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Abstract

Mixing is the time-dependent phenomenon of a neutral meson (in this case charm

meson D0) changing into its anti-particle (D̄0) and vice versa. This occurs because

the mass eigenstates, denoted D1 and D2 are linear combinations of the flavour

eigenstates D0 and D̄0. Mixing is governed by two parameters x and y defined

as: x ≡ (m1 − m2)/Γ and y ≡ (Γ1 − Γ2)/(2Γ) where Γ is the average decay

width. CP -violation can occur in mixing or in the interference between mixing

and decay. The CP -violation parameters |q/p| and φ describe the superposition of

the flavour eigenstates and the mass eigenstates: |D1,2〉 = p |D0〉 ± q
∣∣D̄0
〉
. The self-

conjugate decay D0 → K0
Sπ

+π− offers direct access to the mixing and CP -violation

parameters through a time and phase-space dependent fit to the Dalitz variables

and decay-time of this decay. This thesis reports a measurement of the mixing and

CP -violation parameters using data collected at the LHCb experiment in the Run

2 data-taking period in 2016-2018, corresponding to an integrated luminosity of

6 fb−1. This analysis uses D0 mesons originating from semi-leptonic B meson decays.

The D0 → K0
Sπ

+π− decay is modelled by expressing the three-body decay as the

superposition of successive two-body decays through intermediate resonances. The

blinded mixing parameters are found to be:

x = (x.xx± 0.86stat ± 0.39syst ± 0.24model)× 10−3

y = (y.yy ± 0.76stat ± 0.59syst ± 0.26model)× 10−3

where the uncertainties are statistical, systematic and from the choice of amplitude

model. The CP -violation parameters are expressed in terms of ∆x and ∆y which
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are defined as the difference in mixing parameters measured for D0 and D̄0:

∆x = (0.00± 0.59)× 10−3

∆y = (0.00± 0.51)× 10−3

the uncertainties are currently statistical only and the results are blind.
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Lay Summary

The fundamental particles that make up the universe and the interactions between

them are described, to our best knowledge, by the Standard Model of particle physics.

The Standard Model is experimentally verified to an extremely high precision but

it has some significant theoretical shortcomings and cannot fully explain all the

phenomena observed in nature. Therefore physicists are searching for a new theory

beyond the Standard Model which can explain these anomalies.

The fundamental particles consist of six quarks, three pairs of leptons and

corresponding neutrino (as well as the anti-particles) and the force carriers which

mediate the forces between the particles. A meson is a type of particle made from a

quark - antiquark pair. The D0 meson which is the subject of this thesis is made from

a charm quark and an up antiquark, it is neutrally charged. A neutral (zero charge)

meson can oscillate over time between particle and anti-particle states (in this case

a D̄0 consisting of a charm antiquark and an up quark) through a time-dependent

phenomenon called mixing. New virtual particles can change the oscillation rate, so

any discrepancy from the Standard Model predictions may be a hint of new physics.

One of the shortcomings of the Standard Model is that it does not account for

enough CP (charge parity) violation to explain the matter - antimatter asymmetry

we see in the universe today. CP -violation refers to differences in which a particle

and its antiparticle behave, these can be observed directly in a particle decay or in

mixing. CP -violation can arise both through differences in overall decay probabilities

(CP -violation in decay) which are constant as a function of decay time, and also

through asymmetric mixing effects, which are time dependent. CP -violation in

decay was discovered in charm mesons in 2019 but at the time of writing there is
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no evidence for CP -violation in mixing or in the interference between mixing and

decay of particles containing charm quarks. Therefore precision measurements of

CP -violation and mixing in charm are important tools to understand potential new

physics beyond the Standard Model.

At the Large Hadron Collider at CERN, protons (made from two up and one

down quarks) are accelerated to extremely high speeds and collided. The LHCb

detector collects the data from these proton collisions. It is a special detector that

was built to study heavy flavour (beauty and charm quarks) physics measurements.

The research presented in this thesis uses data collected at the LHCb detector from

2016 to 2018 to perform a measurement of the charm mixing parameters and search

for indirect CP -violation.
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CHAPTER 1

Introduction

The Standard Model (SM) of particle physics is the theory governing the fundamental

particles and their interactions. The theory classifies the elementary particles. There

are 12 spin-1/2 fermions consisting of six quarks: up, down, top, bottom, strange,

charm and six leptons: the electron, muon and tau and corresponding neutrinos. Each

of the 12 particles have a corresponding antiparticle. The fundamental strong, weak

and electromagnetic forces are mediated by the gauge bosons; the gluon, W and Z

bosons and the photon. Finally the spin-0 scalar Higgs boson provides the mechanism

by which the gauge bosons gain their masses through the Higgs mechanism and

spontaneous symmetry breaking.

The quarks carry colour charge and interact under the strong interaction. The

strong force is responsible for the phenomena of colour confinement which binds

quarks into hadrons, either a meson consisting of a quark-antiquark pair or a baryon

consisting of three quarks. The quarks and three leptons (electron, muon, tau) are

charged under the electromagnetic force and all fermions are subject to the weak

interaction.

The photon is a massless particle which is the mediator of the electromagnetic

force between electrically charged particles. The W and Z bosons are the mediators

of the weak interaction between all fermions. The gluons are the force carriers of
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the strong force and mediate strong interactions between particles carrying colour

charge (the quarks).

The Standard Model is experimentally verified to a remarkable degree of precision

but does not explain all the phenomena observed in nature. The Standard Model has

predicted the existence of a number of fundamental particles before their discoveries;

including the W and Z bosons, the charm, bottom and top quarks and the Higgs

boson. However the current theory has some significant theoretical shortcomings

such as: the amount of charge-parity (CP ) violation in the Standard Model is not

sufficient to account for the asymmetry we observe in the universe today; there is

no mechanism by which the neutrinos have mass, in other words whether they are

Dirac or Majorana particles; there is no dark matter candidate despite compelling

astronomical evidence that dark matter exists.

The Standard Model is based on a number of symmetries. Charge symmetry is

the symmetry under the transformation of charge (electric charge). Parity symmetry

is symmetry under the transformation of spatial coordinate(s). CP (charge-parity)

symmetry states that the laws of physics should be the same if the particle is

interchanged with its antiparticle (charge symmetry) while its spatial coordinates are

inverted (parity symmetry). CP -violation has been well established in the kaon [37]

and beauty [31] sectors and was observed in the charm sector in 2019 [10]. CP -

violation in the charm sector is predicted to be small O(10−3 − 10−4) [33] and is

difficult to compute reliably due to low energy strong interactions. Any enhancement

of CP -violation may therefore be a hint of new physics. CP -violation occurs in the

SM in three ways: in direct decay, in mixing and in the interference between mixing

and decay.

In the case of neutral mesons, the mass eigenstates are quantum superpositions

of the flavour eigenstates. When the particle decays (as a mass state) it does so as a

mixture of flavour states. This time-dependent phenomena results in a neutral meson

oscillating into its antiparticle and vice versa, i.e. over time there is an oscillating

probability of appearing as a given flavour state.

Mixing between a neutral meson and its antiparticle occurs through the weak
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interaction of neutral mesons, via the exchange of W bosons and heavy quarks

(short-distance). For long-distance processes the main propagator is a stable CP -

conjugate state eg. π+π−. Mixing occurs via both long-distance and short-distance

contributions; in charm, long-distance contributions are thought to dominate, making

theoretical predictions more challenging. In addition, due to the GIM mechanism [48]

and CKM suppression [35], mixing is highly suppressed in the charm sector, making

experimental measurements more difficult. New virtual particles may contribute

to the amplitude, changing the oscillation rate, so any deviation from Standard

Model predictions would constitute evidence for new physics effects. The parameters

describing the time-dependent oscillations between a D0 and a D̄0 are defined as

x ≡ (m1 −m2)/Γ and y ≡ (Γ1 − Γ2)/2Γ, where m1 and m2 and Γ1 and Γ2 are the

masses and widths of the mass eigenstates and Γ is the average width. CP -violation

in mixing is governed by a complex number q/p (described in more detail in Chapter

2) conventionally split into two real numbers |q/p| and φ = arg(q/p). CP -symmetry

corresponds to |q/p| = 1 and φ = 0.

Mixing was postulated by Gell-Mann and Pais in 1955 [47] and was discovered

in kaons by Lederman and others in 1957 [46]. Mixing in B mesons was discovered

by the ARGUS collaboration in 1987 [23]. Evidence for mixing in the charm sector

was reported by the B factories Belle [76] and BaBar [32] in 2007. Recently a

model-independent method to measure the mixing parameters was performed by

LHCb [9] and reported the first observation of a non-zero mass difference of neutral

charm mesons by a single experiment [13].

The self-conjugate decay D0 → K0
Sπ

+π− offers direct access to both the Cabibbo-

favoured and doubly Cabibbo-suppressed decays in the same mode. Due to the

rich resonant structure of the Dalitz plane of this decay, the Cabibbo-favoured and

mixed decays can be separated. This allows direct access to the mixing parameters

x and y through and time and phase-dependent amplitude fit to the Dalitz plane

and decay-time of this decay.

The LHCb detector at the Large Hadron Collider (LHC) at CERN is a forward

detector which was specifically designed for the study of hadrons containing a b

quark and for measurements of CP -violation and rare decays. It has since expanded
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its physics program to charm physics. Due to the large cross section of cc̄ at the

LHC and the dedicated detector and Trigger at the LHCb experiment, LHCb is

able to test Standard Model predictions of mixing and CP -violation in charm to

unprecedented precision.

In this analysis the analysed LHCb data corresponds to a luminosity of 6 fb-1

collected during the Run 2 data-taking period from 2016-2018. This analysis uses D0

mesons from semi-leptonic B meson decays, for example B → D0µ−ν̄X where the

B meson is charged or neutral, in which the initial flavour of the neutral D meson is

tagged by the charge of the muon. The Run 1 data-taking period from 2011-2012

collected 3 fb−1 of data has been prepared and a combined Run 1 and Run 2 result is

in preparation. For the purpose of this thesis, we present the Run 2 data and results.

1.1 World Averages

The world averages as of June 2021 for the mixing parameters for the no CP -

violation case are:

x =
(
0.51+0.12

−0.14

)
× 10−2

y = (0.63± 0.07)× 10−2
(1.1)

and for the CP violation allowed case:

x = (0.37± 0.12)× 10−2

y =
(
0.68+0.06

−0.07

)
× 10−2

|q/p| = 0.951+0.053
−0.042

φ =
(
−5.3+4.9

−4.5

)
°

(1.2)

The world averages for the mixing and CP -violation parameters can be seen in Figure

1.1. It is also instructive to look at the world averages with the latest result included

as of July 2021 which will be discussed in more detail in the following section. These

are shown in Figure 1.2. Note the significant improvement from Figure 1.1 to Figure

1.2, almost exclusively due to the result described in the next section and in Ref. [13].
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Figure 1.1: World averages June 2021 of the mixing and CP -violation parameters x,
y, |q/p| and φ from the Heavy Flavour Averaging Group [27].
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Figure 1.2: World averages July 2021 of the mixing and CP -violation parameters x,
y, |q/p| and φ from the Heavy Flavour Averaging Group [27]. Note the scale of the
axis is significantly smaller than Figure 1.1.

43



CHAPTER 1. INTRODUCTION

1.2 Model-independent method

The mixing parameters x and y can be measured with LHCb data using a

model-dependent or model-independent approach. The model-independent approach

is based on the bin-flip method, which is optimised for the measurement of the

parameter x [44]. This avoids the need for an accurate modelling of the efficiency

across the phase-space and decay-time.

The self-conjugate D0 → K0
Sπ

+π− decay is unique as it offers direct access to

the mixing and CP -violation parameters. This decay gives access to the Cabibbo

favoured and doubly Cabibbo-suppressed decays in the same channel. Due to the

rich resonant substructure of the Dalitz plane of this decay, it is possible to separate

regions in phase space which are dominated by direct Cabibbo-favoured decays from

regions influenced by mixing. One can achieve this by splitting the Dalitz plane

along the leading diagonal, where one half would correspond to Cabibbo-favoured

decay and the opposite would correspond to mixing + Cabibbo-favoured decay. So

the ratio of candidates in the upper half compared to the lower half gives a measure

of the influence of mixing on the decay. More useful, and experimentally robust, is to

examine the time-dependence of this ratio, from which the mixing and CP -violation

parameters can be directly extracted. The sensitivity can be further improved by

subdividing the Dalitz plane into several bin-pairs mirrored about the Dalitz diagonal.

Hence the term ‘bin-flip’.

The Dalitz plot is divided into symmetric bins of approximately equal strong-

phase differences between the D0 and D̄0 amplitudes. The bins are symmetric

with respect to the m2
− = m2

+ bisector, the bins are labelled ±b referring to the

upper and lower regions of the Dalitz plane as shown in Figure 1.3. The strong-

phase represents the interference between the Caibibbo-favoured and the doubly

Cabibbo-suppressed decay modes. This can be measured at e+e− colliders such as

CLEO [61] and BES-III [19] since quantum correlated D-D̄ are produced. These

can decay (not independently) into the same final state (K0
Sπ

+π−) giving access

to the strong-phase between the Cabibbo-favoured and doubly Cabibbo-suppressed

decay modes. Consequently this cannot be measured at LHCb so any measurements
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Figure 1.3: Binning of the D0 → K0
Sπ

+π− Dalitz plot taken from the CLEO
collaboration and used for the model-independent bin-flip analysis. The bins are
symmetric across the bisector and are labelled ±b.

performed rely on these external inputs.

The data are further split into bins of decay-time labelled by the index j. For

each bin in phase-space and decay-time, the ratio between initially produced D0 and

D̄0 is measured, given by R+
bj and R−

bj:

R±
bj ≈

rb +
1
4
rb〈t2〉jRe(z2cp −∆z2) + 1

4
〈t2〉j|zcp ±∆z|2 +√

rb〈t〉jRe[X∗
b (zCP ±∆z)]

1 + 1
4
〈t2〉jRe(z2CP −∆z2) + rb

1
4
〈t2〉j|zCP ±∆z|2 +√

rb〈t〉jRe[Xb(zCP ±∆z)]
(1.3)

In this equation 〈t〉j is the average decay-time of unmixed decays in bins of

decay-time indexed j. The parameter rb is the ratio of signal yields in the symmetric

Dalitz plot bins ±b at t = 0. The parameter Xb ≡ cb − isb is taken from external

inputs and is the average strong-phase difference in the bins in phase-space indexed

b, in this case this is taken from the most recent measurement of the strong-phase

differences from BES-III [19]. The free parameters of the fit are rb, zCP and ∆z

defined by:

zCP ±∆z ≡ −(q/p)±1(y + ix) (1.4)

Two analyses using this method have been published by LHCb. The first used
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Figure 1.4: Ratios (left) and differences (right) of the D0 and D̄0 yield ratios as a
function of decay-time for each Dalitz bin. Prompt data are given by closed points,
semi-leptonic data by open points. Fit projections for prompt is given by the solid
line and for semi-leptonic by the dashed line [9].

prompt D∗+ → D0(→ K0
Sπ

+π−)π+ and semi-leptonic B− → D0(→ K0
Sπ

+π−)µ−X

decays where the initial flavour of the neutral D meson is tagged by the charge of

the pion in the prompt sample and the charge of the muon in the semi-leptonic

sample. This used Run 1 data corresponding to 3 fb−1 [9]. The fit results are shown

in Figure 1.4. The ratios of the D0 and D̄0 yield ratios in each Dalitz bin as a

function of decay-time are shown on the left where any time-dependence is a sign of

mixing. The differences are shown on the right where any time-dependence is a sign

of CP -violation.

The results are:

yCP = [0.74± 0.36± 0.11]%

∆y = [−0.06± 0.16± 0.03]%

xCP = [0.27± 0.16± 0.04]%

∆x = [−0.053± 0.070± 0.022]%

(1.5)

where the uncertainties are statistical and systematic respectively [9]. The mixing

and CP -violation parameters x and y and |q/p| and φ can then be derived from the

results.
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Figure 1.5: Ratios (left) and differences (right) of the D0 and D̄0 yield ratios as a
function of decay-time for each Dalitz bin. Prompt data are given by black points.
Fit projections is given by the solid blue line and the xCP = 0 is the red dashed line
for comparison [13].

An updated result with the Run 2 dataset using prompt decays was published in

2021 [13] and constitutes the first observation of a non-zero mass difference (x) in

neutral charm mesons by a single experiment. The results are:

yCP = [0.459± 0.120stat ± 0.085syst]%

∆y = [0.020± 0.036stat ± 0.013syst]%

xCP = [0.397± 0.046stat ± 0.029syst]%

∆x = [−0.027± 0.018stat ± 0.001syst]%

(1.6)

The results are shown in Figure 1.5 where the slope of the blue line in the left

hand plot indicates mixing. The red dashed line is the no mixing xCP = 0 case for

comparison.

1.3 Other existing measurements

Other previous measurements using D0 → K0
Sπ

+π− decays have been published

by the CLEO, BaBar, Belle and CDF collaborations. A measurement of the time-

integrated CP asymmetry was published by CDF in 2012, which is consistent with no

direct CP violation [14]. The measurements of the D0 − D̄0 mixing parameters and
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search for indirect CP violation have followed a model-dependent approach, with the

exception of the model-independent method described in the previous section. The

most recent determination of the amplitude model of D0 → K0
Sπ

+π− decays was from

the Belle and BaBar collaborations in 2018 [20]. The Belle data sample corresponds

to 924 fb−1 recorded at or near the Υ(4S) and Υ(5S) resonances. This dataset

provides a high statistics sample of e+e− → cc̄ events that is used to determine the

D0 → K0
Sπ

+π− decay amplitudes, collected at the Belle detector [15]. The combined

Belle and BaBar data samples correspond to data collected at the Υ(4S) resonance

and contains (471± 3)× 106 BB̄ pairs from the BaBar detector and (772± 11)× 106

from Belle. The amplitude model reported in this analysis is used as the baseline for

this work when developing the amplitude model as discussed in Chapter 8.

1.4 Analysis method

Alternatively to the model-independent approach, the parameters of interest x

and y (and the CP -violation parameters) can be extracted from a time and phase-

space dependent fit of an amplitude model to the Dalitz variables and decay time

of the D0 → K0
Sπ

+π− decay. The model consists of resonant and non-resonant

components and describes the D0 → K0
Sπ

+π− decay as a superposition of decays

through intermediate resonances and their interferences. The initial resonant and

non-resonant components are taken from a published analysis of this channel by the

Belle and Babar collaborations based on a large fraction of their collected data [20].

The background model is derived from a data-driven approach.

The event-selection and reconstruction may distort the kinematics of the final

state particles in the decay, leading to a non-uniform acceptance across the Dalitz

plane. Similarly, there may be variations in acceptance as a function of decay-

time. The phase-space and decay-time acceptance is derived from simulation and

accounted for in the final amplitude fit model. The LHCb detector also has a

finite decay-time resolution which also needs to be accounted for in the fit. The

background distribution for the final amplitude fit is derived from data by extracting

the background sWeights from the events which have passed all the selection criteria.

For each candidate, a signal probability is also derived and used in the fit to assign
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the appropriate combination of signal and background PDFs for each candidate. An

unbinned time-dependent maximum-likelihood fit to data is performed to extract

the parameters of interest x and y.

This thesis presents the measurement of the mixing parameters of neutral charm

mesons and a search for indirect CP -violation using semi-leptonic D0 → K0
Sπ

+π−

decays collected at the LHCb detector during the Run 2 data-taking period. The

theory is described in Chapter 2, the LHCb detector in Chapter 3. The analysis

method is described in more detail in Chapter 4. The data selection is described in

Chapter 5. The simulated Monte Carlo data used in this analysis is described in

Chapters 6 and 7. The amplitude fit model is described in Chapter 8, toy studies

in Chapter 9 and the systematic uncertainties in Chapter 10. The final results and

conclusion are presented in Chapter 11.
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Theory

2.1 The Standard Model

The measurement described in this thesis is interpreted in the context of the

Standard Model of particle physics (SM). The SM is a theoretical framework used to

describe three of the four fundamental forces in the universe, as well as classifying

all known elementary particles and their interactions. The three fundamental forces

described by this model are the electromagnetic force, as well as the weak and the

strong force. The gravitational force, which is negligible on the scale of fundamental

particle physics, is not included in the SM. The fundamental particles are classified

as twelve spin-1/2 fermions, the spin-1 gauge bosons which are the mediators of

the fundamental forces, and the spin-0 Higgs boson. The fermions are further

classified into six quarks (up, down, charm, strange, top, bottom) and six leptons

(electron, muon, tau and corresponding neutrinos). Each fermion has a corresponding

antiparticle partner of the same mass but opposite physical charges (such as electric

charge). The leptons and quarks are charged under the weak interaction which is

mediated by the W± and Z bosons, the three charged leptons electron, muon and tau

are also charged under the electromagnetic force which is mediated by the photon.

The quarks are charged under the electromagnetic force and have a color charge of

the strong force, this is mediated by eight gluons. The Higgs boson provides the

51



CHAPTER 2. THEORY

Figure 2.1: The elementary particles of the Standard Model including the matter
particles (fermions) and force carriers (bosons); the diagram on the left shows the
charge, mass and spin of the particles and the diagram on the right shows the
interactions between the different particles. Images taken from Ref. [83].

mechanism by which the fundamental particles gain their masses, through the Higgs

mechanism and spontaneous symmetry breaking. Hadronisation is the process of the

formation of hadrons out of quarks and gluons. Hadrons are formed due to that fact

that quarks can only exist in colorless combinations, which is in turn caused by the

fact that gluons are non-Abelian and therefore self-interact. The most common of

the bound states of quarks are the meson qq̄ and the baryon formed of qqq or q̄q̄q̄.

More complex states consisting of more quarks are possible; such as pentaquarks

formed of qq̄qqq which have been observed at the LHCb detector [1].

Quarks and leptons are categorised in terms of three generations. Each quark

generation contains an u-type quark with electric charge Q = +2/3 and a d-type

quark with charge Q = −1/3. Due to the fact that the quark mass eigenstates

are linear combinations of the flavour eigenstates, they can mix (change flavour)

under the weak force. Quark mixing is governed by the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [35, 56]:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.1)

The elements of the CKM matrix Vij describe the coupling strength of the flavour-
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changing weak current between u and d-type quarks, which is mediated by the W±

bosons. The CKM matrix has a hierarchical structure where off-diagonal elements

are smaller and therefore the quarks are more likely to interact with those of the

same generation.

In particular, tree-level decays of particles containing a charm quark depend

on the matrix elements Vud, Vus, Vcd and Vcs. The hierarchy of the CKM matrix

elements becomes evident using the Wolfenstein parametrisation, which is based on

the expansion in powers of the small parameter λ where |Vud| ≈ |Vcs| ≈ 1− λ and

|Vus| ≈ |Vcd| ≈ λ [84]. Tree-level transitions u→ s and c→ d depend on the Vus and

Vcd matrix elements respectively and are known as doubly Cabibbo suppressed (DCS)

decays. They have small branching fractions compared to c→ s Cabibbo-favoured

(CF) transitions and singly Cabibbo-suppressed (SCS) decays. In the SM, any weak

interactions mediated by the neutral Z boson conserve quark flavour. Processes which

change quark flavour without changing the charge (flavour-changing neutral currents)

are only allowed in the SM in higher order processes involving multiple W bosons

and are highly suppressed by the Glashow–Iliopoulos–Maiani (GIM) mechanism [48].

The SM is parametrised under the gauge symmetry group SU(3)C×SU(2)L×U(1)Y .

The theory of strong interaction between quarks carrying the quantum number

colour is described by the SU(3)C gauge group and the SU(2)L× U(1)Y describes

the unification of electromagnetic and weak interactions. The labels of the gauge

groups correspond to the quantum number associated with the interaction: SU(3)C
denotes the color charge carried by quarks and gluons, SU(2)L denotes that the weak

interaction only couples to left-handed fermions, and U(1)Y denotes weak hypercharge,

Y = 2(Q− T3) where Q is the charge of the electromagnetic force and T3 is the weak

isospin. The gauge groups of degree n have n2 − 1 generators; for example the gauge

group SU(2)L is of degree n = 2 and therefore has three generators. The generators

of the gauge group lead to the existence of the gauge bosons. Therefore the SU(3)C
group has n = 3 and eight generators which correspond to the eight gluons. The

SU(2)L×U(1)Y electroweak symmetry group has four generators W1,2,3 and B; the

generators W1,2 correspond to the gauge bosons W± and the generators W3 and B

mix to form the neutral Z boson and the photon.
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As mentioned the SM has some significant shortcomings. For example, the

amount of CP -violation allowed in the SM does not account for the matter-antimatter

symmetry seen in the universe today. Numerous cosmological observations provide

evidence for the existence of dark matter; for example galaxy rotation curves [42],

gravitational lensing [79] and the angular power spectrum of the cosmic microwave

background [21]. However the SM does not provide a dark matter candidate.

2.1.1 Electroweak theory

The electroweak theory is the unification of the electromagnetic and weak

forces [49, 81] and is described by the SU(2)L×U(1)Y gauge symmetry group. The

fields of the SM are classified as quark and lepton fields with quark doublets Qi
L and

singlets uiR and diR and lepton doublets Li
L and singlets eiR where:

Qi
L =

u
d


L

Li
L =

νe
e

 (2.2)

are quark and lepton doublets respectively, u and d represent the u-type and d-type

quarks, e represents the three leptons e, µ, τ , and νe represents the corresponding

neutrinos. We introduce left and right-handed chiral spinor fields, eL and eR for the

electron:

eL ≡ PLψ =
1− γ5

2
ψ

eR ≡ PRψ =
1 + γ5

2
ψ

(2.3)

where these are eigenstates of the helecity operator, ψ denotes the spinor field and

γ5 = iγ0γ1γ2γ3 and {γ0, γ1, γ2, γ3} are the gamma or Dirac matrices.

The dynamics of elementary particles under the influence of the electroweak

interaction can be derived from the electromagnetic Lagrangian of a free fermion

field L0 by considering the effects of local phase transformations and accounting for

weak currents:

L0 = iψ̄γµ∂
µψ −mψ̄ψ (2.4)
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Consider a local gauge transformation

ψ(x) → ψ′(x) = eiα(x)ψ(x) (2.5)

and replace ∂µ with the covariant derivative

Dµ ≡ ∂µ − ieAµ (2.6)

where

Aµ → A′
µ = Aµ +

1

e
∂µα (2.7)

then the free fermion Lagrangian is invariant under the local gauge transformation:

L0 → L′
0 = iψ̄γµD

µψ −mψ̄ψ

= ψ̄(iγµ∂
µ −m)ψ + eψ̄γµAµψ

(2.8)

The demand of local gauge invariance introduces the gauge field Aµ, which can be

interpreted physically as the field of the photon. Now consider the Lagrangian of

Quantum Electrodynamics (QED):

LQED = ψ̄(iγµ∂
µ −m)ψ + eψ̄γµAµψ − 1

4
FµνF

µν (2.9)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor and the last term is the kinetic

term for the photon field Aµ. The Lagrangian for the electroweak theory is given by:

LEW =L̄i
Lγ

µ

[
i∂µ − g

~τ

2
~Wµ − g′

Y

2
Bµ

]
Li
L

+ ēiRγ
µ

[
i∂µ − g′

Y

2
Bµ

]
eiR − 1

4
BµνB

µν − 1

4
~Wµν

~W µν

(2.10)

where

• Li
L and eiL are the doublet and singlet fields for the leptons as described in

Equations 2.3 and 2.2,

• ~τ = (τ1, τ2, τ3) are the Pauli matrices,

• ~Wµ = (W 1
µ ,W

2
µ ,W

3
µ) and Bµ are vector fields,
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• Y is the weak hypercharge, the generator associated with the U(1)Y symmetry

group,

• Bµν = ∂µBν − ∂νBµ and ~Wµν = ∂µ ~Wν − ∂ν ~Wµ are the antisymmetric field

strength tensors,

• g and g′ are the coupling strengths for ~Wµ and Bµ respectively.

The linear combination of the vector fields W 1
µ and W 2

µ leads to the physical fields

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) and describe the massive W± bosons. The Bµ and W 3

µ fields

mix:

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = −Bµ sin θW +W 3
µ cos θW

(2.11)

where the fields Aµ and Zµ correspond to the massless photon and massive Z boson

respectively and θW is the Weinberg angle. The Weinberg angle can be expressed

by the mixing of the B and W3 gauge bosons to form the Z boson and the photon

through spontaneous symmetry breaking:γ
Z

 =

 cos θW sin θW

− sin θW cos θW

 B

W3

 (2.12)

It also gives the relationship between the mass of the Z and W bosons at leading

order:

mZ =
mW

cos θW
(2.13)

2.1.2 Higgs mechanism

In the Salam-Weinberg model of electroweak unification, the Higgs mechanism is

embedded in the U(1)Y×SU(2)L local gauge symmetry of the electroweak sector of

the SM. This brief example will show the key concepts of how the Higgs mechanism

leads to the generation of the masses of the gauge bosons. The simplest Higgs model
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consists of two complex scalar fields:

φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.14)

The Lagrangian for this doublet scalar field is:

L = (∂µφ)
†(∂µφ)− V (φ) (2.15)

where the Higgs potential is given by:

V (φ) = µ2φ†φ+ λ(φ†φ)2 (2.16)

We minimise V (φ) to obtain the set of degenerate minima for µ2 < 0 satisfying:

φ†φ = −µ
2

2λ
(2.17)

In order to ensure that the photon is massless after symmetry breaking, the minimum

of the potential must correspond to a non-zero vacuum expectation value of the

scalar field φ0. We chose the ground state:

φG =
1√
2

0

v

 (2.18)

We expand the field about its minimum, this is called the unitary gauge:

φ(x) =
1√
2

 0

v + η(x)

 (2.19)

The mass terms of the gauge bosons can be identified by writing the Lagrangian in

Equation 2.15 such that it is invariant under local SU(2)L×U(1)Y gauge symmetry

and replacing the derivatives with the appropriate covariant derivatives. The mass

terms are identified by the relevant term of the Lagrangian:

L ⊃ 1

8
v2g2(W 1

µW
1µ +W 2

µW
2µ) +

1

8
v2(gW 3

µ + g′Bµ)(gW
3µ + g′Bµ) (2.20)
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by comparison with the mass terms:

1

2
m2

WW
1
µW

1µ and 1

2
m2

WW
2
µW

2µ (2.21)

Therefore the mass of the W± bosons is given by:

mW =
1

2
gv (2.22)

To identify the masses of the Z boson and the photon we compare the last term in

Equation 2.15 to the mass terms:

1

2
m2

ZZµZ
µ and 1

2
m2

AAµA
µ (2.23)

which leads to:

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

and Zµ =
gW 3

µ − g′Bµ√
q2 + g′2

(2.24)

and

mA = 0 and mZ =
1

2
v
√
g2 + g′2 (2.25)

By using the relationship between the physical fields and underlying fields in Equation

2.11 the mass of the Z boson can be expressed as:

mZ =
1

2

g

cos θW
v (2.26)

and combining Equations 2.22 and 2.26 one gets the relation with the Weinberg angle

θW given in Equation 2.13. The Higgs mechanism for the spontaneous symmetry

breaking of the SU(2)L×U(1)Y gauge group generates the masses of the W± and Z

bosons. Similarly it is also responsible for the generation of the fermion masses. The

relevant terms in the Lagrangian for the electron doublet is:

Le ⊃ − ge√
2
v(ēLeR + ēReL)−

ge√
2
h(ēLeR + ēReL) (2.27)

58



CHAPTER 2. THEORY

The Yukawa coupling ge is chosen to be consistent with the observed electron mass:

me =
gev√
2

(2.28)

Similarly for an u quark the Lagrangian is given by:

Lu ⊃ − gu√
2
v(ūLuR + ūRuL)−

gu√
2
h(ūLuR + ūRuL) (2.29)

and hence the masses of the quarks are given by:

mu =
guv√
2

and md =
gdv√
2

(2.30)

where gu and gd are the Yukawa couplings for the u and d quarks respectively and

the vacuum expectation value of the Higgs field is v = 246 GeV.

2.1.3 Quantum chromodynamics

The theory of the strong interaction is governed by Quantum Chromodynamics

(QCD) and is described by the non-abelian gauge symmetry group SU(3)C . The

generators of the gauge group SU(3)C are the Gell-Mann matrices which are defined

by [Ta, Tb] = ifabcTc where fabc are the antisymmetric structure constants. Similarly

to the QED Lagrangian, a gauge invariant QCD Lagrangian can be written by

introducing the covariant derivative:

Dµ ≡ ∂µ + igTaG
a
µ (2.31)

where Ga
µ transforms as follows under a local gauge transformation:

Ga
µ → Ga

µ −
1

g
∂µα

a − fabcαbG
c
µ (2.32)

The gauge invariant QCD Lagrangian for a colour field q is then given by:

LQCD = q̄(iγµ∂µ −m)q − g(q̄γµT aq)Ga
µ −

1

4
Ga

µνG
µν
a (2.33)
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which is invariant under the local gauge transformation:

q(x) → eiαa(x)Ta

q(x) (2.34)

where a = 1, ..., 8 and Ga
µν ≡ ∂µG

a
ν − ∂νG

a
ν − gfabcG

b
µG

c
ν . The generators of SU(3)C ,

T a give rise to the eight gluons, the mediators of the strong force. In contrast to the

electroweak interaction, no experimental evidence for the violation of the symmetry

under charge parity transformations in the strong interaction has been observed.

