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Abstract

Mixing is the time-dependent phenomenon of a neutral meson (in this case charm
meson DY) changing into its anti-particle (D) and vice versa. This occurs because
the mass eigenstates, denoted D; and D, are linear combinations of the flavour
cigenstates D° and D°. Mixing is governed by two parameters z and y defined
as: © = (my —my)/T" and y = (I'y — I'9)/(2') where I' is the average decay
width. CP-violation can occur in mixing or in the interference between mixing
and decay. The CP-violation parameters |¢/p| and ¢ describe the superposition of
the flavour eigenstates and the mass eigenstates: |D; o) = p|D) & ¢|D°). The self-
conjugate decay D° — Komtr~ offers direct access to the mixing and CP-violation
parameters through a time and phase-space dependent fit to the Dalitz variables
and decay-time of this decay. This thesis reports a measurement of the mixing and
CP-violation parameters using data collected at the LHCb experiment in the Run
2 data-taking period in 2016-2018, corresponding to an integrated luminosity of
6 fb~!. This analysis uses D° mesons originating from semi-leptonic B meson decays.
The D° — K9r™n~ decay is modelled by expressing the three-body decay as the
superposition of successive two-body decays through intermediate resonances. The

blinded mixing parameters are found to be:

z = (2.27 £ 0.864ar £ 0.39ys + 0.241040) X 1077

Y = (y.yy £ 0.764at & 0.59%yst £ 0.26,0d01) X 1072

where the uncertainties are statistical, systematic and from the choice of amplitude

model. The CP-violation parameters are expressed in terms of Ax and Ay which
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are defined as the difference in mixing parameters measured for D° and D°:

Az = (0.00 + 0.59) x 107

Ay = (0.00 £ 0.51) x 1073

the uncertainties are currently statistical only and the results are blind.
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Lay Summary

The fundamental particles that make up the universe and the interactions between
them are described, to our best knowledge, by the Standard Model of particle physics.
The Standard Model is experimentally verified to an extremely high precision but
it has some significant theoretical shortcomings and cannot fully explain all the
phenomena observed in nature. Therefore physicists are searching for a new theory

beyond the Standard Model which can explain these anomalies.

The fundamental particles consist of six quarks, three pairs of leptons and
corresponding neutrino (as well as the anti-particles) and the force carriers which
mediate the forces between the particles. A meson is a type of particle made from a
quark - antiquark pair. The D° meson which is the subject of this thesis is made from
a charm quark and an up antiquark, it is neutrally charged. A neutral (zero charge)
meson can oscillate over time between particle and anti-particle states (in this case
a D° consisting of a charm antiquark and an up quark) through a time-dependent
phenomenon called mixing. New virtual particles can change the oscillation rate, so

any discrepancy from the Standard Model predictions may be a hint of new physics.

One of the shortcomings of the Standard Model is that it does not account for
enough CP (charge parity) violation to explain the matter - antimatter asymmetry
we see in the universe today. C'P-violation refers to differences in which a particle
and its antiparticle behave, these can be observed directly in a particle decay or in
mixing. C'P-violation can arise both through differences in overall decay probabilities
(CP-violation in decay) which are constant as a function of decay time, and also
through asymmetric mixing effects, which are time dependent. CP-violation in

decay was discovered in charm mesons in 2019 but at the time of writing there is
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no evidence for CP-violation in mixing or in the interference between mixing and
decay of particles containing charm quarks. Therefore precision measurements of
CP-violation and mixing in charm are important tools to understand potential new

physics beyond the Standard Model.

At the Large Hadron Collider at CERN, protons (made from two up and one
down quarks) are accelerated to extremely high speeds and collided. The LHCb
detector collects the data from these proton collisions. It is a special detector that
was built to study heavy flavour (beauty and charm quarks) physics measurements.
The research presented in this thesis uses data collected at the LHCb detector from
2016 to 2018 to perform a measurement of the charm mixing parameters and search

for indirect CP-violation.
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CHAPTER 1

Introduction

The Standard Model (SM) of particle physics is the theory governing the fundamental
particles and their interactions. The theory classifies the elementary particles. There
are 12 spin-1/2 fermions consisting of six quarks: up, down, top, bottom, strange,
charm and six leptons: the electron, muon and tau and corresponding neutrinos. Each
of the 12 particles have a corresponding antiparticle. The fundamental strong, weak
and electromagnetic forces are mediated by the gauge bosons; the gluon, W and Z
bosons and the photon. Finally the spin-0 scalar Higgs boson provides the mechanism
by which the gauge bosons gain their masses through the Higgs mechanism and

spontaneous symmetry breaking.

The quarks carry colour charge and interact under the strong interaction. The
strong force is responsible for the phenomena of colour confinement which binds
quarks into hadrons, either a meson consisting of a quark-antiquark pair or a baryon
consisting of three quarks. The quarks and three leptons (electron, muon, tau) are
charged under the electromagnetic force and all fermions are subject to the weak

interaction.

The photon is a massless particle which is the mediator of the electromagnetic
force between electrically charged particles. The W and Z bosons are the mediators

of the weak interaction between all fermions. The gluons are the force carriers of
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the strong force and mediate strong interactions between particles carrying colour

charge (the quarks).

The Standard Model is experimentally verified to a remarkable degree of precision
but does not explain all the phenomena observed in nature. The Standard Model has
predicted the existence of a number of fundamental particles before their discoveries;
including the W and Z bosons, the charm, bottom and top quarks and the Higgs
boson. However the current theory has some significant theoretical shortcomings
such as: the amount of charge-parity (CP) violation in the Standard Model is not
sufficient to account for the asymmetry we observe in the universe today; there is
no mechanism by which the neutrinos have mass, in other words whether they are
Dirac or Majorana particles; there is no dark matter candidate despite compelling

astronomical evidence that dark matter exists.

The Standard Model is based on a number of symmetries. Charge symmetry is
the symmetry under the transformation of charge (electric charge). Parity symmetry
is symmetry under the transformation of spatial coordinate(s). CP (charge-parity)
symmetry states that the laws of physics should be the same if the particle is
interchanged with its antiparticle (charge symmetry) while its spatial coordinates are
inverted (parity symmetry). CP-violation has been well established in the kaon [37]
and beauty [31] sectors and was observed in the charm sector in 2019 [10]. CP-
violation in the charm sector is predicted to be small O(1072 — 1071) [33] and is
difficult to compute reliably due to low energy strong interactions. Any enhancement
of CP-violation may therefore be a hint of new physics. CP-violation occurs in the
SM in three ways: in direct decay, in mixing and in the interference between mixing

and decay.

In the case of neutral mesons, the mass eigenstates are quantum superpositions
of the flavour eigenstates. When the particle decays (as a mass state) it does so as a
mixture of flavour states. This time-dependent phenomena results in a neutral meson
oscillating into its antiparticle and vice versa, i.e. over time there is an oscillating

probability of appearing as a given flavour state.

Mixing between a neutral meson and its antiparticle occurs through the weak
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interaction of neutral mesons, via the exchange of W bosons and heavy quarks
(short-distance). For long-distance processes the main propagator is a stable CP-
conjugate state eg. 77~. Mixing occurs via both long-distance and short-distance
contributions; in charm, long-distance contributions are thought to dominate, making
theoretical predictions more challenging. In addition, due to the GIM mechanism [48]
and CKM suppression [35], mixing is highly suppressed in the charm sector, making
experimental measurements more difficult. New virtual particles may contribute
to the amplitude, changing the oscillation rate, so any deviation from Standard
Model predictions would constitute evidence for new physics effects. The parameters
describing the time-dependent oscillations between a D° and a D° are defined as
r = (my —my)/T and y = (I'y — I'9)/2I", where m; and my and I’y and I'y are the
masses and widths of the mass eigenstates and I is the average width. C'P-violation
in mixing is governed by a complex number ¢/p (described in more detail in Chapter
2) conventionally split into two real numbers |¢/p| and ¢ = arg(q/p). CP-symmetry
corresponds to |¢/p| =1 and ¢ = 0.

Mixing was postulated by Gell-Mann and Pais in 1955 [47] and was discovered
in kaons by Lederman and others in 1957 [46]. Mixing in B mesons was discovered
by the ARGUS collaboration in 1987 [23]. Evidence for mixing in the charm sector
was reported by the B factories Belle [76] and BaBar [32] in 2007. Recently a
model-independent method to measure the mixing parameters was performed by
LHCb [9] and reported the first observation of a non-zero mass difference of neutral

charm mesons by a single experiment [13].

The self-conjugate decay D° — K2n™n~ offers direct access to both the Cabibbo-
favoured and doubly Cabibbo-suppressed decays in the same mode. Due to the
rich resonant structure of the Dalitz plane of this decay, the Cabibbo-favoured and
mixed decays can be separated. This allows direct access to the mixing parameters
x and y through and time and phase-dependent amplitude fit to the Dalitz plane

and decay-time of this decay.

The LHCD detector at the Large Hadron Collider (LHC) at CERN is a forward
detector which was specifically designed for the study of hadrons containing a b

quark and for measurements of CP-violation and rare decays. It has since expanded
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its physics program to charm physics. Due to the large cross section of c¢ at the
LHC and the dedicated detector and Trigger at the LHCb experiment, LHCD is
able to test Standard Model predictions of mixing and CP-violation in charm to

unprecedented precision.

In this analysis the analysed LHCb data corresponds to a luminosity of 6 fb!
collected during the Run 2 data-taking period from 2016-2018. This analysis uses D°
mesons from semi-leptonic B meson decays, for example B — D%~ X where the
B meson is charged or neutral, in which the initial flavour of the neutral D meson is
tagged by the charge of the muon. The Run 1 data-taking period from 2011-2012
collected 3 fb~! of data has been prepared and a combined Run 1 and Run 2 result is

in preparation. For the purpose of this thesis, we present the Run 2 data and results.

1.1 World Averages

The world averages as of June 2021 for the mixing parameters for the no CP-
violation case are:
x = (0.517013) x 1072

(1.1)
y = (0.63 £ 0.07) x 1072

and for the CP violation allowed case:

r=(0.37+£0.12) x 1072

y = (0.68%905) x 107 19
la/pl = 0.951%0 53

¢=(-5.3")°

The world averages for the mixing and CP-violation parameters can be seen in Figure
[1.1} It is also instructive to look at the world averages with the latest result included
as of July 2021 which will be discussed in more detail in the following section. These
are shown in Figure Note the significant improvement from Figure to Figure
[1.2] almost exclusively due to the result described in the next section and in Ref. [13].
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Figure 1.1: World averages June 2021 of the mixing and CP-violation parameters z,
v, |q/p| and ¢ from the Heavy Flavour Averaging Group [27].
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Figure 1.2: World averages July 2021 of the mixing and CP-violation parameters z,
y, lg/p| and ¢ from the Heavy Flavour Averaging Group [27]. Note the scale of the
axis is significantly smaller than Figure
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1.2 Model-independent method

The mixing parameters z and y can be measured with LHCb data using a
model-dependent or model-independent approach. The model-independent approach
is based on the bin-flip method, which is optimised for the measurement of the
parameter x [44]. This avoids the need for an accurate modelling of the efficiency

across the phase-space and decay-time.

The self-conjugate D° — K97 Tn~ decay is unique as it offers direct access to
the mixing and CP-violation parameters. This decay gives access to the Cabibbo
favoured and doubly Cabibbo-suppressed decays in the same channel. Due to the
rich resonant substructure of the Dalitz plane of this decay, it is possible to separate
regions in phase space which are dominated by direct Cabibbo-favoured decays from
regions influenced by mixing. One can achieve this by splitting the Dalitz plane
along the leading diagonal, where one half would correspond to Cabibbo-favoured
decay and the opposite would correspond to mixing + Cabibbo-favoured decay. So
the ratio of candidates in the upper half compared to the lower half gives a measure
of the influence of mixing on the decay. More useful, and experimentally robust, is to
examine the time-dependence of this ratio, from which the mixing and C'P-violation
parameters can be directly extracted. The sensitivity can be further improved by
subdividing the Dalitz plane into several bin-pairs mirrored about the Dalitz diagonal.

Hence the term ‘bin-flip”.

The Dalitz plot is divided into symmetric bins of approximately equal strong-
phase differences between the D and D° amplitudes. The bins are symmetric
with respect to the m? = m%r bisector, the bins are labelled £b referring to the
upper and lower regions of the Dalitz plane as shown in Figure The strong-
phase represents the interference between the Caibibbo-favoured and the doubly
Cabibbo-suppressed decay modes. This can be measured at eTe™ colliders such as
CLEO [61] and BES-III [19] since quantum correlated D-D are produced. These
can decay (not independently) into the same final state (K37 t7~) giving access
to the strong-phase between the Cabibbo-favoured and doubly Cabibbo-suppressed

decay modes. Consequently this cannot be measured at LHCb so any measurements
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Figure 1.3: Binning of the D’ — K2n"x~ Dalitz plot taken from the CLEO
collaboration and used for the model-independent bin-flip analysis. The bins are
symmetric across the bisector and are labelled +b.

performed rely on these external inputs.

The data are further split into bins of decay-time labelled by the index j. For
each bin in phase-space and decay-time, the ratio between initially produced D° and

D’ is measured, given by Ry and R,:

Lt (%) jRe (22, — AZ%) + 1 (%) |2 + Az|?+ /(1) Re[ X5 (z0p + A2)]

ARt He2);Re(22p — A22) + 12 (12) | z0p £ Az|? + /T (t); Re[ Xy (20p £ ?Z)])
1.3

In this equation (t); is the average decay-time of unmixed decays in bins of
decay-time indexed j. The parameter 7, is the ratio of signal yields in the symmetric
Dalitz plot bins +b at t = 0. The parameter X, = ¢, — is; is taken from external
inputs and is the average strong-phase difference in the bins in phase-space indexed
b, in this case this is taken from the most recent measurement of the strong-phase
differences from BES-III [19]. The free parameters of the fit are 7, zcp and Az
defined by:

zop £ Az = —(q/p)* (y + ix) (1.4)

Two analyses using this method have been published by LHCb. The first used
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Figure 1.4: Ratios (left) and differences (right) of the D° and D° yield ratios as a
function of decay-time for each Dalitz bin. Prompt data are given by closed points,
semi-leptonic data by open points. Fit projections for prompt is given by the solid
line and for semi-leptonic by the dashed line [9].

prompt D** — D%(— K2nt7~)r" and semi-leptonic B~ — D°(— Kyrtr )y~ X
decays where the initial flavour of the neutral D meson is tagged by the charge of
the pion in the prompt sample and the charge of the muon in the semi-leptonic
sample. This used Run 1 data corresponding to 3 fb™! [9]. The fit results are shown
in Figure [1.4 The ratios of the D® and D° yield ratios in each Dalitz bin as a
function of decay-time are shown on the left where any time-dependence is a sign of
mixing. The differences are shown on the right where any time-dependence is a sign

of CP-violation.
The results are:

yop = [0.74 4 0.36 & 0.11)%
Ay = [—0.06 + 0.16 + 0.03]%

Az = [—0.053 £+ 0.070 £ 0.022]%

where the uncertainties are statistical and systematic respectively [9]. The mixing
and CP-violation parameters x and y and |¢/p| and ¢ can then be derived from the

results.
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Figure 1.5: Ratios (left) and differences (right) of the D° and D° yield ratios as a
function of decay-time for each Dalitz bin. Prompt data are given by black points.
Fit projections is given by the solid blue line and the z¢p = 0 is the red dashed line
for comparison [13].

An updated result with the Run 2 dataset using prompt decays was published in
2021 [13] and constitutes the first observation of a non-zero mass difference (x) in

neutral charm mesons by a single experiment. The results are:

yop = [0.459 £ 0.1204¢ + 0.0854,5]%
Ay = [0.020 = 0.0364a¢ & 0.0134y5] % o)
1.6
zep = [0.397 £ 0.0464,, & 0.029,,4]%

Az = [—0.027 £ 0.018tat £ 0.0014y5]%

The results are shown in Figure where the slope of the blue line in the left
hand plot indicates mixing. The red dashed line is the no mixing xcp = 0 case for

comparison.

1.3 Other existing measurements

Other previous measurements using D° — Kgr ™7~ decays have been published
by the CLEO, BaBar, Belle and CDF collaborations. A measurement of the time-
integrated CP asymmetry was published by CDF in 2012, which is consistent with no

direct CP violation [14]. The measurements of the D — D° mixing parameters and
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search for indirect CP violation have followed a model-dependent approach, with the
exception of the model-independent method described in the previous section. The
most recent determination of the amplitude model of D® — K277~ decays was from
the Belle and BaBar collaborations in 2018 [20]. The Belle data sample corresponds
to 924 fb~! recorded at or near the Y(4S) and Y(5S) resonances. This dataset
provides a high statistics sample of ete™ — ¢ events that is used to determine the
D° — K¢rTn~ decay amplitudes, collected at the Belle detector [I5]. The combined
Belle and BaBar data samples correspond to data collected at the Y (4S5) resonance
and contains (471 +3) x 10° BB pairs from the BaBar detector and (772 +11) x 10°
from Belle. The amplitude model reported in this analysis is used as the baseline for

this work when developing the amplitude model as discussed in Chapter [§

1.4 Analysis method

Alternatively to the model-independent approach, the parameters of interest x
and y (and the CP-violation parameters) can be extracted from a time and phase-
space dependent fit of an amplitude model to the Dalitz variables and decay time
of the D' — K2n*m~ decay. The model consists of resonant and non-resonant
components and describes the D — K2nT 7~ decay as a superposition of decays
through intermediate resonances and their interferences. The initial resonant and
non-resonant components are taken from a published analysis of this channel by the
Belle and Babar collaborations based on a large fraction of their collected data [20].

The background model is derived from a data-driven approach.

The event-selection and reconstruction may distort the kinematics of the final
state particles in the decay, leading to a non-uniform acceptance across the Dalitz
plane. Similarly, there may be variations in acceptance as a function of decay-
time. The phase-space and decay-time acceptance is derived from simulation and
accounted for in the final amplitude fit model. The LHCb detector also has a
finite decay-time resolution which also needs to be accounted for in the fit. The
background distribution for the final amplitude fit is derived from data by extracting
the background sWeights from the events which have passed all the selection criteria.

For each candidate, a signal probability is also derived and used in the fit to assign
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the appropriate combination of signal and background PDFs for each candidate. An
unbinned time-dependent maximum-likelihood fit to data is performed to extract

the parameters of interest x and y.

This thesis presents the measurement of the mixing parameters of neutral charm
mesons and a search for indirect CP-violation using semi-leptonic D — K277~
decays collected at the LHCb detector during the Run 2 data-taking period. The
theory is described in Chapter [, the LHCb detector in Chapter [3] The analysis
method is described in more detail in Chapter i} The data selection is described in
Chapter 5| The simulated Monte Carlo data used in this analysis is described in
Chapters [6] and [7} The amplitude fit model is described in Chapter [§] toy studies
in Chapter [9] and the systematic uncertainties in Chapter [I0] The final results and

conclusion are presented in Chapter |11
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CHAPTER 2

Theory

2.1 The Standard Model

The measurement described in this thesis is interpreted in the context of the
Standard Model of particle physics . The SM is a theoretical framework used to
describe three of the four fundamental forces in the universe, as well as classifying
all known elementary particles and their interactions. The three fundamental forces
described by this model are the electromagnetic force, as well as the weak and the
strong force. The gravitational force, which is negligible on the scale of fundamental
particle physics, is not included in the SM. The fundamental particles are classified
as twelve spin-1/2 fermions, the spin-1 gauge bosons which are the mediators of
the fundamental forces, and the spin-0 Higgs boson. The fermions are further
classified into six quarks (up, down, charm, strange, top, bottom) and six leptons
(electron, muon, tau and corresponding neutrinos). Each fermion has a corresponding
antiparticle partner of the same mass but opposite physical charges (such as electric
charge). The leptons and quarks are charged under the weak interaction which is
mediated by the W= and Z bosons, the three charged leptons electron, muon and tau
are also charged under the electromagnetic force which is mediated by the photon.
The quarks are charged under the electromagnetic force and have a color charge of

the strong force, this is mediated by eight gluons. The Higgs boson provides the
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)

mass | =2.2 MeVic? =1.28 GeVic? =173.1 GeV/c? 0 =124.97 GeVic?
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Figure 2.1: The elementary particles of the Standard Model including the matter
particles (fermions) and force carriers (bosons); the diagram on the left shows the
charge, mass and spin of the particles and the diagram on the right shows the
interactions between the different particles. Images taken from Ref. [83].

mechanism by which the fundamental particles gain their masses, through the Higgs
mechanism and spontaneous symmetry breaking. Hadronisation is the process of the
formation of hadrons out of quarks and gluons. Hadrons are formed due to that fact
that quarks can only exist in colorless combinations, which is in turn caused by the
fact that gluons are non-Abelian and therefore self-interact. The most common of
the bound states of quarks are the meson ¢ and the baryon formed of qqq or ¢qq.
More complex states consisting of more quarks are possible; such as pentaquarks

formed of ¢Ggqq which have been observed at the LHCb detector [I].

Quarks and leptons are categorised in terms of three generations. Each quark
generation contains an u-type quark with electric charge ) = +2/3 and a d-type
quark with charge @ = —1/3. Due to the fact that the quark mass eigenstates
are linear combinations of the flavour eigenstates, they can mix (change flavour)
under the weak force. Quark mixing is governed by the Cabbibo-Kobayashi-Maskawa
(CKM)) matrix [35), 56]:

Vud Vus Vub
Vekm = | Via Vs Vi, (2.1)
Via Vis Va

The elements of the CKM matrix V;; describe the coupling strength of the flavour-
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changing weak current between v and d-type quarks, which is mediated by the W=
bosons. The CKM matrix has a hierarchical structure where off-diagonal elements
are smaller and therefore the quarks are more likely to interact with those of the

same generation.

In particular, tree-level decays of particles containing a charm quark depend
on the matrix elements V,4, Vs, Vg and V.. The hierarchy of the CKM matrix
elements becomes evident using the Wolfenstein parametrisation, which is based on
the expansion in powers of the small parameter A where V4| ~ |V.s| = 1 — A\ and
|Vis| = |Vea| = A [84]. Tree-level transitions u — s and ¢ — d depend on the V¢ and
V.q matrix elements respectively and are known as doubly Cabibbo suppressed
decays. They have small branching fractions compared to ¢ — s Cabibbo-favoured
transitions and singly Cabibbo-suppressed decays. In the SM, any weak
interactions mediated by the neutral Z boson conserve quark flavour. Processes which
change quark flavour without changing the charge (flavour-changing neutral currents)
are only allowed in the SM in higher order processes involving multiple W bosons

and are highly suppressed by the Glashow-Iliopoulos—Maiani (GIM)) mechanism [48].

The SM is parametrised under the gauge symmetry group SU(3)cxSU(2) xU(1)y.
The theory of strong interaction between quarks carrying the quantum number
colour is described by the SU(3)¢ gauge group and the SU(2),x U(1)y describes
the unification of electromagnetic and weak interactions. The labels of the gauge
groups correspond to the quantum number associated with the interaction: SU(3)¢
denotes the color charge carried by quarks and gluons, SU(2),, denotes that the weak
interaction only couples to left-handed fermions, and U(1)y denotes weak hypercharge,
Y = 2(Q — T3) where @ is the charge of the electromagnetic force and T3 is the weak
isospin. The gauge groups of degree n have n? — 1 generators; for example the gauge
group SU(2), is of degree n = 2 and therefore has three generators. The generators
of the gauge group lead to the existence of the gauge bosons. Therefore the SU(3)¢
group has n = 3 and eight generators which correspond to the eight gluons. The
SU(2),xU(1)y electroweak symmetry group has four generators Wi o3 and B; the
generators W o correspond to the gauge bosons W= and the generators W3 and B

mix to form the neutral Z boson and the photon.
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As mentioned the SM has some significant shortcomings. For example, the
amount of C'P-violation allowed in the SM does not account for the matter-antimatter
symmetry seen in the universe today. Numerous cosmological observations provide
evidence for the existence of dark matter; for example galaxy rotation curves [42],
gravitational lensing [79] and the angular power spectrum of the cosmic microwave

background [21]. However the SM does not provide a dark matter candidate.

2.1.1 Electroweak theory

The electroweak theory is the unification of the electromagnetic and weak
forces [49, [81] and is described by the SU(2),xU(1)y gauge symmetry group. The
fields of the SM are classified as quark and lepton fields with quark doublets Q% and

singlets u’, and d; and lepton doublets L? and singlets e}, where:
Q= Ly = (22)
are quark and lepton doublets respectively, v and d represent the u-type and d-type

quarks, e represents the three leptons e, p, 7, and v, represents the corresponding

neutrinos. We introduce left and right-handed chiral spinor fields, e; and eg for the

electron:
1 — 5
eL = Py = — ¢
5 (2.3)
T+~
er = PryYp = 5 (0

where these are eigenstates of the helecity operator, 1 denotes the spinor field and

1.2~3

75 = 179914%y3 and {1°, 41, 4?73} are the gamma or Dirac matrices.

The dynamics of elementary particles under the influence of the electroweak
interaction can be derived from the electromagnetic Lagrangian of a free fermion
field Ly by considering the effects of local phase transformations and accounting for

weak currents:

Lo = iy, 0" — map (2.4)
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Consider a local gauge transformation
Y(x) = (2) = e (x) (2.5)
and replace 0" with the covariant derivative
D, =0, —1ieA, (2.6)

where
1
Ay — A=A+ Eaua (2.7)
then the free fermion Lagrangian is invariant under the local gauge transformation:
Lo — Ly = ithy, D"p — myy)
= Y(i7,0" — m)Y + " A

(2.8)

The demand of local gauge invariance introduces the gauge field A,, which can be

interpreted physically as the field of the photon. Now consider the Lagrangian of
Quantum Electrodynamics (QED)):

. _ 1 ,
Lawp = B0 —m) + ey Ay) = £ F F" (29)

where F),, = 0,A, — 0, A, is the field strength tensor and the last term is the kinetic

term for the photon field A,. The Lagrangian for the electroweak theory is given by:

_ ) T o Y ;
Lew =L {lau - 9§Wu - QIEBM} Ly,

wWH

T Yy 1. 1 1
+ e {z@u — g'—BM} er — =B, B" — 1

2 4

where

o Li and ¢’ are the doublet and singlet fields for the leptons as described in
Equations 2.3 and [2.2]

o 7 = (71,72, 73) are the Pauli matrices,

« W, = (W, W2, W2) and B, are vector fields,
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« Y is the weak hypercharge, the generator associated with the U(1)y symmetry
group,
e B, =09,B,—9,B, and Wuu = 8“Wl, — OVWM are the antisymmetric field

strength tensors,

e g and ¢ are the coupling strengths for WM and B, respectively.

The linear combination of the vector fields W}} and Wlf leads to the physical fields
Wi = \%(Wj T iW7) and describe the massive W* bosons. The B, and W fields
mix:

= B, cos Oy + Wj’ sin Oy,

A
g (2.11)
ZH

= —B,sinty + Wi cos Oy
where the fields A, and Z, correspond to the massless photon and massive Z boson
respectively and 6y is the Weinberg angle. The Weinberg angle can be expressed

by the mixing of the B and W3 gauge bosons to form the Z boson and the photon

through spontaneous symmetry breaking:

cos 0 sin 6 B
T = v v (2.12)
Z —sin Oy cos Oy Ws

It also gives the relationship between the mass of the Z and W bosons at leading

order:

mw
= 2.13
mz cos Oy ( )

2.1.2 Higgs mechanism

In the Salam-Weinberg model of electroweak unification, the Higgs mechanism is
embedded in the U(1)y xSU(2), local gauge symmetry of the electroweak sector of
the SM. This brief example will show the key concepts of how the Higgs mechanism

leads to the generation of the masses of the gauge bosons. The simplest Higgs model
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consists of two complex scalar fields:

n .
6= ¢ :i o1 + 1o (2.14)

¢ ) V2 \ gy +io,

The Lagrangian for this doublet scalar field is:

L= (9.0)"(0"¢) = V(¢) (2.15)

where the Higgs potential is given by:

V(¢) = 1?61 + Mo'9)* (2.16)

We minimise V(¢) to obtain the set of degenerate minima for p? < 0 satisfying:

2
olo = 1= (2.17)

In order to ensure that the photon is massless after symmetry breaking, the minimum
of the potential must correspond to a non-zero vacuum expectation value of the

scalar field ¢°. We chose the ground state:

P (2.18)
G_\/§U :

We expand the field about its minimum, this is called the unitary gauge:

1 0
o(z) = — (2.19)
V2 \u+ n(x)
The mass terms of the gauge bosons can be identified by writing the Lagrangian in
Equation such that it is invariant under local SU(2),xU(1)y gauge symmetry
and replacing the derivatives with the appropriate covariant derivatives. The mass
terms are identified by the relevant term of the Lagrangian:

1 1
LD gvng(W;Wm + WIW?) + gvz(ng’ + ¢'B,) (gW?" + ¢'B") (2.20)
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by comparison with the mass terms:

1 1
S WL W and - Sy W™ (2.21)

Therefore the mass of the W= bosons is given by:

1
mw = 5gv (2.22)

To identify the masses of the Z boson and the photon we compare the last term in

Equation to the mass terms:

1 1
émQZZMZ“ and §m124AMA“ (2.23)
which leads to:
'W3+ gB W, —g¢B
A, = 9w 9P and Z, = 9V — 9P (2.24)
® /92 T g2 ® 7+ g2

and

1
ma=0 and my= 52}\/92 + g (2.25)

By using the relationship between the physical fields and underlying fields in Equation

the mass of the Z boson can be expressed as:
1 g

myg — —
2 cos Oy

v (2.26)

and combining Equations and one gets the relation with the Weinberg angle
Ow given in Equation [2.13] The Higgs mechanism for the spontaneous symmetry
breaking of the SU(2);,xU(1)y gauge group generates the masses of the W* and Z
bosons. Similarly it is also responsible for the generation of the fermion masses. The

relevant terms in the Lagrangian for the electron doublet is:

Lo~ v(eren +erer) — Toh(eren + erer) (2.27)

V2 V2
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The Yukawa coupling g, is chosen to be consistent with the observed electron mass:

me = J2 (2.28)

V2

Similarly for an u quark the Lagrangian is given by:

9u

V2

U(ﬂLuR—i-ﬂRUL) - g—uh(ﬂLuR—i—ﬂRuL) (2.29)

V2

Ly, D —

and hence the masses of the quarks are given by:

GV

My,
V2

gav

7 (2.30)

and my =

where g, and g4 are the Yukawa couplings for the u and d quarks respectively and

the vacuum expectation value of the Higgs field is v = 246 GeV.

