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Abstract

The cosmic microwave background (CMB) is a diffuse electromagnetic radiation that
permeates the entire universe. It originated about 380,000 years after the Big Bang,
when the cosmos went from an opaque state to a transparent one. This remnant radia-
tion plays a fundamental role in shaping our understanding of cosmology. All theories
proposed to describe the universe have to reproduce the precise statistical character-
isation we currently have of the CMB. Although we now have a good understanding
of the CMB, some aspects concerning its polarisation remain unknown. B-modes are
a distinctive polarization pattern that is assumed to have originated from the first
gravitational waves produced at the beginning of the universe during cosmic inflation.
However, this polarization mode has not yet been observed and its detection represents
one of the main goals of observational cosmology.

Observing the polarized CMB presents formidable challenges. Part of these chal-
lenges stem from the fact that the signal is very weak and requires enormous control
of systematic instrumental errors. Another part stems from the fact that Galactic
and extragalactic astrophysical emissions overshadow this primordial signal. In the
microwave spectrum, thermal dust dominates the short-wavelength polarized emission,
synchrotron radiation the long-wavelength one. Most of the presented work focuses on
characterising the latter. The thesis includes two published articles on this topic.

The first work focuses on the characterization of the power spectra (EE, BB and
EB) of the polarized synchrotron emission at 23 and 30 GHz provided respectively
by two space observatories: WMAP and Planck. We study six sky regions covering
from 30% to 94% of the sky, masking the Galactic center and point sources. We
analyze the angular distribution and the spectral energy distribution (SED) at angular
scales between several tens of arcmin and several degrees. We prove that the polarized
synchrotron emission is well described by the EE and BB power-law model with zero
EB cross-correlation. In particular, we find that the EE and BB power spectra show
steep decay as a function of the angular scale, /*22.88  where app = —2.95 4+ 0.04 and
app = —2.85+0.14. The amplitude ratio between BB and EE, at multipole ¢ = 80, is
0.2240.02. The EB cross-spectrum is compatible with zero at 1o. The spectral energy
distribution is well described with a power-law, v°##.85  with indices Bgr = —3.00£0.10
and fgp = —3.05 + 0.36, with a tendency for the SED to become steeper from low to
high Galactic latitude. The results of this work are presented in [1].

The second work focuses on the characterization of some morphological and statis-
tical properties of the polarized synchrotron emission. We implement a novel algorithm
with which we identify 19 bright elongated structures, or filaments, in the polarized
intensity sky. We use again maps at 23 and 30 GHz, provided by WMAP and Planck.
For each filament we analyze the polarization fraction, finding values typically larger



than those from areas with more diffuse emission, and the polarization spectral index,
typically compatible with the average across the sky. Making use of Minkowski ten-
sors, we analyse the Gaussianity and statistical isotropy of the polarized synchrotron
emission. We study the region of the sky corresponding to 80% and 60% of the faintest
emission, for scales roughly between 6 and 1.5 degrees. For the larger region, the
deviations from Gaussianity and isotropy exceed 3o, while they slightly decrease for
the smaller region. This work also presents a data-driven algorithm to generate non-
Gaussian and anisotropic polarized synchrotron simulations, fitting the spectral and
statistical properties of the real observations. The results of this work are presented in
[2].

An in-depth knowledge of the foregrounds, such as the synchrotron radiation, al-
lows us to decouple these emissions more precisely from the CMB. However, we will
never be able to completely separate these contaminants from the cosmological signal.
The cosmological parameter estimates must always take into account the presence of
foreground residuals, as well as instrumental noise. The final work presented in this
thesis is an analysis of different statistical approaches and likelihood estimators used
to estimate a cosmological parameter, the tensor-to-scalar ratio (r). The particular
case study involves estimating the uncertainty or upper-bound of r from partial sky,
specifically for the case of null CMB tensor modes (r = 0). Since this work is a method-
ological analysis, we only take into account simulations that include white noise and
CMB. We introduce four likelihood estimators, three of which operate in the spectral
domain and one in real space. We describe the approximations and implementation
challenges associated with each estimator. We test them using three statistical ap-
proaches: Maximum Likelihood Estimation (MLE), Maximum A Posteriori Estimation
(MAP) and Bayesian Inference (BI). We demonstrate how each method provides dif-
ferent estimates depending on the fraction of sky observed. The Bayesian approach
and pixel-based estimator yield the most reliable results, so they are considered as ref-
erences. We demonstrate that spectral estimators that ignore the correlation between
different multipoles, approximating the presence of the mask with the term (f,) ",
underestimate the uncertainty. Spectral estimators that are more complex and ac-
count for this correlation result in overestimates of the uncertainties when compared
to pixel-based methods. These considerations are especially relevant for r = 0. For
positive tensor-to-scalar ratios, the spectral approaches converge to similar estimates
and become more accurate. The results of this work, although obtained under simpler
conditions than real observations, highlights how crucial the choice of methods is for
forecasting the results of future experiments.



Resumen

El fondo césmico de microondas (CMB, por sus siglas en inglés) es una radiacién electro-
magnética difusa que impregna todo el universo. Se origind aproximadamente 380,000
anos después del Big Bang, cuando el cosmos pasd de un estado opaco a uno transpa-
rente. Esta radiacion remanente desempena un papel fundamental en nuestra forma de
entender la cosmologia. Aunque ahora tenemos una buena comprension del CMB, al-
gunos aspectos relacionados con su polarizacion siguen siendo desconocidos. Los modos
B son un patrén de polarizacién distintivo que se supone originado por las primeras
ondas gravitacionales producidas al principio del universo durante la inflacién césmica.
Sin embargo, este patréon de polarizacién atin no se ha observado y su deteccién es uno
de los principales objetivos de la cosmologia observacional.

Observar el CMB polarizado presenta desafios muy importantes. Parte de estos
desafios proviene del hecho de que la senal es muy débil y requiere un control enorme
de los errores instrumentales sistematicos. Otra parte proviene del hecho de que las
emisiones astrofisicas galacticas y extragaldcticas eclipsan esta senal primordial. En el
espectro de microondas, el polvo térmico domina la emisiéon polarizada de longitud de
onda corta, y la radiacion sincrotron la de longitud de onda larga. La mayor parte del
trabajo presentado se centra en caracterizar esta ultima. La tesis incluye dos articulos
publicados sobre este tema.

El primer trabajo se centra en la caracterizacién de los espectros de potencia (EE,
BB y EB) de la emisién polarizada de sincrotrén a 23 y 30 GHz utilizando datos
proporcionados, respectivamente, por dos observatorios espaciales: WMAP y Planck.
Estudiamos seis regiones del cielo que cubren desde el 30 % hasta el 94 % del cielo,
enmascarando el centro galactico y las fuentes puntuales. Analizamos la distribucion
angular y la distribucién espectral de energia (SED) a escalas entre varias decenas
de minutos de arco y varios grados. Los resultados de referencia se obtienen para la
madscara que permite el 50 % del cielo, utilizando el andlisis cruzado de los experimentos.
Encontramos que los espectros de potencia EE y BB muestran una caida pronunciada en
funcién de la escala angular, (*#£.85 donde aggp = —2,95+0,04 y agg = —2,85+0,14.
La razén de amplitud entre BB y EE, en el multipolo ¢ = 80, es 0.22+0.02. El espectro
EB es compatible con cero a 1o. La distribucion espectral de energia se ajusta bien a una
ley de potencia, v?25:55  con indices Bpp = —3,0040,10y Szp = —3,05+0,36, con una
tendencia a que la SED sea mas pronunciada a medida que aumenta la latitud galactica.
Ademas del analisis para el caso de correlacién cruzada, hemos obtenido resultados de
los analisis independientes de Planck y WMAP que son generalmente consistentes. Al
mismo tiempo, también hemos realizado pruebas para validar la solidez de nuestros
resultados: hemos ajustado nuestro modelo en un rango de multipolos mayor (10 < ¢
< 400), hemos usado mapas de frecuencia del Planck release 4 (PR4) publicados en
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2020 y hemos estimado por separado los espectros de los dos hemisferios. En todos los
casos, no se registraron diferencias importantes con respecto al caso de referencia. Los
resultados de este trabajo se han presentado en [1].

El segundo trabajo se centra en la caracterizacién de algunas propiedades morfologi-
cas y estadisticas de la emision polarizada de sincrotrén. Implementamos un nuevo
cédigo basado en un algoritmo recursivo amigo-de-amigo, con el cual identificamos 19
filamentos polarizados. También en este caso utilizamos los mapas de 23 y 30 GHz pro-
porcionados por WMAP y Planck. Algunos de los filamentos ya han sido documentados
en la literatura como hallazgos de anteriores analisis de WMAP en el cielo de micro-
ondas, mientras que cinco de ellos se presentan por primera vez. Para cada filamento
analizamos la fracciéon de polarizacién, encontrando valores tipicamente mayores que los
de 4reas con emisién mds difusa, con valores de hasta el 30 %. Ademds, analizamos el
indice espectral de polarizacion, que tipicamente es compatible con el promedio en todo
el cielo. La mayoria de los filamentos tienen una fuerte componente de polarizacion F,
pero no B, ademas, algunos de ellos no tienen una contrapartida brillante en intensi-
dad. Haciendo uso de tensores de Minkowski, analizamos la gaussianidad y la isotropia
estadistica de la emisién polarizada de sincrotréon. Estudiamos la region del cielo que
corresponde al 80 % y 60 % de la emisién més débil, en escalas de aproximadamente en-
tre 6 y 1.5 grados. Los resultados obtenidos a partir de los datos se compararon con los
obtenidos mediante un conjunto de simulaciones gaussianas e isétropas. Encontramos
grandes desviaciones (> 30) de la gaussianidad y la isotropia en la escala de 6° para
la fraccién de cielo del 80 %. Aunque las desviaciones siguen siendo notablemente altas
a 1.5 °, se reducen a medida que se avanza hacia escalas mas pequenas. Analizando la
fraccién de cielo del 60 %, encontramos resultados compatibles entre las simulaciones y
los datos al nivel de 30. Nuestros resultados sugieren que, incluso a escalas pequenas, los
grandes filamentos son la principal fuente de no gaussianidad. Las simulaciones gaus-
sianas e isotropas a la resolucion de WMAP y Planck imitan fielmente la emision difusa
cuando se enmascaran esas estructuras filamentosas. En la parte final de este trabajo,
presentamos un algoritmo basado en datos para generar simulaciones de sincrotrén po-
larizado no gaussianas y anisétropas. Las simulaciones se ajustan para que coincidan
con las caracteristicas estadisticas y espectrales de los datos para la cobertura del 80 %
del cielo. Los resultados de este trabajo se han presentado en [2].

Un conocimiento profundo de los contaminantes, como la radiaciéon sincrotrén, nos
permite desacoplar estas emisiones del CMB con mayor precisién. Sin embargo, nunca
seremos capaces de separar completamente estos contaminantes de la senal cosmologi-
ca. Las estimaciones de los pardmetros cosmoldgicos siempre deben tener en cuenta
la presencia de residuos de contaminantes, asi como el ruido instrumental. El ultimo
trabajo presentado en esta tesis es un anélisis de diferentes métodos estadisticos y es-
timadores de verosimilitud utilizados para estimar un parametro cosmoldgico, la razén
tensor-escalar (r). El caso de estudio consiste en estimar la incertidumbre o limite su-
perior de r a partir de un cielo parcial, en particular para el caso de modos tensoriales
nulos (7 = 0). Dado que este trabajo es un andlisis metodoldgico, solo se han considera-
do simulaciones que incluyen ruido blanco y CMB. Presentamos cuatro estimadores de
verosimilitud, tres de los cuales operan en el espacio armonico y el cuarto en el espacio
real, detallando las aproximaciones y los desafios de implementacién asociados con cada
estimador. Utilizando tres métodos estadisticos: estimacion de maxima verosimilitud,
estimacion de maxima probabilidad a posteriori e inferencia bayesiana, se muestra cémo
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cada método proporciona estimaciones diferentes en funcion de la fraccion de cielo ob-
servada. El método bayesiano y el estimador basado en pixeles ofrecen los resultados
maés fiables, por lo que se consideran los métodos de referencia. Mostramos que los esti-
madores espectrales que ignoran la correlacion entre diferentes multipolos, aproximando
la presencia de la mdscara con el término (fs,) ', subestiman la incertidumbre. Los
estimadores espectrales mas complejos que tienen en cuenta esta correlacién dan lugar
a una sobreestimacién de las incertidumbres en comparacion con los métodos basados
en pixeles. Estas consideraciones son especialmente relevantes para » = 0. Para valores
de la razén tensor-escalar (r) progresivamente més grandes, los métodos espectrales
convergen hacia estimaciones similares y se vuelven més precisos. En este trabajo se
han probado varias combinaciones de estimadores y técnicas estadisticas. Sin embargo,
todos los resultados se obtienen con condiciones menos complejas que las observaciones
reales, es decir, con mapas que sélo contienen ruido blanco y CMB. La situacion se com-
plica considerablemente cuando las estimaciones se obtienen a partir de observaciones
experimentales. Sin embargo, incluso a partir de este caso simplificado, la conclusion
clave es que una eleccion incorrecta del método puede llevar a una sobreestimacién o
a una subestimacién de las capacidades de un experimento dado para estimar la razén
tensor-escalar. Estas consideraciones deben tenerse en cuenta especialmente a la hora
de hacer previsiones sobre futuros experimentos.
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Chapter 1

Introduction

1.1 Modern Cosmology

The scientific discipline of modern cosmology aims to understand the universe’s be-
ginnings, development, and ultimate fate. It bridges the fields of particle physics and
astrophysics to express our quest for the most comprehensive understanding of the uni-
verse. The development of contemporary cosmology has been a journey that began
in the early 20th century, with the development of large telescopes, ground-breaking
theoretical models, and technical advancements.

The realization that the universe is expanding was one of the major turning points in
contemporary cosmology. This awareness is the result of observations made by Edwin
Hubble in the 1920s that showed galaxies are moving away from us [3]. On a theoretical
level, it was Albert Einstein’s revolutionary insights that brought enormous contribu-
tions to the understanding of the universe. He proposed that gravity was not a force,
but rather an acceleration caused by the wrapping of spacetime, the so-called General
Theory of Relativity [4]. Before the 1930s, several authors already derived a model
from Einstein’s theories of an expanding homogeneous isotropic universe. Finding a
framework to explain Hubble’s observations, and leading to the formulation of the Big
Bang theory.

1.1.1 Big Bang theory

The Big Bang theory postulates that the universe had a definite beginning. In its
initial state it was hot and dense, from which it expanded and is still evolving. The
Cosmological Principle, on which the theory is based, states that today the universe is
isotropic and homogeneous on large scale. An isotropic, homogeneous and expanding
universe is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = —di® + a(t)Q( +12(d6? + sin® ed¢2)> (1.1)

1 — kr?
where: t is the cosmological proper time, (r,6,¢) are the comoving spatial variables,
a(t) is a dimensionless scalar function of time and k is the so-called curvature constant.
Nominally, the universe is intended as flat when & = 0, but it could also have a positive
or negative curvature, according to the sign of k. The dynamics of the universe is
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determined by the Einstein Equation
G — Ng = 81GT,,. (1.2)

G, is the Einstein tensor, and g,, is the metric. These quantities encapsulate in-
formation about the geometry of spacetime. T}, is the stress-energy tensor, which
encapsulates the information of the components that constitute the universe. G is
Newton’s constant, and A is a cosmological constant.

The solutions of the Einstein Equation for the FLRW metric!, are the so-called

Friedmann Equations
a\> 1 &k

. . 1
H+H2:g:—6(p+3p) (1.4)

which combine with the continuity equation
p+3H(p+p) =0. (1.5)

The quantity p and p are respectively the energy density and the pressure of the elements
that make up the universe. H = a/a is the Hubble parameter. It is a fundamental
cosmological parameter, and describes the rate of expansion of the universe. The value
at present time, the Hubble constant (Hj), measures how quickly the distant galaxies
are fading away from us.

Both the two Friedmann equations relate the expansion rate of the universe to its
energy content. The first equation 1.3 also accounts for the curvature of the universe.
The second equation 1.4 accounts for the pressure exerted by the different forms of
energy presented in the universe. Solving the Friedmann equations we can determine
the expansion history, age, and the abundance of different components in the universe.
The model that best describes the experimental evidence found to date is the so called
Lambda-Cold Dark Matter (ACDM).

1.1.2 ACDM

The creation of the ACDM (Lambda-Cold Dark Matter) model is the outcome of years
of advances in the field of cosmology. The model, which developed from the earlier Hot
Big Bang theory, has taken the lead in describing the universe’s large-scale dynamics
and structure. According to the ACDM model, the universe is flat and composed by
four components which contribute to its energy density: radiation, baryonic matter,
dark matter and dark energy.

The Radiation represents the contribution of relativistic particles, mainly photons.
The energy density of radiation scales as the inverse of the universe expansion factor (a)
raised to the fourth, that is p, = a=*py,., where pg, is the present-day energy density of
photons. Due to this, radiation made a significant contribution to the overall density
in the early stages of the universe. But its energy density decreased very quickly over
time as the universe cooled and expanded.

'We assume that the universe is filled with the so-called perfect cosmic fluid, i.e. fluid with null
viscosity and without heat flows, which fully constrains the stress-energy tensor.
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The Baryonic matter, or ordinary matter, refers to the familiar matter which in-
cludes stars, galaxies, planets and everything we can observe. This matter is well-known
and described by the Standard Model (SM) of particle physics. The energy density of
baryonic matter is inversely proportional to the cube of the universe expansion factor,
Pm = a"3po.m, where pg,, is the present-day energy density. It strongly interacted with
electromagnetic radiation, especially in the early stage of the universe. Ordinary matter
plays a fundamental role in formation of galaxies, large-scale structures, and shaping
the structure of the universe.

The Dark matter, or non-baryonic matter, represents the non-visible matter, which
is not included in the Standard Model. Its possible interaction with electromagnetic
radiation or any of the particles of the standard model is very weak or non-existent. It
only manifests itself through gravitational interaction with visible matter. As baryonic
matter, the energy density of dark matter scales as the cube of the inverse of the
universe expansion factor, p,, o< a~>. The exact nature of dark matter is still unknown.
Current cosmological observations tell us that the dark matter must be cold, that is,
non-relativistic. A dominant contribution of hot, i.e., relativistic, dark matter would
not explain the current structure of the universe [5]. Several potential cold dark matter
particle candidates have been proposed, such as weakly interacting massive particles
(WIMPs) and axions. However, the nature of this matter remains an open question in
modern cosmology [6].

The Dark energy is a form of energy that permeates the entire universe and is
what causes the universe to expand at an accelerated rate. It does not interact with
radiation or any forms of matter. The energy density of dark energy remains nearly
constant during the universe expansion, even if recent results indicate that it may be
getting weaker [7]. It is typically expressed as pp = A/(87G), where A is a positive
cosmological constant. The cosmological constant is a measure of the uniform energy
density of empty space, which produces a repulsive gravitational force that balances the
gravitational attraction of ordinary and dark matter. The exact nature of this energy is
still unknown and its understanding represents one of the greatest challenges in modern
cosmology.

Considering all the components present in the ACDM model, the first Friedmann
equation 1.3 can be written in terms of the present values of the density parameters

H2
ﬁ = 9077«@74 + Qo’maig + Q()’kai? + QO,A' (16)
0
Qox = —k/HZ is the contribution coming from the curvature of the spacetime. Q; =

pio/Perito are the present-day density parameter of each component of the universe,
where peqi0 = 3HE/(87G) is the so-called critical energy density?.
The latest observational results give the best current values of each component

1Q0x] <0.01, Qp,=94x10"" Qp,, =032, Qo =0.68.

The actual dominant component is the dark energy, which causes the accelerated ex-
pansion of the Universe. The second most abundant element is matter. In particular,
dark matter makes up a majority of the universe’s total mass by a factor of about five,

2It represents the value of total energy density in case of a perfectly flat universe (k = 0).
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compared to ordinary matter. Radiation is completely subdominant, as is curvature,
suggesting that we live in an old flat universe. In addition, experimental evidence tells
us that the universe is about 13.8 billion years, and the Hubble constant is Hy = 67.7
km/s/Mpc [8].

Looking at the energy density dependency on the expansion factor (a) of the single
components in equation 1.6; we can easily understand that the contribution of each
element to total energy density has changed over time. Three different epochs can be
determined: the radiation domination era, the matter domination era and the present
dark energy domination era. The succession of these epochs led to the structure of the
universe as we observe it today.

1.1.3 Universe timeline

In this section we briefly review the timeline of the universe, from the Big Bang to the
present [9]. We will introduce concepts that will then be explained in detail in later
sections. However, it is important first to describe the context and succession of events
that led to the universe as we see it today.

e Everything begins from a singularity in time and space, with infinite density and
temperature. After a tiny fraction of a second from the beginning and for the
duration of another tiny fraction of a second, the universe underwent a rapid and
exponential expansion, known as cosmic inflation. This spatial stretching unified
and smoothed out the universe’s irregularities, making the universe homogeneous
and isotropic.

e In the period between about 10726 and 107'2 seconds from its beginning, the
FElectroweak epoch occurred. During this epoch, because of the extremely high
temperature, electromagnetism and weak nuclear force were unified into the elec-
troweak force. Particles were massless and interacted through this force. The
study of this epoch provides fundamental insights into the understanding of ultra-
high energy particle interactions.

e As the universe expanded and cooled, the electromagnetic and weak forces sepa-
rate, leading to the Particle era. It refers to the period which spans approximately
from 1072 seconds to around 380 000 years after the Big Bang. At that time,
a hot dense plasma filled the universe. The high temperature provided the nec-
essary conditions for nuclear reactions to occur, where lightest elements, such as
hydrogen (H), helium (He), and lithium (Li), were formed. This phase is known
as Big Bang Nucleosynthesis (BBN).

e Up to 47 000 years after the beginning, most of the energy in the universe was
in the form of radiation. However, as the universe expands and cools, the energy
density of matter becomes comparable to that of radiation, marking the transition
from the radiation to the Matter era. From that moment, matter mainly drives
the dynamics of the universe through gravitational interactions.

e Approximately 380 000 years after the Big Bang, the temperature of the universe
dropped to a critical point. Electrons and protons were able to combine forming
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neutral hydrogen atoms. This critical time is known as Recombination, which
marked the transition from an ionized to a neutral universe. At this point, the
universe becomes transparent to photons, which became free to travel through
space. This phase is commonly called Decoupling.

e After the Recombination, the universe enters a period known as the Dark Ages.
The name comes from the fact that the universe was filled with neutral atoms,
with the absence of significant sources of light. During this period, gravity causes
matter to form the first stars and galaxies. These celestial objects emitted intense
ultraviolet radiation, which interacted with neutral hydrogen atoms ionizing them.
This process, which ended the Dark Ages, is known as Reionization.

e With matter dominating, ordinary and dark matter density fluctuations lead to
the formation of large-scale structures such as galaxy clusters and superclusters.
As the universe continues to age and expand, the matter energy density dilutes,
becoming comparable to the dark energy density. Dark energy remains close to a
constant as the universe grows, and relatively recently it became the predominant
component, marking the beginning of Dark Energy era, which is still going on
today.

The timeline in Figure 1.1 shows the three dominant epochs: radiation, matter and
dark energy, and some of the most important stages in the evolution of the universe
from the Big Bang to the present.

Inflation Nucleosynthesis Recombination

! I !

Electroweak | Particle 1 H
. epoch | era ! o
an : : x today
Bang . | ¥
radiation , ! ! m: )
1 e} P . 1
log(t/sec) Reionization

Figure 1.1: Timeline of the universe from the Big Bang to the present. The different
colors represent the eras determined by the component that contributed most to the
density energy. Yellow represents the Radiation era, orange the Matter era, and red the
Dark Energy era. In white the very early period called cosmic inflation. The dashed
lines represent some of the most important milestones in the history of the universe.

1.1.4 Observational Probes

The Big Bang theory, the ACDM model and the description of the universe timeline
have been developed over time from observational evidence that years of research have
revealed. This section reviews such observational probes, which represent cornerstones
of knowledge in cosmology and astrophysics.
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The most direct and well-known evidence for studying the origin and formation of
the universe is the Cosmic Microwave Background (CMB). The CMB is a radiation
that permeates the entire universe, generated at the time of photon decoupling, when
the Universe was 380 000 years old. We will not go into details in this section, because
it will be discussed extensively in the next sections.

An important branch of cosmology is devoted to the study of the Large-Scale Struc-
ture (LSS) of the universe. The term ”large-scale” is commonly associated to struc-
tures on scales of tens of megaparsecs or larger, but it can vary based on the specific
research question. This concept stems from the idea to separate it from the analysis
of small-scales, approximately smaller than 100 Mpc, where the universe is strongly
not homogeneous, and the main distribution of the matter is along filaments, clusters,
and walls [10, 11]. Studying the statistical properties of the large-scale galaxies dis-
tribution, we can constrain cosmological parameters and test theoretical models. By
analyzing growth and dynamics of cosmic structures, we can learn about the nature of
dark matter and dark energy. By comparing observations and simulations, LSS studies
provide a multifaceted approach to understanding the dynamics of structure formation,
the evolution of galaxies, and the validity of gravitational theories.

There are a number of cosmological disciplines, as well as LSS, that benefit from
galaxy surveys data. Omne of these is the analysis of Baryon Acoustic Oscillations
(BAO). BAO refer to those acoustic oscillations generated by the photon-baryon plasma
before recombination, which left a characteristic imprint in the distribution of galaxies.
BAO measurements are a powerful instrument to study the expansion and evolution of
the Universe [12]. Also in the context of galaxy surveys data, a further cosmological
probe are Weak gravitational lensing measurements. Cosmological quantities can be
inferred measuring the distortions in the shapes of distant galaxies due to the bending
of light passing through the gravitational fields of closer massive structures. These
studies provide important knowledge about dark matter distribution, the expansion of
the universe, and gravitational theories [13].

An important cosmological probe is the abundances of elements in the universe.
As mentioned in the previous section, few minutes after the Big Bang, the primordial
nucleosynthesis (BBN) took place, which generated light nuclei. The comparison of
predicted abundances with observations provides valuable constraints on the expansion
of the early universe and on the density of the baryonic matter [14, 15].

Aside from those already mentioned, there are a number of independent cosmologi-
cal evidences that contribute to the understanding of the universe. Here we mention a
few of them: Supernovae observations, luminous astrophysical objects used for measur-
ing cosmic distances [16]; Gravitational Waves, ripples in the spacetime carrying direct
information about extreme astrophysical events [17]; Neutrino physics, subatomic par-
ticles enclosing information about astrophysical processes [18].

1.1.5 Cosmic Inflation

The Big Bang theory gives a very strong and accurate description of the Universe as we
know it today and how it was in its very early times. However, the theory presented so
far is a consequence of precisely such a fine-tuned set of initial conditions. Considering
the Universe an improbable accident event leads cosmologists to question the meaning
and reasons for these conditions. There are two conceptual issues with the standard
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Hot Big Bang scenario, which form the so-called Cauchy problem [19, 20].

The first issue is the Flatness problem. Supernova observations and CMB measure-
ments point out that, today, on large scale the spacetime geometry is consistent with a
flat universe. This is equivalent to write the first Friedmann equation 1.3 as

<0.2 (1.7)

1=l =

k
(aH)3
where (¢ is the density parameter of all components that fill the universe, k is the
curvature constant, and the quantity (aH)™! is usually referred to as the comoving
Hubble radius. The latter represents the maximum distance between particles in causal
contact. This distance is proportional to the expansion of the universe, so it decreases
going backwards in time. Roughly, at the Planck epoch t, ~ 107, the quantity
|1 — Qu] < 107%° In other words, at the very early stages the universe had to be
extremely flat. A very unlikely casual initial condition.

The second issue is the Horizon problem. CMB observations and galaxy surveys
show that the observable universe is nearly isotropic and homogeneous. This would
imply that the entire observable sky, and by extension the entire universe, must have
been causally connected to reach thermal equilibrium. The problem can be quantified
by the comoving horizon distance, which represents the maximum distance that light
could have traveled since the Big Bang. The comoving horizon can be expressed as an
integral of the comoving Hubble radius

/ b / (aH) 'dloga o ab+0) (18)
T = = a a o< a2 )
o a(t’) 0

where the last equality holds for a universe dominated by a fluid with equation of state
w = p/p. Equation 1.8 is telling us that during the expansion (w > 0) the comoving
horizon, thus the fraction of the universe in causal contact, increases with time. This
suggests that comoving scales that are entering the horizon today were outside the
horizon during the CMB decoupling. From this reasoning we infer that some region
did not have time to reach thermal equilibrium, in disagreement with what we observe
today.

A very logical answer to the Cauchy problem is given by the concept of a cosmic
inflation. The Inflation theory was proposed for the first time in 1980 by Alan Guth
[21] in order to explain the issue concerning the absence of magnetic monopoles in
the universe. It assumes that everything was in causal contact very early on, and an
exponential expansion of spacetime produced the initial conditions for the Hot Big Bang
scenario [22]. Today, it is one of the most discussed topics of modern Cosmology. The
basic paradigm is supported by a series of observational evidences, however, a definitive
experimental probe is still lacking.

Back to the Cauchy problem, passing from complete causality of the universe to the
condition of not causal contact, requires the existence of a period in which the comoving
Hubble radius decreases

d a

E@ﬂylz—aﬁp<0 so >0 (1.9)

that is a period of accelerated expansion, for this the name inflation. By definition, this
solves the Horizon problem. In addition, the same accelerated expansion can solve the
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Flatness problem. From equation 1.7, we can infer
11— =" 1-q (1.10)
a;

where the suffixes 7 and f indicate respectively the initial and final time of the period
of inflation. Equation 1.10 is telling us that whatever is the value of universe curvature
before inflation, it is reduced by the factor as/a; after inflation. Thus, the flatness of the
universe at its early stages is not a coincidence, but a consequence of the exponential
expansion.

Combining equation 1.9 with the second Friedmann equation 1.4

a 1 1

o= 6(p+3p)>0 ® p<-—3p (1.11)
we obtain an equation of state incompatible with matter (p = 0) and radiation (p =
p/3). The only component which satisfies this inequality is the cosmological constant
(p = —p). In other words, the known particle physics is insufficient to explain this
phenomenon, and an undiscovered physical field is needed for understanding the nature
of this inflation.
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1.2 Cosmic Microwave Background

While adjusting a microwave antenna in 1964 in order to study the reflection of radio
waves from Echo balloon satellites, A. Penzias and B. Wilson found a background noise
of unknown origin [23]. They discovered a homogeneous and uniform signal that was
consistent with background noise of about 3.5 K; this signal was later recognized as
the Cosmic Microwave Background radiation predicted by Dicke in 1965 [24].

Let’s go back in time when, because of extreme temperature, the universe was filled
with a dense hydrogenic plasma. Matter and free electrons strongly interacted with
photon through Thomson scattering, i.e. elastic scatterings without any change in
energy. When the universe was in this plasma state, it is commonly said it was opaque.
As the expansion proceed and both plasma and radiation cooled down, electrons started
to stably bound to nuclei. Atoms could not scatter the thermal radiation anymore.
Thus, the universe became transparent, and the photons became free to propagate in
space. The CMB is the thermal radiation left over from the so-called surface of last
scattering. That is the set of photons we are receiving now from the time of photon
decoupling, when the universe was 380 000 years old.

The history of CMB science is marked by a series of satellite and ground-based
experiments that have shaped our knowledge of the universe.

1.2.1 Experiments History

A NASA satellite, the Cosmic Background Explorer (COBE), between 1989 and 1993,
measured for the first time the CMB radiation at different wavelengths. It carried three
instruments: Diffuse Infrared Background Experiment, or DIRBE, searching for cosmic
infrared background radiation; Differential Microwave Radiometer, or DMR, mapping
the cosmic radiation sensitively; and Far Infrared Absolute Spectrophotometer, or FI-
RAS, comparing the spectrum of the cosmic microwave background radiation with a
precise black body. Among many remarkable achievements, we recall that it measured
the blackbody spectrum of the CMB and detected temperature fluctuations, for the
first time ever [25]. A milestone that earned a Nobel Prize for two of the principal
investigators, George F. Smoot and John C. Mather.

The early 2000s were marked by a series of ground-based and balloon-borne experi-
ments. BOOMERanG [26] was the first baloon microwave telescope to measure the first
acoustic peak in the CMB power spectrum, inferring a flat universe. These measure-
ments were confirmed soon after by other balloons like MAXIMA [27] and ARCHEOPS
[28], which refined our knowledge of the universe’s age and composition. The ground-
based interferometers observing at frequencies around 30 GHz: Degree Angular Scale
Interferometer (DASI) [29] at the South Pole, Cosmic Background Imager (CBI) [30]
at the Chilean Andes, and Very Small Array (VSA) [31] at Tenerife, together with
other direct maging experiments like Arcminute Cosmology Bolometer Array Receiver
(ACBAR) [32] observing at 150 GHz, were able to measure higher-order peaks up to
multipoles ¢ ~ 1500. In 2002, DASI reported the discovery of the CMB polarization
anisotropies [33].

