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Abstract

Using the CLEO detector at the Cornell ete™ storage ring, CESR, we
study the two-photon production of AA, making the first observation of yy —
AA. We present the cross-section for vy — AA as a function of the vy center
of mass energy and compare it to that predicted by the quark-diquark model.
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Two-photon interactions are a useful tool for the study of the strong interaction. At CLEO we
use two-photon interactions to test calculations of strong processes as well as the understanding
of hadron structure. CLEO has previously measured the cross-section for vy — pp [B]. Extending
this analysis, in this paper we report on the study of vy — AA.

Using the Brodsky-Lepage hard-scattering approach [fl], predictions have been made for the
two-photon production of baryons. The CLEO measurement of the vy — pp cross-section was
inconsistent with the prediction of a pure quark model [ff] at energies available to CLEO, but
was consistent with the prediction of the quark-diquark model [[f]. We compare the measured
vy — AA cross-section to that predicted by these models.

CLEO II is a general purpose detector [ff] using the e™e™ storage ring, CESR [f], operating at
Vs ~10.6 GeV. CLEO II contains three concentric wire chambers that detect charged particles
over 95% of the solid angle. Particle identification is performed using specific ionization energy
loss (dE/dx) in the outer wire chamber. A superconducting solenoid provides a magnetic field of
1.5 T, giving a momentum resolution of o, /p ~ 0.5% for p = 1 GeV. Outside of the wire chambers
and a time of flight system, but inside the solenoid, is a Csl electromagnetic calorimeter, consisting
of 7800 crystals arranged as two endcaps and a barrel. For a 100 MeV electromagnetic shower in
the barrel, the calorimeter achieves an energy resolution of op/FE =~ 4%.

Kinematics of two-photon events are strongly influenced by the fact that the initial state pho-
tons are approximately real and tend to have a large fraction of their momenta along the beam line.
A typical |¢?| of the photons is 20 MeV?, where ¢ is the photon four-momentum. Consequently, the
two-photon axis is approximately the beam axis, and the electron and positron rarely have enough
transverse momentum to be observed. The two photons have rather unequal energies, causing the
AA center of mass to be boosted along the beam axis. As the available energy in the A decay
is small, and the vy — AA cross-section is peaked near the AA threshold, the decay products,
pr~prT, usually have relatively low transverse momentum. We select those events in which all
four hadronic tracks are observed in CLEO.

In our analysis of 3.5fb~! of data, we use the following selection criteria to minimize back-
ground. We select 4 track events in which the charge sum is zero. We require the candidate proton
and antiproton to have dE/dx measurements consistent with that of a proton. We require that
the event energy, using these particle assignments, is less than 6.0 GeV and that the transverse
component of the vector sum of the track momenta is less than 0.6 GeV/c. We veto events in
which the candidate A or A vertex is at the radius of the beam pipe. We also place a requirement
on the transverse impact parameters of the reconstructed A and A with respect to the transverse
beam position; their root sum square must be less than 1.0 cm. Finally, cross-section predictions
A8 have been made for |cos@*| < 0.6, where 6* is the angle between the A momentum and the
two-photon axis in the two-photon center of mass frame. In order to compare with theory and with
vy — pp measurements, we impose the same requirement on the data. As the acceptance of the
detector decreases quickly beyond | cos 6*| = 0.6, this requirement does not significantly affect the
event yield. After applying these selection criteria, there is a clear enhancement in (M-, Mz +)
plane at the (m,my) point.

To verify that the reconstructed particles are predominantly A’s and A’s produced in two-
photon interactions, a number of data and Monte Carlo distributions have been compared, including
event energy, decay distance, A momentum angular distribution, proper decay length, acoplanarity,
acolinearity, proton momentum, and pion momentum. In all cases there is good agreement between
the data and the expected distributions.
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FIG. 1. AA mass average distribution found in data. Insert depicts mass average projection
technique.

The signal and background two-photon Monte Carlo events were generated using a program
based on the BGMS formalism [[J]. The simulation of the transport and decay of the final state
particles through the CLEO detector is performed by a GEANT-based detector simulator [[L0].