2.1.3 Quantum chromodynamics

The theory of the strong interaction is governed by Quantum Chromodynamics
(QCD)) and is described by the non-abelian gauge symmetry group SU(3)c. The
generators of the gauge group SU(3)¢ are the Gell-Mann matrices which are defined
by [T, Ty] = i fapeT. where fup. are the antisymmetric structure constants. Similarly
to the QED Lagrangian, a gauge invariant QCD Lagrangian can be written by

introducing the covariant derivative:
D, =0, +igTl.G), (2.31)
where G} transforms as follows under a local gauge transformation:
a a 1 a (&
G — G, — gﬁua — Jabes G, (2.32)
The gauge invariant QCD Lagrangian for a colour field ¢ is then given by:

_ L qm (2.33)

Loop = q(i"0, —m)q — g(@y"T"q) G}, 1Cw
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which is invariant under the local gauge transformation:

g(x) = () (2.34)

where a = 1,...,8 and G4, = 9,G% — 0,G% — g fucGhGS. The generators of SU(3)¢,
T* give rise to the eight gluons, the mediators of the strong force. In contrast to the
electroweak interaction, no experimental evidence for the violation of the symmetry
under charge parity transformations in the strong interaction has been observed.
QCD does allow a violation of CP symmetry and it is not understood why CP should
be conserved in QCD; this is known as the strong CP problem.

2.2 Neutral meson mixing

Neutral meson mixing is the time-dependent phenomena of a particle changing
into its antiparticle and vice versa. This occurs because the mass eigenstates are linear
combinations of the flavour eigenstates. Mixing in the charm sector is complimentary
to studies in the beauty and kaon sectors. Charm mixing is highly suppressed so
is the least experimentally constrained of the three sectors. In addition the charm
system is the only one which comprises up-type quarks, so it has unique sensitivity

to new physics coupling preferentially to the up sector.

Mixing occurs in the charm sector when a D transitions into a D or vice
versa. This occurs via a flavour-changing current which changes the flavour quantum
number by |AF| = 2. In the charm sector, mixing has contributions from the d and
s transitions in the box diagram in Figure 2.2l Due to the GIM mechanism, these
contribute with approximately equal magnitude and opposite sign where the sign
change comes from the CKM matrix. The GIM mechanism is an efficient cancellation
of two amplitudes of similar magnitude and opposite sign, one corresponding to
a down quark exchange and one to a strange quark exchange. Therefore weak
interactions which change strangeness by |AS| = 2 are highly suppressed. In the box
diagram in Figure the vertex factors from the d and s transitions nearly cancel,

and the amplitude of the b transition is small due to the off-diagonal elements of the

CKM matrix V; V.
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d.5b )

> C

u >

Y i

Figure 2.2: Feynman box diagram for the D® — D transition via the exchange of
intermediate quarks

_ K, _
C

Figure 2.3: Diagram of a D° — D° transition through long-distance hadronic interac-
tions.

Mixing can occur through long-distance and short-distance contributions; in charm
long-distance effects are expected to dominate due to the suppression mechanisms
described above, making theoretical predictions challenging [68]. A Feynman diagram
of a short-distance D° — D° transition can be seen in Figure and for the long-

distance hadronic contribution in Figure |2.3]

Neutral meson mixing can be characterised by epxressing the mass eigenstates as

linear combinations of the flavour eigenstates:
[D12) =p|D% £q|D%) (2.35)

where p and q satisfy |p?|+ |¢°| = 1. The effective Hamiltonian describing D° mixing
is given by H = M —I" where M and I' and the Hermitian mass and decay matrices.

The eigenstates of this Hamiltonian are:
H |D172> - )\172 ‘D172> (236)

where the eigenvalues are A\; 5 = my o —il'12/2 and m; 5 and I'y 5 are the masses and
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decay widths respectively. The time evolution of the eigenstates is then given by:

|D12(t)) = e”42*| Dy 5(0))

Py (2.37)
=e M2 2 1| Dy 5(0))
We can introduce the mixing parameters x and y:
my — Mma I'h—T,
x T and y 5T (2.38)

where m = (my +mg2)/2 and I' = (I'; +I'2) /2 are the average mass and decay widths
respectively. The time evolution of the mass eigenstates in Equation can then

be written as:

|D172(t)> — efimtefgteﬂF(erix)gt |D172(0>>

= e12(t) |D12(0))

(2.39)

We use Equation to derive the time evolution of the flavour eigenstates which

are given by:

|D0(t)> _ e1(t) + ex(t) |Do>+q61( ) — ea(t) |D0>
) 2 2 (2.40)
|D0(t)> _ er(t) + eo(t |D0> —l— pei(t) — ex(t) |D0>

2 2

The time-dependent amplitudes for D° and D° decaying into a final state f, Af(t)
and A¢(t) are therefore defined as:

Ayt = (13 00) = (T2 ooy gt 202 oy
Asto) = (1] 00) = (02 oy g2 202l oy
(2.41)
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This can be rewritten as:

(2.42)

Ay (t) = 5 Ay 5 5 Ay
— Ze(t) <B + gA) + %eQ(t) (B - gA)

where the notation A = Ay and B = Ay is used. Substitute e, »(t) in Equation [2.39]
into the above Equation [2.42, The square of the time-dependent amplitude is then
given by:

| As(t) |2_%e—“ K| A2 %B |2> cos(zT't) — 2Im (AB* H ) sin(2T't)

+ (| AR+ ]%B |2) cosh(y't) — 2 Re (AB* Lﬂ *3 sinh(yFt)]

(2.43)

as well as a similar equation for ’/If (1) |2

Here A and B represent the amplitudes of a D° and D° respectively decaying into
some final state f. For a multi-body decay such as D® — K277~ the amplitudes
A and B depend on the multidimensional phase-space which in this case is defined
by the Dalitz variables m?(K%7™) and m?(K?7~); this is discussed in more detail in
Section [2.4] The time-dependent amplitude is a function of the amplitudes A and
B as well as the mixing parameters x and y. The neutral meson oscillations effect
the phase-space and decay-time distributions of this decay. Therefore the mixing
parameters z and y can be extracted from a time-dependent amplitude fit in the

Dalitz variables and decay-time of this decay.

As an analogous example, consider the two-body wrong-sign decay D° — K7,
Here there are two ways the decay can proceed; by direct DCS decay or by mixing
followed by CF decay. It is the interference between these processes that gives the
sensitivity to CP-violation. In order to extract the mixing parameters, one also

needs to measure the direct right-sign CF decay D° — K~7". At LHCb there is no
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way to measure the absolute value of the strong phase between the CF and DCS
decays; instead we measure ' and ¢/, the mixing parameters = and y rotated by this
unknown phase with respect to the true values. The three-body self-conjugate decay
D° — K2rTm~ is unique as it offers access to the direct wrong-sign DCS decay,
mixed followed by CF, and the right-sign CF decay in the same final state. Therefore
we can identify different regions of phase-space with right-sign and wrong-sign decays

which allows us direct access to the mixing parameters x and y.

2.3 CP-violation

CP-violation is the violation of CP-symmetry or the combination of charge
symmetry and parity symmetry. Under CP-symmetry, the laws of physics would be
the same if a particle was interchanged with its antiparticle (charge symmetry) and
its spatial coordinates are inverted (parity symmetry). CP-violation was discovered
in the kaon sector in 1964 [37] and in the beauty sector by Belle and BaBar in
2001 [16l [30]. Studies of CP-violation play an important role in cosmology to explain
the dominance of matter over antimatter in the universe, as well as in the study of
weak interactions in particle physics. In order to account for the inbalance of matter
and antimatter in the universe, the Sakharov conditions were proposed: baryon
number violation, charge symmetry and CP-symmetry violation, and interactions

out of thermal equalibrium [72].

In the SM, CP-violation is introduced through an irreducible complex phase in
the CKM mixing matrix. CP-violation is not allowed in the strong interaction. In
the lepton sector CP-violation can enter in the SM via the Pontecorvo-Maki-Naka-
gawa—Sakata matrix [70, [63]. However the amount of CP-violation allowed
in the SM is too small to account for the matter-antimatter asymmetry observed in
the universe. Therefore physics beyond the SM associated with large energy scales
(such as the energy scale of the early universe) are needed to explain the matter-
antimatter asymmetry observed in the universe. CP-violation can be introduced by
new particles or interactions, motivating searches and precision measurements at

high energy physics experiments such as the LHC.

Measurements of CP-violation have been performed in the kaon and beauty
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sectors [37), B1] but until 2019 CP-violation had not been discovered in charm [10].
Measurements of CP-violation in charm are complimentary to those in kaon and
beauty and provide a unique opportunity to measure CP-violation in particles
containing only up-type quarks. Theoretical predictions of CP-violation in the charm
sector are O(1073 — 10~1) [52], but due to low-energy strong interactions they are
difficult to compute reliably. Contributions of physics beyond the SM may alter
the size of CP-violation in charm, therefore making searches for CP-asymmetries a

potentially sensitive probe of new physics.

The CKM matrix can be written in terms of three rotation angles and a complex

phase:
—id
C12€13 512513 513€
— 6 id
Verm = | —s12C03 — C12503513€"°  —C12Co3 — S12523513€ 523C13 (2.44)
& )
512823 — C12C23513€" —C12523 — $12C23513€" C23C13

where s;; = sin6;; and ¢;; = cos 0;;, where CP-violation enters in the complex phase
0. The hierarchical structure of the CKM matrix also allows us to write it in terms

of the Wolfenstein parametrisation:

1—X%/2 A AN3(p —in)
Very = - 1—\%/2 AN? + O\ (2.45)
AN(1 —p—in) —AN 1

where the parameters A, A, p, n are all O(1). It can be seen that CP-violation only

enters in terms of O(A\3) hence it is small in the SM.

CP-violation can occur in the SM in three ways: CP-violation in decay (direct
CP-violation), CP-violation in mixing and CP-violation in the interference between
mixing and decay (indirect CP-violation). CP-violation in decay occurs when the

amplitude of a process is different to that from the CP-conjugate:

[(D° — f) #AT(D° - f) (2.46)
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or alternatively:

Afl # 145 (2.47)

This type of CP-violation can occur for any type of particle, including both charged
and neutral mesons and baryons. CP-violation in mixing occurs when the rate of

the D° mixing into a DY is different to that of the opposite process:
[(D° — D% #T(D° — D°) (2.48)

This occurs when |¢| # [p|. A D° meson can decay into a self-conjugate final state
f = f directly D° — f or by first mixing into a D° and then decaying, D° — D° — f.

Then CP-violation in the interference between mixing and decay occurs when:
N(D° — D% — f,t) AT(D° — D° — f,t) (2.49)

The decay paths can interfere with each other and the relative phases between the
two amplitudes is relevant. CP-violation in the interference between mixing and
decay is present for a non-vanishing phase:
qA;
¢ =arg (—) 7& 0 (250)
pAy
CP-violation in mixing and in the interference between mixing and decay are
therefore characterised by the parameters |q/p| and ¢. This can also be expressed
in an alternative formalism where the mixing parameters are different for D° and
DY and are expressed as z¢cp £ Az and yop = Ay. These parameters are measured

in previous model-independent analyses at LHCb including the bin-flip analysis [9].

The parameters are related to the CP-violation parameters |¢/p| and ¢ as follows:

e (I R () B

G () R () N
2 p q p q
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I S )

Conservation of CP-symmetry in mixing (|¢/p| = 1) and in the interference of

mixing and decay (¢ = 0) implies z¢cp = z, yop = y and Az = Ay = 0. CP-
violation in mixing and in the interference of mixing and decay may be referred
to as time-dependent CP-violation. CP-violation in decay may be measured by
performing a time-integrated amplitude fit separately on datasets where the flavour
of the neutral D meson at production was D° or D°. The complex coefficients of the
amplitudes may be compared, and in the case of CP-symmetry the amplitudes of

the DY — K27~ 7" and the charge conjugate would agree.

The observable Ay is frequently denoted as Ar and is measured in several LHCb
analyses [8]. The model-independent bin-flip method [44] introduces the parameters
xcop and Ax as defined above. This allows for a conveniently symmetric notation
and the parameters are optimally suited for use in measurements and combinations

of results.

Theoretical predictions of CP-violation in the charm sector have large uncer-
tainties due to contributions from QCD which are difficult to calculate precisely.
Although direct CP-violation in the charm sector has been discovered at LHCD,
indirect CP-violation in mixing or in the interference between mixing and decay has

yet to be discovered at the time of writing.

2.4 Amplitude Analysis

The term amplitude analysis refers to the study of a variety of scattering and
decay processes. This thesis focuses on the study of multi-body decays of particles
that decay via the weak interaction to short-lived resonances that in turn decay via
the strong force. The three-body decay D° — K9r"n~ can proceed through many
possible intermediate states such as K**, K** and p°. In order to perform such
analyses we need a model that encapsulates the various possible intermediate states
and their shapes and which has enough freedom to adapt to give the best description

of the data.
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The dynamics of a three-body decay D° — abc where D, a, b, ¢ are all pseu-
doscalar mesons, can be completely described by the Dalitz variables which are
a pair of squared invariant masses m?, and m?2.. In the absence of contributions
from intermediate resonances, the two-dimensional distribution of candidates would
be uniform over the Dalitz plane, within the physically allowed region dictated by
the masses of the four particles. Figure shows an example Dalitz plot with
the kinematic limits from momentum and energy conservation in the three-body
decay. Decay processes with higher-multiplicity final states, or final state particles
with nonzero spin, have substantially more Lorentz-invariant degrees of freedom. A
description of the complex amplitude variation across the phase space defined by
these degrees of freedom is known as an amplitude model [62]. Such models allow
the contributions of various intermediate resonances to be disentangled, providing a
full description of the decay process which can be used in CP-violation and mixing
studies. The amplitude model consists of the wrong-sign (DCS and mixed followed
by CF) processes such as D — K*Tn~ where K*T — K2n" and right-sign (CF)
processes such as D* — K*~ 7" where K*~ — K27, and singly-Cabibbo supressed
processes such as D° — K2p° where p° — 77—, Fitting the amplitude model to
data allows us to disentangle these processes; and it is the time evolution of these
processes which gives the sensitivity to mixing and CP-violation in mixing and the

interference between mixing and decay.

2.4.1 Isobar model

The isobar model is a widely used formalism for the construction of amplitude
models. In this formalism the three-body decay is modelled as a linear superposition
of quasi two-body amplitudes where the D° decays through intermediate resonances
r: D — (r — ab)c. The matrix elements for a three-body decay are expressed as the
sum of matrix elements of a quasi two-body decay through the intermediate resonance
r, each multiplied by a complex coefficient, which encodes relative differences in

amplitudes and phases, including also strong phase differences:

MKgWJWr* (mzw m?zc) = Z aTeiQSTMT(mzb? ch) (255)

T
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Figure 2.4: Example of a Dalitz plot showing the kinematic limits for a three-body
decay.

where a,e" is the complex amplitude for the resonance r and the contributions from
each intermediate state is given by:

Mo (migy,m) = BY (p, [pol, dpo) s (mly, me) T (miy) By (4, laol dy) - (2.56)

ac

where BY’ (p, |po|, dpo) and B%(q, |qo|, d,) are the Blatt-Weisskopf centrifugal barrier
factors for the production and decay, respectively, of the resonance r. p (¢) is the
momentum of ¢ (a or b) in the r rest frame and py (o) is the quantity using the mass
m,. as opposed to the reconstructed mass mg,. In this analysis, the Blatt-Weisskopf
effective radius is fixed to d, = 1.5 GeV~! for intermediate resonances and to dpo =
5.0 GeV~! for the DY meson. Finally, Q;(m2,, m?,) is the spin factor for a resonance
with spin J and 7, is the dynamical function describing the resonance r. The
phase-space dependence of the amplitude is contained in the spin factor as well as
the dynamical function 7)., where different parametrisations of 7, are discussed in
Chapter |8l which depend on the resonance in question. The model-dependence of the
analysis method enters through the choice of resonances contributing to the sum in

Equation [2.55| and the chosen parameterisation of M,..
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The Blatt-Weisskopf form factors are given by:

L=0:F9(zz2)=1

/142
—1: M — 0

where z = (| ¢ | d)? and 2o = (] qo | d)®. The spin factors are given by:

QO(mCZLb7mZC) =1

(mDO - m?)(mi - m?,)

Qy(m2, m? 2 2
( Mgy, M ) Mee — My — mZb
(m2%, —m2)(m? —m3)]*
Qg (m3,, m [ — mj, — —2= m2, : (2.58)
1 (m2, +m?)?
_g{ 2 2(mDo+m)+DomT
(mi +mj)?
[ +mp) +
mab

Resonances with spin J produce characteristic Dalitz plot distributions with
J nodes. The intermediate resonances can interfere with each other, creating
constructive and destructive regions in the Dalitz plot. Figure shows Dalitz plots
with different spin contributions: Figure shows the broad structure of the Kgm ™+
S-wave contribution, Figure shows a peaking structure of the K2r~ vector
resonance, Figure shows a K37 tensor resonance and Figure shows the
interference between two vector resonances. An amplitude model may also contain
non-resonant quasi-two-body components which are included in the model. A further
description of the fit model is given in Chapter |8| with the other parametrisations of

T, which are specifically used for this analysis.

In summary the self-conjugate three-body decay D° — K2nt7~ offers direct
access to the mixing parameters « and y as well as the CP-violation parameters |q/p|
and ¢. The amplitude of the decay can be described by the superposition of two-body
decays through intermediate resonances. The amplitude is described by the Dalitz

variables m?(Kor™) and m?(K27~). The time-dependence of the amplitude model
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Figure 2.5: Tlustrations of Dalitz plot distributions produced by resonances with
different spins; spin J = 0, 1,2 contributions and an interference between two vector
resonances are shown. The decay process is D® — Kor™n~ for illustrative purposes.
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gives sensitivity to mixing and CP-violation. Therefore the mixing and C'P-violation
parameters of interest can be extracted from a time and phase-space dependent fit of
the amplitude model to the Dalitz variables and decay-time of this decay using the
time-dependent formalism in Equation [2.43] The amplitudes of a D° and D° decaying
to the final state A and B are expressed in the formalism given in Equation [2.55]
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Detector

The data analysed in this measurement have been collected at the [LHCb|experiment

at the Large Hadron Collider (LHC)). The LHC is a proton-proton (pp) collider,

2571 and achieve centre-of-mass

which was designed to run at a luminosity of 1034 cm™
energies of 14 TeV for pp collisions. The particle accelerator is built in a tunnel of
27 km circumference built ~100m underground at the Centre for European Nuclear
Research near the French-Swiss border. At the LHC, the ATLAS and
CMS experiments are general-purpose detectors focusing particularly on precision
tests of the Standard Model, Higgs physics and direct new physics searches whereas
ALICE aims at the investigation of the quark-gluon plasma. The LHCb detector is a
forward-arm detector which is primarily designed for the study of beauty and charm

decays and with a physics program focusing on measurements of CP-violation and

rare decays.

3.1 The Large Hadron Collider

The LHC accelerator complex consists of a succession of machines that accelerate
particles to increasingly higher energies. The source of protons for the beam is
hydrogen gas where the atoms are stripped of the electrons by an electric field.
LINAC 2 accelerates the protons to energies of 50 MeV before they are injected

into the Proton Synchrotron Booster. The injection occurs every 100 ms providing
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The CERN accelerator complex
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Figure 3.1: Hlustration of the CERN accelerator complex displaying the accelerators
and detectors at CERN and the LHC [65].

bunches of ~ 10 protons. Here the protons are accelerated to energies of 1.4 GeV.
The beam is then injected into the Proton Synchrotron which accelerates the protons
to 25 GeV and the Super Proton Synchrotron (SPS|) with a circumference of 7 km.
The SPS accelerates the beam to 450 GeV, which is the injection energy for the LHC.
The bunch spacing of the proton bunches is now 25 ns. Before injection into the
LHC the particles are split into two beams travelling in opposite directions. The
beams collide at four interaction points where the four experiments are situated;
ATLAS, CMS, ALICE and LHCb. An illustration of the CERN accelerator complex

is shown in Figure 3.1

In order to maximise the luminosity delivered to the experiments, the LHC
machine operates in a sequence of fills during which pp bunches circulate for several

hours (typically ~ 10 hours) and generate collisions. During this time, the bunch
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intensities drop due to beam-beam interactions and other effects; the beams are then

dumped before a new fill is started.

Instantaneous luminosity corresponds to the potential number of collisions per
second. The LHC is designed to run at an instantaneous luminosity of 103 em=2s*.
During the Run 2 data-taking period the machine and beam performance allowed

257! which is around

nearly every fill to run with a peak luminosity of ~ 2 x 10%* cm™
twice the design luminosity. Integrated luminosity refers to the total luminosity
collected over a given period of time. The total integrated luminosity since the
beginning of LHC operation in 2010 and until the end of Run 2 in 2018 is 189.3 fb™*
for ATLAS and CMS, of which 160 fb~! were accumulated during Run 2. The
higher the luminosity, the more rare physics events are observed; so one may want to
maximise this quantity when designing a particle accelerator. However, in the case of
very high luminosity the high event rate per bunch crossing can make events difficult
for the detectors to resolve individual events. Therefore, the LHCb detector does
not run at the LHC peak luminosity but aims for a lower number of collisions per
bunch crossing through a process called luminosity levelling which will be discussed
in Section The luminous region is the region in space across which the collisions
are distributed, and this also needs to be optimised to the acceptance of the detector.

The luminous region can change between fills due to the crossing angle of the beams

and other beam parameters and configurations.

The LHCD uses a right-handed cartesian coordinate system and the convention is
as follows: the z axis is along the beam line as it passes through the detector, the y
axis is perpendicular to the z axis in the vertical plane where the positive direction
is upwards and the x axis is perpendicular in the horizontal plane where the positive
direction points towards the centre of the LHC ring. Pseudorapidity is the spatial

coordinate describing the angle of a particle relative to the beam axis. It is defined

— {tan (g)} (3.)

where 6 is the angle subtended with respect to the positive direction of the beam

as:

axis, in the case of the LHC coordinate system this is the positive z direction. The

LHCb detector has the pseudorapidity range 1.9 < n < 4.9.
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Figure 3.2: Coordinate system used in this thesis; pseudorapidity 7 is shown in the
polar coordinates with the corresponding values of 6, z is along the beam axis and
the (z,y) plane is transverse to the beam.

The LHC operated at a centre-of-mass energy of 7 TeV for pp collisions in 2010-
2011 and 8 TeV in 2012 in the Run 1 data-taking period; the centre-of-mass energy
was 13 TeV in 2015-2018 (Run 2 data-taking period). The LHC is also able to collide
heavy nuclei such as lead (Pb) either in ion-ion collisions or in proton-ion collisions.
This allows studies of the quark-gluon plasma, a state of matter in which quarks and
gluons exist in thermal and chemical equilibrium. This is the primary purpose of the
ALICE experiment but the other LHC experiments, ATLAS, CMS and LHCb now

each have a heavy ion program.

3.2 The LHCDb Detector

The LHCD detector [20] is a forward-arm detector situated at one of the interaction
points on the LHC ring. The detector was specifically designed for the study of
hadrons containing b and ¢ quarks and focuses on measurements of CP-violation
and rare decays such as B? — pTu~ [4]. The LHCD physics program has since
expanded to include measurements of lepton universality [, [12], and searches for new
conventional and exotic hadron states (for example the pentaquark discovery [1]). In

addition LHCb has also performed BSM (beyond SM) searches for dark photons [6]
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Figure 3.3: Angular distribution of bb production at /s = 14 TeV in the LHCb
detector, where the detector acceptance is shown by the red shaded area )

and studies of QCD and electroweak interactions such as measurements of the forward

production of vector bosons [2].

When bb pairs are produced at the LHC, the primary production method is
gluon-gluon fusion, which occurs when two gluons collide in a pp interaction. The
gluons have highly asymmetric momenta and in gluon-gluon fusion at the LHC,
the most likely occurrence is that one gluon carries the majority of the momentum.
Hence the bb pair is boosted in the direction of the gluon momentum, which is along
one of the two beam directions. The LHCb acceptance is in the psuedorapidity range
2 < 1 < 5, motivated by the fact that bb pairs are produced at angles close to the
beam pipe. Figure shows the angular distribution of the production of bb at
LHCb where the LHCb acceptance is shown by the red shaded area. This shows the
highly forward and correlated production of the bb pair. The acceptance in terms of

the angle 6 is 10 < 6 < 300 (250) mrad in the bending (non-bending) plane.

The LHCb detector is designed to collect data at a luminosity of £L = 2 x

1032 cm~2s7!. In practice the LHCb detector exceeded this design goal, operating

7



CHAPTER 3. DETECTOR
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Figure 3.4: LHCb recorded luminosity in pp collisions from 2012-2018 [26].

at 5 x 103? em~2s7! for much of Run 2. The detector collected data during the
Run 1 data-taking period at centre-of-mass energies of 7 TeV in 2010 and 2011 and
8 TeV in 2012 corresponding to a total integrated luminosity of 3 fb~!. The Run 2
data-taking period was between 2015 and 2018 and collected data at a centre-of-mass
energy of 13 TeV, corresponding to a total integrated luminosity of 6.1 fb~1. The
recorded luminosity at the LHCb detector is shown in Figure [3.4] the total recorded
luminosity is 9.1 fb=!. The design luminosity of LHCb is significantly lower than the
general purpose detectors ATLAS and CMS; this is in order to prevent ageing of the
detectors and to keep the number of pp interactions per bunch crossing close to one.
Through the procedure of luminosity levelling, the beams are not focused as strongly
as for ATLAS and CMS and the transverse beam overlap is adjusted by changing

the offset between the proton beams.

A cross section of the LHCb detector is shown in Figure [3.5] The interaction
point is located at the centre of the Vertex Locator , a silicon strip detector
providing high precision measurements of the track and vertex coordinates. The
Ring Imaging Cherenkov detectors provide particle identification for pions,
kaons and protons. The tracking system consists of the Tracker Turicenis ,
located upstream from the magnet and tracking stations T1-T3, located downstream
from the magnet. The tracking stations comprise two types of technology split into
inner and outer regions. The Silicon Tracker (ST) consists of the inner regions of

the tracking stations T1-T3 closest to the beam line (inner tracker , along with
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Figure 3.5: Cross-section of the LHCb detector [26].

the TT, and comprises silicon microstrip detectors. The signals in a silicon strip
detector are formed when charged particles liberate electrons and holes within the
semiconducting silicon. These charges drift under the influence of a bias voltage to
be collected at the sensor surface as currents. The silicon is segmented into strips so
that the signals can be identified with a particular region of the detector, where the
size of the strip is dictated by the physics performance requirements and the number
of channels which can be accommodated within resource limits. The Outer Tracker
consists of the outer regions of the tracking stations T1-T3. The OT consists
of straw tube drift chambers and measure the track coordinates of the particles. The
calorimeter system consists of the electromagnetic calorimeter and hadronic
calorimeter and provides particle identification and energy measurements
of electrons, photons and hadrons. Finally the muon system (M1-M5) provides

identification of muons.
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3.2.1 Vertex Locator

The VELO lies closest to the beam line; the information from the VELO is used
to reconstruct the trajectories of charged particles produced in the initial pp collision.
Using the information from the VELO we can identify and locate both the primary
vertices at the pp interaction point in the bunch crossing, and the secondary
vertices caused by the decays of long-lived particles such as those containing b quarks.
The displaced secondary vertex is a distinctive feature of b and c-hadron decays and
is used to trigger on events in the high level trigger (discussed in Section . For
a PV with 25 tracks, the vertex position is measured with a precision of 13 pm in

the transverse plane and with 71 um along the z axis.

Silicon detectors are widely used in tracking systems in particle physics to measure
the position of charged particles. Track reconstruction software can then deduce
several parameters including the flight path, the vertex of the interaction and the
secondary vertex of particles with long lifetimes such as a hadron containing a b-quark.
The VELO consists of 21 silicon modules which are placed close to the pp interaction
point. The silicon microstrip modules contain R and ¢ sensors where R measures the
radial distance to the beam axis and ¢ measures the azimuthal coordinate around
the beam. Charged particles produced by the pp collisions traverse the silicon and
generate electron-hole pairs; the electrons and holes drift under the influence of a
bias voltage to be collected at the sensor surface. The electrons and holes produce
currents at the surface and are detected using application specific electronics. These
‘hits” in the VELO modules are used in track reconstruction software in the high level

trigger to deduce the track parameters of a charged particle traversing the detector.

During data-taking the silicon modules are at a distance of 7 mm to the beam
line (the closest active part of the module is 8.2 mm from the beam line); they then
retract to a distance of 35 mm, preventing damage to the VELO during beam fill and
beam dump. When the VELO closes it does so in such a way to ensure the detector
is centred in the transverse plane on the luminous region, which differs between fills;

this allows a measurement of the luminous region in real time.

The design of the VELO is optimised for the LHCb physics program and detector
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Figure 3.6: A schematic of the LHCDb vertex locator; R and ¢ sensors and dimensions
are shown in the top and the positions of the modules with respect to the beam axis
are shown in the bottom [24].

performance in several ways. Firstly, it is designed to cover the forward direction and
tracks in LHCb acceptance. The VELO also provides excellent vertex and impact
parameter ([P)) resolution which is crucial to many LHCb physics analyses. The
impact parameter is defined as the distance of closest approach between a track
and the PV. The IP is measured with a resolution of (15 + 29/pr) um, where pr
is expressed in GeV/c. In addition the reconstruction of the PV and the displaced
secondary decay vertex of is used in the high level trigger which reduces the event
rate from a 1 MHz event rate to a few kHz. The decay time of a particle is measured
from the flight distance in the VELO, which provides a resolution of ~50 fs and is

crucial to many LHCD analyses.

3.2.2 Tracking

The primary purpose of the tracking system is to allow the trajectories of charged
particles to be measured as they pass through the LHCb detector. Charged particle

trajectories are bent by the magnetic field from the large dipole magnet of field
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strength 4 Tm located between the T'T and the T1-T3 tracking stations. This allows
the tracking system to determine the curvature and hence momentum of the particle.
During data taking, the magnet polarity is periodically reversed in two configurations
in order to account for detection asymmetries: magnet up where the magnetic field
is in the positive y direction and magnet down where the field is in the negative y
direction. This mitigates the majority of detector asymmetries. The information
from the tracking system can also be matched to the corresponding signals in the
VELO and other subdetectors to determine measurements of the track trajectory
and parameters. The tracking system provides a measurement of the momentum of

charged particles with a relative uncertainty that varies from 0.5% at low momentum

to 1.0% at 200 GeV/c.