A game changer in the CMB experimental history was the Wilkinson Microwave
Anisotropy Probe (WMAP) mission. It was a NASA spacecraft operating from 2001 to
2010, observing the sky at five discrete radio frequency bands, from 23 to 94 GHz. It
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was 45 times more sensitive than its satellite predecessor COBE, marking the beginning
of the era of "precision cosmology”. WMAP’s measurements played a key role in
establishing the ACDM model [34].

The benchmark for CMB science today is the Planck mission. It was a European
Space Agency (ESA) spacecraft, operating from 2009 to 2013. It carried two instru-
ments: the Low Frequency Instrument, or LFI, observing at 30, 44 and 70 GHz, and
the High Frequency Instrument, or HFI, observing at 100, 143, 217, 353, 545 and
857 GHz, with resolution up to 5 arcmin. It improved and extended the results from
its predecessor WMAP, providing the strongest constraints on the parameters of the
ACDM cosmological model. Planck’s data also provide strong evidence supporting the
inflationary theory [8].

The future of cosmology is illuminated by a series of CMB experiments, on-going or
proposed, that will bring more clarity to the early universe, digging down to the time of
inflation. Remarkable ground-based experiments are: Simons Observatory (SO), a new-
generation observatory in the Atacama Desert in Chile, observing around 40 percent
of the sky at frequencies between 27 and 280 GHz [35]; BICEP/Keck array, a multi-
generational series of CMB polarization experiments operating in the Antarctic Treaty
area [36]; the third generation South Pole Telescope (SPT-3G) which will observe the
southern sky at frequencies 95, 150 and 220 GHz with high angular resolution, about
1 arcmin [37]; and CMB-S/, a longstanding program of ground-based experiments in
the Atacama Desert, covering 11 observing bands [38]. The most remarkable on-going
space-based experiment is LiteBIRD [39], a satellite carrying three telescopes in 15
frequency bands between 34 and 448 GHz. The project is currently in the design
and development phase, scheduled to launch in early 2030s, and will carry out its
observations for about three years. Other ambitious space-based experiments are in
the conceptual stage, such as PICO, an imaging polarimeter observing the sky in 21
frequency bands between 21 and 799 GHz [40].

1.2.2 Power Spectra

We know that today the CMB contributes about 107° to the whole energy density ()
of the Universe. It has a thermal black body spectrum at an average temperature of
T =2.725 K, and peaks at the frequency around 160 GHz, about 2 mm in wavelength
units. It is extremely isotropic, with very small fluctuations, with typical value around
1075, equivalent to one part in 100 000 [8]. The full sky map of the temperature
anisotropies as observed by Planck is showed in figure 1.2.

For a CMB observation, the temperature fluctuation in a specific direction in the

sky n.= (0,), is typically written as

_AT(R) _T(R)-T 112)
T T '

o(n)

The temperature fluctuation is a two-dimensional scalar field, defined on the surface of
a sphere. It can be expanded as a superposition of spherical harmonics

O) =3 3™ Vi) (113)

=1 m=—¢
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Figure 1.2: CMB temperature anisotropies map obtained with the Planck observations.

8]

where Y}, are the standard spherical harmonics on a sphere

204+1 [(L—m)!

Yim() = Am (£ +m)!

P;"(cos §)e™?. (1.14)

The multipole ¢ describes the angular size, with £ =0, £ = 1 and ¢ = 2 corresponding
respectively to the monopole, dipole and quadrupole. The magnetic quantum number
m, ranging between —¢ and /¢, describes the angular orientations. P;" are the Legendre
polynomials for a particular multipole ¢ and order m. All of the physical informa-
tion, which is contained in the temperature field T, is also contained in the harmonic
coefficients

o — /dQ Yo ()O(1). (1.15)

By construction, the mean value of all the ay,,’s is zero, but with nonzero variance.
The variance of the ag,’s is a rotationally invariant quantity, called angular power
spectrum
1

TT
Co T2+ 1

Z (a}ma4m> = <a;fmag/m/) = C@TT(sulémm/. (116)

m

The power spectrum is a two-point function of the multipoles . It does not depend on
the order m, reflecting the fact that for a given ¢, each ay,, has the same variance.
Temperature fluctuations we see in the CMB are reflections, in a complicated way
that we will explore in the next sections, of primordial fluctuations. Nevertheless, we
cannot make predictions about the specific value of each ay,,’s, we can only predict the
distribution from which they are drawn. There is a fundamental statistical uncertainty
in the knowledge we get from the power spectrum. This is related to the fact that we
have only one realization of these distributions, which is the universe we observe. This
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uncertainty is called cosmic variance

Cy. (1.17)

and is most pronounced for low multipoles.

Very valuable information about the universe is encapsulated not only in the CMB
temperature, but also in its polarization. Polarization is an expression of the orientation
of the lines of electric flux in an electromagnetic field. The linear polarization state of
the CMB radiation is usually described by two variables, ) and U, called the Stokes
parameters. While the temperature 7" is a simple scalar field, () and U are not rotational
invariant quantities. To obviate this, linear polarization is typically described as a
complex spin-2 field, () & iU, on the sky. This quantity can be decomposed into the
spin-2 spherical harmonics 15Y7,,

Q(n) £iU(n) = Z Z 4200 +2Y e (7). (1.18)

=2 m=—{

Conventionally, instead of the coefficient 45ay,, it is convenient to introduce the quan-
tities
E B 1

Ay, = —5(2a@m + 72agm), Ay = _2_2.<2a£m - 72a€m) (119)

which allow to define two scalar fields, £ and B, instead of the spin-2 Stokes parameters
@ and U. These fields can be expanded as a superposition of spin-0 spherical harmonics

E(R) = 3 af,Yin(n),  B(2) =Y af Yiu(i). (1.20)

m Im

This decomposition of the CMB polarization into modes has a particular geometrical
interpretation. The E-mode and B-mode represent respectively the polarization ori-
entations with electric (—1)¢ and magnetic (—1)“*! parity on the sphere. Thus, under
parity transformation (7 — —n), the E-mode remains unchanged for even multipoles
¢, whereas the B-mode changes sign.

The angular power spectra, including temperature and polarization, are defined as

CXY = ﬁ ; (aX)aY.) with X,Y = T, E, B. (1.21)
The symmetries of the anisotropies allow four types of correlations: the auto-correlations
denoted by TT', EFE, and BB, and the cross-correlation between temperature and E-
modes denoted by T'E. Under the assumption that CMB parity is conserved, the T'B
and E'B cross-correlations vanish. In figure 1.3 are plotted the CMB temperature and
polarization power spectra as observed by Planck, compared to the theoretical spectra
obtained from the best ACDM parameter constraints.

1.2.3 CMB Temperature

The CMB temperature power spectrum, as showed in the top panel of figure 1.3, ex-
hibits several features which provide valuable insights about properties and evolution
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Figure 1.3: Planck 2018 CMB power spectra. Top: temperature auto-spectra; middle:
temperature and polarization E-mode cross-spectra; bottom left: polarization E-mode
auto-spectra; bottom right: lensing potential. Red dots are the Planck observational
data, the blue line is the fitted best-fit base-ACDM model theoretical spectra. [§]

29



of the universe. Next we will describe some of those features, explaining the physical
significance they contain.

The Acoustic peaks are the most obvious characteristics of the power spectrum.
These peaks are oscillations in the density of the primordial plasma brought on by
acoustic waves that were propagating through the early universe, and reached their
maximum amplitude at the time of decoupling. The positions and amplitudes of these
peaks play a fundamental role in the ACDM parameter constraints. The first peak
(¢ ~ 200), i.e. the largest acoustic oscillations in the early universe, gives information
about the spatial curvature of the universe. The second peak (¢ ~ 500) provides
insights about the abundance of baryonic matter. Similarly, the third peak (¢ ~ 900)
and beyond help in determining the energy content of the universe [41].

The second important feature is the Diffusion damping effect, appearing as a sup-
pression of power at small angular scales (¢ > 1000). This phenomenon occurs because
photons continue to scatter with electrons during recombination, smoothing out small-
scale fluctuations. The damping provides information about the photon diffusion length
at decoupling time. Moreover, the diffusion damping plays a role in shaping the char-
acteristic scale of baryon acoustic oscilations (BAOs) [12].

At medium-to-large angular scale (¢ < 100), the CMB temperature spectrum is
characterised by the Sachs-Wolfe (SW) effect, which describes the influence of gravita-
tional fields on CMB photons. The ordinary SW effect occurs when CMB photons are
redshifted or blueshifted while climbing out of or falling into gravitational wells at the
surface of last scattering. This effect is responsible for the initial rise and nearly flat
plateau around ¢ < 30, known as the Sachs-Wolfe plateau. The integrated SW (ISW)
arises from photons passing through time-varying gravitational potentials during the
time of transitions to and from matter dominated eras, producing the so-called Early
and Late ISW effects, respectively. The Early ISW affects the CMB spectrum from
multipoles ¢ =~ 10 up to 100, instead, the Late ISW is noticeable on very large scales
(¢ < 10).

1.2.4 CMB Polarization

The CMB polarization information is encapsulated in the temperature-polarization
cross power spectrum, namely the T'E spectrum, and the auto-correlation of the two
polarization modes, the EFF and BB power spectra.

The correlation between temperature and polarization fluctuations in the CMB is
showed in the middle panel of figure 1.3. The amplitude and shape of the T'E spectrum
contains information about the epoch of reionization, when energetic photons were
emitted by the formation of the first galaxies. By studying the low multipoles, we learn
about the matter-radiation coupling in this early stage of the universe.

As regards polarisation modes only, the F'E spectrum is easier to measure compared
to the BB spectrum. This is due to the fact that E-modes dominates over the B-
mode in the CMB, making the BB spectrum measurement more challenging due to the
relatively low amplitude. We will show in the next sections that the CMB polarization is
closely tied to the primordial density and tensor perturbations of the universe. For now,
we just need to know that the F-modes arise from scalars and tensor perturbations,
and B-mode arise only from tensor perturbations; the difference between these types
of perturbations will be explained later on.
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The EFE spectrum, showed in the bottom left panel of figure 1.3, is important for
understanding the large-scale structure of the universe. At high multipoles (¢ > 100),
similar to temperature, the spectrum shows Acoustic Peaks and a Silk Damping Tail.
The peaks are due to the compression and rarefaction of baryons and photons in the
primordial plasma. The damping is due to photon scattering during and shortly after
recombination. At low multipoles, the FE spectrum shows a bump, called Polarization
Reionization Bump. It is related to the reionization process that followed the creation
of the first Galactic structures, and it offers important information about the timing
and nature of that phase of the universe timeline.

Moreover, a precise measurement of the amplitude of the polarization bump, as
expected from LiteBIRD [39], will allow a significant improvement in the determination
of the sum of the neutrino masses. The reason is that massive neutrinos slow down
structure formation and the sum of their masses can be inferred from the comparison
of the amplitude of the density fluctuations at low-redshifts (given by e.g. galaxy
surveys or CMB lensing) and at decoupling (given by the CMB anistropies). A good
determination of the amplitude of the polarization bump will break the degeneracy
between the optical depth and the amplitude of the density fluctuations at decoupling
allowing an improvement in the determination of the latter.

BB spectrum measurement and characterization is the biggest challenge that mod-
ern cosmology is facing. Last experiments, including Planck, have accurately measured
the contribution due to gravitation lensing. This comes from CMB photons encounter-
ing gravitational potentials while propagating through the universe. The path of the
photons is then bent by gravity, leading to a distortion in the polarization patterns,
generation additional B-mode polarization. This effect is important at all scales, and
dominates completely at high multiples. In the bottom right panel of figure 1.3 is
shown the lensing potential, i.e. a scalar field that quantifies the cumulative effect of
these deflections over the entire line of sight from the surface of last scattering to the
observer.

Future and ongoing experiments, such as SO and LiteBIRD, aim to shed light on
another signal that it is expected to be measured in the BB spectrum, especially at
large scales. This B-polarized signal would be generated by primordial gravitational
waves (GW). The detection of this signal would be the ultimate proof of the inflationary
theory, and the measurement of its amplitude and shape would provide crucial informa-
tion about the energy scale and nature of the inflation. The relationship between the
CMB B-signal, primordial GW and inflation will be explored in the following sections.
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1.3 Primordial Perturbations

In the previous section we have seen how the CMB is characterized by small fluctuations
in both temperature and polarization, which allow us to understand in depth the history
of the universe. In this section we will show that these fluctuations we see today could
be explained with primordial perturbations generated by quantum fluctuations during
inflation. Finally, we will discuss how these primordial perturbations left a unique
imprint on the CMB. We do not show all the details which can instead be found in
[9, 20], to which we refer. We only present the key points necessary to understand this
connection.

1.3.1 Scalar and Tensor

In section 1.2.2 we mentioned that the CMB is extremely isotropic, with very small
fluctuations. It is therefore reasonable to assume that the universe was nearly homo-
geneous, with small inhomogeneities, at the time of decoupling, and even before. The
small, random fluctuations in the energy density of the universe, generated during its
early stages, are referred as Primordial Perturbations. According to this idea, we can
describe the physical quantities involved in the Einstein Equations 1.2 as the sum of a
homogeneous background and a perturbation

To(t,0) = T (t) + 6T (6,2), Gyl ) = G () + g (t,). (1.22)

The quantities with the bar at the top, T},,(t) and g,.(t), represent a spatially flat, ho-
mogeneous and isotropic universe. 67}, (¢, x) and 6g,, (¢, z) are respectively the matter
and metric perturbations, which are temporally and spatially dependent.

By the geometry of the background solutions, we can decompose the metric and
matter perturbations into independent scalar (S), vector (V') and tensor (7') compo-
nents. The importance of this SVT decomposition lies in the fact that perturbations of
each type evolve independently.

Scalar perturbations are compression-like perturbations in the energy density of the
cosmological fluid. This source leads to potential fluctuations that generate photons
bulk flows, or dipole anisotropies, from hot to cold temperature regions. Vector pertur-
bations are vortical motions of the matter, not associated to the energy density. This
kind of perturbation decays with the expansion of the universe, for this reason we will
ignore them. Tensor perturbations are transverse-traceless perturbations to the metric,
representing a quadrupolar stretching of space in the plane of the perturbation.

In order to understand the nature of tensor perturbations, let us consider a metric
composed of FLRW background, equation 1.1, plus a perturbation h;;

ds® = —dt* + a(t)z(éij + Dy (t, x))dx' dz’ (1.23)

where we ignore scalar and vector contributions, according to the principle they evolve
independently. Solving the Einstein Equation 1.2 at first perturbation order, we obtain
the dynamic equation for the tensor perturbations

vQ

Equation 1.24 is a wave equation in an expanding universe. Therefore, primordial tensor
perturbations are actually primordial Gravitational Waves.
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1.3.2 Quantum Fluctuations

So far, we have described some features of the primordial perturbations, which now
manifest themselves as CMB inhomogeneities. However, we have not explained how
these perturbations were generated. The nature of this phenomenon arises from the
concept of quantum field theory applied to the primordial universe. According to
quantum field theory, particles and fields are subject to intrinsic quantum fluctuations,
which result from the uncertainty principle. The universe dynamics was mostly subject
to quantum mechanisms during its first stage, the inflationary period.

Today there are several models that try to explain the inflation mechanism, the
simplest and most intuitive is the single field slow-roll model. This model involves
a single scalar field ¢, called inflaton. The single-field dynamics is determined by a
self-interaction potential V' (¢) which is coupled to gravity as

. . V2 ov

¢»+3Ho ¥¢_a—¢. (1.25)
The name slow-roll comes from the fact that to explain the accelerated expansion of
the universe, the potential term must be much larger than the kinetic term V' (¢) > q52,
thus causing a slow fall from the potential. Note that equation 1.25 has the same form
of equation 1.24, the only crucial difference is that the inflaton dynamics has a source
term 0,V . Instead, the equation of the metric perturbations does not.

The inflaton field is a quantum field so it is affected by quantum fluctuations, that
can be expressed as

o(t,x) = o(t) + oo(t, z), (1.26)
where ¢ is the homogeneous background and d¢(t, ) is a small quantum perturbation.
In the single field model, the inflaton is the only component which filled the universe
during inflation, thus it is the only contribute to the stress-energy tensor 7),,. According
to the Einstein Equation 1.2, fluctuations of the field d¢, which means fluctuations in
the stress-energy tensor 07}, lead to fluctuations in the metric dg,,. Fluctuations in
the metric, as seen in the previous section, are nothing more than gravitational waves.
Thus, quantum fluctuations during inflation are the cause of both scalar and tensor
perturbations.

In a more general framework, we can divide the evolution of these quantum fluc-
tuations into several stages. During inflation, quantum fluctuations of the primordial
field at different scales, or modes, evolve independently. When a mode becomes larger
than the horizon, because of the exponential expansion, causal physics cannot act and
the fluctuations freeze out. The universe expansion proceeds, inflation ends and the
radiation era starts. The expansion slows down and the modes starts to re-enter the
horizon, not as quantum field fluctuations, but as physical energy density fluctuations.
A diagram of this process is shown in figure 1.4. These fluctuations evolve in time and
finally imprint a signature on the CMB.

1.3.3 Tensor-to-scalar ratio

Scalar perturbations are usually parameterized by the curvature perturbation on uniform-
density hypersurfaces

H
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Figure 1.4: Quantum fluctuations are created on a specific sub-horizon scale. During
inflation the comoving Hubble radius (aH )~ shrinks, and the fluctuations exit the hori-
zon. When inflation ends and radiation domination era begins, the comoving Hubble
increases. Eventually, the fluctuation re-enters the horizon, as density fluctuation. [20]

It is a combination of metric and matter perturbations, in particular, the spatial cur-
vature perturbation ¥ and the energy density perturbations dp. Geometrically, ( is a
measure of the spatial curvature of hypersurfaces of constant density. It has two im-
portant features: it is gauge-invariant®, and it remains constant for perturbation modes
larger then the horizon. Tensor perturbations are gauge-invariant by construction, thus,
they do not require any further definitions and are simply parameterized by the tensor
perturbation h;; in equation 1.23.

Primordial scalar and tensor fluctuations are conventionally treated with a statistical
approach. Two important statistical measures of the primordial fluctuations are the
power spectra

(hhy) = (21)% Pu(k) 6@ (k + k'), '
which are nothing more that the Fourier transform of the perturbation two-point cor-
relation functions. In cosmological context, the power spectra are commonly redefined

asS
k3 k3
ﬁPC(k)v A (k) = 93

such that the scalar power spectrum is A; = A, and tensor power spectrum is A; =
2AL%.

AZ(k) = Pr(k) (1.29)

3In perturbation analysis, the split of quantities into background and perturbations is not unique,
but it depends on the coordinates choice, or gauge choice. An approach to prevent such issue is to
consider gauge-invariant combinations of perturbations, as fluctuations of gauge-invariant quantities
cannot be eliminated by a coordinate transformation.

4The factor 2 accounts for the two polarization modes of h;; , i.e. h*, h®.
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An extremely important quantity in modern cosmology is the tensor-to-scalar ratio,
which measures the ratio between the tensor over scalar power spectrum
A (k)
T =
AZ(k)

. (1.30)

Detecting a nonzero tensor-to-scalar ratio would be a a direct evidence of primordial
gravitational waves. Being tensor perturbations predicted by inflationary theory, the
tensor-to-scalar ratio is considered the ”smoking gun” of inflation. In addition, the
value of r is directly related to the energy of the inflation, giving us important clues
on the physics of fundamental interactions at very early times. To date, we still do not
have an estimation of r, the current most stringent upper limit on the tensor-to-scalar
ratio comes from the combined analysis of Planck and BICEP2/KECK data, yielding
r < 0.032 at 95% C.L. [42]. Future experiments, such as LiteBIRD, aim to reach a
sensitivity on 7 around 1073.

1.3.4 Primordial Imprint on CMB

To fully understand how primordial perturbations influenced the structure of the CMB
we observe today, one would have to solve the Radiation Transport equation. It is the
Boltzmann equation which describes the transport of photons under Thomson scatter-
ing with electrons, including gravitational effects. Following the formalism of [43], the
equation can be written as

2 (g.2) = C[T] + Gl (131)
Dn
where 7 is the conformal time, T = (0, Q + U, Q —iU) includes both temperature and
polarization, C is the Thomson collision term, which is functional of T itself, and G
represents the gravitational effects in a perturbed metric A, .

The Thomson scattering is the elastic scattering of radiation by a charged particle,
where both the kinetic energy of the particle and the photon frequency are conserved.
Consider the simple case showed in figure 1.5, where an electron is hit by a radiation
coming from the left and one coming from the top. The incident light shakes the
electrons, which in turn re-radiates the outgoing light. If the incoming radiations are
unpolarized but have different intensity, the scattered radiation is linearly polarized. In
other words, the Thomson scattering introduces linear polarization if the initial photon
distribution has a quadrupole pattern.

The gravitational contribution in equation 1.31 is the gravitational redshift

1. . L
Gl = "0’ his +n'hoi + 50" Viloo (1.32)

where, for a particular direction (n), the first term of the sum accounts for the stretching
of the expanding spatial metric, the second for the frame dragging and the third term for
the time dilation effects. These gravitational effects have an impact on freely streaming
radiation, producing anisotropies in both temperature and polarisation.

The radiation transport equation is commonly evaluated in harmonic space, thus
in terms of intensity I, and polarization E- and B-mode. The solution of the equation
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has been reported in [44, 45], we only summarize the most remarkable result: scalar
perturbations create only F-modes and no B-modes, tensor perturbations create both
E-modes and B-modes. This is explained by the fact that Thomson scattering can only
produce F-mode locally, B-mode cannot be generated by scattering, it arises from the
photons free streaming in the pertubated metric. Therefore, detecting a cosmological
signal in the CMB B-spectrum means having direct proof of the existence of primordial
tensor perturbations, with a direct estimation of the tensor-to-scalar ratio.

In this section, we have come to the conclusion that the polarisation of the CMB,
in particular of the B-mode, holds fundamental information to conclusively confirm
the inflationary theory, while also giving us information on its nature. This turns the
characterisation of the polarisation of the CMB into one of the main goals of modern
cosmology. However, this goal is extremely challenging because it requires a precision
in measurements and modelling of the sky that has never been achieved before.

Quadrupole
Anisotropy
N\ e
Y
Thomson
» Scattering
-
e
€
Linear
Polarization

Figure 1.5: Simplified representation of Thomson scattering, showing how from two
unpolarised radiations, a linearly polarised one could result. [46]
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Chapter 2

CMB Detection Challenges

low-frequency noise and galactic and extra-galactic
instrumental systematic effects foregrounds

clusters
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Figure 2.1: CMB experiment looking for B-modes through a maze of contaminants.
Credit: J. Errard. https://claraverges.github.io/cmb_science.html

2.1 CMB foregrounds

The Cosmic Microwave Background radiation is an enormous source of information that
allows us to discover the origin and evolution of the universe. The cosmological commu-
nity has turned its efforts to the detection of the polarisation of the CMB, in particular
the B-mode. The weakness of primordial B-modes makes their detection a complicated
technological challenge, requiring highly sensitive experiments and sophisticated con-
trol of systematics. As showed in figure 2.1, even though we were able to control the
instrumental effects, we need to make our way through a forest of contaminants.
Ground-based experiments, although easier to construct and control, have to deal
with contamination from the atmosphere. Space-based experiments are much more
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complex experimentally, but allow the barrier of the atmosphere to be bypassed. Past
these local layers, at microwave frequencies what we observe is a complex radiation,
where the contribution of the CMB is minimal. Most of the signal comes from as-
trophysical processes emitting in the microwave frequency range. Those Galactic and
extragalactic emissions are called CMB foregrounds. To complete the journey to the
B-modes, let us mention that even if we manage to overcome the huge barrier due to the
foregrounds, there are other difficulties around the corner. Power leakage from intensity
to polarisation, mainly produced by systematic effects, must be taken into account and
corrected. Moreover, we should decouple the F-modes from B-modes, adjusting for
possible leakage. One cause of leakage are gravitational lensing effects due to the large
scale structure of the universe, such as distant galaxy clusters.

In this work, we mainly focus on the enormous difficulty we face in characterising
and separating the different Galactic foreground emissions. Figure 2.2 shows the fre-
quency dependence of those emissions in the microwave sky. In temperature, the CMB
is sub-dominant everywhere except in the frequency range between 70 and 100 GHz. In
polarization, the CMB is always sub-dominant. There is a minimum in the polarised
foreground emissions in the 70-100 GHz range that is, however, stronger than the po-
larised primordial signal. For this reason, this range is typically used as a reference to
separate the Galactic emissions in the so-called high and low frequency foregrounds. We
will explore the physical origin of those emissions, and describe some of their features
in intensity and polarisation.
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Figure 2.2: Main components of the microwave sky in temperature (left) and polariza-
tion (right) at different frequencies. The (vertical) grey bands show the Planck channels.

8]

2.1.1 Thermal dust

At high frequencies, indicatively greater than 100 GHz, the component that dominates
the celestial signal is the thermal dust radiation. It is an electromagnetic radiation
produced by interstellar dust grains in thermal motion. The spectral energy distribution
(SED) is usually described by a modified black body spectrum

T(v) < VP B(v, Ty), (2.1)
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where B(v,Ty) is the standard black body spectrum, and f; € [1,2] is the opacity
spectral index of the grains. The latest Planck observations seem to be consistent with
this single black body model, although with a temperature not uniformly distributed
over the entire sky [47]. A higher temperature, 7'~ 19 K, is measured in the Galactic
centre than in the outer Galactic regions, T' &~ 15 K. This difference could be explained
by the high number of active star formations in the inner regions of the Galaxy [48]. The
latest measure of the spectral index by Planck is 5; &~ 1.6, slightly flatter compared to
past measurements, suggesting more power in frequencies around 100 GHz [49]. Recent
studies that include frequencies higher than those covered by Planck suggest that a
two-component modified black body model fits the data better than a single modified
black body model [50]. However, the analysis done with Planck alone find no significant
difference between the two models.

The radiation emitted by aspherical dust grains aligned with the magnetic field has
a polarized component. The net polarization fraction of thermal dust is about 5%,
but can reach values up to about 20% in some regions at high Galactic latitude. As
temperature, the polarized SED is well modelled by the modified black-body in equation
2.1 [51]. However, recent studies suggest that the presence of certain grains, silicate
and carbonaceous, can generate spectral differences between intensity and polarization
[52].

This characterisation of the thermal dust emission is based on the measurements
we obtain at particular frequencies, for example the Planck channels, whose features
are then extended to the entire frequency spectrum. This generalisation may fail in
case of frequency decorrelation. Recent analyses have shown that the decorrelation can
arise from the complex three-dimensional grain distribution which generates the dust
emission [53]. Incorrect modelling of the emission can lead to an incorrect recovery of
the CMB, and thus to an estimation of cosmological parameters, such as the tensor-to-
scalar ratio, with large uncertainties and even bias [54, 55, 42].

2.1.2 Synchrotron

Relativistic cosmic ray (CR) electrons accelerated by the Galactic magnetic field emit
photons, this radiation is called Synchrotron emission. The intensity of this radia-
tion depends on the CR density distribution, the electrons’ energy spectrum, and the
strength of the Galactic magnetic field. The energy distribution of the electrons can be
approximated by a power-law, N(FE) o E~P, with typical values close to p = 3 [56, 57].
Thus, the synchrotron spectrum can be described by T' oc BPt1)/2 18 where B is the
magnetic field strength, and 8 = —(p + 3)/2 is the synchrotron spectral index [58].
Typical values of 3, obtained at frequencies above a few GHz, range between -2.5 and
-3.5, with spatial variations of about £0.2 at the 1-o level [59, 60].

The synchrotron radiation is highly polarised. In a uniform magnetic field, it can
reach a polarization fractional of Il = (p+1)/(p + 7/3) = 75%. However, we observe
much smaller values, because of a geometric depolarization due to tangled magnetic
fields and superposition effects along the line-of-sight. In addition, at frequencies typ-
ically below 10 GHz, the synchrotron radiation is affected by the Faraday rotation. It
is a rotation of the radiation polarization plane as photons propagates through a mag-
netized plasma [61]. This rotation can lead to a depolarisation of the radiation, and a
mixing between the polarisation modes, ¥ and B, most notably in the Galactic plane
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region [62].

As for intensity, the polarized synchrotron emission is well described by a power law
with typical spectral index /3 of about -3 [63]. Recent analyses seem to indicate spatial
variations in the spectral index, with a tendency to steeper values from low to high
Galactic latitudes [64, 65]. The spatial distribution of the polarised radiation is not
uniform and extremely complicated. The emission is dominated by complex structures
both local and widespread, such as loops and filaments [66]. The presence of such
structures makes the statistics of the synchrotron emission strongly non-Gaussian and
anisotropic.

The synchrotron emission plays an important role at frequencies below 100 GHz,
becoming completely sub-dominant at higher frequencies. However, even when observed
at such low frequencies the characterisation of the synchrotron intensity is complicated
by degeneracy with other diffuse foreground emissions, as discussed in the next section.
This degeneration is not present in polarisation, making the synchrotron radiation the
most important source of CMB contamination at frequencies below 100 GHz. Some
of the concepts introduced in this section will be explored in more detail in the two
chapters following this one, devoted to presenting the work done to characterise the
polarised synchrotron emission.

2.1.3 Free-free

At frequencies below 100 GHz, the microwave sky reveals another two important Galac-
tic foregrounds: the free-free radiation and Anomalous Microwave Emission (AME).
Despite their different nature, due to the lack of a sufficient number of observations
available at these frequencies, the two emissions are still treated as degenerate.

The free-free emission, or thermal bremsstrahlung, is the product of free electrons
interacting with ionised gas. These gases are typically composed of ionised hydrogen
found in star-forming regions or in ionised bubbles around hot young stars, such as HII
regions. Hence, Ha emission maps are good tracers of the diffuse free-free emission at
radio wavelengths. [67]

The spectrum has a relatively flat spectral index (, with values of about -2.1, for
frequencies between a few GHz and 100 GHz [67]. This feature makes the free-free
radiation the dominant foreground near the foreground minimum, as showed in Figure
2.2. Free-free is intrinsically unpolarized, because electrons-ions interactions are random
in orientation and present no significant alignment with the Galactic magnetic field.
Thus, it is not expected to be a major concern for CMB polarization experiments.

2.1.4 AME

The Anomalous Microwave Emission (AME) refers to that excess of radiation that we
observe at frequencies below 70 GHz, which cannot be explained by the mechanisms
presented so far. Several sources have been proposed to explain its nature, the most ac-
cepted is the hypothesis of spinning dust. Radiation would then be emitted by rotating
dust grains with irregular shapes and electric charges. Different observations, such as
the measurements of the spectrum of the Perseus molecular cloud obtained by Planck,
as shown in Figure 2.3, support the spinning dust model. An alternative hypothesis
suggests that AME is the electric dipole emission from polycyclic aromatic hydrocarbon
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(PAH) molecules [68]. A further hypothesis is that AME is generated by magnetic dust
(MD) [69]. We do not exclude that these radiation sources may all contribute to AME,
but with different amounts.

AME is expected to be very weakly polarized, less than 5%. This has been confirmed
by recent studies on Galactic AME sources, such as molecular clouds [70, 71] and
supernova remnants [72, 73]. Studies suggest that a polarisation of the AME, albeit
small, could affect the observations of the CMB B-modes [55].
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Figure 2.3: Spectrum of the Perseus molecular cloud. The emission is well fitted by
free-free (orange), thermal dust (light blue), and two-component spinning dust: high
density molecular gas (magenta) and low density atomic gas (green). [74]

2.1.5 Other Contaminants

The emissions described so far represent the foregrounds that contaminate the sky in a
diffuse manner, however there are other emissions, mainly local, that play an important
role in the CMB analysis.

Galactic and extragalactic Point Sources are compact astronomical objects, such as
radio galaxies, quasars, active Galactic nucleus (AGN), and compact stellar remnants,
that emit radiation at all microwave frequencies. The emission coming from point
sources can be polarized due to the internal mechanisms of the sources. CMB analysis
at small scales can be strongly affected by the presence of these sources, which therefore
require special treatments such as masking or subtraction [75].

The Sunyaev-Zel’dovich (SZ) effect arises from the interaction of CMB photons with
electrons in galaxy clusters. This phenomenon causes a distortion in the CMB intensity
spectrum, but the effect is neglected in polarisation [76].

We also mention two foregrounds at frequencies higher than 100 GHz, which contam-
inate the sky intensity signal, but not polarisation. The Cosmic Infrared Background
(CIB), that is an isotropic extragalactic emission coming from different sources, such
as dusty star-forming galaxies, quasars and intergalactic stars. This emission is usually
studied taking into account the Galactic HI emission [77]. The CO (carbon monoxide)
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line emission, that arises from the excitation of CO molecules in Galactic or extragalac-
tic molecular clouds. This emission occurs at specific frequencies, associated with the
energy rotational transition of CO [78§].