QCD does allow a violation of CP symmetry and it is not understood why CP should

be conserved in QCD; this is known as the strong CP problem.

2.2 Neutral meson mixing

Neutral meson mixing is the time-dependent phenomena of a particle changing

into its antiparticle and vice versa. This occurs because the mass eigenstates are linear

combinations of the flavour eigenstates. Mixing in the charm sector is complimentary

to studies in the beauty and kaon sectors. Charm mixing is highly suppressed so

is the least experimentally constrained of the three sectors. In addition the charm

system is the only one which comprises up-type quarks, so it has unique sensitivity

to new physics coupling preferentially to the up sector.

Mixing occurs in the charm sector when a D0 transitions into a D̄0 or vice

versa. This occurs via a flavour-changing current which changes the flavour quantum

number by |∆F | = 2. In the charm sector, mixing has contributions from the d and

s transitions in the box diagram in Figure 2.2. Due to the GIM mechanism, these

contribute with approximately equal magnitude and opposite sign where the sign

change comes from the CKM matrix. The GIM mechanism is an efficient cancellation

of two amplitudes of similar magnitude and opposite sign, one corresponding to

a down quark exchange and one to a strange quark exchange. Therefore weak

interactions which change strangeness by |∆S| = 2 are highly suppressed. In the box

diagram in Figure 2.2, the vertex factors from the d and s transitions nearly cancel,

and the amplitude of the b transition is small due to the off-diagonal elements of the

CKM matrix V ∗
ciVui.
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d, s, b

d̄, s̄, b̄

W WD0

c u

ū c̄

Figure 2.2: Feynman box diagram for the D0 − D̄0 transition via the exchange of
intermediate quarks

K, π

K, πc u

ū c̄

Figure 2.3: Diagram of a D0 − D̄0 transition through long-distance hadronic interac-
tions.

Mixing can occur through long-distance and short-distance contributions; in charm

long-distance effects are expected to dominate due to the suppression mechanisms

described above, making theoretical predictions challenging [68]. A Feynman diagram

of a short-distance D0 − D̄0 transition can be seen in Figure 2.2 and for the long-

distance hadronic contribution in Figure 2.3.

Neutral meson mixing can be characterised by epxressing the mass eigenstates as

linear combinations of the flavour eigenstates:

|D1,2〉 = p
∣∣D0
〉
± q

∣∣D̄0
〉

(2.35)

where p and q satisfy |p2|+ |q2| = 1. The effective Hamiltonian describing D0 mixing

is given by H = M− iΓ where M and Γ and the Hermitian mass and decay matrices.

The eigenstates of this Hamiltonian are:

H |D1,2〉 = λ1,2 |D1,2〉 (2.36)

where the eigenvalues are λ1,2 ≡ m1,2 − iΓ1,2/2 and m1,2 and Γ1,2 are the masses and
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decay widths respectively. The time evolution of the eigenstates is then given by:

|D1,2(t)〉 = e−iλ1,2t |D1,2(0)〉

= e−im1,2te−
Γ1,2
2

t |D1,2(0)〉
(2.37)

We can introduce the mixing parameters x and y:

x =
m1 −m2

Γ
and y =

Γ1 − Γ2

2Γ
(2.38)

where m = (m1+m2)/2 and Γ = (Γ1+Γ2)/2 are the average mass and decay widths

respectively. The time evolution of the mass eigenstates in Equation 2.37 can then

be written as:

|D1,2(t)〉 = e−imte−
Γ
2
te∓(y+ix)Γ

2
t |D1,2(0)〉

≡ e1,2(t) |D1,2(0)〉
(2.39)

We use Equation 2.35 to derive the time evolution of the flavour eigenstates which

are given by:

∣∣D0(t)
〉
=
e1(t) + e2(t)

2

∣∣D0
〉
+
q

p

e1(t)− e2(t)

2

∣∣D̄0
〉

∣∣D̄0(t)
〉
=
e1(t) + e2(t)

2

∣∣D̄0
〉
+
p

q

e1(t)− e2(t)

2

∣∣D0
〉 (2.40)

The time-dependent amplitudes for D0 and D̄0 decaying into a final state f , Af (t)

and Āf (t) are therefore defined as:

Af (t) ≡ 〈f |H
∣∣D0(t)

〉
= 〈f |He1(t) + e2(t)

2

∣∣D0
〉
+ 〈f |Hq

p

e1(t)− e2(t)

2

∣∣D̄0
〉

Āf (t) ≡ 〈f |H
∣∣D̄0(t)

〉
= 〈f |He1(t) + e2(t)

2

∣∣D̄0
〉
+ 〈f |Hp

q

e1(t)− e2(t)

2

∣∣D0
〉

(2.41)
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This can be rewritten as:

Af (t) =
e1(t) + e2(t)

2
Af +

q

p

e1(t)− e2(t)

2
Āf

=
1

2
e1(t)

(
A+

q

p
B

)
+

1

2

(
A− q

p
B

)
Āf (t) =

e1(t) + e2(t)

2
Āf +

p

q

e1(t)− e2(t)

2
Af

=
1

2
e1(t)

(
B +

p

q
A

)
+

1

2
e2(t)

(
B − p

q
A

)
(2.42)

where the notation A ≡ Af and B ≡ Āf is used. Substitute e1,2(t) in Equation 2.39

into the above Equation 2.42. The square of the time-dependent amplitude is then

given by:

| Af (t) |2=
1

2
e−Γt

[(
| A |2 − | q

p
B |2

)
cos(xΓt)− 2 Im

(
AB∗

[
q

p

]∗)
sin(xΓt)

+

(
| A |2 + | q

p
B |2

)
cosh(yΓt)− 2Re

(
AB∗

[
q

p

]∗)
sinh(yΓt)

]
(2.43)

as well as a similar equation for
∣∣Āf (t)

∣∣2.
Here A and B represent the amplitudes of a D0 and D̄0 respectively decaying into

some final state f . For a multi-body decay such as D0 → K0
Sπ

+π− the amplitudes

A and B depend on the multidimensional phase-space which in this case is defined

by the Dalitz variables m2(K0
sπ

+) and m2(K0
sπ

−); this is discussed in more detail in

Section 2.4. The time-dependent amplitude is a function of the amplitudes A and

B as well as the mixing parameters x and y. The neutral meson oscillations effect

the phase-space and decay-time distributions of this decay. Therefore the mixing

parameters x and y can be extracted from a time-dependent amplitude fit in the

Dalitz variables and decay-time of this decay.

As an analogous example, consider the two-body wrong-sign decay D0 → K+π−.

Here there are two ways the decay can proceed; by direct DCS decay or by mixing

followed by CF decay. It is the interference between these processes that gives the

sensitivity to CP -violation. In order to extract the mixing parameters, one also

needs to measure the direct right-sign CF decay D0 → K−π+. At LHCb there is no
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way to measure the absolute value of the strong phase between the CF and DCS

decays; instead we measure x′ and y′, the mixing parameters x and y rotated by this

unknown phase with respect to the true values. The three-body self-conjugate decay

D0 → K0
Sπ

+π− is unique as it offers access to the direct wrong-sign DCS decay,

mixed followed by CF, and the right-sign CF decay in the same final state. Therefore

we can identify different regions of phase-space with right-sign and wrong-sign decays

which allows us direct access to the mixing parameters x and y.

2.3 CP-violation

CP -violation is the violation of CP -symmetry or the combination of charge

symmetry and parity symmetry. Under CP -symmetry, the laws of physics would be

the same if a particle was interchanged with its antiparticle (charge symmetry) and

its spatial coordinates are inverted (parity symmetry). CP -violation was discovered

in the kaon sector in 1964 [37] and in the beauty sector by Belle and BaBar in

2001 [16, 30]. Studies of CP -violation play an important role in cosmology to explain

the dominance of matter over antimatter in the universe, as well as in the study of

weak interactions in particle physics. In order to account for the inbalance of matter

and antimatter in the universe, the Sakharov conditions were proposed: baryon

number violation, charge symmetry and CP -symmetry violation, and interactions

out of thermal equalibrium [72].

In the SM, CP -violation is introduced through an irreducible complex phase in

the CKM mixing matrix. CP -violation is not allowed in the strong interaction. In

the lepton sector CP -violation can enter in the SM via the Pontecorvo–Maki–Naka-

gawa–Sakata (PMNS) matrix [70, 63]. However the amount of CP -violation allowed

in the SM is too small to account for the matter-antimatter asymmetry observed in

the universe. Therefore physics beyond the SM associated with large energy scales

(such as the energy scale of the early universe) are needed to explain the matter-

antimatter asymmetry observed in the universe. CP -violation can be introduced by

new particles or interactions, motivating searches and precision measurements at

high energy physics experiments such as the LHC.

Measurements of CP -violation have been performed in the kaon and beauty

64



CHAPTER 2. THEORY

sectors [37, 31] but until 2019 CP -violation had not been discovered in charm [10].

Measurements of CP -violation in charm are complimentary to those in kaon and

beauty and provide a unique opportunity to measure CP -violation in particles

containing only up-type quarks. Theoretical predictions of CP -violation in the charm

sector are O(10−3 − 10−4) [52], but due to low-energy strong interactions they are

difficult to compute reliably. Contributions of physics beyond the SM may alter

the size of CP -violation in charm, therefore making searches for CP -asymmetries a

potentially sensitive probe of new physics.

The CKM matrix can be written in terms of three rotation angles and a complex

phase:

VCKM =


c12c13 s12s13 s13e

−iδ

−s12c23 − c12s23s13e
iδ −c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.44)

where sij = sin θij and cij = cos θij, where CP -violation enters in the complex phase

δ. The hierarchical structure of the CKM matrix also allows us to write it in terms

of the Wolfenstein parametrisation:

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (2.45)

where the parameters A, λ, ρ, η are all O(1). It can be seen that CP -violation only

enters in terms of O(λ3) hence it is small in the SM.

CP -violation can occur in the SM in three ways: CP -violation in decay (direct

CP -violation), CP -violation in mixing and CP -violation in the interference between

mixing and decay (indirect CP -violation). CP -violation in decay occurs when the

amplitude of a process is different to that from the CP -conjugate:

Γ(D0 → f) 6= Γ(D̄0 → f̄) (2.46)
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or alternatively:

|Af | 6= |Āf̄ | (2.47)

This type of CP -violation can occur for any type of particle, including both charged

and neutral mesons and baryons. CP -violation in mixing occurs when the rate of

the D0 mixing into a D̄0 is different to that of the opposite process:

Γ(D0 → D̄0) 6= Γ(D̄0 → D0) (2.48)

This occurs when |q| 6= |p|. A D0 meson can decay into a self-conjugate final state

f = f̄ directly D0 → f or by first mixing into a D̄0 and then decaying, D0 → D̄0 → f .

Then CP -violation in the interference between mixing and decay occurs when:

Γ(D0 → D̄0 → f, t) 6= Γ(D̄0 → D0 → f, t) (2.49)

The decay paths can interfere with each other and the relative phases between the

two amplitudes is relevant. CP -violation in the interference between mixing and

decay is present for a non-vanishing phase:

φ = arg

(
qĀf

pAf

)
6= 0 (2.50)

CP -violation in mixing and in the interference between mixing and decay are

therefore characterised by the parameters |q/p| and φ. This can also be expressed

in an alternative formalism where the mixing parameters are different for D0 and

D̄0 and are expressed as xCP ±∆x and yCP ±∆y. These parameters are measured

in previous model-independent analyses at LHCb including the bin-flip analysis [9].

The parameters are related to the CP -violation parameters |q/p| and φ as follows:

xCP =
1

2

[
x cosφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)+ y sinφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)] (2.51)

∆x =
1

2

[
x cosφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)+ y sinφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)] (2.52)

yCP =
1

2

[
y cosφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)− x sinφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)] (2.53)
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∆y =
1

2

[
y cosφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)− x sinφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)] (2.54)

Conservation of CP -symmetry in mixing (|q/p| = 1) and in the interference of

mixing and decay (φ = 0) implies xCP = x, yCP = y and ∆x = ∆y = 0. CP -

violation in mixing and in the interference of mixing and decay may be referred

to as time-dependent CP -violation. CP -violation in decay may be measured by

performing a time-integrated amplitude fit separately on datasets where the flavour

of the neutral D meson at production was D0 or D̄0. The complex coefficients of the

amplitudes may be compared, and in the case of CP -symmetry the amplitudes of

the D0 → K0
Sπ

−π+ and the charge conjugate would agree.

The observable ∆y is frequently denoted as AΓ and is measured in several LHCb

analyses [8]. The model-independent bin-flip method [44] introduces the parameters

xCP and ∆x as defined above. This allows for a conveniently symmetric notation

and the parameters are optimally suited for use in measurements and combinations

of results.

Theoretical predictions of CP -violation in the charm sector have large uncer-

tainties due to contributions from QCD which are difficult to calculate precisely.

Although direct CP -violation in the charm sector has been discovered at LHCb,

indirect CP -violation in mixing or in the interference between mixing and decay has

yet to be discovered at the time of writing.

2.4 Amplitude Analysis

The term amplitude analysis refers to the study of a variety of scattering and

decay processes. This thesis focuses on the study of multi-body decays of particles

that decay via the weak interaction to short-lived resonances that in turn decay via

the strong force. The three-body decay D0 → K0
Sπ

+π− can proceed through many

possible intermediate states such as K∗±, K∗0 and ρ0. In order to perform such

analyses we need a model that encapsulates the various possible intermediate states

and their shapes and which has enough freedom to adapt to give the best description

of the data.
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The dynamics of a three-body decay D0 → abc where D0, a, b, c are all pseu-

doscalar mesons, can be completely described by the Dalitz variables which are

a pair of squared invariant masses m2
ab and m2

ac. In the absence of contributions

from intermediate resonances, the two-dimensional distribution of candidates would

be uniform over the Dalitz plane, within the physically allowed region dictated by

the masses of the four particles. Figure 2.4 shows an example Dalitz plot with

the kinematic limits from momentum and energy conservation in the three-body

decay. Decay processes with higher-multiplicity final states, or final state particles

with nonzero spin, have substantially more Lorentz-invariant degrees of freedom. A

description of the complex amplitude variation across the phase space defined by

these degrees of freedom is known as an amplitude model [62]. Such models allow

the contributions of various intermediate resonances to be disentangled, providing a

full description of the decay process which can be used in CP -violation and mixing

studies. The amplitude model consists of the wrong-sign (DCS and mixed followed

by CF) processes such as D0 → K∗+π− where K∗+ → K0
Sπ

+ and right-sign (CF)

processes such as D0 → K∗−π+ where K∗− → K0
Sπ

−, and singly-Cabibbo supressed

processes such as D0 → K0
Sρ

0 where ρ0 → π+π−. Fitting the amplitude model to

data allows us to disentangle these processes; and it is the time evolution of these

processes which gives the sensitivity to mixing and CP -violation in mixing and the

interference between mixing and decay.

2.4.1 Isobar model

The isobar model is a widely used formalism for the construction of amplitude

models. In this formalism the three-body decay is modelled as a linear superposition

of quasi two-body amplitudes where the D0 decays through intermediate resonances

r: D0 → (r → ab)c. The matrix elements for a three-body decay are expressed as the

sum of matrix elements of a quasi two-body decay through the intermediate resonance

r, each multiplied by a complex coefficient, which encodes relative differences in

amplitudes and phases, including also strong phase differences:

MK0
Sπ

+π−(m2
ab,m

2
ac) =

∑
r

are
iφrMr(m

2
ab,m

2
ac) (2.55)
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Figure 2.4: Example of a Dalitz plot showing the kinematic limits for a three-body
decay.

where areiφr is the complex amplitude for the resonance r and the contributions from

each intermediate state is given by:

Mr(m
2
ab,m

2
ac) = BD0

J (p, |p0|, dD0)ΩJ(m
2
ab,m

2
ac)Tr(m

2
ab)B

r
J(q, |q0|, dr) (2.56)

where BD0

J (p, |p0|, dD0) and Br
J(q, |q0|, dr) are the Blatt-Weisskopf centrifugal barrier

factors for the production and decay, respectively, of the resonance r. p (q) is the

momentum of c (a or b) in the r rest frame and p0 (q0) is the quantity using the mass

mr as opposed to the reconstructed mass mab. In this analysis, the Blatt-Weisskopf

effective radius is fixed to dr = 1.5 GeV−1 for intermediate resonances and to dD0 =

5.0 GeV−1 for the D0 meson. Finally, ΩJ(m
2
ab,m

2
ac) is the spin factor for a resonance

with spin J and Tr is the dynamical function describing the resonance r. The

phase-space dependence of the amplitude is contained in the spin factor as well as

the dynamical function Tr, where different parametrisations of Tr are discussed in

Chapter 8 which depend on the resonance in question. The model-dependence of the

analysis method enters through the choice of resonances contributing to the sum in

Equation 2.55 and the chosen parameterisation of Mr.
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The Blatt-Weisskopf form factors are given by:

L = 0 : F (0)(z, z0) = 1

L = 1 : F (1)(z, z0) =

√
1 + z0
1 + z

L = 2 : F (2)(z, z0) =

√
(z0 − 3)2 + 9z0
(z − 3)2 + 9z

(2.57)

where z = (| q | d)2 and z0 = (| q0 | d)2. The spin factors are given by:

Ω0(m
2
ab,m

2
ac) = 1

Ω1(m
2
ab,m

2
ac) = m2

ac −m2
bc −

(m2
D0 −m2

c)(m
2
a −m2

b)

m2
ab

Ω2(m
2
ab,m

2
ac) =

[
m2

ac −m2
bc −

(m2
D0 −m2

c)(m
2
a −m2

b)

m2
ab

]2
− 1

3

[
m2

ab − 2(m2
D0 +m2

c) +
(m2

D0 +m2
c)

2

m2
ab

]
×
[
m2

ab − 2(m2
a +m2

b) +
(m2

a +m2
b)

2

m2
ab

]
(2.58)

Resonances with spin J produce characteristic Dalitz plot distributions with

J nodes. The intermediate resonances can interfere with each other, creating

constructive and destructive regions in the Dalitz plot. Figure 2.5 shows Dalitz plots

with different spin contributions: Figure 2.5a shows the broad structure of the K0
Sπ

+

S-wave contribution, Figure 2.5b shows a peaking structure of the K0
Sπ

− vector

resonance, Figure 2.5c shows a K0
Sπ

+ tensor resonance and Figure 2.5d shows the

interference between two vector resonances. An amplitude model may also contain

non-resonant quasi-two-body components which are included in the model. A further

description of the fit model is given in Chapter 8 with the other parametrisations of

Tr which are specifically used for this analysis.

In summary the self-conjugate three-body decay D0 → K0
Sπ

+π− offers direct

access to the mixing parameters x and y as well as the CP -violation parameters |q/p|

and φ. The amplitude of the decay can be described by the superposition of two-body

decays through intermediate resonances. The amplitude is described by the Dalitz

variables m2(K0
Sπ

+) and m2(K0
Sπ

−). The time-dependence of the amplitude model

70



CHAPTER 2. THEORY

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m2

12[GeV2/c4]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
2 13

[G
eV

2 /c
4 ]

10 1

100

101

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

(a) K0
Sπ

+ S-wave contribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m2

12[GeV2/c4]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
2 13

[G
eV

2 /c
4 ]

10 5

10 4

10 3

10 2

10 1

100

101

102

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

(b) K0
Sπ

− vector resonance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m2

12[GeV2/c4]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
2 13

[G
eV

2 /c
4 ]

10 5

10 4

10 3

10 2

10 1

100

101

102

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

(c) K0
Sπ

+ tensor resonance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m2

12[GeV2/c4]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
2 13

[G
eV

2 /c
4 ]

10 3

10 2

10 1

100

101

102

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

(d) Interference between π+π− and K0
Sπ

+ vec-
tor resonances

Figure 2.5: Illustrations of Dalitz plot distributions produced by resonances with
different spins; spin J = 0, 1, 2 contributions and an interference between two vector
resonances are shown. The decay process is D0 → K0

Sπ
+π− for illustrative purposes.
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gives sensitivity to mixing and CP -violation. Therefore the mixing and CP -violation

parameters of interest can be extracted from a time and phase-space dependent fit of

the amplitude model to the Dalitz variables and decay-time of this decay using the

time-dependent formalism in Equation 2.43. The amplitudes of a D0 and D̄0 decaying

to the final state A and B are expressed in the formalism given in Equation 2.55.
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Detector

The data analysed in this measurement have been collected at the LHCb experiment

at the Large Hadron Collider (LHC). The LHC is a proton-proton (pp) collider,

which was designed to run at a luminosity of 1034 cm−2s−1 and achieve centre-of-mass

energies of 14 TeV for pp collisions. The particle accelerator is built in a tunnel of

27 km circumference built ∼100m underground at the Centre for European Nuclear

Research (CERN) near the French-Swiss border. At the LHC, the ATLAS and

CMS experiments are general-purpose detectors focusing particularly on precision

tests of the Standard Model, Higgs physics and direct new physics searches whereas

ALICE aims at the investigation of the quark-gluon plasma. The LHCb detector is a

forward-arm detector which is primarily designed for the study of beauty and charm

decays and with a physics program focusing on measurements of CP -violation and

rare decays.

3.1 The Large Hadron Collider

The LHC accelerator complex consists of a succession of machines that accelerate

particles to increasingly higher energies. The source of protons for the beam is

hydrogen gas where the atoms are stripped of the electrons by an electric field.

LINAC 2 accelerates the protons to energies of 50 MeV before they are injected

into the Proton Synchrotron Booster. The injection occurs every 100 ms providing
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Figure 3.1: Illustration of the CERN accelerator complex displaying the accelerators
and detectors at CERN and the LHC [65].

bunches of ∼ 1011 protons. Here the protons are accelerated to energies of 1.4 GeV.

The beam is then injected into the Proton Synchrotron which accelerates the protons

to 25 GeV and the Super Proton Synchrotron (SPS) with a circumference of 7 km.

The SPS accelerates the beam to 450 GeV, which is the injection energy for the LHC.

The bunch spacing of the proton bunches is now 25 ns. Before injection into the

LHC the particles are split into two beams travelling in opposite directions. The

beams collide at four interaction points where the four experiments are situated;

ATLAS, CMS, ALICE and LHCb. An illustration of the CERN accelerator complex

is shown in Figure 3.1.

In order to maximise the luminosity delivered to the experiments, the LHC

machine operates in a sequence of fills during which pp bunches circulate for several

hours (typically ∼ 10 hours) and generate collisions. During this time, the bunch
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intensities drop due to beam-beam interactions and other effects; the beams are then

dumped before a new fill is started.

Instantaneous luminosity corresponds to the potential number of collisions per

second. The LHC is designed to run at an instantaneous luminosity of 1034 cm−2s−1.

During the Run 2 data-taking period the machine and beam performance allowed

nearly every fill to run with a peak luminosity of ∼ 2×1034 cm−2 s−1, which is around

twice the design luminosity. Integrated luminosity refers to the total luminosity

collected over a given period of time. The total integrated luminosity since the

beginning of LHC operation in 2010 and until the end of Run 2 in 2018 is 189.3 fb−1

for ATLAS and CMS, of which 160 fb−1 were accumulated during Run 2. The

higher the luminosity, the more rare physics events are observed; so one may want to

maximise this quantity when designing a particle accelerator. However, in the case of

very high luminosity the high event rate per bunch crossing can make events difficult

for the detectors to resolve individual events. Therefore, the LHCb detector does

not run at the LHC peak luminosity but aims for a lower number of collisions per

bunch crossing through a process called luminosity levelling which will be discussed

in Section 3.2. The luminous region is the region in space across which the collisions

are distributed, and this also needs to be optimised to the acceptance of the detector.

The luminous region can change between fills due to the crossing angle of the beams

and other beam parameters and configurations.

The LHCb uses a right-handed cartesian coordinate system and the convention is

as follows: the z axis is along the beam line as it passes through the detector, the y

axis is perpendicular to the z axis in the vertical plane where the positive direction

is upwards and the x axis is perpendicular in the horizontal plane where the positive

direction points towards the centre of the LHC ring. Pseudorapidity is the spatial

coordinate describing the angle of a particle relative to the beam axis. It is defined

as:

η ≡ − ln

[
tan

(
θ

2

)]
(3.1)

where θ is the angle subtended with respect to the positive direction of the beam

axis, in the case of the LHC coordinate system this is the positive z direction. The

LHCb detector has the pseudorapidity range 1.9 < η < 4.9.
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Figure 3.2: Coordinate system used in this thesis; pseudorapidity η is shown in the
polar coordinates with the corresponding values of θ, z is along the beam axis and
the (x, y) plane is transverse to the beam.

The LHC operated at a centre-of-mass energy of 7 TeV for pp collisions in 2010-

2011 and 8 TeV in 2012 in the Run 1 data-taking period; the centre-of-mass energy

was 13 TeV in 2015-2018 (Run 2 data-taking period). The LHC is also able to collide

heavy nuclei such as lead (Pb) either in ion-ion collisions or in proton-ion collisions.

This allows studies of the quark-gluon plasma, a state of matter in which quarks and

gluons exist in thermal and chemical equilibrium. This is the primary purpose of the

ALICE experiment but the other LHC experiments, ATLAS, CMS and LHCb now

each have a heavy ion program.

3.2 The LHCb Detector

The LHCb detector [26] is a forward-arm detector situated at one of the interaction

points on the LHC ring. The detector was specifically designed for the study of

hadrons containing b and c quarks and focuses on measurements of CP -violation

and rare decays such as B0
s → µ+µ− [4]. The LHCb physics program has since

expanded to include measurements of lepton universality [5, 12], and searches for new

conventional and exotic hadron states (for example the pentaquark discovery [1]). In

addition LHCb has also performed BSM (beyond SM) searches for dark photons [6]
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Figure 3.3: Angular distribution of bb̄ production at
√
s = 14 TeV in the LHCb

detector, where the detector acceptance is shown by the red shaded area [26].

and studies of QCD and electroweak interactions such as measurements of the forward

production of vector bosons [2].

When bb̄ pairs are produced at the LHC, the primary production method is

gluon-gluon fusion, which occurs when two gluons collide in a pp interaction. The

gluons have highly asymmetric momenta and in gluon-gluon fusion at the LHC,

the most likely occurrence is that one gluon carries the majority of the momentum.

Hence the bb̄ pair is boosted in the direction of the gluon momentum, which is along

one of the two beam directions. The LHCb acceptance is in the psuedorapidity range

2 < η < 5, motivated by the fact that bb̄ pairs are produced at angles close to the

beam pipe. Figure 3.3 shows the angular distribution of the production of bb̄ at

LHCb where the LHCb acceptance is shown by the red shaded area. This shows the

highly forward and correlated production of the bb̄ pair. The acceptance in terms of

the angle θ is 10 < θ < 300 (250) mrad in the bending (non-bending) plane.

The LHCb detector is designed to collect data at a luminosity of L = 2 ×

1032 cm−2s−1. In practice the LHCb detector exceeded this design goal, operating
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Figure 3.4: LHCb recorded luminosity in pp collisions from 2012-2018 [26].

at 5 × 1032 cm−2s−1 for much of Run 2. The detector collected data during the

Run 1 data-taking period at centre-of-mass energies of 7 TeV in 2010 and 2011 and

8 TeV in 2012 corresponding to a total integrated luminosity of 3 fb−1. The Run 2

data-taking period was between 2015 and 2018 and collected data at a centre-of-mass

energy of 13 TeV, corresponding to a total integrated luminosity of 6.1 fb−1. The

recorded luminosity at the LHCb detector is shown in Figure 3.4, the total recorded

luminosity is 9.1 fb−1. The design luminosity of LHCb is significantly lower than the

general purpose detectors ATLAS and CMS; this is in order to prevent ageing of the

detectors and to keep the number of pp interactions per bunch crossing close to one.

Through the procedure of luminosity levelling, the beams are not focused as strongly

as for ATLAS and CMS and the transverse beam overlap is adjusted by changing

the offset between the proton beams.

A cross section of the LHCb detector is shown in Figure 3.5. The interaction

point is located at the centre of the Vertex Locator (VELO), a silicon strip detector

providing high precision measurements of the track and vertex coordinates. The

Ring Imaging Cherenkov (RICH) detectors provide particle identification for pions,

kaons and protons. The tracking system consists of the Tracker Turicenis (TT),

located upstream from the magnet and tracking stations T1-T3, located downstream

from the magnet. The tracking stations comprise two types of technology split into

inner and outer regions. The Silicon Tracker (ST) consists of the inner regions of

the tracking stations T1-T3 closest to the beam line (inner tracker IT), along with
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Figure 3.5: Cross-section of the LHCb detector [26].

the TT, and comprises silicon microstrip detectors. The signals in a silicon strip

detector are formed when charged particles liberate electrons and holes within the

semiconducting silicon. These charges drift under the influence of a bias voltage to

be collected at the sensor surface as currents. The silicon is segmented into strips so

that the signals can be identified with a particular region of the detector, where the

size of the strip is dictated by the physics performance requirements and the number

of channels which can be accommodated within resource limits. The Outer Tracker

(OT) consists of the outer regions of the tracking stations T1-T3. The OT consists

of straw tube drift chambers and measure the track coordinates of the particles. The

calorimeter system consists of the electromagnetic calorimeter (ECAL) and hadronic

calorimeter (HCAL) and provides particle identification and energy measurements

of electrons, photons and hadrons. Finally the muon system (M1-M5) provides

identification of muons.
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3.2.1 Vertex Locator

The VELO lies closest to the beam line; the information from the VELO is used

to reconstruct the trajectories of charged particles produced in the initial pp collision.

Using the information from the VELO we can identify and locate both the primary

vertices (PV) at the pp interaction point in the bunch crossing, and the secondary

vertices caused by the decays of long-lived particles such as those containing b quarks.

The displaced secondary vertex is a distinctive feature of b and c-hadron decays and

is used to trigger on events in the high level trigger (discussed in Section 3.2.6). For

a PV with 25 tracks, the vertex position is measured with a precision of 13 µm in

the transverse plane and with 71 µm along the z axis.

Silicon detectors are widely used in tracking systems in particle physics to measure

the position of charged particles. Track reconstruction software can then deduce

several parameters including the flight path, the vertex of the interaction and the

secondary vertex of particles with long lifetimes such as a hadron containing a b-quark.

The VELO consists of 21 silicon modules which are placed close to the pp interaction

point. The silicon microstrip modules contain R and φ sensors where R measures the

radial distance to the beam axis and φ measures the azimuthal coordinate around

the beam. Charged particles produced by the pp collisions traverse the silicon and

generate electron-hole pairs; the electrons and holes drift under the influence of a

bias voltage to be collected at the sensor surface. The electrons and holes produce

currents at the surface and are detected using application specific electronics. These

‘hits’ in the VELO modules are used in track reconstruction software in the high level

trigger to deduce the track parameters of a charged particle traversing the detector.

During data-taking the silicon modules are at a distance of 7 mm to the beam

line (the closest active part of the module is 8.2 mm from the beam line); they then

retract to a distance of 35 mm, preventing damage to the VELO during beam fill and

beam dump. When the VELO closes it does so in such a way to ensure the detector

is centred in the transverse plane on the luminous region, which differs between fills;

this allows a measurement of the luminous region in real time.

The design of the VELO is optimised for the LHCb physics program and detector
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Figure 3.6: A schematic of the LHCb vertex locator; R and φ sensors and dimensions
are shown in the top and the positions of the modules with respect to the beam axis
are shown in the bottom [24].

performance in several ways. Firstly, it is designed to cover the forward direction and

tracks in LHCb acceptance. The VELO also provides excellent vertex and impact

parameter (IP) resolution which is crucial to many LHCb physics analyses. The

impact parameter is defined as the distance of closest approach between a track

and the PV. The IP is measured with a resolution of (15 + 29/pT ) µm, where pT

is expressed in GeV/c. In addition the reconstruction of the PV and the displaced

secondary decay vertex of is used in the high level trigger which reduces the event

rate from a 1 MHz event rate to a few kHz. The decay time of a particle is measured

from the flight distance in the VELO, which provides a resolution of ∼50 fs and is

crucial to many LHCb analyses.

3.2.2 Tracking

The primary purpose of the tracking system is to allow the trajectories of charged

particles to be measured as they pass through the LHCb detector. Charged particle

trajectories are bent by the magnetic field from the large dipole magnet of field
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strength 4 Tm located between the TT and the T1-T3 tracking stations. This allows

the tracking system to determine the curvature and hence momentum of the particle.

During data taking, the magnet polarity is periodically reversed in two configurations

in order to account for detection asymmetries: magnet up where the magnetic field

is in the positive y direction and magnet down where the field is in the negative y

direction. This mitigates the majority of detector asymmetries. The information

from the tracking system can also be matched to the corresponding signals in the

VELO and other subdetectors to determine measurements of the track trajectory

and parameters. The tracking system provides a measurement of the momentum of

charged particles with a relative uncertainty that varies from 0.5% at low momentum

to 1.0% at 200 GeV/c.