Silicon Tracker

The silicon tracker consists of the T'T and the Inner Tracker. The TT consists of
500 pm thick silicon microstrip detectors with a strip pitch of ~ 200 um. The TT
is a planar tracking station that is located upstream of the LHCb dipole magnet
and covers the full acceptance of the experiment. The TT consists of four detection
layers, where each layer is rotated in the x direction to overlap to avoid acceptance
gaps and maximise spatial resolution. Each layer consists of 30 ‘half-modules’ which
in turn consist of seven silicon strip sensors, where a higher occupancy is accounted
for closer to the beam line. Each TT sensor has 512 readout strips, and a spatial
resolution of 50 wm is achieved. A schematic diagram of the TT can be seen in
Figure[3.7 To account for a higher occupancy near the beam line, the different tones

of brown in the figure indicate a difference in readout systems.

The IT covers a cross shaped region in the inner region of the tracking stations
(T1-T3) downstream of the magnet and close to the beam pipe. The IT consists of
two single-sensor modules of 320 um thickness and two two-sensor modules with
a thickness of 410 um. This can be seen in Figure by the yellow cross in the
centre of the layer; the single-sensor modules are in the vertical direction and the
two-sensor modules are in the horizontal direction. The cross shape is optimised

for the stretching of the highest occupancy region due to the bending of charged
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Figure 3.7: Layout of the Tracker Turicensis; the sensor placement is indicated by
the different shades of brown. The Inner Tracker is indicated by the sensors in

yellow [60].

particles by the magnet. The IT consists of four detection layers which overlap in
the z direction to minimise acceptance gaps and improve the alignment. The sensors

consists of 384 microstrips and have a strip pitch of 198 pum.

Outer Tracker

The Outer Tracker (OT) consists of the outer sections of the tracking stations T1-T3.
It consists of straw-tube drift chambers with 5 mm cell diameter and filled with a
mixture of argon and carbon dioxide. A charged particle passes through the gas
tubes, ionising the gas molecules and producing elections. The position of the charged
particle’s trajectory can be determined from the drift time of the electron to the

anode wire in the centre of each tube.

Each tracker is comprised of four layers, which are rotated in the same configura-
tion as the TT. The outer boundaries of the OT correspond to a 300 mrad acceptance
horizontally, and a 250 mrad acceptance vertically. Each tracking station is built

from 72 modules; each module contains two layers of drift tubes. The OT has a drift
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Figure 3.8: Layout of the LHCb Outer Tracker system on the right and a schematic
diagram of one layer including dimensions in cm on the left.

time resolution of 2.6 ns and a spatial drift resolution of 179 pm. A diagram of the

OT system can be seen in Figure (3.8

3.2.3 Ring Imaging Cherenkov Detectors

The RICH detectors provide particle identification of kaons, pions and protons
with momenta 2 - 100 GeV/c. The RICH detectors consist of two detectors; RICH1
upstream from the magnet and RICH2 downstream from the magnet. RICH1 has
good performance in the low momentum range 1 - 60 GeV /c whereas RICH2 gives
good separation of particles with higher momenta. RICH1 uses C4F;y gas and
RICH2 uses CF,4. During Run 1 RICHI also included an aerogel radiator; this was
removed for Run 2 as its ability to provide particle identification for particles with
low momentum was compromised by the low number of photons in RICH1 in such a
high track multiplicity environment. Removing it also contributed significantly to
the speed of the RICH reconstruction as it reduced by more than half the number of
photon candidates (combinations of photon-detector hits with tracks) for which a

Cherenkov angle is calculated [67].

When a charged particle travels through a medium faster than the speed of light
in that medium, Cherenkov radiation is emitted. Cherenkov radiation is emitted

in a cone shape with opening angle . with respect to the direction of the particles
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Cherenkov Angle (rads)

102
Momentum (GeV/c)

Figure 3.9: Reconstructed Cherenkov angle as a function of track momentum in
RICH1 where the mass hypotheses for different particles are indicated.

momentum:

1
0, — — 3.2
cos " (3.2)

where n is the refractive index of the material and 5 = v/c and v is the velocity of
the particle. If the momentum of the particle is known, this provides a measurement
of the mass of the particle. The mass hypotheses of different particles can be seen in

Figure in the plot of Cherenkov angle against the particle’s momentum.

Through a combination of spherical and flat mirrors, the Cherenkov light is focused
and reflected out of the acceptance onto an array of Hybrid Photon Detectors (HPD)).
To reduce the amount of scattering, RICH1 uses four lightweight spherical mirrors
constructed from a carbon-fibre reinforced polymer. An incident Cherenkov photon
releases a photoelectron from the conversion in a photocathode. The photoelectron
is then accelerated by a high voltage field onto a silicon detector. The Cherenkov
angle is reconstructed from the impact points of the Cherenkov photons on the HPDs.
The resolution of the Cherenkov angle is determined to be 1.6 mrad for C4F;y and
0.7 mrad for CFy [45]. A schematic diagram of the RICH detectors can be seen in
Figure |3.10
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Figure 3.10: Schematic diagrams of the RICH1 on the left and RICH2 on the right
including the dimensions of the detectors .

3.2.4 Calorimeter system

The LHCD calorimetry system consists of: the Pre-Shower , the Scintillator
Pad Detector (SPDJ), the Electromagnetic Calorimeter (ECAL) and the Hadronic
Calorimeter (HCAL). The system is designed to stop most types of particles (electrons,
photons, neutrons and other hadrons) and measure their energy loss in the process as
they come to a halt. This provides particle identification for electrons and photons
in the ECAL and protons, neutrons and other hadrons in the HCAL. The SPD
determines whether particles hitting the calorimeter system are charged or neutral,
while the PS indicates the electromagnetic character of the particle. The LHCb
calorimeters are sampling calorimeters; they only measure a certain fraction of the
energy deposited, which then needs to be calibrated to obtain the full energy. A
sampling calorimeter typically has interleaved layers of a very dense material (for
example lead or tungsten) designed to stop particles and initiate electromagnetic or

hadronic showers and the ‘active’ material where the energy deposits are measured.
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The SPD and PS consist of scintillating pads with a thickness of 15 mm, in-
terspaced with a lead converter. Light is collected using wavelength-shifting fibres
. The ends of the fibre are used to transmit the light to photomultipliers
located at the edge of the detector. The SPD and PS are used, along with the ECAL,

to trigger on electrons, photons and neutral pions.

The ECAL consists of alternating scintillating tiles and lead plates. The cell
size varies from 4 X 4 cm in the inner part of the detector, to 6 x 6 cm and 12
x 12 c¢m in the middle and outer parts. An electromagnetic shower is produced
in the 4 mm thick scintillation material and the 2 mm thick lead layer stops the
particle since the kinetic energy is converted to other forms. Similarly to the SPD
and PS the light is generated in the scintillation pads which are read out by the
WLS fibres. The photons can then be read out by the photomultipliers. The overall
detector dimensions are 7.76 x 6.30 m, covering an acceptance of 25 - 300 mrad in

the horizontal plane and 25 - 250 mrad in the vertical.

The HCAL provides measurements of the position and energy of protons, neutrons
and other hadrons. The HCAL is positioned behind the ECAL and consists of thin
iron plates interspaced with scintillating tiles arranged parallel to the beam pipe. The
cell dimensions of the calorimeter are 13 x 13 cm for the inner part and 26 x 26 cm
for the outer. The scintillating tiles are 3 mm thick and are interspaced with 1 cm
thick iron absorber. Similarly to the other calorimeter systems, the light is collected
by optical fibres and read out using photomultipliers. The HCAL is not used for
most LHCb analyses, but it plays a crucial role in the hardware trigger, providing
information in a very short time on the level of hadronic activity in a bunch crossing
(the ‘LOHadron’ trigger). This subdetector will be completely removed for Run 3,
since the hardware trigger will no longer be used. A diagram of the calorimetery

system can be seen in Figure [3.11]

3.2.5 Muon system

The muon system provides particle identification and triggering of muons; the
information is used in the Level-0 muon triggers as well as in the high-level trigger

and offline analysis. Due to the fact that muons are heavy particles and lose less
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Figure 3.11: A diagram of the LHCDb calorimeter system including the PS, SPD,
ECAL and HCAL [18].

energy due to Bremsstrahlung compared to electrons, they are likely to travel through
the full detector; this motivates the position of the muon stations at the end of the
detector. The muon system is comprised of five stations: M1 is situated before the
calorimeter system and M2-M5 are placed after. The muon system has an acceptance
of £300 mrad in the horizontal axis and £250 mrad in the vertical. Each station is
divided into four regions, R1 to R4, with increasing distance from the beam axis.
The granularity increases as the regions are further removed from the beam line,
such that the occupancy along the detector is comparable. The penetrating power of
muons increases with their momentum, so the number of hits will depend on the
muon kinematics. Muons of momenta 3 < p < 6 GeV/c are expected to provide hits
in M2 and M3; muons of momenta 6 < p < 10 GeV/c, are expected to produce hits
in M2, M3 and either M4 or M5. Muons with a momentum larger than 10 GeV /c

should provide hits in all muon stations [45]. A diagram of the muon system can be

seen in Figure [3.12]
The muon system contains multi-wire proportional chambers (MWPC)) filled
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Figure 3.12: The LHCb muon system consisting of muon stations M1-M5 split into
regions R1-R4 [39].

with a gas mixture of carbon dioxide, argon and CF,. The muon traverses through
the detector and ionizes the gas producing electrons; the electrons are collected on
a tungsten wire of diameter 30 pm. A drift time resolution of 5 ns is achieved [45].
In the region closest to the beam line in M1, 12 Gas Electron Multiplier
chambers are used which were chosen since they are more radiation-hard. The GEM
chambers consist of a cathode, and electrode and three GEM foils, and is filled with
the same gases as in the MWPCs. A drift time resolution of 3 ns is achieved in the

GEMs.

3.2.6 The LHCb Trigger

At the LHC the proton bunch crossing rate is 40 MHz; the LHCD trigger system
is designed to reduce the data rate to 5 kHz which can be saved to storage for offline
analysis [11]. The trigger system consists of the Level-0 (L0) hardware trigger and
two high-level software triggers, HLT1 and HLT2. This can be seen in the diagram
in Figure |3.13]

The LO trigger reduces the rate of events considered for further processing from

the pp bunch crossing rate of 40 MHz to 1 MHz using real-time information from
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Figure 3.13: LHCDb trigger system for the Run 2 data taking period on the left and
Run 3 on the right [59].

( Full offline-like event selection, mixture]

the VELO, calorimeter and muon systems. The LO uses signatures of high py tracks
and high energy calorimeter deposits to identify potential heavy flavour events. In
addition, it uses two dedicated silicon layers of the VELO to perform a simplified

vertex reconstruction, which allows events with multiple pp interactions to be rejected.

The software trigger is run on a [CPU| farm. HLT1 performs a partial
reconstruction using information from the tracking stations and identifies tracks of
pr > 500 MeV. The information from the tracking system is also used to identify
events with a high TP which is a signature of particles from b and c-hadron decays.
The trigger also uses the output of multivariate algorithms to classify events with
one or two tracks which are consistent with coming from a heavy and long-lived
hadron. The information from the muon system is used to select single and dimuon

events. This further reduces the readout rate to 100 kHz.

The second stage HLT2 performs a full event reconstruction using information
from the entire detector. All charged tracks are reconstructed and particle identi-

fication information is available. For example reconstructed displaced vertices are
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used as a signature of b hadron decays. The HLT2 consists of a mixture of inclusive
and exclusive triggers and results in an output rate of 12.5 kHz which is sent to
storage for offline analysis. Inclusive triggers select events with resonances such as
J/1 which can be used for calibration. Exclusive triggers use information such as
the mass, vertex quality and separation for a B candidate to provide a high efficiency

for fully reconstructed B decays.

Before HLT?2 is run, a real-time calibration and alignment takes place in which
time the data is buffered to disk while waiting for them to become available. The
tracking detectors including the tracking system and the VELO are aligned using a
Kalman filter. In addition the RICH detectors are aligned at every LHC fill and the
calorimeters are calibrated in order to counteract changes and ageing of the detector

material.

In Run 3 we will need to achieve the same reconstruction performance with a
harsher environment and increased pile-up. This will be achieved by recording all
bunch crossings with a fully software-based trigger. The hardware (L0) trigger will
be completely removed. The HLT1 reconstruction will be run on Graphics Processing
Units (GPUs), including partial and fast reconstruction and selections. The difference

between the trigger schemes in Run 2 and Run 3 is seen in Figure |3.13]
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Analysis Method

The mixing parameters x and y and the CP-violation parameters |¢/p| and ¢
(alternatively defined in terms of Az and Ay) can be extracted from a time and phase-
space dependent fit to the Dalitz variables and decay time of the D® — K2nTm~
decay. The time-dependent amplitudes of a neutral D meson decaying to some final

state f are given by the following, repeated from Equation [2.42}

e1(t) + ea(t)

Ap(t) = (fIH|D(1) = At A (4.1)
Aty = (1D = AT g SM& (4.2)

where A; and A; are time and phase-space dependent amplitudes and

e12(t) = e imbe= ateFtin) 3t (4.3)

Since A; and A are functions of the phase space m?(K3n*) and m?(K9m~), the
amplitude dependence on decay time and phase space is directly influenced by neutral
meson oscillations and matter-antimatter asymmetries. Thus the mixing and CP-
violation parameters can be extracted from the time and phase-space dependent fit to

data. The mixing parameters are given as: x = (m; —msy)/I" and y = (I'y — T'9) /(21)
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Figure 4.1: Dalitz plot of the D° — K2nTn~ decay illustrating the intermediate
resonances and their interferences.

where x is the mass difference between the mass eigenstates of the neutral D meson

and y is the width difference.

The phase-space distribution of the D° — Kr ™7~ decay is modelled by express-
ing the decay as the sum of intermediate resonances and their interferences. The
neutral D meson decays into one stable final state particle and a resonance followed
by the decay of the resonance into the other two final state particles. The decay
amplitude is then modelled by the resonant and non-resonant contributions and their
interferences across the phase-space spanned by the Dalitz variables m? (K27 ") and
m?(K2r~). Due to the different masses and widths of the resonances, they manifest
themselves in different phase-space regions. Scalar resonances appear as a band in
the Dalitz plot whereas vector resonances exhibit one node and tensor resonances
show two nodes as can be seen in Figure and Figure [2.4, The amplitudes at a

given point in phase-space are given by:

A; = A(m*(Kon ), m*(K3n™)) = Z e Ap(m?(K97%), m*(K%77)) (4.4)

Ay = Am? (K9, m? (K9r)) = 3 6 A, (m?(K9r), m*(K%r))  (45)

r
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where the sum is evaluated over all intermediate resonances r» with complex amplitude

A, contributing to the decay with complex coefficients c,.

If the decays D° — f and D° — f are CP-symmetric, in the absence of mixing
then A(m?(K27%), m?(Kn™)) = A(m?*(K%7~), m?(Kr*)). As such, the Dalitz
coordinates are defined such that the D° and D° phase space is mirrored so that
these two samples can be simultaneously visualised and compared. This leads to
the definition of the Dalitz variables in terms of the final state particles and the D°
flavour: m2, = m?(K3n") and m?; = m?(K27~) for D° and m?, = m*(K37~) and
m3, = m?(K2%r") for D% in both cases m2, = m?(7+7~). Then using this definition

we obtain A(m2,, m2,;) = A(m2,, m2,) under CP-symmetry.

The parameters of interest, the mixing parameters z and y and CP-violation
parameters |¢/p| and ¢, can be extracted from a fit in D° decay-time and the
Dalitz variables to data; this is hereby referred to as the mixing fit. The amplitude
model describes the amplitude of the D° — K277~ decay as a superposition
of intermediate resonances and their interferences. There is no way, a priori, to
know which resonances enter the model and their shapes, which have associated
uncertainties. This requires a data-driven treatment whereby the state-of-the-art
models from previous analyses are used as starting points, but the final model
is determined from the LHCb data itself. The preliminary model is taken from
Ref. [20] from the Belle and BaBar collaborations. In addition to narrow (Breit-
Wigner) resonances for L=1 (P-wave) and L=2 (D-wave) resonances, there can
be non-resonant L=0 (S-wave) components. These are modelled using data-driven
parameterisations based on previous scattering experiments, as described in Chapter
B The parameters of the fit are the real and imaginary components of the amplitudes
of the resonances, the masses and widths, the S-wave components and the mixing and
CP-violation parameters x, y, |¢/p| and ¢. The masses and widths of the resonances
and the S-wave shape parameters are fixed from initial time-integrated fit studies as
discussed in Chapter |8/ or to the world averages in the case of some of the masses
and widths. The fit can be run with the assumption of no CP-violation in which
the CP-violation parameters are fixed to |¢/p| = 1 and ¢ = 0, or with CP-violation

allowed in which case they are allowed to float. The time-dependent amplitude fit is
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developed and ran using the GooFit framework [73], a massively parallel maximum
likelihood fitting framework which allows time-dependent amplitude fits to be ran

on GPUs.

As well as theoretical knowledge of the amplitude model, there are several
experimental effects such as acceptance and detector resolution, as well as background
contamination which need to be accounted for in the mixing fit. For example, the
detector geometry and reconstruction and event selection can distort the kinematic
distributions of the final state particles, leading to a non-uniform acceptance across
the Dalitz plane of the decay. There are also known variations in acceptance as a
function of decay-time as well as a finite decay-time and phase-space resolution. In
addition there is a non-negligible amount of combinatorial background remaining
after the event selection, which contaminates the sample and must be modelled in
the mixing fit. Out ability to tag the initial flavour of the neutral D meson as a D°
or D is also imperfect in reality. The rest of this chapter briefly describes these

experimental features, which are covered in more detail in Chapter [7}

The data used in this analysis were taken during the Run 2 data-taking period
in years 2016-2018. This analysis uses D mesons which originate from semi-leptonic
B meson decays and distinguishes between two decay chains; single-tagged and

double-tagged:

e B— D%— Kgrntm )u 1,X (single-tagged)

e B— D" (= D°(— Kintn )nt)u ,X (double-tagged).

This is an inclusive selection in which if there are additional particles in the decay,
X, we still collect it as signal. The distinction between the single and double-tagged
decay chains is made since the additional information added by the pion from the
D*(2010)* decay can be exploited to have a cleaner sample with less background.
The initial flavour of the neutral D meson is tagged by the charge of the muon in the
single-tagged sample and the charge of the so-called ‘soft pion’ in the double-tagged
sample. It is possible that the D° meson is assigned the wrong flavour due to the
B — DupX decay being reconstructed with a muon with the wrong charge. This can

happen when the D? is paired with a random muon with the wrong charge. For the
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double-tagged case, the charge of the soft pion is used to tag the initial flavour of
the D° but for the single-tagged case, the D° would be assigned the wrong flavour.
The mistagged candidates would have the Dalitz coordinates m2, and m?, swapped
and the decay time can be mismeasured. It is therefore necessary to determine the
mistag fraction by use of a control sample so this can be accounted for in the final
amplitude fit. This can be done by exploiting the two-body decay D° — K7 and is

discussed in more detail in Section [8.6]

In addition the data are split into subsamples by K2 type: K5 (LL) or K2 (DD)
where L and D refer to long and downstream tracks. The K32 is reconstructed through
its decay to two pions K3 — m7n~. The K2 (LL) type refers to K3 which decay
within the VELO acceptances such that both pions leave tracks in the VELO and
tracking system. For K2 (DD) candidates, the decay occurs outside the VELO and
the two pions only leave hits in the tracking stations. Note that it is possible to
reconstruct K3 (LD) decays, where only one pion leaves hits in the VELO. However,
these are dominated by background and not used in this analysis. Due to the long
lifetime of the Kg, (8.9544+0.004)x 107! s roughly a third of K2 reconstructed in
the LHCb detector decay inside the VELO acceptance. A schematic of the LHCb
tracking system with the five different types of track categories is shown in Figure
The different K2 types have different kinematics and are subject to different
detector effects; they are therefore considered as separate subsamples for the fit. In
particular the K3 (LL) has better momentum resolution so the two types are subject

to different selection requirements.

The data used in this analysis are selected as follows; events are selected from
those which have passed the LHCb trigger system, a loose offline preselection called
stripping is then applied to these events. Specific trigger requirements and tighter
offline preselection cuts are then applied before performing a multivariate analysis
to further suppress combinatorial background. The distinction between signal
and background used in the multivariate analysis is achieved by using so-called
sWeights [69] from data, calculated from a fit to the D mass for the single-tagged
sample and dm = m(D*) — m(D°) for the double-tagged sample. The sWeights

are calculated using the sPlot technique [69] which can statistically disentangle the
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Figure 4.2: Schematic layout of the LHCDb tracking system with different track types:
VELO, Upstream, Long, Downstream and T tracks are shown. UT refers to the
Upper Tracker also known as the T'T [75].

signal and background distributions given a discriminating variable (this will be
discussed in more detail in Section . Finally multiple candidates are removed
and the double-tagged events are removed from the single-tagged samples. The data

selection is discussed in detail in Chapter [5]

In the mixing fit, the background distribution for the D° decay-time and Dalitz
variables is derived from a data-driven approach. The background distribution is
obtained by extracting the sWeights using a similar approach as described above,
but after all selection criteria have been applied. By extracting the per-candidate
sWeights, the data can be split into signal and background distributions, which are
used as inputs to the amplitude fit model. A per-event signal probability is derived
from the m(D°) and dm mass fits; this is used as an input in the amplitude fit in
order to assign the appropriate combination of signal and background PDF for each

candidate.

The detector’s forward geometry leads to a limited angular acceptance and the
design of the detector and the applied selection criteria lead to a limited acceptance
for characteristics such as particle momenta or decay times. The detector and

reconstruction effects can lead to a non-uniform acceptance in phase-space and
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decay-time. This is accounted for in the mixing fit model by deriving the phase-space
and decay-time acceptance from simulation. The simulation has imperfect agreement
with data; it is therefore reweighted in certain kinematic variables in order to provide
a better description of data. The simulated samples and the kinematic reweighting
are discussed in detail in Chapter [ In addition we know that the detector has some
finite decay-time resolution. This is also derived from simulation and accounted for
in the mixing fit model. In addition realistic toy pseudo-experiments are generated
in order to asses the bias and coverage of the mixing fit, and to provide information

for assessing systematic uncertainties on the reported parameter measurements.

In summary, the signal amplitude model is built from resonant and non-resonant
contributions and their interferences. The background model is derived from a data-
driven approach and the signal probabilities are derived from data and assigned as a
per-event weight in the fit. The phase-space resolution and decay-time acceptance
and resolution are derived from simulation and included in the fit model. The inputs

required for the mixing fit are as follows:

e The amplitude model consisting of resonant and non-resonant components and
their shapes (Chapter [g)),

e Per-event signal and background probabilities which are taken from the D°
(0m) fits for single-tagged (double-tagged) candidates (Chapter [3)),

o Background distributions for the Dalitz variables and decay time, derived
using a data-driven approach using background sWeights from the mass fits
(Chapter [5)),

o Description of the phase-space and decay-time acceptance, derived from simu-
lation (Chapter [7)),

« The decay-time resolution also derived from simulation (Chapter [7)),

o The mistag fraction of wrongly tagged muons derived from D° — K7 decays

(Chapter [3)).

The parameters of interest  and y (and Ax and Ay for the CP-violation allowed
fit) are extracted from an unbinned maximum likelihood fit in D° decay-time and

Dalitz variables to data.
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CHAPTER 5

Data Selection

The data used in this analysis were collected at the LHCb detector during the Run 2
data-taking period. The D° candidates used in this analysis are from semi-leptonic B
meson decays where the B meson is produced in the initial pp interaction and decays
to a D° via the decay channels: B — D%~ X (single-tagged) and B — D*Tpu~X
where D** — D% (double-tagged). Here the B meson is charged or neutral. The
LHCb detector also has a high cross-section of prompt charm production where a
D** meson is produced directly in the pp interaction [3], and the D is produced
in the decay D** — DPr*. These samples can be used for analysis where the
flavour of the DY is tagged by the pion. In principle prompt D° mesons are also
produced, these are not used for analysis but can contribute to background. The
prompt samples have higher yields due to the larger production cross-section, but
requires tighter trigger requirements to suppress background rates. This leads to
acceptance effects which are hard to model, in particular large correlations between
decay-time and phase-space acceptance. The model-independent bin-flip analysis
mentioned previously in Chapter |1 can take advantage of the larger prompt sample,
since the model-independent analysis does not rely on the accurate description of
the phase-space and decay-time acceptance effects. For the reasons described, the
prompt sample is not considered in this analysis, which uses the semi-leptonic sample.

This analysis uses the Run 2 dataset from 2016-2018, corresponding to an integrated
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luminosity of 6 fb~!. The Run 1 dataset from 2011-2012 corresponds to an integrated
luminosity of 3 fb~1. This thesis reports a measurement using the Run 2 dataset
only. However, we also perform the full event selection described in this chapter, as
well as the assessment of the detector effects described in Chapter [7] for the Run 1

data, with the ultimate aim to add this independent sample to this analysis.

In order to select the candidates of interest from the large amounts of data
collected at the LHC, a multi-stage event selection is performed. A typical event
recorded at LHCb contains many particles, resulting in an enormous amount of data
which cannot all be saved. It is therefore essential to: firstly reduce the full amount
of data from a pp collision to a more manageable size which can be saved to disk,
then further reduce background contamination to improve the analysis precision
and reliability. The kinematic and topological characteristics of the decay can be
exploited in the selection process to achieve this. This chapter describes the selection

process which consists of the following stages:

Events are required to pass the (hardware and software) LHCb trigger,

Loose centralised offline preselection called stripping,

Further analysis-specific, loose cut-based offline preselection,

Multivariate selection to further maximise signal significance,

Removal of multiple candidates.

Each of these stages will be described in detail below.

This analysis requires a sample of D° — K2r"7~ candidates where the D°
originates from a semi-leptonic B meson decay and the B meson is produced in the
primary pp interaction point (the PV). The B meson then decays into a D meson

and a muon, the D° decays to Kgr™n~ and the K9 decays to two pions.

At the LHCb experiment, there are several decay properties which are typically
exploited when events are selected. Due to the long lifetime of the B meson ((1.64 +
0.004) ps for a charged B meson and (1.52 4+ 0.004) ps for a neutral B meson), it
travels a distance of several mm in the lab frame before decaying. This gives a

distinct separation between the PV and the B meson decay vertex or secondary vertex
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. This is a characteristic signature of B meson decays which allows us to select
events of interest. The impact parameter (IP) is defined at the transverse distance
of closest approach between a particle’s trajectory and a vertex, most commonly the
PV. Charm mesons which originate from the PV (prompt) have an impact parameter
of zero; therefore this quantity can be used to distinguish between prompt D mesons
(background) and D mesons from semi-leptonic B meson decays. The x3, is defined
as the difference in the vertex-fit y? of a given PV reconstructed with and without
the particle under consideration being included in the vertex fit. In addition, as a
consequence of the heavy mass of b hadrons, the decay of a heavy hadron usually leads
to final state particles with a relatively large transverse momentum py compared to
background events. The LHCDb detector also provides excellent particle identification
(PID]) using information from the RICH detectors which is exploited to identify

protons, kaons and pions.

Several of these quantities which can be exploited in the event selection are
defined in terms of x? variables. This is effectively a way to simultaneously account
for the value of the quantity and the uncertainty of the measurement, providing a
more stable performance for selection criteria. For example the flight distance is
defined as the displacement between a particle’s PV and SV, ie. the distance travelled
before the b or ¢ hadron decays. This quantity can be used to separate long-lived
from prompt particles; however the corresponding x? variable gives a measure of the
significance of the flight distance so is therefore a better choice as a discriminating

variable in the event selection.

Firstly, events are required to pass the hardware (L0) trigger which selects events
with a momentum above a certain threshold, consistent with those containing high
momentum hadrons. There is then a software based trigger selection where a partial
event reconstruction is performed in HLT1 using information from the VELO and
tracking stations, which identifies tracks with a momentum above a certain threshold.
In Run 2, a real-time calibration and alignment takes place between HLT1 and HLT2,
so the reconstruction run at HLT2 uses the final fully-optimised algorithms. The
HLT?2 trigger performs a full event reconstruction using information from the entire

detector. These events are then saved to disk for offline analysis. The data are
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then required to pass a loose offline preselection called stripping. D° — K2ntm~

candidates are required to pass dedicated stripping lines:

Strippingb2D0MuXKsPiPiLLCharmFromBSemiLine

Strippingb2D0OMuXKsPiPiDDCharmFromBSemiLine

Strippingb2DstarMuXKsPiPiLLCharmFromBSemilLine

Strippingb2DstarMuXKsPiPiDDCharmFromBSemiLine

These are for single and double-tagged and K3 (LL) and K (DD) types. The
stripping requirements are described in detail later in this chapter. Further loose
offline preselection can then be applied to the data from stripping after which a
multivariate technique is used to further reduce combinatorial background. The
stripping, preselection and multivariate analysis selection is the same for both Run 1

and Run 2 data.

At the LHCb detector, for some events it is possible to have more than one
genuine D — K¢r 7~ candidate. An ‘event’ is LHCb convention to describe the
whole outcome of a given bunch-crossing and is identified by a unique event and run
number. A candidate is a top level reconstructed object, for example a b-hadron,
whose properties are to be measured, for example a mass or lifetime. An event with
multiple candidates is an event in which there is more than one candidate passing
the final selection. Multiple candidates need to be removed in order to avoid double-
counting the events in the Dalitz plot and creating biases in the Dalitz variables of
the decay. These are removed by randomly rejecting all but one of the candidates
with the same event number. Due to the inclusive reconstruction in the preselection,
the double-tagged dataset is a subset of the single-tagged dataset. To ensure that
all analysed samples are statistically independent, double-tagged candidates have to
be separated from the single-tagged sample. Double-tagged candidates are removed
from the single-tagged dataset if the candidate’s event number and the D° mass are
the same. In this analysis, we select a sample of double-tagged candidates where
the muon and pion tags agree (ie. they are of the opposite charge), the pion tag
is used to tag the initial flavour of the neutral D meson. In addition to selecting

a double-tagged sample of D** i~ candidates, the same selection requirements are
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also applied to a sample of D*Tu™ events. This is the so-called wrong-sign (WS)
sample where the muon and pion tags do not agree; this independent sample is
used for studies of the mistag component for the single-tagged sample for which the
initial flavour is tagged by the charge of the muon. In addition a sample of two-body
D® — K~7" decays have been selected using our selection criteria for the evaluation

of the mistag fraction.