Finally we recall a source of contamination already mentioned in the previous sec-
tions, the Grawvitational Lensing, which is not strictly speaking a foreground, but a
physical effect that directly affects the CMB. In a nutshell, the gravitational potential
of large-scale structures deflects the CMB photons, introducing changes in the power
spectra and higher-order statistics of the CMB fluctuations. Thus, lensing generates
small amounts of non-Gaussianity to the CMB and, most important, leaks power from
E- to B-modes. This contribution acts like white noise to the B spectrum, becoming
an enormous obstacle for the detection of primordial tensor modes.
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2.2 Foreground Characterization

Observational results show that foreground signals, in particular from our Galaxy, are
one of the major limiting factors of the observation of the CMB B-modes. Thus, the
precise measurement of B-modes involves the analysis of those contaminants. When
talking about foregrounds characterization, we usually refer to the investigation of mod-
els that describe the Galactic signal we measure, both spatially and spectrally. Specif-
ically, there are three aspects to be measured and modelled: angular power spectrum,
spectral energy distribution and morphology.

In the following sections we will give an overview of the most accepted and used
foregrounds models. We focus on the characterization of two Galactic polarised diffuse
contaminants: thermal dust and synchrotron. The reasons why it is important to
accurately study those Galactic emissions are presented in more detail in section 2.3.

2.2.1 Angular Power Spectrum

The angular power spectrum is a statistical measure that quantifies the amount of
fluctuations in the signal as a function of angular scale. It plays an important role in
the generation of realistic foreground simulations.

The angular power spectrum of the polarized thermal dust radiation has been char-

acterized in detail with Planck data at high frequencies [51]. It is well-described by the
power law
14
80
The parameter axy is called angular spectral index. In figure 2.4, the best-fit lines
to the Planck observations at 353 GHz are displayed. The spectra are compatible
with an index a ~ —2.4, and a B-to-E ratio of about 0.5. It has been measured a
weakly positive T'B correlation, but the EB signal is consistent with zero, with the
EB/EE ratio smaller than 3%. The latter result has gained significant importance
in studies of cosmic birefringence, which involves the rotation of the CMB plane of
linear polarization, a phenomenon that may indicate new physics beyond the standard
cosmological model. It has been shown that the birefringence angle can be measured
via CMB E B-spectrum [79]. However, this measurement could be strongly affected by
the contamination of EB from foregrounds [80].

The characterisation of dust angular spectra was performed by analysing the regions
of the sky far from the Galactic plane. However, this is not possible for the synchrotron
polarized signal, because of the relatively low sensitivity of current space-based observa-
tions, WMAP and Planck. The most comprehensive study on synchrotron polarization
prior to our work presented in chapter 3 were conducted using data obtained at 2.3 GHz
with S-PASS, a frequency quite distant from that of interest to cosmology [81]. This
motivated our work in characterising the diffuse synchrotron polarization analyzing the
observations of WMAP K-band and Planck 30 GHz frequency channels focusing on the
intermediate and low Galactic latitudes. This is done by fitting the model in equation
2.2 also for the synchrotron, where spectra are estimated in the sky regions allowed by
a set of customized masks, trying to maximise the diffuse synchrotron signal-to-noise
ratio. Full details of the analysis, including methodologies and results, are given in
chapter 3.

axy
CXY = AXY ( ) with XY = FE,BB,TE. (2.2)
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Figure 2.4: EE (red diamonds), BB (blue squares), and TE (black circles) thermal
dust power spectra at 353 GHz. Each panel represents a different region of the sky,
where the number in the name in the upper right corner recalls the fraction of sky. The
dashed lines represent power-law fits to the data points. The obtained indices of these
fits appear on the lower left corner of each panel. [51]
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2.2.2 SED

The spectral energy distribution (SED) measures the dependence of the signal on the
emission frequency. We have already anticipated concepts in the previous section, here
we discuss them in more detail, focusing on polarisation.

The SED of the polarized thermal dust radiation is modelled by a modified black-
body with a power-law emissivity

Q@) _ (Ao (N 5 i

(@) - () (o) oo 2
where Ag y are the amplitudes of the dust in brightness temperature evaluated at the
pivot frequency vy, and B, is the Planck function. Both spectral parameters 3(n) and
T(n) vary spatially. According to Planck data, the average polarized dust emissivity
is f = 1.55 £ 0.05, and the temperature 7'(n) has values ranging between 14 and 26 K
[63]. Some more complex models include the fact that dust comprises different types
of materials, each with a different emissivity, however the model for each sub-species of
dust remains the same [82].

The polarized synchrotron SED is usually modelled as a power law. Nevertheless,
the hypothesis of a more complex model which includes a curvature factor is gaining

round
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In this equation §(n) is the usual spectral index, whereas ¢(n) is a parameter that
quantifies deviations from a simple power law, due to various physical effects such as
synchrotron self-absorption, cosmic ray’s aging effect, etc. In principle, both parameters
could vary spatially. In practice, this model is commonly simplified by neglecting the
curvature and using a constat value for 5. This is due to the fact that polarisation
data at frequencies where the synchrotron dominates have still low sensitivity. On this

consideration, in chapter 3 we present our work done to fit the synchrotron spectral
index [ to the observations of WMAP K-band and Planck 30 GHz frequency channel.

2.2.3 Morphology

What makes the study of foregrounds even more complex is their morphology. The
Planck maps of thermal dust emission, as showed in figure 2.5, are characterised by a
dense and intricate filamentary structure distributed over the whole sky. Planck analy-
sis of the diffuse interstellar medium (ISM) points out how the structures of interstellar
matter tend to be aligned with the magnetic field projected onto the plane of the sky
(Bpos) [83]. This feature makes dust emission an excellent candidate for studying the
interplay between matter and magnetic fields in the ISM.

The estimated mean polarization fraction of the filaments is about 11%. Although
small, the relationship between filaments and dust polarisation plays an important role.
The preferential alignment between anisotropic density structures and the interstellar
magnetic field could be the cause of the B/E asymmetry [84]. A recent study proposes
that the misalignment of ISM structures with the Bppg can generate positive T B,
implying a non-zero Galactic EB [85].
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Regarding synchrotron emission, although we currently have less information com-
pared to dust, an equally complex structure is expected. The all-sky map at 408 MHz
[86, 87, 88], often referred as the Haslam map, shows that the synchrotron intensity
is mainly generated by cosmic rays accelerated by shock fronts in supernova remnants
(SNRs) and pulsar wind nebulae (PWN). Outside the Galactic plane, the strong emis-
sion originates mostly from filamentary structures. The North Polar Spur (NPS), or
Loop 1, is the most obvious feature, but others have been observed: the Cetus arc (or
Loop II) [89], Loop III [90], and Loop IV [91]. Those filaments are even more visible
in the polarized sky. Studying WMAP polarization maps, 11 filaments have been iden-
tified and studied [66]. The true origins of filaments are still poorly understood. The
most widely accepted progenitors of these large structures are old and nearby supernova
remnants [92].

The presence of complex structures makes the statistics of the synchrotron emis-
sion strongly non-Gaussian and anisotropic at large scales, even in the diffuse region.
Studies of the 408 MHz intensity map show that the level of non-Gaussianity remains
significantly high (> 30) on small angular scales, ~ 1.5° [93, 94]. Nevertheless, several
models simulating synchrotron emission assume that the small scale fluctuations are
statistically isotropic and Gaussian [95, 96, 97, 98].

This lack of information regarding polarised synchrotron emission prompted our
work in chapter 4. We have characterised some of its morphological and statistical fea-
tures, analyzing the observations of the WMAP K-band and Planck 30 GHz frequency
channels in a region of the sky where the emission is predominantly diffuse. Full details
of the analysis, including methodologies and results, are given in chapter 4.

Dss3 A
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Figure 2.5: Left: Thermal dust model intensity map D353, computed from a modified
blackbody fit to the 353 GHz Planck data. Right: map of the lower eigenvalue A_ of
the Hessian matrix computed at each pixel. The map of A_ highlights the filaments in
the D353 map. See reference [84] for details.
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2.3 Foreground Science

The microwave sky is a forest of emissions coming from different astrophysical processes.
The study of these signals has always been of great interest to the astrophysical com-
munity. However, the need for accurate CMB B-mode measurements has increasingly
led the cosmological community to also focus on these Galactic emissions. This has led
to the design of experiments that look in greater detail at those frequencies where the
cosmological signal is clearly sub-dominant, to complement cosmological observations.

In the following sections we present in more detail the motivations that lead cos-
mologists to study foregrounds. The same reasons that have motivated our work. In
the final section we will provide a summary of experiments that aim to observe these
Galactic emissions and their and their relevance for CMB studies.

2.3.1 Component Separation

The main purpose of foreground science is to extract the CMB from the sky signal.
The different strategies that aim to separate the different components that make up
the microwave emission are called Component Separation techniques. Yield at the
simplest level, the observed data (d) can be expressed as the sum of mixed sky signals
(s) and noise (n)

d=As+n (2.5)

where A is the mixing matrix among sky components. Component Separation algo-
rithms aim to solve the inverse problem, that is, to determine the sky components
given the data. This is done by mainly combining observations of the sky at different
frequencies, trying to resolve the degeneracy between the different emissions.

The Component Separation techniques are usually divided in two categories: Blind
and Parametric. Blind methods make minimal assumptions about the components,
such as the statistical independence of the sources or the knowledge of the spectral
dependence of the CMB, but do not require a general physical modeling of the sky
components. The Internal Linear Combination (ILC) [99] is the simplest blind method,
which simply assumes that the CMB signal is constant, in units of thermodynamic tem-
perature, and uncorrelated with the other signals. From the ILC, multiple extensions
have been developed, such as NILC [100], GNILC [101] and cMILC [102]. More complex
methods that are however based on linear combinations are SMICA [103] and SEVEM
[104], which, together with NILC, played an important role in the Planck pipeline.

Parametric methods require modelling of the different components, including Galac-
tic foregrounds. Those methods benefit from prior information, as the foregrounds
SEDs, to disentangle signal sky components. There are many implementations of this
technique in the literature, the one used in Planck is Commander, a Bayesian parametric
method that allows the reconstruction of both CMB and foreground maps [105]. Other
remarkable methods are FGBuster [106] and B-SeCRET [107].

In recent years, innovative techniques, such as clustering algorithms, have been
developed in order to improve both blind, as NILC [108], and parametric, as FGBuster
[109], methods. At the same time, new methods based on machine learning algorithms,
such as neural networks [110], are emerging.

All these techniques agree that foregrounds represent a huge obstacle that needs
to be mitigated in order to achieve the CMB. Among these, parametric methods di-
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rectly require characterisation of these emissions, especially in polarisation, where our
knowledge is still limited.

2.3.2 Models and Simulations

Having a good characterisation of foregrounds, and therefore models describing their
features, allows us to generate accurate simulations of the sky microwave emission.
Simulations are crucial in cosmology for several reasons. Here we describe some of
the many advantages of having precise sky models and simulations, including those of
Galactic emissions.

As discussed in the previous section, parametric Component Separation techniques
require foregrounds models to extract the CMB. Nevertheless, even blind methods in-
directly need accurate foreground information. This is because all Component Separa-
tion methods require simulations for validating and benchmarking pipelines and results.
Simulations help to assess effectiveness, limitations, and potential biases of the different
techniques. Apart from validation, precise simulations could also help the process of
defining and optimising the separation technique.

Sky models and simulations play also a crucial role in the design and optimisation
of instruments. Having examples of the sky they are going to measure, it is possible
to better understand how different observational strategies, frequency coverage, and
instrumental configurations could affect the CMB observations. For example, it is
possible to self-calibrate instruments by forcing the observed E B angular power cross-
spectra to be zero. However, this method necessarily depends on the contribution of
the foregrounds to the EB spectrum [111].

Simulations are essential for parameter and error estimation for two reasons. First,
they allow us to make accurate forecasts of cosmological parameters under certain ex-
perimental conditions. This is important when proposing future experiments. Second,
when simulations are compared with data, they provide a framework for quantifying the
contaminant impact on parameter estimation in terms of uncertainties. For example, it
is possible to have a robust measure of the cosmic birefringence angle from CMB EB
spectrum, only if realistic dust models are taken into account [80].

2.3.3 Current Observations of Foregrounds

There is a large effort within the CMB community in order to measure the tensor-to-
scalar ratio, with a large number of currently on-going or planned experiments whose
main goal is to reach a sensitivity on r down to 1073. As shown so far, the way to get
to the CMB B-modes is through the complex foreground science.

Thanks to the advent of the new generation of ground and space-based telescopes,
which we mentioned in section 1.2.1, we expect to obtain very relevant information
about foreground emissions. However, a new class of experiments, observing frequencies
far from the range where the foreground emission is minimum, is emerging and becoming
increasingly decisive. These are characterised by the fact that the study of foregrounds
is a fundamental part of their objectives, in order to pave the way for next-generation
CMB-oriented experiments.

There are important experiments already observing the sky at frequencies below
the minimum emission of foregrounds, some of which are listed below. The QUIJOTE
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(Q-U-I JOint TEnerife) experiment consists of two telescopes observing the northern
sky emission in the microwaves frequency range 10-42 GHz [112]. It provides unique
information to characterize the Galactic and extragalactic physical processes such as
synchrotron radiation and AME. Observations of the sky at even lower frequencies
were obtained through the S-Band Polarization All Sky Survey (S-PASS), a survey of
polarized radio emission taken with the Parkes radio telescope at 2.3 GHz [113]. The
C-Band All Sky Survey (C-BASS), is an on-going project to map the whole sky both
in temperature and polarization at 5 GHz, whose observations will be publicly released
soon [114].

At frequencies above 100 GHz, there are several experiments that will bring great
information about foregrounds and lensing, such as SO and SPT-3G, already mentioned
in section 1.2.1. Additionally, other experiments include Taurus, a balloon-borne ex-
periment that will measure over 70 per cent of the sky in four frequency bands within
the range 150-350 GHz [115].
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2.4 Parameter Estimation

A major challenge in modern cosmology is the determination of the cosmological pa-
rameters that together describe a model for the universe, such as the ACDM. Therefore,
scientific advances require these parameters to be estimated with increasing precision.
In the context of the CMB, this translates into the demand for progressively more
precise measurements of the primordial radiation.

In the previous chapters, we have seen some of the challenges we face when mea-
suring the CMB, and how the observational community seeks to address them. Exper-
imentally, by building increasingly precise instruments. Analytically, by implementing
increasingly sophisticated Component Separation algorithms. However, it is physically
impossible to have a direct and uncontaminated measurement of the CMB. Even the
best instrumentation and the most advanced Component Separation algorithms leave
noise and foreground residuals. Therefore, parameter estimation must always take these
contaminants into account, which makes the task non-trivial.

2.4.1 Probability notions

The estimation of parameters is based on probabilistic concepts. Probability represents
a quantitative measure of the uncertainty associated with an event. In cosmology, it
is used to assess the likelihood of a theory, against observed data. In this section we
review some fundamental concepts of probability.

Given a certain theory, what we have is the probability of obtaining a data set
(d) given a set of parameters (@) defining the theory. Introducing some notation,
this probability is described by the function P(d|@), often referred to as likelihood
function £(d|@). However, in estimating cosmological parameters, we are interested in
the inverse relationship. We are interested in the value of the theoretical parameters
given a data set, a quantity P(€|d) which is called posterior probability. To obtain the
latter we can use Bayes’ theorem

P(6|d)P(d) = P(d|@)P(0), (2.6)
such that P(dIg)P(g
Ploi) = “E 27)

In the last expressions, P(d|@) is the likelihood function, as explained, which quantifies
the extent to which the data set supports the parameter proposition. P(d) is the
probability of the data, it can be proved that it does not depend on the parameters
(), so we can safely ignore it. P(0) is the prior probability of the parameters, which
represents one’s beliefs about the theory, before data are taken into account. If we do
not assume any prior information, we can consider it uniform, then

P(]d) o £(d|6). (2.8)

The dependence on the prior can be problematic especially in cases where the data
are not very discriminatory. Instead, if the data do have discriminatory power, the
likelihood usually provides a good representation of the posterior probability. However,
if the prior is strong, even with discriminatory data, the prior may still play a substantial
role in the final estimation.
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2.4.2 Likelihood Estimators

Returning to our problem of estimating cosmological parameters. Given some cosmo-
logical observations, we can determine the parameters by looking to those values with
higher probability. Mathematically, we search for values that maximize the likelihood
function in the parameter space. This statistical method is called Mazimum Likelihood
FEstimator (MLE)

Orir = argmgaxﬁ(d\@). (2.9)

Parameter estimation based on MLE has proven to be a powerful and indispensable
tool. It not only provides an estimate of the parameter itself, but also its uncertainty.
If we approach the problem analytically, the value that maximises the likelihood is that
value for which the first derivative of the likelihood, with respect to the parameter itself,
is zero

dlog L
00
for simplicity we assume here that the likelihood only depends on one parameter # and

0 is the value that maximises the likelihood. The second derivative of the likelihood
with respect to the parameter

— 0, (2.10)
=0

_ PlogL

7= 002

(2.11)

0=0

represents the curvature of the likelihood function at its maximum value. It describes
how rapidly the likelihood function falls away from the maximum. When the curvature
is small, the likelihood changes slowly and the data are weakly constrained, resulting
on large uncertainty on the parameter. In contrast, a large curvature results in small
uncertainties.

The MLE uses a Frequentist approach because it estimates parameters purely based
on data. From a probabilistic point of view, this means having not any prior infor-
mation. However, in some cases of parameter estimation, we may already have a prior
knowledge of the parameters we want to estimate. Following the notation introduced in
the previous section, we have some belief distribution P(@), or prior, and after observ-
ing data, we have a new belief distribution P(€|d), or posterior. We can then estimate
the parameters by looking to those values that maximize the posterior distribution.
This statistical method is called Mazimum A Posteriori (MAP)

Oriap = arg max P(0|d) = arg max L(d|0)P(6). (2.12)

MAP reduces to an MLE in the case of uniform prior, in fact MAP is a generalisation
of MLE.

The MAP uses a Bayesian approach because it incorporates prior knowledge into
our estimate according to the Bayes’ theorem. There exist several other methods of
Bayesian estimation to select the central tendency from the posterior distribution apart
from the maximum®. These estimation methods fall under the branch of statistics called
Bayesian Inference. Without having a specific method of selecting the central tendency

IFor example, the median of the posterior is also considered a robust estimator for one-dimensional
problems.
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of our estimate, we can still obtain a confidence interval for the estimated parameter.
This is achieved by integrating the posterior

(00)51 = / P(6]d) o — / £(d|6)P(6) 6 (2.13)

where the extremes of integration determine the confidence interval.

2.4.3 Likelihood and CMB

In the context of CMB observations, given its very nature, we often have to deal with
N-dimensional multivariate normal random vectors (x). Thus, the likelihood takes the

form
L) = (27T)N/2(21et c)z P (_%(X ) CT(x - “)) (2.14)

where p is the mean vector and C is the covariance matrix. The observable x is the
data we obtain from telescopes as sum of the CMB signal and noise?. It can be studied
either in real space, as a pixelised map of the sky, or in spectral space through its
power spectrum. Given its expression, far from the maximum, the likelihood L(x)
typically becomes exponentially small. So it turns out to be much easier to deal with
the logarithm of the likelihood (—log £(x))?, which reads

1 1
—log L(x) = §(x — ) 'CH (x —p) + 5 log(det C) + const. (2.15)

Note that in a realistic scenario the likelihood is a complex object, and it is not always
possible to find analytically the maximum from the equation 2.10. Then one must
numerically evaluate the value of the likelihood for a reasonable range of values for the
parameter 6 and look for where the maximum lies.

The CMB we measure is only a statistical realisation obtainable from certain cosmo-
logical parameters. Apart from systematic errors and residual foregrounds, noise also
has a statistical component. Thus, to assess the result obtained from the actual obser-
vation, we need to compare it with a large sample of data obtained with simulations®.
Each simulation is the sum of signal and noise (x; = s;+n;), both of which are assumed
to be drawn from some particular distributions. The MAP searches for the value {6}
that maximises the posterior (or likelihood in case of MLE) for each simulation {x;}.
It thus provides a maxima distribution in parameter space, where each point represents
the value that maximises the posterior, or likelihood, for a particular realisation of the
signal plus noise. From this distribution it is possible to obtain the best estimate of
cosmological parameters and their uncertainty. Those values can then be compared
with the estimation found with the real observation of the sky.

2By noise we refer to that component of the observed signal that cannot be attributed to primordial
processes. Thus it includes experimental noise, foreground residuals and any other effects that distort
the primordial signal.

3We add the minus sign because numerically it is easier to look for a minimum, than a maximum.
Thus, what an MLE usually does is to look for the minimum of the function (—log £(x)).

4Foregrounds as well as systematic errors do not cancel out when averaged over many simulations,
so they must be taken into account in the likelihood itself.
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An important quantity in cosmology is the Fisher matriz, computed as the average
of the likelihood curvature over many realizations of signal and noise

0?log L 1/oC_,_ ,0C_,

If the data points are really distributed as a Gaussian, the expected errors on the
parameters are oy = 1/vF where F is evaluated at the likelihood true maximum.
This is a simple and direct method of obtaining the achievable uncertainty for an
estimated parameter. This is why it is widely used to generate forecasts for proposed
experiments. Nevertheless, we emphasise that this method of estimating uncertainty
is only accurate if the data are drawn from Gaussian distributions. Otherwise, this
provides an approximated estimation, often optimistic, of the uncertainty.

2.4.4 Parameter Forecasting

A wide variety of ground-based and space-based experiments, that are currently under
construction or in preparation, aim to measure the primordial tensor modes through the
B-modes of the CMB. The parameter quantifying such primordial tensor perturbations
is the tensor-to-scalar ratio (r). Thus, any experiment with this purpose, even before
actual development begins, needs a prediction of the precision with which this parameter
can be measured. This is generally referred to as parameter forecasting. The forecast
is usually calculated using simulations and a parameter estimator.

Simulations play a key role in the forecast of an experiment. They must contain all
experimental errors, including possible systematics and statistical noise. But also the
contribution of Galactic and extra-galactic foregrounds. These simulations are usually
generated from a sky model and a instrumental response model. Then the complete
pipeline is applied to the simulated CMB, just as one would do with real data. The
simulated CMB maps thus have the same characteristics that the data would have,
including the noisy foreground residuals.

From the CMB simulations, we can then infer the values of the cosmological param-
eters, such as r, and their uncertainties. However, even before starting this inference
process, non-trivial choices are required. The first choice is the observable, which can
be directly the pixel values of the CMB sky map, or its power spectrum. The choice of
sky region to be analysed is also an important choice. Once the observable is chosen, we
need to define the likelihood function, such as the one in equation 2.14. This choice may
depend on several factors, both mathematical and computational, and approximations
are often necessary. Finally, we need to define which approach to use to estimate the
parameters and their uncertainties. One can use a frequentist approach, such as the
MLE, or a Bayesian approach, as MAP where a prior probability is required. Each of
these individual choices can considerably influence the final result of the estimate.

In Chapter 5, we analyse the importance of these choices - observable, sky region,
likelihood and statistical approach - in the estimation of the tensor-to-scalar ratio. Since
we are mainly interested in the impact of such choices in estimating the uncertainty of
r, we will use simple simulations of CMB and white noise, bypassing the difficulties in
generating realistic simulations.
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Chapter 3

Characterization of the polarized
synchrotron emission from Planck

and WMAP data

The purpose of this work is to characterize the diffuse Galactic polarized synchrotron,
which is the dominant CMB foreground emission at low frequency. We present EE,
BB, and EB power spectra estimated from polarization frequency maps at 23 and 30
GHz as observed respectively by the WMAP K-band and the Planck lowest frequency
channel, for a set of six sky regions covering from 30% to 94% of the sky. We study the
synchrotron polarization angular distribution and spectral energy distribution (SED) by
means of the so-called pseudo-C, formalism, provided by the NaMaster package, in the
multipole interval 30 < ¢ < 300. Best results are obtained cross-correlating Planck and
WMAP data. The EE and BB angular power spectra show a steep decay of the spectral
amplitude as a function of multipole, approximated by a power law CFEBB  (ore.55
with app = —2.95 + 0.04 and agp = —2.85 + 0.14. The B/E power asymmetry is
proved with a B-to-E ratio, computed as the amplitude ratio at the pivot multipole
¢ = 80, of 0.22£0.02. The EB cross-component is compatible with zero at 1o, with an
upper constraint on the EB/EE ratio of 1.2% at the 20 level. We show that the EE
and BB power-law model with null EB cross-correlation describes reasonably well the
diffuse synchrotron polarization emission for the full sky if the bright Galactic center
and point sources are masked. The recovered SED shows power-law spectral indices
Ber = —3.00 £0.10 and g = —3.05 + 0.36 compatible between themselves, in the
frequency range 23-30 GHz. Results also seem to indicate that the SED gets steeper
from low to high Galactic latitude.

3.1 Data and Simulations

3.1.1 Data

For our analysis, we will use Planck and WMAP data. Planck was a space-based
experiment consisting of two instruments, the Low Frequency Instrument (LFI) and the
High Frequency Instrument (HFT), observing both the total intensity and polarization of
sky photons, and covering a wide frequency range from 30 to 857 GHz with 9 frequency
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channels. In this work, we use the 2018 data release (PR3) [8], obtained from the
full set of observations, focusing on the lowest channel at central frequency 28.4 GHz.
In Appendix A.2.1, we use instead the 2020 Planck release (PR4), computed with
the NPIPE processing pipeline [116], in order to test the consistency with our main
results. Planck data were downloaded from the Planck Legacy Archive! (PLA) and
then downgraded down to the pixel resolution corresponding to the Ng;q. = 512 Healpix
parameter. Note that the resolution of the PR3 (PR4) 30 GHz Planck map corresponds
to an effective beam of FWHM = 32.39 (31.5) arcminutes.

WMAP was also a space-based experiment, which observed the total intensity and
polarization of the sky, using a narrower frequency range, from 23 to 94 GHz, with
five frequency bands. In our analysis, we include the lowest frequency channel of the
WMAP dataset, namely the K-band centered at 23 GHz [117], obtained from the 9-
yr data release. All WMAP products have been downloaded from LAMBDA? and
have been analysed at their original resolution (N4, = 512, with an effective beam of
FWHM=0.88°).

In order to estimate the power spectra from only Planck data, we cross-correlate the
two half-ring 30 GHz maps, that are generated using only the first and the second halves
of each pointing period, respectively. Using the cross-correlation of splits, rather than
the auto-spectra from the full mission data, has the advantage of cancelling instrumental
noise and reducing the effect of systematics. For the only- WMAP analysis, we follow
an analogous procedure and use as splits the co-added maps from 1 to 4 years on
one side, and from 5 to 9 years on the other. Power spectra results are also obtained
from the cross-correlation of WMAP and Planck maps, using in this case the full-
mission Planck and the co-added nine-year WMAP maps. By cross-correlating data
from independent experiments, we can use directly the full data set rather than the
splits, since the instrumental noise is uncorrelated and the effect of the systematics
is also reduced. This also allows us to use the larger number of simulations which are
available at the PLA for the Planck full mission case with respect to the half-ring splits.
The full-mission Planck maps have significantly lower noise than the nine-year WMAP
maps, however, the synchrotron brightness in the Planck lowest frequency, at 28 GHz,
is around half that in the WMAP K-band, at 23 GHz, what ends up in very similar
foreground signal-to-noise for both experiments. According to [60], at a scale of 1°,
the median (mean) signal-to-noise for WMAP K-band is 2.47 (3.77) while for Planck
30 GHz we have 2.64 (3.72). Nevertheless, each map is better in some sky regions
because of the different scan strategies. Maps are shown in Figure 3.1.

3.1.2 Simulations

In order to estimate the errors of our set of power spectra and evaluate the goodness of
fit, we use simulations. The simulations for the two instruments, both splits and full-
mission, contain the sum of CMB, foregrounds and noise. A foreground simulation is
generated with the Python Sky Model package® (PySM) [98], currently used for the sky
modeling of many CMB analysis, at Planck and WMAP frequencies with the considered

Ipla.esac.esa.int
2lambda.gsfc.nasa.gov/product /map
3pysm3.readthedocs.io
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Figure 3.1: Left: Q (top) and U (bottom) polarization all-sky maps of the Planck
30 GHz frequency channel [8]. Right: Same maps for the WMAP K-band [117]. All
maps have a resolution of 1°.

resolutions?. The chosen model includes two polarized components: thermal dust,
modelled as a single-component modified black body (d1), and synchrotron emission,
described as a power law scaling with a spatially varying spectral index (s1). AME
and free-free emission are not included, since they are assumed to be unpolarised.
We recall that the PySM synchrotron model was obtained combining the first WMAP
polarization data with the Haslam total intensity map at 408 MHz [86], including a
model for the Galactic magnetic field [118].
Note that we are always using the same foreground model for all simulations. This
procedure has also been followed in previous analyses [51, 119] due to the fact that
foregrounds are deterministic and also to the difficulty of producing different realistic
foreground models. However, this procedure does not include the uncertainties associ-
ated to the knowledge of the foreground model, which are difficult to quantify, what
could lead to a covariance matrix somewhat underestimated. In order to test the ef-
fect of the foreground model on our results, we repeated the analysis for our reference
case using an alternative PySM model ("d2s2”) finding fully compatible results.” We
remark that it is very important to include an estimation of the foreground emission,
even if fixed for all simulations, since this introduces significant variance in the power
spectra due to the presence of chance correlations between the foregrounds and the
other components.

For the Planck analysis, we use the CMB and noise PR3-2018 simulations (FFP10)

“Note that this applies to the analyses including WMAP and/or PR3. PR4, however, provides full
simulations including foregrounds, that have been generated by evaluating the Commander sky model
at the target frequency [116].

®Moreover, the analysis carried out using PR4 also considers a different (although again determin-
istic) foreground simulation, providing again consistent results (see Appendix A.2.1). This further
confirms the stability of our conclusions versus the considered foreground model.
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at the 30 GHz channel, generated using the end-to-end simulation pipeline [120], pro-
vided by the Planck Legacy Archive, which are also degraded to N4, = 512, the
resolution considered in our analysis. In particular, we use 600 FFP10 lensed CMB
maps [121], 300 full-mission LFI E2E simulations and 100 half-ring LFI E2E simula-
tions per split, being the number of the noise simulations limited by the availability
in the PLA. The LFI E2E simulations include noise and systematics due to realistic
instrumental effects, which are then processed with the same algorithms as for the flight
data. For a consistency test, we also use the new full-mission and A/B-splits Planck
PR4 simulations, but further details are presented in Appendix A.2.1.

For the WMAP analysis, we generate 300 CMB Gaussian realizations using the
power spectra from the Planck best-fit ACDM model [8] at the WMAP K-band channel
resolution, using the Healpy package® [122, 123]. In addition, we generate a set of 600
noise simulations consistent with the full WMAP 9-yr and 2 sets of 300 noise simulations
consistent with the split data sets. The full-data noise simulations are obtained from the
full pixel by pixel covariance matrix, while those for the splits are generated combining
the single-year covariance matrices from year 1 to 4 on one side and from year 5 to 9

on the other. The single-year and the full-mission covariance matrices are provided as
LAMBDA Products.

Shealpy.readthedocs.io
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3.2 Masks

Although Galactic foregrounds studies usually focus on regions at high Galactic lat-
itudes (since these are of greater interest for CMB analyses), these regions are very
affected by noise in the WMAP 23 GHz and Planck 30 GHz polarised maps. There-
fore, in order to have a higher signal-to-noise, our analysis will instead concentrate on
low and intermediate latitudes, by constructing a set of customised masks with different
sky fractions. For comparison, and in order to test the validity of our results also at high
Galactic regions, the (almost) full-sky case will also be considered. In particular, our
masks are constructed as a combination of a Galactic mask (that removes the brightest
Galactic centre), a point source mask and a series of polarization masks constructed by
thresholding the total polarised intensity (P = y/Q? 4+ U?) of the Planck 30 GHz map.
In this way, we end up with a set of five custom masks at intermediate and low Galactic
latitude, which provide a useful sky fraction from 30 to 70%. For completeness, we also
consider a 94% mask constructed simply combining the Galactic and the point sources
masks.

3.2.1 Galactic Mask

The emission of the central part of the Galactic centre has a very complex behaviour
and, therefore, can not be characterised with a simple power law model, as the one
considered in this work. Therefore, it needs to be excluded from our analysis. For this
we construct a customised Galactic mask in the following way.

First, as baseline, we exclude those pixels given by the 2015 Galactic plane mask (pro-
vided in the PLA) that leaves 97 per cent of the sky unmasked and that has been derived
from Planck higher frequency channels. Second, in order to adapt better our customised
mask to the considered data maps, we also exclude those pixels with P > 70 K in the
Planck 30 GHz channel and those with P > 280 u/K in the WMAP 23 GHz map, both
smoothed at 5°. The thresholds were set independently for each map in order to select
the best region around the Galactic centre, such that the results of the analyses were
robust while discarding only a small fraction of the sky.

In order to regularise the boundaries, the resulting mask is then smoothed with a Gaus-
sian beam with FWHM=2°. All pixels with values < 0.8 are considered for the mask
and, therefore, discarded from the analysis. The final Galactic mask retains a sky
fraction of fy, = 0.95 (see grey Galactic region of Fig. 3.2).