Silicon Tracker

The silicon tracker consists of the TT and the Inner Tracker. The TT consists of

500 µm thick silicon microstrip detectors with a strip pitch of ∼ 200 µm. The TT

is a planar tracking station that is located upstream of the LHCb dipole magnet

and covers the full acceptance of the experiment. The TT consists of four detection

layers, where each layer is rotated in the x direction to overlap to avoid acceptance

gaps and maximise spatial resolution. Each layer consists of 30 ‘half-modules’ which

in turn consist of seven silicon strip sensors, where a higher occupancy is accounted

for closer to the beam line. Each TT sensor has 512 readout strips, and a spatial

resolution of 50 µm is achieved. A schematic diagram of the TT can be seen in

Figure 3.7. To account for a higher occupancy near the beam line, the different tones

of brown in the figure indicate a difference in readout systems.

The IT covers a cross shaped region in the inner region of the tracking stations

(T1-T3) downstream of the magnet and close to the beam pipe. The IT consists of

two single-sensor modules of 320 µm thickness and two two-sensor modules with

a thickness of 410 µm. This can be seen in Figure 3.7 by the yellow cross in the

centre of the layer; the single-sensor modules are in the vertical direction and the

two-sensor modules are in the horizontal direction. The cross shape is optimised

for the stretching of the highest occupancy region due to the bending of charged
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Figure 3.7: Layout of the Tracker Turicensis; the sensor placement is indicated by
the different shades of brown. The Inner Tracker is indicated by the sensors in
yellow [60].

particles by the magnet. The IT consists of four detection layers which overlap in

the x direction to minimise acceptance gaps and improve the alignment. The sensors

consists of 384 microstrips and have a strip pitch of 198 µm.

Outer Tracker

The Outer Tracker (OT) consists of the outer sections of the tracking stations T1-T3.

It consists of straw-tube drift chambers with 5 mm cell diameter and filled with a

mixture of argon and carbon dioxide. A charged particle passes through the gas

tubes, ionising the gas molecules and producing elections. The position of the charged

particle’s trajectory can be determined from the drift time of the electron to the

anode wire in the centre of each tube.

Each tracker is comprised of four layers, which are rotated in the same configura-

tion as the TT. The outer boundaries of the OT correspond to a 300 mrad acceptance

horizontally, and a 250 mrad acceptance vertically. Each tracking station is built

from 72 modules; each module contains two layers of drift tubes. The OT has a drift
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Figure 3.8: Layout of the LHCb Outer Tracker system on the right and a schematic
diagram of one layer including dimensions in cm on the left.

time resolution of 2.6 ns and a spatial drift resolution of 179 µm. A diagram of the

OT system can be seen in Figure 3.8.

3.2.3 Ring Imaging Cherenkov Detectors

The RICH detectors provide particle identification of kaons, pions and protons

with momenta 2 - 100 GeV/c. The RICH detectors consist of two detectors; RICH1

upstream from the magnet and RICH2 downstream from the magnet. RICH1 has

good performance in the low momentum range 1 - 60 GeV/c whereas RICH2 gives

good separation of particles with higher momenta. RICH1 uses C4F10 gas and

RICH2 uses CF4. During Run 1 RICH1 also included an aerogel radiator; this was

removed for Run 2 as its ability to provide particle identification for particles with

low momentum was compromised by the low number of photons in RICH1 in such a

high track multiplicity environment. Removing it also contributed significantly to

the speed of the RICH reconstruction as it reduced by more than half the number of

photon candidates (combinations of photon-detector hits with tracks) for which a

Cherenkov angle is calculated [67].

When a charged particle travels through a medium faster than the speed of light

in that medium, Cherenkov radiation is emitted. Cherenkov radiation is emitted

in a cone shape with opening angle θc with respect to the direction of the particles
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Figure 3.9: Reconstructed Cherenkov angle as a function of track momentum in
RICH1 where the mass hypotheses for different particles are indicated.

momentum:

cos θc =
1

nβ
(3.2)

where n is the refractive index of the material and β = v/c and v is the velocity of

the particle. If the momentum of the particle is known, this provides a measurement

of the mass of the particle. The mass hypotheses of different particles can be seen in

Figure 3.9 in the plot of Cherenkov angle against the particle’s momentum.

Through a combination of spherical and flat mirrors, the Cherenkov light is focused

and reflected out of the acceptance onto an array of Hybrid Photon Detectors (HPD).

To reduce the amount of scattering, RICH1 uses four lightweight spherical mirrors

constructed from a carbon-fibre reinforced polymer. An incident Cherenkov photon

releases a photoelectron from the conversion in a photocathode. The photoelectron

is then accelerated by a high voltage field onto a silicon detector. The Cherenkov

angle is reconstructed from the impact points of the Cherenkov photons on the HPDs.

The resolution of the Cherenkov angle is determined to be 1.6 mrad for C4F10 and

0.7 mrad for CF4 [45]. A schematic diagram of the RICH detectors can be seen in

Figure 3.10.
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Figure 3.10: Schematic diagrams of the RICH1 on the left and RICH2 on the right
including the dimensions of the detectors [26].

3.2.4 Calorimeter system

The LHCb calorimetry system consists of: the Pre-Shower (PS), the Scintillator

Pad Detector (SPD), the Electromagnetic Calorimeter (ECAL) and the Hadronic

Calorimeter (HCAL). The system is designed to stop most types of particles (electrons,

photons, neutrons and other hadrons) and measure their energy loss in the process as

they come to a halt. This provides particle identification for electrons and photons

in the ECAL and protons, neutrons and other hadrons in the HCAL. The SPD

determines whether particles hitting the calorimeter system are charged or neutral,

while the PS indicates the electromagnetic character of the particle. The LHCb

calorimeters are sampling calorimeters; they only measure a certain fraction of the

energy deposited, which then needs to be calibrated to obtain the full energy. A

sampling calorimeter typically has interleaved layers of a very dense material (for

example lead or tungsten) designed to stop particles and initiate electromagnetic or

hadronic showers and the ‘active’ material where the energy deposits are measured.
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The SPD and PS consist of scintillating pads with a thickness of 15 mm, in-

terspaced with a lead converter. Light is collected using wavelength-shifting fibres

(WLS). The ends of the fibre are used to transmit the light to photomultipliers

located at the edge of the detector. The SPD and PS are used, along with the ECAL,

to trigger on electrons, photons and neutral pions.

The ECAL consists of alternating scintillating tiles and lead plates. The cell

size varies from 4 × 4 cm in the inner part of the detector, to 6 × 6 cm and 12

× 12 cm in the middle and outer parts. An electromagnetic shower is produced

in the 4 mm thick scintillation material and the 2 mm thick lead layer stops the

particle since the kinetic energy is converted to other forms. Similarly to the SPD

and PS the light is generated in the scintillation pads which are read out by the

WLS fibres. The photons can then be read out by the photomultipliers. The overall

detector dimensions are 7.76 × 6.30 m, covering an acceptance of 25 - 300 mrad in

the horizontal plane and 25 - 250 mrad in the vertical.

The HCAL provides measurements of the position and energy of protons, neutrons

and other hadrons. The HCAL is positioned behind the ECAL and consists of thin

iron plates interspaced with scintillating tiles arranged parallel to the beam pipe. The

cell dimensions of the calorimeter are 13 × 13 cm for the inner part and 26 × 26 cm

for the outer. The scintillating tiles are 3 mm thick and are interspaced with 1 cm

thick iron absorber. Similarly to the other calorimeter systems, the light is collected

by optical fibres and read out using photomultipliers. The HCAL is not used for

most LHCb analyses, but it plays a crucial role in the hardware trigger, providing

information in a very short time on the level of hadronic activity in a bunch crossing

(the ‘L0Hadron’ trigger). This subdetector will be completely removed for Run 3,

since the hardware trigger will no longer be used. A diagram of the calorimetery

system can be seen in Figure 3.11.

3.2.5 Muon system

The muon system provides particle identification and triggering of muons; the

information is used in the Level-0 muon triggers as well as in the high-level trigger

and offline analysis. Due to the fact that muons are heavy particles and lose less
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Figure 3.11: A diagram of the LHCb calorimeter system including the PS, SPD,
ECAL and HCAL [18].

energy due to Bremsstrahlung compared to electrons, they are likely to travel through

the full detector; this motivates the position of the muon stations at the end of the

detector. The muon system is comprised of five stations: M1 is situated before the

calorimeter system and M2-M5 are placed after. The muon system has an acceptance

of ±300 mrad in the horizontal axis and ±250 mrad in the vertical. Each station is

divided into four regions, R1 to R4, with increasing distance from the beam axis.

The granularity increases as the regions are further removed from the beam line,

such that the occupancy along the detector is comparable. The penetrating power of

muons increases with their momentum, so the number of hits will depend on the

muon kinematics. Muons of momenta 3 < p < 6 GeV/c are expected to provide hits

in M2 and M3; muons of momenta 6 < p < 10 GeV/c, are expected to produce hits

in M2, M3 and either M4 or M5. Muons with a momentum larger than 10 GeV/c

should provide hits in all muon stations [45]. A diagram of the muon system can be

seen in Figure 3.12.

The muon system contains multi-wire proportional chambers (MWPC) filled
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Figure 3.12: The LHCb muon system consisting of muon stations M1-M5 split into
regions R1-R4 [39].

with a gas mixture of carbon dioxide, argon and CF4. The muon traverses through

the detector and ionizes the gas producing electrons; the electrons are collected on

a tungsten wire of diameter 30 µm. A drift time resolution of 5 ns is achieved [45].

In the region closest to the beam line in M1, 12 Gas Electron Multiplier (GEM)

chambers are used which were chosen since they are more radiation-hard. The GEM

chambers consist of a cathode, and electrode and three GEM foils, and is filled with

the same gases as in the MWPCs. A drift time resolution of 3 ns is achieved in the

GEMs.

3.2.6 The LHCb Trigger

At the LHC the proton bunch crossing rate is 40 MHz; the LHCb trigger system

is designed to reduce the data rate to 5 kHz which can be saved to storage for offline

analysis [11]. The trigger system consists of the Level-0 (L0) hardware trigger and

two high-level software triggers, HLT1 and HLT2. This can be seen in the diagram

in Figure 3.13.

The L0 trigger reduces the rate of events considered for further processing from

the pp bunch crossing rate of 40 MHz to 1 MHz using real-time information from
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Figure 3.13: LHCb trigger system for the Run 2 data taking period on the left and
Run 3 on the right [59].

the VELO, calorimeter and muon systems. The L0 uses signatures of high pT tracks

and high energy calorimeter deposits to identify potential heavy flavour events. In

addition, it uses two dedicated silicon layers of the VELO to perform a simplified

vertex reconstruction, which allows events with multiple pp interactions to be rejected.

The HLT software trigger is run on a CPU farm. HLT1 performs a partial

reconstruction using information from the tracking stations and identifies tracks of

pT > 500 MeV. The information from the tracking system is also used to identify

events with a high IP which is a signature of particles from b and c-hadron decays.

The trigger also uses the output of multivariate algorithms to classify events with

one or two tracks which are consistent with coming from a heavy and long-lived

hadron. The information from the muon system is used to select single and dimuon

events. This further reduces the readout rate to 100 kHz.

The second stage HLT2 performs a full event reconstruction using information

from the entire detector. All charged tracks are reconstructed and particle identi-

fication information is available. For example reconstructed displaced vertices are
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used as a signature of b hadron decays. The HLT2 consists of a mixture of inclusive

and exclusive triggers and results in an output rate of 12.5 kHz which is sent to

storage for offline analysis. Inclusive triggers select events with resonances such as

J/ψ which can be used for calibration. Exclusive triggers use information such as

the mass, vertex quality and separation for a B candidate to provide a high efficiency

for fully reconstructed B decays.

Before HLT2 is run, a real-time calibration and alignment takes place in which

time the data is buffered to disk while waiting for them to become available. The

tracking detectors including the tracking system and the VELO are aligned using a

Kalman filter. In addition the RICH detectors are aligned at every LHC fill and the

calorimeters are calibrated in order to counteract changes and ageing of the detector

material.

In Run 3 we will need to achieve the same reconstruction performance with a

harsher environment and increased pile-up. This will be achieved by recording all

bunch crossings with a fully software-based trigger. The hardware (L0) trigger will

be completely removed. The HLT1 reconstruction will be run on Graphics Processing

Units (GPUs), including partial and fast reconstruction and selections. The difference

between the trigger schemes in Run 2 and Run 3 is seen in Figure 3.13.
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Analysis Method

The mixing parameters x and y and the CP -violation parameters |q/p| and φ

(alternatively defined in terms of ∆x and ∆y) can be extracted from a time and phase-

space dependent fit to the Dalitz variables and decay time of the D0 → K0
Sπ

+π−

decay. The time-dependent amplitudes of a neutral D meson decaying to some final

state f are given by the following, repeated from Equation 2.42:

Af (t) ≡ 〈f |H
∣∣D0(t)

〉
=
e1(t) + e2(t)

2
Af +

q

p

e1(t)− e2(t)

2
Āf (4.1)

Āf (t) ≡ 〈f |H
∣∣D̄0(t)

〉
=
e1(t) + e2(t)

2
Āf +

p

q

e1(t)− e2(t)

2
Af (4.2)

where Af and Āf are time and phase-space dependent amplitudes and

e1,2(t) = e−imte−
Γ
2
te∓(y+ix)Γ

2
t. (4.3)

Since Af and Āf are functions of the phase space m2(K0
Sπ

+) and m2(K0
Sπ

−), the

amplitude dependence on decay time and phase space is directly influenced by neutral

meson oscillations and matter-antimatter asymmetries. Thus the mixing and CP -

violation parameters can be extracted from the time and phase-space dependent fit to

data. The mixing parameters are given as: x ≡ (m1−m2)/Γ and y ≡ (Γ1−Γ2)/(2Γ)
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Figure 4.1: Dalitz plot of the D0 → K0
Sπ

+π− decay illustrating the intermediate
resonances and their interferences.

where x is the mass difference between the mass eigenstates of the neutral D meson

and y is the width difference.

The phase-space distribution of the D0 → K0
Sπ

+π− decay is modelled by express-

ing the decay as the sum of intermediate resonances and their interferences. The

neutral D meson decays into one stable final state particle and a resonance followed

by the decay of the resonance into the other two final state particles. The decay

amplitude is then modelled by the resonant and non-resonant contributions and their

interferences across the phase-space spanned by the Dalitz variables m2(K0
Sπ

+) and

m2(K0
Sπ

−). Due to the different masses and widths of the resonances, they manifest

themselves in different phase-space regions. Scalar resonances appear as a band in

the Dalitz plot whereas vector resonances exhibit one node and tensor resonances

show two nodes as can be seen in Figure 4.1 and Figure 2.4. The amplitudes at a

given point in phase-space are given by:

Af ≡ A(m2(K0
Sπ

+),m2(K0
Sπ

−)) =
∑
r

crAr(m
2(K0

Sπ
+),m2(K0

Sπ
−)) (4.4)

Āf ≡ Ā(m2(K0
Sπ

+),m2(K0
Sπ

−)) =
∑
r

c̄rĀr(m
2(K0

Sπ
+),m2(K0

Sπ
−)) (4.5)
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where the sum is evaluated over all intermediate resonances r with complex amplitude

Ar contributing to the decay with complex coefficients cr.

If the decays D0 → f and D̄0 → f are CP -symmetric, in the absence of mixing

then A(m2(K0
Sπ

+),m2(K0
Sπ

−)) = Ā(m2(K0
Sπ

−),m2(K0
Sπ

+)). As such, the Dalitz

coordinates are defined such that the D0 and D̄0 phase space is mirrored so that

these two samples can be simultaneously visualised and compared. This leads to

the definition of the Dalitz variables in terms of the final state particles and the D0

flavour: m2
12 = m2(K0

Sπ
+) and m2

13 = m2(K0
Sπ

−) for D0 and m2
12 = m2(K0

Sπ
−) and

m2
13 = m2(K0

Sπ
+) for D̄0; in both cases m2

23 = m2(π+π−). Then using this definition

we obtain A(m2
12,m

2
13) = Ā(m2

12,m
2
13) under CP -symmetry.

The parameters of interest, the mixing parameters x and y and CP -violation

parameters |q/p| and φ, can be extracted from a fit in D0 decay-time and the

Dalitz variables to data; this is hereby referred to as the mixing fit. The amplitude

model describes the amplitude of the D0 → K0
Sπ

+π− decay as a superposition

of intermediate resonances and their interferences. There is no way, a priori, to

know which resonances enter the model and their shapes, which have associated

uncertainties. This requires a data-driven treatment whereby the state-of-the-art

models from previous analyses are used as starting points, but the final model

is determined from the LHCb data itself. The preliminary model is taken from

Ref. [20] from the Belle and BaBar collaborations. In addition to narrow (Breit-

Wigner) resonances for L=1 (P-wave) and L=2 (D-wave) resonances, there can

be non-resonant L=0 (S-wave) components. These are modelled using data-driven

parameterisations based on previous scattering experiments, as described in Chapter

8. The parameters of the fit are the real and imaginary components of the amplitudes

of the resonances, the masses and widths, the S-wave components and the mixing and

CP -violation parameters x, y, |q/p| and φ. The masses and widths of the resonances

and the S-wave shape parameters are fixed from initial time-integrated fit studies as

discussed in Chapter 8 or to the world averages in the case of some of the masses

and widths. The fit can be run with the assumption of no CP -violation in which

the CP -violation parameters are fixed to |q/p| = 1 and φ = 0, or with CP -violation

allowed in which case they are allowed to float. The time-dependent amplitude fit is
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developed and ran using the GooFit framework [73], a massively parallel maximum

likelihood fitting framework which allows time-dependent amplitude fits to be ran

on GPUs.

As well as theoretical knowledge of the amplitude model, there are several

experimental effects such as acceptance and detector resolution, as well as background

contamination which need to be accounted for in the mixing fit. For example, the

detector geometry and reconstruction and event selection can distort the kinematic

distributions of the final state particles, leading to a non-uniform acceptance across

the Dalitz plane of the decay. There are also known variations in acceptance as a

function of decay-time as well as a finite decay-time and phase-space resolution. In

addition there is a non-negligible amount of combinatorial background remaining

after the event selection, which contaminates the sample and must be modelled in

the mixing fit. Out ability to tag the initial flavour of the neutral D meson as a D0

or D̄0 is also imperfect in reality. The rest of this chapter briefly describes these

experimental features, which are covered in more detail in Chapter 7.

The data used in this analysis were taken during the Run 2 data-taking period

in years 2016-2018. This analysis uses D mesons which originate from semi-leptonic

B meson decays and distinguishes between two decay chains; single-tagged and

double-tagged:

• B → D0(→ K0
Sπ

+π−)µ−ν̄µX (single-tagged)

• B → D∗+(→ D0(→ K0
Sπ

+π−)π+)µ−ν̄µX (double-tagged).

This is an inclusive selection in which if there are additional particles in the decay,

X, we still collect it as signal. The distinction between the single and double-tagged

decay chains is made since the additional information added by the pion from the

D∗(2010)± decay can be exploited to have a cleaner sample with less background.

The initial flavour of the neutral D meson is tagged by the charge of the muon in the

single-tagged sample and the charge of the so-called ‘soft pion’ in the double-tagged

sample. It is possible that the D0 meson is assigned the wrong flavour due to the

B → DµX decay being reconstructed with a muon with the wrong charge. This can

happen when the D0 is paired with a random muon with the wrong charge. For the
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double-tagged case, the charge of the soft pion is used to tag the initial flavour of

the D0 but for the single-tagged case, the D0 would be assigned the wrong flavour.

The mistagged candidates would have the Dalitz coordinates m2
12 and m2

13 swapped

and the decay time can be mismeasured. It is therefore necessary to determine the

mistag fraction by use of a control sample so this can be accounted for in the final

amplitude fit. This can be done by exploiting the two-body decay D0 → Kπ and is

discussed in more detail in Section 8.6.

In addition the data are split into subsamples by K0
S type: K0

S (LL) or K0
S (DD)

where L and D refer to long and downstream tracks. The K0
S is reconstructed through

its decay to two pions K0
S → π+π−. The K0

S (LL) type refers to K0
S which decay

within the VELO acceptances such that both pions leave tracks in the VELO and

tracking system. For K0
S (DD) candidates, the decay occurs outside the VELO and

the two pions only leave hits in the tracking stations. Note that it is possible to

reconstruct K0
S (LD) decays, where only one pion leaves hits in the VELO. However,

these are dominated by background and not used in this analysis. Due to the long

lifetime of the K0
S, (8.954±0.004)×10−11 s roughly a third of K0

S reconstructed in

the LHCb detector decay inside the VELO acceptance. A schematic of the LHCb

tracking system with the five different types of track categories is shown in Figure

4.2. The different K0
S types have different kinematics and are subject to different

detector effects; they are therefore considered as separate subsamples for the fit. In

particular the K0
S (LL) has better momentum resolution so the two types are subject

to different selection requirements.

The data used in this analysis are selected as follows; events are selected from

those which have passed the LHCb trigger system, a loose offline preselection called

stripping is then applied to these events. Specific trigger requirements and tighter

offline preselection cuts are then applied before performing a multivariate analysis

to further suppress combinatorial background. The distinction between signal

and background used in the multivariate analysis is achieved by using so-called

sWeights [69] from data, calculated from a fit to the D0 mass for the single-tagged

sample and δm ≡ m(D∗) − m(D0) for the double-tagged sample. The sWeights

are calculated using the sPlot technique [69] which can statistically disentangle the
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Figure 4.2: Schematic layout of the LHCb tracking system with different track types:
VELO, Upstream, Long, Downstream and T tracks are shown. UT refers to the
Upper Tracker also known as the TT [75].

signal and background distributions given a discriminating variable (this will be

discussed in more detail in Section 5.4). Finally multiple candidates are removed

and the double-tagged events are removed from the single-tagged samples. The data

selection is discussed in detail in Chapter 5.

In the mixing fit, the background distribution for the D0 decay-time and Dalitz

variables is derived from a data-driven approach. The background distribution is

obtained by extracting the sWeights using a similar approach as described above,

but after all selection criteria have been applied. By extracting the per-candidate

sWeights, the data can be split into signal and background distributions, which are

used as inputs to the amplitude fit model. A per-event signal probability is derived

from the m(D0) and δm mass fits; this is used as an input in the amplitude fit in

order to assign the appropriate combination of signal and background PDF for each

candidate.

The detector’s forward geometry leads to a limited angular acceptance and the

design of the detector and the applied selection criteria lead to a limited acceptance

for characteristics such as particle momenta or decay times. The detector and

reconstruction effects can lead to a non-uniform acceptance in phase-space and
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decay-time. This is accounted for in the mixing fit model by deriving the phase-space

and decay-time acceptance from simulation. The simulation has imperfect agreement

with data; it is therefore reweighted in certain kinematic variables in order to provide

a better description of data. The simulated samples and the kinematic reweighting

are discussed in detail in Chapter 6. In addition we know that the detector has some

finite decay-time resolution. This is also derived from simulation and accounted for

in the mixing fit model. In addition realistic toy pseudo-experiments are generated

in order to asses the bias and coverage of the mixing fit, and to provide information

for assessing systematic uncertainties on the reported parameter measurements.

In summary, the signal amplitude model is built from resonant and non-resonant

contributions and their interferences. The background model is derived from a data-

driven approach and the signal probabilities are derived from data and assigned as a

per-event weight in the fit. The phase-space resolution and decay-time acceptance

and resolution are derived from simulation and included in the fit model. The inputs

required for the mixing fit are as follows:

• The amplitude model consisting of resonant and non-resonant components and

their shapes (Chapter 8),

• Per-event signal and background probabilities which are taken from the D0

(δm) fits for single-tagged (double-tagged) candidates (Chapter 5),

• Background distributions for the Dalitz variables and decay time, derived

using a data-driven approach using background sWeights from the mass fits

(Chapter 5),

• Description of the phase-space and decay-time acceptance, derived from simu-

lation (Chapter 7),

• The decay-time resolution also derived from simulation (Chapter 7),

• The mistag fraction of wrongly tagged muons derived from D0 → Kπ decays

(Chapter 8).

The parameters of interest x and y (and ∆x and ∆y for the CP -violation allowed

fit) are extracted from an unbinned maximum likelihood fit in D0 decay-time and

Dalitz variables to data.
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The data used in this analysis were collected at the LHCb detector during the Run 2

data-taking period. The D0 candidates used in this analysis are from semi-leptonic B

meson decays where the B meson is produced in the initial pp interaction and decays

to a D0 via the decay channels: B → D0µ−X (single-tagged) and B → D∗+µ−X

where D∗+ → D0π+ (double-tagged). Here the B meson is charged or neutral. The

LHCb detector also has a high cross-section of prompt charm production where a

D∗+ meson is produced directly in the pp interaction [3], and the D0 is produced

in the decay D∗+ → D0π+. These samples can be used for analysis where the

flavour of the D0 is tagged by the pion. In principle prompt D0 mesons are also

produced, these are not used for analysis but can contribute to background. The

prompt samples have higher yields due to the larger production cross-section, but

requires tighter trigger requirements to suppress background rates. This leads to

acceptance effects which are hard to model, in particular large correlations between

decay-time and phase-space acceptance. The model-independent bin-flip analysis

mentioned previously in Chapter 1 can take advantage of the larger prompt sample,

since the model-independent analysis does not rely on the accurate description of

the phase-space and decay-time acceptance effects. For the reasons described, the

prompt sample is not considered in this analysis, which uses the semi-leptonic sample.

This analysis uses the Run 2 dataset from 2016-2018, corresponding to an integrated
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luminosity of 6 fb−1. The Run 1 dataset from 2011-2012 corresponds to an integrated

luminosity of 3 fb−1. This thesis reports a measurement using the Run 2 dataset

only. However, we also perform the full event selection described in this chapter, as

well as the assessment of the detector effects described in Chapter 7 for the Run 1

data, with the ultimate aim to add this independent sample to this analysis.

In order to select the candidates of interest from the large amounts of data

collected at the LHC, a multi-stage event selection is performed. A typical event

recorded at LHCb contains many particles, resulting in an enormous amount of data

which cannot all be saved. It is therefore essential to: firstly reduce the full amount

of data from a pp collision to a more manageable size which can be saved to disk,

then further reduce background contamination to improve the analysis precision

and reliability. The kinematic and topological characteristics of the decay can be

exploited in the selection process to achieve this. This chapter describes the selection

process which consists of the following stages:

• Events are required to pass the (hardware and software) LHCb trigger,

• Loose centralised offline preselection called stripping,

• Further analysis-specific, loose cut-based offline preselection,

• Multivariate selection to further maximise signal significance,

• Removal of multiple candidates.

Each of these stages will be described in detail below.

This analysis requires a sample of D0 → K0
Sπ

+π− candidates where the D0

originates from a semi-leptonic B meson decay and the B meson is produced in the

primary pp interaction point (the PV). The B meson then decays into a D meson

and a muon, the D0 decays to K0
Sπ

+π− and the K0
S decays to two pions.

At the LHCb experiment, there are several decay properties which are typically

exploited when events are selected. Due to the long lifetime of the B meson ((1.64±

0.004) ps for a charged B meson and (1.52 ± 0.004) ps for a neutral B meson), it

travels a distance of several mm in the lab frame before decaying. This gives a

distinct separation between the PV and the B meson decay vertex or secondary vertex
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(SV). This is a characteristic signature of B meson decays which allows us to select

events of interest. The impact parameter (IP) is defined at the transverse distance

of closest approach between a particle’s trajectory and a vertex, most commonly the

PV. Charm mesons which originate from the PV (prompt) have an impact parameter

of zero; therefore this quantity can be used to distinguish between prompt D mesons

(background) and D mesons from semi-leptonic B meson decays. The χ2
IP is defined

as the difference in the vertex-fit χ2 of a given PV reconstructed with and without

the particle under consideration being included in the vertex fit. In addition, as a

consequence of the heavy mass of b hadrons, the decay of a heavy hadron usually leads

to final state particles with a relatively large transverse momentum pT compared to

background events. The LHCb detector also provides excellent particle identification

(PID) using information from the RICH detectors which is exploited to identify

protons, kaons and pions.

Several of these quantities which can be exploited in the event selection are

defined in terms of χ2 variables. This is effectively a way to simultaneously account

for the value of the quantity and the uncertainty of the measurement, providing a

more stable performance for selection criteria. For example the flight distance is

defined as the displacement between a particle’s PV and SV, ie. the distance travelled

before the b or c hadron decays. This quantity can be used to separate long-lived

from prompt particles; however the corresponding χ2 variable gives a measure of the

significance of the flight distance so is therefore a better choice as a discriminating

variable in the event selection.

Firstly, events are required to pass the hardware (L0) trigger which selects events

with a momentum above a certain threshold, consistent with those containing high

momentum hadrons. There is then a software based trigger selection where a partial

event reconstruction is performed in HLT1 using information from the VELO and

tracking stations, which identifies tracks with a momentum above a certain threshold.

In Run 2, a real-time calibration and alignment takes place between HLT1 and HLT2,

so the reconstruction run at HLT2 uses the final fully-optimised algorithms. The

HLT2 trigger performs a full event reconstruction using information from the entire

detector. These events are then saved to disk for offline analysis. The data are
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then required to pass a loose offline preselection called stripping. D0 → K0
Sπ

+π−

candidates are required to pass dedicated stripping lines:

• Strippingb2D0MuXKsPiPiLLCharmFromBSemiLine

• Strippingb2D0MuXKsPiPiDDCharmFromBSemiLine

• Strippingb2DstarMuXKsPiPiLLCharmFromBSemiLine

• Strippingb2DstarMuXKsPiPiDDCharmFromBSemiLine

These are for single and double-tagged and K0
S (LL) and K0

S (DD) types. The

stripping requirements are described in detail later in this chapter. Further loose

offline preselection can then be applied to the data from stripping after which a

multivariate technique is used to further reduce combinatorial background. The

stripping, preselection and multivariate analysis selection is the same for both Run 1

and Run 2 data.

At the LHCb detector, for some events it is possible to have more than one

genuine D0 → K0
Sπ

+π− candidate. An ‘event’ is LHCb convention to describe the

whole outcome of a given bunch-crossing and is identified by a unique event and run

number. A candidate is a top level reconstructed object, for example a b-hadron,

whose properties are to be measured, for example a mass or lifetime. An event with

multiple candidates is an event in which there is more than one candidate passing

the final selection. Multiple candidates need to be removed in order to avoid double-

counting the events in the Dalitz plot and creating biases in the Dalitz variables of

the decay. These are removed by randomly rejecting all but one of the candidates

with the same event number. Due to the inclusive reconstruction in the preselection,

the double-tagged dataset is a subset of the single-tagged dataset. To ensure that

all analysed samples are statistically independent, double-tagged candidates have to

be separated from the single-tagged sample. Double-tagged candidates are removed

from the single-tagged dataset if the candidate’s event number and the D0 mass are

the same. In this analysis, we select a sample of double-tagged candidates where

the muon and pion tags agree (ie. they are of the opposite charge), the pion tag

is used to tag the initial flavour of the neutral D meson. In addition to selecting

a double-tagged sample of D∗+µ− candidates, the same selection requirements are
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also applied to a sample of D∗+µ+ events. This is the so-called wrong-sign (WS)

sample where the muon and pion tags do not agree; this independent sample is

used for studies of the mistag component for the single-tagged sample for which the

initial flavour is tagged by the charge of the muon. In addition a sample of two-body

D0 → K−π+ decays have been selected using our selection criteria for the evaluation

of the mistag fraction.

5.1 Trigger

The LHCb trigger comprises an offline L0 hardware trigger and the software High

Level Trigger (HLT), consisting of HLT1 and HLT2. The trigger requirements are

identified by a prefix indicating which candidate has passed the selection criteria of

the specific trigger line. In this analysis, trigger requirements are imposed on the

B candidate and the muon candidate. We do not impose trigger requirements on

the D0 candidate in order to reduce trigger-induced biases for the D0 decay; since

trigger requirements may be correlated to the decay-time and final state phase-space.

This helps to simplify the analysis. The trigger lines used are listed in Table 5.1.

In addition, trigger decisions are classified depending on whether the candidate’s

signal final state tracks were involved in the decision that the event passed the

trigger. Hence, the events may be classified as triggered on signal (TOS) or triggered

independently of signal (TIS). The general selection algorithm behind the listed

trigger requirements does not change within the Run 1 or Run 2 data-taking periods,

although there are differences between Run 1 and Run 2. However, the thresholds

of the selection variables are subject to change in a given data-taking period; these

thresholds are stored in so-called Trigger Configuration Keys (TCKs).