We use the AA mass average, (Myr— + Mgpr+)/2, to measure the number of signal events [[LT].
Viewed geometrically, the mass average rotates the (1., mz.+) plane by —n/4 and then scales
the projected value by 1/4/2; see Figure . The advantage of this approach is that it naturally
maps backgrounds from A-fake, fake-A, and fake-fake into smooth backgrounds in the mass average
plot which are then easier to subtract when fitting.

We reduce the fake-fake background by making a geometric selection in the (m,,—,mz+)
plane before the projection. We require that events are within 6 MeV, nearly 4 times the A mass
resolution, of the A mass for either axis. This simple cross geometry would underestimate fake-fake
background near the AA enhancement. To compensate for this, we extend our geometric criteria
at the intersection of the cross so that the area along the projected direction is a constant. This
approach is valid as the fake-fake background does not vary significantly near the AA enhancement.

Using a signal shape fit to the mass average distribution of the Monte Carlo combined with a

linear background, we measure 51.0 4 8.6 events in data. The fit and data are displayed in Figure
1.

Due to reduced sensitivity to other channels and the steep W dependence of two-photon pro-
duction, the dominant source of feeddown into the observed signal comes from the two-photon
production of X°X°, AX° or X°A, where W is the two-photon center of mass energy. At this point
we have not used final state photon information to distinguish between the four possible final states
(A/%°)(A/3°) for which we use this parenthetical notation to indicate alternative processes.



In order to measure the cross-section we apply the projection technique to the selected data
and Monte Carlo events with the addition that we bin in m,%, the effective mass of the A and A.
If the source of the signal is vy — AA, then m Ax = W. We fit to the background excluding the
signal region and subtract this from the number of events within the signal region, which is within
about 3 times the mass resolution of the A mass. The number of events summed over all bins is
constrained to be 51.0, the total number of events measured. We have estimated the systematic
uncertainty associated with binning, selection criteria, and background shape. The non-negligible
sources of uncertainty are associated with triggering, 13%, tracking, 14%, and event selection, 14%.
Assuming that these are independent, gives a quadrature sum of 24%, which is conservative in this
case.

We find the ete™ — eTe™ (A/X°)(A/°) cross-section in each bin of m,x by correcting the
observed AA yield in that bin by the efficiency obtained from the Monte Carlo simulation. Summing
these we find the total efe™ — ete™(A/3°)(A/X°) cross-section for |cos §*| < 0.6 to be 2.04+0.54+
0.5pb. The first error is statistical, dominated by the statistics of the first bin, the second is the
24% systematic uncertainty discussed above. This corresponds to an overall efficiency of 1.8%.

To correctly extract a cross-section, the contamination from feeddown into the observed signal
must be removed. As the statistics are limited, we do not use the mass average technique, but
instead we search for either a (3°/3°) in the events that pass all AA selection criteria described
above and that lie within a 6 MeV radius of the point (ma,my) in the (m,.-, mz,+) plane. To
search for (3°/3°) we combine each A or A with selected photon candidates in the event, using
the notation (3°/X°) to indicate either a ¥° or %°.

We only consider photon candidates in the crystal barrel. The energy associated with the
photon candidate must be within the range 40 MeV to 180 MeV. Each candidate photon must
not be matched with an observed charged track, and we apply the stricter requirement that the
cosine of the angle between the candidate photon and the shower matched with the anti-proton
track must be less than 0.9. To reduce background from hadronic interactions, we require that the
ratio of energy deposited in the central 9 crystals to that in the central 25 crystals must be > 0.9.

For each (3° /io) we construct mpyry — My + my which has better resolution than my,,. We
use a signal shape fit to the Monte Carlo distribution combined with a linear background to fit the
data. From the distribution in Figure ] we measure the number of (£°/%°) to be 7.545.6. As the
statistical uncertainty associated with this measurement is very large, the systematic uncertainty
is not significant. Although consistent with zero, this value will be used to estimate feeddown into
the 4y — AA measurement.