3.2.2 Point Source Mask

The previous Galactic mask is not enough to ensure the exclusion of all regions with
complex emission that do not follow a simple model for the power spectra. Indeed, we
have seen that very bright point sources, both Galactic and extragalactic, can have a
significant effect at the spectra at all scales. Therefore, we generate a point sources
mask as a combination of Planck and WMAP polarization point source masks.

For Planck, we use the mask for the 30 GHz polarised map of the SEVEM pipeline
(one of the four component separation methods used by the Planck Collaboration),
which consists of 195 point sources that have polarization detection significance levels
of 99% or more [63, 124, 125]. The WMAP point sources mask is generated from a
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point source catalog [126] of 22 objects, where each source is detected in polarization
with a significance level greater than 99.99% in at least one WMAP channel. After
combining these two masks, we smooth it with a Gaussian beam with FWHM=30
in order to enlarge the point source holes and, therefore, exclude from the analysis
additional pixels that can still be affected by their emission. In particular, we mask
only those pixels with values < 0.8. The final point sources mask covers about 1% of
the sky. The masked point sources can be seen in grey in Fig. 3.2.

3.2.3 Total Polarized Intensity Mask

The combination of the previous Galactic and point sources masks defines a preliminary
region (of around 6 per cent of the sky) that will be excluded from all of our analysis.
Once these pixels are removed, since for the characterization of the synchrotron emission
one should consider regions with a sufficient signal-to-noise ratio, we construct a set of
masks that select those areas with the largest polarization signal in the remaining 94
per cent of the sky. Thus, we mask those pixels below successively lower thresholds of P
in the Planck 30 GHz polarization map, smoothed to a 5° resolution (Gaussian beam).
The thresholds are chosen such that we select five regions that retain a fg, from 0.3
to 0.7 in steps of 0.1, as shown in Figure 3.2. As one would expect, this procedure
tends to mask mostly regions far from the Galactic plane, naturally excluding high
latitudes, and leaving unmasked the central regions in both hemispheres. The mask
selection process is described in more detail in Appendix A.1. In order to have masks
with softer boundaries, we smooth them with a Gaussian beam of FWHM=3° and
exclude all pixels < 0.5. Furthermore, in the resulting masks, we remove small isolated
"holes” and ”islands” with radius smaller than 5°, which could otherwise complicate
the spectra estimation. In this way, we have a set of 5 masks that, together with the
near full sky mask (that removes only the Galactic and point source regions) constitute
the basic set of masks for our analysis. Finally, before calculating the spectra and in
order to reduce leakage effects in the power spectra, these six masks are apodized using
the “C2” method of NaMaster” [127] with an apodization length of 3°, where pixels are
multiplied by a cosine function of their distance to the nearest fully masked pixel.

For our main results, we pick as the reference mask the one with fg, = 0.5, which is a
good compromise between the considered sky fraction and the signal-to-noise ratio, as
explained in Appendix A.1.

"namaster.readthedocs.io
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Figure 3.2: The different regions used to estimate the power spectra are shown. Note
that the valid pixels of a given mask are also allowed in all the masks that leave a larger
fraction unmasked. In this way, the sky fraction allowed by the 30% mask is showed in
dark red, the valid pixels of the 40% mask are given by the combination of the dark red
and orange regions, the 50% includes the dark red, orange and yellow areas, the 60%
contains the same regions plus the turquoise one and, finally, the 70% also includes the
light-blue pixels. The 94% mask only excludes from the analysis the grey region, which
corresponds to the combination of the Galactic and point source masks.
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3.3 Angular Power Spectra

In order to characterize the Galactic synchrotron polarization signal, we compute EE
and BB auto-spectra and EB cross-spectra on the set of six masks described in the
previous section. In particular, in order to deal with the presence of masks, which can
induce mixing of power between multipoles and between polarization modes, we use
the public code NaMaster [127], an advanced implementation of the pseudo-spectrum
method to estimate the power spectra on an incomplete sky. Although this type of
approach has been shown to be less optimal at large scales than Quadratic-Maximum
Likelihood methods, they provide comparable results for the range of scales that we
consider in this work, while being significantly faster (see [128]). NaMaster has already
been successfully used in different cosmological applications [119, 129, 130].

Pseudo-CF¥ are estimated with the NaMaster E-purification method, where the so-
called pure E mode is defined as the field that is orthogonal to all B modes. Similarly,
pseudo-CPP are estimated with the NaMaster B-purification method. The pseudo-CF?
are computed cross-correlating a pure E with a pure B field. Note that at large angular
scales (low multipoles) diffuse synchrotron emission dominates, while at higher multi-
poles (¢ > 250) noise, and possibly extragalactic point sources, can play an important
role. Taking this into account, we focus our main analyses in the multipole range 30
< ¢ < 300, binning with A¢ = 10 for multipoles 30 < ¢ < 200 and with A¢ = 20 for
multipoles ¢ > 200. We discard the lowest multipoles, since pseudo-spectra methods
are suboptimal at very large scales on a masked sky. Consistency of the results versus
a different choice of the multipole range (10 < ¢ < 400) is discussed in Appendix A.2.2.

We model the EE and BB synchrotron power spectra as a power law parameterized
by the index a and amplitude A evaluated on a pivot point ¢ = 80

XX xx (L \oxx
CXX = 4 (80) (3.1)
with XX = FFE, BB. The pivot point at £ = 80 corresponds to the most important
scale for measuring the synchrotron contamination to CMB because it is where the
maximum of the contribution from cosmological gravitational waves is supposed to
be located. We fit the EE and BB power spectrum estimated from the data to the
previous model (with a total of 20 degrees of freedom) with a nonlinear least-squares
algorithm provided by the SciPy [131] Python packages. Note that before performing
the fit, the CMB contribution is subtracted from the data at the spectrum level and
this is done by estimating the average CMB power spectra from CMB simulations using
the same NaMaster procedure as for the data. With this procedure, we only subtract
the average CMB signal, while the cosmic variance contribution is preserved in the
covariance matrices.

The EB cross-spectra is simply modelled as a constant

CFB = AFB. (3.2)

In this case we also perform a 2 fit, with a total of 21 degrees of freedom. In both fitting
processes, we take into account the full covariance matrices computed with simulations.
The effects of the instrumental beams and the pixel window function are also considered.

We first fit equations 3.1-3.2 independently to the power spectra estimated from
Planck 30 GHz and from WMAP K-band data. Then we fit the EE, BB and EB models
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to spectra obtained cross-correlating the WMA P K-band with the Planck 30 GHz maps.
The results are presented in the following subsections. In order to test the robustness
of the results, we also fit the same models to the power spectra estimated from the
Planck PR4 30 GHz [116] data and to the spectra obtained cross-correlating WMAP
and PR3 in a larger multipole range, results are presented in Appendix A.2.

3.3.1 Planck

We compute the EE, BB and EB power spectra cross-correlating the half-ring maps
of the Planck-LFI 30 GHz maps. Covariance matrices are estimated from 100 half-
ring simulations. We fit the model in equation 3.1 separately for E and B-modes, and
for EB we fit a constant (equation 3.2). The power spectra and their corresponding
fits are showed in Figure 3.3, each panel corresponding to a different mask. Both EE
(red diamonds) and BB (blue squares) spectra show a steep decay of the synchrotron
amplitude as a function of the scale. The goodness of the fit, reported in Table 3.1
in terms of 2, confirms that the simple power law model describes reasonably well
the synchrotron polarization power spectra in most cases. Even so, there are a few
x? values, especially for EB, which slightly exceed the expectation for the considered
distribution. This seems to be related to the limited number of simulations, which leads
to a misestimation of the covariance matrix. Indeed, when repeating the same analysis
using PR4 data, for which a larger number of simulations is available, the goodness of
fit improves in most cases, especially for the EB fit (see Appendix A.2.1 for details).
The effect of the number of simulations in also further considered in sections 3.3.2 and
3.3.3.

From Table 3.1, it is seen that, for all the considered masks, there is a systematic
difference between the best-fit values for the indices agr and agg. In particular, for
our reference mask (fgy, = 0.5), we find -2.9940.13 and -2.24+0.28, respectively, sug-
gesting a steeper decay of the diffuse synchrotron E-component with respect to the
B-component. By simply combining the errors quadratically, this implies that the two
indices are inconsistent at the 20 level. However, there may be correlations between
both quantities that are not being taken into account, implying that the combined er-
ror may be somewhat underestimated. In addition, the analyses presented in the next
sections do not show this behaviour. Therefore, this difference does not seem to be
significant. The B-to-E ratio is computed as the amplitude ratio at the pivot multi-
pole ¢ = 80, and it turns out to be around 0.27 (slightly varying with the considered
sky fraction). This amplitude asymmetry between the two polarization components is
confirmed for all the masks, even in the 94% case, showing that it does not seem to
be associated to specific regions but rather to be a feature of the diffusion synchrotron
emission in almost the whole sky.

The EB cross-spectra is compatible with zero for the whole mask set within 1o. We can
put an upper constraint on the diffuse synchrotron polarization EB power spectrum,
finding it to be smaller than 4.2% that of the EE spectrum. The constraint is computed
from the 20 error bar of the amplitude ratio A¥P /AFE of the reference mask in Table
3.1, with the ratio evaluated at the pivot multipole £ = 80. As far as we know, this is
the first direct constraint on the EB cross-correlation of the diffuse synchrotron emission.

We can compare our results with those found by the Planck Collaboration in 2018

63



using the Commander and SMICA component separation methods [63]. They estimated
the spectra from a different region, which considers intermediate and high Galactic
latitudes, thus finding smaller amplitudes than in our analysis, A¥F =2.340.1 (2.4 4
0.1) pK? for Commander (SMICA), but very compatible® EE power spectrum index
app = —2.84 £ 0.05 (—2.88 £ 0.04). The value found with Commander (SMICA) for
app = —2.76 £0.09 (—2.7540.07) is slightly different from ours, even if compatible at
20. This apparent discrepancy can be explained by the very different procedure used
in that work to extract the foreground signal (through a component separation method
that takes into account all frequency channels), the use of different sky regions as well
as a different power spectrum estimation method. Those differences are expected to
have a larger impact on the BB spectrum, rather than EE, because of the lower signal-
to-noise. The B-to-E ratio, around 0.34, is very compatible with the value we find for
our 94% mask, that is 0.3340.06, which is the most similar mask to that used in the
Planck work. Nevertheless, the B-to-E ratio compatibility holds also for our 30% mask,
that is 0.2940.04, which instead left unmasked mostly low latitudes.

Comparing our results with the ones found in 2018 with S-PASS [81] at frequency 2.3
GHz, we see some differences. In particular, the BB synchrotron spectra is found to
have a steeper decay, with app around -3, and the B-to-E ratio is about 0.5 (although
the specific values of these parameters vary strongly with the considered latitudes).
These differences could be explained by the different frequency of observation of both
experiments and, to a lesser extent, by the different regions considered for the analysis.
Indeed, at low frequencies we expect other physical effects to take place, such as the
Faraday rotation, depolarizing the synchrotron emission.

Foky 94% 70% 60% 50% 40% 30%
apE -3.094+0.11 | -28240.10 | -2.84 +0.12 | -2.99+0.13 | -2.87 +£0.11 | -2.87 £ 0.11
QBB 22224028 | -248 £0.24 | -231+£0.22 | -2.244+0.28 | -2.20 £ 0.33 | -2.44 £+ 0.35
APE[1073uK] | 4864+ 0.28 | 7.694+ 044 | 887+052 | 10.01 +0.62 | 12.07 £0.61 | 14.4 + 0.69
ABB[1073uK] | 1.624£027 | 1.92+029 | 261+£030 | 2724037 | 3.04+045 | 4.14 £ 0.59
ABBJAPE 0.33£0.06 | 025+0.04 | 0294 0.04 0.27 £ 0.04 0.25 +£0.04 | 0.29 £ 0.04
x%g (20 dof) 19.3 22.0 25.6 29.8 21.9 19.5
%5 (20 dof) 35.3 20.3 20.6 22.1 21.7 25.2
APB[1073uK] | 0044012 | 0.084+0.17 | 0044016 | -0.11+021 | 0.04 +027 | 0.02+0.35
AFBJABE 1 0.008 4 0.024 | 0.010 & 0.022 | 0.005 £ 0.018 | -0.011 + 0.021 | 0.004 + 0.022 | 0.002 + 0.024
X%g (21 dof) 30.4 34.5 27.8 37.1 41.1 32.2

Table 3.1: Planck results. Best-fit parameters with 1o errors and x? of the power-law
in equation 3.1 for EE and BB, and of the constant baseline in 3.2 for EB. Spectra are
computed cross-correlating the Planck 30 GHz half-ring maps, for each of the six sky
masks described in section 3.2.

8 Along this work, when referring to compatibility between two values (either obtained here or in
relation to previous results), unless otherwise stated, we mean that the difference of the two central
values is less than 20. In this case we take 0 = \/o? + 05 with o; the errors of the compared values.
Note that this combined error is just an approximation, since it does not take into account possible
correlations between the two considered quantities.
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Figure 3.3: Planck results. Top panels: EE (red diamonds), BB (blue squares) pseudo-
spectra, bottom panels: EB (purple squares) pseudo-spectra, at the nominal frequency
30 GHz. Spectra are computed cross-correlating the Planck 30 GHz half-ring maps, for
each of the six sky masks, identified by the unmasked sky fraction. The dashed lines
are the best fits to the data points. The indices « (top panels) are the exponent of the
fitted power law 3.1 and the amplitudes Agp (bottom pannels) are the constant fitted
in equation 3.2.
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3.3.2 WMAP

We compute the EE, BB and EB power spectra for the WMA P K-band cross-correlating
the co-added year maps from 1 to 4 with the co-added year maps from 5 to 9. Covari-
ance matrices are estimated from 300 simulations per year-split?. We fit the model in
equation 3.1 separately for E and B-modes, and for EB we fit the model of equation
3.2. The power spectra and the corresponding fits are showed in Figure 3.4 while the
best-fits parameters are given in Table 3.2.

As for Planck, EE and BB spectra show both a steep decay of the synchrotron
amplitude as a function of scale. For the reference mask (fsr, = 50%), we find app =
—2.92 + 0.07 and agg = —2.84 + 0.29, very compatible between them. This kind of
consistency holds for most of the mask set, supporting the hypothesis that the two
synchrotron polarization components decay as a function of multipoles with the same
ratio. The estimated B-to-E ratio ranges from 0.23 4 0.03 (for the 50 and 94% masks)
to 0.17 £ 0.03 (when considering 40% of the sky). This amplitude ratio between the
two polarization components suggests an even stronger asymmetry than the one found
for the Planck 30 GHz channel.

The EB cross-correlation is compatible with zero at 1o in the reference mask and
within 20 for the whole mask set. This is a further confirmation of the hypothesis
of null cross-component in the diffuse synchrotron polarization. The EB/EE ratio
evaluated at the pivot multipole ¢ = 80 , provides an upper limit to the EB amplitude
AEB S 0.044 AEE at 20.

The model of the synchrotron polarization spectra derived from WMA P, for most of
the masks, is consistent with the power law model with null EB cross-correlation that
we obtained for Planck, as showed in Figure 3.5, as well as with the Commander and
SMICA models [63]. However, WMAP data suggests a slightly smaller B-to-E ratio,
where the E-component is about 4.3 times larger than the B-component. This is again
also different from the S-PASS results [81], but, as previously mentioned, this could
be explained by the different frequency and, to a lesser extent, by the different regions
observed by both experiments.

3.3.3 WMAP-Planck cross spectra

From the previous WMAP and Planck individual analysis, we can conclude that our
characterization of the synchrotron polarization power spectra, provided the Galactic
centre and bright point sources are properly masked, holds reasonably well in the fre-
quency range 23-30 GHz and is supported by two independent experiments. Therefore,
we can improve the estimation of the model parameters by cross-correlating the data of
the two experiments, increasing the signal-to-noise while reducing the effect of possible
systematic errors. Differently from the previous analyses, we use the full-mission Planck
30 GHz and the co-added 9 years WMAP K-band maps instead of data splits. Since we
are cross-correlating two independent experiments, instrumental noise will cancel and
possible systematics will be reduced even when using the full data maps. In addition,

9Note that in the case of Planck half-ring maps, the number of simulations were limited to 100, as
provided by the Planck collaboration. For WMAP, we tested the robustness of the results versus the
number of simulations. We found that results were stable with 300 simulations, improving in particular
the error in agpr with respect to the use of a lower number of simulations.
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Figure 3.4: WMAP results. Top: EE (red diamonds), BB (blue squares) pseudo-
spectra, bottom: EB (purple squares) pseudo-spectra, at the nominal frequency 23
GHz. Spectra are computed cross-correlating the co-added WMAP K-band year maps,
for each of the six sky masks, identified by the unmasked sky fraction. The dashed lines
are the best fits to the data points. The indices « (top) are the exponent of the fitted
power law 3.1 and the amplitudes Agp (bottom) are the constant fitted in equation

3.2.
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Foky 94% 70% 60% 50% 40% 30%
app -2.91 £0.07 | -2.86 £0.07 | -2.88 £0.07 | -2.92 £ 0.07 | -2.89 &+ 0.08 | -2.95 & 0.08
app -3.07£024 | -3.16 £0.27 | -3.25+0.30 | -2.84 £ 0.29 | -3.36 &+ 0.37 | -2.93 £ 0.40
APE1073uK] | 21.83 £0.83 | 30.31 £ 1.02 | 34.87 £ 1.15 | 38.75 £ 1.29 | 4545 4+ 1.70 | 52.38 & 1.99
ABB1073uK] | 4.93+£0.66 | 6.03+08) | 7.00+1.09 | 873+ 1.20 | 7.60 4+ 1.43 | 10.16 + 1.75
ABBJAPE 0.23+0.03 | 0204003 | 02040.03 | 0234003 | 0174 0.03 | 0.19 & 0.03
X% (20 dof) 21.4 16.3 17.4 17.1 15.8 16.0
X% (20 dof) 23.0 23.0 24.8 22.9 28.7 29.4
APB1073uK] | 0724046 | 078+ 0.61 | 0794089 | 037+ 083 | 1114087 | 0.66 + 1.17
AFEB | AEE 0.033 & 0.021 | 0.026 & 0.020 | 0.023 £ 0.026 | 0.010 & 0.022 | 0.024 &+ 0.019 | 0.013 =+ 0.022
X%p (21 dof) 23.0 24.6 35.6 27.3 22.9 31.3

Table 3.2: WMAP results. Best-fit parameters with 1o errors and x? of the power-law
in equation 3.1 to EE and BB, and of the constant baseline in 3.2 to EB. Spectra are
computed cross-correlating the co-added WMAP K-band years maps, for each of the
six sky masks described in section 3.2.

we can benefit of the larger number of simulations available, that yields to smaller errors
on the estimated parameters.

We generated 600 spectra cross-correlating Planck and WMAP simulations to esti-
mate the covariance matrices. Being the Planck noise simulations limited to 300, we
used each of these noise simulations twice'. Even if the simulations are not completely
independent because of the limited number of the Planck noise simulations, the other
two components (CMB and WMAP noise) are still fully independent, giving a better
statistics which improves the estimation of the covariance matrix. Although for the sake
of brevity we omit the results for the Planck-WMAP cross-spectra derived from the
split data, they are fully compatible with the results presented in this section. Fig. 3.7
shows the EE, BB and EB power spectra and the best fits obtained from the WMA P-
Planck cross-correlation analysis, Table 3.3 provides the best-fit parameters and the >
values.

For our reference mask (fs, = 50%), the EE and BB power spectra of the diffuse
synchrotron emission show a steep decay as a function of multipoles with consistent
power spectrum indices aggp = —2.954+0.04 and agg = —2.85+0.14. The goodness of
the fits supports the validity of the power law model and the hypothesis of compatibility
between the steepness of the two polarization components. Considering the results for
the full set of masks shown in Figure 3.7, agg is very stable and compatible with
the nearly-full sky case (94%). Instead, the BB power law shows a slight tendency to
steeper values when including high latitudes. The B-to-E ratio for the reference mask
is found to be 0.22 +0.02 and it ranges from 0.20 in the 94% mask to 0.25 for the 30%
mask, which shows again how the foreground E-component dominates the polarization
emission over the B-component at low frequency.

We find that the difference between the two polarization components, both in amplitude
and steepness, is larger when considering the nearly full-sky case, whereas it tends to
decrease when considering mainly regions closer to the Galactic plane (where the signal-
to-noise is higher). In any case, the results computed for the complete set of masks are

10A similar procedure has been followed to increase the number of simulations in [132].
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Figure 3.5: Comparison between the best-fit parameters found for Planck 30 GHz (filled
squares) and WMAP K-band (blank diamonds) to the models of equations 3.1 and 3.2.
lo and 20 errors are showed with thick and thin lines, respectively. To allow for a
better visualization, WMAP values are slightly shifted in the x-axis.

consistent at 20, except for the 94% mask (where consistency holds at 2.50). A more
precise characterization of the EE and BB power spectra with latitude would require
maps with better sensitivity in polarization.

The EB cross-spectra is consistent with zero at 1o for the whole mask set, therefore,

the hypothesis of null EB cross-correlation holds for the diffuse synchrotron emission
even when considering the nearly full-sky case. The spectra provided by the cross-
correlation of Planck and WMAP gives the most stringent upper limit to the EB
amplitude, found to be < 1.2% (20) of the EE amplitude, computed at multipole
¢ = 80.
As anticipated in section 3.3.1, we point out that the covariance matrices used in the fit
for EB could be underestimated because of the limited number of simulations, leading
to some larger x? values. We tested the dependency of x? on the number of simulations
using samples of different sizes, finding that a larger number of simulations lead to more
stable results and to lower values of 2.

These results point out that the two most important polarised foregrounds, thermal
dust and synchrotron, present some differences at spectra level. At high frequency the
thermal dust emission shows a power law decay with power spectrum index ay ~ -2.5
[51], less steep than the power spectrum index oy ~ -2.9 that we find for synchrotron.
Moreover, the B/E asymmetry for the synchrotron emission, around 0.22, is stronger
than the asymmetry found for dust, around 0.5. The observed EB/EE power ratio, for
both thermal dust and synchrotron, is smaller than about 0.03.

The results presented in this section for the cross-experiment analysis are, in gen-
eral, compatible with the single-experiment analysis of Planck and WMAP. Moreover,
the steepness of the power law model which describes the EE and BB power spectra
are compatible with the Planck component separation results presented in 2018 [63].
Nevertheless, the B-to-E ratio we find in the nearly full sky case is slightly smaller
than the ratio found by Planck in the intermediate and high latitudes. As discussed in
the previous sections, several differences appear when comparing our results with the
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model found with S-PASS [81], mainly due to the fact that they analyze maps at a
lower frequency, that is 2.3 GHz, and only at high Galactic latitudes. In particular, we
find a less steep and compatible decay for both EE and BB and a B-to-E ratio of about
0.22, where instead with S-PASS it is observed that at Galactic latitudes |b] > 30° the
mean value of the decay index is & ~ —3.15 and with a B-to-E ratio ~ 0.5 for |b| > 35°.

From our analysis and the comparison with the two mentioned works, we can con-
clude that our characterization of the synchrotron polarization power spectra can be
extended to high Galactic latitude, thus to the full sky after removing the brightest
regions, in the frequency range 23-30 GHz. Instead, we cannot exclude that at differ-
ent frequencies, in particular smaller, the synchrotron polarization power spectra could
deviate from our characterization due to some physical effects.

In Appendix A.2 some robustness tests are presented, which confirm the results
obtained in section 3.3. In particular, in section A.2.1 we repeat the same analysis
cross-correlating the A/B detector splits of the 2020 Planck NPIPE release (PR4). In
section A.2.2, we test the same power law model in a larger multipole range (10 < ¢ <
400). Finally, in Appendix A.3, we also analyse and test the model independently in
the Northern and Southern hemisphere, finding consistency with the results presented
in this section.

Foky 94% 70% 60% 50% 40% 30%
ape 2293 +£0.05 | -2.88+0.05 | -2.91 +£0.05 | -2.954+0.04 | -2.94 + 0.05 | -2.95 4+ 0.07
apg 2326 £0.12 | -3.11+£0.15 | -3.04 £ 0.15 | -2.854+0.14 | -2.97 + 0.15 | -2.79 + 0.15
APP[1073uK] | 10.26 + 0.30 | 14.09 + 0.33 | 16.02 4+ 0.40 | 17.88 + 0.39 | 21.02 £ 0.50 | 24.72 + 0.83
ABB[1073uK] | 2.02+£0.14 | 292+023 | 3554026 | 3994026 | 4924032 | 6.06+ 0.38
ABB [ AEE 0204 0.01 | 02140.02 | 02240.02 | 0224002 | 0234002 | 0.25+0.02
x%g (20 dof) 28.3 19.9 20.2 13.9 15.9 30.2
%5 (20 dof) 12.7 17.7 18.5 14.5 16.2 15.1
AEB [1073uK] | 0.0240.06 | 0.094+0.10 | 0.05+0.11 | 0084011 | 0.08+0.12 | 0.04 £0.14
AFBJAEE 10,002 & 0.005 | 0.006 & 0.007 | 0.003 & 0.007 | 0.005 £ 0.006 | 0.004 £ 0.005 | 0.002 £ 0.006
X%g (21 dof) 23.0 37.1 36.4 29.5 24.6 23.6

Table 3.3: Planck- WMAP results. Best-fit parameters, 1o errors and y? values for the
power-law in equation 3.1 for EE and BB, and for the constant baseline in 3.2 for EB.
Power spectra are computed by cross-correlating the co-added 9 year WMAP K-band
maps and the full-mission Planck 30 GHz maps, for each of the six sky masks described
in section 3.2.
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Figure 3.6: Planck-WMAP results. Top: EE (red diamonds), BB (blue squares)
pseudo-spectra, bottom: EB (purple squares) pseudo-spectra. Spectra are computed
cross-correlating the co-added 9 year WMAP K-band maps and the full-mission Planck
30GHz maps, for each of the six sky masks, identified by the unmasked sky fraction.
The dashed lines are the best fits to the data points. The indices « (top) are the ex-
ponent of the fitted power law 3.1 and the amplitudes Agp (bottom) are the constant
fitted in equation 3.2.
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Figure 3.7: Planck- WMAP results. Best-fit parameters to the models of equations 3.1
and 3.2 computed on the cross-spectra of WMAP K-band and Planck 30GHz. 1o and
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20 errors are showed with thick and thin lines, respectively.
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3.4 Spectral Index

In the previous section we focused our analysis on the characterization of the polariza-
tion power spectra of Planck and WMAP at low frequency. However, since we have
observations at different frequencies, nominally at 23 and 30 GHz, we can also get
insights of the behaviour of the diffuse synchrotron polarization with frequency.

3.4.1 Methodology

The synchrotron spectral energy distribution (SED), both in temperature and polar-
ization, is generally described for each pixel by a power law!!

S =S, (i)ﬂ (3.3)

%)

where Sy is the foreground amplitude of a particular pixel at the pivot frequency v
and [ is the energy spectral index that we assume spatially constant for simplicity.
The modelling of the synchrotron SED in polarization as well as the knowledge of the
spectral index (3, are essential to test and perform component separation in current and
future CMB polarization studies.

From equation 3.3, we can get the relationship between the amplitudes of the power
spectra of the WMAP K-band and the Planck 30 GHz maps for the two polarization
components E and B

(AXX)WMAP _ (AXX)Planck (V (3.4)

WMAP\ 28xx
]/Planck >

with v"WMAP — 23 GHz, vFlen* = 284 GHz and XX = FFE, BB.
Combining equations 3.4 and 3.1, we get a system of equations that relate the energy
spectral index 8 and the power spectrum index « for each of the polarization compo-

nents

(CéXX)Planck — (AXX)Planck ( )O‘XX

¢
80
(CXX)WMAP _ (AXX)Planck ( L)*xX (i‘)’gﬁif)zﬁx}( (35)
with XX = FE, BB, and (AXX)Flanck refers to the polarization power spectrum
amplitude at ¢ = 80 for the Planck lowest channel, centered at 28.4 GHz. Before
performing the fit, in order to account for the effect introduced by the instrumental
bandpasses, we corrected the amplitudes in equations 3.5 multiplying them by the colour
correction coefficients, following the same procedure and using the same coefficients as
those given in [51]. We perform a x? fit to the system of equations 3.5 for the EE
and BB auto-spectra with 41 degrees of freedom, keeping the amplitude A, the power
spectrum index « and the energy spectral index 3 as free parameters. The first two
parameters have been widely tested in the previous section, providing a robust test to

validate the results presented in this section. In particular, for the analysis, we use the

1 More complex models are also considered in the literature, such as the one including a curvature
parameter. However, given the sensitivity of Planck and WMAP data, we restrict our analysis to the
simple power law case. Future low frequency data, such as QUIJOTE, would help to discriminate
between these two types of models.
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EE and BB power spectra obtained in section 3.3.1 for Planck and section 3.3.2 for
WMAP.

3.4.2 Results

Results are reported in Table 3.4. For our reference mask (50%), the spectral indices
ber and Bgp are very consistent, with values of -3.00£0.10 and -3.054+0.36 respec-
tively. These values are consistent with the spectral index found for intensity by pre-
vious Planck/WMAP analyses [59, 133], supporting the model of a steep decay due to
radiative losses, which cause spectral ageing [134]. Moreover, our values are consistent
with results found by S-PASS [81] in polarization and by the Planck component sep-
aration methods [63]. We note, however, that several x? values corresponding to the
B component exceed the expected values for the considered degrees of freedom. As al-
ready discussed in section 3.3, this seems to be related to the limited number of Planck
simulations, having probably a larger impact on BB due to the smaller signal-to-noise.

Figure 3.8 shows the best-fit parameters for each of the considered masks for both
the E- and B-mode components. It is interesting to point out that the power spectral
indices tend to move towards steeper values when considering larger sky fractions, i.e.,
when including higher Galactic latitudes in the analysis. In particular, Sgg ranges
from -2.98 to -3.22 while Sgp expands a wider range, from -2.39 to -3.48, but with
larger uncertainties. This kind of steepening has been observed in other previous works
[81, 62], showing that the spectral index gradually steepens from § ~ -2.8 to f ~ -3.3
when including higher Galactic latitudes.

We also note that the power spectrum indices agg, apg and the B-to-E ratio are
compatible with the results presented in section 3.3.3, supporting the robustness of the
analysis presented in this section.
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e — 14 "
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+ + + 2w ' + + +
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Figure 3.8: Best fit parameters to the system of equations of 3.5 computed from the
WMAP K-band and Planck 30 GHz data. 1o and 20 errors are showed with thick and
thin lines, respectively. AXX refers to the polarization power spectrum amplitude at
¢ = 80 for the Planck lowest channel.
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fsky 94% 70% 60% 50% 40% 30%

QpE -3.00 £ 0.06 | -2.87 £+ 0.06 | -2.89 £ 0.06 | -2.94 £ 0.07 | -2.86 = 0.07 | -2.9 £ 0.07
OBB -3.02 £ 0.23 | -2.85 £ 0.20 | -2.75 £ 0.22 | -2.65 £ 0.20 | -2.90 £ 0.31 | -2.51 £+ 0.23
BEE -3.22 £ 0.09 | -3.14 £ 0.11 | -3.13 £ 0.10 | -3.00 £ 0.10 | -3.01 £ 0.11 | -2.98 £+ 0.10
BeB -3.48 £ 041 | -3.15 £ 041 | -2.85 £ 0.38 | -3.05 £ 0.36 | -2.66 £ 0.55 | -2.39 £+ 0.39

APE [1073uK] | 4.55 4+ 0.18 | 6.79 £ 0.30 | 7.82 £ 0.33 | 9.18 + 0.40 | 10.88 £ 0.47 | 12.84 + 0.50
ABB [1073uK] | 0.98 £ 0.20 | 1.47 +0.25 | 2.04 + 0.31 | 2.21 £ 0.32 | 2.26 + 0.50 | 3.67 & 0.51
ABB JAFE 0.22 £0.04 | 0.22£0.04 | 026 £0.04 | 024 £0.04 | 0.21 £0.05 | 0.29 £ 0.04

X% (41 dof) 443 441 50.3 497 44.8 38.7
Y% (41 dof) 79.7 51.5 64.1 45.9 82.6 68.5

Table 3.4: Planck-WMAP results. Best-fit parameters (with 1o errors) for the model
given in equation 3.5 for the EE and BB power spectra, and their corresponding x?
values. Planck spectra are computed cross-correlating the half-ring maps, WMAP
spectra are computed cross-correlating the co-added WMAP K-band years maps. The
sky fractions are the ones retained by the six sky masks described in section 3.2.
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3.5 Conclusions

We have analyzed the sky emission at 23 and 30 GHz with the WMAP K-band and
the Planck lowest frequency channel data. The main target of our analysis has been
the study of the angular and spectral distribution of the diffuse Galactic polarized
synchrotron. We have constructed a set of six masks, five of them increasing from low
to intermediate Galactic latitude (from 30 to 70 per cent of sky coverage), and a 94%
mask which allows almost the full sky except for the Galactic center and some bright
point sources. We have estimated EE, BB and EB power spectra from Planck and
WMAP independently, as well as by cross-correlating the two experimental data. We
have fitted the power law Cf EBB « papsss independently for the EE and BB power
spectra and the constant CFZ = AFB for the EB cross-spectrum, in the multipole range
30 < ¢ < 300 for each of the considered cases.