The L0 trigger is an online hardware trigger which decides which events to keep

in real time. The L0 trigger can be subdivided into Muon, Dimuon, Electron, Hadron

and Photon lines. Due to the fast timing requirement, it only uses information from

the VELO, calorimeters and muon chambers and looks for simple signatures of large

transverse energy and high-momentum tracks which are signatures of heavy flavour

interactions. The L0 trigger condition mu_L0MuonDecision_TOS indicates that the

Muon line was activated by a particle assumed to be a muon in the event, which is
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Trigger level Trigger line
Run 2

L0 mu L0MuonDecision TOS
Hlt1 mu Hlt1TrackMuonDecision TOS

Hlt1TrackMuonMVADecision TOS
Hlt2 B TopoMu{2,3,4}BodyDecision TOS

Run 1
L0 mu L0MuonDecision TOS

Hlt1 mu Hlt1TrackAllL0Decision TOS
Hlt2 B TopoMu{2,3,4}BodyBBDTDecision TOS

Table 5.1: Summary of the Trigger requirements used in this analysis.

part of the signal decay (TOS). This decision is based on the transverse momentum

of the muon and the number of hits in the SPD. The number of hits in the SPD

provides a measure of the multiplicity of the event and hence low-multiplicity events

are rejected.

The HLT1 and HLT2 triggers consist of several trigger lines comprising selections

of decay channels or classes of decay channels such as three-body decays with a high

energy muon. In the first stage of the offline hardware trigger, HLT1, a partial event

reconstruction is performed using information from the VELO and tracking stations.

The decisions of the HLT1 trigger lines rely on the properties of individual tracks

and not on information of the complete event. For example an HLT1 decision may

require thresholds on the momentum, transverse momentum and IP of a partially

reconstructed track. These thresholds can also vary with time over a given data-

taking period. HLT1 triggers with ‘MVA’ in the name use multivariate algorithms

to classify events with one or two tracks which are consistent with coming from a

heavy and long-lived hadron.

The second offline high-level trigger, HLT2, performs full event reconstruction

using information from the entire detector performing additional pattern recognition

which is not possible in HLT1 due to strict time constraints. This results in high

quality long and downstream tracks. In addition HLT2 exploits the full PID from the

RICH detectors and calorimeter system. HLT2 track reconstruction uses multivariate

algorithms to classify events while rejecting fake tracks and maximising efficiency [11].
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5.2 The LHCb selection framework

The data which passes the LHCb trigger requirements is saved to disk for

further offline analysis. The selection framework used in LHCb relies on combining

reconstructed tracks under some physical hypothesis. Some charged and neutral

particles are created in the reconstruction in the HLT, including electrons, protons,

charged kaons and pions, photons and neutral pions. These particles can then be

combined to form composite particles such as B and D mesons.

In order to perform a physics analysis we need to build a decay chain with

reconstructed particles that represents the physics process we want to study. For

example consider the decay B− → D0µ−X where D0 → K0
Sπ

+π− and K0
S → π+π−,

the X denotes one or more unreconstructed decay products (at least one neutrino).

We build the decay chain as follows:

• Get the four input pions and filter according to our physics needs,

• Combine two oppositely charged pions to form a K0
S and apply selection cuts

as necessary,

• Combine the K0
S with the remaining two oppositely charged pions to build a

D0 meson and apply selection cuts,

• Combine the D0 with a muon to build a partially reconstructed B− meson

candidate, again applying cuts as necessary.

LHCb provides central packages which allows analysts to access pre-made particles

with reasonable reconstruction and selections; in this case four pions. These particles

can then be combined in the steps above to form composite particles such as the K0
S

and the D0 meson; applying selection criteria at each stage. This selection process

is called stripping. The reconstruction and selection criteria for events used in this

analysis is described in detail in the following sections and in Table 5.2.
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Variable Cut
K0

S daughter π± track ghost probability < 0.5 (LL)
K0

S p > 2 GeV (LL), > 3 GeV (DD)
K0

S pT > 250 MeV
K0

S mass after vertex fit - PDG value < 30 MeV
K0

S χ
2 distance between PV and decay vertex > 100

K0
S decay vertex χ2/ndf < 6

K0
S cos θDIRA > 0.99

D0 mass before vertex fit - PDG value < 100 MeV
D0 pT before vertex fit > 2 GeV

D0 scalar sum of daughter pT > 1.4 GeV
D0 χ2 distance of closest approach < 20

D0 mass after vertex fit < 80 MeV
D0 vertex χ2/ndf < 6

D0 scalar sum of daughter π± pT > 1.4 GeV
D0 pT after vertex fit > 2 GeV

D0 v
K0

S
z − vD

0

z < 10 mm
π± p > 2 GeV
π± pT > 250 MeV

π± track χ2/ndf < 4
π± track ghost probability < 0.5

π± χ2
IP ≥ 4

D∗ δm before vertex fit (-5,175) MeV
D∗ vertex χ2/ndf < 8

D∗ δm after vertex fit (0,170) MeV
µ± pT > 800 MeV
µ± p > 3 GeV

µ± track ghost probability < 0.5
µ± track χ2/ndf < 4
µ± PIDmu > 0

B mass before vertex fit < 6.2 GeV
B mass after vertex fit (2.5,6) GeV

B vertex χ2/ndf < 6
B cos θDIRA > 0.999

Table 5.2: Summary of the cuts in the stripping lines used in this analysis The cuts
and variables are described in more detail in the text.

108



CHAPTER 5. DATA SELECTION

5.2.1 Pion reconstruction

In this analysis K0
S are reconstructed by combining two oppositely charged pions.

Both K0
S (LL) and K0

S (DD) candidates and the pions are taken from so-called

‘Particle Containers’ which contain the information on the pre-made particles with

a reasonable reconstruction and initial selection. Pion candidates are required to

have p > 2 GeV and pT > 250 MeV. Tracks are fit using a Kalman filter. A Kalman

filter is an algorithm that provides estimates of some unknown variables given some

measurements observed over time. To ensure a good quality of fit, the pions are

required to have a track-fit χ2/ndf < 4.

Fake (or ghost) tracks are defined as reconstructed tracks which do not correspond

to the trajectory of a true particle but are due to a mis-reconstruction of hits from

separate tracks or from detector noise. A neural network based algorithm is used in

order to identify fake tracks in the LHCb pattern recognition [43] and hence identify

the so-called ghost probability. The ghost probability of the pion tracks is required

to be less than 0.5. Finally, all pions are required to be inconsistent with originating

from the PV via the criterion χ2
IP > 4, where χ2

IP is the χ2 of the IP of the pion

track with respect to the PV; pions which are combined to form a K0
S (LL) candidate

are required to have χ2
IP > 9, since these are not expected to point back towards the

PV.

5.2.2 K0
S reconstruction

A K0
S candidate is reconstructed by combining two oppositely charged pions

originating from a common vertex. With the selected oppositely charged pion pairs,

we can fit a K0
S → π+π− vertex. This is done by expressing the hypothesis that

there is a common origin vertex of both tracks as an optimisation problem, and then

varying the measured π+ and π− four-momenta within their measured uncertainties

to best fit that hypothesis. The result is a vertex object which has a fit χ2 associated

to it. The quality of the fit can then be used in the event selection. The K0
S decay

vertex χ2/ndf is required to be less than 6 in order to ensure a good quality of the

vertex fit.
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With the fitted pion four-vectors, one can form the four-vector of the K0
S as their

sum, creating the K0
S candidate. The K0

S is required to have transverse momentum

pT > 250 MeV and p > 2 GeV for LL and p > 3 GeV for DD candidates. In addition

the invariant mass of the π+π− system is required to lie within 30 MeV of the known

PDG value of the K0
S mass (497.611±0.013 MeV). The χ2 distance between the K0

S

candidate’s best PV and decay vertex must be greater than 100; this selects K0
S

candidates with a sufficiently long lifetime. The best PV is chosen as the primary

vertex with the smallest χ2
IP , which corresponds to the closest PV. The θDIRA is

defined as the angle between the K0
S momentum and the K0

S flight direction from

the best PV to the decay vertex. The cosine of this angle is required to satisfy

cos θDIRA > 0.99, meaning that the momentum and the flight direction of the K0
S

candidate agree. The K0
S (LL) track ghost probability is required to be less than 0.5.

5.2.3 D0 reconstruction

A D0 candidate is reconstructed by combining a K0
S with two oppositely charged

pions originating from a common vertex. The χ2 of the D0 decay vertex must satisfy

χ2/ndf < 6 to ensure a good quality of fit. Prior to the vertex fit, the invariant mass

of the K0
Sπ

+π− system is is required to lie within 100 MeV of the known D0 mass

(1864.84±0.17 MeV from the PDG), since these quantities should be close for signal

candidates. In order to ensure the K0
S and two pions come from a common vertex,

all sub-combinations of two daughter particles must be compatible with originating

at a common point, quantified by the χ2 of the track positions at the point of closest

approach. This variable must be less than 20 for all combinations.

The daughter particles’ (K0
S and two oppositely charged pions) four-vectors are

used to form the D0 four vector as their sum. The invariant mass of the K0
Sπ

+π−

system after the vertex fit must be within 80 MeV of the PDG reference value of the

D0 mass. The scalar sum of the transverse momenta of the daughter particles (four

pions from the D0 and K0
S) is required to be greater than 1.4 GeV and the transverse

momentum of the D0 candidate must be pT > 2 GeV. In addition the restriction of

v
K0

s
z − vD

0

z > 10 mm on the position of the D0 along the z axis is used to ensure the

K0
S decay vertex lies downstream from the D0 decay vertex; thus requiring that the
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K0
S daughters can be reconstructed in the tracking stations.

5.2.4 D∗ reconstruction

For double-tagged candidates, a D∗ candidate is formed by combining a D0

candidate and a soft pion in the decay D∗+ → D0π+. Here the pion is referred to

as ‘soft’ since it has low momentum, being produced in a decay with little available

energy (m(D∗)−m(D0)−m(π) < 6 MeV). If no D∗ candidate is reconstructed which

fulfills the criteria, the candidate enters the single-tagged sample.

The delta mass is defined as δm ≡ m(D∗)−m(D0) and is required to satisfy -5

< δm < 175 MeV. This reduces background from combinations of D0 candidates with

soft pions, which are not associated with the signal tracks, due to the D candidates

δm distribution exhibiting a peak around 145 MeV. After the vertex fit 0 < δm <

170 MeV is required.

5.2.5 Muon reconstruction

Muon candidates are required to have pT > 800 MeV and p > 3 GeV. In addition

the muon track’s ghost probability must be less than 0.5. The muon must have a

signature in the detector consistent with the expectations of a muon, encapsulated by

the LHCb requirement PIDmu > 0. The track-fit χ2 is required to satisfy χ2/ndf <

4 to ensure a good quality of fit. The χ2 of the IP of the muon track with respect to

the PV is required to be χ2
IP ≥ 4.

5.2.6 B reconstruction

A D0 (single-tagged) or D∗ (double-tagged) candidate is combined with a muon

to form a B candidate. The B candidate’s decay vertex must have χ2/ndf < 6 in

order to ensure good quality of the vertex fit. The invariant mass of the combined

daughter particles (muon and D0 or D∗) must be less than 6.2 GeV. The mass of

the B candidate after the vertex fit must satisfy 2.5 < mB < 6 GeV; this wide range

accounts for the fact that there are missing B decay products such as the neutrino,

which are not reconstructed. The constraint cos θDIRA > 0.999 is used, where θDIRA

is the angle between the direction of flight of the B meson from the primary vertex
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to the decay vertex and the B momentum. This ensures good agreement between

the flight direction and the momentum.

5.3 Preselection

In addition to the stripping and trigger requirements, the candidates are made

to pass some loose preselection cuts and a multivariate analysis to further reduce

background. Once the D0 → K0
Sπ

+π− decay has been reconstructed, the final state

particle kinematics can be updated based on the additional knowledge of the decay

topology and particle masses. In turn this affects other quantities which are calculated

form the final state four-vectors, such as invariant masses and particle momenta.

For example one can assume that the two K0
S daughter pions originate from the K0

S

with a specific mass; this is called a mass constraint. Applying kinematic constraints

leads to new best estimates for the track parameters of the final-state particles. This

process is called a kinematic refit and is performed by the DecayTreeFitter (DTF)

algorithm [53].

This analysis uses two instances of DTF with different mass constraints. For

each instance, the refitted variables are saved for later use. In the first instance,

the D0 → K0
Sπ

+π− decay is refitted constraining the mass of the K0
S candidate to

497.614 MeV. In the second instance the mass of the K0
S candidate is constrained

as well as the mass of the D0 candidate to 1864.86 MeV. Variables computed using

both the K0
S and D0 mass constraints are: the reconstructed D0 decay-time and

Dalitz variables and the δm for the double-tagged sample. This restricts the Dalitz

variables of all candidates to the phase space consistent with energy and momentum

conservation. The reconstructed D0 mass is computed using only the K0
S mass

constraint; this improves the D0 mass resolution compared to that without the

constraint. After the D0 → K0
Sπ

+π− decay has been refitted with DTF, we ensure

that the fit has converged for both instances, which is technically enforced by requiring

that the number of degrees of freedom is greater than zero. To ensure a good quality

of the DTF fit, the decay tree refit with the K0
S mass constraint is required to have

χ2 < 25.

A signal D0 mass window of 1805 ≤ m(D0) ≤ 1925 MeV is chosen for the single-
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Variable Cut Description
m(B) < 4900 MeV B meson visible mass

DTF VCHI2NDOF > 0 DTF status must converge
DTFD0KS VCHI2NDOF > 0 DTF status with D0 and K0

S

mass constraints must converge
τ(D0) > -1 ps D0 decay-time

Table 5.3: Summary of preselection cuts used in this analysis.

tagged sample; this broad range allows the study of background contributions in the

lowest and highest mass regions where no signal is expected. For the double-tagged

sample a tighter cut of 1844 ≤ m(D0) ≤ 1884 MeV is applied. A cut on the visible

mass of the B meson is set to < 4900 MeV. The decay time resolution at LHCb

causes the D0 decay-time to extend into a negative decay-time range. However, the

D0 decay-time range below -1 ps is populated solely by background candidates. Thus,

requiring t(D0) > -1 ps leads to a significant background reduction. All preselection

requirements are listed in Table 5.3.

5.4 sPlot

The D0 mass distribution for the single-tagged sample (δm distribution for the

double-tagged sample), is fitted with a model which comprises the sum of signal and

background components, using an unbinned extended maximum-likelihood fit. From

the fit, sWeights are extracted which allow the signal and background contributions

to be separated and used as training samples for a Boosted Decision Tree (BDT).

The sPlot formalism [69] takes the signal and background distributions for a

discriminating variable, in this case the D0 mass, and computes the sWeight for

a given event. The sample of events are assumed to be characterised by a set of

variables which can be split into two components. The first is a set of variables

for which the distributions of the events are known (in this case the D0 mass

or δm); this is referred to as the discriminating variable. The second is a set of

variables for which the distributions are considered to be unknown, these variables

are referred to as the control variables. The sPlot technique allows the signal and
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background distributions for the control variables to be statistically disentangled

and reconstructed independently, without making use of any a priori knowledge on

this variable. This is done by using the known signal and background distributions

for the discriminating variable in order to infer the behaviour of the signal and

background events with respect to the control variables. The sPlot technique relies

on the assumption that the control variable is uncorrelated with the discriminating

variable. In this case the sWeight is an event weight for each event in the sample

which can be applied in order to reconstruct the signal and background distributions

for the control variable.

The extended log-likelihood is given by:

L =
N∑
e=1

ln

{
Ns∑
i=1

Nifi(ye)

}
−

Ns∑
i=1

Ni (5.1)

where

• N is the total number of events in the data sample,

• Ns is the number of species of event populating the data sample (signal and

background),

• Ni is the average number of events expected for the ith species,

• y is the set of discriminating variables (D0 mass or δm),

• fi is the value of the probability density function (PDF) for the ith species,

• fi(ye) is the value of the PDFs fi for event e, associated with a set of values ye
for the set of discriminating variables,

• x is the set of control variables which, by definition, do not appear in the above

expression for L.

The log-likelihood is maximised for each event and an sWeight is calculated for both

signal and background. The sWeight is defined by:

sPn(ye) =

∑Ns

j=1Vnjfj(ye)∑Ns

k=1Nkfk(ye)
(5.2)

where Vnj is the covariance matrix which can be derived from the second derivative
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of −L.

A summary of the different steps to implement the sPlot technique are the

following:

1. Consider we are dealing with a data sample in which several species of event

are present (in our case signal and background).

2. A maximum likelihood fit is performed to obtain the signal and background

yields Ni. The fit relies on a discriminating variable y (D0 mass or δm)

uncorrelated with a control variable x; the latter is therefore totally absent

from the fit.

3. The sWeights sP are calculated using Equation 5.2, where the covariance

matrix can be derived from the log likelihood in Equation 5.1.

4. Histograms of x can be filled by weighting the events with the sWeights sP

where the sum of the entries are equal to the yields of each species Ni provided

by the fit.

The sPlots reproduce the true distributions of the species in the control variable x,

within the statistical uncertainties. The sWeights are extracted separately for each

year and K0
S type (LL, DD) and for single and double-tagged candidates.

For single-tagged samples, the signal is modelled by the sum of a Bifurcated

Gaussian distribution and a Johnson SU distribution. The Bifurcated Gaussian

distribution is given by:

fBiG(x|µ, σR, σL) =


1

σL

√
2π
e
− 1

2

(
x−µ
σL

)2

x ≤ µ

1
σR

√
2π
e
− 1

2

(
x−µ
σR

)2

x > µ

(5.3)

where x is the measured variable (in the following cases mD0 or δm, note this is

different to the variable x in the sPlot formalism) and µ and σL,R are the mean

and standard deviation of the distribution and are free parameters of the fit. The

Johnson SU distribution [54] is defined as:

fSU(x|γ, δ, ξ, λ) = γ + δ sinh−1

(
x− ξ

λ

)
(5.4)
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where x is similarly the measured varibale mD0 or δm and γ, δ, ξ and λ are free

parameters of the fit. The background is modelled by a first order Chebychev

polynomial for the K0
S (LL) sample and second order for the K0

S (DD) sample. For

the K0
S (LL) sample the full PDF is given by:

FLL = nsig × (cfBiG(mD0) + (1− c)fSU(mD0)) + nbkg × (1 + a1mD0) (5.5)

where c is the fraction of fBiG in the signal PDF, and nsig and nbkg are the number

of signal and background events respectively. For the K0
S (DD) sample:

FDD = nsig×(cfBiG(mD0) + (1− c)fSU(mD0))+nbkg×
(
1 + a1mD0 + a2(2m

2
D0 − 1)

)
(5.6)

where a1 and a2 are the coefficients of the polynomial and free parameters of the

fit. The sWeights are extracted from the double-tagged sample by a fit to the δm

distribution where δm = m(D∗)−m(D0). The signal is described by a Johnson SU

distribution and a Gaussian and the background is modelled by a special PDF shape

that can be used to model the background of D∗ −D0 mass difference distributions.

The background PDF is given by:

fbkg(δm|m0, A,B,C) =
(
1− e−

δm−m0
C

)(δm
m0

)A

+B

(
δm

m0

− 1

)
(5.7)

where m0, A, B and C are free parameters of the fit. The combined signal and

background PDF for the double-tagged sample is then given by:

F = nsig ×
(
cfSU(δm) +

1√
2πσ

(1− c)e
− 1

2

(
δm−µ

σ

)2
)
+ nbkg × fbkg(δm) (5.8)

where c is the fraction of the Johnson in the signal PDF. Plots of the D0 mass fits

for the Run 2 single-tagged samples can be seen in Figure 5.1 and δm distributions

for the double-tagged samples in Figure 5.2. The fit parameters are displayed on the

plots; the parameters of interest are the number of signal and background events

and these are shown along with the signal purity in Table 5.4.
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Figure 5.1: D0 mass distributions for the single-tagged samples 2016-2018: data
(black points), signal model comprised of a Bifurcated Gaussian and a Johnson SU
(purple dashed line) background model (green dashed line), total model (blue line).
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Figure 5.2: δm distributions for the double-tagged samples 2016-2018: data (black
points), signal model comprised of a Johnson SU distribution and a Gaussian (purple
dashed line) background model (green dashed line), total model (blue line).
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Single-tagged Double-tagged
K0

S (LL) K0
S (DD) K0

S (LL) K0
S (DD)

2016
Signal yield 558,429 1,187,193 92,823 203,043

Background yield 1,169,032 4,195,801 91,582 224,608
Signal purity 32.33% 22.05% 50.34% 47.48%

2017
Signal yield 558,248 1,266,521 94,444 218,853

Background yield 1,061,627 4,341,146 86,642 237,904
Signal purity 34.46% 22.59% 52.15% 47.91%

2018
Signal yield 919,959 1,649,788 152,159 285,589

Background yield 2,416,858 5,824,977 198,661 315,633
Signal purity 27.57% 22.07% 43.37% 47.50%

Table 5.4: Signal and background yields computed from the maximum likelihood
fit, and signal purity nsig/(nsig + nbkg) of the samples after the cut-based offline
preselection describe but before the MVA. The mass range is 1805 < m(D0) <
1925 MeV for single-tagged candidates and 1844 < m(D0) < 1844 MeV for double-
tagged candidates. These correspond to the fits in Figures 5.1 and 5.2.

5.5 Multivariate analysis

After the trigger and preselection requirements are applied, a Boosted Decision

Tree (BDT) is used to further reduce the remaining background. The BDT uses

distributions of variables that differ for D0 → K0
sπ

+π− events and background

processes and gives an output which distinguishes between signal and background

events by giving a ‘score’ of an event being signal-like or background-like. The BDT

response is a single observable in the range [-1, 1] and indicates whether the candidate

is more signal-like or background-like. In order to develop the BDT algorithm, a

training process is first performed, which requires dedicated input samples of signal

and background candidates. The separation of the input variables into signal and

background components is sometimes achieved by using Monte Carlo simulation of

signal and background processes. Alternatively one can use Monte Carlo for the

signal distribution and sidebands from data for the background distribution, where no

signal contribution should be present. Since we have a large signal yield in the data,

and good ability to separate using the mass fits, we can use an entirely data-driven

approach which overcomes several limitations of simulation; for example it provides

a perfectly accurate model of detector effects and backgrounds by construction, and
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has no problems with low statistics. The sPlot formalism allows us to separate the

signal and background distributions of the BDT input variables. Therefore in this

analysis, the multivariate algorithm (MVA) is trained using data separated into

sWeighted signal and background distributions.

The uBoost classifier is used for the multivariate analysis [77]. This is a gradient

boosted decision tree with a loss function which penalises for non-uniformity across

the Dalitz variables and decay-time. This provides a method of boosting with a

uniform selection efficiency in a selected phase-space; hence reducing systematic

uncertainties. The gradient boosting is a method of assigning incorrectly classified

events larger weights in order to increase their importance. Each successive classifier

should then improve the overall performance of the ensemble of classifiers. The

ensemble of classifiers should perform better than a single classifier.

The input variables are chosen based on the discriminating power between signal

and background; it is ensured that there are no correlations between the input

variables and the D0 mass or decay-time. This is demonstrated in Figure 5.4 which

shows the correlation matrix for the BDT input variables and m(D0) and τ(D0).

For the former this is a requirement of the sPlot method to ensure the training

sample distributions are reliable; for the latter, this helps to suppress large decay

time sculpting effects and hence reduce potential systematic uncertainties on the

final measurement. K-folding [82] is used in order to access an unbiased BDT score

for the whole dataset. The sample is split into two which are referred to as even and

odd, although note this is just a naming convention and the samples are split with a

random seed. The even and odd samples are in turn split into training and testing

samples; the BDT is trained using the training dataset. A check for overtraining is

performed using the training and testing samples. The trained BDT from the even

sample is applied to the odd sample and vice versa. This avoids biases from applying

a BDT to the same dataset with which it was trained. The BDT input variables are

as follows and described below:

• DTF vertex χ2 per number of degrees of freedom

• B meson corrected mass
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• arccos(DIRA) where DIRA is the angle between the particle’s momentum and

line of flight

• χ2
IP impact parameter χ2, this is the difference in χ2 between the primary

vertex fits when the B candidate is included and excluded

• B meson flight distance

• χ2
FD flight distance χ2

• χ2
DV /ndof decay vertex χ2 of the B candidate per number of degrees of freedom

• χ2
PV primary vertex χ2 of the B candidate

• µ transverse momentum

• D0 transverse momentum

The χ2
FD is the flight distance χ2 of the B candidate with respect to the PV.

This discriminating variable has good separation between signal and B candidates

originating from prompt D∗ decays which are produced directly in the pp collision.

The B meson flight distance also helps separate background from prompt D∗ decays.

The corrected mass of the B meson candidate accounts for the non-reconstructed

neutrino in the semi-leptonic B meson decay, whereas the measured mass does not;

this is therefore a better approximation of the invariant mass. The corrected mass is

defined as:

mcorr =

√
m2 +

∣∣∣ ~pmiss
T

∣∣∣2 + ∣∣∣ ~pmiss
T

∣∣∣ (5.9)

where m is the invariant mass of the B meson and ~pmiss
T is the missing transverse

momentum relative to the direction of flight with respect to the PV, where the PV

with the smallest χ2
IP is taken. The χ2 of the B meson candidate’s PV also has good

discriminating power as it is connected to the multiplicity of the event. Figure 5.3

shows sWeighted signal and background distributions of the BDT input variables,

where good separation between signal and background can be seen. In addition we

check the correlation between the BDT variables shown in Figure 5.4, from this we

can see no significant correlations between each pair of variables.
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Figure 5.3: Distributions of the BDT input variables for signal (blue) and background
(red) training samples: single-tagged K0

S (LL) 2018 sample.
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Figure 5.4: Correlations between the BDT input variables for the single-tagged 2018
samples.

A hyperparameter is a parameter whose value is used to control the learning

process, such as number of trees, learning rate and maximum depth. The same kind

of machine learning model can require different constraints, weights or learning rates

to generalise different data patterns. These measures are called hyperparameters,

and have to be tuned so that the model can optimally solve the machine learning

problem. A range of hyperparameters for the uBoost BDT used in the event selection

were investigated, and those which yield the optimal model were chosen.

One can check for overtraining of the classifier by comparing the BDT output

distributions from the training sample and the test sample. Overtraining can occur

when specific features caused by statistical fluctuations are used in the BDT training.

The comparison of the two distributions can be quantified by the Kolmogorov-

Smirnov (KS) test [55]. The KS statistic quantifies a distance between the empirical

distribution functions of two samples. The null distribution of this statistic is

calculated under the null hypothesis that the samples are drawn from the same

distribution. The result of this test can be interpreted as the likelihood that the

training sample distribution could have been obtained on the test sample distribution

and vice versa. The BDT output distributions and overtraining check are shown in

Figure 5.5.

A receiver operating characteristic (ROC) curve illustrates the diagnostic ability

of a binary classifier system as its discrimination threshold is varied. The ROC curve
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Figure 5.5: BDT output distributions and overtraining check for single-tagged K0
S

(LL and DD) 2018 samples: the histograms show the test sample and the points
show the training sample, the signal (Class A) distribution is in blue and background
(Class B) is in red.

is created by plotting the True Positive Rate (TPR) against the False Positive Rate

(FPR) at various cuts on the BDT response; where the TRP is the signal efficiency

of the BDT cut and the FPR is equivalent to the background efficiency. The area

under the ROC curve therefore gives a measure of the performance of the classifier,

where a high number would represent a high signal efficiency and a high background

rejection and a score of 0.5 would represent a random guess. The ROC curves along

with the area under curve (AUC) are shown in Figure 5.6 for the single-tagged 2018

K0
S samples. In the hyperparameter optimisation, the optimal model can be chosen

by the one which gives the highest ROC AUC score.

The cut on the BDT output is chosen to maximum the significance S/
√
S +B

where S and B are the number of signal and background events. The signal and

background contributions are computed as the integral over the BDT response for

a given cut value weighted by signal and background sWeights, respectively. The

signal significance, signal efficiency and background efficiency for the single-tagged

K0
S 2018 samples are shown in Figure 5.7 along with the optimal cut. The optimal

BDT cuts for all subsamples are shown in Table 5.5.

124



CHAPTER 5. DATA SELECTION

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC (area = 0.90)
Luck

(a) K0
S (LL) 2018 even sample

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC (area = 0.87)
Luck

(b) K0
S (DD) 2018 even sample

Figure 5.6: Receiver operating characteristic curves for the K0
S (LL and DD) single-

tagged 2018 samples, showing True Positive Rate against False Positive Rate for the
BDT output, the dashed line represents a random guess.
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Figure 5.7: Signal significance S/
√
(S +B) (blue line), signal efficiency (orange line)

and background efficiency (green line) against the BDT response for single-tagged
K0

S (LL and DD) 2018 samples.
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Cut on BDT response Peak Significance
even odd even odd

Single-tagged
K0

S (LL) 2016 0.04 0.02 285 284
K0

S (DD) 2016 0.10 0.04 343 344
K0

S (LL) 2017 -0.02 0.02 289 289
K0

S (DD) 2017 0.10 0.04 358 358
K0

S (LL) 2018 0.12 0.10 348 351
K0

S (DD) 2018 0.06 0.08 405 408
Double-tagged

K0
S (LL) 2016 -0.02 -0.02 118 117

K0
S (DD) 2016 -0.02 -0.02 169 168

K0
S (LL) 2017 -0.06 -0.10 119 120

K0
S (DD) 2017 0.00 0.04 176 176

K0
S (LL) 2018 0.10 0.12 144 144

K0
S (DD) 2018 -0.02 -0.04 202 203

Table 5.5: Optimal cuts on BDT response.

5.6 Multiple candidates

A common feature of many LHCb selections is that even after tight cuts several

candidates per event remain. Depending on the kind of analysis this can bias the

results and a special treatment is often needed. An event with multiple candidates is

an event in which there are more than one candidates passing the final selection. There

are several types of multiple candidates and analysts may chose to deal with them in

different ways depending on their analysis needs. For example, one D0 → K0
Sπ

+π−

decay may combine with more than one muon to form several B meson candidates.

Here one would have multiple entries with exactly the same D0 properties, for

example Dalitz coordinates and decay-time. These type of multiple candidates

are double-counted in the Dalitz and decay-time distributions and therefore need

to be removed. Multiple candidates can cause biases in the measurement of the

observable of interest if their rate is correlated with this observable. For example

more multiple candidates at low decay times may cause a bias in the measurement

of the time-dependent mixing parameters.

Another type of multiple candidate is that where a single K0
S combines with

different combinations of π+π− to give several distinct D0 candidates in the event (or

several K0 candidates combined with a single π+π− combination). The phase-space
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and decay-time variables will be different in these cases so they are less harmful

than the first case described and in principle they could be kept. However in this

analysis we have decided to remove all multiple candidates for simplicity and since

it represents a small fraction of the data. There are several ways of dealing with

multiple candidates for example: keeping all of the candidates, rejecting all but

one of the candidates, or rejecting all candidates from the given event [57]. In this

analysis we have chosen to randomly reject all but one of the candidates with the

same event number; this is about 2% for a single-tagged data sample.

In addition, due to the inclusive reconstruction in the preselection, we know that

the double-tagged candidates are a subset of the single-tagged dataset. To avoid

double-counting of candidates, double-tagged candidates have to be separated from

the single-tagged sample. Candidates are removed from the single-tagged sample if

they match a candidate in the double-tagged sample, where matching is defined by

having the same event number and a difference in D0 mass below 10−5 MeV.

After the optimal BDT cut is applied and the multiple candidates have been

removed, a second unbinned extended maximum likelihood fit is performed to the

D0 mass distribution for the single-tagged samples and the δm distribution for the

double-tagged samples. For the single-tagged samples, the signal model used is a

Gaussian and a Johnson SU with a common mean and the background is a Chebychev

polynomial. The PDF for the single-tagged samples is then given by:

FLL = nsig×
(
cfSU(mD0) +

1√
2πσ

(1− c)e
− 1

2

(m
D0−µ

σ

)2
)
+nbkg×(1 + a1mD0) (5.10)

FDD = nsig ×
(
cfSU(mD0) +

1√
2πσ

(1− c)e
− 1

2

(m
D0−µ

σ

)2
)

+ nbkg ×
(
1 + a1mD0 + a2

(
2m2

D0 − 1
)) (5.11)

For the double-tagged samples, the signal model is a Johnson SU distribution and a

Gaussian and the background is modelled by a polynomial as in Equation 5.8. The

δ parameter in the Johnson SU distribution is set to 1. The per-event sWeights
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Single-tagged Double-tagged
K0

S (LL) K0
S (DD) K0

S (LL) K0
S (DD)

2016
Signal yield 434248 842698 77707 168604

Background yield 200468 788943 21886 56043
Signal purity 68.42% 51.65% 78.02% 75.05%

Signal efficiency 76.76% 70.98% 83.72% 83.04%
Background rejection 82.85% 81.20% 76.10% 75.05%

2017
Signal yield 440294 884392 81073 180110

Background yield 190815 876081 22408 55333
Signal purity 69.77% 50.24% 78.35% 76.50%

Signal efficiency 78.87% 69.83% 85.84% 82.30%
Background rejection 82.03% 79.82% 74.14% 76.74%

2018
Signal yield 674621 1181130 122435 239643

Background yield 359217 1083848 38723 76147
Signal purity 65.25% 52.15% 75.97% 75.89%

Signal efficiency 73.33% 71.59% 80.47% 83.91%
Background rejection 85.14% 81.39% 80.51% 75.87%

Table 5.6: Signal efficiency and yields and background rejection of the samples before
and after the optimal cut on the BDT response.

and signal probabilities are extracted from the D0 mass fit for the single-tagged

samples and the δm distribution for the double-tagged samples. The sWeights are

used to separated the signal and background distributions, in order to construct the

background PDFs in decay-time and 2-dimensional Dalitz space to be used in the

final mixing fits. The signal probabilities are used as a per-event quantity in the

fit to assign the appropriate contribution of the signal and background PDFs. The

signal probability is given by:

psig =
PDFsig × nsig

PDFsig+bkg × (nsig + nbkg)
(5.12)

Plots of the m(D0) fits are shown in Figure 5.8 and the δm distributions for the

double-tagged samples are shown in Figure 5.9. Table 5.6 shows the signal yields,

signal efficiency and background rejection of the optimal BDT cut.
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Figure 5.8: D0 mass distributions for the single-tagged samples 2016-2018: data
(black points), signal model (purple dashed line) background model (green dashed
line), total model (blue line).
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Figure 5.9: δm distributions for the double-tagged samples 2016-2018: data (black
points), signal model (purple dashed line) background model (green dashed line),
total model (blue line).
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CHAPTER 6

Simulation

A common challenge in many measurements performed in high-energy physics is

the necessity to understand the effects of the detector response on the physics

parameters of interest. This response is driven by resolution effects that distort the

true distribution of a quantity and by inefficiencies that are introduced by either an

imperfect reconstruction in the detector or a deliberate event selection [66]. The

solution is the generation of Monte Carlo (MC) events and the simulation of their

detector response to study the evolution from the generated to the reconstructed

and selected objects.

