPY AND EMITTANCE GROWTH
IN COMPUTER BEAMS

The theory of artificial collisions and stochastic noise is

well developed for Particle-In-Cell plasma simulations [4].

There it is shown that the effect of the fluctuations generated

from the finite amount of macro-particles can be cast into the

form of collision operators. The artificial collisions between

macro-particles cause a thermal relaxation, with different

rates in 1D, 2D and 3D PIC codes [5]. Also the effect of

different interpolation schemes has been studied [6]. For

particle beams expressions for the entropy and emittance

increase due to artificial collisions were derived in Refs. [2,3]

and compared to 2D PIC simulations. Following Ref. [2] the

diffusion term is approximated through the Einstein relation

as a constant

D ≈ ν kBTe f f

m
(1)

where ν is the collision frequency. However, instead of the
local temperature T = (Tx +Ty )/2 at position s we define an
effective beam temperature in a periodic focusing channel

as

Te f f = α〈T〉 + (1 − α)T (2)

where 〈. . . 〉 represents the average over one focusing cell.
Our effective temperature is a weighted average of the local

and the cell averaged temperature with the positive weighting

factor α ≤ 1. The motivation for this effective temperature
is that the relevant collision times (≈ ν−1) for small angle
scattering events between macro-particles can be assumed to

be of the order of or longer than the focusing cell length (or

the typical modulations of the betatron functions). Therefore

an averaged expression for the temperatures should be used

and not the local one. Only in the special case of a FODO

cell with phase advances μx = μy the sum of the local

transverse temperatures Tx + Ty remains constant and the

effective temperature isTe f f = (Tx+Ty )/2 = 〈Tx+Ty〉/2. In
two dimensions the entropy growth resulting fromEquation 1

is (see Ref. [2], Eq. 12)

dS
dt
= kBν

(
Te f f

Tx
+

Te f f

Ty
− 2

)
(3)

or

dS
dt
= kBν

⎡
⎢
⎢
⎢
⎢
⎣

α

(
〈T〉Tx + Ty

TxTy
− 2

)
+
1 − α
2

(Tx − Ty )2

TxTy

⎤
⎥
⎥
⎥
⎥
⎦
(4)

The corresponding emittance growth is

1

ε

dε
dt
=

1

kB

dS
dt
, ε = εxεy (5)

The emittance growth per cell is

Δε

ε0
≈ β0cLν(A + G) (6)

where L is the cell length and the anisotropy factor is defined

as

A =
1 − α
2

〈
(Tx − Ty )2

TxTy

〉
(7)
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and the ripple factor

G = α
(
〈T〉

〈
Tx + Ty

TxTy

〉
− 2

)
(8)

For weak space charge we can use σ2x ≈ β̂εx and the aver-
aging can be performed using the β̂-functions.

COLLISION FREQUENCY IN
COMPUTER BEAMS

In order to estimate the emittance growth Equation 6 we

need an approximate expression for the collision frequency

ν in a computer beam. Because in synchrotrons the bunches
are usually long relative to the pipe diameter PIC codes for

beams employ 2D or 2.5D space charge models. In 2.5D

space charge models the bunch is sliced along the longitu-

dinal direction. For each slice a 2D space charge solver is

employed. In both cases, 2D and 2.5D, the particle motion

is 3D, but the transverse space charge forces are calculated

on a 2D grid. Therefore the macro-particles are effectively

charged rods extending in the longitudinal direction. The

collisions between the rods takes place in the 2D transverse

plane. In 2D the force between a test particle and a beam

particle (or rod) is

Fp (�r) =
Qq′

2πε0r
(9)

where q′ is the line charge of the beam particle and Q is

charge of the test particle. For the above force the deflection

angle θ depends only on the relative velocity u and only

weakly on the impact parameter b.

θ(b) =
Qq′

πε0mu2
arccos

b
λD

(10)

The upper cutoff parameter is chosen at the Debye length

λD . For b > λD we assume that the force between particles

is shielded off. The concept of the Debye length in parti-

cle beams is discussed in Ref. [7]. The velocity for a 900

deflection can be obtained from

v2⊥ =
Qq′

2πε0m
(11)

For a given distribution f and density n of beam particles

the friction force on the test particle is

F (�v) = mν�v = m
∫

d2vdbu f (�v)Δ�v (12)

where the velocity change is

Δ�v = −u sin2(θ/2) ≈ −u
4
θ2 (13)

From the friction force the collision frequency can be ob-

tained as

ν ≈
(
v⊥
v

)4
nvλD (14)

The above formalism applies to real and to computer beams

in 2D. For computer beams there are three main differences.