For the cross-correlation analysis and a mask that allows 50 per cent of the sky,
we have found a steep decay for E and B-modes, with indices app = —2.95 + 0.04
and app = —2.85 £ 0.14, consistent between both components, and an asymmetry
between the two amplitude modes with a B-to-E ratio equal to 0.2240.02, at the pivot
multipole ¢ = 80. The compatibility between the two polarization components is better,
in general, when considering mainly regions with high signal-to-noise. For the cross-
correlation analysis, we have also found that the EB cross-spectra is consistent with zero
at 1o for all the considered sky fractions, imposing a constraint on the EB amplitude
to be < 1.2% (20) that of the EE amplitude for the 50% mask. We have also obtained,
in general, consistent results from the Planck and WMAP independent analysis with
respect to the ones found for the cross-correlation case. However, some small differences
are present in the case of the best-fit parameters estimated only from the Planck 30 GHz
map. In particular, we find a less steep BB spectra (app around 2.24) and a slightly
larger B/FE ratio (around 0.27), even if consistency with the cross-correlation results
holds at 20 in both cases.

We have done some robustness tests which have confirmed the validity of our results.
In particular, we have fitted our model to the frequency maps of the 2020 Planck
NPIPE release (PR4), and in a larger multipole range (10 < ¢ < 400). Moreover, we
have estimated spectra independently for the two hemispheres finding a larger emission
in the North in the case of the E mode. Apart from that, there are not significant
differences in the model of the polarization power spectra between the two hemispheres
and with the full sky.

We have fitted a simple power law to the synchrotron spectral energy distribution
independently for the EE and BB spectra, considering both Planck and WMAP data.
The recovered spectral indices Sgr and [Sgp, with respective values -3.004+0.10 and
-3.05+0.36 for the 50 per cent mask, are compatible. The results indicate a trend of
the spectral indices towards steeper values when higher Galactic latitudes are included
in the analysis.
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Chapter 4

Morphological Analysis of the

Polarized Synchrotron Emission
with WMAP and Planck

The bright polarized synchrotron emission, away from the Galactic plane, originates
mostly from filamentary structures. We implement a filament finder algorithm which
allows the detection of bright elongated structures in polarized intensity maps. We
analyse the sky at 23 and 30 GHz as observed respectively by WMAP and Planck. We
identify 19 filaments, 13 of which have been previously observed. For each filament, we
study the polarization fraction, finding values typically larger than for the areas outside
the filaments, excluding the Galactic plane, and a fraction of about 30% is reached in two
filaments. We study the polarization spectral indices of the filaments, and find a spectral
index consistent with the values found in previous analysis (about —3.1) for more diffuse
regions. Decomposing the polarization signals into the £ and B families, we find that
most of the filaments are detected in Pg, but not in Pg. We then focus on understanding
the statistical properties of the diffuse regions of the synchrotron emission at 23 GHz.
Using Minkowski functionals and tensors, we analyse the non-Gaussianity and statistical
isotropy of the polarized intensity maps. For a sky coverage corresponding to 80% of
the fainter emission, and on scales smaller than 6 degrees (¢ > 30), the deviations
from Gaussianity and isotropy are significantly higher than 3o. The level of deviation
decreases for smaller scales, however, it remains significantly high for the lowest analised
scale (~ 1.5°). When 60% sky coverage is analysed, we find that the deviations never
exceed 30. Finally, we present a simple data-driven model to generate non-Gaussian
and anisotropic simulations of the synchrotron polarized emission. The simulations are
fitted in order to match the spectral and statistical properties of the faintest 80% sky
coverage of the data maps.

4.1 Polarized Intensity

4.1.1 Data

For our analysis, we will make use of data taken by the WMAP and Planck satellites.
We focus on the lowest frequency data from WMAP, specifically the 9-year WMAP
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K-band (centered at 23 GHz) maps, provided in the HEALPix! pixelisation scheme
with N4z = 512 and an effective Gaussian beam of 0.88° full-width-at-half-maximum
(FWHM). The WMAP products have been downloaded from the Legacy Archive for
Microwave Background Data Analysis (LAMBDA)?. For the Planck analysis, we use
the 30 GHz frequency maps generated by the NPIPE processing pipeline (PR4). The
NPIPE processing results in improved High Frequency Instrument (HFI) polarization
data with reduced systematic artefacts and lower levels of noise. PR4 data from the Low
Frequency Instrument (LFI) are also modified with respect to the 2018 Planck release.
Further details are available in [116]. The frequency maps were downloaded from the
Planck Legacy Archive® (PLA) at a pixel resolution corresponding to Ny = 1024 and
an effective beam of FWHM = 31.5 arcminutes. Note that the polarization maps, and
consequentially the analysis, follow the HEALPix convention.

As the synchrotron emission scales with frequency, the foreground signal is higher in
the WMAP K-band compared to the Planck 30 GHz channel, however, the noise level
of Planck is lower. As result, at a common resolution of 1°, the overall signal-to-noise
ratio of the two experiments are similar [60], although one or other map may be better
in some sky regions because of the different scanning strategies.

4.1.2 Smoothing

We smooth the WMAP and Planck maps to common resolutions of 1° and 3° FWHM.
The 1° maps are downgraded to a HEALPix resolution of Ny = 128 (corresponding to
a representative pixel size of ~27 arcmin) that we will use for filament detection and
statistical analysis, and the 3° maps to a resolution of N4, = 64 (a pixel size of ~55
arcmin), that we will use for the filament analysis. The smoothing and downgrading
are performed in harmonic space deconvolving the original effective beam and then
convolving with a Gaussian beam®*. The smoothing process helps to increase the signal-
to-noise ratio of the maps and to minimise any effect due to beam-asymmetries in the
two experiments.

We estimate the noise level of the data at the 1° and 3° resolutions, including
uncertainties due to smoothing and pixel downgrading. For WMAP, we generate 600
Gaussian noise realisations based on the covariance matrices at full resolution. For
Planck, we use the 600 noise simulations provided on the PLA [116]. We downgrade
and smooth each simulation in the same way as the data. Finally, for each pixel we
compute 03, o, and 03y, from the variance and covariance over all of the simulated @
and U maps.

4.1.3 Debiased Estimator

A morphological analysis is applied to the polarized intensity P = /(Q? + U?), which,
given its positive nature, is subject to noise bias. In particular, in the low signal-to-

Thttps://healpix.sourceforge.io

2lambda.gsfc.nasa.gov/product /map

3pla.esac.esa.int

4We generate ag,,‘s with the map2alm healpy routine from the @, U maps. We convolve the maps
with the new Gaussian beam and pixel window function following the method described in Appendix
B.1. Finally, we regenerate the (), U maps with the alm2map routine from the convolved asy,‘s.
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noise regime, P will yield a positive estimate even if () and U are zero. We use the
modified asymptotic (MAS) estimator [135] in order to correct the polarized amplitude
for the bias. We recall that the debiased polarized amplitude with the MAS estimator
is computed as

1 —exp(—P?/1?)

2P

where the noise bias b is function of the pixel variance and the polarization angle
¢ = arctan(U/Q) given by

Puas = P — b? (4.1)

1
b* = of cos* (¢ — ) + oy sin*(¢p — 0), 6= 5 arctan (%) : (4.2)
04 —0p

The maps are showed in figure 4.1. [135] demonstrate that in the regime where the
signal-to-noise ratio exceeds 2, the estimator is unbiased and essentially Gaussian. An
estimate of the variance is then given by

op = 0 cos’(¢p — 0) + o sin’(¢ — 6). (4.3)

Note that the debiased polarized intensity and its variance are defined pixel by pixel.
Thus, we do not take into account the correlation between pixels, which is introduced
smoothing and downgrading of the maps. Although we use the MAS estimator in our
analysis, several tests have been performed using the Wardle & Kronberg estimator
[136, 66, 137] instead, finding consistent results.

WMAP K-band Planck 30 GHz

0 mK 0.08

Figure 4.1: Debiased Polarized Intensity maps (1°) of the WMAP K-band at 23 GHz
(left) and the 30 GHz channel of the Planck PR4 data set (right).

79



4.2 Filament Finder

4.2.1 Algorithm

We develop an algorithm in order to seek elongated structures in polarized intensity
maps. The method resembles the two-dimensional version of the Smoothed Hessian
Major Axis Filament Finder (SHMAFF) [138, 139]. The SHMAFF algorithm has previ-
ously been used to find filaments in the three-dimensional galaxy distribution and in
the analysis of polarized dust structures in the Planck 353 GHz maps [84]. The main
difference in our implementation is that, while the SHMAFF detection is based on the
minimal eigenvalues of the Hessian matrix, our detection is based directly on the po-
larized intensity. This is because the Hessian matrix fails to find pixels with minimal
eigenvalues in detecting the thick and diffuse filaments which we expect to be in the
noisier area of the sky, that is outside the Galactic plane.

The algorithm works on a pixel by pixel basis, examining the orientation angle v
defined in [84] and comparing the polarized intensity value P with respect to a threshold
P,;,. The orientation angle is determined from

Hgg — H¢¢ +
2Hypy

with o = \/(Hgg - H¢¢)2 + 4H92¢,

1 = arctan (—
(4.4)

where H is the Hessian matrix computed from the second-order covariant-derivatives
with respect to the spherical coordinates (6, ¢) [140]. We compute the threshold values
P, from the P distribution. We cannot use the mean and the standard deviation
because the distribution of P is not Gaussian and exhibits an extended tail, thus, we
define the threshold from the median mp and the median absolute deviation (MAD)
o [141, 142] as

Py, =mp + 0, = mp + 1.4826 - median(|P — mp|). (4.5)

The algorithm starts by identifying the brightest pixel P, and denoting its orien-
tation angle 1. It then considers its 8 (or 7) neighbouring pixels, identified with the
get_all neighbours routine of HEALPix. For each neighbour pixel, two conditions are
checked: (i) if its polarized intensity is larger than the fixed threshold of equation 4.5,
() if its orientation angle is coherent with the initial pixel

(Z) PZ > Pth
(1) [t — bol < Ay,

where we fix Ay at 10° in order to detect the longest filaments. Nevertheless, we have
checked that the results are robust for a reasonable range of Avy. If both conditions
in equation 4.6 are satisfied, we accept the pixel as part of the same structure of the
initial pixel. Then, we look for its neighbours which also satisfy the two conditions.
We continue this friend-of-friend recursive algorithm until the conditions are no longer
satisfied. Once a structure is defined, the pixels are masked from the map, the new
brightest pixel is identified and the condition-based procedure is repeated.

We finally define a template, which includes all the pixels satisfying the previous
conditions, with all the strongly polarized areas in the P map of arbitrary shapes and

(4.6)
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sizes. We then smooth it with a 3° Gaussian beam, in order to soften the boundaries.
In order to allow only elongated structures which can be identified as filaments, we
apply one further criteria to the 3° smoothed map, i.e. we reject structures with length
smaller than a threshold minimal length L < Ly, fixed at 10°. The length is defined
as the maximum pixel-pair angular distance. The threshold length has been selected
analysing simulations as discussed in appendix B.2.2.

4.2.2 Band-pass Filter

Different filaments have been observed in low frequency (j 1 GHz) radio continuum
surveys, and more recently in the WMAP polarization data [66]. The filaments can be
divided into two categories: bright and narrow, or weak and diffuse. In order to optimize
the detection of these filaments, we filter the maps to focus on specific angular scales
of interest before applying the filament finder algorithm. We compute the spherical
harmonic coefficients a;,, by means of the map2alm routine of HEALPix, multiply by a
band-pass filter of the following form

Y N (| | R e I

then generate the filtered maps with the alm2map routine. The filter cuts off the am-
plitudes below a multipole scale ¢,,;, and above £,,,,. In order to detect the thinner
filaments, we consider multipoles in the range 20-50, whereas for the diffuse filaments
the multipoles are restricted to the range 15-20. The cuts are roughly in accordance
with the widths of the filaments (¢ ~ 180/6). A/ is set to 10, but the method is robust
for a reasonable range of A/.

The filters are shown in figure B.1 in appendix 4.1. By filtering out small-scale
modes, we enhance the contrast of larger structures with respect to the diffuse fore-
ground emission, and also reducing the instrumental noise. Moreover, we remove cor-
relations on large scales which can negatively affect the detection. The application of
the filter is critical to increase the accuracy of the estimation of the polarization orien-
tations of the filaments, especially in areas where the signal-to-noise is low. A similar
filter has been used in [93] for a statistical analysis of the 408 MHz Haslam data.

4.2.3 Results

Starting from the debiased polarized intensity maps obtained as described in sec-
tion 4.1.3, we generate two bandpass-filtered maps P?%5° and P'>%°, applying the filter
in equation 4.7, where the superscripts correspond to the applied multipole ranges. We
first mask the bright point sources, both Galactic and extragalactic, which could bias
our algorithm. We use the mask derived for the Planck PR4 SEVEM component sep-
aration pipeline which includes all the point sources that have polarization detection
significance levels of 99% or more in the 30 GHz polarized map [116, 124, 125]. The
finder algorithm is based on the threshold condition in equation 4.6, where the thresh-
old is computed from the P distribution (see equation 4.5). However, very bright areas
such as the Galactic plane could bias the threshold value upwards, preventing filament
detection. Therefore, when analysing the P?*-*° maps, we apply a Galactic mask ex-
cluding pixels at latitudes [b] < 3°. A similar argument applies to the P'>20 analysis.
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However, since we are looking for very faint filaments, the NPS and the Southern Fan
regions are also excluded in addition to the Galactic plane. This can be achieved by
simply masking the brightest 30% sky fraction. The specific choice of masks was tested
on the simulations described in the appendix B.2.1.

After applying the filament finder algorithm to the two bandpass-filtered maps, we
merge the two sets of results into one template, smooth it by 3° and apply the criteria
of minimal length as described in section 4.2.1. The filament templates determined in-
dependently from the WMAP K-band and Planck 30 GHz data are shown in figure 4.2.
The WMAP results reveal more compact and elongated structures than for Planck,
indicating that the finder algorithm performs better when applied to the data with
brighter synchrotron emission. However, several similar structures are detected in the
same areas of the sky in both maps. The agreement between the independent results
corroborates the validity of the algorithm and supports the existence of the filaments as
real emission, and not due to noise or systematic effects. In appendix B.2.1, we explore
the accuracy and limits of the filament finder algorithm, testing our method with toy
filamentary foreground models.

WMAP K-band Planck 30 GHz

Figure 4.2: Filamentary structures detected in the debiased polarized intensity of the
WMAP K-band at 23 GHz (left) and the Planck 30 GHz channel (right).

82



4.3 Filament analysis

4.3.1 Filaments

Combining the information obtained from WMAP and Planck, we get a final template
of polarized filamentary structures detected in the frequency range 23-30 GHz, shown
in figure 4.3. We use the WMAP detection as our benchmark, but only retain those
structures which are detected, at least in part, in the Planck data. The one exception is
filament XI, which is clearly detected in the Planck data, but only partially in WMAP.
Its existence is supported by previous analysis performed on WMAP [66]. This method
ensures that detected filaments are not due to noise or systematic residuals. Then, we
remove those structures which do not show clear elongation, in particular in the Galactic
plane, where the emission is more complex, and polar regions, where the signal-to-noise
is low.

In order to specify the filaments, we use and expand the nomenclature used in
[66]. Filaments I (NPS), IIIn, and IV have been recognised and studied for more than
60 years. These large structures have been observed in X-ray, gamma-ray and other
microwave experiments [143, 90, 91]. Filament II (Cetus Arc) was previously detected
in the radio sky [89], and found here for the first time in polarization despite its low
emission. We detect ten further filaments reported in [66] (Is, GCS, IIIs, VII, IX, X,
XI, XII, XIII, XIV) but not filament VIII. We also identify five new filaments (XV,
XVI, XVII, XVIII, XIX) that are visible in both WMAP and Planck. Filament XV is
a bright structure at the center of the Galactic Haze [144]. Filament XVI, because of
the position and shape, seems to be related to Filament I. Filament XVIII is a bright
structure of the Northern Fan region close to the Galactic plane. Finally, Filaments
XVII and XIX are new detections in the region below the Galactic plane.

Most of the detected filaments have circular arc-like shapes, supporting the model
of supernova remnants expanding into the Galactic magnetic field [92]. Several struc-
tures appear to be spatially correlated with each other, although most are stand-alone
features. In the NPS, there are several elongated structures which do not resemble
loop-like features. They were first identified in radio observations [91], but the NPS
complexity is more evident in polarization. Because of their location, there are models
which link these structures with the Fermi Bubbles (FB) detected in Fermi data at
energies ~10-500 GeV [145, 146].

4.3.2 Polarization Fractions

The polarization fraction is defined as the ratio of the polarization amplitude to total
intensity

= (4.8)

At the low frequencies of interest here, the synchrotron emission largely dominates
the polarization signal, thus, we can neglect other physical emission mechanisms and
consider directly the frequency data. However, this assumption does not apply in
intensity where the CMB, free-free and AME also contribute to the total emission.
Most of the observations suggest that at frequencies above 20 GHz the spectral index
of the synchrotron intensity spectrum is 5 ~ —3 [60]. However, according to some mod-
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Figure 4.3: Template map showing the filaments of the polarized synchrotron emission
detected by combining WMAP (23 GHz) and Planck (30 GHz) results.

els [147], it can get much flatter for frequencies below 10 GHz. Moreover, we expect it
to exhibit significant spatial variations. In this analysis, we use the diffuse synchrotron
intensity map provided in the Planck 2015 [148] release. The template has been gen-
erated at a reference frequency of 408 MHz by Commander (a parametric component
separation method) applied to the WMAP, Planck and Haslam observations.

We estimate the synchrotron intensity extrapolating the 408 MHz map up to 23 GHz
and 30 GHz adopting a fixed spectral index § = —3.0. The maps are analysed at 3°
resolution and N,;q. = 64, masking the Galactic plane®. Pixels with a signal-to-noise
ratio lower than 2.5 have been excluded.

The polarization fraction maps are showed in figure 4.4 (top panels). For each pixel,
the polarization fraction error, oy, is obtained propagating the errors in the polarization
and intensity maps. The intensity uncertainty is, in turn, obtained propagating the
uncertainty of the intensity spectral index. The weighted average of the polarization
fractions over pixels for each filament are listed in Table 4.1. The largest source of
uncertainty in o is due to the uncertainty in the intensity spectral index. We are
aware that, locally, 8 can assume values over a very broad range. However, we compute
the polarization fraction averaging over extended areas, so it is reasonable to assume
that in these areas o5 = 0.1 as found in previous works on partial-sky analysis [149,
1, 65]. We report good agreement between the WMAP and Planck results, the largest
discrepancies arising for the more diffuse filaments, e.g., filament XII.

Assuming a uniform spectral index, we find that the polarization fraction of the fila-
ments are typically larger than for external regions outside the filaments. The filaments
with the highest polarization fractions, IX and XV, achieve values above 30%, and are
both located in the NPS. Loop I has an average value of about 20%, slightly smaller

5In order to mask the bright pixels along the Galactic plane, we use a Galactic mask obtained
combining the 2015 Galactic plane mask which allows the 90 per cent of the sky (provided in the PLA)
and a Galactic latitude mask excluding pixels within +5° of the Galactic plane.
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than the value found at the center of the NPS. These results corroborate the results
found in the previous analysis [66, 60]. We report a high polarization fraction also for
filament XVIII, located in the Fan region. The lowest polarization fractions are found
for filaments XI, XIII and XVII.

4.3.3 Spectral Index

The synchrotron spectral energy distribution (SED) is generally approximated by a
power law® S, oc ? where f3 is the energy spectral index. Spatial variations of 3 have
been reported in the literature [150, 64, 65]. In this section, we measure the spectral
index of each filament described in 4.3.1 employing a method based on the ) and U
Stokes parameters [151, 62].

Let us define the vector

d(a) = Q cos(2a) + U sin(2a) (4.9)

which represents, for each pixel, the projection of the Stokes parameters (@), U) into a
reference frame rotated by the angle a. We vary « over the range (0°,85°), in steps of
5°. For each filament, we compute a linear fit over all the internal pixels to the relation

dP3O (a) = m(a) ’ dWK (a) + n(a) (4'10)

where d,,,, (o) and d,,, () are computed respectively from the Planck and WMAP data.
Adding the free parameter n(a) gives the advantage of removing any zero level due to
possible systematics in the maps. The fit is performed with the orthogonal distance
regression code odr” from SciPy, in order to account for the noise variance of both
WMAP and Planck. A calibration error of 0.3% has been added in quadrature to both
experiments [117, 116]. From the parameter m(«) and its uncertainty, we compute the
spectral index for each « as

om(Q) 1
m(a) 10g(Vps, Vi)

where v,,, =28.4 GHz and v, =22.8 GHz. The final value of the index is recovered
from the weighted average
85 -
P a0 Bla)og™(a)

5 o a=0
Zif):o Og ? ()
Since the f(«) values are strongly correlated, we take as the uncertainty on the final
spectral index the minimum variance among the measurements oz = min(og(a)). We
checked that this uncertainty is always larger then the intrinsic uncertainty of 5(a)
given by the standard deviation estimated at different rotation angles.

As a consistency check, we also fitted the spectral index from the debiased polarized
intensities with the T-T plot approach. We find consistent results with those determined
with the method presented above. It has been shown that the synchrotron spectral index
is not stable with respect to polarization orientation in the presence of systematics

logm(a)

) = e lmm )

os(cr) = (4.11)

(4.12)

6Given the sensitivity of Planck and WMAP data, we cannot explore more complex models.
Thttps://docs.scipy.org/doc/scipy /reference/odr
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[152]. The (Q,U) method allows marginalization of the result over the polarization
angle, making this approach more reliable.

The maps are analysed at 3° resolution and Ny;4. = 64, masking the Galactic plane.
Pixels with a signal-to-noise ratio lower than 2.5 have been excluded. The maps are
converted to Rayleigh-Jeans temperature units and corrected by the colour correction
using the coefficients given in [51].

In Table 4.1 the spectral indices determined for the different filaments are listed.
For each filament, a mean x? value is computed by averaging over all the values given
at different rotation angles by the odr routine. Note that we do not take into account
the presence of correlated noise between pixels, thus, leading to an underestimation of
the uncertainties. This is one of the reasons which would explain some large x? values.
We find spectral index results, both inside and outside the filaments, consistent with
the values found in previous analysis of about —3.1 [63, 81, 1]. As shown in figure 4.4
(bottom panel), the § values span a very broad range, from -3.59 (XVII) to -2.17 (VII).
The value for loop I is consistent with the literature [66, 153]. Filaments IX and XV,
the most polarized detections located at the NPS, show slightly flatter values (~ -2.5).

Figure 4.4: Top: polarization fraction of the WMAP K-band at 23 GHz (left) and the
30 GHz channel of the Planck PR4 (right). Bottom: spectral index g (left) with error
op (right). Outlines of the filaments (black) and the Galactic mask (green) used in the
analysis are also shown. Pixels with a signal-to-noise ratio lower than 2.5 have been
masked (grey). For illustrative purpose, the maps are smoothed to a resolution of 5°.
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polarization fraction spectral index
WMAP Planck
filament sty [70) I o [%] | I | on[%) g o X7
7] (7]
I 1.5 22.6 9.4 21.2 9.3 -3.06 | 0.01 | 1.92
Is 1.2 18.3 7.6 194 8.5 -2.80 | 0.03 | 1.87
II 0.8 24.5 10.4 20.4 9.2 -3.37 | 0.06 | 3.01
[IIn 2.1 18.9 8.0 174 7.7 -3.07 | 0.02 | 1.55
[IIs 1.8 19.8 8.4 15.5 7.1 -3.65 | 0.04 | 2.22
v 0.5 18.1 7.6 15.1 6.8 -3.07 | 0.11 | 1.95
GCS 0.4 22.6 9.4 22.0 9.6 -2.80 | 0.03 | 2.35
VII 0.8 17.3 7.3 20.4 9.1 -2.17 | 0.09 | 1.97
IX 0.9 33.1 13.7 32.2 14.1 -2.64 | 0.02 | 1.90
X 0.6 17.1 7.2 14.2 6.3 -3.39 | 0.04 | 1.48
XI 0.8 13.2 5.7 13.3 6.0 -2.45 | 0.05 | 1.60
XII 0.7 20.6 9.0 13.9 6.5 -3.38 | 0.05 | 1.21
XIIT 0.5 14.0 5.8 12.6 5.6 -3.28 | 0.03 | 2.42
X1V 0.5 17.6 7.3 14.5 6.4 -3.05 | 0.04 | 1.34
XV 0.5 33.8 14.0 34.8 15.3 -2.36 | 0.04 | 2.44
XVI 0.4 22.0 9.1 20.7 9.1 -3.39 | 0.11 | 1.51
XVII 0.3 14.6 6.1 15.7 6.9 -3.59 | 0.05 | 1.67
XVIII 0.5 30.1 12.5 26.4 11.6 -3.08 | 0.05 | 1.28
XIX 0.4 21.1 9.1 26.1 11.6 -2.28 | 0.09 | 0.91
inside filaments 15.2 19.0 8.0 17.2 7.7 -3.08 | 0.01 | 3.14
outside filaments 62.1 11.1 5.0 10.3 4.9 -3.15 | 0.01 | 3.34
combined 76.2 11.8 5.2 11.0 5.2 -3.10 | 0.01 | 3.29

Table 4.1: Polarization fractions and polarization spectral indices of the WMAP K-
band and Planck 30 GHz channel. The synchrotron intensity map is extrapolated from
the 408 MHz map up to 23 GHz and 30 GHz using a constant spectral index f = —3.0.
The spectral index is computed over the 23-30 GHz frequency range.
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4.3.4 F and B Modes

As described in appendix B.1, the polarized emission can be decomposed into £ and
B modes. The synchrotron polarized angular power spectra has been analysed in the
frequency range 2-30 GHz, finding that: both E- and B- modes can be well described
by a power law Cp""% o (729 the B-to-E ratio ranges between 0.2-0.5 and the
EB correlation is compatible with zero [81, 1]. In this section we analyze how the
filamentary structure relates to the two polarized components.

In [154] a method was proposed for decomposing the @ and U Stokes parameters into
the so-called E- and B-mode families. Starting from the (@, U) maps, we can compute
the aﬁ;B coefficients using the map2alm routine of HEALPix. Setting a? = 0 and
computing the Stokes parameters with the alm2map routine determines the contribution
to Q and U from the E mode alone. Similarly, setting a” = 0, we get the contribution
from the B mode. Therefore, we can compute the single-mode polarization intensities

as
Pp=1/Qs +Us Pp=1/Q% +Us. (4.13)

For the sake of brevity, here we show an analysis performed on the WMAP K-band,
however, the same conclusions can be obtained from the 30 GHz Planck data. We do
not use any estimators to correct the polarized amplitude for the noise bias. This is
because the estimator in equation 4.1 would require the decomposition of the variance
into the E- and B families, which is not a straightforward operation. Nevertheless, we
expect qualitatively correct results for the areas where the signal-to-noise is high, in
which the bias is negligible.

Applying the filament finder algorithm to the decomposed maps, we find that nearly
all of the filamentary structures are detected at least in part in the Pg, but not in the
Pp map, as shown in figure 4.5. As expected, the algorithm fails to detect filaments
II, I1Is and X, which are either diffuse or strongly affected by noise bias. The complex
filamentary structure of the NPS emission is clearly visible in Pg, suggesting its E-
nature. In the P maps, we detect parts of filaments I and IX (even if slightly shifted).
Filament XIX is the only structure which is partially detected in B, but not in E.

Figure 4.5: Filamentary structures detected in the decomposed polarized intensity Pg
(left) and Pp (right) maps obtained with the WMAP K-band at 23 GHz. In red, the
filaments detected from the polarized intensity Py as described in section 4.3.
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4.3.5 408 MHz Haslam Map

The current best full-sky map of the synchrotron intensity emission at 408 MHz is due
to [86, 87]. A more recent version of the data that has been destriped and cleaned of
bright point sources is described in [88]. We apply the filament finder algorithm to this
map, provided as a LAMBDA product®, to study the filamentary detection in intensity
at low frequencies.

The map and the detected filaments are shown in figure 4.6. Filament I is the major
structure in intensity as well as in polarization. Part of the detected structure is well
matched by what is found at 23-30 GHz, but is more extended at the lower frequency.
A similar observation holds for filament II. The majority of the structures in the NPS
observed with WMAP are also visible, at least in part, in the Haslam map. However, in
intensity the synchrotron emission is very diffuse, and the algorithm fails to detect the
more diffuse filaments, such as III, XI, XII. An interesting result is that filaments IX
and XVI, which are the two strong emission structures detected in polarization around
Loop I, are not well detected in the 408 MHz map.

Note that the analysis presented in this section provides us with an additional
robustness test for our algorithm. However, only a qualitative comparison between
Haslam and WMAP /Planck maps is possible. This is because, in intensity, the syn-
chrotron emission dominates at 408 MHz, but not at 23/30 GHz, where other compo-
nents become important. On the other hand, the synchrotron emission dominates in
polarization, but comprehensive data sets in polarization do not exist at 408 MHz. We
hope that the results presented in this section will stimulate future analysis using new
data at similar frequencies.

408 MHz Haslam Detection

Figure 4.6: Left: full-sky 408 MHz map. Right: Structures detected in the data (black)
compared to the filaments found in polarization at 23-30 GHz (red).

8https://lambda.gsfc.nasa.gov/product /foreground /fg_2014_haslam_408_info.html
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4.4 Statistical Properties

4.4.1 Minkowski Formalism

According to Hadwinger’s Theorem, any morphological property can be expressed as a
linear combination of Minkowski Functionals (MFs). These are defined for any field not
requiring any prior assumption, making them particularly advantageous for the analysis
of fields for which a non-Gaussian nature is known. Several analyses have already
been performed on CMB data using MFs to search for evidence of non-Gaussianity
[155, 156, 157] and residual foreground contamination [158], or to characterize the
properties of foregrounds [159, 93]. In this section, we will briefly review the method
used for their numerical calculation, following the methodology developed by [160].

Given a map u on the sphere (S?) and a threshold v, there are 3 MFs which represent
the area (V4), the perimeter (V;) and the integrated geodesic curvature (V3) of an
excursion set, that is the region where v > v, with boundaries defined by v = v. For a
map in the HEALPix pixelization, we can numerically compute the MF's via a sum over
all pixels

1
Vo(v) = N H(u —v) (4.14)
pur pixels
11
Vi(v) = v, D o =) Jud + (4.15)
v pizels
11 gl ligy — Upllipy — Uiy llgp
v - olu — ’ ’ 4.16
2(v) 27 Ny p;s (u—v) ) (4.16)

where w;,u,; (i,7 € (6,¢)) are the first and second partial derivatives in spherical
harmonic space, H is the Heaviside step function and ¢ is the delta function. We
rescale the field u to have zero mean and unit standard deviation. The d-function is
numerically approximated through a discretization

5@-@:&{% (w%) —H@—%)} (4.17)

that is 6(u — v) is equal to 1/Awv if u is between v — Av/2 and v + Av/2, and zero
elsewhere.

This pixelization method introduces systematic residuals. It has been shown that
residuals scale as the square of the bin-size (Av?) [161]. However, if the bin-size is too
small the results can be affected by map noise. We pick the value Av = 0.5. We find
that this bin-size minimizes the residual obtained comparing the numerical equations
4.15 and 4.16 with the MFs analytical equations valid for a perfect Gaussian field.

Minkowski Tensors (MTs) are tensorial quantities that generalize the scalar MFs.
MTs have been already used in cosmology to study CMB [162] and foreground [93]
anisotropies. There are three rank-two MTs on the sphere, usually denoted as Wj. The
three scalar MFs, Vi, are then given by the traces of Wj;. We are particularly interested
in W3, also called the Contour Minkowski Tensor (CMT), which encodes shape and
alignment information for structures. It can be numerically computed as

11 1
S §(u —
AN, (u=v) V4l

pizels

W1 (U)

M (4.18)
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where

2 _
M = ( o “?‘ﬁ“*’) . (4.19)

—Uplo u%

W1y is proportional to the identity matrix if the structures have no elongation in any
particular direction. A, A_ are the two eigenvalues of W; such that Ay ; A\_. We define
« as

Ay

a=—.