The LHCb simulation framework, Gauss [40], manages the creation of simulated

events by interfacing to multiple external applications. The framework consists of a

generation and simulation phase. A pp collision with the required signal particle is

generated by Pythia [74] either by generating minimum bias events until a matching

particle is found or by enforcing one to be produced in every event. The resulting

event is comprised of a mixture of stable and unstable particles which can be decayed.

The decay of the signal particle is modelled using EvtGen [58], all remaining unstable

particles are decayed independently. Radiated photons are simulated by the Photos

package [50]. The signal particle and its decay products may be required to pass

generator level cuts in order to increase the fraction of the generated sample which

passes subsequent reconstruction and selection requirements. The propagation of
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the particles through the detector is then performed in the simulation phase. The

interactions of particles with the detector material are simulated by the Geant4

toolkit [22, 25]. A detailed description of the detector material is stored in an XML

geometry database and data taking conditions, notably alignment and calibration

constants, are contained in an XML conditions database, which is frequently updated

to reflect the current state of the detector [71]. After the simulation of the detector

response and the digitisation, the simulated data is passed through the same trigger

and reconstruction chain as the collision data.

With the increase in data collected during Run 2 and that expected in Run

3, we require simulated data samples of significantly larger sizes in order to study

the detector response in detail. The number of events that can be produced in

full simulation is limited by CPU and storage requirements. The simulation of the

detector response is the main contribution to the time needed to simulate full events,

which accounts for 95-99% of the total time. The ReDecay package [66] exploits

the fact that out of the many particles in the simulation, in general only the signal

decay is of interest. In studies of heavy particles to exclusive final states, the event

consists of particles that participate in the signal process and all remaining particles.

The majority of the CPU time is used in the simulation of the remaining particles

and not the signal decay of interest. ReDecay allows the signal particle to decay

independently for every generated event, as usual, but the non-signal particles are

reused multiple times saving a large factor of CPU time. This approach achieves an

order of magnitude increase in speed and the same quality compared to the nominal

simulation. This approach can introduce correlations between some parameters, in

particular those corresponding to production properties of the signal particle (since

each time an event is ReDecayed the signal particle retains the same four-vector). As

such, care is needed when deciding which analyses can make use of this tool, including

through the use of built-in tests to quantify the impact of any correlations in final

reconstructed distributions. They will not bias or distort the distributions themselves

provided that the overall number of candidates (typically O(106)) is significantly

greater than the number of so-called ‘ReDecays’ (typically O(100)). For this analysis,

the signal properties are independent to first order; i.e. the D0 kinematics do not

influence the decay dynamics, Dalitz distribution or decay-time. Also in the case of
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semi-leptonically produced D mesons, it is the B meson which is ReDecayed (the

parent particle). Therefore the kinematics of the B meson are preserved between

the events and not the D0, making any residual correlations weaker. Therefore we

conclude that ReDecay can safely be used in this analysis.

6.1 Monte Carlo data samples

The Monte Carlo simulation samples used in this analysis are of two different

so-called ‘event types’ of neutral and charged B mesons. The event types are as

follows:

• Event type 12875523: Charged B meson is required, the decay D∗+ → D0π+

is forced as is D0 → K0
Sπ

+π−, B meson can decay to the final state particles

in a ‘cocktail’ of intermediate states, listed in Table 6.1.

• Event type 11876125: Neutral B meson is required, the decay D∗+ → D0π+ is

forced as is D0 → K0
Sπ

+π−, B meson can decay to the final state particles in

a ‘cocktail’ of intermediate states, listed in Table 6.2.

The number of events generated for each year is given in Table 6.3. In the decay

model for the D0, no intermediate resonances are included. Rather we generate

uniformly over phase-space; this simplifies the extraction of the detector effects, as

described in the next chapter. The Monte Carlo samples contain truth information

at the generator level. The Monte Carlo is truth matched; whereby the reconstructed

decays are required to match the known truth information about the generator

level particle. This ensures that the Monte Carlo sample has very low background

contamination.

The event type is an LHCb label for the different Decay Files in the database.

The first number is a general flag which in this case requires events containing a b

quark, extracted from a minimum bias sample. The second number is the selection

flag which is 2 in the case of a charged B meson and 1 in the case of a neutral B

meson. The third number is the decay flag which specifies that the selected particles

are forced to decay into one of several exclusive final states (explicitly specified in a

list) with different topologies, but the final states contain at least one particle which
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Fraction [%] B− decay mode
2.2400 D0µ−ν̄µ
5.6800 D∗(2007)0µ−ν̄µ
0.2072 D∗(2420)0µ−ν̄µ
0.1936 D′

1(2430)
0µ−ν̄µ

0.5244 D1(2420)
0µ−ν̄µ

0.2792 D∗
2(2460)

0µ−ν̄µ
0.2451 D∗0π+π−µ−ν̄µ

Table 6.1: Decay modes listed in the 12875523 (charged B) event type. Fractions
listed above 0.1%.

Fraction [%] B̄0 decay mode
5.0100 D∗(2010)−µ−ν̄µ
0.2451 D∗−π+π−µ−ν̄µ
0.1749 D1(2420)

−µ−ν̄µ

Table 6.2: Decay modes listed in the 11876125 (neutral B) event type. Fractions
listed above 0.1%.

Event Type Year Number of events
MagUp MagDown

12875523 (charged B) 2016 832481 821690
2017 2001031 2006471
2018 2104890 2091375

11876125 (neutral B) 2016 1820108 1202273
2017 2100163 2106046
2018 2004089 2003099

Table 6.3: Number of Monte Carlo events generated for each event type, year and
magnet polarity.
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cannot be measured, in this case at least one neutrino. The fourth number is the

charm/lepton content flag, in this case requires at least one open charm hadron and

at least one muon. The fifth number is the track flag, which is the number of stable

charged particles in the forced part of the decay chain of the selected particle; this is

5 for the charged B sample and 6 for the neutral B sample since this decay has an

extra charged (soft) pion. The sixth number is the neutral decay flag which specifies

K0
S → π+π−. Finally the last two numbers are reserved for the user to distinguish

between different event types. In this case they represent that they have different

generator level cuts applied to those event types with the same first six numbers.

Stripping filtered MC is used to reduce the number of events saved to disk and ensure

that all saved events are useful; where the generated events are required to pass the

same stripping requirements as data before being saved to disk.

Each MC sample has generator-level cuts applied to ensure daughter particles

are in the detector acceptance and some kinematic cuts to ensure a higher number

of generated candidates would pass the reconstruction or selection criteria applied

before the samples are analysed. These generator level cuts are, in each case, looser

than the offline preselection, in order that the Monte Carlo samples have the same

selection as real data. The B flight distance along the z-axis of the B meson must

be greater than 1.6 mm. The muon and the D0 and K0
S daughter pions must satisfy

5 6 θ 6 400 mrad, where θ is the angle with respect to the forward proton beam in

the LHCb frame as defined in Chapter 3. The z position of the K0
S decay vertex must

fulfil z < 2.4 m. In addition momentum and transverse momentum requirements

are applied on the pions, muon and D0. The MC describes the decay B → D0µX

through intermediate resonances, where the decay D0 → K0
Sπ

+π− is forced. The

samples of charged and neutral B mesons are blended to best describe data, where

the composition can be varied in order to assess a systematic uncertainty. A summary

of the generator level cuts used in the MC generation can be seen in Table 6.4.

6.2 Monte Carlo Reweighting

Differences between simulated MC events and measured data can arise from

limited knowledge of the underlying physics processes or detector mismodeling. To
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Variable Generator level cut
θ 5 6 θ 6 400 mrad

z K0
S decay vertex < 2.4 m

D0 flight distance along B z > 1.6 mm
p(µ) > 2.9 GeV
pT (µ) > 700 MeV

K0
S daughter π momentum > 2.5 GeV

D0 daughter π momentum > 1.9 GeV
p(D0) > 12 GeV
pT (D

0) > 1.9 GeV

Table 6.4: Generator level cuts applied to the Monte Carlo samples.

account for these differences a correction can be applied to MC samples. Reweighting

is the procedure of finding weights for an original distribution, that make the original

distribution identical to the target distribution for given variables. In this analysis the

MC (original distribution) is reweighted to match the signal sWeighted data (target

distribution). A multidimensional reweighter is used to calculate per-event weights

using several kinematic variables, improving the agreement between MC and data

across several kinematic distributions. In order to achieve this a multidimensional

kinematic reweighting algorithm is used.

The Gradient Boosted Reweighter (GBReweighter) is a reweighting algorithm

based on an ensemble of regression trees [64]. Several kinematic variables are used

as input to the BDT, which are chosen for their discriminating power between MC

and data. The approach of multidimensional reweighting has an advantage over

reweighting in one dimension; which may bring disagreement in other distributions.

Multidimensional reweighting also has the advantage that it takes into account

correlations between the variables under consideration. This avoids the need for

complicated and performance-limited iterative reweighting schemes when trying to

match several correlated variables. The reweighting algorithm trains a BDT in

which signal sWeighted data is used as Class A and MC is used as Class B. The

BDT assigns a single output, as usual, to discriminate between MC and real (signal

sWeighted) data. This output is transformed into an event weight which is used to

reweight the MC to ensure it matches the data. K-folding is used to split the dataset

into multiple training and testing samples in order to obtain unbiased weights for

the entire dataset. The input variables are as follows:
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• D0 momentum

• µ momentum

• η(D0) psuedorapidity of D0

• Corrected mass of the B meson

• η(µ) psuedorapidity of the muon

• B meson primary vertex χ2

• D0 transverse momentum

• µ transverse momentum

The performance of the reweighting strategy can be tested by training a second

BDT to distinguish between the signal sWeighted data and reweighted MC. The input

variables to this BDT include the IP χ2, B meson flight distance, arccos(DIRA)

where DIRA is the angle between the B meson’s momentum and line of flight and

the B meson decay vertex χ2/ndof . The area under the ROC cuve for this BDT

can be used as a metric to assess the performance. A score of 0.5 would show that

the BDT cannot distinguish between signal sWeighted data and reweighted MC,

hence the reweighting algorithm is performing well. This metric is used to test the

performance of the reweighter to optimise the hyperparameters of the BDT and the

input variables. The ROC AUC (area under curve) score for each subsample before

and after reweighting can be seen in Table 6.5. It can be seen that after reweighting

the ROC AUC score reduces to closer to 0.5 for all subsamples; this shows that the

signal sWeighted data and reweighted MC cannot be distinguished by a BDT and

hence are in good agreement and the reweighter has good performance. The fact

that the ROC AUC score is not perfectly 0.5 suggests some residual disagreement

between data and MC. This can be assessed as a systematic uncertainty.

This ROC AUC score is used as a metric to test the optimal hyperparameters

of the BDT. A scan can be performed over the hyperparameters, such as number

of estimators, learning rate, max depth. The optimal values are found by the

combination which produces the ROC AUC score closest to 0.5. The same can

also be done for the input parameters, where different input parameters are tested

and the optimal combination chosen as those which minimise the ROC AUC score.
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ROC AUC Score
original weights GB weights

Single-tagged
K0

S (LL) 2016 0.607 0.510
K0

S (DD) 2016 0.607 0.513
K0

S (LL) 2017 0.598 0.523
K0

S (DD) 2017 0.601 0.533
K0

S (LL) 2018 0.605 0.525
K0

S (DD) 2018 0.607 0.513
Double-tagged

K0
S (LL) 2016 0.593 0.520

K0
S (DD) 2016 0.597 0.524

K0
S (LL) 2017 0.573 0.535

K0
S (DD) 2017 0.580 0.533

K0
S (LL) 2018 0.575 0.542

K0
S (DD) 2018 0.582 0.535

Table 6.5: Area under ROC curves for the BDT trained to distinguish between signal
sWeighted data and MC; for original MC before reweighting and reweighted MC
with the weights from GB Reweighter.

Note that the input parameters to the GBReweighter are changed whereas the input

parameters to the second BDT are kept the same to test the performance of the

different sets of input parameters. The number of estimators is the number of trees

used in the ensemble. The learning rate is in the range [0,1]; a lesser learning rate

requires more trees but makes the reweighting more stable. A lesser learning rate is

also more likely to cause overtraining so an optimal learning rate is usually chosen

based on these considerations. The maximum depth refers to the maximum depth

of the trees. The distributions of the kinematic variables for sWeighted data and

MC can be seen in Figure 6.1 and Figure 6.2; this shows the agreement between

sWeighted data and MC significantly improves after the kinematic reweighting giving

confidence that the reweighted simulation is an accurate description of reality. Unless

otherwise stated, the MC samples used in this thesis include this reweighting.
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Figure 6.1: Distributions of kinematic variables for signal sWeighted data and Monte
Carlo before reweighting for the single-tagged K0

S (LL) 2018 sample.
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Figure 6.2: Distributions of kinematic variables for signal sWeighted data and Monte
Carlo after reweighting for the single-tagged K0

S (LL) 2018 sample.
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Detector effects

Due to the forward geometry of the LHCb detector, it covers a finite range in solid

angle, leading to a limited geometrical acceptance. The reconstruction and event

selection can distort the kinematic distributions of the final state particles, leading

to a non-uniform acceptance across the Dalitz plane of the decay. This phase-space

acceptance needs to be accounted for in the final amplitude fit. Similarly, there are

variations in acceptance as a function of decay time. The detector also has some finite

decay-time resolution, defined as the difference between the reconstructed decay-time

and true decay-time. These effects are studied using simulation to provide accurate

models to include in the final fit, with appropriate systematic uncertainties assigned

in each case.

7.1 Phase-space acceptance

For this amplitude analysis it is crucial to model acceptance variations in D0

decay-time t(D0) and across the Dalitz plane. The Dalitz efficiency is extracted

using the reweighted Monte Carlo described in Chapter 6. The reweighting technique

ensures that the efficiency derived from simulation is an accurate representation of

reality. The aim of the acceptance study is not only to measure the acceptance but

to find a mathematical parameterisation describing the variations as a function of

position in the Dalitz plane, which will enter the amplitude fit. The efficiency in
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any particular region of parameter space is determined by measuring the number of

generated events passing all reconstruction and selection requirements, with respect

to an unbiased phase-space distribution. The parameterisation of the acceptance

variations is chosen in the square Dalitz coordinates m2(π+π−) and cos θ where θ is

the decay angle between the π− (π+) and D0 (D̄0) in the π+π− rest frame. In other

words it has the form of the helicity angle. These variables are chosen as they provide

a smooth parameterisation of the efficiency variation and they are correlated with

the momenta of the daughter particles: m2(π+π−) depends on the K0
S momentum

and cos θ depends on the bachelor pion momenta. The cosine of the decay angle is

given by:

cosθ =
m2(K0

Sπ
+)−m2(K0

Sπ
−)

4pq
(7.1)

where

p =
λ1/2(m2(π+π−),m2(D0),m2(K0

S))

2m2(π+π−)
,

q =
λ1/2(m2(π+π−),m2(π+),m2(π−))

2m2(π+π−)

(7.2)

and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xy (7.3)

is the Kallen function.

The MC samples are passed through the same selection criteria as for data,

as described in Chapter 5. The square Dalitz phase-space is split into bins of

approximately equal number of MC events passing all selection requirements. The

number of signal events in each bin is calculated as the sum of the weights, from

the GBReweighter as discussed in Section 6.2. After truth matching and selection,

the MC samples are assumed to be pure signal without background contamination.

The denominator is generated by a uniform phase-space distribution where events

are randomly generated and required to be in the allowed Dalitz phase-space due to

momentum conservation. The efficiency in each two-dimensional (cos θ,m2(π+π−))

bin is then determined by the ratio of the number of generated events passing all

reconstruction and selection requirements, with respect to the uniform phase-space
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distribution:

ε =
nsig

ngen

(7.4)

where the denominator is equivalent to counting the total number of generated

candidates, ngen, prior to the application of any selection criteria. Note that we care

only about the shape of the efficiency and not the absolute value which does not

enter the analysis.

The measured acceptance and the bin centre of each two-dimensional bin in

(cos θ,m2(π+π−)) are taken as input for a two-dimensional fit to extract an analytic

parameterisation, which describes the acceptance variations as a function of cos θ

and m2(π+π−). The parametrisation in square Dalitz coordinates is chosen to be a

polynomial with up to quartic terms in m2(π+π−):

ε(m2(π+π−), cos(θ)) = c0m
4(π+π−) + c1m

2(π+π−) + c2m
2(π+π−)cos2(θ)

+ c3cos
2(θ) + c4cos(θ) + c5 + c6m

8(π+π−)

+ c7m
6(π+π−)

(7.5)

Different polynomial functions with up to quartic terms were tested and the

final choice gives the best agreement with data. The efficiency is measured and

parameterised separately for each sub-sample. Figure 7.1 shows the measured and

parameterised efficiency and pulls [(measured efficiency - model)/uncertainty] for

the single-tagged K0
S (LL) 2018 sample. The efficiency variation as a function of

regular Dalitz coordinates m2
12 and m2

13 is shown in Figure 7.2. The uncertainties on

the measured acceptance are calculated as binomial errors whereas the uncertainty

on the parameterised acceptance results from a Gaussian error propagation of the

fit uncertainties. Several source of systematic uncertainty are considered for the

efficiency evaluation where correlations between the efficiency model parameters are

taken into account.

The pulls of the two-dimensional fit can be collected into a histogram and then

fitted with a Gaussian. This gives an estimate of how well the fit describes the

measured efficiency; a good fit would produce pulls with a Gaussian mean of zero

and a width of unity. Equivalently this means the model describes the measured
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Figure 7.1: Measured (left) and parameterised (centre) phase-space acceptance for the
single-tagged K0

S(LL) 2018 sample. The pulls [(measured efficiency - model)/error]
are shown on the right.
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Figure 7.3: Pulls (Measured efficiency - parameterised efficiency)/Error fitted with a
Gaussian (red line) for the single-tagged K0

S (LL) 2018 sample.

efficiency well within statistical fluctuations. The one-dimensional projection of the

pulls can be seen in Figure 7.3, where each entry represents the pull for one of the

two-dimensional bins shown in Figure 7.1. The mean of the Gaussian is consistent

with zero but the width is larger than unity; this indicates that the uncertainties

from the fit model do not cover the statistical fluctuations in data. This can be

accounted for by inflating the uncertainties on the efficiency parameters such that

the pull distribution is consistent with a unit Gaussian. However the χ2/ndof is close

to unity for the phase-space acceptance fits, so we do not need to inflate the errors

for a systematic uncertainty. Figures 7.4 and 7.5 show the projection of the measured

and parameterised acceptance onto the m2(π+π−) and cos θ axes respectively. The

overall agreement is good, with some indication of mismodelling at the edges of

some individual bins; this can be taken into account when assigning a systematic

uncertainty to the efficiency evaluation. The parameterised efficiency is determined

and applied separately for each sample in the amplitude fit. Plots for additional

sub-samples can be seen in Appendix C.1.

To account for possible systematic effects on the choice of model, the efficiency

can be refitted with an additional term in the polynomial and the final amplitude fit

repeated using the alternative efficiency parameterisation. In addition, the statistical

uncertainty on the efficiency model parameters due to the limited MC statistics can

be accounted for by rerunning the final mixing fit many times with the efficiency
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Figure 7.4: Phase-space acceptance projected onto the m2(π+π−) axis in bins of
cos θ; measured efficiency (black points), parameterised efficiency (red line) and pulls
are shown. Single-tagged K0

S (LL) 2018 sample.
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Figure 7.5: Phase-space acceptance projected onto the cos θ axis in bins of m2(π+π−);
measured efficiency (black points), parameterised efficiency (red line) and pulls are
shown. Single-tagged K0

S (LL) 2018 sample.
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Figure 7.6: Measured efficiency variation in four bins of decay-time projected in bins
of square Dalitz coordinates m2(π+π−) and cos θ for the single-tagged K0

S (LL) 2018
sample.

parameters resampled for each fit, and assessing the corresponding variation in

the mixing parameters. This resampling is performed using the known statistical

uncertainties on the efficiency parameters, including correlations between them, and

also for the uncertainty scaling required to ensure a unit Gaussian pull distribution

as described above. The measured efficiencies are tested for consistency in different

decay time bins, and no significant time-dependence is observed. As such, the nominal

fit does not include a decay-time dependence on the phase-space efficiency variation.

Figure 7.6 shows the measured efficiency variation in four bins of decay-time projected

in bins of square Dalitz coordinates m2(π+π−) and cos θ. Figures 7.7 and 7.8 show

the projections of the measured efficiency in the four bins of decay-time in slices of

the phase-space variables m2(π+π−) and cos θ for the different bins in the square

Dalitz variables. A systematic uncertainty is estimated to account for a possible

decay-time dependence below sensitivity.

7.2 Decay-time acceptance

There are also variations in acceptance as a function of decay-time, which need to

be accounted for in the final amplitude fit. The decay-time acceptance is determined

from the reweighted MC samples which are passed through the complete selection

chain including stripping, preselection and multivariate analysis. The decay-time

acceptance is evaluated as the ratio of the generated D0 decay-time distribution

after the complete selection and the true distribution in MC. As a proxy for the

truth we use the MC samples with stripping selection applied but no others (trigger,
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Figure 7.7: Projections of the measured efficiency in four bins of decay-time; projec-
tions in the m2(π+π−) variable in bins of cos θ where the sub-plots are the different
bins in cos θ. Single-tagged K0

S (LL) sample.
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Figure 7.8: Projections of the measured efficiency in four bins of decay-time; projec-
tions in the cos θ variable in bins of m2(π+π−) where the sub-plots are the different
bins in m2(π+π−). Single-tagged K0

S (LL) sample.
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Figure 7.9: Measured decay-time acceptance (black points) fitted with an exponential
function (red line) for single-tagged K0

S (LL left and DD right) 2018 samples.

preselection, or MVA). This has been checked against the expected exponential

distribution and found to be consistent, in line with the fact that the cuts applied

are independent of D0 decay time. The decay-time acceptance is obtained by fitting

the ratio distribution with an exponential function of the form eb−at(D0), where b is a

normalisation factor and the fit is in true decay-time. The correction factor e−at(D0) is

then included in the amplitude fit model. This is derived separately for all subsamples.

Figure 7.9 shows the measured and parameterised decay-time acceptance for the

single-tagged K0
S (LL and DD) 2018 samples. This shows some disagreement between

the measured acceptance and the exponential fit model. This can be accounted for by

including systematic uncertainties to account for the mismodelling of the acceptance

by this exponential model. Currently the systematic does not include the effect of

the fact that the exponential model is imperfect at describing the efficiency from MC,

just the variations within the exponential model. This is described in Chapter 10.

The results of the fit and the correction factors for all samples are shown in Table

7.1.

7.3 Decay-time resolution

The LHCb detector has a finite decay-time resolution which needs to be accounted

for in the final amplitude fit model. The decay-time resolution is defined as the

difference between the reconstructed decay-time and the true decay-time tres =

treco − ttrue. The decay-time resolution is determined from simulation and is fitted
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Single-tagged Double-tagged
K0

S (LL) K0
S (DD) K0

S (LL) K0
S (DD)

2016
Constant 0.990 ± 0.003 0.940 ± 0.002 1.039 ± 0.004 1.008 ± 0.002
Slope [ps] 0.235 ± 0.006 0.134 ± 0.004 0.231 ± 0.008 0.132 ± 0.004

2017
Constant 1.013 ± 0.004 0.967 ± 0.002 1.071 ± 0.005 1.050 ± 0.003
Slope [ps] 0.229 ± 0.008 0.146 ± 0.004 0.214 ± 0.009 0.136 ± 0.005

2018
Constant 1.002 ± 0.004 0.971 ± 0.002 1.073 ± 0.005 1.062 ± 0.003
Slope [ps] 0.228 ± 0.007 0.161 ± 0.005 0.215 ± 0.009 0.153 ± 0.006

Table 7.1: Parameters of the exponential fit to the decay-time acceptance.

with a triple Gaussian function.

Tres = N

(
f√
2πσ1

e
− 1

2

(
t′−µ
σ1

)2

+
g√
2πσ2

e
− 1

2

(
t′−µ
σ2

)2

+
1− f − g√

2πσ3
e
− 1

2

(
t′−µ
σ3

)2
)

(7.6)

The scale of the decay-time smearing can then be expressed as an effective resolution:

σeff =
√
fσ2

1 + gσ2
2 + (1− f − g)σ2

3 (7.7)

This is included in the final amplitude fit model by convoluting the decay-time PDF

with the triple Gaussian resolution function. Plots of the decay-time resolution fitted

with the triple Gaussian are shown in Figure 7.10. The fit parameters along with the

effective resolution for each sub-sample is shown in Table 7.2 and additional plots

for other sub-samples are shown in Appendix C.3. The sample-averaged effective

resolution is found to be 107.9 fs for double-tagged and 113.2 fs for single-tagged

samples, where the effective resolution of each sample is weighted by the fraction of

events it contains.

7.4 Phase-space resolution

Similarly to decay-time, the Dalitz variables m2
12 and m2

13 also have some finite

resolution due to the detector, defined as m2
res = m2

reco − m2
true. Similarly to the

treatment of the decay-time resolution, the phase-space resolution is derived from

simulation. The resolutions of m2(K0
Sπ

+) and m2(K0
Sπ

−) are correlated through

energy and momentum conservation, and hence the phase-space resolution is measured
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Figure 7.10: Decay-time resolution (black points) fitted with a triple Gaussian
function (blue line) for the 2018 K0

S (LL left and DD right) samples. Fit parameters
displayed.

in a set of uncorrelated variables. These uncorrelated variables are the sum and

difference of m2(K0
Sπ

+) and m2(K0
Sπ

−), denoted by u ≡ m2(K0
Sπ

+)+m2(K0
Sπ

−) and

v ≡ m2(K0
Sπ

+)−m2(K0
Sπ

−), respectively. The resolutions in u and v are computed

as the difference between reconstructed and generated values, u′ − u and v′ − v. The

resolutions can also be fitted with a double Gaussian function:

FPS(x;µ, σ1, σ2, c) = N

(
c√
2πσ1

e
−
(

x−µ√
2σ1

)
+

(1− c)√
2πσ2

e
−
(

x−µ√
2σ2

))
(7.8)

where the two Gaussians have a common mean µ and x is the given resolution of

either the Dalitz variables m2
12, m2

13 or the uncorrelated variables u or v. Plots of

the resolutions for the Dalitz variables and the uncorrelated variables can be seen

in Figure 7.11. There is some mismodelling in the peak of the double Gaussian,

however the phase-space resolution is small enough that this model is sufficient

for the studies. The correlations between the Dalitz variables and the alternative

variables u and v can be seen in the two-dimensional histograms in Figure 7.12. The

Pearson correlation coefficient is a measure of the correlation between two variables

and is given by:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(7.9)
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Single-tagged Double-tagged
K0

S (LL) K0
S (DD) K0

S (LL) K0
S (DD)

2016
µ [fs] -3.57 ± 0.07 -3.54 ± 0.05 -3.00 ± 0.10 -2.89 ± 0.07
σ1 [fs] 256 ± 1.51 268 ± 0.92 49.1 ± 0.37 254 ± 1.30
σ2 [fs] 49.5 ± 0.25 107 ± 0.38 247 ± 2.25 47.2 ± 0.24
σ3 [fs] 103 ± 0.53 47.7 ± 0.16 99.9 ± 0.78 104 ± 0.55
f 0.073 ± 0.001 0.105 ± 0.001 0.462 ± 0.008 0.099 ± 0.001
g 0.450 ± 0.005 0.471 ± 0.002 0.065 ± 0.002 0.424 ± 0.004

σeff [fs] 105 118 99 112
2017

µ [fs] -3.81 ± 0.08 -3.81 ± 0.05 -3.16 ± 0.12 -3.06 ± 0.09
σ1 [fs] 256 ± 1.89 266 ± 0.10 49.6 ± 0.47 252 ± 1.68
σ2 [fs] 49.8 ± 0.28 107 ± 0.44 245 ± 2.96 105 ± 0.70
σ3 [fs] 104 ± 0.65 47.9 ± 0.18 101 ± 1.08 47.6 ± 0.29
f 0.069 ± 0.001 0.10 ± 0.466 0.482 ± 0.011 0.095 ± 0.002
g 0.470 ± 0.006 0.466 ± 0.003 0.064 ± 0.002 0.466 ± 0.005

σeff [fs] 103 116 98 110
2018

µ [fs] -4.15 ± 0.08 -3.93 ± 0.06 -3.32 ± 0.13 -3.17 ± 0.09
σ1 [fs] 259 ± 1.76 266 ± 1.14 260 ± 3.11 253 ± 1.74
σ2 [fs] 108 ± 0.65 106 ± 0.45 109 ± 1.04 104 ± 0.71
σ3 [fs] 51.6 ± 0.28 47.2 ± 0.18 52.1 ± 0.42 46.8 ± 0.30
f 0.080 ± 0.002 0.099 ± 0.001 0.069 ± 0.002 0.095 ± 0.002
g 0.471 ± 0.005 0.463 ± 0.003 0.456 ± 0.007 0.471 ± 0.005

σeff [fs] 110 115 107 110

Table 7.2: Parameters for the decay-time resolution where µ and σ1,2,3 are fit
parameters of the triple Gaussian and σeff is the effective resolution.

for two variables x and y, where the sum is over the number of events in the dataset

and x and y are the means of the distributions. It has a value in the range [-1,1]

where a value of -1 would indicate perfect negative correlation, a value of zero would

indicate no correlation and a value of 1 would indicate perfect positive correlation.

The Pearson correlation coefficient for the resolution of the regular Dalitz variables

m2
12 and m2

13 is -0.48 whereas for the uncorrelated variables u and v it is found to be

0.00 (to 2 decimal places) which confirms the assumption that we can safely neglect

the correlation between these variables.

The phase-space resolution is small compared to the scale of resonances in the

Dalitz plane. As such it should not affect the distributions being fitted and the

mixing fit should not need to include a correction for the phase-space resolution.
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Single-tagged Double-tagged
K0

S (LL) K0
S (DD) K0

S (LL) K0
S (DD)

2016
m2(K0

Sπ
+) 6594 7792 6067 7160

m2(K0
Sπ

−) 6590 7805 6054 7175
m2

12 −m2
13 10500 12603 10317 12200

m2
12 +m2

13 5696 6894 5273 6403
2017

m2(K0
Sπ

+) 6615 7785 6057 7150
m2(K0

Sπ
−) 6609 7787 6057 7180

m2
12 −m2

13 10499 12575 10311 12171
m2

12 +m2
13 5737 6871 5278 6370

2018
m2(K0

Sπ
+) 6578 7833 5998 7193

m2(K0
Sπ

−) 6581 7840 5988 7204
m2

12 −m2
13 10408 12653 5284 12231

m2
12 +m2

13 5789 6945 10189 6452

Table 7.3: Effective resolutions for the phase-space variables: the Dalitz variables
m2(K0

Sπ
+) and m2(K0

Sπ
−) and the uncorrelated variables u and v. Values are given

in MeV2.

The effect of not including the resolution on the mixing parameters can be studied

with pseudo-experiments and an appropriate systematic uncertainty assigned. A

resampling method is used to assign the systematic where the uncorrelated variables

u and v are used since the correlations can be neglected in the resampling; this is

discussed in more detail in Chapter 10. The phase-space resolution may also vary as

a function of Dalitz space which can be included in the resampling study; this can

be seen in the plots in Figure 7.13.
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Figure 7.11: Phase-space resolutions of the Dalitz variables m2
12 and m2

13 and the
uncorrelated variables u and v, derived from simulation (black points) and fitted
with a double Gaussian (blue line) for the 2018 single-tagged K0

S (LL) sample.