5.1 Trigger

The LHCD trigger comprises an offline L.O hardware trigger and the software High
Level Trigger (HLT), consisting of HLT1 and HLT2. The trigger requirements are
identified by a prefix indicating which candidate has passed the selection criteria of
the specific trigger line. In this analysis, trigger requirements are imposed on the
B candidate and the muon candidate. We do not impose trigger requirements on
the D° candidate in order to reduce trigger-induced biases for the D° decay; since
trigger requirements may be correlated to the decay-time and final state phase-space.
This helps to simplify the analysis. The trigger lines used are listed in Table [5.1]
In addition, trigger decisions are classified depending on whether the candidate’s
signal final state tracks were involved in the decision that the event passed the
trigger. Hence, the events may be classified as triggered on signal or triggered
independently of signal . The general selection algorithm behind the listed
trigger requirements does not change within the Run 1 or Run 2 data-taking periods,
although there are differences between Run 1 and Run 2. However, the thresholds

of the selection variables are subject to change in a given data-taking period; these

thresholds are stored in so-called Trigger Configuration Keys (TCKs]).

The LO trigger is an online hardware trigger which decides which events to keep
in real time. The L0 trigger can be subdivided into Muon, Dimuon, Electron, Hadron
and Photon lines. Due to the fast timing requirement, it only uses information from
the VELO, calorimeters and muon chambers and looks for simple signatures of large
transverse energy and high-momentum tracks which are signatures of heavy flavour
interactions. The L0 trigger condition mu_ LOMuonDecision TOS indicates that the

Muon line was activated by a particle assumed to be a muon in the event, which is
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Trigger level Trigger line

Run 2

LO mu LOMuonDecision TOS

HIt1 mu Hlt1TrackMuonDecision TOS

HIt1TrackMuonMVADecision TOS

Hlt2 B TopoMu{2,3,4}BodyDecision TOS
Run 1

LO mu LOMuonDecision TOS

HIt1 mu Hlt1TrackAllLODecision TOS

HIt2 B TopoMu{2,3,4}BodyBBDTDecision TOS

Table 5.1: Summary of the Trigger requirements used in this analysis.

part of the signal decay (TOS). This decision is based on the transverse momentum
of the muon and the number of hits in the SPD. The number of hits in the SPD
provides a measure of the multiplicity of the event and hence low-multiplicity events

are rejected.

The HLT1 and HLT?2 triggers consist of several trigger lines comprising selections
of decay channels or classes of decay channels such as three-body decays with a high
energy muon. In the first stage of the offline hardware trigger, HLT1, a partial event
reconstruction is performed using information from the VELO and tracking stations.
The decisions of the HLT'1 trigger lines rely on the properties of individual tracks
and not on information of the complete event. For example an HLT1 decision may
require thresholds on the momentum, transverse momentum and IP of a partially
reconstructed track. These thresholds can also vary with time over a given data-
taking period. HLT1 triggers with ‘MVA’ in the name use multivariate algorithms
to classify events with one or two tracks which are consistent with coming from a

heavy and long-lived hadron.

The second offline high-level trigger, HLT2, performs full event reconstruction
using information from the entire detector performing additional pattern recognition
which is not possible in HLT1 due to strict time constraints. This results in high
quality long and downstream tracks. In addition HLT2 exploits the full PID from the
RICH detectors and calorimeter system. HLT2 track reconstruction uses multivariate

algorithms to classify events while rejecting fake tracks and maximising efficiency [11].
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5.2 The LHCDb selection framework

The data which passes the LHCDb trigger requirements is saved to disk for
further offline analysis. The selection framework used in LHCDb relies on combining
reconstructed tracks under some physical hypothesis. Some charged and neutral
particles are created in the reconstruction in the HLT, including electrons, protons,
charged kaons and pions, photons and neutral pions. These particles can then be

combined to form composite particles such as B and D mesons.

In order to perform a physics analysis we need to build a decay chain with
reconstructed particles that represents the physics process we want to study. For
example consider the decay B~ — D~ X where D° — K2ntn~ and K2 — 77,
the X denotes one or more unreconstructed decay products (at least one neutrino).

We build the decay chain as follows:

o Get the four input pions and filter according to our physics needs,

« Combine two oppositely charged pions to form a K and apply selection cuts

as necessary,

« Combine the K¢ with the remaining two oppositely charged pions to build a

D meson and apply selection cuts,

e Combine the D° with a muon to build a partially reconstructed B~ meson

candidate, again applying cuts as necessary.

LHCb provides central packages which allows analysts to access pre-made particles
with reasonable reconstruction and selections; in this case four pions. These particles
can then be combined in the steps above to form composite particles such as the K9
and the DY meson; applying selection criteria at each stage. This selection process
is called stripping. The reconstruction and selection criteria for events used in this

analysis is described in detail in the following sections and in Table
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Variable Cut
K9 daughter m* track ghost probability < 0.5 (LL)
KYp > 2 GeV (LL), > 3 GeV (DD)
K pr > 250 MeV
K mass after vertex fit - PDG value < 30 MeV
K2 x* distance between PV and decay vertex > 100
K? decay vertex x?/ndf <6
Kg« cos HDIRA > 0.99
DY mass before vertex fit - PDG value < 100 MeV
D° pr before vertex fit > 2 GeV
DY scalar sum of daughter pr > 1.4 GeV
DY 2 distance of closest approach < 20
DY mass after vertex fit < 80 MeV
D° vertex x?/ndf <6
DY scalar sum of daughter 7% pp > 1.4 GeV
DP pr after vertex fit > 2 GeV
D° vfg — szO < 10 mm
Tt p > 2 GeV
7t pr > 250 MeV
7+ track x?/ndf <4
7t track ghost probability < 0.5
™ Xip >4
D* dm before vertex fit (-5,175) MeV
D* vertex x?/ndf <8
D* om after vertex fit (0,170) MeV
uE pr > 800 MeV
wEp > 3 GeV
p* track ghost probability < 0.5
p* track x2/ndf <4
p* PIDmu >0
B mass before vertex fit < 6.2 GeV
B mass after vertex fit (2.5,6) GeV
B vertex x?/ndf <6
B cos QDIRA > 0.999

Table 5.2: Summary of the cuts in the stripping lines used in this analysis The cuts
and variables are described in more detail in the text.
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5.2.1 Pion reconstruction

In this analysis K3 are reconstructed by combining two oppositely charged pions.
Both K¢ (LL) and K9 (DD) candidates and the pions are taken from so-called
‘Particle Containers’ which contain the information on the pre-made particles with
a reasonable reconstruction and initial selection. Pion candidates are required to
have p > 2 GeV and pr > 250 MeV. Tracks are fit using a Kalman filter. A Kalman
filter is an algorithm that provides estimates of some unknown variables given some
measurements observed over time. To ensure a good quality of fit, the pions are

required to have a track-fit x?/ndf < 4.

Fake (or ghost) tracks are defined as reconstructed tracks which do not correspond
to the trajectory of a true particle but are due to a mis-reconstruction of hits from
separate tracks or from detector noise. A neural network based algorithm is used in
order to identify fake tracks in the LHCb pattern recognition [43] and hence identify
the so-called ghost probability. The ghost probability of the pion tracks is required
to be less than 0.5. Finally, all pions are required to be inconsistent with originating
from the PV via the criterion y?p > 4, where x%5 is the x? of the IP of the pion
track with respect to the PV; pions which are combined to form a K9 (LL) candidate
are required to have y%p > 9, since these are not expected to point back towards the

PV.

5.2.2 Kg reconstruction

A KY candidate is reconstructed by combining two oppositely charged pions
originating from a common vertex. With the selected oppositely charged pion pairs,
we can fit a K2 — 777~ vertex. This is done by expressing the hypothesis that
there is a common origin vertex of both tracks as an optimisation problem, and then
varying the measured 7% and 7~ four-momenta within their measured uncertainties
to best fit that hypothesis. The result is a vertex object which has a fit y? associated
to it. The quality of the fit can then be used in the event selection. The K2 decay
vertex x?/ndf is required to be less than 6 in order to ensure a good quality of the

vertex fit.
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With the fitted pion four-vectors, one can form the four-vector of the K$ as their
sum, creating the K¢ candidate. The K¢ is required to have transverse momentum
pr > 250 MeV and p > 2 GeV for LL and p > 3 GeV for DD candidates. In addition
the invariant mass of the 777~ system is required to lie within 30 MeV of the known
PDG value of the K2 mass (497.6114+0.013 MeV). The x? distance between the K2
candidate’s best PV and decay vertex must be greater than 100; this selects K9
candidates with a sufficiently long lifetime. The best PV is chosen as the primary
vertex with the smallest X% p, Which corresponds to the closest PV. The 0prra is
defined as the angle between the K3 momentum and the K3 flight direction from
the best PV to the decay vertex. The cosine of this angle is required to satisfy
cosprra > 0.99, meaning that the momentum and the flight direction of the Kg

candidate agree. The K9 (LL) track ghost probability is required to be less than 0.5.

5.2.3 DO reconstruction

A DY candidate is reconstructed by combining a K2 with two oppositely charged
pions originating from a common vertex. The y? of the DY decay vertex must satisfy
x%/ndf < 6 to ensure a good quality of fit. Prior to the vertex fit, the invariant mass
of the K9m ™~ system is is required to lie within 100 MeV of the known D° mass
(1864.84+0.17 MeV from the , since these quantities should be close for signal
candidates. In order to ensure the K3 and two pions come from a common vertex,
all sub-combinations of two daughter particles must be compatible with originating
at a common point, quantified by the y? of the track positions at the point of closest

approach. This variable must be less than 20 for all combinations.

The daughter particles’ (K2 and two oppositely charged pions) four-vectors are
used to form the D° four vector as their sum. The invariant mass of the Korm~
system after the vertex fit must be within 80 MeV of the PDG reference value of the
D° mass. The scalar sum of the transverse momenta of the daughter particles (four
pions from the D® and K?9) is required to be greater than 1.4 GeV and the transverse
momentum of the D° candidate must be pr > 2 GeV. In addition the restriction of

KO D

vz — U ’ > 10 mm on the position of the D° along the = axis is used to ensure the

K9 decay vertex lies downstream from the D decay vertex; thus requiring that the

110



CHAPTER 5. DATA SELECTION

K? daughters can be reconstructed in the tracking stations.

5.2.4 D™ reconstruction

For double-tagged candidates, a D* candidate is formed by combining a D°
candidate and a soft pion in the decay D** — Dz ™. Here the pion is referred to
as ‘soft’ since it has low momentum, being produced in a decay with little available
energy (m(D*)—m(D%) —m(rm) < 6 MeV). If no D* candidate is reconstructed which

fulfills the criteria, the candidate enters the single-tagged sample.

The delta mass is defined as dm = m(D*) — m(D°) and is required to satisfy -5
< dm < 175 MeV. This reduces background from combinations of D° candidates with
soft pions, which are not associated with the signal tracks, due to the D candidates
om distribution exhibiting a peak around 145 MeV. After the vertex fit 0 < dm <
170 MeV is required.

5.2.5 Muon reconstruction

Muon candidates are required to have py > 800 MeV and p > 3 GeV. In addition
the muon track’s ghost probability must be less than 0.5. The muon must have a
signature in the detector consistent with the expectations of a muon, encapsulated by
the LHCD requirement PIDmu > 0. The track-fit x? is required to satisfy x*/ndf <
4 to ensure a good quality of fit. The x? of the IP of the muon track with respect to
the PV is required to be x2p > 4.

5.2.6 B reconstruction

A D° (single-tagged) or D* (double-tagged) candidate is combined with a muon
to form a B candidate. The B candidate’s decay vertex must have x*/ndf < 6 in
order to ensure good quality of the vertex fit. The invariant mass of the combined
daughter particles (muon and D° or D*) must be less than 6.2 GeV. The mass of
the B candidate after the vertex fit must satisfy 2.5 < mp < 6 GeV; this wide range
accounts for the fact that there are missing B decay products such as the neutrino,
which are not reconstructed. The constraint cos0p;ra > 0.999 is used, where Oprra

is the angle between the direction of flight of the B meson from the primary vertex
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to the decay vertex and the B momentum. This ensures good agreement between

the flight direction and the momentum.

5.3 Preselection

In addition to the stripping and trigger requirements, the candidates are made
to pass some loose preselection cuts and a multivariate analysis to further reduce
background. Once the D° — K2n "7~ decay has been reconstructed, the final state
particle kinematics can be updated based on the additional knowledge of the decay
topology and particle masses. In turn this affects other quantities which are calculated
form the final state four-vectors, such as invariant masses and particle momenta.
For example one can assume that the two K daughter pions originate from the K2
with a specific mass; this is called a mass constraint. Applying kinematic constraints
leads to new best estimates for the track parameters of the final-state particles. This
process is called a kinematic refit and is performed by the DecayTreeFitter (DTEF))
algorithm [53].

This analysis uses two instances of DTF with different mass constraints. For
each instance, the refitted variables are saved for later use. In the first instance,
the D° — Kr 7~ decay is refitted constraining the mass of the K9 candidate to
497.614 MeV. In the second instance the mass of the K5 candidate is constrained
as well as the mass of the D° candidate to 1864.86 MeV. Variables computed using
both the K2 and D° mass constraints are: the reconstructed D° decay-time and
Dalitz variables and the dm for the double-tagged sample. This restricts the Dalitz
variables of all candidates to the phase space consistent with energy and momentum
conservation. The reconstructed D° mass is computed using only the K mass
constraint; this improves the D° mass resolution compared to that without the
constraint. After the D° — Kyn 7~ decay has been refitted with DTF, we ensure
that the fit has converged for both instances, which is technically enforced by requiring
that the number of degrees of freedom is greater than zero. To ensure a good quality
of the DTF fit, the decay tree refit with the K2 mass constraint is required to have
2 < 25.

A signal D° mass window of 1805 < m(D°) < 1925 MeV is chosen for the single-

112



CHAPTER 5. DATA SELECTION

Variable Cut Description
m(B) < 4900 MeV B meson visible mass
DTF VCHI2NDOF >0 DTF status must converge
DTFDOKS VCHI2NDOF >0 DTF status with D° and K2
mass constraints must converge
(DY) > -1 ps D° decay-time

Table 5.3: Summary of preselection cuts used in this analysis.

tagged sample; this broad range allows the study of background contributions in the
lowest and highest mass regions where no signal is expected. For the double-tagged
sample a tighter cut of 1844 < m(D°) < 1884 MeV is applied. A cut on the visible
mass of the B meson is set to < 4900 MeV. The decay time resolution at LHCb
causes the D° decay-time to extend into a negative decay-time range. However, the
DY decay-time range below -1 ps is populated solely by background candidates. Thus,
requiring ¢(D°) > -1 ps leads to a significant background reduction. All preselection

requirements are listed in Table [5.3]

5.4 sPlot

The D° mass distribution for the single-tagged sample (dm distribution for the
double-tagged sample), is fitted with a model which comprises the sum of signal and
background components, using an unbinned extended maximum-likelihood fit. From
the fit, sWeights are extracted which allow the signal and background contributions
to be separated and used as training samples for a Boosted Decision Tree .

The sPlot formalism [69] takes the signal and background distributions for a
discriminating variable, in this case the D° mass, and computes the sWeight for
a given event. The sample of events are assumed to be characterised by a set of
variables which can be split into two components. The first is a set of variables
for which the distributions of the events are known (in this case the DY mass
or 0m); this is referred to as the discriminating variable. The second is a set of
variables for which the distributions are considered to be unknown, these variables

are referred to as the control variables. The sPlot technique allows the signal and
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background distributions for the control variables to be statistically disentangled
and reconstructed independently, without making use of any a priori knowledge on
this variable. This is done by using the known signal and background distributions
for the discriminating variable in order to infer the behaviour of the signal and
background events with respect to the control variables. The sPlot technique relies
on the assumption that the control variable is uncorrelated with the discriminating
variable. In this case the sWeight is an event weight for each event in the sample
which can be applied in order to reconstruct the signal and background distributions

for the control variable.

The extended log-likelihood is given by:

ﬁzzln{iNifi(ye)} —ZS:Ni (5-1)

where

N is the total number of events in the data sample,

o N is the number of species of event populating the data sample (signal and

background),
« N; is the average number of events expected for the i*" species,
o y is the set of discriminating variables (D° mass or dm),
e f; is the value of the probability density function for the i*" species,

o fi(ye) is the value of the PDFs f; for event e, associated with a set of values y,

for the set of discriminating variables,

o 1z is the set of control variables which, by definition, do not appear in the above

expression for L.

The log-likelihood is maximised for each event and an sWeight is calculated for both

signal and background. The sWeight is defined by:

_ Zjvzsl Vi fi(ye)

sPn e
(y ) fg\fil Nkfk(ye)

(5.2)

where V,,; is the covariance matrix which can be derived from the second derivative
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of —L.

A summary of the different steps to implement the sPlot technique are the

following:

1. Consider we are dealing with a data sample in which several species of event

are present (in our case signal and background).

2. A maximum likelihood fit is performed to obtain the signal and background
yields N;. The fit relies on a discriminating variable y (D° mass or dm)
uncorrelated with a control variable x; the latter is therefore totally absent

from the fit.

3. The sWeights ;P are calculated using Equation [5.2] where the covariance

matrix can be derived from the log likelihood in Equation

4. Histograms of x can be filled by weighting the events with the sWeights ;P
where the sum of the entries are equal to the yields of each species N; provided

by the fit.

The sPlots reproduce the true distributions of the species in the control variable x,
within the statistical uncertainties. The sWeights are extracted separately for each

year and Ko type (LL, DD) and for single and double-tagged candidates.

For single-tagged samples, the signal is modelled by the sum of a Bifurcated
Gaussian distribution and a Johnson SU distribution. The Bifurcated Gaussian

distribution is given by:

1
e <
Foic (x|, o, o) = { TLVT (5.3)

1 e
ORV 2T

where x is the measured variable (in the following cases mpo or dm, note this is
different to the variable x in the sPlot formalism) and p and o g are the mean
and standard deviation of the distribution and are free parameters of the fit. The

Johnson SU distribution [54] is defined as:

Feualb€.2) =+ dsinn! (255 (5.4
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where z is similarly the measured varibale mpo or dm and ~, 9, £ and A\ are free
parameters of the fit. The background is modelled by a first order Chebychev
polynomial for the K3 (LL) sample and second order for the K2 (DD) sample. For
the K3 (LL) sample the full PDF is given by:

Frr, = Tsig X (chi(;(mDo) —+ (1 — C)fSU(mDO)) + Nprg X (1 + (ZlmDo) (55)

where c is the fraction of fpi in the signal PDF, and ng;, and n, are the number

of signal and background events respectively. For the Ko (DD) sample:

Fpp = ngig X (cfpic(Mmpo) + (1 — ¢) fsu(mpo)) + npkg X (1 + aympo + az(2m, — 1))

(5.6)
where a1 and as are the coefficients of the polynomial and free parameters of the
fit. The sWeights are extracted from the double-tagged sample by a fit to the om
distribution where dm = m(D*) — m(D"). The signal is described by a Johnson SU
distribution and a Gaussian and the background is modelled by a special PDF shape
that can be used to model the background of D* — D° mass difference distributions.

The background PDF is given by:

_dm-—mg sm\ om
ity (Omlmg, A, B.C) = (1 - ™% )(-) +B<——1) (5.7)

mo mo

where mg, A, B and C' are free parameters of the fit. The combined signal and

background PDF for the double-tagged sample is then given by:

1 <5m7u 2

(1 — c)e2 () ) g X forg(Om)  (5.8)

1
F=ng, x|(c om) +
g ( f SU ( ) \/%
where c is the fraction of the Johnson in the signal PDF. Plots of the D° mass fits
for the Run 2 single-tagged samples can be seen in Figure [5.1] and dm distributions
for the double-tagged samples in Figure 5.2l The fit parameters are displayed on the
plots; the parameters of interest are the number of signal and background events

and these are shown along with the signal purity in Table [5.4]
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Figure 5.1: DY mass distributions for the single-tagged samples 2016-2018: data
(black points), signal model comprised of a Bifurcated Gaussian and a Johnson SU
(purple dashed line) background model (green dashed line), total model (blue line).
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Figure 5.2: dm distributions for the double-tagged samples 2016-2018: data (black
points), signal model comprised of a Johnson SU distribution and a Gaussian (purple
dashed line) background model (green dashed line), total model (blue line).
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Single-tagged Double-tagged
K9 (LL) K3 (DD) | K% (LL) KS (DD)
2016

Signal yield 558,429 1,187,193 | 92,823 203,043
Background yield | 1,169,032 4,195,801 | 91,582 224,608

Signal purity 32.33% 22.05% | 50.34%  47.48%
2017

Signal yield 558,248 1,266,521 | 94,444 218,853
Background yield | 1,061,627 4,341,146 | 86,642 237,904

Signal purity 34.46% 22.59% | 52.15%  47.91%
2018

Signal yield 919,959 1,649,788 | 152,159 285,589
Background yield | 2,416,858 5,824,977 | 198,661 315,633

Signal purity 27.57% 22.07% | 43.37%  47.50%

Table 5.4: Signal and background yields computed from the maximum likelihood
fit, and signal purity nsg/(nsig + nerg) of the samples after the cut-based offline
preselection describe but before the MVA. The mass range is 1805 < m(D°) <
1925 MeV for single-tagged candidates and 1844 < m(D°) < 1844 MeV for double-
tagged candidates. These correspond to the fits in Figures and .

5.5 Multivariate analysis

After the trigger and preselection requirements are applied, a Boosted Decision
Tree (BDT) is used to further reduce the remaining background. The BDT uses
distributions of variables that differ for D° — K%rTn~ events and background
processes and gives an output which distinguishes between signal and background
events by giving a ‘score’ of an event being signal-like or background-like. The BDT
response is a single observable in the range [-1, 1] and indicates whether the candidate
is more signal-like or background-like. In order to develop the BDT algorithm, a
training process is first performed, which requires dedicated input samples of signal
and background candidates. The separation of the input variables into signal and
background components is sometimes achieved by using Monte Carlo simulation of
signal and background processes. Alternatively one can use Monte Carlo for the
signal distribution and sidebands from data for the background distribution, where no
signal contribution should be present. Since we have a large signal yield in the data,
and good ability to separate using the mass fits, we can use an entirely data-driven
approach which overcomes several limitations of simulation; for example it provides

a perfectly accurate model of detector effects and backgrounds by construction, and
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has no problems with low statistics. The sPlot formalism allows us to separate the
signal and background distributions of the BDT input variables. Therefore in this
analysis, the multivariate algorithm (MVA)) is trained using data separated into

sWeighted signal and background distributions.

The uBoost classifier is used for the multivariate analysis [77]. This is a gradient
boosted decision tree with a loss function which penalises for non-uniformity across
the Dalitz variables and decay-time. This provides a method of boosting with a
uniform selection efficiency in a selected phase-space; hence reducing systematic
uncertainties. The gradient boosting is a method of assigning incorrectly classified
events larger weights in order to increase their importance. Each successive classifier
should then improve the overall performance of the ensemble of classifiers. The

ensemble of classifiers should perform better than a single classifier.

The input variables are chosen based on the discriminating power between signal
and background; it is ensured that there are no correlations between the input
variables and the D® mass or decay-time. This is demonstrated in Figure which
shows the correlation matrix for the BDT input variables and m(D) and 7(DY).
For the former this is a requirement of the sPlot method to ensure the training
sample distributions are reliable; for the latter, this helps to suppress large decay
time sculpting effects and hence reduce potential systematic uncertainties on the
final measurement. K-folding [82] is used in order to access an unbiased BDT score
for the whole dataset. The sample is split into two which are referred to as even and
odd, although note this is just a naming convention and the samples are split with a
random seed. The even and odd samples are in turn split into training and testing
samples; the BDT is trained using the training dataset. A check for overtraining is
performed using the training and testing samples. The trained BDT from the even
sample is applied to the odd sample and vice versa. This avoids biases from applying
a BDT to the same dataset with which it was trained. The BDT input variables are

as follows and described below:

e DTF vertex x? per number of degrees of freedom

e B meson corrected mass
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 arccos(DIRA) where [DIRA|is the angle between the particle’s momentum and
line of flight

o X?p impact parameter x?, this is the difference in y? between the primary

vertex fits when the B candidate is included and excluded
e B meson flight distance
e X%, flight distance x?
e X%y /ndof decay vertex x? of the B candidate per number of degrees of freedom
e X%y primary vertex x? of the B candidate
e 4 transverse momentum

o DO transverse momentum

The x%p is the flight distance y? of the B candidate with respect to the PV.
This discriminating variable has good separation between signal and B candidates
originating from prompt D* decays which are produced directly in the pp collision.
The B meson flight distance also helps separate background from prompt D* decays.
The corrected mass of the B meson candidate accounts for the non-reconstructed
neutrino in the semi-leptonic B meson decay, whereas the measured mass does not;

this is therefore a better approximation of the invariant mass. The corrected mass is

defined as:
- 2 -
Meorr = V m? + ’p?ws + ‘pg“mss

where m is the invariant mass of the B meson and p** is the missing transverse

(5.9)

momentum relative to the direction of flight with respect to the PV, where the PV
with the smallest y%p is taken. The x? of the B meson candidate’s PV also has good
discriminating power as it is connected to the multiplicity of the event. Figure [5.3
shows sWeighted signal and background distributions of the BDT input variables,
where good separation between signal and background can be seen. In addition we
check the correlation between the BDT variables shown in Figure [5.4] from this we

can see no significant correlations between each pair of variables.
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Figure 5.3: Distributions of the BDT input variables for signal (blue) and background
(red) training samples: single-tagged K3 (LL) 2018 sample.
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Figure 5.4: Correlations between the BDT input variables for the single-tagged 2018
samples.

A hyperparameter is a parameter whose value is used to control the learning
process, such as number of trees, learning rate and maximum depth. The same kind
of machine learning model can require different constraints, weights or learning rates
to generalise different data patterns. These measures are called hyperparameters,
and have to be tuned so that the model can optimally solve the machine learning
problem. A range of hyperparameters for the uBoost BDT used in the event selection

were investigated, and those which yield the optimal model were chosen.

One can check for overtraining of the classifier by comparing the BDT output
distributions from the training sample and the test sample. Overtraining can occur
when specific features caused by statistical fluctuations are used in the BDT training.
The comparison of the two distributions can be quantified by the Kolmogorov-
Smirnov test [55]. The KS statistic quantifies a distance between the empirical
distribution functions of two samples. The null distribution of this statistic is
calculated under the null hypothesis that the samples are drawn from the same
distribution. The result of this test can be interpreted as the likelihood that the
training sample distribution could have been obtained on the test sample distribution
and vice versa. The BDT output distributions and overtraining check are shown in

Figure |5.5]

A receiver operating characteristic (ROC)) curve illustrates the diagnostic ability

of a binary classifier system as its discrimination threshold is varied. The ROC curve
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(a) K2 (LL) 2018 even sample (b) K (DD) 2018 even sample

Figure 5.5: BDT output distributions and overtraining check for single-tagged K3
(LL and DD) 2018 samples: the histograms show the test sample and the points
show the training sample, the signal (Class A) distribution is in blue and background
(Class B) is in red.

is created by plotting the True Positive Rate against the False Positive Rate
at various cuts on the BDT response; where the TRP is the signal efficiency
of the BDT cut and the FPR is equivalent to the background efficiency. The area
under the ROC curve therefore gives a measure of the performance of the classifier,
where a high number would represent a high signal efficiency and a high background
rejection and a score of 0.5 would represent a random guess. The ROC curves along
with the area under curve are shown in Figure for the single-tagged 2018
K2 samples. In the hyperparameter optimisation, the optimal model can be chosen

by the one which gives the highest ROC AUC score.

The cut on the BDT output is chosen to maximum the significance S/v/S + B
where S and B are the number of signal and background events. The signal and
background contributions are computed as the integral over the BDT response for
a given cut value weighted by signal and background sWeights, respectively. The
signal significance, signal efficiency and background efficiency for the single-tagged
K2 2018 samples are shown in Figure along with the optimal cut. The optimal
BDT cuts for all subsamples are shown in Table [5.5
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Figure 5.6: Receiver operating characteristic curves for the K% (LL and DD) single-
tagged 2018 samples, showing True Positive Rate against False Positive Rate for the
BDT output, the dashed line represents a random guess.
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Cut on BDT response Peak Significance
even odd ‘ even odd
Single-tagged
K? (LL) 2016 | 0.04 0.02 285 284
K? (DD) 2016 | 0.10 0.04 343 344
K9 (LL) 2017 | -0.02 0.02 289 289
K2 (DD) 2017 | 0.10 0.04 358 358
K? (LL) 2018 | 0.12 0.10 348 351
K2 (DD) 2018 | 0.06 0.08 405 408
Double-tagged
K? (LL) 2016 | -0.02 -0.02 118 117
K? (DD) 2016 | -0.02 -0.02 169 168
K9 (LL) 2017 | -0.06 -0.10 119 120
K2 (DD) 2017 | 0.00 0.04 176 176
K? (LL) 2018 | 0.10 0.12 144 144
K2 (DD) 2018 | -0.02 -0.04 202 203

Table 5.5: Optimal cuts on BDT response.

5.6 Multiple candidates

A common feature of many LHCb selections is that even after tight cuts several
candidates per event remain. Depending on the kind of analysis this can bias the
results and a special treatment is often needed. An event with multiple candidates is
an event in which there are more than one candidates passing the final selection. There
are several types of multiple candidates and analysts may chose to deal with them in
different ways depending on their analysis needs. For example, one D — Korm~
decay may combine with more than one muon to form several B meson candidates.
Here one would have multiple entries with exactly the same D properties, for
example Dalitz coordinates and decay-time. These type of multiple candidates
are double-counted in the Dalitz and decay-time distributions and therefore need
to be removed. Multiple candidates can cause biases in the measurement of the
observable of interest if their rate is correlated with this observable. For example
more multiple candidates at low decay times may cause a bias in the measurement

of the time-dependent mixing parameters.

Another type of multiple candidate is that where a single K9 combines with
different, combinations of 777~ to give several distinct D° candidates in the event (or

several K candidates combined with a single 7*7~ combination). The phase-space
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and decay-time variables will be different in these cases so they are less harmful
than the first case described and in principle they could be kept. However in this
analysis we have decided to remove all multiple candidates for simplicity and since
it represents a small fraction of the data. There are several ways of dealing with
multiple candidates for example: keeping all of the candidates, rejecting all but
one of the candidates, or rejecting all candidates from the given event [57]. In this
analysis we have chosen to randomly reject all but one of the candidates with the

same event number; this is about 2% for a single-tagged data sample.