A

a = 1 implies that the field preserves statistical isotropy (SI). In order to quantify the

non-Gaussianity and anisotropy of data maps, we need to compare them with a set of
suitable simulations. We then define, at each threshold v, the quantities

’Avk’ ata sim
Xp = ——,  AVi(v) = V¥ (v) = V™ (v) (4.21)

Jvk

(4.20)

where V@@ is the k-th MF computed from the data, V;¥™ and oy, are the values
obtained taking respectively the average and the standard deviation of the functionals
determined from simulations. Analogously, we define at each threshold v the quantities
A Wl i ata sim
o = 2L A, = e - vz (1.22)
O (W1)s
where (W7);; stands for (W7)1; and (W;)a2, which are the diagonal terms of the CMTs.
The values (W1):™ and owy),, are computed from simulations. The same quantification
could not be applied to a because its statistic follows the Beta probability distribution
[93]. Thus we define the quantity

Xa = A(;—IQ’H(—AQ) + A(s—j’H(Aoz), Aa(v) = a®(y) — o™ (v) (4.23)
where 0; and 0, denote the 95% confidence interval and H is the Heaviside step function.
Note that a value |x,| > 1 implies a deviation from the simulations outside the 95%
confidence interval. In this and the following sections we will focus on the analysis
and results obtained from the WMAP K-band polarization maps at resolution 1° and
Ngige = 128. The same analysis has been performed with 30 GHz Planck maps and the
results presented in appendix B.3.

4.4.2 Masking and Filtering

It is well known that the synchrotron emission is non-Gaussian and anisotropic on the
full sky. In this analysis, we are mainly interested in understanding if this behaviour
holds in regions of the sky where the emission is more diffuse, that is when the brightest
areas (Galactic plane, the Spur and Fan regions) are masked.

We define two different masks for the analysis of the faintest 80% and 60% of the
sky. To avoid possible leakage of power which can arise when computing power spectra
in the presence of sharp boundaries between the masked and the unmasked regions,
we apodize the masks with the mask apodization (”C2”) routine of NaMaster® with

9NaMaster is a public software package providing a general framework to estimate pseudo-Cy angular
power spectra. [127] namaster.readthedocs.io
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apodization scale of 5°. We also take into account a point source mask, as used in the
filament finder analysis in section 4.2.3, apodized at 1°. To minimize the effects of the
mask boundary in the sum in equations 4.14-4.18, we only include those pixels such
that the smoothed mask value is larger than 0.9. For the two masks adopted here, this
corresponds to sky fractions of 76.4% and 57.1%. The threshold has been conservatively
chosen in order to maximize the statistical significance of our results. Note that we do
not construct a specific filament mask, because from prior tests we have noticed that
the Minkowski method is more reliable when we use a compact mask rather than a
complex mask with many holes and islands.

Besides the region-dependency, in this analysis we want to test the statistical be-
havior on different scales. The maps are therefore filtered using the band-pass filter
presented in section 4.2.2. We analyze different scale ranges varying /,,;, in equa-
tion 4.7. We do not study the maps for multipoles smaller than ¢,,;, = 30 because
the anisotropic nature of the emission at such large scale is well known, so we will
only focus on 4,,;, > 30. We fix {,,,, = 180, in accordance with the map resolution
at 1°. In figure 4.7 the WMAP polarized intensity maps, filtered with the (¢, = 30,
lmaz = 180) band-pass, are shown. The region in grey corresponds to the pixels masked
in the Minkowski analysis. We finally subtract the mean and then rescale with the stan-
dard deviation, where mean and standard deviation are computed from the data in the
unmasked area of the maps.

-0.003 mK 0.003

Figure 4.7: Debiased WMAP K-band polarized intensity maps at 1° resolution, after
band-pass filtering as defined in equation 4.7 with ¢,,;,, = 30 and ¢,,,, = 180. The grey
regions correspond to the missing pixels for the 80% (left) and 60% (right) masks.

4.4.3 Gaussian Simulations

In order to quantify the non-Gaussianity and anisotropy of the polarized synchrotron
emission, we need to compare the polarization data with a set of suitable simulations. To
generate simulations, we first compute with NaMaster the polarization power spectra of
the data maps in the unmasked areas. In fact, we compute the cross-spectra between the
co-added WMAP 1 to 4 year sky maps and 5 to 9 year data. In this way, we reduce the
effects of instrumental noise and systematics. Based on this spectrum, we then generate
Gaussian and isotropic simulations of full-sky () and U Stokes parameter maps at the
data resolution using the HEALPix synfast routine. We add noise and compute the
debiased polarized intensity of the simulations as described in section 4.1.3. We obtain
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600 total polarization simulations which have a mean power spectrum compatible with
the data, but are isotropic and generated from Gaussian-distributed ) and U. Note
that the variance of the simulations includes both sample variance and noise. Finally,
we compute the MFs and MTs for the simulations using the same band-pass filter and
masks as used for the data.

4.4.4 Results

The results for the MFs and the CMT, derived from band-pass filtered data are shown
in figure 4.8. We find that the non-Gaussian and anisotropic deviations are much lower
when bright regions are masked. For the larger sky fraction (f, = 80%), we find that
the first MF (14) shows the largest deviation from Gaussianity. For most thresholds, the
deviation is higher than 30 and several values exceed 50. The deviations of the other
two MFs and the CMT diagonal terms exceed 3o for several thresholds, few exceed
50. |Xa| is lower than one except for one threshold, implying a weak deviation from
isotropy. For the smaller sky fraction (fg, = 60%), for all the thresholds we find that
the deviations of the three MFs and the CMT diagonal terms never exceed 3o, with
average values (over all thresholds) lower than 1.20. The value of « never exceeds the
95% interval.

In figure 4.9 we show results for different values of ¢,,;,. For the larger sky fraction
(fsky = 80%), we find that the deviation decreases as ,,;, increases, however, the MF
deviation for some thresholds remains significantly high (>30), even at the smallest
scales considered (£, = 130). For the smaller sky fraction (fs, = 60%), the devia-
tions remain almost constant with ¢,,;,, indicating consistency between the data and
simulations for all thresholds and multipoles at the 3o level.

Referring back to figure 4.7, we see that the areas where several filaments (I1In, I1Is,
IV, VII, X, XVI, XVII) have been detected are masked by the 60% mask and not the
80% mask. This suggests that the contribution of the sky regions where these large
complex structures are present affects the emission on scales smaller than ~6°.

The non-Gaussian deviation decreases for smaller scales, corroborating the hypoth-
esis that at small scales the emission tends to be more Gaussian. However, the effect of
bright local structures is still not negligible on a scale of ~1.5°. From this analysis we
also learn that the non-Gaussian nature is mainly of the kurtosis type, since V shows
the largest deviations from simulations, as explained in [93]. These results at 23 GHz
are in good agreement with those from the Planck 30 GHz polarization maps. More
details can be found in appendix B.3.1. Moreover, very similar conclusions are obtained
for intensity in the analysis of the 408 MHz maps by [93].
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Figure 4.8: Upper panel: MFs (top), difference between data and Gaussian simulations
(middle) and x; (bottom) as a function of threshold. Lower panel: CMT diagonal
terms and « (top), difference between data and Gaussian simulations (middle) and
(bottom) as a function of threshold. The maps are previously filtered with a band-pass
(¢ =30 — 180), error bars are computed from simulations.
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Figure 4.9: The three MFs (top), the CMT diagonal terms and « (bottom) deviations
as a function of the lower multipole cut, ¢,,;,, of the applied band-pass filter. The dots

and the triangles represent respectively the average and 95% percentile values computed
over all threshold values.
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4.5 Non-Gaussian Simulations

4.5.1 A model for non-Gaussian emission

Using MFs and MTs, we have determined clear statistical differences between the real
synchrotron polarized emission and an isotropic and Gaussian-distributed model, even
at small scales. In this section, we propose a simple way to generate polarized syn-
chrotron maps which can better resemble the real statistical properties of the emission
in the fainter regions of the sky on scales smaller than about 6°, which corresponds to
multipoles ¢ > 30.

From our statistical analysis, it is impossible to disentangle non-Gaussianity from
anisotropy. That is, we are unable to determine whether the measured non-Gaussianity
is an intrinsic feature of the synchrotron emission, or is due to an underlying anisotropic
pattern of emission on small scales. However, even if we assume the latter case, because
of the lack of information about the small scale distribution of the emission, we need a
mechanism to simulate the non-Gaussianity.

We generate the simulations as follows. We start with three complex vectors, (7,
CF, (B, generated from a Gaussian random distribution with zero mean and unit vari-
ance. The (¥ and (? coefficients are then transformed according to the sinh-arcsinh
transformation [163]

(P = sinh(d arcsinh(¢?) — ¢) (4.24)
C~B = sinh(§ arcsinh(¢?) — ) (4.25)

where (¥ and (P are the initial Gaussian-distributed vectors and (NE and C~B are the
transformed ones. The use of this transformation is motivated by the fact that it allows
one to control the level of non-Gaussianities with two parameters, € and 9§, whose effects
have a simple statistical interpretation. The parameter ¢ introduces symmetrically both
positive and negative tails to the statistical distribution, which increases the excess
kurtosis. The parameter € controls the level of skewness. We find that the Gaussian
case is correctly recovered with (¢,0) — (0,1), when performing simple consistency
tests.

We assume, for the sake of simplicity, that the level of non-Gaussianity is the same
for £ and B in the part uncorrelated to T'. This explains why we use the same param-
eters (¢, ) for both transformations in equations 4.24-4.25 and we do not transform (7.
We are aware that in a more realistic context this could not be the case, but this goes
beyond the scope of this analysis. The values used for (e,d) are discussed in section
4.5.3. We then generate the spherical harmonic coefficients as follows

aj =/CIT¢" (4.26)

ar = Gy Jope (G (4.27)
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where the index j refers to the (¢,m) pair. The C, values are computed from the
WMAP yearly maps as described in section 4.4.3. Note that after rescaling, the ay,-
distributions are different from the f—distributions, but still non-Gaussian. We generate
the (I, Q, U) maps, which represent our small-scale template, from the d, using the
alm2map routine of HEALPix.

4.5.2 Model for anisotropic modulation of the emission

Besides the non-Gaussian nature, we have shown that at high multipoles the syn-
chrotron emission is not isotropic. We simply assume that this is due only to a mod-
ulation caused by the large bright structures which are also visible at large scales. To
simulate the effect, we divide the polarization WMAP map into 3 patches (p;) according
to the application of thresholds on P. We divide the unmasked 80% of the sky into two
patches of 20%, py: 80-60%, po: 60-40%, and one of 40%, p3: 40-0%, according to the
sky brightness. For each patch, we smooth the boundaries with a 5° Gaussian and com-
pute the polarization spectra C¥ (p;). Then we define a spatially varying normalization

factor
Ct (p:)
N, = ¢ 4.2
< cr > (4:29)

where the Cf is computed from 80% of the sky and the average is computed over
the multipoles ¢ € [30,180]. N is then smoothed with a 10° beam. As shown in
figure 4.10 (top left), this method naturally introduces the effect at low-scales of most
of the filamentary structures presented in section 4.3. We multiply the non-Gaussian
Q and U maps, computed in the previous section, by the normalization factor

Q=NQ, U=NU. (4.30)

The resulting () and U maps form the final set of anisotropic and non-Gaussian simu-
lations.

To our small-scale model, we add a large-scale template generated directly from
the WMAP data. In order to match the maps, we smooth the small-scale and the
large-scale templates with respectively the functions W (¢) and (1 — W (¢)), where

W) = ; (1 — tanh (EMfOD (4.31)

with ¢y = 20 and A¢ = 5, chosen such that at the scales of interest in this work, that
is smaller than 6°, the simulations are mainly driven by our small-scale model. Finally,
in order to compare simulations with data, we add noise and compute the debiased
polarized intensity with the MAS estimator.

4.5.3 Tuning and Results

We have described above the method we use to generate polarized synchrotron simula-
tions on scales below 6°. The level of non-Gaussianity of the simulations is controlled
by the two parameters (¢, ) in equation 4.24-4.25, which are related respectively to the
skewness S and kurtosis K of the maps.
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Similarly to equation 4.21, we define the quantities which measure the deviation
between data and simulations as
4

Aluk ata sim
=D A= = g (4.32)
k=2

where o = op = /{(p — (p))?) is the standard deviation, uz = S = {(p — (p))?/o3) is
the skewness and py = K = ((p— (p))*/op) is the kurtosis. The values p;"™ and o, are
computed taking respectively the average and standard deviation over the simulations.

Moreover, we define a variable which quantifies the spectral deviations as

180
AC 4
Xop =Y —, AC, = |Cfte — cpm| (4.33)

o
=30 ¢

where C§"™ and o, are computed taking respectively the average and standard deviation
over the simulations. Note that the Cy are binned with a range A¢ = 10. We vary e
and ¢ over the ranges (—1, 1) and (0.3, 1.5), respectively. For each pair of values, we
generate 100 total polarization simulations, smoothing them with the band-pass filter
(Uinin = 30, Lpin, = 180). We find that the quantity x, + xsp is minimised for e = —0.46
and § = 0.78, as shown in figure 4.10 (top right). These define the values to generate
a set of reference simulations. An example of a simulated sky, and the comparison
between the simulated and real power spectra are shown in figure 4.10 (bottom).

The deviation in the MF and CMT measures between data and simulations, when
the band-pass ({min = 30, lin = 180) filter is applied, are shown in figure 4.11. In
figure 4.12, we show the deviations for different ¢,,;,. The simulations agree with the
data at the 30 level for both the 80% and 60% masks. This suggests that the non-
Gaussianity introduced with the sinh-arcsinh transformation (equations 4.24-4.25) is
more relevant in the bright regions, instead is mitigated in the more faint sky emission.
As noted in section 4.5.1, we do not know if the non-Gaussianity we introduce is related
to the intrinsic nature of the synchrotron emission, or due to an underlying anisotropic
emission at small scales. However, the mechanism to produce this non-Gaussianity
provides a simple method to tune our simulations by means of two simple parameters
(€,9). Overall, the non-Gaussian and anisotropic simulations seem to reproduce the
statistical properties of the polarized synchrotron emission well.

In appendix B.3.2, we test how our method performs simulating the synchrotron
emission at 30 GHz, as observed by Planck. We keep the parameters ¢, 6 and N as
fitted from WMAP. We observe that the method performs well at small scales (>2.5°),
but under-performs for larger scales.

The goal of this section is to show a simple data-driven way to generate more realistic
simulations. There are several assumptions and limitations which are negligible at the
current data sensitivity, but will not be the case for future experiments. For example,
we assume that the F and B modes are equally non-Gaussian, even if we do not have
evidence of it. We do not take into account the correlation of the non-Gaussianity
between intensity and polarization. We consider ¢ and 0 as fixed values, but in a
more realistic context, they could vary with scale and space. Moreover, a frequency
dependence in our model (¢, §, N), for example due to a possible decorrelation between
frequencies as observed in the dust emission [51], could not be excluded. Such effects
could explain the poor performance at 30 GHz for the large scales.
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Figure 4.10: Top Left: Spatially varying normalization factor used to modulate the
simulations in real space. Top Right: x,, + X, as function of the parameters e and
0, on logarithmic scale. Bottom Left: Simulation of the WMAP polarized intensity
map. Bottom Right: Total polarization power spectrum of the WMAP K-band (black

dots) compared to the 1o (dark green) and 20 (light green) intervals obtained from the
variance of the simulations.

99



0.002

0.001

AV

-0.001

-0.002

Wi)n (W1)22 a

‘ —— fuy = 80%
//+ fsky=60%\\

=
§°‘Tl T [ I —r
= Yool

Figure 4.11: Upper panel: MFs (top), the difference between data and non-Gaussian
simulations (middle) and yj (bottom) as a function of threshold. Lower panel: CMT
diagonal terms and « (top), difference between data and non-Gaussian simulations
(middle) and xj (bottom) as a function of threshold. The maps are previously filter
with a band-pass (¢ = 30 — 180), error bars are computed from the standard deviation
of the simulations. For the bottom panels, we use the same axis ranges as in figure 4.8
to allow a direct comparison.

100



Vi V- V-
8 0 8 1 o o
7 —o— fgy = 80% 7 7
6 —— fsky = 60% 6 6
5 5 5
> 4 4 4
s 3 3 =
v 7 - 7 7 - - i
2 - - v g 2 S 7 2 _ 4 P
;2:271:‘1/2——” 7 v v v v -
"y ! b':_.:':t——i e —g—
0 0 0
40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
W w
6 (W1 6 (W1)22 200 a
5 5 1.75
1.50
4 4 1.25
. = s 100 T
v ¥ < asle” a7
) a 78] @ _
2 7 2
v v Y—8—w__5 :,43:"_\,;;’:

0.50
0.25

Emin fmm

Figure 4.12: The three MF's (top), the CMT diagonal terms and « (bottom) deviations
from the non-Gaussian simulations as function of the lower multipole cut, £,,;,, of the
applied band-pass filter. The dots and the triangles represent respectively the average
and 95% percentile computed over all threshold values. For comparison purposes, we

use the same axes as in figure 4.9.
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4.6 Summary and Conclusions

In the analysis we have covered two important aspects of the polarized synchrotron
emission: the presence of large filamentary structures outside the Galactic plane, and its
statistical proprieties at small scales. The analysis has been performed on the debiased
polarized amplitude maps at 23 and 30 GHz as observed respectively by WMAP and
Planck. We developed a filament finder routine based on a friend-of-friend recursive
algorithm, which detects elongated coherent emission in the sky. The method has been
tested with foreground simulations including a toy model of filamentary structure. We
identify 19 filaments which are detected, at least in part, in both Planck and WMAP.
Some of the filaments have been already reported in the literature as observed in radio
sky or in previous WMAP analysis. Five of them are reported for the first time in this
work. We analysed some properties of the detected filaments.

e We compute the polarization fraction as the ratio of the WMAP and Planck data
maps with respect to a Commander intensity template rescaled with a spectral
index #; = —3. Typically, we find that the polarization fractions of the filaments
are larger than for the areas outside the filaments, excluding the Galactic plane.
For two filaments, both located in the NPS, we find values of about 30%.

e We study the polarization spectral indices of the filaments from the @), U maps.
We find consistent spectral indices of about -3.1 inside and outside the filaments.
However, the 8 values span a very broad range, from -3.59 to -2.17.

e Applying the filament finder algorithm to the P and Pz maps, we find that most
of the filaments, especially in the NPS, are clearly visible in F, but not in B.

e Applying the finder method to the Haslam map, we observe that for some bright
filaments in polarization we do not detect bright counterparts in intensity.

Using Minkowski functionals and tensors, we have analysed the non-Gaussianity
and statistical isotropy of the polarised WMAP and Planck maps. We focused on the
the faintest 80% and 60% of the sky. We compared the results obtained from data with
a set of Gaussian and isotropic simulations. We summarize our findings.

e Analysing the 80% sky fraction, we see large deviations (> 30) from Gaussianity
and isotropy at 6° scale. The deviations decrease towards smaller scales, even if
they remain significantly high down to 1.5°.

e Analysing the 60% sky fraction, we obtain consistent results between data and
simulations for all the considered thresholds and multipole ranges at the 3o level.

e These results suggest that the large filaments are the main source of non-Gaussianity,
even at small scales. When those filamentary structures are masked, the Gaussian
and isotropic simulations resemble well the diffuse emission at the WMAP and
Planck resolution.

Finally, we present a simple data-driven method used to generate non-Gaussian and
anisotropic simulations. We generate non-Gaussian harmonic coefficients by mean of a
simple transformation. We account for the anisotropies with a normalization template
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that resemble the diffuse filamentary structures. The simulations are then fitted in
order to match the spectral and statistical properties of the 80% sky coverage of the
data maps.
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Chapter 5

Tensor-to-scalar ratio Estimation

The purpose of this study is to analyse different likelihood estimators and statistical
approaches used to estimate a cosmological parameter, the tensor-to-scalar ratio (7).
The specific study case is the estimation of the uncertainty, or upper-bound, of r from
partial sky maps, in the particular case of null CMB tensor modes (r = 0). The work is
a methodological analysis, that considers only simulations containing CMB and white
noise. We present four likelihood estimators, three of which operate in the spectral
domain and one in real space, explaining for each one the approximations made and
the difficulties in implementation. We test them using three statistical approaches:
Maximum Likelihood Estimation (MLE), Maximum A Posteriori Estimation (MAP)
and Bayesian Inference (BI). We show how each method produces different estimates
depending on the fraction of sky observed. Best results are obtained using the pixel-
based estimator and Bayesian approach thus considered as a reference. We show that
spectral estimators that neglects the correlation between different multipoles, approxi-
mating the presence of the mask with the term (fs,) !, provide an underestimate of the
uncertainty. More sophisticated spectral estimators that take this correlation into ac-
count, however, produce overestimates of the uncertainties compared to the pixel-based.
These considerations apply particularly to the case » = 0. For positive tensor-to-scalar
ratios, the spectral methods become more reliable and converge to similar estimates.

5.1 Likelihood Estimators

In this work we compare different Likelihood Estimators known in the literature to be
useful for estimating a cosmological parameter from CMB maps. In particular, we focus
in the different approaches useful for estimating the tensor-to-scalar ratio when only a
portion of the sky is available. We focus on the case of r = 0, because it is a case of
great interest especially in the context of experiment forecasts. In the regime of zero, or
very small, tensor modes, most of the information needed to estimate r is encapsulated
in the large and intermediate scales. We will show that this aspect has a strong impact
on the different methods used to estimate the amplitude of tensor modes.

The work presented here is designed as a methodological study, so we limit the
analysis to an ideal case where the signal consists only of CMB and white noise. The
analysis is based only on polarization () and U maps, and the corresponding E- and
B-modes in spectral space. Temperature is not considered because it plays a negligible
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role in estimating 7.
In the following sections, we present four different estimators used to fit the tensor-
to-scalar ratio r and its uncertainty o,:

e (Glaussian estimator

e Fisher estimator

o Hamimeche & Lewis estimator
e Pizel-based estimator.

None of the methods used are new, they are well known methods used in the literature.
However, the names used were chosen by us for the sake of clarity; in literature they
may be called differently [164].

5.1.1 Simulations and Power Spectra

For all methods employed to estimate the tensor-to-scalar ratio, we use 2000 simulations.
Simulations are generated with the synfast routine of Healpy [122] from a fiducial
spectrum

Cgfid = Cglens + N, (51)

lens

where C,""* and N, are respectively the lensing and the noise power spectra. The CMB
lensing spectrum is produced with CAMB!, setting the tensor contribution to zero. The
noise is white and uncorrelated, thus /Ny is constant and independent on the multipoles

o2,
N, = 4r —2iz (5.2)

pix

where N, is the number of pixels in the map, and Ugm is the noise variance in each
pixel. For our case study we use a noise of 10 pyK-arcmin. This noise is high compared
to the noise expected to be achieved by future and current experiments. However, it
could be in accordance with the level of uncertainty that foreground residuals might add
to the maps. Certainly, the contribution of foreground residuals is much more complex,
because it is not Gaussian and is correlated. However, the value of 10 uK-arcmin could
mimic the residuals effect at least at the amplitude level.

Once the simulations have been obtained, we mask them and calculate the spectra.
We use the Planck galactic masks [8], provided by the Planck Legacy Archive? (PLA).
In particular, we use the masks that allow portions of the sky approximately between
60% and 90%. The choice is due to the fact that in estimating parameters from real
observations, it is required to mask the galactic center, because it is strongly affected by
residual foregrounds, despite component separation methods. We calculate the spectra
of the masked simulations with ECLIPSE [128], an optimized Quadratic Maximum Like-
lihood (QML) estimator. ECLIPSE enables spectrum calculation at large and medium
scales, optimally reducing E-to-B leakage due to the mask. For notation sake, in the

1caMB (Code for Anisotropies in the Microwave Background), is a python code which allows to
calculate CMB spectra from cosmological parameters [165]
Zhttps://pla.esac.esa.int/pla
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following sections we denote the ”experimental” spectra, i.e. obtained from simulations
with ECLIPSE, with Cy.

In a nutshell, the process of estimating the tensor-to-scalar ratio consists of compar-
ing spectra (or maps in the pixel-based case) with a model. We use a simplified model
where the tensor-to-scalar ratio enters linearly as

Cg —r Cetens + Célens + N€7 (53)

tens

where C,""** is the tensor contribution to the spectra produced with CAMB setting r = 1
and n; = 0°. The linear dependence of the spectrum on r is an approximation. The
actual relationship depends on the inflationary theory used, e.g. for the single-field
slow-roll model the consistency condition r» = —8n; would compromise the linear model.
However, the linear model is well suited to our case study because of its simplicity and
because it allows us to simplify many calculations. The lensing and noise power spectra
are showed in figure 5.1 compared to the tensor spectra obtained for different values of
the tensor-to-scalar ratio.

For the three spectral-based estimators: Gaussian, Fisher and Hamimeche € Lewis,
simulations and masks are generated at N4 = 64 with an 80 arcmin FWHM Gaussian
beam. In the r estimation we only take into account the BB-spectrum in the range
of multipoles between ¢,,;, = 2 and £, = 128. We neglect the FE and EB spectra
for simplicity, also since these provide little information concerning tensor modes. For
the Pizel-based estimator, we use simulations and masks at N4 = 4 and multipoles
between /,,;, = 2 and ¢,,,. = 12, without beam. This difference in resolution is due to
the fact that the Pizel-based estimator is computationally much more expensive than
spectral-based methods. Possible effects of resolution and beam are discussed in the
following sections.
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Figure 5.1: BB power spectra of the different components, where D, = ¢(¢ 4+ 1)C, /2.
The tensor spectra are computed multiplying the spectrum obtained with CAMB (setting
r =1 and n; = 0) by the value of r showed near the corresponding line.

3n; is the tensor spectral index (or tensor tilt), which quantifies the scale dependence of the tensor

spectrum.
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5.1.2 Gaussian estimator

Most of the power spectra approaches used for the parameter estimation usually relies on
the maximum likelihood estimator of an approximate multivariate normal distribution

1 - N
IOgE = —§(Cg — Cg)TCE_E,l (Cg/ — Cgl) — IOg ((27T)1_£maz’0|1/2)‘ (54)

It is well known that for the full sky the C,’s follow a x? distribution with 241 degrees
of freedom. However, the Gaussian approximation becomes reasonably good when /¢
increases, making this approach sufficient to estimate parameters in many cases. The
covariance matrix C is theoretically defined as

Cu = ((Cr — C)(Cp — Cn)TY, (5.5)

where Cy depend in principle on the tensor-to-scalar ratio, making the covariance C
also dependent on r. However, this dependency is very weak and can be neglected.
This leads to a great computational advantage, because we can calculate the matrix
only once from simulations, setting Cy, = (CA‘@) This choice is supported by the fact
that the ECLIPSE estimator is unbiased, thus it is equivalent to have in the covariance
(Cy) = C,f* which represents the maximum of the likelihood by definition. Under this
condition, the likelihood maximization reduces to the minimization of the quantity

—2 logﬁ = (ég — CK)TC_l(ég/ — Cgl). (56)

Knowing that the model is a simple linear function in r, see equation 5.3, we can find
an analytical form to compute the tensor-to-scalar ratio. We calculate the minimum of
the function in equation 5.6 by setting the partial derivative with respect to r equal to
zero, obtaining

Olog L 1

67“ = O < = (CgtenS>TC_ICgt6nS
We have verified that the numerical minimisation of equation 5.6 or the direct cal-
culation of r from equation 5.7 provide the same results. We use 1500 simulations to
estimate the covariance matrix C and the remaining 500 to estimate the tensor-to-scalar
ratio. The choice is due to the fact that the covariance matrix requires more simulations
to converge to a stable solution, whereas the process of estimating the posterior distri-
bution of r does not require a large number of simulations. These observations resulted
from preliminary tests carried out with different sets of simulations. Note that it is
possible to analytically compute the uncertainty of the tensor-to-scalar ratio directly
from the second derivative of the likelihood in equation 5.6

(Ogtens)TC_l(ég . Celens - NZ) (57)

2 ~1

2= |EE| —rayreiep (5:5)
r r=0

However, we do not use this analytical equation for o,, but we compute it from the

distribution of maxima of r. This allows us to use a method that can be applied to all

estimators.

Finally, we want to emphasize that this estimator is based on two approximations:
C,’s are considered Gaussian distributed, and the dependence of the covariance matrix
on 7 is negligible. The first approximation, which is indeed the most important, becomes
more reliable at large multipoles. Thus, the accuracy of this approximation depends on
how the different multipoles contribute to estimating 7.
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5.1.3 Fisher estimator

The Fisher estimator is a semi-analytical approach to compute the tensor-to-scalar
ratio and its uncertainty from power spectra. We define the likelihood [164]

1
log £ = -5 a;,,C,  ay, — log |2Cy| (5.9)

where ay,, are the harmonic coefficient of the simulations in Fourier space. For a
full sky map, CMB and white noise are assumed Gaussian and isotropic. Thus, the
corresponding harmonic coefficients &y, are Gaussian variables with zero correlation
between different multipoles. Under these conditions, the likelihood in equation 5.9
is exact. The model covariance matrix is C; = (a}, ay,). If we define the observed
covariance matrix as Cg = <é.{m§1gm>, the likelihood reduces to

o £ — 2+

(trC,C;* + log |Cy|) + const. (5.10)
Note that the matrix notation for a,,,, C, and C is used because, in principle, they take
into account self and cross-correlation between different modes (7', £ and B). However,
it is important to emphasize that the covariance matrices have zero correlation between
different multipoles.

In our analysis we only take into account the BB spectrum, thus the likelihood in
equation 5.10 reads

B 2+1|C, 2—1. .
log L =— —5 a+log0g—2€+llog04 (5.11)

14

a (reduced) y-squared of Cy’s with (2¢ + 1) degrees of freedom. The likelihood showed
in equation 5.11 is well-defined and exact when analyzing full-sky maps. The presence
of the mask results in a loss of information, coming from the masked area. For partial
sky, a common procedure is to adapt the likelihood by multiplying by the observed sky
fraction, fsx,, to reflect the overall loss of the independent modes in the available data
[166, 167]. For simplicity we will call this procedure the fy,-approzimation

IOg Epartial — fsk:y IOg ﬁfull—sky‘ (512)

In terms of the uncertainty of the tensor-to-scalar ratio, fg,-approximation is equivalent
to writing

partial __ 1 olull-sky (5.13)

' \V f sky "
For each simulation, we numerically obtain the best-fit value of the tensor-to-scalar
ratio maximizing the likelihood. Then, we compute o, from the maxima distribution.
The one shown so far is a numerical estimator that is based on maximising the
likelihood, which is exact for full-sky and approximated for partial-skies. However,
there is also an analytical derivation to obtain the uncertainty of the tensor-to-scalar
ratio, taking the second derivative of the likelihood with respect to r

2
o, =1/VF with F=— <a al(;f‘c> (5.14)
r=0
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where F is the Fisher variance, from which the estimator is named [167]. By definition,
the Fisher variance is the second partial derivative of the likelihood with respect to r,
when the C}’s correspond to the true model, that in our case is » = 0. Under this
approximation, and recalling the dependency of the model spectra with respect to r,
see equation 5.3, we find an analytical equation for the Fisher variance

20+ 1 (Cy) ronsn 1 romsn
F=f E 2 C)l") — ————— (O . 5.15
fky - 2 (Célens +Ng>3( L ) (Cflens + NE)2( 14 ) ( )

where <ég> is the average over simulations of the spectra obtained with simulations.

Mathematically speaking, the Fisher variance is the curvature of the likelihood at
the maximum point. Calculating o, by this analytical method is totally equivalent to
calculating o, by the maxima distribution only in the case where the data points, in
our case the C’g’s, are drawn from Gaussian distributions. However, this is not our case,
so the analytical method based on the Fisher variance is an approximation. In the next
sections, we will show the results obtained from numerical derivation, i.e. maximising
the likelihood. However, we presented also this approximate method because it is widely
used in the literature.

Finally, we want to emphasize that both the numerical and the analytical Fisher
estimators are based on the approximation that the presence of the mask is accounted
by the fgr,-approximation. This approximation is equivalent to saying that the ay, at
different multipoles are statistically uncorrelated. In our case of CMB and white noise,
this assumption is only correct at full-sky. In case of partial sky, the presence of the
mask affects the correlation structure of the ay,,’s coefficients, introducing correlations
between different multipoles. Furthermore, the analytical derivation inherently makes
a second approximation which is equivalent to the approximation described in the
Gaussian estimator, that is Cy’s are considered Gaussian distributed. Both the fg,-
approximation and Gaussianity approximation are reliable for large multipoles, but can
fail for small multipoles. The f,;,-approximation fails because it does not correctly take
into account the presence of the mask. The analytical derivation fails because the low
multipoles are less Gaussian.

5.1.4 Hamimeche & Lewis estimator

Hamimeche € Lewis [164] proposed a likelihood approximation that can be used with
Gaussian correlated fields, which is applicable in the presence of partial sky. It involves
a fiducial model, but, it is weakly dependent on it. It also assumes that the spectra co-
variance matrix is positive definite. This assumption breaks down when the covariance
is computed from simulations, especially for low multipoles. To overcome this problem,
we use the offset-modification proposed by [168]. The likelihood has the following form

—2log L =Y X/M,, X, (5.16)

o0

with the variable X, defined as
; ég+0g ;
X, =\/Cl"+0, 9| =—— | V& "+0 5.17
¢ ¢ ¢ g C, + O, [ [ ( )
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where g(z) = sign(x)/2(]z] — logz — 1). We compute the covariance matrix making
use of the fiducial model
T
My = —— 3 (Cip— CF(Cip — Cpl™ 5.18
o= g D (Coa = O G = Cal) (5.18)
where N is the number of independent simulations. We estimate the offsets in equation
5.17 recursively, the i-th iteration is calculated as

fory(20+1)

where AC, is the standard deviation of the spectrum, corresponding to the diagonal

terms of the covariance My . At the first iteration we set O) = 0. The final offset is
~1/2

) R 9 fid ) .
Ol = \/ AC, — L(cﬁld +2007Y) (5.19)

obtained after 10 iterations. This operation ensures that the matrix P = C~V 2CC
is positive-definite for at least 99% of our simulations. From equation 5.19, note that
the offset depends on the noise amplitude, on the mask used and weakly on the fiducial
model. For more details, please refer to the original articles [164, 168].