Due to the low statistics of the (3°/X°) measurement, we can not determine the ratio of
vy — (AX°/°N) to yy — X°%°. We assume that the processes vy — (AX°/X°A) and vy — X°X°
each contribute half. We assign the difference between the number given by the above mixture
of processes and that using the assumption that all observed (X°/%°) events were produced by
vy — 3°%° as the systematic uncertainty. Given the above ratio of contributions, we estimate the
number of contamination events by multiplying the observed number of (3°/%°) by 4/3 and by
the ratio of the AA detection efficiency to the (X°/%°) detection efficiency in eTe™ — ete™X%°
events. We have used the fact that the efficiency for finding a (3°/%°) in ete™ — ete X0%°
events is approximately twice that for finding (3°/X°) in ete™ — eTe™ (AX°/X°A) events. The
estimated number of non-AA contamination events is 11 £8 44, giving a contamination correction
scale factor of [1 — (11+8+4)/51.0] = 0.78 £0.16 £ 0.08. Applying this factor to the cross-section
we extract an exclusive eTe™ — eTe” AA cross-section of 1.6 + 0.6 & 0.4 pb for | cos 6*| < 0.6.
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FIG. 2. (%°/3°) mass distribution found in data.

To calculate the vy — AA cross-section we scale the measured signal using,

data
data . "bin /Ld“t“ MC (1)
bin ™~ T MC L Obin >
Ny /Lnic

to account for photon flux and efficiency, in each m,x bin. We correct the cross-section using
our estimate of the the (3£°/%°) contamination. The m 5 distribution observed in data is a good
model for the m 5 distributions of the ¥°%° and (AX°/$°A) contamination. Consequently, we
can apply the contamination correction scale factor bin by bin. The results are shown in Table
. An additional systematic uncertainty associated with the uncertainty of the feeddown m AR
distribution is included.

The predicted vy — AA cross-sections appear to disagree with this measurement. Due to
the failure of the of pure-quark calculation to accurately predict the cross-section for vy — pp at
values of W that we probe, we do not anticipate that it can accurately predict the cross-section
for vy — AA [B]. However, the quark-diquark model is constructed to predict the cross-section in
this energy regime. This model includes nonperturbative effects through the use of the diquark,
a gq bound state within the baryon. The original calculations were performed using only scalar
diquarks [[]. More recent calculations include both scalar and vector diquarks [J§. In the energy
regime near threshold, the quark-diquark model is also expected to fail.

The extracted exclusive 7y — AA cross-section, the previously measured vy — pp cross-section,
and the predictions of the model are displayed in Figure [} as a function of W for | cos 6*| < 0.6. We
place the horizontal location of the cross-section data points at the weighted mean of W in the bin
based on a ~ 1/W!2 distribution. We do not display the predictions of the pure-quark calculation,
which are much smaller than the quark-diquark predictions for both vy — pp and vy — AA. The
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uncertainties. Horizontal markings indicate bin width. S-model identifies the scalar quark-diquark
model []. V-model identifies the vector quark-diquark model [{,§.

unexpected result is that the production of vy — AA appears to be consistently larger than the
prediction of the quark-diquark model. In the three bins above 2.5 GeV the vector quark-diquark
model predicts that we should observe ~ 10 events, but in data we observe 32 events.

TABLE I. Two-photon cross-section yy — AA for | cos 8*| < 0.6

m,x [GeV] TR [0D]
2.25-24 424+1.7+16
24—-25 1.3+£05+04
25—-26 0.54 £0.27 £0.16
26—-29 0.15+£0.06 £ 0.04
29-36 0.051 £0.019 +0.017

In this paper we presented the first observation of vy — AA. We measured the ete™ — ete AA
cross-section, and the vy — AA cross-section as a function of m,, each for |cos6*| < 0.6. The
measured 7y — AA cross-section appears to be larger than that predicted by either the quark-
diquark model or the pure-quark calculation over the observed range of W.
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