In addition, due to the inclusive reconstruction in the preselection, we know that
the double-tagged candidates are a subset of the single-tagged dataset. To avoid
double-counting of candidates, double-tagged candidates have to be separated from
the single-tagged sample. Candidates are removed from the single-tagged sample if
they match a candidate in the double-tagged sample, where matching is defined by

having the same event number and a difference in D° mass below 107> MeV.

After the optimal BDT cut is applied and the multiple candidates have been
removed, a second unbinned extended maximum likelihood fit is performed to the
DP mass distribution for the single-tagged samples and the dm distribution for the
double-tagged samples. For the single-tagged samples, the signal model used is a
Gaussian and a Johnson SU with a common mean and the background is a Chebychev

polynomial. The PDF for the single-tagged samples is then given by:

1 (’"DO’“

(1 —c)e 2 o )2> +Nplg X (1 4+ aympo) (5.10)

1
Frp = ngig X (CfSU(mDO) + NorT

1 _;(mpo—ﬂf
FDD = MNsig X CfSU(mDO) + \/%(1 — C)e 2 -

+ Nprg X (1 + a1mpo + as (2m%0 — 1))

(5.11)

For the double-tagged samples, the signal model is a Johnson SU distribution and a
Gaussian and the background is modelled by a polynomial as in Equation [5.8, The
0 parameter in the Johnson SU distribution is set to 1. The per-event sWeights
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Single-tagged Double-tagged
K9 (LL) KY (DD) | K9S (LL) K% (DD)
2016
Signal yield 434248 842698 77707 168604
Background yield 200468 788943 21886 56043
Signal purity 68.42%  51.65% | 78.02%  75.05%

Signal efficiency 76.76% 70.98% 83.72% 83.04%
Background rejection | 82.85%  81.20% | 76.10%  75.05%

2017
Signal yield 440294 884392 81073 180110
Background yield 190815 876081 22408 55333
Signal purity 69.77% 50.24% 78.35% 76.50%

Signal efficiency 78.87% 69.83% 85.84% 82.30%
Background rejection | 82.03%  79.82% | 74.14% = 76.74%

2018
Signal yield 674621 1181130 122435 239643
Background yield 359217 1083848 38723 76147
Signal purity 65.25%  52.15% | 75.97%  75.89%

Signal efficiency 73.33% 71.59% 80.47% 83.91%
Background rejection | 85.14%  81.39% | 80.51%  75.87%

Table 5.6: Signal efficiency and yields and background rejection of the samples before
and after the optimal cut on the BDT response.

and signal probabilities are extracted from the D® mass fit for the single-tagged
samples and the dm distribution for the double-tagged samples. The sWeights are
used to separated the signal and background distributions, in order to construct the
background PDFs in decay-time and 2-dimensional Dalitz space to be used in the
final mixing fits. The signal probabilities are used as a per-event quantity in the
fit to assign the appropriate contribution of the signal and background PDFs. The
signal probability is given by:

PDFgy X ngg
PDFsig+bkg X (nsig + nbkg)

(5.12)

Psig =

Plots of the m(D°) fits are shown in Figure and the dm distributions for the
double-tagged samples are shown in Figure 5.9 Table [5.6] shows the signal yields,
signal efficiency and background rejection of the optimal BDT cut.
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Figure 5.8: DY mass distributions for the single-tagged samples 2016-2018: data
(black points), signal model (purple dashed line) background model (green dashed
line), total model (blue line).
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Figure 5.9: dm distributions for the double-tagged samples 2016-2018: data (black
points), signal model (purple dashed line) background model (green dashed line),
total model (blue line).
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Simulation

A common challenge in many measurements performed in high-energy physics is
the necessity to understand the effects of the detector response on the physics
parameters of interest. This response is driven by resolution effects that distort the
true distribution of a quantity and by inefficiencies that are introduced by either an
imperfect reconstruction in the detector or a deliberate event selection [66]. The
solution is the generation of Monte Carlo events and the simulation of their
detector response to study the evolution from the generated to the reconstructed

and selected objects.

The LHCb simulation framework, Gauss [40], manages the creation of simulated
events by interfacing to multiple external applications. The framework consists of a
generation and simulation phase. A pp collision with the required signal particle is
generated by Pythia [74] either by generating minimum bias events until a matching
particle is found or by enforcing one to be produced in every event. The resulting
event is comprised of a mixture of stable and unstable particles which can be decayed.
The decay of the signal particle is modelled using EvtGen [58], all remaining unstable
particles are decayed independently. Radiated photons are simulated by the Photos
package [50]. The signal particle and its decay products may be required to pass
generator level cuts in order to increase the fraction of the generated sample which

passes subsequent reconstruction and selection requirements. The propagation of
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the particles through the detector is then performed in the simulation phase. The
interactions of particles with the detector material are simulated by the Geant4
toolkit [22, 25]. A detailed description of the detector material is stored in an XML
geometry database and data taking conditions, notably alignment and calibration
constants, are contained in an XML conditions database, which is frequently updated
to reflect the current state of the detector [71]. After the simulation of the detector
response and the digitisation, the simulated data is passed through the same trigger

and reconstruction chain as the collision data.

With the increase in data collected during Run 2 and that expected in Run
3, we require simulated data samples of significantly larger sizes in order to study
the detector response in detail. The number of events that can be produced in
full simulation is limited by CPU and storage requirements. The simulation of the
detector response is the main contribution to the time needed to simulate full events,
which accounts for 95-99% of the total time. The ReDecay package [66] exploits
the fact that out of the many particles in the simulation, in general only the signal
decay is of interest. In studies of heavy particles to exclusive final states, the event
consists of particles that participate in the signal process and all remaining particles.
The majority of the CPU time is used in the simulation of the remaining particles
and not the signal decay of interest. ReDecay allows the signal particle to decay
independently for every generated event, as usual, but the non-signal particles are
reused multiple times saving a large factor of CPU time. This approach achieves an
order of magnitude increase in speed and the same quality compared to the nominal
simulation. This approach can introduce correlations between some parameters, in
particular those corresponding to production properties of the signal particle (since
each time an event is ReDecayed the signal particle retains the same four-vector). As
such, care is needed when deciding which analyses can make use of this tool, including
through the use of built-in tests to quantify the impact of any correlations in final
reconstructed distributions. They will not bias or distort the distributions themselves
provided that the overall number of candidates (typically O(10°)) is significantly
greater than the number of so-called ‘ReDecays’ (typically ©O(100)). For this analysis,
the signal properties are independent to first order; i.e. the D° kinematics do not

influence the decay dynamics, Dalitz distribution or decay-time. Also in the case of
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semi-leptonically produced D mesons, it is the B meson which is ReDecayed (the
parent particle). Therefore the kinematics of the B meson are preserved between
the events and not the D, making any residual correlations weaker. Therefore we

conclude that ReDecay can safely be used in this analysis.

6.1 Monte Carlo data samples

The Monte Carlo simulation samples used in this analysis are of two different
so-called ‘event types’ of neutral and charged B mesons. The event types are as

follows:

o Event type 12875523: Charged B meson is required, the decay D** — D7+
is forced as is D* — K377, B meson can decay to the final state particles

in a ‘cocktail” of intermediate states, listed in Table [6.1}

« Event type 11876125: Neutral B meson is required, the decay D** — Dzt is
forced as is D° — K27 7~, B meson can decay to the final state particles in

a ‘cocktail’ of intermediate states, listed in Table [6.2]

The number of events generated for each year is given in Table In the decay
model for the D° no intermediate resonances are included. Rather we generate
uniformly over phase-space; this simplifies the extraction of the detector effects, as
described in the next chapter. The Monte Carlo samples contain truth information
at the generator level. The Monte Carlo is truth matched; whereby the reconstructed
decays are required to match the known truth information about the generator
level particle. This ensures that the Monte Carlo sample has very low background

contamination.

The event type is an LHCD label for the different Decay Files in the database.
The first number is a general flag which in this case requires events containing a b
quark, extracted from a minimum bias sample. The second number is the selection
flag which is 2 in the case of a charged B meson and 1 in the case of a neutral B
meson. The third number is the decay flag which specifies that the selected particles
are forced to decay into one of several exclusive final states (explicitly specified in a

list) with different topologies, but the final states contain at least one particle which
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Fraction [%] | B~ decay mode
2.2400 DO,LL—D“

5.6800 D*(2007)°7 7,
0.2072 D*(2420)°4
0.1936 D}(2430)° o
0.5244 Dy(2420)0- 1,
0.2792 D5(2460)°7 5,
0.2451 DOt

Table 6.1: Decay modes listed in the 12875523 (charged B) event type. Fractions
listed above 0.1%.

Fraction [%] | B® decay mode
5.0100 D (2010) 1 7,
0.2451 D*ntr~p"w,
0.1749 D, (2420) i~ 1,

Table 6.2: Decay modes listed in the 11876125 (neutral B) event type. Fractions
listed above 0.1%.

Event Type Year  Number of events
MagUp MagDown

12875523 (charged B) 2016 832481 821690
2017 2001031 2006471

2018 2104890 2091375

11876125 (neutral B) 2016 1820108 1202273
2017 2100163 2106046

2018 2004089 2003099

Table 6.3: Number of Monte Carlo events generated for each event type, year and
magnet polarity.
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cannot be measured, in this case at least one neutrino. The fourth number is the
charm/lepton content flag, in this case requires at least one open charm hadron and
at least one muon. The fifth number is the track flag, which is the number of stable
charged particles in the forced part of the decay chain of the selected particle; this is
5 for the charged B sample and 6 for the neutral B sample since this decay has an
extra charged (soft) pion. The sixth number is the neutral decay flag which specifies
K? — 777~ Finally the last two numbers are reserved for the user to distinguish
between different event types. In this case they represent that they have different
generator level cuts applied to those event types with the same first six numbers.
Stripping filtered MC is used to reduce the number of events saved to disk and ensure
that all saved events are useful; where the generated events are required to pass the

same stripping requirements as data before being saved to disk.

Each MC sample has generator-level cuts applied to ensure daughter particles
are in the detector acceptance and some kinematic cuts to ensure a higher number
of generated candidates would pass the reconstruction or selection criteria applied
before the samples are analysed. These generator level cuts are, in each case, looser
than the offline preselection, in order that the Monte Carlo samples have the same
selection as real data. The B flight distance along the z-axis of the B meson must
be greater than 1.6 mm. The muon and the D? and K2 daughter pions must satisfy
5 < 0 < 400 mrad, where 0 is the angle with respect to the forward proton beam in
the LHCD frame as defined in Chapter |3} The z position of the K& decay vertex must
fulfil z < 2.4 m. In addition momentum and transverse momentum requirements
are applied on the pions, muon and D°. The MC describes the decay B — D°uX
through intermediate resonances, where the decay D° — K2nt7~ is forced. The
samples of charged and neutral B mesons are blended to best describe data, where
the composition can be varied in order to assess a systematic uncertainty. A summary

of the generator level cuts used in the MC generation can be seen in Table

6.2 Monte Carlo Reweighting

Differences between simulated MC events and measured data can arise from

limited knowledge of the underlying physics processes or detector mismodeling. To
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Variable Generator level cut
0 5 < 6 <400 mrad
z K2 decay vertex <24 m
D flight distance along B z > 1.6 mm
p(p) > 2.9 GeV
pr(p) > 700 MeV
K daughter 7 momentum > 2.5 GeV
DY daughter m momentum > 1.9 GeV
p(DY) > 12 GeV
pr(D°) > 1.9 GeV

Table 6.4: Generator level cuts applied to the Monte Carlo samples.

account for these differences a correction can be applied to MC samples. Reweighting
is the procedure of finding weights for an original distribution, that make the original
distribution identical to the target distribution for given variables. In this analysis the
MC (original distribution) is reweighted to match the signal sWeighted data (target
distribution). A multidimensional reweighter is used to calculate per-event weights
using several kinematic variables, improving the agreement between MC and data
across several kinematic distributions. In order to achieve this a multidimensional

kinematic reweighting algorithm is used.

The Gradient Boosted Reweighter (GBReweighter) is a reweighting algorithm
based on an ensemble of regression trees [64]. Several kinematic variables are used
as input to the BDT, which are chosen for their discriminating power between MC
and data. The approach of multidimensional reweighting has an advantage over
reweighting in one dimension; which may bring disagreement in other distributions.
Multidimensional reweighting also has the advantage that it takes into account
correlations between the variables under consideration. This avoids the need for
complicated and performance-limited iterative reweighting schemes when trying to
match several correlated variables. The reweighting algorithm trains a BDT in
which signal sWeighted data is used as Class A and MC is used as Class B. The
BDT assigns a single output, as usual, to discriminate between MC and real (signal
sWeighted) data. This output is transformed into an event weight which is used to
reweight the MC to ensure it matches the data. K-folding is used to split the dataset
into multiple training and testing samples in order to obtain unbiased weights for

the entire dataset. The input variables are as follows:
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o D momentum

e 4 momentum

e n(D°) psuedorapidity of D°

o Corrected mass of the B meson
o 7(u) psuedorapidity of the muon
e B meson primary vertex x?2

e DY transverse momentum

e L transverse momentum

The performance of the reweighting strategy can be tested by training a second
BDT to distinguish between the signal sWeighted data and reweighted MC. The input
variables to this BDT include the IP x?, B meson flight distance, arccos(DIRA)
where DI RA is the angle between the B meson’s momentum and line of flight and
the B meson decay vertex x?/ndof. The area under the ROC cuve for this BDT
can be used as a metric to assess the performance. A score of 0.5 would show that
the BDT cannot distinguish between signal sWeighted data and reweighted MC,
hence the reweighting algorithm is performing well. This metric is used to test the
performance of the reweighter to optimise the hyperparameters of the BDT and the
input variables. The ROC AUC (area under curve) score for each subsample before
and after reweighting can be seen in Table It can be seen that after reweighting
the ROC AUC score reduces to closer to 0.5 for all subsamples; this shows that the
signal sWeighted data and reweighted MC cannot be distinguished by a BDT and
hence are in good agreement and the reweighter has good performance. The fact
that the ROC AUC score is not perfectly 0.5 suggests some residual disagreement

between data and MC. This can be assessed as a systematic uncertainty.

This ROC AUC score is used as a metric to test the optimal hyperparameters
of the BDT. A scan can be performed over the hyperparameters, such as number
of estimators, learning rate, max depth. The optimal values are found by the
combination which produces the ROC AUC score closest to 0.5. The same can
also be done for the input parameters, where different input parameters are tested

and the optimal combination chosen as those which minimise the ROC AUC score.
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ROC AUC Score
original weights GB weights

Single-tagged
K? (LL) 2016 0.607 0.510
K? (DD) 2016 0.607 0.513
K9 (LL) 2017 0.598 0.523
K2 (DD) 2017 0.601 0.533
K2 (LL) 2018 0.605 0.525
K? (DD) 2018 0.607 0.513

Double-tagged
K? (LL) 2016 0.593 0.520
K% (DD) 2016 0.597 0.524
K9 (LL) 2017 0.573 0.535
K2 (DD) 2017 0.580 0.533
K2 (LL) 2018 0.575 0.542
K? (DD) 2018 0.582 0.535

Table 6.5: Area under ROC curves for the BDT trained to distinguish between signal
sWeighted data and MC; for original MC before reweighting and reweighted MC
with the weights from GB Reweighter.

Note that the input parameters to the GBReweighter are changed whereas the input
parameters to the second BDT are kept the same to test the performance of the
different sets of input parameters. The number of estimators is the number of trees
used in the ensemble. The learning rate is in the range [0,1]; a lesser learning rate
requires more trees but makes the reweighting more stable. A lesser learning rate is
also more likely to cause overtraining so an optimal learning rate is usually chosen
based on these considerations. The maximum depth refers to the maximum depth
of the trees. The distributions of the kinematic variables for sWeighted data and
MC can be seen in Figure [6.1] and Figure [6.2} this shows the agreement between
sWeighted data and MC significantly improves after the kinematic reweighting giving
confidence that the reweighted simulation is an accurate description of reality. Unless

otherwise stated, the MC samples used in this thesis include this reweighting.
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Figure 6.1: Distributions of kinematic variables for signal sWeighted data and Monte
Carlo before reweighting for the single-tagged K (LL) 2018 sample.
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Figure 6.2: Distributions of kinematic variables for signal sWeighted data and Monte
Carlo after reweighting for the single-tagged K3 (LL) 2018 sample.
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Detector effects

Due to the forward geometry of the LHCb detector, it covers a finite range in solid
angle, leading to a limited geometrical acceptance. The reconstruction and event
selection can distort the kinematic distributions of the final state particles, leading
to a non-uniform acceptance across the Dalitz plane of the decay. This phase-space
acceptance needs to be accounted for in the final amplitude fit. Similarly, there are
variations in acceptance as a function of decay time. The detector also has some finite
decay-time resolution, defined as the difference between the reconstructed decay-time
and true decay-time. These effects are studied using simulation to provide accurate
models to include in the final fit, with appropriate systematic uncertainties assigned

in each case.

7.1 Phase-space acceptance

For this amplitude analysis it is crucial to model acceptance variations in D
decay-time t(D°) and across the Dalitz plane. The Dalitz efficiency is extracted
using the reweighted Monte Carlo described in Chapter [6} The reweighting technique
ensures that the efficiency derived from simulation is an accurate representation of
reality. The aim of the acceptance study is not only to measure the acceptance but
to find a mathematical parameterisation describing the variations as a function of

position in the Dalitz plane, which will enter the amplitude fit. The efficiency in
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any particular region of parameter space is determined by measuring the number of
generated events passing all reconstruction and selection requirements, with respect
to an unbiased phase-space distribution. The parameterisation of the acceptance
variations is chosen in the square Dalitz coordinates m?(n "7 ~) and cos 6 where 0 is
the decay angle between the 7= (77) and D° (D°) in the 7+7~ rest frame. In other
words it has the form of the helicity angle. These variables are chosen as they provide
a smooth parameterisation of the efficiency variation and they are correlated with
the momenta of the daughter particles: m?(7"7~) depends on the K% momentum

and cos 6 depends on the bachelor pion momenta. The cosine of the decay angle is

given by:
2070 +) _ 2 -
cost) = (Ks™) = m (Ksm”) (7.1)
4pq
where
N2 (m?(rt ), m*(D°), m?(K))
p= E ,
2m?2(mtn) (72)
_ ANmA (), mA (), mP(n7)) ‘
1= 2m2(mtn)
and
Mz,y,2) = 2> +y* + 22 — 22y — 2yz — 22y (7.3)

is the Kallen function.

The MC samples are passed through the same selection criteria as for data,
as described in Chapter [} The square Dalitz phase-space is split into bins of
approximately equal number of MC events passing all selection requirements. The
number of signal events in each bin is calculated as the sum of the weights, from
the GBReweighter as discussed in Section [6.2] After truth matching and selection,
the MC samples are assumed to be pure signal without background contamination.
The denominator is generated by a uniform phase-space distribution where events
are randomly generated and required to be in the allowed Dalitz phase-space due to
momentum conservation. The efficiency in each two-dimensional (cos 8, m?(7 7))
bin is then determined by the ratio of the number of generated events passing all

reconstruction and selection requirements, with respect to the uniform phase-space
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distribution:

e = o9 (7.4)

Ngen
where the denominator is equivalent to counting the total number of generated
candidates, nge,, prior to the application of any selection criteria. Note that we care
only about the shape of the efficiency and not the absolute value which does not

enter the analysis.

The measured acceptance and the bin centre of each two-dimensional bin in
(cos @, m*(w"m~)) are taken as input for a two-dimensional fit to extract an analytic
parameterisation, which describes the acceptance variations as a function of cos@
and m?(7 "7 ™). The parametrisation in square Dalitz coordinates is chosen to be a

polynomial with up to quartic terms in m?(7+7~):

e(m?(ntn7), cos(0)) = com*(nt ™) + eym® () + com®(n ) cos? (0)
+ c3c05%(0) + c4c05(0) + ¢5 + cgm®(nTnT) (7.5)

+erm®(ntr)

Different polynomial functions with up to quartic terms were tested and the
final choice gives the best agreement with data. The efficiency is measured and
parameterised separately for each sub-sample. Figure shows the measured and
parameterised efficiency and pulls [(measured efficiency - model) /uncertainty| for
the single-tagged K¢ (LL) 2018 sample. The efficiency variation as a function of
regular Dalitz coordinates m?2, and m?; is shown in Figure . The uncertainties on
the measured acceptance are calculated as binomial errors whereas the uncertainty
on the parameterised acceptance results from a Gaussian error propagation of the
fit uncertainties. Several source of systematic uncertainty are considered for the
efficiency evaluation where correlations between the efficiency model parameters are

taken into account.

The pulls of the two-dimensional fit can be collected into a histogram and then
fitted with a Gaussian. This gives an estimate of how well the fit describes the
measured efficiency; a good fit would produce pulls with a Gaussian mean of zero

and a width of unity. Equivalently this means the model describes the measured
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Figure 7.1: Measured (left) and parameterised (centre) phase-space acceptance for the
single-tagged K2(LL) 2018 sample. The pulls [(measured efficiency - model) /error]
are shown on the right.
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Figure 7.2: Efficiency variation in Dalitz coordinates m?2, and m?; for the single-
tagged K9 (LL) 2018 sample.
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Figure 7.3: Pulls (Measured efficiency - parameterised efficiency)/Error fitted with a
Gaussian (red line) for the single-tagged K2 (LL) 2018 sample.

efficiency well within statistical fluctuations. The one-dimensional projection of the
pulls can be seen in Figure [7.3] where each entry represents the pull for one of the
two-dimensional bins shown in Figure [7.1] The mean of the Gaussian is consistent
with zero but the width is larger than unity; this indicates that the uncertainties
from the fit model do not cover the statistical fluctuations in data. This can be
accounted for by inflating the uncertainties on the efficiency parameters such that
the pull distribution is consistent with a unit Gaussian. However the x?/ndof is close
to unity for the phase-space acceptance fits, so we do not need to inflate the errors
for a systematic uncertainty. Figures[7.4 and show the projection of the measured
and parameterised acceptance onto the m?(7*7~) and cos f axes respectively. The
overall agreement is good, with some indication of mismodelling at the edges of
some individual bins; this can be taken into account when assigning a systematic
uncertainty to the efficiency evaluation. The parameterised efficiency is determined
and applied separately for each sample in the amplitude fit. Plots for additional
sub-samples can be seen in Appendix [C.1]

To account for possible systematic effects on the choice of model, the efficiency
can be refitted with an additional term in the polynomial and the final amplitude fit
repeated using the alternative efficiency parameterisation. In addition, the statistical
uncertainty on the efficiency model parameters due to the limited MC statistics can

be accounted for by rerunning the final mixing fit many times with the efficiency
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Figure 7.4: Phase-space acceptance projected onto the m?(n7~) axis in bins of
cos 0; measured efficiency (black points), parameterised efficiency (red line) and pulls
are shown. Single-tagged K2 (LL) 2018 sample.
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Figure 7.6: Measured efficiency variation in four bins of decay-time projected in bins
of square Dalitz coordinates m? (77 ~) and cos @ for the single-tagged K2 (LL) 2018
sample.

parameters resampled for each fit, and assessing the corresponding variation in
the mixing parameters. This resampling is performed using the known statistical
uncertainties on the efficiency parameters, including correlations between them, and
also for the uncertainty scaling required to ensure a unit Gaussian pull distribution
as described above. The measured efficiencies are tested for consistency in different
decay time bins, and no significant time-dependence is observed. As such, the nominal
fit does not include a decay-time dependence on the phase-space efficiency variation.
Figure[7.6/shows the measured efficiency variation in four bins of decay-time projected
in bins of square Dalitz coordinates m?(n*7~) and cos . Figures and show
the projections of the measured efficiency in the four bins of decay-time in slices of
the phase-space variables m?(7*7~) and cosf for the different bins in the square
Dalitz variables. A systematic uncertainty is estimated to account for a possible

decay-time dependence below sensitivity.

7.2 Decay-time acceptance

There are also variations in acceptance as a function of decay-time, which need to
be accounted for in the final amplitude fit. The decay-time acceptance is determined
from the reweighted MC samples which are passed through the complete selection
chain including stripping, preselection and multivariate analysis. The decay-time
acceptance is evaluated as the ratio of the generated D° decay-time distribution
after the complete selection and the true distribution in MC. As a proxy for the
truth we use the MC samples with stripping selection applied but no others (trigger,
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Figure 7.7: Projections of the measured efficiency in four bins of decay-time; projec-
tions in the m?(nm*7~) variable in bins of cos§ where the sub-plots are the different
bins in cos 6. Single-tagged K2 (LL) sample.
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Figure 7.8: Projections of the measured efficiency in four bins of decay-time; projec-
tions in the cos @ variable in bins of m?(7T7~) where the sub-plots are the different
bins in m?(7 7). Single-tagged K (LL) sample.
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Figure 7.9: Measured decay-time acceptance (black points) fitted with an exponential
function (red line) for single-tagged K2 (LL left and DD right) 2018 samples.

preselection, or MVA). This has been checked against the expected exponential
distribution and found to be consistent, in line with the fact that the cuts applied
are independent of D decay time. The decay-time acceptance is obtained by fitting

b—at(

the ratio distribution with an exponential function of the form e?~®®") where b is a

normalisation factor and the fit is in true decay-time. The correction factor e~o(P") i

S
then included in the amplitude fit model. This is derived separately for all subsamples.
Figure shows the measured and parameterised decay-time acceptance for the
single-tagged K2 (LL and DD) 2018 samples. This shows some disagreement between
the measured acceptance and the exponential fit model. This can be accounted for by
including systematic uncertainties to account for the mismodelling of the acceptance
by this exponential model. Currently the systematic does not include the effect of
the fact that the exponential model is imperfect at describing the efficiency from MC,
just the variations within the exponential model. This is described in Chapter [10]

The results of the fit and the correction factors for all samples are shown in Table

.1l

7.3 Decay-time resolution

The LHCb detector has a finite decay-time resolution which needs to be accounted
for in the final amplitude fit model. The decay-time resolution is defined as the
difference between the reconstructed decay-time and the true decay-time t,., =

treco — tirue- The decay-time resolution is determined from simulation and is fitted
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Single-tagged Double-tagged
KY(LL) K3 (D) | K3 (LL) K% (DD)

2016

Constant | 0.990 &+ 0.003 0.940 £ 0.002 | 1.039 £ 0.004 1.008 £ 0.002

Slope [ps] | 0.235 £ 0.006 0.134 £+ 0.004 | 0.231 £+ 0.008 0.132 £ 0.004
2017

Constant | 1.013 4+ 0.004 0.967 4+ 0.002 | 1.071 £ 0.005 1.050 £ 0.003

Slope [ps] | 0.229 £+ 0.008 0.146 + 0.004 | 0.214 £+ 0.009 0.136 + 0.005
2018

Constant | 1.002 £ 0.004 0.971 £+ 0.002 | 1.073 = 0.005 1.062 £ 0.003

Slope [ps] | 0.228 £+ 0.007 0.161 £ 0.005 | 0.215 £ 0.009 0.153 £ 0.006

Table 7.1: Parameters of the exponential fit to the decay-time acceptance.

with a triple Gaussian function.

f oy

_%<t/;u>2 +
e o
V21o;

Tpos = N ( L-/- ge_§<t’03u)2> (7.6)

L9 1-f-yg
\V21og V2mos

The scale of the decay-time smearing can then be expressed as an effective resolution:

Gt =\ o+ g0} + (1~ f — g)o (7.7)

This is included in the final amplitude fit model by convoluting the decay-time PDF
with the triple Gaussian resolution function. Plots of the decay-time resolution fitted
with the triple Gaussian are shown in Figure [7.10] The fit parameters along with the
effective resolution for each sub-sample is shown in Table and additional plots
for other sub-samples are shown in Appendix [C.3] The sample-averaged effective
resolution is found to be 107.9 fs for double-tagged and 113.2 fs for single-tagged
samples, where the effective resolution of each sample is weighted by the fraction of

events it contains.

7.4 Phase-space resolution

Similarly to decay-time, the Dalitz variables m?, and m?; also have some finite

2

2. —m? ... Similarly to the

:m2

resolution due to the detector, defined as m feco

treatment of the decay-time resolution, the phase-space resolution is derived from
simulation. The resolutions of m?(KYr") and m?(KJm~) are correlated through

energy and momentum conservation, and hence the phase-space resolution is measured
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Figure 7.10: Decay-time resolution (black points) fitted with a triple Gaussian
function (blue line) for the 2018 K9 (LL left and DD right) samples. Fit parameters
displayed.

in a set of uncorrelated variables. These uncorrelated variables are the sum and
difference of m?( K97 ") and m*( K37 ™), denoted by u = m*(K3nt) +m?*( K37~ ) and
v=m*(KirT) — m?(K2%n™), respectively. The resolutions in u and v are computed
as the difference between reconstructed and generated values, v’ — u and v' — v. The

resolutions can also be fitted with a double Gaussian function:

Fpg(x;p,01,09,¢) = N (\/%01 e_(;;:l) + %26_(%’2)) (7.8)
where the two Gaussians have a common mean p and x is the given resolution of
either the Dalitz variables m?,, m?; or the uncorrelated variables u or v. Plots of
the resolutions for the Dalitz variables and the uncorrelated variables can be seen
in Figure [7.11, There is some mismodelling in the peak of the double Gaussian,
however the phase-space resolution is small enough that this model is sufficient
for the studies. The correlations between the Dalitz variables and the alternative
variables u and v can be seen in the two-dimensional histograms in Figure The
Pearson correlation coefficient is a measure of the correlation between two variables

and is given by:

_ > iy (T = 7)(yi — )
Vi (@i = )2/ 30 (yi — §)?
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Single-tagged

Double-tagged

K3 (LL)  K3(DD) | K§(LL) K3 (DD)
2016
w [fs] -3.57 £0.07  -3.54 +£0.05 | -3.00 £ 0.10 -2.89 £ 0.07
oy [fs] 256 £ 1.51 268 £+ 0.92 49.1 + 0.37 254 £+ 1.30
oo [fs] 49.5 £ 0.25 107 £ 0.38 247 + 2.25 472 £ 0.24
o3 [fs] 103 £ 0.53 477 £ 0.16 99.9 £ 0.78 104 £ 0.55
f 0.073 £ 0.001 0.105 £ 0.001 | 0.462 £+ 0.008 0.099 + 0.001
g 0.450 £ 0.005 0.471 £ 0.002 | 0.065 £ 0.002 0.424 £ 0.004
erys [fs] 105 118 99 112
2017
w [fs] -3.81 £0.08 -3.81+0.05 | -3.16 £0.12  -3.06 £ 0.09
o1 [fs] 256 £ 1.89 266 £ 0.10 49.6 £ 0.47 252 £ 1.68
oo [fs] 49.8 £ 0.28 107 £ 0.44 245 + 2.96 105 £ 0.70
os [fs] 104 £+ 0.65 479 £ 0.18 101 + 1.08 47.6 £ 0.29
f 0.069 £+ 0.001 0.10 £ 0.466 | 0.482 £+ 0.011 0.095 £+ 0.002
g 0.470 £ 0.006 0.466 £ 0.003 | 0.064 £ 0.002 0.466 + 0.005
Ocff [fS] 103 116 98 110
2018
o [fs] -4.15£0.08 -393+£0.06 | -3.32£0.13 -3.17 £ 0.09
o1 [fs] 259 + 1.76 266 + 1.14 260 £ 3.11 253 + 1.74
oo [fs] 108 £ 0.65 106 £ 0.45 109 £ 1.04 104 £ 0.71
o3 [fs] 51.6 £ 0.28 472 £ 0.18 52.1 £ 0.42 46.8 £ 0.30
f 0.080 £ 0.002 0.099 £ 0.001 | 0.069 £ 0.002 0.095 + 0.002
g 0.471 £ 0.005 0.463 £ 0.003 | 0.456 £ 0.007 0.471 £+ 0.005
oery [fs] 110 115 107 110

Table 7.2: Parameters for the decay-time resolution where p and o493 are fit
parameters of the triple Gaussian and o,y is the effective resolution.

for two variables z and y, where the sum is over the number of events in the dataset

and x and y are the means of the distributions. It has a value in the range [-1,1]

where a value of -1 would indicate perfect negative correlation, a value of zero would

indicate no correlation and a value of 1 would indicate perfect positive correlation.