When the covariance matrix is estimated from simulations, it has some intrinsic
uncertainty itself [169]. Thus, we need to infer parameters by marginalizing over the
true covariance matrix, conditioned on its estimated value. Considering this issue,
we decide to use a modified Hamimeche & Lewis likelihood®, referred in literature as
Sellentin € Heavens likelihood [170], of the following form

XTMU},XE, e
\/27Tdet ( %,: N — ) .

Unlike previous methods, this method does not have a simple analytical solution, so
we directly maximize the likelihood numerically. Thus, for each simulation we obtain
the best-fit value of r and, then, calculate o, from the maxima distribution. As for the
Gaussian estimator, we use 1500 simulations to estimate the covariance matrix M and
the remaining 500 to estimate the tensor-to-scalar ratio.

The Hamimeche & Lewis estimator is a more sophisticated method than those
described above, where no strong approximations are made. However, increasing com-
plexity also leads to increasing operations and small assumptions. In fact, the method
itself depends on few factors that can have an impact on the final results. For example,
the need to regularize the covariance matrix could lead to results which depends on the
offset, making the results less robust.

(5.20)

5.1.5 Pixel-based estimator

The Pixel-based estimator is an exact and mathematically rigorous approach for partial-
sky analysis, it relies only on quantities defined in pixel space. The full pixel-based
likelihood reads

1 1. g

4Although the one used in this analysis is not exactly the likelihood proposed by Hamimeche &
Lewis, we will continue to call it the Hamimeche & Lewis estimator in order to still refer to the original
work, where this parametrization was first presented.
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or in its simpler logarithmic form
—2log £ = p"M™'p + log |M| + const. (5.22)

The quantity p is a vector of pixel values of the simulated ) and U maps, and M is
the pixel-pixel covariance. The latter is a matrix of shape

_ ({QQ) (QU)
M- (199) @y, 52

In our case study where both CMB and noise are Gaussian and isotropic, the four

blocks of the covariance matrix can be calculated exactly from the model power spectra
(CPE, CPP,CPP) [171], as

(QQ)Y =) (%) (FPCEY = F2CpP)
¢
woy =3 (P ) triepe - rrcrn (5.24)
¢
Quy =3 (50 (s e
¢
where F''? = F'2(2) and F* = F*(2) are functions of the cosine of the angle 2

between the two pixels under consideration. As for the power spectra in equation 5.3,
the covariarce matrix can be decomposed in

M — thensor + Mscalar + MTLOiSG (525)

where M!"*°" is the tensor contribution to the spectra for r = 1 and n, = 0, and M?scer
is the CMB scalar contribution which includes lensing effects for the B-mode. IM™%¢ is
the noise pixel covariance, that in the case of white noise reduces to a diagonal matrix

i Ni:ce
Mnozse:I P lNg:IO'Q

47 noise

(5.26)

where T is the identity matrix, and o2, . is the noise variance at each pixel. In the
case of partial sky, p in equation 5.22 is a vector of size N, = (2 fsky Npizer) containing
only pixels which are allowed by the mask. Likewise, the covariance is an (N, x N,)-
matrix, containing the same pixels. Since the likelihood is evaluated pixel by pixel, we
do not make any approximation in the likelihood or defining the covariance, unlike the
other estimators. However, although on the mathematical side the method is exact and
well-defined, on the implementation side it is very challenging.

The first challenge is the computational cost. Through the linear dependence of the
tensor-to-scalar ratio in equation 5.25, we have the advantage of calculating the indi-
vidual matrices (Mtensor Msealar  \Mmi¢) only once, and the computation of the total
covariance reduces to a sum. However, for each value of r to be evaluated, we always
need to compute the inverse matrix (M~!) which enters in the likelihood. This step has
no loopholes and must be calculated exactly, making it the bottleneck of the estimation
process. The second challenge is numerical. When working with large covariances, it is
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easy to fall into problems of ill-conditioned matrices, making it impossible to calculate
the inverse of the covariance. Most of the time these issues are purely numerical, related
to the way the inverse is computed or to limits in computer precision. To address both
problems, computational and numerical, we adopt a resolution of Ny;4. = 4, which has
Npizer = 192 per map, and take into account multipoles up to {4 = 3Ngge = 12.
On the one hand, the low resolution allows us to work with matrices that can be han-
dled with an ordinary laptop. On the other hand, it is proved that for Nz < 4
(HEALPix scheme) the covariance matrix always achieve the maximum possible rank
[172]. Nevertheless, even at such low resolution we still have numerical issues that need
to be addressed and solved with a regularization method. An example of regularization
process is showed in section 5.2.1.

5.1.6 Contribution from Different Scales

The maps we use for the spectral estimators are at N4 = 64 with an 80 arcmin
Gaussian beam. This resolution is high enough to allow us to access multipoles up to
lrmae = 128 without concern. The FWHM value of the beam is kept small in order
to affect only the very large multipoles. The maps used for the Pizel-Based estimator
are generated at N4 = 4 without beam. The choice of low resolution is due to
computational cost and numerical reasons, as discussed in more detail in the previous
section. The choice not to use the beam is due to the fact that we would not want to
lose important signal by smoothing the maps, plus the maps are analysed directly in
real space, without going through spectral transformations. However, one could argue
that generating the maps at low resolution could affect the results.

In this section we apply the procedure described in section 8 of [173] to show how the
different scales, in terms of multipoles, affect the estimation of o,. Recalling the linear
approximation Cy'"**(r) = r C,""*(r = 1), for each multipole moments the estimator
for the tensor-to-scalar ratio can be summarised as

Cfg . Cglens — N,

= 5.27
Te Oetens (7, — 1) ( )
The variance, for each multipole moment, of r, is then
ACY 2 2 C tens C lens N 2
(UT)2 ( E) o ( ¢ + Cy + g) . (528)

0= [CgtenS(T _ 1)]2 - 2€+ 1 [Cétens(r — 1)]2

The estimators obtained from each multipole can be added with inverse-variance weight-
ing to obtain the minimum-variance estimator for . The standard deviation of the final

estimator is
—-1/2

¢ 2
o= 20 + 1 C/l " (r =1)

Or = [Z 2 (C tenf C lens N, : (529)
— ¢+ 0T+ Ny

See section 8 of [173] for more details on computation steps not directly explained. This
analysis refers to the full-sky case, where no approximation is applied and the angular
power spectrum contains all the information. In the case of greatest interest for this
work, i.e. r =0, the term C,**"* in the denominator is zero.

Equation 5.29 gives us an analytical relationship between the estimation error of the
tensor-to-scalar ratio and the maximum value of multipoles involved, parameterized by
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lrmaz- In Figure 5.2 it is showed the value of o, obtained adding only the contributions
from multipoles between 2 and /,,,, on the x-axis for the » = 0 case. The plot shows how
o, decreases significantly including multipoles up to ¢ = 12. The uncertainty remains
roughly constant if multipoles 12 < ¢ < 30 are included. Finally, o, slightly decreases
by including multipoles larger than 30. This suggests that most of the information
useful for estimating the uncertainty of r comes from the reionization bump at low
multipoles. The recombination bump, at higher multipoles, has a significantly lower
weighting in the estimation. Numerically, the difference in o, calculated with /,,,, = 12
and £, = 128 is about 2%.

This analysis shows us how most of the information useful for estimating the tensor-
to-scalar ratio uncertainty is in the large scales. Thus, using a lower resolution for the
Pixel-based estimator has a very small impact. In other words, this result allows us to
safely compare the results of the spectral estimators with the Pizel-based estimator.
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Figure 5.2: Uncertainty in the estimation of r, under the hypothesis r = 0, as function
of the largest multipole taken in the sum in equation 5.29.
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5.2 Maximum Likelihood Estimation

In the following sections, we will show the results in the estimation of r and its un-
certainty when it is assumed null, obtained using the different estimation methods
presented in the previous sections. We show the results for two different approaches: a
Frequentist approach (MLE) without constraint, and a Bayesian approach (MAP and
Bayesian Inference) with constraint » > 0. In this specific section we focus on the
Frequentist approach, using a Maximum Likelihood Estimator (MLE) process without
constraint, where we evaluate all values of r both positive and negative. This is equiv-
alent to assume a uniform prior probability for all values of the tensor-to-scalar ratio.
We are aware that negative values have no physical meaning. Nevertheless, ours is a
methodological study, and having the full distributions of maxima of r for the different
estimators allows us to explore some statistical features of these.

5.2.1 Pixel-Based Regularization

The Pizel-Based estimator is the exact and optimal method for estimating cosmological
parameters. It becomes crucial when information contained at large scales dominates
the estimation. Exactly as in our case where the estimated parameter, the tensor-to-
scalar ratio, is very small. Nevertheless, the problem with using the likelihood function
in real space is that the computational cost is driven by the covariance inversion opera-
tion, which scales like N . This has two negative implications. On the computation
side, one has to repeat this calculation for a large number of simulations and for many
values of r, to profile correctly the likelihood. On the numerical side, with the succes-
sion of many operations, the sum of small errors due to the precision of the computer
can lead to an ill-conditioned covariance.

Estimating the tensor-to-scalar ratio with the MLE, we need to assess likelihood
even for negative values. If a simulation fits a negative value of r, it means that it
has less signal than the expected fiducial. On a statistical level, this is either due to
cosmic variance or simply due to an unfortunate realisation of the noise. However, at
particular negative values of r the covariance matrix may become not positive-definite.
In figure 5.3 (top left) we show the eigenvalues of the covariance matrix for r = —0.002°.
The eigenvalues are almost all positive, except for a few (less than 5%) that take
negative values®. A non positive-definite covariance matrix has no physical meaning,
and creates numerical problems at the time of inversion. This is clearly visible in Figure
5.3 (top right), where the likelihood becomes numerically unstable for negative r. This
instability affects the search for the (—log £) minimum, even though for that particular
value of r the matrix is positive-definite.

In order to solve this numerical issue and allow the minimisation algorithm to find
the best fit, we use a regularization process’ as follows. First we calculate the covariance
for a given r, and check whether the matrix is positive-defined. For negative outcome,

®Note that the value r = —0.002 is a borderline case. We will show that it is equivalent to 5 (2.5)
times the uncertainty of r for the full-sky (60% sky) case.

6 A matrix is positive-definite only if all its eigenvalues A are positive.

"We tested the standard procedure of adding an uncorrelated regularization noise, i.e. adding a
constant to the diagonal of the covariance, however, it did not help solve the problem. So we employ
a different method of regularization.
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we calculate the eigenvalues and eigenvectors of the matrix. We fix the negative eigen-
values to a slightly positive value (A, = 0.01 - |A_|) and recalculate the regularised
matrix using the same eigenvectors. An example of regularization and how this affects
the likelihood are shown in the figure 5.3 (red lines in top panels). Regularization cor-
rects the numerical instability for negative r, allowing the search for the minimum. In
figure 5.3 (bottom) we show the covariance matrix for r = —0.002 before (left) and
after (middle) the regularization process. The difference is very small and cannot be
appreciated visually. But if we plot the relative difference (right), we observe that
the regularization acts mainly on the off-diagonal terms, leaving the diagonal almost
unchanged. This suggests how numerical problems arise from the fluctuations around
zero of the off-diagonal terms, which are more sensitive to negative values of 7.

Finally, we would like to emphasise that this regularisation is only necessary for
profiling the left tail of the likelihood, allowing the function for finding the maximum
likelihood to converge numerically to an estimation of r. It was necessary for about
25% of the simulations. For all those simulations, the estimated value, corresponding
to the maximum likelihood, was in the safe range zone, where the covariance matrix
was positive-definite.
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Figure 5.3: Top Left: Eigenvalues of the covariance matrix for r = —0.002. Top
Right: Likelihood (full-sky) as function of r before and after regularization. Bottom:
Covariance matrix for » = —0.002 before (left) and after (middle) regularization. On
the right, the relative difference between the two matrices.
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5.2.2 Results

Using the four estimators presented in the previous sections, we estimate the value of
the tensor-to-scalar ratio for each simulation, finding the value of » which maximizes the
likelihood for each simulation. In particular, the Gaussian estimator has an analytical
solution obtained imposing the derivative of the likelihood with respect to r equal to
zero. Instead, for the Fisher, Hamimeche € Lewis and Pizel-based approaches, we find
the minimum of the quantity (—log £) by means of the iminuit routine® [174] in the
range [—0.01, 0.01] of . The resulting estimations are showed in figure 5.4. The figure
on the left shows the maxima distributions of r for the full sky analysis. A simple visual
analysis shows how the distributions are not symmetrical, but have a longer tail toward
positive values of r. This behaviour also happens when masks are applied, resulting
in non-symmetric error bars, especially for the Hamimeche € Lewis and Pizel-based
approaches. The figure on the right shows the expected value of the tensor-to-scalar
ratio for each method, obtained averaging the values of r over simulations. For all sky
fractions and for all methods we observe values consistent with the true value (r = 0)
within the 68% confidence interval.
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Figure 5.4: Tensor-to-scalar ratio estimation with the MLE for the four methods. Left:
maxima distributions of r for the case of full-sky. Right: estimation of r for different
sky fractions, with error bars showing the 68% confidence intervals. The solid black line
represents the theoretical value » = 0. The different values of fg, for the Pizel-based
estimator are due to the mask downgrading from Ny;q. = 64 to Ngge = 4.

All methods thus appear to recover the true value of the tensor-to-scalar ratio.
What particularly differentiates them is the value of the uncertainty of r. To allow a
simple comparison between the methods, and give a simple numerical value, we define

the uncertainty of r as
1
= 302 (7“0.975 - 7‘0.025) (5-30)

where 79975 and rg o5 represent the value of r at which 0.975 and 0.025 percentage of
estimations lie respectively above and below those values. The choice is made because
the 95% confidence interval bounded by the 0.975 and 0.025 percentiles approximates
the value of 3.920 for a Gaussian distribution. This definition has the advantage of

oy

8https://iminuit.readthedocs.io/en /stable/about.html
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considering almost the entire distribution, giving more weight to the tails. Results
are showed in figure 5.5. Note that for the Pizel-based approach, the value of o, is
computed for two extra masks in order to better show the shape of the curve’.

Fisher, Hamimeche & Lewis and Pizel-based methods provide compatible estima-
tions of the uncertainty of the tensor-to-scalar ratio when the full-sky maps are analysed.
This is expected because those estimators are exact for full-sky. Whereas the Gaus-
sian estimator provides slightly sub-optimal results because of the approximation. For
partial sky instead, each method results in a different estimation of this uncertainty.
The Fisher estimator gives the smallest estimations of o, for all sky fractions. The
Gaussian and Hamimeche & Lewis estimators provide similar large values of o, for
partial skies. The two methods start to diverge for sky fraction smaller than 70%. The
Pizel-based estimator provides values smaller than the Gaussian and Hamimeche &
Leuns, but larger than the Fisher estimator.

The comparison of spectral methods therefore suggests that different estimators
produce different uncertainties. These mismatches become increasingly important for
smaller sky fractions. The results seem to suggest that the Fisher estimator underesti-
mates the true value of uncertainty when considering the optimal Pixel-based estimator.
However, the comparison with the Pizel-based is only possible if we use the regular-
isation process. Omne could argue that this process may affect the estimation of the
tensor-to-scalar ratio in some way. For this reason, we take the comparison between
spectral and Pizel-based estimators as qualitative. In the next section we will show
the results we obtain when the prior r > 0 is applied, where no regularisation process
is needed and the Pizel-based method is exact. That will then give us a quantitative
comparison, allowing us to draw conclusions on the estimators.

5.2.3 Robustness Tests

In this section we present two tests we perform in order to check the robustness of
our results. First, we repeated the same analysis for » = 0, but including different
amplitudes for the white noise, in particular 2.5, 5, 10 and 15 puK-arcmin. Second, we
perform the r-estimation for simulations with different values of tensor-to-scalar ratio,
keeping the 10 pK-arcmin noise. We test two cases: r = 0.01, which is slightly below
the actual experimental constraint, and r = 0.00461, corresponding to the Starobinsky
model [175]. We restrict the analysis to the mask that allows about 60% sky fraction,
because this is the case where the differences among the estimators are larger. In figure
5.6 the values and the uncertainties of the tensor-to-scalar ratio are showed.

The noise amplitude affects all estimators as one would expect, higher noise leads
to a higher uncertainty of r. However, it can be seen that the relative ratio between
the values of o, obtained with the different estimators is rather constant. Nevertheless,
with higher amplitudes of noise, the Hamimeche & Lewis estimator provides a lower
uncertainty than the Gaussian one, thus proving to be more efficient.

The analysis performed for different values of the input tensor-to-scalar ratio brings
us interesting insights about the different estimators. The Pizel-based method provides
a slightly biased estimation of the r-value towards lower values, with large uncertainties.

9The new masks are generated from the 77% Planck mask (downgraded to Ng;q. = 4). We smooth
it with a Gaussian beam of 10° and 12°, then we apply a threshold of 0.8. The results obtained with
the new masks are plotted with empty diamond markers.
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Figure 5.5: Uncertainty of the tensor-to-scalar ratio estimated with the MLE for the
four methods, with different sky fractions. The value of o, is computed from the 95%
confidence interval, see equation 5.30.

This is because the Pizel-based has access to multipoles £,,,, < 12, lacking the infor-
mation from the recombination bump, useful for estimating r-values comparatively not
so close to zero (r > 1073). Another important result is that for r greater than zero,
in particular for » = 0.01, the three spectral estimators converge towards the same
uncertainty estimation. This result corroborates the thesis that for a larger tensor-
to-scalar ratio, high multipoles play a more important role in the estimation, so the
fsky-approximation and the Gaussian approximation become more reliable.
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r = 0 as function of the noise amplitude.
(bottom) and uncertainty (top) for a 10 pK-arcmin noise as function of the input
(true) tensor-to-scalar ratio ry. The solid black line represents the true value of r. The
line standing for o, obtained with the Pizel-based approach is dashed because it is
strongly affected by the low resolution, Ny4. = 4, used for this method. The analysis
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is performed with the mask that allows about 60% sky fraction.
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5.3 Bayesian Approach

Admitting both positive and negative values in the estimation of the tensor-to-scalar
ratio is interesting from the methodological point of view in order to evaluate the
performance of the different considered estimators. However, from a physical point of
view, we know that the value of r can only be equal to or greater than zero. In statistical
terms, this means having a prior probability of r, which can be represented by a step
function, where P(r) = 0 for r < 0, and P(r) = constant for » > 0. In addition,
we have showed that when trying to estimate the value of r by admitting negative
values, the Pizel-based estimator shows numerical problems. This issue is completely
removed by excluding negative values a priori. We will estimate the uncertainty of r
using a Bayesian approach in two different ways, which are: the Maximum A Posteriori
Estimation (MAP) and Bayesian Inference. We will explore these two methods in the
following sections.

5.3.1 Maximum A Posteriori Estimation

The Maximum A Posteriori Estimation (MAP) is a estimator based on frequentist
statistics in a Bayesian context. This is because we perform a likelihood maximisation,
as a MLE, but including a prior, in our case » > 0. Operationally we maximise the
likelihood in the constrained range [0,0.01]. The use of the prior r > 0 for null tensor-
to-scalar ratio leads to a different interpretation of the results with respect to the MLE.
In the latter, we obtain an average of the estimates of the tensor-to-scalar ratio and
an uncertainty interval. The MAP remains an estimator, where a value of r can be
inferred. However in our case of null tensor-to-scalar ratio, due to the different shape of
the distribution of the maxima estimates, it is more appropriate to provide an upper-
bound to the estimator, under the null hypothesis » = 0. In our calculation we fix the
boundary at the 95% percentile of the maxima distribution, in order to give more weight
to the differences between the estimation methods in the tails of the distributions.

Results are showed in figure 5.7. All the estimators provide very similar results for
full-sky, then split into two branches. On the one hand, Gaussian and Hamimeche &
Leuns estimators both show a strong dependence on the sky fraction. However, for
fractions smaller than 80%, Hamimeche & Lewis reduces the slope. On the other hand,
Pizel-based and Fisher estimators show a weaker dependence with the sky fraction.
However, for fractions smaller than 80%, Pizel-based increases the slope. This result
seems to suggest that the Pizel-based is compatible with the Fisher estimations for
large sky fractions (> 80%), whereas it becomes more compatible with the Hamimeche
¢ Lewis estimations for smaller fractions (< 60%). However, this approach somehow
forces the estimation of r to zero for all those simulations that would fit a negative
value as likelihood maximum. So one could argue that the distribution of the maxima
estimates is in this case very asymmetric with a high peak near zero and therefore
hard to determine with good accuracy which makes setting the upper-bound somewhat
unstable. Thus, we refer the final conclusions to the next section.
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Figure 5.7: Upper-bound of the tensor-to-scalar ratio estimated with the four estima-
tors. The estimations are obtained with MAP, setting the prior » > 0. This is equivalent
to perform a MLE in the constrained range r € [0,0.01].

5.3.2 Bayesian Inference

Bayesian inference is a fully Bayesian approach in which the parameter estimates with
their uncertainties are derived directly from the posterior distribution without any
maximisation process. The posterior distribution is the product of the likelihood by the
prior. In our case the prior function is zero for r < 0, and constant for » > 0. Therefore,
the posterior for each simulation is simply the likelihood evaluated for positive values of
r. We compute the mean posterior averaging over all the simulations and integrate it in
order to get the upper-bound as the 95% percentile. The Bayesian Inference allows us
to tie a probability (in the statistical sense) to the values that r can take. This bound
tells us at which confidence level a possible estimation of r is compatible with zero.

Results are showed in figure 5.8. The Fisher, Hamimeche & Lewis and Pizel-based
methods agree for full-sky. The Gaussian method provides lower values (of about
20%). The relationship between the estimated values and the sky fraction is very
similar to that found in the previous analysis. Considering the Pizel-based method as a
reference, we can conclude that the Gaussian and Fisher methods underestimate and
the Hamimeche € Lewis method overestimates the uncertainty of the tensor-to-scalar
ratio. Quantitatively, the Gaussian method performs worse for large sky fractions
(fsky > 90) and the Fisher method performs worse for sky fractions of 80% down. The
Hamimeche & Lewis is the only reliable spectral method although it is sub-optimal
since provides less constrained upper bounds. The discussion and interpretation of
these results are presented in the next section.
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Figure 5.8: Upper-bound of the tensor-to-scalar ratio estimated with the four methods.
The estimations are obtained integrating the mean posterior, which in turn is computed
averaging over the simulations’ posteriors.

5.3.3 Discussion

In this section, we discuss the four methods, their characteristics and implementations,
and try to give meaning to the obtained results. We refer to all tested approaches,
however we use as a reference the Bayesian Inference. This is because the Pizel-based
does not require any regularisation. In addition, unlike the MAP, we maintain the real
posterior distribution of r, without forcing values to zero.

The first case analysed is the Gaussian method. It is based on the very simple
approximation that C,’s are Gaussian distributed. This is a reasonable approximation
for large multipoles, but it is less appropriate for low multipoles. The impact of this
approximation can be quantified by comparing the upper-bound obtained from the
posterior distribution at full-sky obtained with the Gaussian method with respect to
the other methods, as showed in Figure 5.8. When considering the maxima distribution
of r, as in the MLE and MAP, this effect is mitigated, as showed in Figure 5.5 and 5.7.
From this we deduce that the Gaussian approximation strongly affects the shape of the
posterior, but slightly the position of its maximum.

The relationship between the uncertainty of r and the sky fraction is explained by
the following. In a nutshell, the presence of the mask reduces the number of pixels,
thus the information, from which the spectrum is calculated. Plus, it generates cross-
correlation between different multipoles. Therefore, the mask increases the covariance,
which in turn increases the value of uncertainty of the tensor-to-scalar ratio, as shown
in equation 5.8. In our case, the effect is exacerbated because most of the information
for estimating r is contained in the low multipoles, as showed in section 5.1.6, which
are the ones most affected by the presence of the mask.

123



The Hamimeche € Lewis is a parameter estimator used in the presence of correlated
fields. It started out as a method with the aim of overcoming the approximations of
the Gaussian estimator. Indeed, it does not assume C}’s Gaussianity, so it is exact for
complete sky, and the entire covariance matrix is considered in the estimation. Looking
at the results in figures 5.5 and 5.7, we deduce that the estimator is quite compatible
with the Gaussian estimator for large (> 70%) fractions of the sky. For smaller frac-
tions, when the correlation between different multipoles increases, Hamimeche € Lewis
returns better results. When we estimate using Bayesian Inference, we still see a sim-
ilar trend to the Gaussian estimator, but the latter is heavily biased by the Gaussian
approximation. Even the Hamimeche € Lewis method has caveats. For example, it
requires additional information such as a fiducial model and an offset, obtained from
the simulations themselves. The result can therefore be affected by a limited number
of simulations.

The Fisher estimator is an exact method for complete sky, but for partial skies it
makes an approximation, which we refer as fy,-approximation. This is equivalent to
replacing equation 5.8, with

1 62 log ﬁfull_Sky _1 1 ens ull-s — ens|—
2 [ ] _ L j(cpemyr (i ot (5.31)
r=0

o or? V fsk:y

" f sky

Since both CMB and noise are Gaussian and uncorrelated, the full-sky covariance is
diagonal CM=sky = (Clens + NN,). The approximation therefore consists of estimating
the effect of the mask by the factor ( fsky)_l/ 2. Nevertheless, our analysis shows that
this fsr,-approximation underestimates the uncertainty of r. The reason lies in the
fact that the fs,-term quantifies the loss of information due to fewer pixels, but does
not quantify the presence of correlation between different multipoles, generated by the
presence of the mask. This correlation is especially relevant for small multipoles. The
fsky-approximation is then only reliable for large multipoles as seen in section 5.2.3,
when estimating the tensor-to-scalar ratio for values greater than zero.

Note that in equation 5.31 we have used the analytical derivation of o, because
it is easy to interpret, but the argument also applies if we maximise the likelihood
numerically. The difference between numerical and analytical calculation affects the
estimation of the uncertainty of r independently of the mask. Recall that the analytical
equation underlies an approximation, namely that the C}’s are Gaussian distributed,
exactly as the Gaussian estimator does.

The Pizel-based estimator is the only one based on an exact and optimal method.
On a theoretical level, it does not require any approximation, or the introduction of
additional information such as offsets or fiducials. However, we have already explained
in section 5.1.5 how it has several computational and numerical complexities. The main
problems occur when trying to estimate r with the MLE. For some simulations and
some negative values of r, the pixel-pixel covariance may become not positive-definite.
However, it becomes reliable, without the use of numerical regularization, simply by
setting the prior r > 0.

To summarise, the results show us that all methods succeed in recovering the true
value of the tensor-to-scalar ratio on average. However, the uncertainty on this esti-
mate is different depending on the estimator. The Pizel-based estimator is the optimal
method, which returns the most reliable uncertainty value. The Hamimeche & Lewis
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estimator overestimates this uncertainty, especially for large fractions (> 70%) of sky.
Although it tends to become more reliable for smaller sky fractions. The Gaussian
method makes a very strong approximation that leads to overestimates or underesti-
mates depending on the approach used. The Fisher method always underestimates the
uncertainty of r for partial skies. The fg,-approximation may be reasonable for large
sky fractions (> 80%), but it is not reliable for smaller fractions.

5.3.4 Pixel-Based Resolution

The maps used for the Pizel-Based method are generated at Ng;q. = 4 without beam.
This resolution was chosen to significantly reduce computing costs, allowing us to test
the different approaches and methods presented in this analysis. Instead, the choice
not to use a beam lies in the fact that it makes the analysis much simpler and easier
to interpret. This will be clarified later in the text. However, what we use is an ideal
study case, not applicable in real data analysis.

In a real context, parameter estimations are done using the highest possible resolu-
tion, within computational limits. In addition, maps and simulations require a beam
to avoid problems such as aliasing. In our analysis, we know from theory that when
analysing full-sky maps, resolution and beam do not matter much. To demonstrate it
numerically, we show the 68% and 95% upper-bounds found for different resolutions
in Table 5.1. For each simulation, we apply a Gaussian beam with FWHM that is 2.4
times the pixel size. Taking the 68% upper-bound, we obtain very compatible values.
The difference between the lowest and the highest analyzed resolutions, respectively
Ngige = 4 and Ngq. = 16, is about 3%. It is similar to the difference in the standard
deviations, of about 2%, found theoretically in section 5.1.6. For the 95% bound, the
differences are slightly more pronounced. This suggests that a higher resolution could
still help to better track the right tail of the likelihood™®.

fsky (%) ‘ Nside ‘ FWHM (I> ‘ T'68% ‘ T'95%
100 4 2110 6.1 x107* | 1.49 x 1073
100 8 1055 6.1 x107% | 1.47 x 1073
100 16 528 5.9 x 107* | 1.38 x 1073

Table 5.1: Upper-bounds of the tensor-to-scalar ratio estimated with the Pizel-Based
method from full-sky simulations. The FWHM of the beams used are approximately
2.4 times the pixel size at each resolutions. The bounds are obtained with the Bayesian
Inference approach.

If full-sky analysis is straightforward, partial-sky analysis is much more complex.
When we apply the beam to the full map, it creates correlations between pixels, even
if they are far apart. So when we then apply the mask, part of the information of the
masked region of the sky is shared with the unmasked pixels'!. The larger the beam,

10This can be explained by the large difference in the number of pixels used to fit the likelihood,
exactly 384 for Ng;q. = 4 and 6144 for Ny;qe = 16, considering both @ and U.

1Some might think that by increasing the mask, applying for example the same beam and a thresh-
old, this correlation can be eliminated. We have seen from preliminary tests that the Gaussian beam
has a very diffuse effect, affecting very distant pixels. In addition, the choice of threshold is not trivial
and remains an arbitrary parameter that strongly affects the final estimation.
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the greater the mixing of information between the pixels inside and outside the mask.
If, on the other hand, we apply the beam after masking, we would have major problems
with pixels bordering the mask. So when masks and beams are involved, there is not a
straightforward way to compare results at different resolutions.

In any case, the most important result obtained in this chapter by comparing dif-
ferent likelihood estimators was to show that the fg,-approximation is not reliable in
the case of r = 0 and partial sky. However, this was demonstrated by referring to a
low-resolution Pizel-Based likelihood without beam. Here we show how the approxi-
mation behaves with respect to a more realistic case, using the maximum resolution we
can achieve with its proper beam. Results obtained with the Bayesian Inference are
showed in Figure 5.9. Once again we see how the fg,-approximation for partial sky,
used by the Fisher estimator, leads to an underestimation of the uncertainty of .
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Figure 5.9: Upper-bound of the tensor-to-scalar ratio estimated with the Pizel-Based
method using Bayesian Inference. Results obtained with the resolution N4 = 16. In
blue the values we would have obtained if we had used the fy;,-approximation as in the
Fisher estimator.

126



5.4 Conclusions

The work presented in this chapter is a methodological study of the techniques used for
estimating the uncertainty of the tensor-to-scalar ratio (r). In particular, we focused
on the concrete case of » = 0, which is of great interest because, as demonstrated
analytically and numerically, most of the information resides in large scales. This
generates a number of complications when estimating this cosmological quantity if only
a portion of the sky is available.

We analysed four likelihood estimators, three acting in spectral space and one in
real space. The first method, which we called Gaussian estimator, is based on the ap-
proximation that C,’s are Gaussian distributed. The second, called Fisher estimator, is
an exact method for full sky, but makes an approximation for partial skies, i.e. the mul-
tipoles are statistically independent and the presence of the mask is taken into account
through the factor (f,)~*. The third spectral method, called Hamimeche & Lewis, is
more sophisticated than the previous ones, it does not make major approximations, but
requires a number of additional operations and parameters. The last method, called
Pizel-based estimator, as the name suggests operates in real space so it is exact, but
the implementation has computational complications.

We compared the four estimators using three different statistical approaches. The
first is totally frequentist, the Mazimum Likelihood estimation, where we estimate the
value of r maximizing the likelihood by imposing no initial constraints. The second is
the Mazimum A Posteriori estimation, which is a hybrid approach because we estimate
the value of r by maximising the likelihood at which we impose the prior » > 0.
The third approach is the Bayesian Inference, where the uncertainty of r is obtained
integrating the mean posterior, without a maximisation process.