156



CHAPTER 7. DETECTOR EFFECTS

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
m2

12 resolution [GeV2]

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

m
2 13

 re
so

lu
tio

n 
[G

eV
2 ]

Pearson correlation coefficient: -0.479

(a) Resolution in m2
12 and m2

13

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
m2

12 + m2
13 resolution [GeV2]

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

m
2 12

m
2 13

 re
so

lu
tio

n 
[G

eV
2 ]

Pearson correlation coefficient: -0.0

(b) Resolution in u and v

Figure 7.12: Two-dimensional histograms of the phase-space resolutions in regular
Dalitz coordinates (left) and the uncorrelated variables u and v (right) with the
Pearson correlation coefficient shown for 2018 K0

S (LL) single-tagged sample.
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Figure 7.13: Phase-space resolution varies as a function of Dalitz coordinates.

In summary, the mixing fit is subject to detector acceptance and resolution effects,

these need to be accounted for in the final time-dependent amplitude fit model. These

are: the phase-space acceptance, decay-time acceptance and decay-time resolution

which are included in the fit model, and the phase-space resolution which is neglected

in the fit model and an appropriate systematic uncertainty assigned.
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Fit Model

The parameters of interest are extracted from an unbinned three-dimensional maxi-

mum likelihood fit of the model to data. The fit is performed simultaneously over

the 12 sub-samples; by data taking year (2016, 2017, 2018), K0
S type (LL, DD) and

decay origin (single-tagged, double-tagged). The overall PDF is given by:

P(t,m2
+,m

2
−, psig, tag, ~α) = psig

[
(1− ωmuontag)Psig(t,m

2
+,m

2
−, tag, ~α)

+ ωmuontagPmt(t,m
2
+,m

2
−, tag, ~α)

]
+ (1− psig)Pbkg(t,m

2
+,m

2
−)

(8.1)

where psig is the per-candidate signal probability which is extracted from a fit to

m(D0) or δm, tag is the flavour tag and takes values of +1 (−1) for D0 (D̄0), ~α is a

vector of the fit parameters, ωmuontag is the mistag fraction. The decay-time is given

by t and the Dalitz variables are m2
+ and m2

− (defined differently for D0 and D̄0 to

recover identical distributions under CP -symmetry). The signal PDF is given by:

Psig(t,m
2
+,m

2
−, tag, ~α) =

[(
| Af (t

′,m2
+,m

2
−, tag) |2 ε(t′)

)
⊗R(t, t′, µt, σt)

]
ε(m2

+,m
2
−)

(8.2)

where Af (t
′,m2

+,m
2
−) is the time-dependent amplitude model, ε(t′) and ε(m2

+,m
2
−)

are the decay-time and phase-space efficiencies and R(t, t′, µt, σt) is the decay-time

resolution and ⊗ represents the decay-time convolution.
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The square of the time-dependent amplitude Af (t) is given by:

| Af (t) |2=
1

2
e−Γt

[(
| A |2 − | q

p
B |2

)
cos(xΓt)− 2 Im

(
AB∗

[
q

p

]∗)
sin(xΓt)

+

(
| A |2 + | q

p
B |2

)
cosh(yΓt)− 2Re

(
AB∗

[
q

p

]∗)
sinh(yΓt)

] (8.3)

repeated from Equation 2.43 for convenience, as well as a similar equation for
∣∣Āf (t)

∣∣2.
The amplitudes A and B at a given point in phase-space are the amplitude of the

D0 → K0
Sπ

+π− process (direct) and the D̄0 → K0
Sπ

+π− process which proceeds via

mixing. These can be expressed as the sum of component amplitudes multiplied by

a complex coefficient:

A(m2
+,m

2
−) =

∑
r

are
iφrAr(m

2
+,m

2
−) (8.4)

B(m2
+,m

2
−) =

∑
r

are
iφrAr(m

2
−,m

2
+) (8.5)

where the Dalitz variables are defined as m2
+ = m2(K0

Sπ
+) and m2

− = m2(K0
Sπ

−) for

the D0 case, and with reversed pion signs for the D̄0 case, m2
+ = m2(K0

Sπ
−) and

m2
− = m2(K0

Sπ
+).

The time-dependent amplitude is expressed as a sum of two-body intermediate

resonances r with amplitudes Ar which depend on a point in phase-space. The

amplitude model is built from a number of resonant and non-resonant components.

The K-matrix formalism [38] is used for the ππ S-wave component and the LASS

parametrisation [29] for the Kπ S-wave. The model dependence of the analysis enters

through the choice of resonances contributing to the sum in Equations 8.4 and 8.5

and the parameterisation of Ar.

The amplitude for a D0 meson decaying to a three-body final state, D → abc

through an intermediate resonance r → ab is given by:

Ar(m
2
+,m

2
−) = F

(L)
D (q, q0)× F (L)

r (p, p0)× ZL(Ω)× Tr(m) (8.6)

where the form factors F (L)
D and F

(L)
r describe the decay D → rc and r → ab

respectively, L is the orbital angular momentum between r and c, note that in this
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case the spin of c is zero so L is essentially the spin of the resonance r. p and q are

the momenta of c and a in the resonance rest frame, ZL(Ω) describes the angular

distribution of the final state particles. Tr is the dynamical function describing the

resonance r.

The angular momentum L is limited by the linear momentum q. Decay particles

moving slowly may have difficulty generating sufficient angular momentum to conserve

the spin of the resonance. The Blatt-Weisskopf factors [80] F (L) weight the amplitudes

to account for this spin-dependent effect. The form factors are normalised to give

F (L) = 1 for z = z0 = (|q0|d)2 where q0 is the value of the momentum when mab = mr.

The Blatt-Weisskopf form factors are given in Table 8.1, this shows two common

formulations, the second column is used here. The difference between the two

columns is in the normalisation and should not effect the physics. This complicates

comparisons between experiments; in this case we have used the same formulation as

that in Ref. [20].

L BL(q) B′
L(q, q0)

0 1 1

1
√

2z

1 + z

√
1 + z0
1 + z

2

√
13z2

(z − 3)2 + 9z

√
(z0 − 3)2 + 9z0
(z − 3)2 + 9z

Table 8.1: Blatt-Weisskopf barrier factors: z = (|q|d)2 and z0 = (|q0|d)2; q is the
momentum and q0 is the value of q when the invariant mass equals the pole mass of
the resonance, d is the meson radius or impact parameter of the decay particles.

This factor is evaluated for the decay r → ab where q is the momentum of a

in the resonance rest frame and for D → rc where p is the momentum of c in the

resonance rest frame. The centre-of-mass momentum of a in the two-body decay

r → ab is given by:

q =
1

2M

√
[M2 − (m2

a +m2
b)

2] [M2 − (m2
a −m2

b)
2] (8.7)

The Zemach formalism [85] expresses the angular correlations among the final

state particles by the function ZL(Ω) where Ω represents the angular relations of the

particles. Scalar resonances are not polarised and thus the angular distribution is
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Z0 = 1. For vector resonances:

Z1 = m2
ac −m2

bc −
(m2

D −m2
c)(m

2
a −m2

b)

m2
ab

(8.8)

For tensor resonances the angular distribution is:

Z2 =

[
m2

ac −m2
bc −

(m2
D −m2

c)(m
2
a −m2

b)

m2
ab

]2
− 1

3

[
m2

ab − 2(m2
D +m2

c) +
(m2

D +m2
c)

2

m2
ab

] [
m2

ab − 2(m2
a +m2

b) +
(m2

a +m2
b)

2

m2
ab

]
(8.9)

The spin of the resonance L has a characteristic appearance on the Dalitz plot with

spin L corresponding to L+ 1 distinctive lobes (ie. a spin 0 resonance will look like

a straight line on the Dalitz plot, a spin 1 resonance will have 2 lobes).

The propagator Tr describes the dynamics of the resonance decay. Most resonances

in this analysis are described using the relativistic Breit-Wigner propagator [34]

given by:

Tr(m) =
1

(m2
0 −m2)− im0Γ(m)

(8.10)

where m0 is the mass of the pole and the width Γ is given by:

Γ(m) = Γ0

(
q

q0

)(2L+1) (m0

m

)
F (L)2

r (8.11)

Differences in the parametrisations of ZL(Ω), BL, and Tr, as well as in the set of

resonances r are model-dependent, and may complicate the comparison of results

from different experiments.

8.1 Gounaris-Sakurai propagator

The Gounaris-Sakurai propagator [51] has been shown shown to provide a better

description of broad ρ resonances in ππ scattering data than the Breit-Wigner

propagator. The Gounaris-Sakurai propagator is therefore used to describe the
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ρ(770) resonance in the amplitude model. The propagator is given by:

Tr =
1− d Γr

mr

(m2
r −m2

ab + f)− imrΓ(mab)
(8.12)

where

d =
3

π

m2
π

q2r
log

(
mr + 2qr
2mπ

)
+

mr

2πqr
− m2

πmr

πq3r
(8.13)

and f = f(m2
ab) is defined as:

f(m2
ab) =

Γrm
2
r

qr

{
q2

q2r

[
h(m2

ab)− h(m2
r)
]

+ (m2
r −m2

ab)

[
h(m2

r)

(
1

8q2r
− 1

2m2
r

)
+

1

2πm2
r

]} (8.14)

where q is the momentum of particle a in the rest frame of the resonant pair. The

function h(m2) is given by:

h(m2) =
2q

πm
ln

(
m+ 2q

2mπ

)
(8.15)

8.2 K-matrix formalism

The Breit-Wigner amplitudes are known to provide a decent description of

isolated resonances, but a poor description of overlapping resonances of the same

partial wave and also does not preserve unitarity. Therefore in the case of broad

overlapping resonances or for resonances located close to thresholds of additional

decay channels, an alternative formalism is needed. The K-matrix formalism [38]

preserves unitarity by construction as opposed to the Breit-Wigner amplitudes. The

resonances contributing to the π+π− S-wave are overlapping in mass and are better

modelled by the K-matrix formalism.

The decay amplitude is defined by:

Fi(s) = [I − iK(s)ρ(s)]−1
ij Pj(s) (8.16)

where the indices i and j correspond to the (final and initial) channels contributing
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to the scattering process; 1 = ππ, 2 = KK̄, 3 = ππππ, 4 = ηη, 5 = ηη′. The

production vector is P where the term Pj represents the production of some state j,

which then scatters into a final state i via the matrix term in the square brackets. I

is the identity matrix and ρ is the phase-space matrix. In this analysis only the ππ

final states need to be considered, meaning we only consider the i = 1 terms for the

matrix, where i refers to the final state.

The K-matrix is given by:

Kij(s) =

(
f scatt
ij

1− sscatt0

s− sscatt0

+
∑
α

gαi g
α
j

m2
α − s

)
fA0(s) (8.17)

The parameters mα are the physical poles of the K-matrix and gαi are the coupling

constants and are fixed from ππ scattering data [28]. The parameters f scatt
ij and sscatt0

are also fixed. The symbol fA0 is defined as:

fA0(s) =
1− sA0

s− sA0

(
s− sA

m2
π

2

)
(8.18)

where sA0 and sA are also fixed parameters.

The production vector is defined as:

Pj(s) = fprod
1j

1− sprod0

s− sprod0

+
∑
α

βαg
α
j

m2
α − s

(8.19)

where βα are the complex production couplings and fprod
1j are some production

parameters; these are not fixed from scattering data. The fixed parameters can

be seen in Table 8.2. These are parameters which describe the scattering process,

where dedicated measurements are used to fix the values [28], so are therefore fixed

in the amplitude and mixing fits described in this thesis. The parameters relating

to the production mechanism (βα and fprod
1j ) can depend on the experiment. These

parameters are fixed in the mixing fit based on initial time-integrated fits described

in this chapter. We also do not consider the initial j = 5 = ηη′ state since the mass of

the η′ is 957.78±0.06 MeV/c2. The ηη′ threshold and the pole mass are both beyond

the kinematic range of the ππ production, hence there is little sensitivity to the

associated parameters fprod
15 and β5. This is therefore not included as a variation in

164



CHAPTER 8. FIT MODEL

mα gαπ+π− gKK gα4π gαηη gαηη′
0.65100 0.22889 -0.55377 0.00000 -0.39899 -0.34639
1.20360 0.94128 0.55095 0.00000 0.39065 0.31503
1.55817 0.36856 0.23888 0.55639 0.18340 0.18681
1.21000 0.33650 0.40907 0.85679 0.19906 -0.00984
1.82206 0.18171 -0.17558 -0.79658 -0.00355 0.22358

f scatt
11 f scatt

12 f scatt
13 f scatt

14 f scatt
15

0.23399 0.15044 -0.20545 0.32825 0.35412
sscatt0 sA0 sA

-3.92637 -0.15 1

Table 8.2: Fixed parameters used in the K-matrix formalism as inputs to the
amplitude model. Taken from Ref. [28].

the fit when considering systematic uncertainties and alternative amplitude models,

since it is nonphysical.

8.3 LASS parametrisation

The Kπ S-wave systems are poorly understood and there is no clear theoretical

guidance as to the correct description of these systems in the isobar model. Therefore

the LASS parametrisation [29] is used to describe the Kπ S-wave. The K∗
0(1430)

+

and K∗
0(1430)

− contributions are described empirically based on scattering data from

the LASS collaboration. The parametrisation is constructed from a Breit-Wigner

term for the K∗
0(1430) and a non-resonant component that has an effective range

and introduces a phase shift:

AKπL=0
(s) = R sin δRe

iδRei2δF + F sin δF e
iδF (8.20)

where

δR = φR + tan−1

[
MΓ(m2

Kπ)

M2 −m2
Kπ

]
(8.21)

and

δF = φF + cot−1

[
1

aq
+
rq

2

]
(8.22)
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The parameters R, φR, F , φF and the amplitudes and phases of the resonant and

non-resonant components. The parameters a and r are the scattering length and

effective interaction length; q is the momentum of the spectator particle in the Kπ

rest frame. M and Γ are the mass and width of the resonant term. Note that if the

phase δF is set to zero, the relativistic Breit-Wigner propagator is recovered. The

scatting length and effective range and the K∗
0(1430) mass were measured at the

LASS experiment.

The phases δR and δF depend on m2
Kπ. The phase motion (δR and δF ) as a

function of the Kπ invariant mass, is the same in elastic scattering and decay

processes, in the absence of final state interactions (the isobar model) [62]. This

motivates the LASS parametrisation. The studies of Kπ scattering data at the

LASS experiment show that the S-wave is elastic up to a threshold. The LASS

parametrisation preserves the phase behaviour measured in Kπ scattering.

8.4 Default Amplitude Model

In the default amplitude model, as mentioned, the decay is described through

resonant and non-resonant components. Relativistic Breit-Wigner propagators are

used for the parameterisation of Tr (from Equation 8.6), apart from the ρ(770)

which is described by the Gournaris-Sakurai. The Kπ S-wave is described by the

LASS amplitude and the ππ S-wave is described by the K-matrix formalism. These

amplitudes are added coherently to the amplitudes of the resonant decays:

T (D0 → K0
Sπ

+π−) = cKTππ + cLTKπ +
∑
r

crTr (8.23)

where TKπ is the LASS amplitude, Tππ is the K-matrix amplitude and Tr are the

amplitudes of the resonances, cL, cK and cr are the complex coefficients. Note that

the real and imaginary components of the ρ(770) Gournaris-Sakurai amplitude are

fixed to 1 and 0 respectively as a reference value.

The free parameters of the mixing fit are the D0 lifetime τ(D0), the mixing

parameters x and y and the real and imaginary parts of the complex coefficients cr.

As discussed in Section 2.3, CP -violation can be added to the model by defining the
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mixing parameters differently for D0 and D̄0 initial states by xCP ±∆x and yCP ±∆y.

The parameters ∆x and ∆y can be transformed into the physical parameters |q/p| and

φ mentioned previously in Section 2.3, which give a measurement of time-dependent

CP -violation in mixing. The fit can be run with the assumption of CP -conservation

(where ∆x = ∆y = 0 are fixed) or with CP -violation allowed where these parameters

are allowed to float in the mixing fit.

In order to constrain the choice of amplitude model in the mixing fit, a time-

independent fit is first performed; the time-integrated fits are limited to decay time

t < τ(D0) in this region mixing is negligible and will not affect the amplitude model.

The initial base-line model is that reported by Belle and BaBar collaborations [20].

Resonances may be removed or added and the optimal amplitude model is chosen

such that subsequent additions of resonances do not significantly improve the fit

quality, defined at the negative log likelihood (−2 log(L)). These time-integrated fits

can also be used to fix the S-wave shape parameters and some of the masses and

widths of the resonances, which are fixed in the final mixing fit. These parameters

are: the masses and widths of the resonances; the K-matrix shape parameters β,

fprod and sprod0 and the LASS shape parameters R, φR, F , φF , a and r. Initially, the

parameters are set to those from Belle and BaBar [20], and the masses and widths

to the PDG values [78].

The initial time-integrated fit procedure is as follows:

1. Perform initial time-integrated fit with the complex coefficients of the Breit-

Wigner amplitudes of the resonant components free to get reasonable agreement

with data.

2. Fix coefficients of resonances and free the LASS shape parameters and complex

coefficients.

3. Fix the LASS coefficients and parameters and free the K-matrix fprod
12...14 and

sprod0 parameters and the K-matrix complex coefficient.

4. Fix the K-matrix fprod parameters and free the K-matrix parameters β1...4.

The final time-integrated fit shown in this section has the parameters fixed

to those above and the Breit-Wigner coefficients free. The mixing fit has those
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parameters above fixed to the values from the time-integrated fit; the Breit-Wigner

amplitudes and the mixing parameters and the D0 lifetime are free. In the K-matrix

formalism the parameters fprod
11 are fixed to the value from the Belle and BaBar

model [20], fprod
15 is fixed to 0 and β5 is 0. The choices made in the amplitude model

development such as the values of the masses and widths and the S-wave shape

parameters are varied when assessing systematic uncertainties. Some alternative

models are listed in Chapter 10 (Table 10.1). There is a significant improvement

in the fit quality when adding the K∗(1680)+ resonance, hence this is added to the

nominal model. Alternative models may be considered for systematic studies as

discussed in Chapter 10.

Some of the masses and width do not converge close to the PDG value in the

initial time-integrated fits and therefore cannot be released and are fixed to the PDG

value. This is due to limitations in such cases where the resonances have very low fit

fractions, the widths are wide and hence hard to separate from other contributions or

particularly narrow and hence hard to normalise with the required precision. Others

can be floated in the initial time-integrated fit and are fixed to those values in the

mixing fit. The effect of fixing the masses and widths and the shape parameters

on the mixing parameters is assessed by varying these parameters according to the

limited knowledge of their true values, and assigning a systematic uncertainty. The

masses and widths compared to the PDG values can be seen in Table 8.3. The

S-wave shape parameters which are fixed from the initial time-integrated fits are

shown in Table 8.4.

It can also be instructive to evaluate the fit fractions of the individual non-

resonant and resonant contributions. The fit fraction is defined as the integral over

the Dalitz plot of a single amplitude squared normalised by the integral over the

Dalitz plot of the square of the coherent sum of all amplitudes:

FFj =

∫ ∣∣ajeiφjMj

∣∣2dm2
12dm

2
13∫

|
∑

k ake
iφkMk|2dm2

12dm
2
13

(8.24)

where the amplitude Mj is defined in Equations 8.4 and 8.5, the complex coefficient

is ajeiφj where aj and φj are real. The complex coefficient is either defined in terms
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Resonance Mass Width Mass (PDG) Width (PDG)
ρ(770) 777.67 ± 0.63 139.06 ± 1.49 775.26 ± 0.25 147.8 ± 0.9
ω(782) 783.37 ± 0.21 8.49 (fixed) 782.65 ± 0.12 8.49 ± 0.08
f2(1270) 1275.5 (fixed) 186.7 (fixed) 1275.5 ± 0.8 186.7 ± 2.5
ρ(1450) 1465 (fixed) 400 (fixed) 1465 ± 0.25 400 ± 60
K∗(892)± 894.51 ± 0.08 47.63 ± 0.16 891.66 ± 0.26 50.8 ± 0.9
K∗

2(1430)
± 1427.3 (fixed) 100 (fixed) 1427.3 ± 1.5 100 ± 2.2

K∗(1410)± 1414 (fixed) 232 (fixed) 1414 ± 15 232 ± 21
K∗(1680)± 1684.61 (fixed) 322 (fixed) 1718 ± 18 322 ± 110
K∗

0(1430)
± 1469.87 ± 0.79 345.31 ± 7.65 1425 ± 50 270 ± 80

Table 8.3: Masses and widths of the resonances used in the amplitude model: values
used in the mixing fit compared with the PDG values [78]. Units are in MeV and
measured uncertainties are statistical only. The strategy for fixing and releasing
parameters is described in the text.

of the real and imaginary components or the amplitude and phase. The sum of

the fit fractions does not necessarily equal unity due to the possible constructive

and destructive interference effects between the amplitudes. These constructed and

destructive interferences are quantified by the interference fit fractions which are

given in Chapter 11 for the time-dependent mixing fit.

The fit fraction for the interference term between two resonances is given by:

FFjl =

∫
aja

∗
l e

iφje−iφlMjM∗
l dm

2
12dm

2
13∫

|
∑

k ake
iφkMk|2dm2

12dm
2
13

(8.25)

The fit fractions for the time-integrated fit are shown in Table 8.5. The largest

contributions are the K∗(892)− resonance with a fit fraction of 56.1%, the ρ(770)

resonance (18.40%) and the ππ S-wave contribution (11.91%). The full list of

resonances, and the values of the complex coefficients from the time-integrated fits,

are used to generate the amplitude model for the toy studies discussed in the following

chapter.

The fit projections for the time-integrated fit are shown in Figure 8.1. These

show the projections of the individual components in the m2
12, m2

13 and m2
23 systems.

The left plots are on a linear scale and the right plots are on a log scale in order

to increase the visibility of components with low fit fractions and other details of

the model. Various features of the amplitude model can be observed such as the
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System Parameter Real Imaginary
ππ S-wave β1 -1.028 ± 0.070 3.466 ± 0.052

β2 14.799 ± 0.078 2.806 ± 0.084
β3 42.985 ± 1.054 -18.906 ± 0.619
β4 -1.859 ± 0.250 -7.059 ± 0.200
fprod
11 -4.702 (fixed) -6.472 (fixed)
fprod
12 -14.288 ± 0.478 12.456 ± 0.181
fprod
13 -18.123 ± 0.425 -22.279 ± 0.804
fprod
14 -10.306 ± 0.329 -14.780 ± 0.068

Kπ S-wave F 0.817 ± 0.015
φF 0.077 ± 0.002
R 1 (fixed)
φR -3.135 ± 0.022
a 0.224 ± 0.001
r -21.286 ± 0.124

Table 8.4: S-wave shape parameters of the K-matrix (ππ) and LASS (Kπ) param-
eterisation from the initial time-integrated fit, to be fixed in the mixing fit. The
strategy for fixing the parameters is described in the text.

Resonance Fit Fraction (%)
ρ(770) 18.40
ω(782) 0.44
f2(1270) 0.87
ρ(1450) 0.15

π+π− S-wave 11.91
K∗(892)− 56.05
K∗

2(1430)
− 2.01

K∗(1410)− 0.19
K∗(1680)− <0.1
K∗

0(1430)
− 8.21

K∗(892)+ 0.26
K∗

2(1430)
+ <0.1

K∗(1410)+ 0.26
K∗

0(1430)
+ <0.1

Table 8.5: Fit fractions for the time-integrated fit quantifying the contributions of
individual amplitudes.

170



CHAPTER 8. FIT MODEL

constructive and destructive interference of the components and the peak of the ππ

S-wave in the m2
23 projection. The two-dimensional Dalitz distributions can be seen

in Figure 8.2. In the time-integrated fits, all detector effects are accounted for as

discussed in Chapter 7 and the background is modelled by the data-driven approach

as discussed in the following section.

8.5 Combinatorial background model

The final time-dependent amplitude fit includes a single component to account

for background contamination. The fit requires background distributions for the D0

decay time and two-dimensional Dalitz plane; these are extracted using sWeighted

data. The sPlot method is discussed in Chapter 5. The sWeights are extracted

from a fit to the D0 mass in the window 1805 MeV < m(D0) < 1925 MeV for

the single-tagged samples and from a fit to the δm(D0) distribution with a cut of

1844 MeV < m(D0) < 1884 MeV for the double-tagged samples. The sWeights are

extracted separately for each year, K0
S type and by single and double-tagged samples.

The D0 mass is computed with the momenta refitted with the K0
S mass constraint

(see the further details on Decay Tree Fitter in Chapter 5). The Dalitz variables are

computed with the momenta refitted with the K0
S and D0 mass constraints, and the

D0 decay-time is with the K0
S mass constraint only. Note that while the sWeights

are necessary to extract the background distributions, they are not used directly in

the final amplitude fit.

An alternative method of extracting the background distributions would be to use

the m(D0) sideband data, this assumes that the combination of lower and upper mass

sidebands represents the distribution of the full mass range. The sWeight technique

is preferable since is statistically disentangles the signal and background components

for the full mass range. It is instructive to compare the resulting distributions from

the lower and upper mass sidebands with those from the sWeight method, these can

be seen in Figures 8.3 and 8.4. The sideband background distribution may be used

to assess a systematic uncertainty since there are some differences in the background

shape such as in the K∗(892)− peak. While some differences are observed, they are

expected from the different kinematic regions in the lower and upper sidebands, and
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Figure 8.1: An initial time-integrated fit Dalitz coordinate projections: data (black
points), the background PDF (green line), signal PDF (red line). The dotted and
dashed lines show the projections of the individual components of the amplitude
model: pink, blue and green lines show resonant components in the m2

12, m2
13 and

m2
23 systems respectively. The components are computed from the square of the

amplitude of each contribution scaled by its fit fraction. Plots show the single-tagged
K0

S (LL) 2016 sample.
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Figure 8.2: Two dimensional distributions of the Dalitz variables for the initial
time-integrated fit: data, fit model, pulls ([fit - data]/error) and background model.
Plots show the single-tagged K0

S (LL) 2016 sample.
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in general the backgrounds are stable using these two different approaches.

The background distributions derived from the sWeight method are subject to

statistical fluctuations from the limited size of the data sample. To suppress the

effect of these fluctuations, the distributions of the Dalitz variables and decay-time

are smoothed. The smoothing is achieved by taking a weighted average of the central

bin and neighbouring bins. In the nominal model the neighbouring bins take 0.5 of

the weight of the central bin, this is varied to assess a systematic uncertainty. In the

two dimensional Dalitz histogram, the diagonal bins and the neighbouring bins are

included in the average.

8.6 Mistag

The initial flavour of the D0 (D̄0) is tagged by the charge of the muon in the

single-tagged sample and the charge of the pion in the double-tagged sample. The

single-tagged sample contains a fraction of events which have been reconstructed

with a muon of the opposite charge, hence the initial flavour of the D0 is assigned

incorrectly. This is mainly due to cases where a genuine D0 is paired with a random

muon from another decay. A second possible source of mistagged candidates arised

from poorly reconstructed muons which have the incorrect charge assignment. The

mistag component therefore needs to be quantified and accounted for in the amplitude

model. The mistag fraction is defined as the fraction of cases with random muons;

half of which are assigned the wrong flavour since half have the correct flavour by

chance.

A mistagged candidate differs from signal because the measured D0 decay-time

would not be correct since the D0 is paired with a random muon, and for half of

the mistagged candidates the flavour information would be incorrect. Therefore

the mistag component Pmt (Equation 8.1) then consists of half with the Dalitz

coordinates switched and half with them the same since for half the D0 would be

assigned the correct flavour by chance. For the total component Pmt, the amplitude

is calculated with the time-dependent and mixing parameters fixed since we do not

know the correct decay-time of the D0 and we neglect the contribution of this to the

mixing.
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Figure 8.3: Comparison of the background distributions for, lower and upper m(D0)
sidebands and background sWeighted data for the Dalitz variables m2

12, m2
13 and m2

23.
Single-tagged K0

S (LL) 2018 sample.
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Figure 8.4: Comparison of the background distributions for, lower and upper m(D0)
sidebands and background sWeighted data for the D0 decay-time. Single-tagged K0

S

(LL) 2018 sample.

In previous analyses [9, 71] the mistag probability was estimated using the double-

tagged sample. The method is to compare the two tags - that from the pion (which

we know to be correct as only genuine D∗ candidates will peak in the δm distribution)

and that from the muon. The fraction of candidates where the pion and muon tags

disagree can be used to quantify the mistag fraction in general, which is then assumed

to be the same for single and double-tagged cases. However we know that the mistag

fraction as determined from the double-tagged sample may not be the same as that

in the single-tagged sample. This is due to the mistag probability depending on the

B meson decay vertex quality, which is different between the two modes due to the

presence of the soft pion. In the double-tagged sample, the vertex fit is performed

with the additional track from the soft pion which effects the vertex quality since

we have more information from the additional track. The additional particle in the

double-tagged case therefore lead to significantly more precise measurements of the

D0 production vertex than the single-tagged. This means that the single-tagged and

double-tagged samples may not have the same fraction of candidates where a random

muon passed the selection requirements to be combined with the D0 (D∗) candidate.

As an alternative method, the two-body control channel D0 → K−π+ can be

used where one can estimate the mistag both through the double-tagged sample as

well as directly from the single-tagged by comparing the signs of the muon and kaon

(after accounting for doubly-Cabibbo suppressed and mixing effects). The mistag
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probability can therefore be directly derived from the D0 → K−π+ channel, where

the yields of right-sign (D0 → K−π+) and wrong-sign (D0 → K+π−) samples are

calculated from Kπ invariant mass fits. The mistag fraction is then defined as:

Mistag =
nWS

nWS + nRS

(8.26)

where nRS and nWS are the signal yields in the right-sign and wrong-sign samples

respectively. This ratio is subtracted by the known values of mixing and doubly-

Cabibbo suppressed decay as a function of D0 decay-time [7].

In a previous LHCb analysis of semi-leptonic D → hh decays, it was found that

the mistag probability was dependent on D0 decay-time. However this has been

shown to be as a result of some trigger (selection) requirements which were not used

in this analysis, whereas using the selection requirements for this analysis means the

mistag probability is reasonably flat as a function of decay-time. Figure 8.5 presents

a comparison between different scenarios of trigger and preselections on this control

channel in 2017 and 2018 data-taking years. With the trigger requirements from the

AΓ analysis, there is an enhanced dependency of the mistag fraction on decay-time

(red points). However with the trigger and preselections used in this analysis, the

time dependency is flattened (blue points). The trends are consistent among the

data-taking years.

The D0 → Kπ sample is processed with a similar selection to the one described in

Chapter 5, with different MVAs used for K0
S LL and DD samples. To confirm that the

mistag probability in the D0 → Kπ channel is representative of the K0
Sπ

+π− channel,

both double-tagged samples were analysed and compared. To match the kinematics

of the two-body and three-body decays, the Gradient Boosted reweighter [77] is used.

Kinematic variables including the B decay vertex χ2, transverse momentum of the

µ and D0 and psuedorapidity of the D0 are used as training variables. Figure 8.6

shows the mistag probability as a function of D0 decay time separately for D0 and

D̄0. This mistag probability with the K0
S (LL) MVA model is lower than that with

the K0
S (DD) model. The mistag fraction is derived separately for K0

S LL and DD

samples since the effect of the MVA is different. It is found to be 0.120 ± 0.013% for

the LL sample and 0.291 ± 0.01% for DD. This shows good agreement between the
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Figure 8.5: Comparison of the mistag probability in the single-tagged sample with
different trigger requirements and preselections for 2017 (left), and 2018 (right).
Plots taken from Ref. [36].
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Figure 8.6: Mistag probability as a function of D0 decay time separately for D0 and
D̄0 in the reweighted D0 → K−π+ sample. MVA selection is applied with the model
trained on K0

S (DD) sample (left) and K0
S (LL) sample (right). Plots taken from

Ref. [36].

red and blue points (D0 and D̄0).

8.7 Fit model summary

In summary, the default amplitude model is described by the coherent sum

of amplitudes of the D0 decay through intermediate resonances and non-resonant

components. The ππ S-wave is described by the K-matrix formalism and the Kπ

S-wave by the LASS amplitude. Relativistic Breit-Wigner propagators are used for

the parameterisation of the resonant amplitudes, apart from the ρ(770) which is

described by the Gounaris-Sakurai model. The free parameters of the final mixing fit

are the mixing parameters x and y, the D0 lifetime τ(D0) and the real and imaginary
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parts of the complex coefficients (cr in Equation 8.23). Other model parameters are

fixed based on preliminary time-integrated fits. These are the masses and widths

of the resonances, the K-matrix shape parameters β, fprod and sprod0 as well as the

LASS shape parameters, φR, F , φF , a and r. Fit stability and fit bias studies

have been performed and are discussed in the following chapter. The background

model is derived from a data-driven approach by taking the Dalitz and decay-time

distributions from the sWeighted histograms and applying a smoothing factor. The

choice of amplitude model has a number of associated systematic uncertainties on

the measured values of x and y which will be discussed in detail in Chapter 10.
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Toy studies

One method to test the bias and stability of the mixing fit is the use of so-called

‘pseudo-experiments’ or toy data samples. This involves generating pseudo-data

samples with realistic simulations of backgrounds and detector effects. By fitting

ensembles of these ‘toy’ data samples, potential fit biases, expected statistical precision

and several sources of systematic uncertainty can be assessed in a statistically sound

manner. The toy data samples are generated using the signal model derived from

the initial time-integrated fit, the detector effects derived from simulation and the

backgrounds derived from the data-driven approach described in Chapters 7 and

8. When generating these pseudo-data samples the true values of the mixing (and

other) parameters are exactly known. Hence, unlike in a fit to real data, we can

directly compare the fit results with the truth, and thereby draw conclusions about

potential fit biases, or issues with evaluating parameter uncertainties.