The Pearson correlation coefficient for the resolution of the regular Dalitz variables

m2, and m?, is -0.48 whereas for the uncorrelated variables u and v it is found to be

0.00 (to 2 decimal places) which confirms the assumption that we can safely neglect

the correlation between these variables.

The phase-space resolution is small compared to the scale of resonances in the

Dalitz plane. As such it should not affect the distributions being fitted and the

mixing fit should not need to include a correction for the phase-space resolution.
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Single-tagged Double-tagged
K9 (LL) K% (DD) | K§ (LL) K% (DD)
2016
m?(K9r™) 6594 7792 6067 7160
m?(K9m™) 6590 7805 6054 7175
mi, —m2; | 10500 12603 10317 12200
m2, + mi, 5696 6894 5273 6403
2017
m?(K3m ™) 6615 7785 6057 7150
m2(K3m™) 6609 7787 6057 7180
m2, —m?, | 10499 12575 10311 12171
m2, +mi, 5737 6871 5278 6370
2018
m?(K9m™) 6578 7833 5998 7193
m?(K9r™) 6581 7840 5988 7204
m2, —mi; | 10408 12653 5284 12231
m2, +mi, 5789 6945 10189 6452

Table 7.3: Effective resolutions for the phase-space variables: the Dalitz variables

m?(K%7 ") and m?(K2%7~) and the uncorrelated variables u and v. Values are given
in MeV?.

The effect of not including the resolution on the mixing parameters can be studied
with pseudo-experiments and an appropriate systematic uncertainty assigned. A
resampling method is used to assign the systematic where the uncorrelated variables
u and v are used since the correlations can be neglected in the resampling; this is
discussed in more detail in Chapter [I0] The phase-space resolution may also vary as
a function of Dalitz space which can be included in the resampling study; this can

be seen in the plots in Figure [7.13]
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Figure 7.11: Phase-space resolutions of the Dalitz variables m3}, and m?, and the
uncorrelated variables u and v, derived from simulation (black points) and fitted
with a double Gaussian (blue line) for the 2018 single-tagged Ko (LL) sample.
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Figure 7.12: Two-dimensional histograms of the phase-space resolutions in regular
Dalitz coordinates (left) and the uncorrelated variables w and v (right) with the
Pearson correlation coefficient shown for 2018 K2 (LL) single-tagged sample.
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Figure 7.13: Phase-space resolution varies as a function of Dalitz coordinates.

In summary, the mixing fit is subject to detector acceptance and resolution effects,
these need to be accounted for in the final time-dependent amplitude fit model. These
are: the phase-space acceptance, decay-time acceptance and decay-time resolution
which are included in the fit model, and the phase-space resolution which is neglected

in the fit model and an appropriate systematic uncertainty assigned.
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Fit Model

The parameters of interest are extracted from an unbinned three-dimensional maxi-
mum likelihood fit of the model to data. The fit is performed simultaneously over
the 12 sub-samples; by data taking year (2016, 2017, 2018), K3 type (LL, DD) and
decay origin (single-tagged, double-tagged). The overall PDF is given by:

P(ta mia m2—7psig> t&ga 0_2) = Dsig [(1 - wmuontag)Psig(tv mi? m2_7 tag, O_f)
+ wmuontagpmt (tv miv m2—7 taga O_Z)} (81)

+ (1 = Psig) Pokg(t,m%, m?)

where pg;, is the per-candidate signal probability which is extracted from a fit to
m(D°) or dm, tag is the flavour tag and takes values of +1 (—1) for D° (D), @ is a
vector of the fit parameters, Wpuonteg 15 the mistag fraction. The decay-time is given
by t and the Dalitz variables are m?% and m? (defined differently for D" and D° to

recover identical distributions under CP-symmetry). The signal PDF is given by:

Puig(t,m%,m? tag, @) = [(| Ap(t',m?,m*  tag) |* e(t')) @ R(t,t', ju, 00)] e(m?,m?)

(8.2)
where A(t',m3,m?) is the time-dependent amplitude model, €(t') and e(m?,m?)
are the decay-time and phase-space efficiencies and R(t,t', j, 04) is the decay-time

resolution and ® represents the decay-time convolution.
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The square of the time-dependent amplitude A¢(t) is given by:

A Pge ™ [(14F =1 L8 ) costarn) - 2tm (a5 [2] ) sinary 63

+ <| A2+ ]%B |2) cosh(yT't) — 2 Re <AB* []%] ) sinh(yI‘t)]

repeated from Equation [2.43|for convenience, as well as a similar equation for }A 7(t) ‘2.

The amplitudes A and B at a given point in phase-space are the amplitude of the
D° — K377~ process (direct) and the D — K37t 7~ process which proceeds via
mixing. These can be expressed as the sum of component amplitudes multiplied by

a complex coefficient:

A(mZ,m?) = Z ae'r A, (m%,m?) (8.4)

B(m3,m?) = Zare@Ar(mQ_, m?) (8.5)

'
where the Dalitz variables are defined as m% = m?(K%7") and m? = m?(Kdr~) for
the D° case, and with reversed pion signs for the D° case, m% = m*(K2r~) and

m? = m?(K3r ™).

The time-dependent amplitude is expressed as a sum of two-body intermediate
resonances r with amplitudes A, which depend on a point in phase-space. The
amplitude model is built from a number of resonant and non-resonant components.
The K-matrix formalism [3§] is used for the 77 S-wave component and the LASS
parametrisation [29] for the K7 S-wave. The model dependence of the analysis enters
through the choice of resonances contributing to the sum in Equations and

and the parameterisation of A,.

The amplitude for a D° meson decaying to a three-body final state, D — abc

through an intermediate resonance r — ab is given by:
Ar(m?,m?) = Fiy(q,q0) x F9 (p,po) x Z1(9) x To(m) (8.6)

where the form factors F ,gL) and F") describe the decay D — rc and r — ab

respectively, L is the orbital angular momentum between r and ¢, note that in this
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case the spin of ¢ is zero so L is essentially the spin of the resonance r. p and ¢ are
the momenta of ¢ and a in the resonance rest frame, Z(2) describes the angular
distribution of the final state particles. 7, is the dynamical function describing the

resonance r.

The angular momentum L is limited by the linear momentum ¢. Decay particles
moving slowly may have difficulty generating sufficient angular momentum to conserve
the spin of the resonance. The Blatt-Weisskopf factors [80] F(*) weight the amplitudes
to account for this spin-dependent effect. The form factors are normalised to give
F®) =1 for z = 2 = (|qo|d)? where qq is the value of the momentum when m;, = m,..
The Blatt-Weisskopf form factors are given in Table [8.1] this shows two common
formulations, the second column is used here. The difference between the two
columns is in the normalisation and should not effect the physics. This complicates

comparisons between experiments; in this case we have used the same formulation as

that in Ref. [20].

L Br(q) B1(¢, %)

0 1 1

1 2z 14 2
1+2 1+2

5 1322 (20— 3)% + 9z
(z—3)2+9z (z—3)2+9z

Table 8.1: Blatt-Weisskopf barrier factors: z = (|q|d)? and 29 = (|q|d)?; ¢ is the
momentum and ¢q is the value of ¢ when the invariant mass equals the pole mass of
the resonance, d is the meson radius or impact parameter of the decay particles.

This factor is evaluated for the decay r — ab where ¢ is the momentum of a
in the resonance rest frame and for D — rc where p is the momentum of ¢ in the
resonance rest frame. The centre-of-mass momentum of a in the two-body decay

r — ab is given by:

1

= o VM2 = (2 md)?] (M2 — (2 — m2)?] 87

a

q

The Zemach formalism [85] expresses the angular correlations among the final
state particles by the function Z(£2) where ) represents the angular relations of the

particles. Scalar resonances are not polarised and thus the angular distribution is
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Zo = 1. For vector resonances:

Zy = mczzc - mIZJC - . 2 (88>

For tensor resonances the angular distribution is:

2
22 [, = i - b =) )

2
My

1

(m% + m?)?
~3 {mgb — 2(m% —I—mz) + DmT mzb — 2(m2 +mg) + m—zb

(8.9)

The spin of the resonance L has a characteristic appearance on the Dalitz plot with
spin L corresponding to L + 1 distinctive lobes (ie. a spin 0 resonance will look like

a straight line on the Dalitz plot, a spin 1 resonance will have 2 lobes).

The propagator 7, describes the dynamics of the resonance decay. Most resonances

in this analysis are described using the relativistic Breit-Wigner propagator [34]

given by:
1
. = _ 8.10
Tr(m) (m3 —m?2) — imol'(m) (8.10)
where my is the mass of the pole and the width I' is given by:
(2L+1)
T(m) =T (2) (@) P (8.11)
do m

Differences in the parametrisations of Z(2), By, and 7,, as well as in the set of
resonances 1 are model-dependent, and may complicate the comparison of results

from different experiments.

8.1 Gounaris-Sakurai propagator

The Gounaris-Sakurai propagator [51] has been shown shown to provide a better
description of broad p resonances in 7w scattering data than the Breit-Wigner

propagator. The Gounaris-Sakurai propagator is therefore used to describe the
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p(770) resonance in the amplitude model. The propagator is given by:

T L= 8.12
T (m2—m2, 4 f) — im, D (M) (8.12)
where
3 m2 my + 2qr my m2 my
d=——2=XL — =z 8.13
T q? © ( 2m.. ) + 27q, g3 ( )
and f = f(m?,) is defined as:
L.m? (¢
o) =2 £ )~ no)]
' r (8.14)

1 1 1
2 2 2 -
k=) 102 (= ) + 3]

where ¢ is the momentum of particle a in the rest frame of the resonant pair. The

function h(m?) is given by:

hm?) = 2L 1 (m i 2‘-’) (8.15)

™m 2m,

8.2 K-matrix formalism

The Breit-Wigner amplitudes are known to provide a decent description of
isolated resonances, but a poor description of overlapping resonances of the same
partial wave and also does not preserve unitarity. Therefore in the case of broad
overlapping resonances or for resonances located close to thresholds of additional
decay channels, an alternative formalism is needed. The K-matrix formalism [3§]
preserves unitarity by construction as opposed to the Breit-Wigner amplitudes. The
resonances contributing to the 77~ S-wave are overlapping in mass and are better

modelled by the K-matrix formalism.

The decay amplitude is defined by:
Fy(s) = [I —iK(s)p(s)]; P;(s) (8.16)

where the indices i and j correspond to the (final and initial) channels contributing
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to the scattering process; 1 = 7w, 2 = KK, 3 = nnnm, 4 = q, 5 = nn’. The
production vector is P where the term P; represents the production of some state j,
which then scatters into a final state ¢ via the matrix term in the square brackets. I
is the identity matrix and p is the phase-space matrix. In this analysis only the 7
final states need to be considered, meaning we only consider the ¢ = 1 terms for the

matrix, where ¢ refers to the final state.

The K-matrix is given by:

ea 1— Sscatt g;lgq
KZ]<S) = < i . Scatt + Z —]S> fAO(S) (817>

The parameters m,, are the physical poles of the K-matrix and ¢§* are the coupling
constants and are fixed from 77 scattering data [28]. The parameters f;7** and sj™"

are also fixed. The symbol f4, is defined as:

1—s4, m2
fao(s) = (s - SAT) (8.18)

where s4, and s4 are also fixed parameters.

The production vector is defined as:

1— prod 5 gq
prod adj
Pi(s) = f1] —ngd + ; s (8.19)

d .
fi;°" are some production

where [, are the complex production couplings and
parameters; these are not fixed from scattering data. The fixed parameters can
be seen in Table [8.2] These are parameters which describe the scattering process,
where dedicated measurements are used to fix the values [28], so are therefore fixed
in the amplitude and mixing fits described in this thesis. The parameters relating

to the production mechanism (3, and fpmd)

can depend on the experiment. These
parameters are fixed in the mixing fit based on initial time-integrated fits described
in this chapter. We also do not consider the initial j = 5 = 11 state since the mass of
the ' is 957.7840.06 MeV /c2. The nn’ threshold and the pole mass are both beyond

the kinematic range of the w7 production, hence there is little sensitivity to the

d .. . .. .
associated parameters f1.°* and 5. This is therefore not included as a variation in
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Mg Gt n IKkR Gir G Gy
0.65100 0.22889 -0.55377 0.00000 -0.39899 -0.34639
1.20360 0.94128 0.55095  0.00000  0.39065 0.31503
1.55817 0.36856 0.23888  0.55639  0.18340 0.18681
1.21000 0.33650 0.40907 0.85679  0.19906 -0.00984
1.82206 0.18171 -0.17558 -0.79658 -0.00355 0.22358

scatt scatt scatt scatt scatt
12 13 14 15
0.23399 0.15044 -0.20545 0.32825 0.35412
scatt
Eh) SAo SA
-3.92637  -0.15 1

Table 8.2: Fixed parameters used in the K-matrix formalism as inputs to the
amplitude model. Taken from Ref. [2§].

the fit when considering systematic uncertainties and alternative amplitude models,

since it is nonphysical.

8.3 LASS parametrisation

The K7 S-wave systems are poorly understood and there is no clear theoretical

guidance as to the correct description of these systems in the isobar model. Therefore

the LASS parametrisation [29] is used to describe the K7 S-wave. The K (1430)"

and K (1430)~ contributions are described empirically based on scattering data from

the LASS collaboration. The parametrisation is constructed from a Breit-Wigner

term for the K}(1430) and a non-resonant component that has an effective range

and introduces a phase shift:

where

and

Agr,_o(8) = Rsin §ge®ReF 4 [ sin per (8.20)
MT(m2..)
Op = ¢ + tan™? {—K’T } (8.21)
M? —m?,
1
Sp = dp + cot ™! [— + @] (8.22)
aq 2
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The parameters R, ¢g, F', ¢ and the amplitudes and phases of the resonant and
non-resonant components. The parameters a and r are the scattering length and
effective interaction length; ¢ is the momentum of the spectator particle in the Kn
rest frame. M and I' are the mass and width of the resonant term. Note that if the
phase 0 is set to zero, the relativistic Breit-Wigner propagator is recovered. The
scatting length and effective range and the KJ(1430) mass were measured at the

LASS experiment.

The phases 0z and dr depend on m?2._. The phase motion (6z and dr) as a
function of the K7 invariant mass, is the same in elastic scattering and decay
processes, in the absence of final state interactions (the isobar model) [62]. This
motivates the LASS parametrisation. The studies of K7 scattering data at the
LASS experiment show that the S-wave is elastic up to a threshold. The LASS

parametrisation preserves the phase behaviour measured in K7 scattering.

8.4 Default Amplitude Model

In the default amplitude model, as mentioned, the decay is described through
resonant and non-resonant components. Relativistic Breit-Wigner propagators are
used for the parameterisation of 7, (from Equation [8.6]), apart from the p(770)
which is described by the Gournaris-Sakurai. The K7 S-wave is described by the
LASS amplitude and the 77 S-wave is described by the K-matrix formalism. These

amplitudes are added coherently to the amplitudes of the resonant decays:
T(D° = K¢rtn™) = cxTon + c1Tin + 3 _ & Ts (8.23)

where Tk, is the LASS amplitude, 7., is the K-matrix amplitude and 7, are the
amplitudes of the resonances, ¢y, cx and ¢, are the complex coefficients. Note that
the real and imaginary components of the p(770) Gournaris-Sakurai amplitude are

fixed to 1 and 0 respectively as a reference value.

The free parameters of the mixing fit are the D° lifetime 7(D°), the mixing
parameters x and y and the real and imaginary parts of the complex coefficients c,..

As discussed in Section [2.3] CP-violation can be added to the model by defining the
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mixing parameters differently for D° and D initial states by zcp+ Az and yop £ Ay.
The parameters Az and Ay can be transformed into the physical parameters |¢/p| and
¢ mentioned previously in Section [2.3] which give a measurement of time-dependent
CP-violation in mixing. The fit can be run with the assumption of CP-conservation
(where Az = Ay = 0 are fixed) or with CP-violation allowed where these parameters

are allowed to float in the mixing fit.

In order to constrain the choice of amplitude model in the mixing fit, a time-
independent fit is first performed; the time-integrated fits are limited to decay time
t < 7(DY) in this region mixing is negligible and will not affect the amplitude model.
The initial base-line model is that reported by Belle and BaBar collaborations [20].
Resonances may be removed or added and the optimal amplitude model is chosen
such that subsequent additions of resonances do not significantly improve the fit
quality, defined at the negative log likelihood (—2log(L)). These time-integrated fits
can also be used to fix the S-wave shape parameters and some of the masses and
widths of the resonances, which are fixed in the final mixing fit. These parameters
are: the masses and widths of the resonances; the K-matrix shape parameters [,
f7rod and sP° and the LASS shape parameters R, ¢r, F, ¢r, a and r. Initially, the
parameters are set to those from Belle and BaBar [20], and the masses and widths

to the PDG values [78].

The initial time-integrated fit procedure is as follows:

1. Perform initial time-integrated fit with the complex coefficients of the Breit-
Wigner amplitudes of the resonant components free to get reasonable agreement
with data.

2. Fix coefficients of resonances and free the LASS shape parameters and complex
coefficients.

3. Fix the LASS coefficients and parameters and free the K-matrix f%°%, and
sPo? parameters and the K-matrix complex coefficient.

4. Fix the K-matrix fP"°¢ parameters and free the K-matrix parameters g4,

The final time-integrated fit shown in this section has the parameters fixed

to those above and the Breit-Wigner coefficients free. The mixing fit has those
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parameters above fixed to the values from the time-integrated fit; the Breit-Wigner
amplitudes and the mixing parameters and the DP lifetime are free. In the K-matrix
formalism the parameters f7° are fixed to the value from the Belle and BaBar
model [20], f7°% is fixed to 0 and G5 is 0. The choices made in the amplitude model
development such as the values of the masses and widths and the S-wave shape
parameters are varied when assessing systematic uncertainties. Some alternative
models are listed in Chapter (Table . There is a significant improvement
in the fit quality when adding the K*(1680)% resonance, hence this is added to the

nominal model. Alternative models may be considered for systematic studies as

discussed in Chapter [10]

Some of the masses and width do not converge close to the PDG value in the
initial time-integrated fits and therefore cannot be released and are fixed to the PDG
value. This is due to limitations in such cases where the resonances have very low fit
fractions, the widths are wide and hence hard to separate from other contributions or
particularly narrow and hence hard to normalise with the required precision. Others
can be floated in the initial time-integrated fit and are fixed to those values in the
mixing fit. The effect of fixing the masses and widths and the shape parameters
on the mixing parameters is assessed by varying these parameters according to the
limited knowledge of their true values, and assigning a systematic uncertainty. The
masses and widths compared to the PDG values can be seen in Table 8.3 The
S-wave shape parameters which are fixed from the initial time-integrated fits are

shown in Table 8.4

It can also be instructive to evaluate the fit fractions of the individual non-
resonant and resonant contributions. The fit fraction is defined as the integral over
the Dalitz plot of a single amplitude squared normalised by the integral over the

Dalitz plot of the square of the coherent sum of all amplitudes:

FF. — f‘ajei‘z’ij!Qdm%Qdm%?)
j

= : 8.24
T 1> ake“ﬁk./\/lk|2dm%2dm%3 ( )

where the amplitude M; is defined in Equations and , the complex coefficient

is aje’® where a; and ¢; are real. The complex coefficient is either defined in terms

168



CHAPTER 8. FIT MODEL

Resonance Mass Width Mass (PDG) Width (PDG)
p(770) T777.67 £0.63 139.06 £ 149 77526 £ 0.25 147.8 £ 0.9
W(782) | 783.37 +£ 021  8.49 (fixed) 782.65 £ 0.12  8.49 %+ 0.08

£(1270) | 1275.5 (fixed) 186.7 (fixed) 1275.5 £ 0.8  186.7 = 2.5
p(1450) | 1465 (fixed) 400 (fixed) 1465 + 0.25 400 =+ 60
K*(892)* | 894.51 + 0.08  47.63 £ 0.16 891.66 £ 0.26  50.8 &+ 0.9

K3(1430)* | 1427.3 (fixed) 100 (fixed) 14273 +£1.5 100 = 2.2
K*(1410)% | 1414 (fixed) 232 (fixed) 1414 + 15 232 + 21
K*(1680)* | 1684.61 (fixed) 322 (fixed) 1718 + 18 322 + 110
K (1430)* | 1469.87 & 0.79  345.31 & 7.65 1425 + 50 270 + 80

Table 8.3: Masses and widths of the resonances used in the amplitude model: values
used in the mixing fit compared with the PDG values [78]. Units are in MeV and
measured uncertainties are statistical only. The strategy for fixing and releasing
parameters is described in the text.

of the real and imaginary components or the amplitude and phase. The sum of
the fit fractions does not necessarily equal unity due to the possible constructive
and destructive interference effects between the amplitudes. These constructed and
destructive interferences are quantified by the interference fit fractions which are

given in Chapter [L1] for the time-dependent mixing fit.

The fit fraction for the interference term between two resonances is given by:

’ T 12k akewk/\/lk]Qdm%de%

The fit fractions for the time-integrated fit are shown in Table |8.5] The largest
contributions are the K*(892)~ resonance with a fit fraction of 56.1%, the p(770)
resonance (18.40%) and the mm S-wave contribution (11.91%). The full list of
resonances, and the values of the complex coefficients from the time-integrated fits,
are used to generate the amplitude model for the toy studies discussed in the following

chapter.

The fit projections for the time-integrated fit are shown in Figure [8.1] These
show the projections of the individual components in the m?,, m?; and m3, systems.
The left plots are on a linear scale and the right plots are on a log scale in order
to increase the visibility of components with low fit fractions and other details of

the model. Various features of the amplitude model can be observed such as the
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System Parameter Real Imaginary
T S-wave 51 -1.028 £ 0.070  3.466 + 0.052
Ba 14.799 £ 0.078  2.806 £ 0.084
B3 42.985 4+ 1.054 -18.906 £ 0.619
Ba -1.859 £+ 0.250  -7.059 + 0.200
prod -4.702 (fixed)  -6.472 (fixed)

prod | 114.288 + 0.478  12.456 + 0.181
prod 118123 + 0425  -22.279 =+ 0.804
prod | 10.306 + 0.329 -14.780 + 0.068

K7 S-wave F 0.817 £ 0.015
or 0.077 £ 0.002
R 1 (fixed)
. -3.135 + 0.022
a 0.224 + 0.001
r -21.286 + 0.124

Table 8.4: S-wave shape parameters of the K-matrix (77) and LASS (K7) param-
eterisation from the initial time-integrated fit, to be fixed in the mixing fit. The
strategy for fixing the parameters is described in the text.

Resonance | Fit Fraction (%)
p(770) 18.40
w(782) 0.44

£2(1270) 0.87
p(1450) 0.15
7tn~ S-wave 11.91

K (392)" 56.05

K3 (1430)~ 2.01

K*(1410)" 0.19

K*(1680)" <0.1

K (1430)" 8.21

K*(892)T 0.26

K3(1430)+ <0.1

K*(1410)* 0.26

K (1430)* <0.1

Table 8.5: Fit fractions for the time-integrated fit quantifying the contributions of
individual amplitudes.
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constructive and destructive interference of the components and the peak of the mm
S-wave in the m3; projection. The two-dimensional Dalitz distributions can be seen
in Figure 8.2l In the time-integrated fits, all detector effects are accounted for as
discussed in Chapter [7] and the background is modelled by the data-driven approach

as discussed in the following section.

8.5 Combinatorial background model

The final time-dependent amplitude fit includes a single component to account
for background contamination. The fit requires background distributions for the D°
decay time and two-dimensional Dalitz plane; these are extracted using sWeighted
data. The sPlot method is discussed in Chapter 5] The sWeights are extracted
from a fit to the D° mass in the window 1805 MeV < m(D") < 1925 MeV for
the single-tagged samples and from a fit to the dm(D°) distribution with a cut of
1844 MeV < m(DV) < 1884 MeV for the double-tagged samples. The sWeights are
extracted separately for each year, K2 type and by single and double-tagged samples.
The D° mass is computed with the momenta refitted with the K2 mass constraint
(see the further details on Decay Tree Fitter in Chapter [5). The Dalitz variables are
computed with the momenta refitted with the K2 and D mass constraints, and the
D° decay-time is with the K3 mass constraint only. Note that while the sWeights
are necessary to extract the background distributions, they are not used directly in

the final amplitude fit.

An alternative method of extracting the background distributions would be to use
the m(D) sideband data, this assumes that the combination of lower and upper mass
sidebands represents the distribution of the full mass range. The sWeight technique
is preferable since is statistically disentangles the signal and background components
for the full mass range. It is instructive to compare the resulting distributions from
the lower and upper mass sidebands with those from the sWeight method, these can
be seen in Figures and The sideband background distribution may be used
to assess a systematic uncertainty since there are some differences in the background
shape such as in the K*(892)~ peak. While some differences are observed, they are

expected from the different kinematic regions in the lower and upper sidebands, and
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Figure 8.1: An initial time-integrated fit Dalitz coordinate projections: data (black
points), the background PDF (green line), signal PDF (red line). The dotted and
dashed lines show the projections of the individual components of the amplitude
model: pink, blue and green lines show resonant components in the m?2,, m?, and
m3, systems respectively. The components are computed from the square of the
amplitude of each contribution scaled by its fit fraction. Plots show the single-tagged

K2 (LL) 2016 sample.
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Figure 8.2: Two dimensional distributions of the Dalitz variables for the initial
time-integrated fit: data, fit model, pulls ([fit - data]/error) and background model.
Plots show the single-tagged K9 (LL) 2016 sample.
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in general the backgrounds are stable using these two different approaches.

The background distributions derived from the sWeight method are subject to
statistical fluctuations from the limited size of the data sample. To suppress the
effect of these fluctuations, the distributions of the Dalitz variables and decay-time
are smoothed. The smoothing is achieved by taking a weighted average of the central
bin and neighbouring bins. In the nominal model the neighbouring bins take 0.5 of
the weight of the central bin, this is varied to assess a systematic uncertainty. In the
two dimensional Dalitz histogram, the diagonal bins and the neighbouring bins are

included in the average.

8.6 Mistag

The initial flavour of the D° (D) is tagged by the charge of the muon in the
single-tagged sample and the charge of the pion in the double-tagged sample. The
single-tagged sample contains a fraction of events which have been reconstructed
with a muon of the opposite charge, hence the initial flavour of the D° is assigned
incorrectly. This is mainly due to cases where a genuine D° is paired with a random
muon from another decay. A second possible source of mistagged candidates arised
from poorly reconstructed muons which have the incorrect charge assignment. The
mistag component therefore needs to be quantified and accounted for in the amplitude
model. The mistag fraction is defined as the fraction of cases with random muons;
half of which are assigned the wrong flavour since half have the correct flavour by

chance.

A mistagged candidate differs from signal because the measured D° decay-time
would not be correct since the D° is paired with a random muon, and for half of
the mistagged candidates the flavour information would be incorrect. Therefore
the mistag component P,,; (Equation then consists of half with the Dalitz
coordinates switched and half with them the same since for half the D° would be
assigned the correct flavour by chance. For the total component P,,;, the amplitude
is calculated with the time-dependent and mixing parameters fixed since we do not
know the correct decay-time of the D° and we neglect the contribution of this to the

mixing.
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Figure 8.3: Comparison of the background distributions for, lower and upper m(D°)
sidebands and background sWeighted data for the Dalitz variables m?,, mi; and ma.
Single-tagged K2 (LL) 2018 sample.
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In previous analyses [9, [71] the mistag probability was estimated using the double-
tagged sample. The method is to compare the two tags - that from the pion (which
we know to be correct as only genuine D* candidates will peak in the dm distribution)
and that from the muon. The fraction of candidates where the pion and muon tags
disagree can be used to quantify the mistag fraction in general, which is then assumed
to be the same for single and double-tagged cases. However we know that the mistag
fraction as determined from the double-tagged sample may not be the same as that
in the single-tagged sample. This is due to the mistag probability depending on the
B meson decay vertex quality, which is different between the two modes due to the
presence of the soft pion. In the double-tagged sample, the vertex fit is performed
with the additional track from the soft pion which effects the vertex quality since
we have more information from the additional track. The additional particle in the
double-tagged case therefore lead to significantly more precise measurements of the
DY production vertex than the single-tagged. This means that the single-tagged and
double-tagged samples may not have the same fraction of candidates where a random

muon passed the selection requirements to be combined with the D° (D*) candidate.

As an alternative method, the two-body control channel D — K~7" can be
used where one can estimate the mistag both through the double-tagged sample as
well as directly from the single-tagged by comparing the signs of the muon and kaon

(after accounting for doubly-Cabibbo suppressed and mixing effects). The mistag
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probability can therefore be directly derived from the D° — K~7* channel, where
the yields of right-sign (D° — K~7") and wrong-sign (D° — K*7~) samples are

calculated from K7 invariant mass fits. The mistag fraction is then defined as:

nws

Mistag = (8.26)

nws + NRs

where nrs and ny g are the signal yields in the right-sign and wrong-sign samples
respectively. This ratio is subtracted by the known values of mixing and doubly-

Cabibbo suppressed decay as a function of D decay-time [T].