First, the charge of the test macro-particle Q is much higher

than the charge of the real beam ions q. If M is the number

of macro-particles and N the number of real beam ions, then

Q = qN/M . Second, in beam simulations the collisions take

place between the test macro-particle (charge Q) and the
M beam macro-particles (charge q). Therefore the macro-
particle density seen by the test macro-particle is lower than

the real beam density by M
N n. Third, the macro-particle

charge profile is distributed over a grid cell. We will assume

an effective size of the macro-particle Δ = Δx = Δy , which

is of the order of the grid spacing. Therefore a lower cutoff

at b ≈ Δ has to be applied. In a 2D computer beam the

relative velocity for 900 deflection increases according to

v2⊥ =
N
M

v2⊥ (15)

compared to a a 2D ’real’ beam. Therefore more particles

are affected by large angle collisions. The scaling law for

the collision frequency in a 2D computer beam is then

ν ≈ N
M
ν ∝ N3/2

M

(
1 − Δ
λD

)
(16)

SIMULATION RESULTS
As an example case we study the artificial emittance

growth in a simple FODO channel. The phase advance

in both directions is set to μ0 = 60
o . The initial beam distri-

bution is first matched with 2D space charge using the rms

envelope equations. Afterwards the distribution is tracked

for about 1000 cells with the code PATRIC [1]. The results

obtained for the FODO channel are compared to a symmet-

ric FODO channel (FODOxx). In the FODOxx cell the

focusing gradients are symmetric and so are the resulting

envelopes and local temperatures (Tx = Ty ). Any artificial

emittance case in a FODOxx cell will be entirely due to the

ripple of the lattice functions (G > 0, A = 0). The final
emittance growth for the FODO and FODOxx channels and

fixed macro-particle number M = 5000 as a function of

the space charge induced phase advance shift Δμ ∝ N is

shown in Figure 1. Very similar results have been obtained

with the code py-ORBIT [8]. The results are compared to

N3/2 and N2 scaling laws. One can see that the emittance

growth varies very strongly for weak and moderately strong

space charge (| Δμ |� 20o). This can be explained in part
by the combination of structure resonances (indicated in

Figure 1) and low frequency fluctuations of the space charge

force. For strong space charge the emittance growth can

be roughly described by N3/2 and N2 scaling laws. In this

regime the emittance growth is about a factor of two larger

for the FODO compared to the FODOxx channel. This dif-

ference is in agreement with the evaluation of Equation 6

with α = 0.5 for the effective temperature. α = 1 would

result in a similar emittance growth for the FODO and FO-

DOxx lines. For α = 0 the predicted emittance growth for
the FODOxx line would be zero. As a next step we fix the
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Figure 1: Emittance growth as a function of the beam inten-

sity for M = 5000 in PATRIC.

beam particle number N and obtain the emittance growth

as a function of the macro-particle number M, as shown

in Figure 2. The emittance growth decrease with increas-

Figure 2: Emittance growth as a function of the inverse

macro-particle number 1/M for μ = −150.

ing M . The decrease follows approximately a 1/M scaling

law. Again we observe a factor of 2 difference between the

FODO and the FODOxx channels. For very low macro-

particle numbers (� 2000) there are deviations from this

scaling law because large angle collisions start to play an

important role (coupling parameter Λ = vrms/v⊥). At last,
we study the effect of the grid spacing Δx = Δy. Figure 3
depicts the change of the emittance growth with changing

grid spacing (normalized by λD). The emittance growth re-
duces on a coarser grid, because the collisions are smoothed

out. For the FODO channel the emittance decrease follows

approximately Equation 6. For Δx � 3λD we find that the

emittance growth increases again.

CONCLUSION
The entropy and emittance growth caused by numerical

effects in particle tracking codes with 2D self-consistent

Figure 3: Emittance growth as a function of the grid spacing

for M = 5000 and Δμ = −300.

space charge solvers has been studied. The obtained emit-

tance growth in FODO channels can in part be attributed

to artificial collisions between macro-particles, as demon-

strated by comparison with an analytic scaling law. In our

analytic model we introduced an effective, non-local temper-

ature in order to account for the observed emittance growth

in isotropic beams. For weak space charge the emittance

growth is dominated by a low frequency noise spectrum in

combination with structure resonances. For strong space

charge the noise spectrum extends to higher frequencies and

artifical collisions dominate. In 3D space charge codes for

linacs a different scaling law for the artificial collisions ap-

plies. However, in such codes the emittance growth is often

dominated by the coarse 3D grids [9].
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