The process of generating the toy data samples is done within the GooFit [73]

framework and proceeds as follows. The signal model is the time-dependent amplitude

model described in Chapter 8, with the complex coefficients of the amplitudes and

shape parameters of the amplitude model taken from the initial time-integrated fit.

The phase-space acceptance is included in the amplitude model. The decay-time

is defined within the mixing formalism discussed in Chapter 2, corrected for the

decay-time acceptance and convoluted with the decay-time resolution.
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Events are generated in a two-stage process. Events are first generated according

to some simple PDF (uniform in phase-space, exponential in decay-time). Then we

perform an accept/reject procedure to match the desired PDF, where events are

randomly selected according to the distribution of the underlying PDF, taking into

account the non-uniform acceptance and resolution. The background component

is added by generating candidates with decay time and Dalitz variables randomly

assigned using as a PDF the background distributions from sWeighted data.

The per-candidate signal probabilities are assigned, to mimic the case for real data.

This is done by background and signal candidates being assigned a D0 mass (according

to some suitable PDF), the value of which can be translated into a signal/background

probability. The D0 mass is approximated as a uniform background and signal

Gaussian distribution; from this the per-candidate signal probabilities are assigned

to each event in the toy data sample.

The number of signal and background candidates is selected to match the yields

in data. For the study in this section we consider one data sub-sample only, using

the sample specific background and detector effects. The effect of mis-tagged initial

D0 flavour is also included, by randomly flipping the muon charge and exchanging

the Dalitz coordinates m2
12 and m2

13 for the appropriate fraction of signal candidates.

The outcome is a pseudo-dataset which mimics the real data in terms of detector

effects and backgrounds, and can be used as an input sample for the fitter validation

studies. Example fit projections for a single toy can be seen in Figure 9.1. The

decay-time projections are in Figure 9.2 and the two-dimensional Dalitz plots are in

Figure 9.3.

9.1 Fit bias studies

The fit validation procedure consists of generating and fitting an ensemble of

O(100) toy data sets. The ensemble of fits leads to a corresponding ensemble of fit

parameter values and uncertainties, which can be compared to the true (generated)

values. This can be done either directly (by plotting the distribution of the fitted

parameter for the ensemble of fits) or by inspecting the derived pull quantity (defined

as [fit value - generated value]/uncertainty). The distribution of the fitted parameter

182



CHAPTER 9. TOY STUDIES

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

2500

5000

7500

10000

12500

15000

17500

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

mu: -0.053 +/- 0.096 
sigma: 1.123 +/- 0.078

Fit
Signal
Background
Toy Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m12

2.5
0.0
2.5

Pu
lls

(a) m2
12 projection, linear scale.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

102

103

104

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

mu: -0.053 +/- 0.096 
sigma: 1.123 +/- 0.078

Fit
Signal
Background
Toy Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m12

2.5
0.0
2.5

Pu
lls

(b) m2
12 projection, log scale.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10000

20000

30000

40000

50000

60000

70000

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

mu: -0.012 +/- 0.078 
sigma: 1.067 +/- 0.064

Fit
Signal
Background
Toy data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m13

2.5
0.0
2.5

Pu
lls

(c) m2
13 projection, linear scale.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

102

103

104

105

Ca
nd

id
at

es
 (n

or
m

al
ise

d)
mu: -0.012 +/- 0.078 
sigma: 1.067 +/- 0.064

Fit
Signal
Background
Toy Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
m13

2.5
0.0
2.5

Pu
lls

(d) m2
13 projection, log scale.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5000

10000

15000

20000

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

mu: 0.143 +/- 0.123 
sigma: 1.104 +/- 0.101

Fit
Signal
Background
Toy data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
m23

2.5
0.0
2.5

Pu
lls

(e) m2
23 projection, linear scale.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

103

104

Ca
nd

id
at

es
 (n

or
m

al
ise

d)

mu: 0.143 +/- 0.123 
sigma: 1.104 +/- 0.101

Fit
Signal
Background
Toy Data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
m23

2.5
0.0
2.5

Pu
lls

(f) m2
23 projection, log scale.

Figure 9.1: One-dimensional projections of the Dalitz coordinates for one example
toy fit, linear scale on the left, and log scale on the right: toy data (black points), fit
model (blue line), signal (red line) and background (green line).
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Figure 9.2: Distribution of the decay-time for one example toy fit, linear scale on the
left and log scale on the right: toy data (black points), fit model (blue line), signal
(red line) and background (green line).
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Figure 9.3: Two dimensional distributions of the Dalitz variables for an example toy
fit: data, fit model, pulls and background model.
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(in particular x, y and τ(D0) but also the complex coefficients of the amplitudes of

the resonant and non-resonant components) or the pulls can then be fitted with a

Gaussian. The mean of the pull distribution can be used to quantify potential fit

biases, where an unbiased fit has a mean consistent with zero. The uncertainties

reported in the fit are accurate if the width of the corresponding pull distribution is

consistent with unity. Ensembles are generated with different values of the mixing

parameters, corresponding to a grid of 9 (x, y) points. The grid is distributed as

[µ − σ, µ, µ + σ] for x and y where µ and σ are the mean and uncertainty of the

current world average values (x = 0.51+0.12
−0.14% and y = 0.63± 0.07% at the time of

writing [27]). The generated D0 lifetime is set to the PDG value of τ(D0) = 0.4101 ps.

9.1.1 Results

The largest ensemble is generated with the world average values of the mixing

parameters and has ∼250 pseudo-experiments. The distributions of x, y and τ(D0)

are shown in Figure 9.4. The fitted value of x is 0.540 ± 0.014% with a spread (width

of the Gaussian) of 0.216 ± 0.012%. For y the fitted value is 0.649 ± 0.009% with a

spread of 0.141 ± 0.007%. One can also examine the distribution of parameter errors

reported by the fit: these are σ(x) = 0.1998± 0.0001% and σ(y) = 0.1694± 0.0001%.

These are evaluated from the fits in Figure 9.5. The results for the D0 lifetime are:

τ(D0) = 0.41± 0.00 ps and σ(τ) = 0.0005691± 0.0000001 ps. The sensitivities can

then be estimated as 0.22% for x and 0.14% for y, these are consistent with the

blinded fits to data reported in the following chapters.

The pulls of the parameters of interest x, y and τ(D0) are shown in Figure 9.6.

The pulls are fitted with a Gaussian, the mean of which is consistent with zero

which gives confidence that the fitter is unbiased. The width is equal to unity within

uncertainties for x and τ(D0) and is below unity for y; this gives confidence that

the fitter is not underestimating the uncertainties. Figure 9.7 shows the pulls of all

the free parameters of the fit including the magnitude and phases of the resonant

and non-resonant components of the amplitude model. This shows there may be

some biases in the measurement of the amplitude model. We assess the affect of the

amplitude model on the final measured values of x and y and assign a corresponding
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systematic uncertainty as discussed in more detail in Chapter 10.

Figure 9.4: Distributions of the fitted values of x and y from the ensemble of pseudo-
experiments, fitted with a Gaussian. The mean is consistent with the generated
value, the width is consistent with the uncertainties given in the text.

(a) Fit uncertainties x (b) Fit uncertainties y

Figure 9.5: Distribution of the fit uncertainties for x and y for an ensemble of
pseudo-experiments fitted with a Gaussian (red line) mean and width are shown in
the stats box.

9.1.2 Alternative values of mixing parameters

The procedure described in the previous section is repeated for the nine com-

binations of x and y mentioned previously. The results are summarised in Table

9.1. In this case the toy samples are representative of one data sub-sample only

(single-tagged K0
S (LL) 2016). The bias is expressed as the mean of the distribution

of the pulls of the given parameter and, as can be seen from the results in the table,

there are no significant biases in x and y. Figure 9.8 visualises the results in Table

9.1, where the mean and the width of the Gaussian are shown as the black bars,

the corresponding uncertainties are shown by the blue and orange bars. Again, the

width is slightly larger than unity which may suggest that the uncertainties are
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(a) Pull of x (b) Pull of y

(c) Pull of τ(D0)

Figure 9.6: Distribution of the pulls of x, y and τ(D0) for an ensemble of pseudo-
experiments fitted with a Gaussian (red line) mean and width are shown in the stats
box.

underestimated in the fit. This can be accounted for with a systematic uncertainty

which will be discussed in the following chapter.

9.2 Toy fits with CP-violation allowed

As mentioned in Chapter 8, the mixing fit can be run with the assumption of

no CP -violation or with CP -violation allowed. CP -violation may be included in the

mixing fit by allowing different values of the mixing parameters for D0 and D̄0 by

xCP ±∆x and yCP ±∆y. These are related to the CP -violation parameters |q/p|

and φ as follows (repeated from Equations 2.51-2.54 for convenience):

xCP =
1

2

[
x cosφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)+ y sinφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)] (9.1)

∆x =
1

2

[
x cosφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)+ y sinφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)] (9.2)
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Figure 9.7: Plot showing the pulls of the free parameters of the fit, x, y and τ(D0)
and the magnitude and phases of the amplitudes of the resonant and non-resonant
components. The pulls are fitted with a Gaussian, the back bars are the mean and
width of the Gaussian, the uncertainties on the mean and width are the blue and
orange bars respectively. The toys are generated with world average values of the
mixing parameters.

yCP =
1

2

[
y cosφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)− x sinφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)] (9.3)

∆x =
1

2

[
y cosφ

(∣∣∣∣qp
∣∣∣∣− ∣∣∣∣pq

∣∣∣∣)− x sinφ

(∣∣∣∣qp
∣∣∣∣+ ∣∣∣∣pq

∣∣∣∣)] (9.4)

In fits with CP -violation in mixing allowed, the parameters ∆x and ∆y are

allowed to float, as opposed to the nominal no CP -violation case in which these

are fixed to zero. For this study, toy datasets are generated with no CP -violation

(∆x = ∆y = 0) but the CP -violation parameters ∆x and ∆y are allowed to float in

the mixing fit. Similarly to the previous toy studies, the pulls of the parameters of

interest are fitted with a Gaussian, the mean of width is consistent with zero and the

width is consistent with unity within uncertainties. The distribution of the pulls is

shown in Figure 9.9 and the fitted parameters in Figure 9.10. This gives confidence

that this method of measuring time-dependent CP -violation in mixing is valid and

unbiased.

In summary, pseudo-experiments are used to validate the fitter, assess fit biases

and give confidence in the evaluation of the errors reported in the fit. While we use
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Generated Bias
x (%) y (%) ∆x/σ(x) ∆y/σ(y)
0.51 0.63 -0.131 ± 0.141 0.226 ± 0.131
0.51 0.56 -0.204 ± 0.156 0.189 ± 0.152
0.51 0.70 -0.204 ± 0.156 0.189 ± 0.152
0.37 0.63 0.129 ± 0.083 -0.245 ± 0.068
0.37 0.56 -0.013 ± 0.126 0.004 ± 0.144
0.37 0.70 0.045 ± 0.100 -0.330 ± 0.114
0.63 0.63 -0.040 ± 0.171 -0.122 ± 0.084
0.63 0.56 0.058 ± 0.076 -0.060 ± 0.083
0.63 0.70 0.059 ± 0.207 -0.042 ± 0.139

Table 9.1: Summary of the results of running fits over ensembles of toy pseudo-
experiments, generated at a range of different mixing parameter values covering the
world average values ±1σ. The bias is expressed as the shift in the parameter divided
by the statistical uncertainty σ(x, y).

toys for this purpose, one can also assess sources of systematic uncertainties through

the use of dedicated toys. For example, one can inject some effect into the toy

generation and then fit with the regular mixing fit model which has been developed.

This will give an idea whether injecting some effect into the toy data biases the results

of the parameters of interest. For example, we neglect the phase-space resolution in

the fit model when in reality this is non-zero. One can assess the effect of neglecting

the phase-space resolution by generating toy datasets with the phase-space resolution

included and then fitting with a model in which it is not. This shows the effect of

neglecting it in the fit. This will be discussed in more detail in Chapter 10.
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Figure 9.8: Visualisation of the results of ensembles of pseudo-experiments for
different values of the mixing parameters. The black bars show the mean and width
of the Gaussian fitted to the pulls of x (left) and y (right), the blue and orange bars
are the corresponding uncertainties from the Gaussian fit.

(a) Pull of xCP (b) Pull of yCP

(c) Pull of ∆x (d) Pull of ∆y

Figure 9.9: Distribution of the pulls of the parameters xCP and yCP and ∆x, ∆y for
an ensemble of pseudo-experiments where CP -violation is allowed.
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(a) Distribution of xCP (b) Distribution of yCP

(c) Distribution of ∆x (d) Distribution of ∆y

Figure 9.10: Distribution of the parameters xCP and yCP and ∆x, ∆y for an ensemble
of pseudo-experiments where CP -violation is allowed.
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Systematic Uncertainties

This analysis relies on several inputs and assumptions including: detector effects

from simulation, contributions from background and mistagged candidates, and

the amplitude model. These have an impact on the measured values of the mixing

parameters which must be quantified through systematic uncertainties. These can be

evaluated in different ways and are discussed in detail in this chapter. One method

is to make some variation to the analysis inputs or method and rerun the fit to data,

any shift in the parameters of interest can be considered a systematic uncertainty.

This is typically evaluated by a resampling technique in which any fixed parameters

or inputs can be randomly resampled (assuming a Gaussian distribution) taking

into account their uncertainties and correlations. The fit to data is rerun O(100)

times and the shift on the measured value of the mixing parameters is fitted with a

Gaussian - this can be used to quantify the spread or shift on the measured parameter.

Alternatively one can use dedicated toys to evaluate certain systematic uncertainties.

Realistic toy data can be generated with some variation to the inputs and the fit

run, any shift in the measured value of x and y can be quantified as a systematic

uncertainty. Systematic uncertainties on the mixing parameters are extracted from

various sources including the fit model used in the amplitude fit and the detector

and resolution effects which are derived from simulation.
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10.1 Fit model

The measurement of the mixing parameters in the model-dependent analysis

relies on a choice of amplitude model. The amplitude model is necessary to associate

particular candidates with particular decay processes (eg. Cabibbo-favoured, doubly-

Cabibbo-suppressed followed by mixing), based on their Dalitz coordinates. The

measurement is therefore sensitive to the details of this model, such as the set of

intermediate resonances considered, and their specific amplitude descriptions. For

example, the choice of intermediate resonances is based on that from Belle and BaBar

[20] and verified by adding alternative resonances until there is not a significant

improvement in the fit quality. In addition some of the model parameters are fixed

from the initial time-integrated fits described in Chapter 8. The limited knowledge

of these parameter values must be propagated to the final measurement in the form

of a systematic uncertainty. Therefore we consider several modifications to the

amplitude model and evaluate the effect of these on the measured value of the mixing

parameters.

The amplitude of the D0 → K0
Sπ

+π− decay is given in Equation 8.6 and is

repeated here for convenience:

Ar(m
2
+,m

2
−) = F

(L)
D (q, q0)× F (L)

r (p, p0)× ZL(Ω)× Tr(m) (10.1)

The factor ZL(Ω), describing the angular dependence, is given in the Zemach for-

malism. The form factors F (L)
D and F

(L)
r describe the decay D → rc and r → ab

respectively and are parameterised by the Blatt-Weisskopf form factors in which

the Blatt-Weisskopf meson radius enters the amplitude formalism as described in

Chapter 8. The dynamical function Tr relies on different resonance lineshapes; the

choice of resonances which enter the model and of the lineshape used to describe the

resonance are the model-dependence of this analysis. In this analysis an initial list of

resonances is selected based on previous investigations of this channel [20, 71]. The

model is refined through an initial investigation with time-integrated fits to the data.

The goal is to achieve as good a fit quality as possible while excluding resonances

without significant fit fractions which favours a simpler model. Therefore it is possible
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that alternative models can be found which have similarly good agreement with

data. The amplitude fit can be repeated with several different models by adding

resonances, and corresponding systematic uncertainties assigned to account for the

corresponding variation in the mixing parameters. Systematic uncertainties are also

evaluated to account for the fact that the masses and widths of the resonances as

well as the S-wave shape parameters are fixed based on those values from the PDG

and from initial time-integrated fits.

10.1.1 Blatt-Weisskopf radii

Since there is no strong consensus on the values of the Blatt-Weisskopf meson

radii, we use a data-driven approach to select the fixed values used in the default

fit, and to determine a reasonable range of variation for systematic studies. As a

first step, we repeat the (blinded) mixing fit several hundred times with the values

of the two Blatt-Weisskopf radii randomly resampled for each fit, according to a

uniform 2D distribution. From this we pick a nominal value around the minimum of

the FCN= −2 log(L) and a suitable width to vary for the systematic uncertainty;

this is chosen to be 1.0 GeV−1 for the meson radii for the intermediate resonance

and 2.25 GeV−1 for the D0 meson. We repeat the fit O(100) times with the meson

radii resampled with a Gaussian distribution of this mean. The width is chosen to

be 0.25 GeV−1 which is assumed from the first step to be a reasonable variation.

This ensures that the variation of FCN in the resampled fits is reasonable, and

therefore that the corresponding variations observed in the mixing parameters can

be interpreted as the systematic uncertainties on these quantities. The variations

of the mixing parameters is estimated as the mean of the Gaussian when fitting

the shifts for the individual fits. Using this method the variations in the mixing

parameters are 4.216× 10−5 for x and 9.434× 10−5 for y. This corresponds to 1.92%

of the statistical uncertainty for x and 5.05% of the statistical uncertainty for y.

10.1.2 Choice of resonances

The initial amplitude model is chosen based on previous studies such as Ref. [20]

and [71]. It is then fixed based on the initial time-integrated fits described in

Chapter 8. The default model is chosen by adding components until subsequent
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∆x(%) ∆x/σ(x) ∆y(%) ∆y/σ(y) ∆(−2 log(L))
Remove K∗(1410)+ -0.007 -0.037 -0.086 -0.550 +219
Add K∗(1680)+ 0.086 0.442 0.038 0.247 -40.4
Both above 0.014 0.074 -0.096 -0.616 +147
Remove fprod

14 0.098 0.505 -0.159 1.022 +12,262

Table 10.1: Alternative amplitude models. The significance of the shift is expressed
by dividing by the statistical uncertainty. The last column is defined such that a
negative value corresponds to an improved fit quality.

additions do not strongly affect the fit quality, defined as the minimum negative log

likelihood −2 log(L). As such, there may be a number of alternative models with

extra components that have comparable fit quality to the default fit. Therefore adding

resonances will provide a reasonable measure of the stability of the mixing parameters

versus the model choice. The model-dependence of this analysis enters through this

choice of amplitude model. Alternative models are investigated by repeating the

mixing fit by adding and removing terms in the S-wave parameterisation, and by

adding or removing resonances. As seen in Table 10.1, when K∗(1410)+ and fprod
14 are

removed, the fit quality (−2 log(L)) is significantly worsened. By construction, the

default model has the minimum reasonable resonance content, so only variations with

additional resonances are considered. In addition the β5 and fprod
15 correspond to ππ

scattering terms which are not physical in this case. The metric used to determine the

reasonable variation in fit quality is the negative log likelihood. Using this metric we

added the K∗(1680)+ resonance as discussed in Chapter 8 and choose not to include

the other variations as a systematic since they result in a significant degradation

of the fit quality - this can be seen by the positive numbers corresponding to an

increase in the negative log likelihood. We may choose to consider other variations,

however previous studies (Refs. [20, 71, 78] show no other viable options. Therefore

we chose not to assign a systematic uncertainty to the model choice, and propose

that the variations of the shape parameters and masses and widths discussed in the

subsequent sections account for any discrepancies between the amplitude model and

the data.
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10.1.3 Masses and widths of resonances

As mentioned in Chapter 8, the masses and widths of the resonances in the

amplitude model are fixed from initial time-integrated fits or to the values from the

PDG, and summarised in Table 8.3. The fit is run O(100) times with the parameters

resampled assuming a Gaussian distribution with the mean and the width taken

from the central value and uncertainty from the time-integrated fit (or PDG). For

those parameters floated in the initial time-integrated fit, the correlations are taken

into account. The values fixed from the PDG are assumed to be uncorrelated. This

gives a value for the systematic uncertainty on x as 2.014× 10−4 and 1.692× 10−4

for y which corresponds to 23.3% of the statistical uncertainty for x and 22.2% of

the statistical uncertainty for y.

10.1.4 S-wave shape parameters

Similarly, the shape parameters of the LASS Kπ S-wave and the K-matrix

parametrisation for the ππ S-wave are fixed in the mixing fit to those values from

initial time-integrated fits. To account for the uncertainties on these parameters

the mixing fit is repeated O(100) times with the parameters resampled according to

the fit values from the time-integrated fits and the uncertainties. The correlations

are taken into account separately for the K-matrix and LASS parameters since

these are fixed in separate time-integrated fits. Those parameters fixed in separate

time-integrated fits are assumed to be uncorrelated. The corresponding shifts in x

and y are found by fitting the difference in the measured values of x and y in the

(blinded) nominal fit and those with the S-wave parameters resampled. Those from

the K-matrix and LASS are added in quadrature to obtain a systematic uncertainty

to account for the uncertainties in the fixed S-wave shape parameters. This gives a

value of 5.66× 10−5 for x and 8.87× 10−5 for y. This corresponds to a 6.62% of the

statistical uncertainty for x and 11.77% of the statistical uncertainty for y.

10.1.5 Total fit model uncertainty

In summary the contributions to the total fit model systematic uncertainty are:

the fixed value of the Blatt-Weisskopf meson radii which enter in the form factors
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Source Systematic uncertainty
x [10−5] y [10−5]

Blatt-Weisskopf radii 5 11
Masses and widths 23 22
S-wave parameters 6 9

Total 24.4 26.2
Statistical 85.5 75.4

Table 10.2: Contributions to the total fit model systematic uncertainty.

described in the amplitude model; uncertainties due to the limited knowledge of the

masses and widths and the S-wave shape parameters which are fixed from initial

time-integrated fits. These are listed in Table 10.2. The contributions are added in

quadrature to obtain the total fit model uncertainty. Alternative amplitude models

which give comparable fit quality by adding resonances and S-wave parameters are

neglected as a systematic uncertainty since the model is by construction minimal, and

there are no obvious remaining candidates for additional resonances to be included.

10.2 Signal and background mass models

As mentioned previously (chapters 4 and 8), there are inputs to the mixing fit

which are derived from a fit to the D0 invariant mass (δm) for the single-tagged

(double-tagged) samples. These are: the per-candidate signal probabilities, used to

set appropriate fractions of signal and background PDFs for each event; and the

background PDF which is derived using a data driven approach using the sWeights

from the mass fits. As shown in Chapter 5, the fits are of good quality with no

obvious missing or mismodelled components. However there is still an associated

systematic uncertainty on the choice of parameterisation in the mass fit. This is

evaluated by repeating the mixing fit with new signal and background probabilities

and sWeights derived using alternative functions for the signal and background

components in the m(D0) and δm fits.

For the m(D0) signal PDF a Gaussian and a Crystal Ball function is used instead

of the nominal model of a Gaussian and a Johnson SU. A Crystal Ball is a PDF which

consists of a Gaussian core and a power-law low end tail. This is commonly used in

high energy physics to model processes which take into account non-Gaussian tails
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such as radiative effects. For the alternative background distribution, an exponential

function is used instead of a Chebychev polynomial. These alternative m(D0) fits

are found to give comparable fit quality (χ2/ndof) compared to the nominal model.

New inputs of signal probabilities and background PDFs are produced using the

alternative models discussed above. The mixing fit is repeated with the new sets

of signal probabilities and background distributions. For the signal m(D0) model,

the mixing parameters are shifted by ∆x = −7.96× 10−6 and ∆y = −2.21× 10−4;

this corresponds to 0.41% of the statistical uncertainty for x and 14% for y. For the

alternative background model, the shift in x is ∆x = 4.99×10−4 and ∆y = 4.73×10−4

for y; this corresponds to 25.7% of the statistical uncertainty for x and 30.4% of the

statistical uncertainty for y. These shifts can be assigned as symmetric systematic

uncertainties for the mixing parameters.

There is also a finite statistical precision associated with the mass fits; even with

a perfect fit model we only have limited ability to statistically disentangle the signal

and background components. This will give some uncertainty on the shape of the

background PDF which uses the sWeights and which is accounted for and described in

the next section. However there is also some uncertainty associated with the per-event

signal probabilities which are used in the final mixing fit. The statistical precision

associated with the mass fit is much smaller than the corresponding systematic from

alternative models, hence it is neglected.

10.3 Background PDF

As mentioned in Chapter 8, the PDFs used to model the decay-time and Dalitz

distributions in the mixing fit are derived from a data-driven approach. sWeights

are derived from the m(D0) and δm fits as described in previous chapters (5 and

8) and are used to statistically disentangle the signal and background distributions.

The histograms in Dalitz variables and decay-time are weighted with the background

sWeights. The background PDFs used in the mixing fit therefore have limited

statistical precision due to the limited statistics used to construct the histograms. To

assess the effect this has on the final measurement, the fit is repeated 100 times with

each bin (in the histograms in Dalitz variables and decay-time) randomly resampled
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assuming Poisson statistics using a Gaussian of mean N (number of events in each

bin) and width
√
N . The resulting shift in the mixing parameters x and y can be

assigned as a systematic uncertainty. The corresponding systematic uncertainties

are 3.526× 10−4 for x (16% of the statistical uncertainty), and 4.921× 10−4 for y

(26% of the statistical uncertainty).

For the nominal fit, the histograms are smoothed with a smoothing factor which

averages over neighbouring bins of the histogram. The smoothing factor corresponds

to the weight assigned to the neighbouring bins in the averaging: ie. a smoothing

factor of 0 would mean the neighbouring bins are not included, 1 would mean they

are assigned equal weight in the averaging and 0.5 would mean they are assigned

half the weight of the central bin in the averaging. For the default fit the smoothing

factor is 0.5. The background histograms are a two-dimensional histogram in Dalitz

coordinates and a one-dimensional histogram in decay-time. For the two-dimensional

histogram, the diagonal neighbouring bins are included in the average. To account for

the possible effect on the smoothing on the measured value of the mixing parameters,

the fit is repeated with reasonable variations of the smoothing parameter from 0.1

to 0.9. The shifts in the measured value of x and y can then be assigned as a

systematic uncertainty. The systematic uncertainties are found to be 4.96× 10−5 for

x (2.25% of the statistical uncertainty) and 1.42× 10−4 for y (7.59% of the statistical

uncertainty).

An additional check to assess the effect of the background histogram PDF is to

use sidebands for the histogram as opposed to the nominal method of background

sWeights. Comparisons between the lower and upper sidebands and the sWeights

have been done and are shown in Chapter 8, these are found to be in reasonable

agreement.

10.4 Mistag

The mistag fraction is derived as described in Section 8.6 and accounts for the

small fraction of D0 → K0
Sπ

+π− decays which have been assigned the wrong flavour

given they were reconstructed with a muon of the wrong charge. The affect of

using this fixed fraction needs to be accounted for as a systematic uncertainty. This
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is done by repeating the mixing fit with variations of the mistag fraction of ±

1σ. The shifts caused by the two fits are added in quadrature and assigned as a

systematic uncertainty. They are found to be 0.746× 10−5 for x and 8.11× 10−5 for

y, corresponding to 0.87% of the statistical uncertainty for x and 10.8% for y.

10.5 Phase-space acceptance

Variations in acceptance over the two-dimensional Dalitz plane are modelled

using a parametrisation derived from Monte Carlo, as described in Section 7.1. A

common model is used for all data samples with parameters extracted independently

for each one. The resulting parameters have an uncertainty due to the finite statistics

of the Monte Carlo sample, these must be accounted for when assigning a systematic

uncertainty to the mixing parameters. In addition there is a potential systematic

uncertainty associated with the limited agreement of the Monte Carlo with data,

largely mitigated against by the reweighting procedure described in Chapter 6.

Finally, we need to take into account the quality of fit of the parametrisation used

to model the efficiency variation from MC.

The limited MC statistics is taken into account by repeating the mixing fit

100 times with the phase-space efficiency parameters resampled assuming Gaussian

behaviour and taking into account the uncertainties and correlations between the

parameters. The shift in x and y with respect to the nominal (blinded) fit is fitted

with a Gaussian, the width can be assigned as a systematic uncertainty. The shift

in x is 1.607 × 10−4 and for y it is 9.749 × 10−5. These correspond to 7.30% of

the statistical uncertainty for x and 5.22% for y. The fit quality of the efficiency

parametrisation is assessed by inspecting the χ2/ndof; this is close to 1 for all samples

so we can neglect this as it is smaller than the effect from the MC statistics. For

any fits with χ2/ndof > 1 we may inflate the uncertainties on the parameters when

resampling; however in this case we neglect this since the fits have χ2/ndof close to

unity.
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10.6 Decay-time acceptance

The procedure of including the decay-time acceptance in the mixing fit is described

in Section 7.2. This is through a correction factor which is derived from Monte

Carlo simulation. A systematic uncertainty is assigned associated to the limited

Monte Carlo statistics. As with the other MC inputs, the effect of this statistical

uncertainty is determined by running an ensemble of mixing fits with the decay time

correction parameters resampled based on their central values and uncertainties. The

associated systematic uncertainties are 1.475× 10−5 for x (0.67% of the statistical

uncertainty) and 3.39× 10−5 for y (1.81% of the statistical uncertainty).

There is, in addition, a known disagreement seen in the decay-time acceptance

description as shown in Section 7.2. This can be accounted for through the use of

dedicated toys where we generate data with a more realistic decay-time acceptance

model and then fit with the nominal fit model. This will be assessed either as a

systematic or by improving the description of the decay-time acceptance in GooFit.

10.7 Decay-time resolution

The decay-time resolution is derived from simulation and is described by a set

of parameters of a triple Gaussian as described in Section 7.3. Similarly these

parameters have corresponding uncertainties caused by the limited size of the Monte

Carlo samples. In order to assess this, the mixing fit is repeated 100 times with the

parameters resampled according to their central values, uncertainties and correlations.

The spread of the measured values of the mixing parameters is assigned as a systematic

uncertainty. This is evaluated as between 0.2 - 0.8% of the statistical precision for x

and y.

10.8 Phase-space resolution

As discussed in Chapter 7, there is a finite phase-space resolution which smears

the measured values of the Dalitz coordinates and this is not accounted for in the

GooFit amplitude model. Therefore we need to assess the effect of neglecting this
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resolution on the measured values of x and y. This is done through the use of toys:

an ensemble of pseudo-datasets are generated from a single underlying toy sample.

The phase-space coordinates are re-smeared several times in order to generate an

ensemble of pseudo-datasets. As such any variation in the measured values of the

mixing parameters within this ensemble must be as a consequence of the phase-space

resolution. The Dalitz coordinates are smeared according to the known phase-space

resolution as derived from simulation and discussed in Chapter 7. The coordinates

m2
12 ±m2

13 are used to smear the toy dataset since these are uncorrelated and the

correlations do not need to be taken into account when smearing. This method

can result in candidates being pushed out of the physically-allowed region, which

can’t happen in real data due to the kinematic constraints used when calculating the

phase space variables. To ensure realistic pseudo-datasets, for candidates where this

happens we simply repeat the smearing until the post-smeared candidate lies in the

allowed phase space. This is found to accurately reproduce the impact of resolution

on real data. The pseudo-datasets are then fitted with the nominal fit model (without

phase-space resolution). Any shift between the generated and measured values of

x and y can be assigned as a systematic. This is found by plotting the shifts from

the ensemble of pseudo-experiments and fitting with a Gaussian, the shift can be

quantified as the mean or width of the Gaussian. This is found to be 2.40× 10−4 for

x and 1.46×10−4 for y, corresponding to 28% and 19% of the statistical uncertainties

respectively.

10.9 Numerical integration of PDFs

As part of the maximum likelihood fitting framework, the PDFs must be nor-

malised and the functions comprising them must be integrated. The decay-time

PDF used in the mixing fit model is analytically integrable, however the PDF is not

analytically integrable over the two-dimensional Dalitz plane. Instead, a numerical

integration is used where the PDFs are evaluated at points on a two-dimensional

grid. The grid covers the physically allowed Dalitz region (the value of the PDF

outside this region will be zero) and the separation of the grid points is uniform. The

grid spacing must be carefully chosen such that it is fine enough to ensure precise

integration and to resolve narrow resonances, but coarse enough to allow the fit
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to converge within the available computing and time resources. The nominal grid

spacing is chosen in this case to be a separation of 0.0025 GeV2/c4 corresponding

to 1400 bins in the Dalitz variable’s range 0 - 3.5 GeV2/c4. A further reduction

in the grid spacing gives changes to the measured values of the mixing parameters

significantly smaller than the statistical uncertainties reported in the fit.