In a previous LHCb analysis of semi-leptonic D — hh decays, it was found that
the mistag probability was dependent on D° decay-time. However this has been
shown to be as a result of some trigger (selection) requirements which were not used
in this analysis, whereas using the selection requirements for this analysis means the
mistag probability is reasonably flat as a function of decay-time. Figure presents
a comparison between different scenarios of trigger and preselections on this control
channel in 2017 and 2018 data-taking years. With the trigger requirements from the
Ar analysis, there is an enhanced dependency of the mistag fraction on decay-time
(red points). However with the trigger and preselections used in this analysis, the
time dependency is flattened (blue points). The trends are consistent among the

data-taking years.

The D° — K7 sample is processed with a similar selection to the one described in
Chapter , with different MVAs used for K2 LL and DD samples. To confirm that the
mistag probability in the DY — K7 channel is representative of the K277~ channel,
both double-tagged samples were analysed and compared. To match the kinematics
of the two-body and three-body decays, the Gradient Boosted reweighter [77] is used.
Kinematic variables including the B decay vertex x?, transverse momentum of the
p and D° and psuedorapidity of the DY are used as training variables. Figure
shows the mistag probability as a function of D decay time separately for D° and
D°. This mistag probability with the K2 (LL) MVA model is lower than that with
the K3 (DD) model. The mistag fraction is derived separately for K9 LL and DD
samples since the effect of the MVA is different. It is found to be 0.120 £ 0.013% for
the LL sample and 0.291 £ 0.01% for DD. This shows good agreement between the
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Figure 8.5: Comparison of the mistag probability in the single-tagged sample with
different trigger requirements and preselections for 2017 (left), and 2018 (right).
Plots taken from Ref. [36].
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red and blue points (D° and D).

8.7 Fit model summary

In summary, the default amplitude model is described by the coherent sum
of amplitudes of the D° decay through intermediate resonances and non-resonant
components. The 7 S-wave is described by the K-matrix formalism and the K
S-wave by the LASS amplitude. Relativistic Breit-Wigner propagators are used for
the parameterisation of the resonant amplitudes, apart from the p(770) which is
described by the Gounaris-Sakurai model. The free parameters of the final mixing fit

are the mixing parameters x and y, the DO lifetime 7(D°) and the real and imaginary
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parts of the complex coefficients (¢, in Equation . Other model parameters are
fixed based on preliminary time-integrated fits. These are the masses and widths
of the resonances, the K-matrix shape parameters 3, fP7°¢ and sgmd as well as the
LASS shape parameters, ¢r, F, ¢r, a and r. Fit stability and fit bias studies
have been performed and are discussed in the following chapter. The background
model is derived from a data-driven approach by taking the Dalitz and decay-time
distributions from the sWeighted histograms and applying a smoothing factor. The

choice of amplitude model has a number of associated systematic uncertainties on

the measured values of x and y which will be discussed in detail in Chapter [10}
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CHAPTER 9

Toy studies

One method to test the bias and stability of the mixing fit is the use of so-called
‘pseudo-experiments’ or toy data samples. This involves generating pseudo-data
samples with realistic simulations of backgrounds and detector effects. By fitting
ensembles of these ‘toy’ data samples, potential fit biases, expected statistical precision
and several sources of systematic uncertainty can be assessed in a statistically sound
manner. The toy data samples are generated using the signal model derived from
the initial time-integrated fit, the detector effects derived from simulation and the
backgrounds derived from the data-driven approach described in Chapters [7] and
Bl When generating these pseudo-data samples the true values of the mixing (and
other) parameters are exactly known. Hence, unlike in a fit to real data, we can
directly compare the fit results with the truth, and thereby draw conclusions about

potential fit biases, or issues with evaluating parameter uncertainties.

The process of generating the toy data samples is done within the GooFit [73]
framework and proceeds as follows. The signal model is the time-dependent amplitude
model described in Chapter [§, with the complex coefficients of the amplitudes and
shape parameters of the amplitude model taken from the initial time-integrated fit.
The phase-space acceptance is included in the amplitude model. The decay-time
is defined within the mixing formalism discussed in Chapter [2 corrected for the

decay-time acceptance and convoluted with the decay-time resolution.
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Events are generated in a two-stage process. Events are first generated according
to some simple PDF (uniform in phase-space, exponential in decay-time). Then we
perform an accept/reject procedure to match the desired PDF, where events are
randomly selected according to the distribution of the underlying PDF, taking into
account the non-uniform acceptance and resolution. The background component
is added by generating candidates with decay time and Dalitz variables randomly

assigned using as a PDF the background distributions from sWeighted data.

The per-candidate signal probabilities are assigned, to mimic the case for real data.
This is done by background and signal candidates being assigned a DY mass (according
to some suitable PDF), the value of which can be translated into a signal /background
probability. The D° mass is approximated as a uniform background and signal
Gaussian distribution; from this the per-candidate signal probabilities are assigned

to each event in the toy data sample.

The number of signal and background candidates is selected to match the yields
in data. For the study in this section we consider one data sub-sample only, using
the sample specific background and detector effects. The effect of mis-tagged initial
DP flavour is also included, by randomly flipping the muon charge and exchanging
the Dalitz coordinates m?, and m?, for the appropriate fraction of signal candidates.
The outcome is a pseudo-dataset which mimics the real data in terms of detector
effects and backgrounds, and can be used as an input sample for the fitter validation
studies. Example fit projections for a single toy can be seen in Figure [0.1] The
decay-time projections are in Figure [9.2] and the two-dimensional Dalitz plots are in

Figure [9.3|

9.1 Fit bias studies

The fit validation procedure consists of generating and fitting an ensemble of
O(100) toy data sets. The ensemble of fits leads to a corresponding ensemble of fit
parameter values and uncertainties, which can be compared to the true (generated)
values. This can be done either directly (by plotting the distribution of the fitted
parameter for the ensemble of fits) or by inspecting the derived pull quantity (defined

as [fit value - generated value] /uncertainty). The distribution of the fitted parameter
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Figure 9.1: One-dimensional projections of the Dalitz coordinates for one example
toy fit, linear scale on the left, and log scale on the right: toy data (black points), fit
model (blue line), signal (red line) and background (green line).
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(in particular z, y and 7(D°) but also the complex coefficients of the amplitudes of
the resonant and non-resonant components) or the pulls can then be fitted with a
Gaussian. The mean of the pull distribution can be used to quantify potential fit
biases, where an unbiased fit has a mean consistent with zero. The uncertainties
reported in the fit are accurate if the width of the corresponding pull distribution is
consistent with unity. Ensembles are generated with different values of the mixing
parameters, corresponding to a grid of 9 (z, y) points. The grid is distributed as
[ — o, p, u+ o] for z and y where p and o are the mean and uncertainty of the
+0.12

current world average values (z = 0.517517% and y = 0.63 & 0.07% at the time of
writing [27]). The generated D" lifetime is set to the PDG value of 7(D") = 0.4101 ps.

9.1.1 Results

The largest ensemble is generated with the world average values of the mixing
parameters and has ~250 pseudo-experiments. The distributions of z, y and 7(D°)
are shown in Figure . The fitted value of z is 0.540 4+ 0.014% with a spread (width
of the Gaussian) of 0.216 4+ 0.012%. For y the fitted value is 0.649 + 0.009% with a
spread of 0.141 4 0.007%. One can also examine the distribution of parameter errors
reported by the fit: these are o(z) = 0.1998 £0.0001% and o(y) = 0.1694 £+ 0.0001%.
These are evaluated from the fits in Figure The results for the DY lifetime are:
7(D%) = 0.41 £ 0.00 ps and o(7) = 0.0005691 & 0.0000001 ps. The sensitivities can
then be estimated as 0.22% for z and 0.14% for y, these are consistent with the

blinded fits to data reported in the following chapters.

The pulls of the parameters of interest z, y and 7(D") are shown in Figure .
The pulls are fitted with a Gaussian, the mean of which is consistent with zero
which gives confidence that the fitter is unbiased. The width is equal to unity within
uncertainties for  and 7(D°) and is below unity for y; this gives confidence that
the fitter is not underestimating the uncertainties. Figure shows the pulls of all
the free parameters of the fit including the magnitude and phases of the resonant
and non-resonant components of the amplitude model. This shows there may be
some biases in the measurement of the amplitude model. We assess the affect of the

amplitude model on the final measured values of x and y and assign a corresponding
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systematic uncertainty as
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Figure 9.4: Distributions of the fitted values of x and y from the ensemble of pseudo-
experiments, fitted with a Gaussian. The mean is consistent with the generated
value, the width is consistent with the uncertainties given in the text.
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the stats box.

9.1.2 Alternative values of mixing parameters

The procedure described in the previous section is repeated for the nine com-
binations of z and y mentioned previously. The results are summarised in Table
0.1] In this case the toy samples are representative of one data sub-sample only
(single-tagged K3 (LL) 2016). The bias is expressed as the mean of the distribution
of the pulls of the given parameter and, as can be seen from the results in the table,
there are no significant biases in x and y. Figure visualises the results in Table
9.1 where the mean and the width of the Gaussian are shown as the black bars,
the corresponding uncertainties are shown by the blue and orange bars. Again, the

width is slightly larger than unity which may suggest that the uncertainties are
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underestimated in the fit. This can be accounted for with a systematic uncertainty

which will be discussed in the following chapter.

9.2 Toy fits with CP-violation allowed

As mentioned in Chapter [§, the mixing fit can be run with the assumption of
no CP-violation or with CP-violation allowed. CP-violation may be included in the
mixing fit by allowing different values of the mixing parameters for D° and D° by
zop £ Az and yop = Ay. These are related to the CP-violation parameters |q/p|
and ¢ as follows (repeated from Equations for convenience):

) R )

oo (- v )
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width of the Gaussian, the uncertainties on the mean and width are the blue and
orange bars respectively. The toys are generated with world average values of the

Ax:l[ycosgb(’g‘—’]z’)—:csinaﬁ(‘g‘ntlgm (9:4)
2 D q p q

In fits with CP-violation in mixing allowed, the parameters Ax and Ay are

Ycp =

N —

allowed to float, as opposed to the nominal no CP-violation case in which these
are fixed to zero. For this study, toy datasets are generated with no CP-violation
(Azx = Ay = 0) but the CP-violation parameters Az and Ay are allowed to float in
the mixing fit. Similarly to the previous toy studies, the pulls of the parameters of
interest are fitted with a Gaussian, the mean of width is consistent with zero and the
width is consistent with unity within uncertainties. The distribution of the pulls is
shown in Figure and the fitted parameters in Figure [9.10. This gives confidence
that this method of measuring time-dependent CP-violation in mixing is valid and

unbiased.

In summary, pseudo-experiments are used to validate the fitter, assess fit biases

and give confidence in the evaluation of the errors reported in the fit. While we use
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Generated Bias

v (%) y (%) | Aujola) Ay/oy)

0.51 0.63 |-0.131 = 0.141 0.226 4+ 0.131
0.51 0.56 |-0.204 =+ 0.156 0.189 £ 0.152
0.51 0.70 | -0.204 =+ 0.156 0.189 £ 0.152
0.37  0.63 | 0.129 £ 0.083 -0.245 + 0.068
0.37 0.56 |-0.013 = 0.126 0.004 + 0.144
0.37  0.70 | 0.045 £ 0.100 -0.330 £+ 0.114
0.63 0.63 | -0.040 &+ 0.171 -0.122 £ 0.084
0.63 0.56 | 0.058 & 0.076 -0.060 £ 0.083
0.63 0.70 | 0.059 4 0.207 -0.042 £ 0.139

Table 9.1: Summary of the results of running fits over ensembles of toy pseudo-
experiments, generated at a range of different mixing parameter values covering the
world average values +=10. The bias is expressed as the shift in the parameter divided
by the statistical uncertainty o(z,y).

toys for this purpose, one can also assess sources of systematic uncertainties through
the use of dedicated toys. For example, one can inject some effect into the toy
generation and then fit with the regular mixing fit model which has been developed.
This will give an idea whether injecting some effect into the toy data biases the results
of the parameters of interest. For example, we neglect the phase-space resolution in
the fit model when in reality this is non-zero. One can assess the effect of neglecting
the phase-space resolution by generating toy datasets with the phase-space resolution
included and then fitting with a model in which it is not. This shows the effect of
neglecting it in the fit. This will be discussed in more detail in Chapter [10]
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CHAPTER 10

Systematic Uncertainties

This analysis relies on several inputs and assumptions including: detector effects
from simulation, contributions from background and mistagged candidates, and
the amplitude model. These have an impact on the measured values of the mixing
parameters which must be quantified through systematic uncertainties. These can be
evaluated in different ways and are discussed in detail in this chapter. One method
is to make some variation to the analysis inputs or method and rerun the fit to data,
any shift in the parameters of interest can be considered a systematic uncertainty.
This is typically evaluated by a resampling technique in which any fixed parameters
or inputs can be randomly resampled (assuming a Gaussian distribution) taking
into account their uncertainties and correlations. The fit to data is rerun O(100)
times and the shift on the measured value of the mixing parameters is fitted with a
Gaussian - this can be used to quantify the spread or shift on the measured parameter.
Alternatively one can use dedicated toys to evaluate certain systematic uncertainties.
Realistic toy data can be generated with some variation to the inputs and the fit
run, any shift in the measured value of x and y can be quantified as a systematic
uncertainty. Systematic uncertainties on the mixing parameters are extracted from
various sources including the fit model used in the amplitude fit and the detector

and resolution effects which are derived from simulation.

193



CHAPTER 10. SYSTEMATIC UNCERTAINTIES

10.1 Fit model

The measurement of the mixing parameters in the model-dependent analysis
relies on a choice of amplitude model. The amplitude model is necessary to associate
particular candidates with particular decay processes (eg. Cabibbo-favoured, doubly-
Cabibbo-suppressed followed by mixing), based on their Dalitz coordinates. The
measurement is therefore sensitive to the details of this model, such as the set of
intermediate resonances considered, and their specific amplitude descriptions. For
example, the choice of intermediate resonances is based on that from Belle and BaBar
[20] and verified by adding alternative resonances until there is not a significant
improvement in the fit quality. In addition some of the model parameters are fixed
from the initial time-integrated fits described in Chapter [§] The limited knowledge
of these parameter values must be propagated to the final measurement in the form
of a systematic uncertainty. Therefore we consider several modifications to the
amplitude model and evaluate the effect of these on the measured value of the mixing

parameters.

The amplitude of the D° — K277~ decay is given in Equation and is

repeated here for convenience:
A (m2,m2) = F(q,q0) x FP(p, po) x Z1() x Tp(m) (10.1)

The factor Z1,(2), describing the angular dependence, is given in the Zemach for-
malism. The form factors F' éL) and FT(L) describe the decay D — rc and r — ab
respectively and are parameterised by the Blatt-Weisskopf form factors in which
the Blatt-Weisskopf meson radius enters the amplitude formalism as described in
Chapter [§l The dynamical function 7, relies on different resonance lineshapes; the
choice of resonances which enter the model and of the lineshape used to describe the
resonance are the model-dependence of this analysis. In this analysis an initial list of
resonances is selected based on previous investigations of this channel [20] [71]. The
model is refined through an initial investigation with time-integrated fits to the data.
The goal is to achieve as good a fit quality as possible while excluding resonances

without significant fit fractions which favours a simpler model. Therefore it is possible
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that alternative models can be found which have similarly good agreement with
data. The amplitude fit can be repeated with several different models by adding
resonances, and corresponding systematic uncertainties assigned to account for the
corresponding variation in the mixing parameters. Systematic uncertainties are also
evaluated to account for the fact that the masses and widths of the resonances as
well as the S-wave shape parameters are fixed based on those values from the PDG

and from initial time-integrated fits.

10.1.1 Blatt-Weisskopf radii

Since there is no strong consensus on the values of the Blatt-Weisskopf meson
radii, we use a data-driven approach to select the fixed values used in the default
fit, and to determine a reasonable range of variation for systematic studies. As a
first step, we repeat the (blinded) mixing fit several hundred times with the values
of the two Blatt-Weisskopf radii randomly resampled for each fit, according to a
uniform 2D distribution. From this we pick a nominal value around the minimum of
the FCN= —2log(£) and a suitable width to vary for the systematic uncertainty;
this is chosen to be 1.0 GeV~! for the meson radii for the intermediate resonance
and 2.25 GeV~! for the D° meson. We repeat the fit O(100) times with the meson
radii resampled with a Gaussian distribution of this mean. The width is chosen to
be 0.25 GeV~! which is assumed from the first step to be a reasonable variation.
This ensures that the variation of FCN in the resampled fits is reasonable, and
therefore that the corresponding variations observed in the mixing parameters can
be interpreted as the systematic uncertainties on these quantities. The variations
of the mixing parameters is estimated as the mean of the Gaussian when fitting
the shifts for the individual fits. Using this method the variations in the mixing
parameters are 4.216 x 107> for z and 9.434 x 1075 for y. This corresponds to 1.92%

of the statistical uncertainty for x and 5.05% of the statistical uncertainty for y.

10.1.2 Choice of resonances

The initial amplitude model is chosen based on previous studies such as Ref. [20]
and [71]. It is then fixed based on the initial time-integrated fits described in

Chapter [8] The default model is chosen by adding components until subsequent
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Az(%) Azfo(z) Ay(%) Ay/o(y) A(-2log(L))
Remove K*(1410)7 | -0.007  -0.037  -0.086  -0.550 1219
Add K*(1680)* 0.086 0442  0.038  0.247 -40.4
Both above 0.014 0074  -0.096 -0.616 +147
Remove f77°? 0.098 0505 -0.159  1.022 +12,262

Table 10.1: Alternative amplitude models. The significance of the shift is expressed
by dividing by the statistical uncertainty. The last column is defined such that a
negative value corresponds to an improved fit quality.

additions do not strongly affect the fit quality, defined as the minimum negative log
likelihood —21log(L). As such, there may be a number of alternative models with
extra components that have comparable fit quality to the default fit. Therefore adding
resonances will provide a reasonable measure of the stability of the mixing parameters
versus the model choice. The model-dependence of this analysis enters through this
choice of amplitude model. Alternative models are investigated by repeating the
mixing fit by adding and removing terms in the S-wave parameterisation, and by
adding or removing resonances. As seen in Table m, when K*(1410)* and f7°* are
removed, the fit quality (—2log(L)) is significantly worsened. By construction, the
default model has the minimum reasonable resonance content, so only variations with
additional resonances are considered. In addition the 5 and fis od correspond to 7
scattering terms which are not physical in this case. The metric used to determine the
reasonable variation in fit quality is the negative log likelihood. Using this metric we
added the K*(1680)" resonance as discussed in Chapter |8 and choose not to include
the other variations as a systematic since they result in a significant degradation
of the fit quality - this can be seen by the positive numbers corresponding to an
increase in the negative log likelihood. We may choose to consider other variations,
however previous studies (Refs. [20, [71] [78] show no other viable options. Therefore
we chose not to assign a systematic uncertainty to the model choice, and propose
that the variations of the shape parameters and masses and widths discussed in the
subsequent sections account for any discrepancies between the amplitude model and

the data.
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10.1.3 Masses and widths of resonances

As mentioned in Chapter [§ the masses and widths of the resonances in the
amplitude model are fixed from initial time-integrated fits or to the values from the
PDG, and summarised in Table[8.3] The fit is run O(100) times with the parameters
resampled assuming a Gaussian distribution with the mean and the width taken
from the central value and uncertainty from the time-integrated fit (or PDG). For
those parameters floated in the initial time-integrated fit, the correlations are taken
into account. The values fixed from the PDG are assumed to be uncorrelated. This
gives a value for the systematic uncertainty on z as 2.014 x 10~* and 1.692 x 104
for y which corresponds to 23.3% of the statistical uncertainty for x and 22.2% of

the statistical uncertainty for y.

10.1.4 S-wave shape parameters

Similarly, the shape parameters of the LASS Kn S-wave and the K-matrix
parametrisation for the mw S-wave are fixed in the mixing fit to those values from
initial time-integrated fits. To account for the uncertainties on these parameters
the mixing fit is repeated O(100) times with the parameters resampled according to
the fit values from the time-integrated fits and the uncertainties. The correlations
are taken into account separately for the K-matrix and LASS parameters since
these are fixed in separate time-integrated fits. Those parameters fixed in separate
time-integrated fits are assumed to be uncorrelated. The corresponding shifts in x
and y are found by fitting the difference in the measured values of x and y in the
(blinded) nominal fit and those with the S-wave parameters resampled. Those from
the K-matrix and LASS are added in quadrature to obtain a systematic uncertainty
to account for the uncertainties in the fixed S-wave shape parameters. This gives a
value of 5.66 x 107> for = and 8.87 x 107 for y. This corresponds to a 6.62% of the

statistical uncertainty for x and 11.77% of the statistical uncertainty for y.

10.1.5 Total fit model uncertainty

In summary the contributions to the total fit model systematic uncertainty are:

the fixed value of the Blatt-Weisskopf meson radii which enter in the form factors
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Source Systematic uncertainty
x [1079] y [1077]
Blatt-Weisskopf radii 5 11
Masses and widths 23 22
S-wave parameters 6 9
Total 24.4 26.2
Statistical | 855 75.4

Table 10.2: Contributions to the total fit model systematic uncertainty.

described in the amplitude model; uncertainties due to the limited knowledge of the
masses and widths and the S-wave shape parameters which are fixed from initial
time-integrated fits. These are listed in Table [I0.2] The contributions are added in
quadrature to obtain the total fit model uncertainty. Alternative amplitude models
which give comparable fit quality by adding resonances and S-wave parameters are
neglected as a systematic uncertainty since the model is by construction minimal, and

there are no obvious remaining candidates for additional resonances to be included.

10.2 Signal and background mass models

As mentioned previously (chapters {4 and , there are inputs to the mixing fit
which are derived from a fit to the D invariant mass (dm) for the single-tagged
(double-tagged) samples. These are: the per-candidate signal probabilities, used to
set appropriate fractions of signal and background PDFs for each event; and the
background PDF which is derived using a data driven approach using the sWeights
from the mass fits. As shown in Chapter 5] the fits are of good quality with no
obvious missing or mismodelled components. However there is still an associated
systematic uncertainty on the choice of parameterisation in the mass fit. This is
evaluated by repeating the mixing fit with new signal and background probabilities
and sWeights derived using alternative functions for the signal and background

components in the m(D) and dm fits.

For the m(D") signal PDF a Gaussian and a Crystal Ball function is used instead
of the nominal model of a Gaussian and a Johnson SU. A Crystal Ball is a PDF which
consists of a Gaussian core and a power-law low end tail. This is commonly used in

high energy physics to model processes which take into account non-Gaussian tails
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such as radiative effects. For the alternative background distribution, an exponential
function is used instead of a Chebychev polynomial. These alternative m(D°) fits

are found to give comparable fit quality (y?/ndof) compared to the nominal model.

New inputs of signal probabilities and background PDFs are produced using the
alternative models discussed above. The mixing fit is repeated with the new sets
of signal probabilities and background distributions. For the signal m(D°) model,
the mixing parameters are shifted by Az = —7.96 x 107% and Ay = —2.21 x 107%;
this corresponds to 0.41% of the statistical uncertainty for x and 14% for y. For the
alternative background model, the shift in z is Az = 4.99x 10~ and Ay = 4.73x10~*
for y; this corresponds to 25.7% of the statistical uncertainty for z and 30.4% of the
statistical uncertainty for y. These shifts can be assigned as symmetric systematic

uncertainties for the mixing parameters.

There is also a finite statistical precision associated with the mass fits; even with
a perfect fit model we only have limited ability to statistically disentangle the signal
and background components. This will give some uncertainty on the shape of the
background PDF which uses the sWeights and which is accounted for and described in
the next section. However there is also some uncertainty associated with the per-event
signal probabilities which are used in the final mixing fit. The statistical precision
associated with the mass fit is much smaller than the corresponding systematic from

alternative models, hence it is neglected.

10.3 Background PDF

As mentioned in Chapter [§ the PDFs used to model the decay-time and Dalitz
distributions in the mixing fit are derived from a data-driven approach. sWeights
are derived from the m(D°) and dm fits as described in previous chapters (5 and
and are used to statistically disentangle the signal and background distributions.
The histograms in Dalitz variables and decay-time are weighted with the background
sWeights. The background PDFs used in the mixing fit therefore have limited
statistical precision due to the limited statistics used to construct the histograms. To
assess the effect this has on the final measurement, the fit is repeated 100 times with

each bin (in the histograms in Dalitz variables and decay-time) randomly resampled
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assuming Poisson statistics using a Gaussian of mean N (number of events in each
bin) and width V/N. The resulting shift in the mixing parameters = and y can be
assigned as a systematic uncertainty. The corresponding systematic uncertainties
are 3.526 x 107* for = (16% of the statistical uncertainty), and 4.921 x 10~ for y
(26% of the statistical uncertainty).

For the nominal fit, the histograms are smoothed with a smoothing factor which
averages over neighbouring bins of the histogram. The smoothing factor corresponds
to the weight assigned to the neighbouring bins in the averaging: ie. a smoothing
factor of 0 would mean the neighbouring bins are not included, 1 would mean they
are assigned equal weight in the averaging and 0.5 would mean they are assigned
half the weight of the central bin in the averaging. For the default fit the smoothing
factor is 0.5. The background histograms are a two-dimensional histogram in Dalitz
coordinates and a one-dimensional histogram in decay-time. For the two-dimensional
histogram, the diagonal neighbouring bins are included in the average. To account for
the possible effect on the smoothing on the measured value of the mixing parameters,
the fit is repeated with reasonable variations of the smoothing parameter from 0.1
to 0.9. The shifts in the measured value of x and y can then be assigned as a
systematic uncertainty. The systematic uncertainties are found to be 4.96 x 107> for
z (2.25% of the statistical uncertainty) and 1.42 x 107 for y (7.59% of the statistical

uncertainty).

An additional check to assess the effect of the background histogram PDF is to
use sidebands for the histogram as opposed to the nominal method of background
sWeights. Comparisons between the lower and upper sidebands and the sWeights
have been done and are shown in Chapter [§] these are found to be in reasonable

agreement.

10.4 Mistag

The mistag fraction is derived as described in Section and accounts for the
small fraction of DY — K277~ decays which have been assigned the wrong flavour
given they were reconstructed with a muon of the wrong charge. The affect of

using this fixed fraction needs to be accounted for as a systematic uncertainty. This
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is done by repeating the mixing fit with variations of the mistag fraction of +
lo. The shifts caused by the two fits are added in quadrature and assigned as a
systematic uncertainty. They are found to be 0.746 x 107> for x and 8.11 x 107° for
y, corresponding to 0.87% of the statistical uncertainty for = and 10.8% for y.

10.5 Phase-space acceptance

Variations in acceptance over the two-dimensional Dalitz plane are modelled
using a parametrisation derived from Monte Carlo, as described in Section [7.1] A
common model is used for all data samples with parameters extracted independently
for each one. The resulting parameters have an uncertainty due to the finite statistics
of the Monte Carlo sample, these must be accounted for when assigning a systematic
uncertainty to the mixing parameters. In addition there is a potential systematic
uncertainty associated with the limited agreement of the Monte Carlo with data,
largely mitigated against by the reweighting procedure described in Chapter [0}
Finally, we need to take into account the quality of fit of the parametrisation used

to model the efficiency variation from MC.

The limited MC statistics is taken into account by repeating the mixing fit
100 times with the phase-space efficiency parameters resampled assuming Gaussian
behaviour and taking into account the uncertainties and correlations between the
parameters. The shift in = and y with respect to the nominal (blinded) fit is fitted
with a Gaussian, the width can be assigned as a systematic uncertainty. The shift
in z is 1.607 x 10~ and for y it is 9.749 x 107°. These correspond to 7.30% of
the statistical uncertainty for x and 5.22% for y. The fit quality of the efficiency
parametrisation is assessed by inspecting the x?/ndof; this is close to 1 for all samples
so we can neglect this as it is smaller than the effect from the MC statistics. For
any fits with y?/ndof > 1 we may inflate the uncertainties on the parameters when
resampling; however in this case we neglect this since the fits have x?/ndof close to

unity.
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10.6 Decay-time acceptance

The procedure of including the decay-time acceptance in the mixing fit is described
in Section [7.2] This is through a correction factor which is derived from Monte
Carlo simulation. A systematic uncertainty is assigned associated to the limited
Monte Carlo statistics. As with the other MC inputs, the effect of this statistical
uncertainty is determined by running an ensemble of mixing fits with the decay time
correction parameters resampled based on their central values and uncertainties. The
associated systematic uncertainties are 1.475 x 107 for z (0.67% of the statistical

uncertainty) and 3.39 x 107° for y (1.81% of the statistical uncertainty).

There is, in addition, a known disagreement seen in the decay-time acceptance
description as shown in Section [7.2] This can be accounted for through the use of
dedicated toys where we generate data with a more realistic decay-time acceptance
model and then fit with the nominal fit model. This will be assessed either as a

systematic or by improving the description of the decay-time acceptance in GooFit.

10.7 Decay-time resolution

The decay-time resolution is derived from simulation and is described by a set
of parameters of a triple Gaussian as described in Section Similarly these
parameters have corresponding uncertainties caused by the limited size of the Monte
Carlo samples. In order to assess this, the mixing fit is repeated 100 times with the
parameters resampled according to their central values, uncertainties and correlations.
The spread of the measured values of the mixing parameters is assigned as a systematic
uncertainty. This is evaluated as between 0.2 - 0.8% of the statistical precision for x

and y.

10.8 Phase-space resolution

As discussed in Chapter [7], there is a finite phase-space resolution which smears
the measured values of the Dalitz coordinates and this is not accounted for in the

GooFit amplitude model. Therefore we need to assess the effect of neglecting this
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resolution on the measured values of x and y. This is done through the use of toys:
an ensemble of pseudo-datasets are generated from a single underlying toy sample.
The phase-space coordinates are re-smeared several times in order to generate an
ensemble of pseudo-datasets. As such any variation in the measured values of the
mixing parameters within this ensemble must be as a consequence of the phase-space
resolution. The Dalitz coordinates are smeared according to the known phase-space
resolution as derived from simulation and discussed in Chapter [7] The coordinates
m3, + m?2; are used to smear the toy dataset since these are uncorrelated and the
correlations do not need to be taken into account when smearing. This method
can result in candidates being pushed out of the physically-allowed region, which
can’t happen in real data due to the kinematic constraints used when calculating the
phase space variables. To ensure realistic pseudo-datasets, for candidates where this
happens we simply repeat the smearing until the post-smeared candidate lies in the
allowed phase space. This is found to accurately reproduce the impact of resolution
on real data. The pseudo-datasets are then fitted with the nominal fit model (without
phase-space resolution). Any shift between the generated and measured values of
x and y can be assigned as a systematic. This is found by plotting the shifts from
the ensemble of pseudo-experiments and fitting with a Gaussian, the shift can be
quantified as the mean or width of the Gaussian. This is found to be 2.40 x 10~ for
x and 1.46 x 107 for y, corresponding to 28% and 19% of the statistical uncertainties

respectively.

10.9 Numerical integration of PDFs

As part of the maximum likelihood fitting framework, the PDFs must be nor-
malised and the functions comprising them must be integrated. The decay-time
PDF used in the mixing fit model is analytically integrable, however the PDF is not
analytically integrable over the two-dimensional Dalitz plane. Instead, a numerical
integration is used where the PDFs are evaluated at points on a two-dimensional
grid. The grid covers the physically allowed Dalitz region (the value of the PDF
outside this region will be zero) and the separation of the grid points is uniform. The
grid spacing must be carefully chosen such that it is fine enough to ensure precise

integration and to resolve narrow resonances, but coarse enough to allow the fit
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to converge within the available computing and time resources. The nominal grid
spacing is chosen in this case to be a separation of 0.0025 GeV?/c* corresponding
to 1400 bins in the Dalitz variable’s range 0 - 3.5 GeV?/c*. A further reduction
in the grid spacing gives changes to the measured values of the mixing parameters

significantly smaller than the statistical uncertainties reported in the fit.

In order to assess the effect of the grid spacing in the normalisation on the
measured value of the mixing parameters, we vary the grid spacing to 50% of the
nominal value, the changes in the mixing parameters can be assigned as a systematic
uncertainty. The systematic uncertainty can be conservatively chosen to be the
largest shift in each mixing parameter; this occurs in both cases when increasing the
grid spacing. For x the shift is 3.79 x 107, for y it is 1.34 x 107°. In both cases of
finer and coarser grids, the changes in the measured value of the mixing parameters

are at the level of 0.5 - 2% of the statistical precision.

10.10 Systematic uncertainties summary

A summary of all the systematic uncertainties is given in Table [10.3] One of
the largest contribution is of the uncertainties associated with the amplitude model.
This is followed by also the background mass models which are used for the signal
probabilities and the background PDFs in the mixing fit, as well as the background
PDF. The total systematic uncertainties are calculated by adding in quadrature the
individual contributions. This assumes that there are no correlations between the
systematic uncertainties and may be conservative if some have significant correlations.
For example the background PDF is considered as a systematic uncertainty in the
background mass model and the background PDF' in Table these therefore may
be correlated and overestimating the contribution of the background PDF to the
total systematic uncertainty. However since it is not dominant and is less than the

statistical uncertainty we decide to quantify as such at this time.
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Source Systematic uncertainty
z[107°]  y[1077]
Fit biases 0 10
Signal mass model 2 5
Background mass model | 2 5
Background PDF 35 49
Background smoothing | 5 14
Mistag 1 8
Phase-space acceptance | 16 10
Decay-time acceptance 1 3
Decay-time resolution 1 1
Phase-space resolution 24 15
Numerical integration 0 0
Total experimental 39.3 54.2
Total fit model 24.4 26.2
Total 46.2 60.2
Statistical 855 754

Table 10.3: Summary of the systematic uncertainties, the fit model systematic is

detailed in Table .
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CHAPTER 11

Results and Crosschecks

This thesis presents the measurement of the mixing parameters of the D° meson
using a time-dependent amplitude analysis of D® — K27" 7~ decays at the LHCb
detector. The mixing parameters z and y (and the CP-violation parameters Az
and Ay) are extracted from a fit of a time-dependent amplitude model to the Dalitz
coordinates and decay-time of this decay. The amplitude model is discussed in
Chapter [§] we use the isobar model where the D° — K2r* 7~ decay amplitude is
modelled as a linear superposition of resonant (Breit-Wigner and Gounaris-Sakurai)
and non-resonant amplitudes. The amplitude model uses the K-matrix formalism
to describe the S-wave component in the 77~ channel and the LASS model for
the Km S-wave. Some aspects of the amplitude model are determined in an initial
time-integrated fit to the same data sample. This includes the shape parameters
of the S-wave components (fixed in the mixing fit), some masses and widths of
resonances, and the starting values for the complex coefficients multiplying each
amplitude. In the time-integrated fit, we fit to a dataset of D° decay times below
one DY lifetime where there are negligible effects from mixing. The isobar model
reported by Belle and BaBar collaborations [20] is used as the starting point when
developing the model. This is then varied by adding or removing resonances and
the nominal model is chosen based on adding resonances until subsequent additions

do not significantly improve the fit quality, defined as the negative log likelihood
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—2log(L). The time-integrated fit is used to fix some some aspects of the amplitude
model, and also as the starting values of the complex coefficients multiplying each

component amplitude for the time-dependent mixing fit.

The fit can be run with the assumption of no CP-violation, where the parameters
Az and Ay are fixed to zero, or with CP-violation allowed in which case the CP-
violation parameters are allowed to float in the fit. In the time-dependent amplitude
fit the free parameters are the Breit-Wigner complex coefficients as well as the mixing
parameters and the DO lifetime. The other parameters such as the masses and widths
of the resonances and the S-wave shape parameters are fixed based on the initial
time-integrated fits described in Chapter [§| or to world averages of experimental
measurements [78] in the case of some of the masses and widths. The results of
the mixing parameters are currently blind, pending approval to unblind by the
LHCD collaboration, as part of the internal review process. The fit is performed for
the LHCb Run 2 (2016-2018) data-taking period. We use D° mesons originating
from semi-leptonic B meson decays: B — D%y~ X for the single-tagged sample
and B — D*T(— D)~ v X for the double-tagged sample with the simultaneous
fit of 12 subsamples differentiated by data-taking year, K2 type, and single and
double-tagged. We perform a time and phase-space dependent fit to data, the data

coordinates are:

o Decay-time and Dalitz (m?,, m3;) coordinates,

o Flavour tag (defined as +1 for D° and -1 for D°) from the charge of the muon
for the single-tagged sample and the charge of the pion in the double-tagged
sample,

« Per-candidate signal probability derived from fits to m(D°) for single-tagged
samples and 6(m) for double-tagged.

The inputs to the final mixing fit are:

Phase-space efficiency parameterisation derived from simulation (Section |7.1)),

Decay-time acceptance parameterisation derived from simulation (Section [7.2]),

Decay-time resolution parameterisation derived from simulation (Section |7.3]),

Background histograms for Dalitz variables and decay time derived from
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sWeighted data,

o Mistag fraction of wrongly tagged muons for the single-tagged sample.

The results of the time-dependent amplitude fit are shown in Figure for one
single-tagged K2 (LL) 2018 subsample, which shows the projections of the Dalitz
variables and in Figure [11.2| which shows the decay-time projections. The Dalitz
plots can be seen in Figure [11.3] The quality of the fit can be assessed by the pulls
which is the difference between data and value of the PDF in each bin divided by
the uncertainty on the data. These are shown in the one-dimensional projections
in Figures and [I1.2] The observed inaccuracies in the model are considered
reasonable and are taken into account in the systematic uncertainties as discussed
in detail in Chapter [I0] These could be partly to do with plotting at the threshold
regions which can also be seen in the toy fits in Chapter [9] and also to the imperfect
description of the efficiency at the threshold regions. Fit projections for other data
sub-samples can be seen in Appendix [D] These are fit projections of one sample for
the simultaneous fit rather than for fits to individual samples. The fit quality over
the Dalitz plane corresponds to a x? value 8947 for 7946 degrees of freedom, x?/dof
= 1.13.

The blinded mixing parameters are:
z = (v.22 £ 0.0865¢at £ 0.039syst + 0.0240de1) % (11.1)

y = (y.yy £ 0.0764¢ar £ 0.0545yst £ 0.026m0de1) % (11.2)

The result for the DP lifetime is:
7(D°) = 0.4019 4 0.0002 ps (11.3)

This is not blind and is slightly below the world average value of 0.4101 + 0.015 ps
which could be to do with the description of the decay-time acceptance. The

correlations between z, y and 7(D?) for the mixing fit with no CP-violation is shown

in Table 1.1l
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Figure 11.1: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Single-tag K2 (LL) 2018 sample. Linear and log scales. Plots show signal
component in red and background in green.
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x y  7(DY
T 1.0 0.006 -0.002
y 1.0 0.081

(DY) 1.0

Table 11.1: Correlations between z, y and 7(D") in the mixing fit.

Tcp  Yop Ax Ay 7(D%)

Top 1.0 0.006 -0.0 0.006 -0.002

Yop 1.0 0.007 -0.005 0.081

Az 1.0 0.006 0.001

Ay 1.0 -0.003
7(DY) 1.0

Table 11.2: Correlations between zcp, yop, Az, Ay and 7(D°) in the mixing fit
with CP-violation allowed.

The world average values at the time of writing are, for the no CP-violation

allowed case:

z (%) = 0.511912

(11.4)
y (%) =0.63+0.07
For the CP-violation allowed fit the blinded results are:
x = (z.zx £ 0.086)%
(11.5)

A

= (
y = (y.yy £0.076)%
(
y = (0.00 £ 0.051)%

)
Az = (0.00 = 0.059)%
)

where the uncertainties quoted here are statistical only. These can also be converted

to the CP-violation parameters with the + lo uncertainties using the Equation [2.54}

lg/p| = 0.996 + 0.093
(11.6)

$(°) = —0.055 = 0.089

where the central values are blind and are assumed to be the world average values in
the fit. Table shows the correlations for the CP-violation allowed fit. These are

also visualised in Figure |11.4]
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Figure 11.4: Correlations between the parameters of the mixing fit with CP-violation
allowed, 7(DY), z, y, Az, Ay, and the real and imaginary complex coefficients of the
amplitudes.

The current world averages on the mixing and CP-violation parameters in the

CP-violation allowed global fit are:

(%) = 0.37 +0.12

y (%) = 0.68100° L)
lq/p| = 0.951190%

¢ () = 53743

The effect of this measurement on the world average values can be assessed by
performing the global fit and assuming no correlation with the other measurements
since this is an independent dataset. When performing the combination the central
values are assumed to be the same as the results from Ref. [13] (the 2021 prompt
model-independent result) since the result of this measurement is still blind. This is

visualised in Figure which shows: the current world average in purple, the world
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Figure 11.5: This figure shows world average not including the bin-flip result [13]
(grey), current world averages on the mixing and CP-violation parameters (purple)
including the bin-flip result, and the world average including this work (yellow).

average without the bin-flip result [13] in grey and the effect of including this result
in the world average in yellow. This demonstrates how the current world average is

dominated by the prompt bin-flip result [13].

Since the world average values are dominated by the model-independent bin-flip
result from the LHCD collaboration [13], it is also instructive to compare the results

with this analysis. The results are (repeated from Equation :

yop = [0.459 £ 0.1204; + 0.085,5]%

Ay = [0.020 £ 0.0364a; £ 0.0134t] %
(11.8)

zep = [0.397 £ 0.0464,; + 0.029,,] %

Az = [—0.027 £ 0018444, = 0.0014y5]%

The bin-flip result is more precise in the measurement of x by over a factor of 2,
since is it specifically designed for precision on the measurement of x. However
the model-dependent result is more precise in the measurement of y. In addition
it is important to note that the bin-flip analysis uses the prompt dataset which
corresponds to a total of 30.6 million D° — Kor"m~ decays, whereas this result
has a smaller signal yield of 5.3 million events. This demonstrates the power of
the model-dependent method and the importance of both complimentary methods
within the LHCb collaboration. Figure [11.6/shows a similar plot but with this work
in yellow, the bin-flip 2021 result [13] in purple and the current world average in grey.

This directly compares this work to the bin-flip result which demonstrates the power
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Figure 11.6: This shows the world averages without the bin-flip result on the mixing
and CP-violation parameters (grey), the 2021 bin-flip result [I3] (purple) and this
work (yellow).

of this method compared to the bin-flip method which has ~ 6 times more data.

One should not compare the amplitudes between experiments because there may
be differences in the Blatt-Weisskopf form-factors and in the production parameters
in the K-matrix parametrisation. However we can compare the fit fractions which
are more physically meaningful, as defined in Equation [8.24] The results for the
final mixing fit are shown in Table along with the fit fractions. These can
be compared to the most recent result from the Belle and BaBar collaborations
in Ref. [20]. For components with the highest fit fraction excellent agreement is
observed. The K*(892)~ resonance has 56% fit fraction for this analysis (60% for
Ref. [20]), the p(770) resonance has 16% (20%) and the 7m S-wave has 11% (10%).
The interference fit fractions can be seen in Table for the three main components
of the amplitude model: the K*(892)~, p(770) and the w7 S-wave. These show the
constructive and destructive interferences between the resonances denoted by the
positive and negative signs of the interference fit fractions. The fit fractions in Table
do not necessarily equal unity due to the constructive and destructive interference

effects.
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System  Resonance Real Imaginary Fit Fraction (%)
p(770) 1.0 (fixed) 0.0 (fixed) 15.67
w(782) -0.017 4+ 0.000  0.037 £ 0.000 0.40
f2(1270) 0.747 £ 0.005 0.094 £ 0.006 0.78
p(1450) -1.353 £ 0.017  0.539 £ 0.021 0.76
K*(892)~ 1.372 £0.003  -1.343 £ 0.003 56.18
K;(1430)~ | 0.912 £ 0.006  -0.869 + 0.007 1.63
K*(1410)~ | -0.707 £ 0.011  -0.455 + 0.013 0.84
K*(1680)~ | 0.207 4+ 0.025 1.931 + 0.028 2.01
Kj(1430)~ | -3.381 £ 0.014  -2.797 £+ 0.012 8.07
K*(892)" 0.112 £ 0.001  -0.099 £ 0.001 0.34
K3(1430)* | -0.009 £ 0.005  0.047 £ 0.006 <0.1
K*(1410)" | -0.470 £ 0.011  -0.474 + 0.012 0.53
K*(1680)" | -0.487 + 0.025  0.940 + 0.030 0.60
K(1430)" | -0.144 4+ 0.009  -0.124 4+ 0.010 <0.1
T S-wave [ -1.028 £ 0.070  3.466 £ 0.052 11.07

Ba 14.799 4+ 0.078  2.806 £ 0.084
B3 42985 £ 1.054 -18.906 + 0.619
B4 -1.859 £ 0.250  -7.059 £ 0.200

prod -4.702 (fixed)  -6.472 (fixed)

prod “14.288 + 0.478  12.456 + 0.181

ngd -18.123 £ 0.425 -22.279 + 0.804

prod -10.306 £ 0.329 -14.780 % 0.068

Kn S-wave F 0.817 £ 0.015
OF 0.077 £ 0.002
R 1 (fixed)
Or -3.135 + 0.022
a 0.224 4+ 0.001
r -21.286 + 0.124
Sum of fit fractions 98.90

Table 11.3: Results of the parameters of the amplitude model obtained from the
final mixing fit, including complex amplitudes of resonant components, 77 and Km
S-wave parameters and fit fractions for each component. The errors are statistical.
The S-wave parameters are fixed from the initial time integrated fit as described in
the text.
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Resonance 1 Resonance 2 | Fit Fraction (%)
p(770) w(782) 0.317
F£2(1270) -0.002
p(1450) 20.020
K*(892)" -3.329
K3(1430)~ 0.644
K*(1410)~ 0.765
K*(1680)~ 1,112
K(1430)~ 1.301
K*(892) 10.262
K3 (1430)* 0.013
K*(1410)* 0.607
K*(1680)* -0.314
K;(1430)* -0.057
T S-wave -0.008
K*(892)~  f»(1270) 0.732
p(1450) 10.324
K3 (1430)~ -0.059
K*(1410)~ 1.687
K*(1680)~ 3.107
K}(1430)~ 0.369
K*(892) -0.225
K3 (1430)+ 20.004
K*(1410)* 0.889
K*(1680)* -0.380
K (1430)* 0.123
T S-wave 2.734
mm S-wave  p(1450) 0.001
K3 (1430)" 10788
K*(1410)~ 0.883
K*(1680)~ 1.875
K}(1430)~ 1.446
K*(892)* -0.224
K3 (1430)* .0.016
K*(1410)* 0.742
K*(1680)* -0.695
K (1430)* 0.063

Table 11.4: Interference fit fractions for the p(770), K*(892)~ and 7w S-wave terms in
the Dalitz fit including the sign of the term where a negative sign denotes destructive
interference.
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11.1 Crosschecks

11.1.1 Fits to individual samples

The mixing fit is performed on several disjoint samples of the dataset. The
parameters of interest are extracted separately for data-taking year, Ko type as well
as for single and double-tagged decays. The results of the mixing parameters for the
fits to individual samples can be seen in Figure[11.7] The data subsamples are labelled
by numbers, these are in the following order: by year 2016, 2017, 2018 (ie. the first
four entries are for 2016) then single-tagged K (LL), K2 (DD), double-tagged K
(LL), KY (DD). The x* per number of degrees of freedom of the points with respect
to the red line is calculated, a value of 1.00 suggests that the mixing parameters
are stable across all subsamples. Figure [11.7] shows the excellent agreement in the
parameter z with a x?/ndof value of 1.00. However there is poor agreement in v,
this could be to the decay-time acceptance description which there is ongoing work
to resolve. We aim to include an improved model of the decay-time acceptance in
GooFit, which currently uses the exponential model as seen in Section [7.2] The
exponential model is clearly a poor description of the acceptance. This may affect the

measured value of 7(D?) and y since these two parameters are correlated (Table [11.1]).

This is a strong test of the method because the different K9 types and tags
are subject to different detector effects and background levels and shapes. The
statistical uncertainties for the fits to individual samples are reported in Table [I1.5]
Adding these using the rule for combining variances suggests that the combination
is approximately as sensitive as the simultaneous fit. Although for the final result
the simultaneous fit is used since it simplifies the measurement and the systematic

uncertainties.

11.1.2 Fits in disjoint subsamples of D° p and n

We also perform the mixing fit in disjoint subsamples in kinematics of the D,
namely momentum p(D°) and pseudorapidity n(D°). These can be seen in Figure

11.8] These also show reasonable agreement in z and not such good agreement in y,
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Figure 11.7: Comparison of the results of the mixing parameters for fits to individual
samples: red line is the weighted average of the individual fits, and the blue line is
the simultaneous fit result to all samples combined, with statistical errors.

Sample Statistical uncertainty
z [%] y [%]
Single-tagged
2016 K2 (LL) | 0.311 0.264
2016 K3 (DD) | 0.229 0.199
2017 K3 (LL) | 0.304 0.256
2017 K9 (DD) | 0.223 0.195
2018 K2 (LL) | 0.247 0.211
2018 K2 (DD) | 0.194 0.170
Double-tagged
2016 K2 (LL) | 0.684 0.576
2016 K3 (DD) | 0.441 0.395
2017 K3 (LL) | 0.656 0.567
2017 K9 (DD) | 0.426 0.379
2018 K2 (LL) | 0.536 0.451
2018 K2 (DD) | 0.371 0.324

Table 11.5: Statistical uncertainties of fits to individual samples.
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Figure 11.8: Comparison of the results of the mixing parameters for low and high
D® momentum and 7: red line is the weighted average of the individual fits, and the
blue line is the simultaneous fit result to all samples combined, with errors.

again potentially due to the decay-time acceptance since y is correlated with the D°

lifetime in the fit.
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Conclusion

This thesis reports a measurement of the mixing parameters of the D° meson using
semi-leptonic D* — K277~ decays with 6 fb™! of data collected at the LHCb
detector in the Run 2 data-taking period. The work undertaken in this thesis
includes the search for indirect CP-violation - the results reported are both for the
no CP-violation and the CP-violation allowed case. The mixing and CP-violation
parameters are extracted from a time and phase-space dependent amplitude fit to

the D° decay-time and the Dalitz variables of this decay m?(Kor") and m?(K27™).

The blinded mixing parameters are measured to be:
7 = (2.27 £ 0.864a; £ 0.39ys + 0.241040) X 1077 (12.1)

y = (y.yy £ 0.764a¢ £ 0.59y5t £ 0.261m0001) X 1073 (12.2)

This measurement has been compared to the current world average and previous

results in Chapter [11] (Figures [L1.6 and [11.5). This measurement has a precision

exceeding the world average of all existing measurements, with the exception of the

result bin-flip analysis on the prompt LHCb data sample [13]. The world average
values are quoted in Equation and [I1.7]

Ongoing work includes improving the description of the decay-time acceptance
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Figure 12.1: LHCb peak luminosity and integrated luminosity projections for Run 3
and beyond. Figure from Ref. [41].

in the model. This should reduce the discrepancies in the measurements in disjoint
subsamples and also the measurement of the D° lifetime. The estimation of the
systematic uncertainties for the CP-violation parameters will be performed but based
on previous analyses is expected to be small [13]. The Run 1 dataset has also been
prepared for this measurement, including the data selection in Chapter |5 and the
evaluation of the detector acceptance and resolution effects with MC described in

Chapter [7] For example the Run 1 selection is shown in Appendix [A] and

The systematic uncertainties for the mixing parameters have been estimated. The
systematic uncertainties are comparable with the statistical, which will shrink with
more data being collected in Run 3 and beyond. However some of the systematics
will become smaller with more data, such as the limited knowledge of the fixed
parameters in the fit and the limited Monte Carlo statistics. There are ongoing
efforts within the LHCDb collaboration to improve and speed up the generation of
Monte Carlo simulation since our needs will increase significantly in Run 3. Figure
shows the projected peak luminosity and integrated luminosity for LHCb for
Run 3 and the successive upgrades. This is a new era in flavour physics with precision

measurements in the flavour sector being at the forefront of searches for new physics.
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12.1 Future prospects in D° — K2n T~ decays

This thesis reports the measurement of the mixing parameters of neutral charm
mesons, and a search for indirect C'P-violation, parameterised by the parameters Ax
and Ay. The systematic uncertainties have been evaluated and estimated for the
mixing parameters. Future analysis will have reduced statistical uncertainties due to
the increase in data. However some of the systematic uncertainties are expected to
decrease in the future. For example, the fixed parameters of the fit are resampled
within their uncertainties derived from a fit to data - the corresponding systematic
uncertainty will also decrease with more data. In addition, those systematic uncer-
tainties originating from the inputs from simulation will decrease with increased
Monte Carlo statistics expected in Run 3 with improved fast simulation within LHCDb.
We also hope to benefit from improved description of the amplitude model and any

developments in the fitting framework and software used in this analysis.

Complimentary model-independent analyses are being undertaken at LHCb
including the model-independent bin-flip analysis of the semi-leptonic tagged D° —
K277~ decays. The combination of this model-dependent measurement with the
semi-leptonic and prompt bin-flip measurements will lead to a higher precision, in
particular due to the bin-flip method being particularly sensitive to x as well as the
high signal yield of the prompt dataset. The model-dependent and model-independent
methods are complimentary with different techniques and systematic uncertainties.
The bin-flip method has small systematic uncertainties due to the method of using
ratios in which some of the uncertainties cancel. The model-dependent method relies
on the understanding of the amplitude model and detector resolution and acceptance

effects.

It is also possible to combine the full Run 1 and Run 2 datasets for a legacy
measurement of the mixing parameters. The LHC Run 3 is expected to start in 2022
and the LHCb aims to collect at least 50 fb~! by the end of Run 4. The increased
data will improve the statistical precision of measurements of charm mixing and
CP-violation, with searches for CP-violation in charm expected to reach a precision

precision of 10~*. With the flavour anomalies in the B sector at around the 3 o level,
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Run 3 will be needed to confirm these hints of new physics. The LHCb detector
will be almost fully upgraded for the start of Run 3 including an upgraded detector
hardware as well as moving to a fully online software trigger. In order to cope with
the increased luminosity and pile up, data challenges are being faced by running a
fully software-based trigger and readout of all detectors at 40 MHz. The HLT1 will
also be run on GPUs in Run 3. The detector is being upgraded with a new VELO
and tracking systems, new particle ID detector and electronics and new calorimeter

and muon electronics.

This measurement will be complimented by the model-independent bin-flip
method, which will have more precise and updated results in Run 3. In addition the
charm program at LHCb will be complimented by the new upgraded Belle II detec-
tor [17]. These precision flavour physics measurements are important in answering
some of the open questions of the Standard Model and help us to understand the

universe at the most fundamental level.
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Figure A.1: D° mass fits after preselection for the Run 1 (2011-2012) single-tagged

datasets.
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Figure A.2: Fits to the dm distribution after preselection for the Run 1 (2011-2012)

double-tagged datasets.
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Multivariate analysis

B.1 BDT output and overtraining check
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(c) K2 (DD) 2016 even sample (d) K2 (DD) 2016 odd sample

Figure B.1: BDT output distributions and overtraining check for single-tagged 2016
samples.
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Figure B.2: BDT output distributions and overtraining check for double-tagged 2018
samples.
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B.2 Receiver operator characteristic curves
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Figure B.3: ROC curves for single-tagged 2016 samples.
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Figure B.4: ROC curves for double-tagged 2018 samples.
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B.3 Significance and optimal BDT cut
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Figure B.5: Significance versus BDT response for single-tagged 2016 samples.
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Figure B.7: D mass fits for the single-tagged 2011 and 2012 samples: signal model
(purple dashed), background (green dashed), total model (blue line).
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Figure B.8: dm fits for the double-tagged 2011 and 2012 samples: signal model
(purple dashed), background (green dashed), total model (blue line).
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Detector Effects

C.1 Phase-space acceptance
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Figure C.1: Phase-space acceptance for 2018 subsamples.
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C.2 Decay-time acceptance

35
Constant: 0.9896 +/- 0.003525 Constant: 0.9409 +/- 0.001928
15 Slope: 0.2331 +/- 0.006673 3.0 Slope: 0.1362 +/- 0.003734
5 525
< <
1.0 > 2.0
9 3
5] 5
] s 151
£ £
D 0.5 1.0
] } 05
0.0
0.0
0 1 2 3 4 5 6 6
5 5
o o
: 0}.11..4““-1.&“1.4;__ . 2 o]
=5 T T T T T T =54 T
0 1 2 3 4 5 6 6
Decay-time [ps] Decay-time [ps]
: 0 : 0
(a) Single-tagged K¢ (LL) (b) Single-tagged Kg (DD)
35
1.754
Constant: 1.036 +/- 0.004062 3.0 Constant: 1.007 +/- 0.002467
1.50 4 Slope: 0.2245 +/- 0.007341 : Slope: 0.1302 +/- 0.004457
~ 1.25-
2
= 1.00
9
§ 0754
L4
£ 0.50
0.25
0.00
—0.25 1, T r T r r r r r r r T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
5 5
» 2 u
3 o—} j-"f.r"1||--ll|j"-—r- . 3 O-I:' ‘J'll'jl'r.llfp""'l"ﬁ]'f"rllﬂll"r
-5 " r r r r r -5 - - - - - -
0 1 2 3 4 5 6 0 1 2 4 5 6

Decay-time [ps]

(c) Double-tagged K9 (LL)

Decay-time [ps]

(d) Double-tagged K3 (DD)

Figure C.3: Decay-time acceptance (black points) fitted with an exponential function
(red line) derived from simulation for the 2016 samples.
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Figure C.4: Decay-time acceptance (black points) fitted with an exponential function
(red line) derived from simulation for the 2017 samples.
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C.3 Decay-time resolution
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Figure C.5: Decay-time resolution (black points) fitted with a triple Gaussian function
(blue line) for the 2017 samples. Fit parameters displayed.
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Figure D.1: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Single-tag K3 (DD) 2016 sample. Linear and log scales. Plots show signal
component in red and background in green.
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Figure D.4: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Double-tag K§ (LL) 2016 sample. Linear and log scales. Plots show signal
component in red and background in green.
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APPENDIX E. INTERFERENCE FIT FRACTIONS

Resonance 1 Resonance 2 | Fit Fraction (%)
o(782) 7(1270) 0.000
p(1450) 0.069
K3(1430) -0.029
K*(1410)~ -0.021
K*(1680)" 0.001
Kz (1430) -0.068
K*(892)* 0.006
K3(1430)+ -0.001
K*(1410) -0.011
K*(1680)* -0.018
Ky (1430)* 0.003
F2(1270) (1450) 0.002
K3(1430) 0.222
K*(1410) 0.027
K*(1680) -0.100
K:(1430) -0.750
K*(892)* 0.056
K3(1430)* -0.003
K*(1410)* -0.051
K*(1680)+ 0.120
Kz (1430)+ -0.032
p(1450) K;(1430) 0.051
K*(1410) -0.039
K*(1680)" 0.172
K (1430)" -0.607
K*(892)* -0.029
K3(1430) 0.000
K*(1410)* 0.012
K*(1680)* 10.192
Ky (1430)* 0.026
K;(1430)-  K*(1410) 20.001
K*(1680)" -0.059
K2 (1430) 20.039
K*(892)* -0.059
K3(1430)+ -0.019
K*(1410)* 0.140
K*(1680)* -0.004
K;(1430)F -0.002

Table E.1: Interference fit fractions for the terms in the Dalitz fit including the sign
of the term where a negative sign denotes destructive interference.
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Resonance 1 Resonance 2 | Fit Fraction (%)
K(1410)-  K*(1680) 1.004
K7 (1430)~ L0.127
K*(892)* 0.093
K3 (1430) 0.005
K*(1410)* 10293
K*(1680)* 0.140
Kz (1430)* 0.013
K7(1680)  K:(1430) 0.153
K*(892)* 20.147
F3(1430) 0.000
K*(1410)* 0.526
K*(1680)* L0.619
Kz (1430)* 0.005
K;(1430)  K*(892)" 20.222
K3 (1430)F -0.007
K*(1410)* 0.212
K*(1680)* 0.167
Kz (1430)* 0.130
KR92)7  K;(1430)F 20.001
K*(1410)* 0.113
K*(1680)* 0.087
K;(1430)* -0.001
K;(1430)7 K+ (1410)° 0.001
K*(1680)* -0.002
K (1430)* 0.000
K(1410)7 K" (1630)" 20313
Kz (1430)* 0.004
K7(1680)" K. (1430)° 20.001

Table E.2: Interference fit fractions for the terms in the Dalitz fit including the sign
of the term where a negative sign denotes destructive interference.
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