In order to assess the effect of the grid spacing in the normalisation on the

measured value of the mixing parameters, we vary the grid spacing to ±50% of the

nominal value, the changes in the mixing parameters can be assigned as a systematic

uncertainty. The systematic uncertainty can be conservatively chosen to be the

largest shift in each mixing parameter; this occurs in both cases when increasing the

grid spacing. For x the shift is 3.79× 10−5, for y it is 1.34× 10−5. In both cases of

finer and coarser grids, the changes in the measured value of the mixing parameters

are at the level of 0.5 - 2% of the statistical precision.

10.10 Systematic uncertainties summary

A summary of all the systematic uncertainties is given in Table 10.3. One of

the largest contribution is of the uncertainties associated with the amplitude model.

This is followed by also the background mass models which are used for the signal

probabilities and the background PDFs in the mixing fit, as well as the background

PDF. The total systematic uncertainties are calculated by adding in quadrature the

individual contributions. This assumes that there are no correlations between the

systematic uncertainties and may be conservative if some have significant correlations.

For example the background PDF is considered as a systematic uncertainty in the

background mass model and the background PDF in Table 10.3; these therefore may

be correlated and overestimating the contribution of the background PDF to the

total systematic uncertainty. However since it is not dominant and is less than the

statistical uncertainty we decide to quantify as such at this time.
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Source Systematic uncertainty
x[10−5] y[10−5]

Fit biases 0 10
Signal mass model 2 5
Background mass model 2 5
Background PDF 35 49
Background smoothing 5 14
Mistag 1 8
Phase-space acceptance 16 10
Decay-time acceptance 1 3
Decay-time resolution 1 1
Phase-space resolution 24 15
Numerical integration 0 0
Total experimental 39.3 54.2
Total fit model 24.4 26.2
Total 46.2 60.2
Statistical 85.5 75.4

Table 10.3: Summary of the systematic uncertainties, the fit model systematic is
detailed in Table 10.2.
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Results and Crosschecks

This thesis presents the measurement of the mixing parameters of the D0 meson

using a time-dependent amplitude analysis of D0 → K0
Sπ

+π− decays at the LHCb

detector. The mixing parameters x and y (and the CP -violation parameters ∆x

and ∆y) are extracted from a fit of a time-dependent amplitude model to the Dalitz

coordinates and decay-time of this decay. The amplitude model is discussed in

Chapter 8, we use the isobar model where the D0 → K0
Sπ

+π− decay amplitude is

modelled as a linear superposition of resonant (Breit-Wigner and Gounaris-Sakurai)

and non-resonant amplitudes. The amplitude model uses the K-matrix formalism

to describe the S-wave component in the π+π− channel and the LASS model for

the Kπ S-wave. Some aspects of the amplitude model are determined in an initial

time-integrated fit to the same data sample. This includes the shape parameters

of the S-wave components (fixed in the mixing fit), some masses and widths of

resonances, and the starting values for the complex coefficients multiplying each

amplitude. In the time-integrated fit, we fit to a dataset of D0 decay times below

one D0 lifetime where there are negligible effects from mixing. The isobar model

reported by Belle and BaBar collaborations [20] is used as the starting point when

developing the model. This is then varied by adding or removing resonances and

the nominal model is chosen based on adding resonances until subsequent additions

do not significantly improve the fit quality, defined as the negative log likelihood

207



CHAPTER 11. RESULTS AND CROSSCHECKS

−2 log(L). The time-integrated fit is used to fix some some aspects of the amplitude

model, and also as the starting values of the complex coefficients multiplying each

component amplitude for the time-dependent mixing fit.

The fit can be run with the assumption of no CP -violation, where the parameters

∆x and ∆y are fixed to zero, or with CP -violation allowed in which case the CP -

violation parameters are allowed to float in the fit. In the time-dependent amplitude

fit the free parameters are the Breit-Wigner complex coefficients as well as the mixing

parameters and the D0 lifetime. The other parameters such as the masses and widths

of the resonances and the S-wave shape parameters are fixed based on the initial

time-integrated fits described in Chapter 8 or to world averages of experimental

measurements [78] in the case of some of the masses and widths. The results of

the mixing parameters are currently blind, pending approval to unblind by the

LHCb collaboration, as part of the internal review process. The fit is performed for

the LHCb Run 2 (2016-2018) data-taking period. We use D0 mesons originating

from semi-leptonic B meson decays: B → D0µ−ν̄X for the single-tagged sample

and B → D∗+(→ D0π+)µ−ν̄X for the double-tagged sample with the simultaneous

fit of 12 subsamples differentiated by data-taking year, K0
S type, and single and

double-tagged. We perform a time and phase-space dependent fit to data, the data

coordinates are:

• Decay-time and Dalitz (m2
12, m2

13) coordinates,

• Flavour tag (defined as +1 for D0 and -1 for D̄0) from the charge of the muon

for the single-tagged sample and the charge of the pion in the double-tagged

sample,

• Per-candidate signal probability derived from fits to m(D0) for single-tagged

samples and δ(m) for double-tagged.

The inputs to the final mixing fit are:

• Phase-space efficiency parameterisation derived from simulation (Section 7.1),

• Decay-time acceptance parameterisation derived from simulation (Section 7.2),

• Decay-time resolution parameterisation derived from simulation (Section 7.3),

• Background histograms for Dalitz variables and decay time derived from
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sWeighted data,

• Mistag fraction of wrongly tagged muons for the single-tagged sample.

The results of the time-dependent amplitude fit are shown in Figure 11.1 for one

single-tagged K0
S (LL) 2018 subsample, which shows the projections of the Dalitz

variables and in Figure 11.2 which shows the decay-time projections. The Dalitz

plots can be seen in Figure 11.3. The quality of the fit can be assessed by the pulls

which is the difference between data and value of the PDF in each bin divided by

the uncertainty on the data. These are shown in the one-dimensional projections

in Figures 11.1 and 11.2. The observed inaccuracies in the model are considered

reasonable and are taken into account in the systematic uncertainties as discussed

in detail in Chapter 10. These could be partly to do with plotting at the threshold

regions which can also be seen in the toy fits in Chapter 9 and also to the imperfect

description of the efficiency at the threshold regions. Fit projections for other data

sub-samples can be seen in Appendix D. These are fit projections of one sample for

the simultaneous fit rather than for fits to individual samples. The fit quality over

the Dalitz plane corresponds to a χ2 value 8947 for 7946 degrees of freedom, χ2/dof

= 1.13.

The blinded mixing parameters are:

x = (x.xx± 0.086stat ± 0.039syst ± 0.024model)% (11.1)

y = (y.yy ± 0.076stat ± 0.054syst ± 0.026model)% (11.2)

The result for the D0 lifetime is:

τ(D0) = 0.4019± 0.0002 ps (11.3)

This is not blind and is slightly below the world average value of 0.4101 ± 0.015 ps

which could be to do with the description of the decay-time acceptance. The

correlations between x, y and τ(D0) for the mixing fit with no CP -violation is shown

in Table 11.1.
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Figure 11.1: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Single-tag K0

S (LL) 2018 sample. Linear and log scales. Plots show signal
component in red and background in green.
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x y τ(D0)
x 1.0 0.006 -0.002
y 1.0 0.081

τ(D0) 1.0

Table 11.1: Correlations between x, y and τ(D0) in the mixing fit.

xCP yCP ∆x ∆y τ(D0)
xCP 1.0 0.006 -0.0 0.006 -0.002
yCP 1.0 0.007 -0.005 0.081
∆x 1.0 0.006 0.001
∆y 1.0 -0.003
τ(D0) 1.0

Table 11.2: Correlations between xCP , yCP , ∆x, ∆y and τ(D0) in the mixing fit
with CP -violation allowed.

The world average values at the time of writing are, for the no CP -violation

allowed case:

x (%) = 0.51+0.12
−0.14

y (%) = 0.63± 0.07
(11.4)

For the CP -violation allowed fit the blinded results are:

x = (x.xx± 0.086)%

y = (y.yy ± 0.076)%

∆x = (0.00± 0.059)%

∆y = (0.00± 0.051)%

(11.5)

where the uncertainties quoted here are statistical only. These can also be converted

to the CP -violation parameters with the ± 1σ uncertainties using the Equation 2.54:

|q/p| = 0.996± 0.093

φ(°) = −0.055± 0.089
(11.6)

where the central values are blind and are assumed to be the world average values in

the fit. Table 11.2 shows the correlations for the CP -violation allowed fit. These are

also visualised in Figure 11.4.
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Figure 11.4: Correlations between the parameters of the mixing fit with CP -violation
allowed, τ(D0), x, y, ∆x, ∆y, and the real and imaginary complex coefficients of the
amplitudes.

The current world averages on the mixing and CP -violation parameters in the

CP -violation allowed global fit are:

x (%) = 0.37± 0.12

y (%) = 0.68+0.06
−0.07

|q/p| = 0.951+0.053
−0.042

φ (°) = −5.3+4.9
−4.5

(11.7)

The effect of this measurement on the world average values can be assessed by

performing the global fit and assuming no correlation with the other measurements

since this is an independent dataset. When performing the combination the central

values are assumed to be the same as the results from Ref. [13] (the 2021 prompt

model-independent result) since the result of this measurement is still blind. This is

visualised in Figure 11.5 which shows: the current world average in purple, the world
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Figure 11.5: This figure shows world average not including the bin-flip result [13]
(grey), current world averages on the mixing and CP -violation parameters (purple)
including the bin-flip result, and the world average including this work (yellow).

average without the bin-flip result [13] in grey and the effect of including this result

in the world average in yellow. This demonstrates how the current world average is

dominated by the prompt bin-flip result [13].

Since the world average values are dominated by the model-independent bin-flip

result from the LHCb collaboration [13], it is also instructive to compare the results

with this analysis. The results are (repeated from Equation 1.6):

yCP = [0.459± 0.120stat ± 0.085syst]%

∆y = [0.020± 0.036stat ± 0.013syst]%

xCP = [0.397± 0.046stat ± 0.029syst]%

∆x = [−0.027± 0.018stat ± 0.001syst]%

(11.8)

The bin-flip result is more precise in the measurement of x by over a factor of 2,

since is it specifically designed for precision on the measurement of x. However

the model-dependent result is more precise in the measurement of y. In addition

it is important to note that the bin-flip analysis uses the prompt dataset which

corresponds to a total of 30.6 million D0 → K0
Sπ

+π− decays, whereas this result

has a smaller signal yield of 5.3 million events. This demonstrates the power of

the model-dependent method and the importance of both complimentary methods

within the LHCb collaboration. Figure 11.6 shows a similar plot but with this work

in yellow, the bin-flip 2021 result [13] in purple and the current world average in grey.

This directly compares this work to the bin-flip result which demonstrates the power
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Figure 11.6: This shows the world averages without the bin-flip result on the mixing
and CP -violation parameters (grey), the 2021 bin-flip result [13] (purple) and this
work (yellow).

of this method compared to the bin-flip method which has ∼ 6 times more data.

One should not compare the amplitudes between experiments because there may

be differences in the Blatt-Weisskopf form-factors and in the production parameters

in the K-matrix parametrisation. However we can compare the fit fractions which

are more physically meaningful, as defined in Equation 8.24. The results for the

final mixing fit are shown in Table 11.3 along with the fit fractions. These can

be compared to the most recent result from the Belle and BaBar collaborations

in Ref. [20]. For components with the highest fit fraction excellent agreement is

observed. The K∗(892)− resonance has 56% fit fraction for this analysis (60% for

Ref. [20]), the ρ(770) resonance has 16% (20%) and the ππ S-wave has 11% (10%).

The interference fit fractions can be seen in Table 11.4 for the three main components

of the amplitude model: the K∗(892)−, ρ(770) and the ππ S-wave. These show the

constructive and destructive interferences between the resonances denoted by the

positive and negative signs of the interference fit fractions. The fit fractions in Table

8.5 do not necessarily equal unity due to the constructive and destructive interference

effects.
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System Resonance Real Imaginary Fit Fraction (%)
ρ(770) 1.0 (fixed) 0.0 (fixed) 15.67
ω(782) -0.017 ± 0.000 0.037 ± 0.000 0.40
f2(1270) 0.747 ± 0.005 0.094 ± 0.006 0.78
ρ(1450) -1.353 ± 0.017 0.539 ± 0.021 0.76
K∗(892)− 1.372 ± 0.003 -1.343 ± 0.003 56.18
K∗

2(1430)
− 0.912 ± 0.006 -0.869 ± 0.007 1.63

K∗(1410)− -0.707 ± 0.011 -0.455 ± 0.013 0.84
K∗(1680)− 0.207 ± 0.025 1.931 ± 0.028 2.01
K∗

0(1430)
− -3.381 ± 0.014 -2.797 ± 0.012 8.07

K∗(892)+ 0.112 ± 0.001 -0.099 ± 0.001 0.34
K∗

2(1430)
+ -0.009 ± 0.005 0.047 ± 0.006 <0.1

K∗(1410)+ -0.470 ± 0.011 -0.474 ± 0.012 0.53
K∗(1680)+ -0.487 ± 0.025 0.940 ± 0.030 0.60
K∗

0(1430)
+ -0.144 ± 0.009 -0.124 ± 0.010 <0.1

ππ S-wave β1 -1.028 ± 0.070 3.466 ± 0.052 11.07
β2 14.799 ± 0.078 2.806 ± 0.084
β3 42.985 ± 1.054 -18.906 ± 0.619
β4 -1.859 ± 0.250 -7.059 ± 0.200
fprod
11 -4.702 (fixed) -6.472 (fixed)
fprod
12 -14.288 ± 0.478 12.456 ± 0.181
fprod
13 -18.123 ± 0.425 -22.279 ± 0.804
fprod
14 -10.306 ± 0.329 -14.780 ± 0.068

Kπ S-wave F 0.817 ± 0.015
φF 0.077 ± 0.002
R 1 (fixed)
φR -3.135 ± 0.022
a 0.224 ± 0.001
r -21.286 ± 0.124

Sum of fit fractions 98.90

Table 11.3: Results of the parameters of the amplitude model obtained from the
final mixing fit, including complex amplitudes of resonant components, ππ and Kπ
S-wave parameters and fit fractions for each component. The errors are statistical.
The S-wave parameters are fixed from the initial time integrated fit as described in
the text.
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Resonance 1 Resonance 2 Fit Fraction (%)
ρ(770) ω(782) -0.317

f2(1270) -0.002
ρ(1450) -0.020
K∗(892)− -3.329
K∗

2(1430)
− 0.644

K∗(1410)− 0.765
K∗(1680)− -1.112
K∗

0(1430)
− 1.301

K∗(892)+ -0.262
K∗

2(1430)
+ 0.013

K∗(1410)+ 0.607
K∗(1680)+ -0.314
K∗

0(1430)
+ -0.057

ππ S-wave -0.008
K∗(892)− f2(1270) -0.732

ρ(1450) -0.324
K∗

2(1430)
− -0.059

K∗(1410)− -1.687
K∗(1680)− 3.107
K∗

0(1430)
− 0.369

K∗(892)+ -0.225
K∗

2(1430)
+ -0.004

K∗(1410)+ 0.889
K∗(1680)+ -0.380
K∗

0(1430)
+ 0.123

ππ S-wave 2.734
ππ S-wave ρ(1450) 0.001

K∗
2(1430)

− -0.788
K∗(1410)− -0.883
K∗(1680)− 1.875
K∗

0(1430)
− 1.446

K∗(892)+ -0.224
K∗

2(1430)
+ -0.016

K∗(1410)+ 0.742
K∗(1680)+ -0.695
K∗

0(1430)
+ 0.063

Table 11.4: Interference fit fractions for the ρ(770), K∗(892)− and ππ S-wave terms in
the Dalitz fit including the sign of the term where a negative sign denotes destructive
interference.
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11.1 Crosschecks

11.1.1 Fits to individual samples

The mixing fit is performed on several disjoint samples of the dataset. The

parameters of interest are extracted separately for data-taking year, K0
S type as well

as for single and double-tagged decays. The results of the mixing parameters for the

fits to individual samples can be seen in Figure 11.7. The data subsamples are labelled

by numbers, these are in the following order: by year 2016, 2017, 2018 (ie. the first

four entries are for 2016) then single-tagged K0
S (LL), K0

S (DD), double-tagged K0
S

(LL), K0
S (DD). The χ2 per number of degrees of freedom of the points with respect

to the red line is calculated, a value of 1.00 suggests that the mixing parameters

are stable across all subsamples. Figure 11.7 shows the excellent agreement in the

parameter x with a χ2/ndof value of 1.00. However there is poor agreement in y,

this could be to the decay-time acceptance description which there is ongoing work

to resolve. We aim to include an improved model of the decay-time acceptance in

GooFit, which currently uses the exponential model as seen in Section 7.2. The

exponential model is clearly a poor description of the acceptance. This may affect the

measured value of τ(D0) and y since these two parameters are correlated (Table 11.1).

This is a strong test of the method because the different K0
S types and tags

are subject to different detector effects and background levels and shapes. The

statistical uncertainties for the fits to individual samples are reported in Table 11.5.

Adding these using the rule for combining variances suggests that the combination

is approximately as sensitive as the simultaneous fit. Although for the final result

the simultaneous fit is used since it simplifies the measurement and the systematic

uncertainties.

11.1.2 Fits in disjoint subsamples of D0 p and η

We also perform the mixing fit in disjoint subsamples in kinematics of the D0,

namely momentum p(D0) and pseudorapidity η(D0). These can be seen in Figure

11.8. These also show reasonable agreement in x and not such good agreement in y,
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(a) χ2/ndof = 1.00 (b) χ2/ndof = 6.06

Figure 11.7: Comparison of the results of the mixing parameters for fits to individual
samples: red line is the weighted average of the individual fits, and the blue line is
the simultaneous fit result to all samples combined, with statistical errors.

Sample Statistical uncertainty
x [%] y [%]

Single-tagged
2016 K0

S (LL) 0.311 0.264
2016 K0

S (DD) 0.229 0.199
2017 K0

S (LL) 0.304 0.256
2017 K0

S (DD) 0.223 0.195
2018 K0

S (LL) 0.247 0.211
2018 K0

S (DD) 0.194 0.170
Double-tagged

2016 K0
S (LL) 0.684 0.576

2016 K0
S (DD) 0.441 0.395

2017 K0
S (LL) 0.656 0.567

2017 K0
S (DD) 0.426 0.379

2018 K0
S (LL) 0.536 0.451

2018 K0
S (DD) 0.371 0.324

Table 11.5: Statistical uncertainties of fits to individual samples.
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(a) χ2/ndof = 1.57 (b) χ2/ndof = 4.23

Figure 11.8: Comparison of the results of the mixing parameters for low and high
D0 momentum and η: red line is the weighted average of the individual fits, and the
blue line is the simultaneous fit result to all samples combined, with errors.

again potentially due to the decay-time acceptance since y is correlated with the D0

lifetime in the fit.
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Conclusion

This thesis reports a measurement of the mixing parameters of the D0 meson using

semi-leptonic D0 → K0
Sπ

+π− decays with 6 fb−1 of data collected at the LHCb

detector in the Run 2 data-taking period. The work undertaken in this thesis

includes the search for indirect CP -violation - the results reported are both for the

no CP -violation and the CP -violation allowed case. The mixing and CP -violation

parameters are extracted from a time and phase-space dependent amplitude fit to

the D0 decay-time and the Dalitz variables of this decay m2(K0
Sπ

+) and m2(K0
Sπ

−).

The blinded mixing parameters are measured to be:

x = (x.xx± 0.86stat ± 0.39syst ± 0.24model)× 10−3 (12.1)

y = (y.yy ± 0.76stat ± 0.59syst ± 0.26model)× 10−3 (12.2)

This measurement has been compared to the current world average and previous

results in Chapter 11 (Figures 11.6 and 11.5). This measurement has a precision

exceeding the world average of all existing measurements, with the exception of the

result bin-flip analysis on the prompt LHCb data sample [13]. The world average

values are quoted in Equation 11.4 and 11.7.

Ongoing work includes improving the description of the decay-time acceptance
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Figure 12.1: LHCb peak luminosity and integrated luminosity projections for Run 3
and beyond. Figure from Ref. [41].

in the model. This should reduce the discrepancies in the measurements in disjoint

subsamples and also the measurement of the D0 lifetime. The estimation of the

systematic uncertainties for the CP -violation parameters will be performed but based

on previous analyses is expected to be small [13]. The Run 1 dataset has also been

prepared for this measurement, including the data selection in Chapter 5 and the

evaluation of the detector acceptance and resolution effects with MC described in

Chapter 7. For example the Run 1 selection is shown in Appendix A and B.4.

The systematic uncertainties for the mixing parameters have been estimated. The

systematic uncertainties are comparable with the statistical, which will shrink with

more data being collected in Run 3 and beyond. However some of the systematics

will become smaller with more data, such as the limited knowledge of the fixed

parameters in the fit and the limited Monte Carlo statistics. There are ongoing

efforts within the LHCb collaboration to improve and speed up the generation of

Monte Carlo simulation since our needs will increase significantly in Run 3. Figure

12.1 shows the projected peak luminosity and integrated luminosity for LHCb for

Run 3 and the successive upgrades. This is a new era in flavour physics with precision

measurements in the flavour sector being at the forefront of searches for new physics.
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12.1 Future prospects in D0 → K0
Sπ

+π− decays

This thesis reports the measurement of the mixing parameters of neutral charm

mesons, and a search for indirect CP -violation, parameterised by the parameters ∆x

and ∆y. The systematic uncertainties have been evaluated and estimated for the

mixing parameters. Future analysis will have reduced statistical uncertainties due to

the increase in data. However some of the systematic uncertainties are expected to

decrease in the future. For example, the fixed parameters of the fit are resampled

within their uncertainties derived from a fit to data - the corresponding systematic

uncertainty will also decrease with more data. In addition, those systematic uncer-

tainties originating from the inputs from simulation will decrease with increased

Monte Carlo statistics expected in Run 3 with improved fast simulation within LHCb.

We also hope to benefit from improved description of the amplitude model and any

developments in the fitting framework and software used in this analysis.

Complimentary model-independent analyses are being undertaken at LHCb

including the model-independent bin-flip analysis of the semi-leptonic tagged D0 →

K0
Sπ

+π− decays. The combination of this model-dependent measurement with the

semi-leptonic and prompt bin-flip measurements will lead to a higher precision, in

particular due to the bin-flip method being particularly sensitive to x as well as the

high signal yield of the prompt dataset. The model-dependent and model-independent

methods are complimentary with different techniques and systematic uncertainties.

The bin-flip method has small systematic uncertainties due to the method of using

ratios in which some of the uncertainties cancel. The model-dependent method relies

on the understanding of the amplitude model and detector resolution and acceptance

effects.

It is also possible to combine the full Run 1 and Run 2 datasets for a legacy

measurement of the mixing parameters. The LHC Run 3 is expected to start in 2022

and the LHCb aims to collect at least 50 fb−1 by the end of Run 4. The increased

data will improve the statistical precision of measurements of charm mixing and

CP -violation, with searches for CP -violation in charm expected to reach a precision

precision of 10−4. With the flavour anomalies in the B sector at around the 3 σ level,
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Run 3 will be needed to confirm these hints of new physics. The LHCb detector

will be almost fully upgraded for the start of Run 3 including an upgraded detector

hardware as well as moving to a fully online software trigger. In order to cope with

the increased luminosity and pile up, data challenges are being faced by running a

fully software-based trigger and readout of all detectors at 40 MHz. The HLT1 will

also be run on GPUs in Run 3. The detector is being upgraded with a new VELO

and tracking systems, new particle ID detector and electronics and new calorimeter

and muon electronics.

This measurement will be complimented by the model-independent bin-flip

method, which will have more precise and updated results in Run 3. In addition the

charm program at LHCb will be complimented by the new upgraded Belle II detec-

tor [17]. These precision flavour physics measurements are important in answering

some of the open questions of the Standard Model and help us to understand the

universe at the most fundamental level.
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Figure A.1: D0 mass fits after preselection for the Run 1 (2011-2012) single-tagged
datasets.

226



APPENDIX A. SELECTION

B_DTFKS_Dst_DM

0

500

1000

1500

2000

2500

3000

3500

4000

E
ve

nt
s 

/ (
 0

.2
 )

Lambda =  0.29 +/- 0.01

a =  7.3 +/- 0.4

b = -15.2 +/- 2

c =  4 +/- 2

frac =  0.62 +/- 0.04

gamma = -0.170 +/- 0.04

m0 =  139.5 +/- 0.2

nbkg =  7463 +/- 106

nsig =  13550 +/- 132

sigma =  0.29 +/- 0.01

xi =  145.410 +/- 0.007

140 142 144 146 148 150 152 154 156 158 160
(m) [MeV]δ

4−

2−

0

2

4da
ta

σ
(d

at
a 

- 
m

od
el

)/

(a) K0
S (LL) 2011

B_DTFKS_Dst_DM

0

1000

2000

3000

4000

5000

6000

7000

8000

E
ve

nt
s 

/ (
 0

.2
 )

Lambda =  0.31 +/- 0.01

a = -7 +/- 12

b =  3 +/- 1

c =  6 +/- 8

frac =  0.66 +/- 0.04

gamma = -0.153 +/- 0.02

m0 =  139.2 +/- 0.2

nbkg =  19549 +/- 173

nsig =  30117 +/- 201

sigma =  0.265 +/- 0.010

xi =  145.414 +/- 0.005

140 142 144 146 148 150 152 154 156 158 160
(m) [MeV]δ

4−

2−

0

2

4da
ta

σ
(d

at
a 

- 
m

od
el

)/

(b) K0
S (LL) 2012

B_DTFKS_Dst_DM

0

1000

2000

3000

4000

5000

6000

7000

E
ve

nt
s 

/ (
 0

.2
 )

Lambda =  0.31 +/- 0.01

a =  5.81 +/- 0.06

b = -12.99 +/- 0.1

c =  8.6 +/- 0.4

frac =  0.67 +/- 0.03

gamma = -0.176 +/- 0.03

m0 =  138.9 +/- 0.2

nbkg =  13794 +/- 151

nsig =  25933 +/- 187

sigma =  0.31 +/- 0.01

xi =  145.409 +/- 0.006

140 142 144 146 148 150 152 154 156 158 160
(m) [MeV]δ

4−

2−

0

2

4da
ta

σ
(d

at
a 

- 
m

od
el

)/

(c) K0
S (DD) 2011

B_DTFKS_Dst_DM

0

2000

4000

6000

8000

10000

12000

14000

16000

E
ve

nt
s 

/ (
 0

.2
 )

Lambda =  0.33 +/- 0.01

a =  0.3 +/- 0.6

b =  0.2 +/- 0.6

c =  3.3 +/- 0.4

frac =  0.64 +/- 0.03

gamma = -0.150 +/- 0.02

m0 =  139.2 +/- 0.1

nbkg =  38539 +/- 244

nsig =  64539 +/- 293

sigma =  0.294 +/- 0.008

xi =  145.418 +/- 0.004

140 142 144 146 148 150 152 154 156 158 160
(m) [MeV]δ

4−

2−

0

2

4da
ta

σ
(d

at
a 

- 
m

od
el

)/

(d) K0
S (DD) 2012

Figure A.2: Fits to the δm distribution after preselection for the Run 1 (2011-2012)
double-tagged datasets.
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Multivariate analysis

B.1 BDT output and overtraining check
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Figure B.1: BDT output distributions and overtraining check for single-tagged 2016
samples.
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Figure B.2: BDT output distributions and overtraining check for double-tagged 2018
samples.
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B.2 Receiver operator characteristic curves
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Figure B.3: ROC curves for single-tagged 2016 samples.
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Figure B.4: ROC curves for double-tagged 2018 samples.
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B.3 Significance and optimal BDT cut
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Figure B.5: Significance versus BDT response for single-tagged 2016 samples.
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Figure B.6: Significance versus BDT response for double-tagged 2018 samples.
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B.4 D0 mass and δm fits
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Figure B.7: D0 mass fits for the single-tagged 2011 and 2012 samples: signal model
(purple dashed), background (green dashed), total model (blue line).
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Figure B.8: δm fits for the double-tagged 2011 and 2012 samples: signal model
(purple dashed), background (green dashed), total model (blue line).
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Detector Effects

C.1 Phase-space acceptance
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Figure C.1: Phase-space acceptance for 2018 subsamples.
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samples.
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C.2 Decay-time acceptance
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Figure C.3: Decay-time acceptance (black points) fitted with an exponential function
(red line) derived from simulation for the 2016 samples.
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Figure C.4: Decay-time acceptance (black points) fitted with an exponential function
(red line) derived from simulation for the 2017 samples.
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C.3 Decay-time resolution
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Figure C.5: Decay-time resolution (black points) fitted with a triple Gaussian function
(blue line) for the 2017 samples. Fit parameters displayed.
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Figure D.1: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Single-tag K0

S (DD) 2016 sample. Linear and log scales. Plots show signal
component in red and background in green.
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Figure D.2: Decay-time projections for the time-dependent amplitude fit. Single-tag
K0

S (DD) 2016 sample. Linear and log scales. Plots show signal component in red
and background in green.
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Figure D.3: Two-dimensional distributions of the Dalitz variables for the time-
dependent amplitude fit: data, total fit model, background model and pulls. Single-
tagged K0

S (DD) 2016 sample.
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Figure D.4: Fit projections of the Dalitz variables for the time-dependent amplitude
fit. Double-tag K0

S (LL) 2016 sample. Linear and log scales. Plots show signal
component in red and background in green.
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Figure D.5: Decay-time projections for the time-dependent amplitude fit. Double-tag
K0

S (LL) 2016 sample. Linear and log scales. Plots show signal component in red
and background in green.
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Figure D.6: Two-dimensional distributions of the Dalitz variables for the time-
dependent amplitude fit: data, total fit model, background model and pulls. Double-
tagged K0

S (LL) 2016 sample.
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Resonance 1 Resonance 2 Fit Fraction (%)
ω(782) f2(1270) 0.000

ρ(1450) 0.069
K∗

2(1430)
− -0.029

K∗(1410)− -0.021
K∗(1680)− 0.001
K∗

0(1430)
− -0.068

K∗(892)+ 0.006
K∗

2(1430)
+ -0.001

K∗(1410)+ -0.011
K∗(1680)+ -0.018
K∗

0(1430)
+ 0.003

f2(1270) ρ(1450) 0.002
K∗

2(1430)
− 0.222

K∗(1410)− 0.027
K∗(1680)− -0.100
K∗

0(1430)
− -0.750

K∗(892)+ 0.056
K∗

2(1430)
+ -0.003

K∗(1410)+ -0.051
K∗(1680)+ 0.120
K∗

0(1430)
+ -0.032

ρ(1450) K∗
2(1430)

− 0.051
K∗(1410)− -0.039
K∗(1680)− -0.172
K∗

0(1430)
− -0.607

K∗(892)+ -0.029
K∗

2(1430)
+ 0.000

K∗(1410)+ 0.012
K∗(1680)+ -0.192
K∗

0(1430)
+ 0.026

K∗
2(1430)

− K∗(1410)− -0.001
K∗(1680)− -0.059
K∗

0(1430)
− -0.039

K∗(892)+ -0.059
K∗

2(1430)
+ -0.019

K∗(1410)+ 0.140
K∗(1680)+ -0.004
K∗

0(1430)
+ -0.002

Table E.1: Interference fit fractions for the terms in the Dalitz fit including the sign
of the term where a negative sign denotes destructive interference.
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Resonance 1 Resonance 2 Fit Fraction (%)
K∗(1410)− K∗(1680)− -1.004

K∗
0(1430)

− -0.127
K∗(892)+ 0.093
K∗

2(1430)
+ 0.005

K∗(1410)+ -0.293
K∗(1680)+ 0.140
K∗

0(1430)
+ -0.013

K∗(1680)− K∗
0(1430)

− 0.153
K∗(892)+ -0.147
K∗

2(1430)
+ 0.000

K∗(1410)+ 0.526
K∗(1680)+ -0.619
K∗

0(1430)
+ 0.005

K∗
0(1430)

− K∗(892)+ -0.222
K∗

2(1430)
+ -0.007

K∗(1410)+ 0.212
K∗(1680)+ 0.167
K∗

0(1430)
+ 0.130

K∗(892)+ K∗
2(1430)

+ -0.001
K∗(1410)+ -0.113
K∗(1680)+ 0.087
K∗

0(1430)
+ -0.001

K∗
2(1430)

+ K∗(1410)+ 0.001
K∗(1680)+ -0.002
K∗

0(1430)
+ 0.000

K∗(1410)+ K∗(1680)+ -0.313
K∗

0(1430)
+ 0.004

K∗(1680)+ K∗
0(1430)

+ -0.001

Table E.2: Interference fit fractions for the terms in the Dalitz fit including the sign
of the term where a negative sign denotes destructive interference.
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