Our reference results are those obtained with the Pizel-based method and the
Bayesian approach, since this method is the most reliable and can be potentially opti-
mal. The study tells us that the Gaussian estimator leads to unreliable results, even for
full sky, due to the strong approximation that falls for large scales. The Hamimeche €
Leuns, although more reliable, produces an overestimation of the uncertainty of » when
compared to the method in real space. Finally, the most important lesson we learn
is that the Fisher method produces an underestimation of the uncertainty of » when
calculated from partial regions of the sky. This is because the (fs,) ' approximation
does not take into account the correlation between multipoles, induced by the mask.
The results obtained with the other statistical approaches, MLE and MAP, confirm the
main findings, i.e. a tendency for the Fisher and the Hamimeche & Lewis methods to
respectively underestimate and overestimate the uncertainty of r.

What has been said so far concerns to the case of r = 0. For positive values of
the tensor-to-scalar ratio, the different approximations made by the spectral estimators
become more reliable, with all methods converging to compatible results. Therefore,
considering the different limitations of each method, the best method to estimate r in
the general case of any value of r would consist of an appropriate combination of the
pixel-based estimator for low multipoles and a spectral one for the high multipoles.

Several combinations of estimators and statistical approaches were tested in this
work. However, all results are obtained under simpler conditions than real observations,
i.e. maps consisting simply of CMB and white noise. For cases of estimates applicable
to experimental observations, the picture is much more complicated. Nevertheless, this
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methodological study shows the importance of a careful choice of methods for parameter
forecasts of future experiments.
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Chapter 6

Conclusions

The Cosmic Microwave Background radiation has provided profound insights into the
origin and evolution of the universe. However, much remains to be discovered. Its
polarised B-mode conceals key information for understanding the very early universe.
However, a large number of challenges are around the corner. One of the biggest
challenges is the decoupling of the CMB from other astrophysical radiation, which
involves a detailed study of such emissions. In this thesis, we have dedicated two
chapters to the spectral and morphological analysis of one important astrophysical
emission, the polarized synchrotron radiation.

Even in the ideal case of having a deep knowledge of these contaminants as well
as of the instrumental uncertainties, we still need a method to estimate faithfully the
cosmological parameters. The last chapter of the thesis is then devoted to the study
of techniques useful for obtaining precise cosmological estimates, in particular of the
tensor-to-scalar ratio.

6.1 Synchrotron Spectral Analysis

In the work presented in Chapter 3 [1], we have analyzed the sky emission observed
by WMAP and Planck respectively at 23 and 30 GHz. We have created a set of six
masks: a 94% mask that enables nearly the entire sky except for the Galactic centre
and a few brilliant point sources, and five masks that increase from low to moderate
Galactic latitude (from 70 to 30 per cent of sky coverage). From the region of sky
allowed by each mask we estimated EE, BB and EB power spectra. We fitted a power
law Cf EBB  pape.s5 for the EE and BB power spectra independently, and a constant
CEB = AEB for the EB cross-spectrum. The analysis was made considering only the
multipoles 30 < ¢ < 300, from Planck and WMAP maps independently, as well as by
cross-correlating the two experimental data.

Reference results are given for the mask that allows 50 per cent of the sky, using
cross-experiments analysis. We found a steep decay for E and B-modes, with indices
app = —2.95+0.04 and agg = —2.85 £+ 0.14, and an asymmetry between the two
modes with a B-to-E ratio equal to 0.2240.02, at the pivot multipole ¢ = 80. When
focusing mostly on areas with a high signal-to-noise ratio, the indices obtained for
the two polarisation components are generally more compatible. We found that the
EB cross-spectra is consistent with zero at 1o for all the considered sky fractions,
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imposing a constraint on the EB amplitude to be < 1.2% (20) that of the EE amplitude.
In addition, we have obtained results from the independent analyses of Planck and
WMAP that are generally consistent with those obtained for the cross-correlation case.
Nevertheless, there are a few minor variations when using best-fit parameters that
are solely derived from the Planck 30 GHz map. Specifically, we find slightly larger
B/E ratio (around 0.27), and less steep BB spectra (app around 2.24) even though
consistency with the cross-correlation results holds at 20 in both cases.

A series of robustness tests that we conducted validated the accuracy of our findings.
Specifically, we have fitted our model in a larger multipole range (10 < ¢ < 400) and
to the frequency maps of the 2020 Planck NPIPE release (PR4). Furthermore, we have
separately estimated the spectra for the two hemispheres and discovered that, in the
case of the E mode, there is more emission in the north. Other than that, the model
of the polarisation power spectrum with the full sky and between the two hemispheres
does not significantly differ.

To conclude the work, using both Planck and WMAP data, we have fitted a straight-
forward power law to the synchrotron spectral energy distribution separately for the EE
and BB spectra. The recovered spectral indices Sgpg and Sgp are compatible with the
50% mask; their respective values are -3.00+0.10 and -3.054+0.36. The findings show
that adding higher Galactic latitudes to the analysis causes the spectral indices to tend
towards steeper values.

6.2 Synchrotron Morphological Analysis

In the work presented in Chapter 4 [2] we have covered two aspects of the polarized
synchrotron emission: the existence of substantial filamentary structures outside the
Galactic plane and the statistical characteristics at small scales. The debiased polarised
amplitude maps observed at 23 and 30 GHz, respectively by WMAP and Planck, have
been analysed.

We designed a filament finder routine that looks for elongated coherent emission in
the sky. It is based on a friend-of-friend recursive algorithm. Foreground simulations,
which included a toy model of filamentary structure, were used to test the method. We
find 19 filaments that are detected in both Planck and WMAP, at least partially. A few
of the filaments have already been documented in the literature as findings from earlier
WMAP analyses or observations in radio sky. Five of them are reported for the first
time. We examined a few characteristics of the filaments from which we outline some
considerations below. The polarization fraction of the filaments are larger than for the
areas outside the filaments, excluding the Galactic plane, with values up to 30%. The
polarization spectral indices of the filaments are about -3.1, consistent with the diffuse
area. Most filaments have a strong polarisation E-component, but not B, moreover,
some of them have not a bright counterpart in intensity.

We then have examined the statistical isotropy and non-Gaussianity of the polarised
WMAP and Planck maps using Minkowski functionals and tensors. Our interest went
to the faintest 80% and 60% of the sky. Results obtained from data were compared
to results obtained from a set of Gaussian and isotropic simulations. We found large
deviations (> 30) from Gaussianity and isotropy at 6° scale for the 80% sky fraction.
Even though the deviations are still noticeably high at 1.5°, they become smaller as
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one moves towards smaller scales. Analysing the 60% sky fraction, we found consistent
results between simulations and data at the 3o level. Our findings suggest that, even
at small scales, the large filaments are the primary source of non-Gaussianity. The
Gaussian and isotropic simulations at the WMAP and Planck resolution closely mimic
the diffuse emission when those filamentary structures are masked.

Finally, we introduce a data-driven technique that produces anisotropic and non-
Gaussian simulations. We employ a mathematical transformation to produce non-
Gaussian harmonic coefficients. We account for the anisotropies with a normalization
template resembling the diffuse filamentary structures. The simulations are fitted to
match the statistical and spectral characteristics of the data for the 80% sky coverage.

6.3 Estimating the Tensor-to-scalar ratio

The last work presented in the thesis, Chapter 5, is a methodological study of the
statistical approaches and likelihood methods used for estimating the uncertainty of
the tensor-to-scalar ratio (). We focus on the particular case of r = 0, which is very
interesting since the majority of the information is found in large scales, as demonstrated
both analytically and numerically. If only a portion of the sky is available, this leads
to several complications in estimating this cosmological quantity.

We analysed three spectral estimators. The first, which we called Gaussian estima-
tor, makes the approximation that C),’s are Gaussian distributed. The second, called
Fisher estimator, approximates the presence of the mask with the factor (fs,)™" for
partial sky. The third spectral method, called Hamimeche & Lewis, does not make
major approximations, but requires a number of additional precisely adjusted parame-
ters. We also analyse a method, called the Pizel-based estimator, which operates in real
space, so it is exact, but has several computational complications. The four estima-
tors are implemented and compared by applying three different statistical approaches:
Maximum Likelihood, Maximum A Posteriori and Bayesian Inference.

Most reliable results are obtained with the Pizel-based method and the Bayesian
approach, thus used as a reference. Results obtained with the Gaussian estimator are
the least reliable, even for full sky, due to the strong approximation that falls for large
scales. The Hamimeche € Lewis, although more reliable, produces an overestimated
uncertainty of r, compared with that obtained in real space. Finally, when calculating
the uncertainty of r from partial regions of the sky, the Fisher method underestimates
the uncertainty. This is due to the fact that the (fs,)”' approximation ignores the
mask-induced correlation between multipoles. These considerations were confirmed
using all three statistical approaches.

For positive values of the tensor-to-scalar ratio, the various approximations made
by the spectral estimators become more reliable, and all methods converge to results
that are compatible.

In this work, various combinations of estimators and statistical techniques were
tested. All results, however, are obtained with less complex conditions than actual
observations, i.e., with maps that only contain white noise and CMB. The situation
becomes considerably more complicated when the estimates are obtained from exper-
imental observations. However, even from this simplified case, the key takeaway is
that an inaccurate choice of method can lead to an over- or an under-estimation of the
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capabilities of a given experiment to estimate the tensor-to-scalar ratio. These consid-
erations should be kept in mind especially when making forecasts of future experiments.
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Appendix A

Synchrotron Spectral Analysis

The following appendix is a faithful excerpt from the appendix of the article ” Charac-
terization of the polarized synchrotron emission from Planck and WMAP data”.

A.1 Mask Selection

In this section, we present the procedure used to construct a reliable set of masks by
imposing different threshold levels in polarization, such that the selected regions corre-
late well with those where the synchrotron emission has a higher signal-to-noise ratio.
For this task, we consider two types of simulations: (i) only-foregrounds simulation
at frequency 30 GHz, computed with the PySM model (?d1”,”s1”), (ii) simulation of
Planck data, as described in section 3.1, adding the PySM foreground map, a CMB re-
alization and a Planck noise simulation. From both simulated maps, once smoothed to
5° resolution and after excluding the emission from the Galactic center and from point
sources (as described in section 3.2.3), we mask the total polarized intensity map below
successively higher thresholds of P, selecting eight regions with fg, from 0.9 to 0.2 in
steps of 0.1. We repeat the procedure with 5 different noise and CMB realizations.

By comparing the masks constructed in this way from the only-foregrounds (that
would provide the ideal mask) and the complete simulations, we can see when the
presence of other components is starting to affect the constructed mask and, therefore,
at which threshold the selected regions do not correlate so well with the synchrotron
amplitude. For each realization we compute the cross-correlation coefficient p between
the only-foregrounds mask and the full-components mask. Moreover, we compute the
foregrounds signal-to-noise ratio as the dispersion of the PySM foreground maps over
the one of the CMB plus noise map, at scale of 1°, when the full-components mask is
applied. The average values over the different realizations are reported in Table A.1.
Comparing the regions allowed from the two mask sets shown in Figure A.1, we see
that the masks constructed from the full simulated data start to be quite affected by
noise for large sky fractions, deviating significantly from the masks constructed from
the only-foregrounds simulation. The discrepancy is quantified by the cross-correlation
and S/N values which, as expected, decrease with the sky fraction.

From this insight, we decided not to consider in the analysis those masks with an
average signal-to-noise ratio smaller than 2.5, to prevent the inclusion of too noisy
regions. Moreover, we do not consider masks that retain a too small sky fraction, in
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order to limit the effect of the mask in the spectra estimation. Therefore, we pick
the most reliable mask set as the one which retain a sky fraction ranging from 0.7 to
0.3. We select the mask with fg, = 50% as the reference case for our main results,
because it represents the best compromise of sky fraction, signal-to-noise ratio and
cross-correlation between the ideal and realistic mask.

The foy = 0.94 mask that we use in the analysis, but not directly considered in this
test, has the lowest signal-to-noise ratio and in some regions can be even dominated by
noise, therefore, some considerations can be less reliable than for the other mask cases.
However, we decided to show results also for the fy, = 0.94 mask in order to check if
the characterization of the diffuse synchrotron features can be extended to the full sky,
when the Galactic plane and bright point sources are properly masked.

fawy [ | p | SIN

90 0.82 | 2.37
80 0.83 | 2.48
70 0.88 | 2.60
60 091 | 2.74
50 0.92 | 2.88
40 0.93 | 3.06
30 0.93 | 3.27
20 0.95 | 3.61

Table A.1: Cross-correlation and signal-to-noise values, corresponding to the different
masks, estimated averaging over five only-foregrounds and all-components simulations
(see text for details). The S/N value reported is the average between the Q and U signal-
to-noise ratio. Note that differently to the masks used in the spectra estimation (see
section 3.2.3), these masks were not apodized and their boundaries were not regularized.

Figure A.1: Left: All-sky map showing the sky regions computed with the successive
thresholds applied to the PySM foregrounds simulation. Right: same regions for one
simulation including the PySM foregrounds, CMB and noise. The unmasked regions
by the eight masks are showed from the smallest sky fraction mask (20%) in dark-red,
and by adding the regions in red, orange, yellow, green, turquoise, light-blue and blue,
up to the one allowing the largest sky fraction (94%) which leaves unmasked the full
sky except for the grey region. This excluded region corresponds to the combination of
the Galactic center mask and the point source mask.
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A.2 Robustness test

In order to test the robustness of our results we have carried out the following analyses.
First, following a similar procedure presented in section 3.3.2, we test the power-law
model cross-correlating the A/B detector splits of the new 2020 Planck NPIPE release
(PR4) maps at 30 GHz, in order to check the robustness of the results versus the
considered 2018 Planck release, which uses a different pipeline. Second, we fit the
model to the same data set as in section 3.3.3, but to a larger multipole range 10 < /
< 400, in order to check if the model holds when smaller and larger scales are included.

A.2.1 Planck Release 4

In 2020 the Planck Collaboration has released new frequency maps in temperature
and polarization using the NPIPE processing pipeline [116]. NPIPE introduces several
improvements which lead to lower systematics as well as lower levels of noise, being
the changes more significant for polarization data and for HFI channels. Nevertheless,
low frequency channels are also affected by the new pipeline and, therefore, it is worth
checking the consistency of the results between the PR3 and PR4 releases.
The PR4 provides full-mission and A /B splits for data maps and simulations (for details
see [116]). In particular, for the 30 GHz channel, the A subset is obtained combining
maps of the years 1 and 3 and the B subset combining years 2, 4 and start of 5. In
this section, we present the analysis performed cross-correlating the A/B splits of the
NPIPE 30 GHz maps, degraded at the pixel resolution corresponding to Ny;q. = 512.
We estimate the covariance matrices cross-correlating 300 A-split simulations with
300 B-split simulations provided by the Planck Legacy Archive! (PLA). Table A.2
shows the best-fit parameters and the y? values for this case. These results are consis-
tent within the errors with those found in section 3.3.1 using Planck release 3, as shown
in Figure A.2 (left panel) for the reference mask. As for PR3, spectra estimated from
PR4 shows in general a less steep decay for both components, most notably for the
B-mode, compared to the result found in 3.3.3 with the cross-analysis. However, the
spectral indices agpg and agpg are, in general, more consistent between them for PR4
than for PR3. The EB cross-term is also consistent with zero at 1o for the whole mask
set. It is interesting to point out that the values found for the y? tend to be smaller
when using PR4 data with respect to PR3, which is especially notable for the EB fit.
This improvement is likely due to the larger number of simulations used in the PR4
analysis.

A.2.2 Large Multipole Range

In the main analysis we have considered the multipole range 30 < ¢ < 300. The upper
limit is chosen because at higher multipoles both noise and possible emission of extra-
Galactic compact sources can be important and then can strongly contaminate the
foreground emission. The lower limit is chosen because pseudo-spectra methods (as
NaMaster) are expected to be less reliable at small multipoles for masked sky regions.
However, it makes sense to wonder if our results are robust when considering a larger

Ipla.esac.esa.int
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Tk 94% 70% 60% 50% 40% 30%
apE 286+ 011 | -282+0.12 | 281 +0.11 | -284+0.11 | -2.87 +0.12 | -2.96 + 0.13
aps 241 +023 | -261+0.19 | 252+ 017 | -253+024 | -247 +0.28 | -2.44 + 0.35
APE [1073uK] | 563 +031 | 804042 | 914+047 | 1034+ 054 | 11.74 + 0.62 | 14.37 + 0.84
ABB1073uK] | 1744022 | 216+02 | 2364019 | 252+027 | 294+039 | 355+ 0.54
ABB | AEE 0314004 | 0274003 | 0264002 | 024+003 | 025+004 | 0.25+0.04
X% (20 dof) 23.8 22.2 21.9 25.7 21.6 20.7
X% (20 dof) 24.6 18.3 19.0 20.4 19.3 22.7
AEB [1073uK] | 0.04+008 | -0.024+0.10 | 00l +011 | -005+01 | -0.01+0.12 | 0.0+ 0.15
AFBJAEE | 0,007 + 0.014 | -0.002 + 0.012 | 0.001 £ 0.012 | -0.005 + 0.009 | -0.001 + 0.010 | 0.0 + 0.010
Y2 (21 dof) 25.2 20.5 20.4 23.9 25.3 24.8

Table A.2: Planck PR4 results. Best-fit parameters, 1o errors and x? values for the
power-law in equation 3.1 for EE and BB, and for the constant baseline in 3.2 for
EB. Power spectra are computed by cross-correlating A /B detector split of the Planck
NPIPE (PR4) 30 GHz maps, for each of the six sky masks described in section 3.2.

range. Therefore, in this section we show the best parameters we find fitting equations
3.1-3.2 in the multipole range 10 < ¢ < 400 to the pseudo-C; computed cross-correlating
the co-added 9 year WMAP K-band maps and the full-mission Planck (PR3) 30 GHz
data, with exactly the same procedure described in section 3.3.3. The fit parameters
and x? values are reported in table A.3.

When working with the larger multipole range, we find in general slightly flatter
values for both EE and BB for the different considered sky fractions, although this is not
the case for the reference mask (see Fig. A.2, right panel) where app is actually slightly
steeper. Nevertheless, for the whole mask set the results are still quite compatible with
those found in the main analysis. This indicates that the model is also valid at the
larger scale range considered in this extended analysis.

Foky 94% 70% 60% 50% 40% 30%
apE 281 +0.04 | -2.76 +0.04 | -2.78 + 0.05 | -2.84 + 0.04 | -2.85 + 0.05 | -2.82 + 0.06
aps -3.12 + 0.07 | -3.05+ 0.09 | -2.96 + 0.09 | -2.96 + 0.09 | -2.85 + 0.11 | -2.87 + 0.12
APE [1073,K] | 10.39 +0.32 | 14.15 + 0.38 | 16.05+ 049 | 17.79 + 0.5 | 20.78 + 0.6 | 24.52 + 0.87
ABB[1073uK] | 2134013 | 2974019 | 361 +022 | 394+024 | 4924033 | 595+ 0.39
ABB | AEE 020+ 0.01 | 0214001 | 0234002 | 022+002 | 024002 | 024+ 0.02
X% (27 dof) 44.9 31.7 38.1 343 31.2 48.1
X% (27 dof) 19.1 18.7 20.0 17.4 23.6 21.2
APB [10-3uK] | 0.01 +£0.07 | 0124010 | 0.03+0.10 | 0024012 | 0.04+011 | 0.01+0.13
ABBJAEE | 0,001 + 0.007 | 0.008 £ 0.007 | 0.002 + 0.006 | 0.001 + 0.007 | 0.002 + 0.005 | 0.001 + 0.005
Y2 (28 dof) 60.1 70.6 52.5 53.9 37.1 30.4

Table A.3: Planck- WMAP results. Best-fit parameters, 1o errors and x? values for the
power-law in equation 3.1 for EE and BB, and for the constant baseline in 3.2 for EB.
Power spectra is computed by cross-correlating the co-added 9 year WMAP K-band
maps and the full-mission Planck 30 GHz maps, for each of the six sky masks described
in section 3.2. Fits are performed on the multipole range 10 < ¢ < 400.
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Figure A.2: Best fit (dashed line) to the EE (red diamonds) and BB (blue squares)
pseudo-spectra for the reference mask (fory, = 50%). Left: spectra are computed cross-
correlating A/B splits of the Planck NPIPE (PR4) 30 GHz maps. The fit with PR3
data presented in section 3.3.1 (black dash-dotted line) is given for comparison. Right:
spectra are computed cross-correlating WMAP K-band and the Planck (PR3) 30 GHz
maps and the fit is performed considering the large multipole range 10 < ¢ < 400. The
best cross-analysis fit presented in section 3.3.3 (black dash-dotted line) is given for
comparison.

A.3 Hemisphere analysis

In this appendix, we repeat the same analysis as in section 3.3.3 but independently for
the Northern and Southern hemispheres. The mask set is the one presented in section
3.2, where we simply separate regions from the two celestial hemispheres. We do not
include the two most stringent masks in the analysis because they retain too small
sky fractions which can negatively affect the spectra computation at low multipoles,
where the diffuse synchrotron signal is important. We still keep the same multipole
range (30 < ¢ < 300) and binning of the main analysis. Table A.4 shows the best-fit
parameters (with 1o errors) and x? values for both hemispheres while Figure A.3 shows
the power spectra and best-fit models for each case. For comparison, the best-fit model
(black dot-dashed line) obtained from the full analysis is also shown, which tends to
fall between the two hemisphere fits, showing a good level of consistency.

It is interesting to note that there are some differences between both hemispheres,
as shown in Figure A.4, where the best-fit parameters for each hemisphere are com-
pared. The synchrotron polarized emission in the Northern hemisphere is brighter than
in the Southern hemisphere, with a factor around 1.4 larger for the amplitude of the EE
spectra (slightly lower factor for BB). We also find a steeper decay of the synchrotron
amplitude in the Southern hemisphere with respect to the Northern one. Nevertheless,
the B-to-E ratio is quite consistent for the two hemispheres. The EB cross-term is com-
patible with zero at the 20 level for the whole mask set, even if the estimated EB/EE
amplitude is smaller for the Southern hemisphere. The goodness of the fits, in terms
of the x? value, points out that the EE and BB power-law model with null EB term
describes better the synchrotron polarization emission in the Southern hemisphere than
in the Northern one. This discrepancy could be hinting that the mask procedure might
be working better in the Southern than in the Northern hemisphere, where instead
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some complex structures, such as point sources or very bright Galactic plane emission,
may remain unmasked. Nevertheless, the simple model considered in this analysis still
seems to provide a reasonable good fit for both hemispheres.

I3, 47% 36% 30% 26%
agE -2.87 £ 0.10 | -2.83 £0.09 | -2.87 £ 0.09 | -2.83 £ 0.09
BB -3.174£0.20 | -3.04 £0.25 | -2.87 £ 0.22 | -2.67 £0.21
APE 1073uK] | 11.74 £ 0.52 | 16.01 &+ 0.58 | 18.36 + 0.74 | 20.80 & 0.74
ABB1078uK] | 231 £0.23 | 3.34+£0.34 | 3.95£037 | 4.70 £ 0.40
ABB [ABE 0.20 £ 0.02 | 021+0.02 | 02240.02 | 0.23+0.02
%5 (20 dof) 45.0 33.9 37.9 30.9
X% g (20 dof) 18.0 23.1 19.8 20.9
AEB[1073uK] | 0.06 £0.10 | 0204 0.14 | 0.22+0.14 | 0.16 &£ 0.17
AFB [ AEE 0.007 £ 0.011 | 0.017 £ 0.012 | 0.018 + 0.011 | 0.012 & 0.012
%5 (21 dof) 31.4 40.4 30.5 35.5
e 47% 35% 30% 25%
agm -3.02 £ 0.08 -3.26+0.1 | -3.17 £0.11 | -3.06 + 0.11
agp -3.55 4+ 0.32 | -3.17+£0.33 | -3.12+£0.33 | -3.23 £ 0.33
ABE[1073uK] | 8.51 4 0.31 11.48 £ 0.52 | 12.55 £ 0.55 | 13.77 &£ 0.57
APB[10-3uK] | 1.57 £ 0.24 2.64 £ 0.35 3.22+£043 | 351+ 0.51
ABB | APE 0.18 & 0.03 0.23 £0.03 | 0.26+0.04 | 0.25+0.04
%5 (20 dof) 14.7 19.1 17.8 16.3
%5 (20 dof) 16.0 21.4 21.0 18.5
AFB[1073uK] | -0.04 £0.08 | -0.10+£0.13 | 0.04 & 0.13 | 0.08 £ 0.12
APB | ABE -0.005 % 0.009 | -0.009 =+ 0.011 | 0.003 & 0.010 | 0.006 = 0.009
%5 (21 dof) 18.9 35.0 28.7 21.2

Table A.4: Planck-WMAP results. Top: Northern hemisphere, bottom: Southern
hemisphere. Best-fit parameters with 1o errors and x? values of the power-law in
equation 3.1 for EE and BB, and of the constant baseline in 3.2 for EB, computed
cross-correlating the co-added 9 year WMA P K-band maps and the full-mission Planck
30 GHz maps. The masks used are constructed isolating Northern and Southern regions
for the four masks (from 0.94 to 0.5) described in section 3.2.
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Figure A.3: Planck-WMAP results. Top: Northern EE (red squares), Southern EE
(red diamonds), Northern BB (blue squares) and Southern BB (blue diamonds) pseudo-
spectra. Bottom: Northern EB (purple squares) and Southern EB (purple diamonds)
pseudo-spectra. Spectra are computed cross-correlating the co-added 9 year WMAP
K-band maps and the full-mission Planck PR3 30 GHz maps, for the northern and
southern parts of each of the four masks allowing the largest sky fractions. The f;y
label of each panel indicates the area of the southern region allowed by the corresponding
mask. The dashed and dotted lines are, respectively, the Northern and Southern best
fits to the hemisphere spectra and the black dash-dotted line is the best fit presented

in section 3.3.3.

139



s n I
+ + 0 0.30
28 —_
29 + + v 1. L 0.25
;T ]
W 3.0 "% " <
L = o 0.20
[STE=B1 =14 4 &
- <
32 Ho12 ¢ $ [ ] 015
33 <<
W North 101w North ® MNorth
349 4 south 5] ¢ soutn ® 0109 4 soutn
35
235
-2.50 + 5 + 04
275 o T 02
x x® : + +
-3.00 + I + ot
3 ! p : Y
g = = S (%
-3.50 = + + g -2
375 < 2 <T
_4004 W North W North 4; 041 m HNorth
’ 4 South ¢ South ¢ South
-425 1
i3 0 k3 a0 a5 50 b3 0 35 40 a5 50 b3 0 35 a0 5 50
fuy (%) Fay (%) fuy (%)

Figure A.4: Comparison between the best-fit parameters found in the Northern hemi-
sphere (squares) and in the Southern hemisphere (diamonds) to the models of equations
3.1-3.2. 1o and 20 errors are showed, respectively, with thicker and thinner lines.
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Appendix B

Synchrotron Morphological
Analysis

The following appendix is a faithful excerpt from the appendix of the article ” Morpho-
logical Analysis of the Polarized Synchrotron Emission with WMARP and Planck”.

B.1 Power Spectra

In this section, we give a very brief review of the statistical quantities we use in this work,
motivated by standard cosmological practises. CMB experiments usually produce data
in the form of three pixelized maps, T' for intensity and ) and U Stokes parameters
for polarization. On the sky, these fields are usually expanded in terms of spherical
harmonics

m
(Q+iU) = iz pm +2Yim (B.2)
Im

where Yy, and 1,Y},, are respectively the standard and tensor (spin-2) spherical har-
monics on a 2-sphere. The quantities ay,, are the so-called spherical harmonic coeffi-
cients. Details of the mathematical formalism can be found in [44, 45].

If we define the linear combinations

1 1
Q. tm = _§<a2,€m + A_2 ¢m ) aB m = _E(GQ,ZTn — Q2. ¢m ) <B3)

we can decompose the polarization emission into two scalar fields, the gradient-like
mode and the curl-like B mode

E=) apmYon B=7  apmYum: (B.4)
Im Im

The harmonic coefficients may be combined into the angular power spectrum

]' *
oXY = 1 > (aXmaviem), XY =T E,B (B.5)

m
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which represent: the auto-correlations of temperature and polarization modes denoted
by TT', EE, and BB, the cross-correlation between temperature and polarization de-
noted by T'E) and T'B, and the cross-correlation between polarization modes denoted
by EB. For a Gaussian and isotropic field, all the statistical properties are captured
by these two-point statistics.

Experimental observations are affected by the instrumental (beam) response and
the pixelization process. The observed maps can then be written as the convolution of
the actual sky signal with the instrumental beam (B) and the pixel window function
(W). The latter is a function of the resolution at which the maps are produced. In
harmonic space, it implies that

al’s = ay,By Wy (B.6)
ces = Cy B} W} (B.7)

where B, and W, are respectively the harmonic transformations of the instrumental
beam and the pixel window function. When analyzing maps produced by different ex-
periments at resolution different from the one in which the original maps are produced,
as discussed in this work, it is appropriate to smooth the maps to a common resolution.
This can be achieved in harmonic space by

out out
aout _an Bﬁ WZ
m — “m Bén Wzn

(B.8)

where Bi" and BJ“' are respectively the instrumental and the required beams, Wy*

and W™ are the pixel window functions at the final and initial resolutions.

B.2 Finder Algorithm

B.2.1 Toy model for filaments

In this section, we test the performance of the filament finder algorithm using foreground
simulations including a toy model of filamentary structure. Each simulation is computed
as the sum of different independent components

S = SGal + Sdif + SLoops + Snoise; (Bg)

where:

e Sgu is a Galactic plane simulation. The template is generated from the WMAP
K-band P map, smoothed to a resolution of 5° and filtered with a low-pass filter
f(¢) =[1 —tanh ((¢ — 10)/10)] /2. In this way we preserve the Galactic morphol-
ogy on large scales (¢ < 10) whilst removing the small scales corresponding to the
real filaments.

o Sy is a diffuse Gaussian template created with the synfast routine using the
power spectra model: Cy o< (£/80)7%9 [1]. The simulated map is filtered with a
high-pass filter f(¢) = [1 — tanh ((¢ + 10)/10)] /2, which only allows multipoles
¢ > 10.
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® Sioops is a template where different loops are projected onto the sphere. The loops
are based on filaments observed in WMAP [66]. Each loop has been generated
with a width in the range 2-4°. In order to simulate both thin and diffuse fila-
ments, we smooth the loops with a 1.5° or a 3° Gaussian beam. The loops are
shown in figure B.2 (top right).

e S,uise 18 a noise simulation with properties estimated from the WMAP noise
covariance matrices.

The simulation S is produced at Ny;4. = 128 and a resolution of 1°, as used for
the data. The Galactic and diffuse templates have been re-scaled in order to match
the data signal-to-noise ratio. We tested different amplitudes, locations and radii for
the loops, although in the following we will only refer to the case including Loops I,
ITI, GCS, VII and XI, at a signal-to-noise ratio of 5, as shown in figure B.2. We filter
the maps with the filters in figure B.1 and apply the friends-of-friends algorithm to
100 simulations. Note that each simulation has the same Sgq and Speep, but different
realization of Sy and Sy,psc. Figure B.2 presents an example of a simulation (top left),
and the corresponding detected structures before (bottom left) and after (bottom right)
the minimal length criteria is applied, as described in section 4.2.1.

For each simulation, we recover on average 71.0% (£1.4%) of the original filaments.
However, we also assign a detection of filamentary structure to around 7.2% (£0.7%)
of the sky which is not associated with any input loops. From figure B.2, we observe
that the filament finder mostly fails to detect parts of filaments close or tangential to
the Galactic plane, where the strong Galactic emission dominates. We also point out
that the detection can fail in those areas where two or more loops overlap, because the
orientation angle in those pixels is the result of the average over different loops. The
detections that are not associated with any input loop mainly arise in the regions with
the lowest signal-to-noise ratio, suggesting that the noise is the cause. However, we
note that it is possible to identify most of these spurious detections by comparing two
simulations with different noise realisations. In practice, in our main analysis with real
data, this is achieved by comparing the results of two independent maps, from WMAP
and Planck, which allows us to reduce the number of spurious detections.

Note that the quantitative results presented in this appendix are obtained with
reference to the WMAP data. However, all qualitative considerations also apply to
the Planck data. Possible differences in the performance of the algorithm are mainly
attributable to the fact that the difference of the filament brightness to the diffuse
background is greater in the WMAP map than in the Planck map. In addition, the
different distributions of noise for the two experiments could also have an impact on
the performance of the algorithm, although we expect it to be subdominant.

B.2.2 Minimal length criteria

The filament finder method presented in section 4.2.1 is a simple friends-of-friends
recursive algorithm based on the properties of single pixels. When a group of coherent
and bright pixels is identified, it is not obvious if it is part of a filamentary structure
or not. Considering the positive nature of the polarization intensity, regions where the
noise is strong can confuse the detection. Moreover, the synchrotron diffuse background
can also have a detrimental effect. In order to reduce spurious detections, we reject

143



— Lmin =20, £nax =50
£min =15, Emax =20

fe)

Figure B.1: Band-pass filters defined in equation 4.7 used for the detection of the bright
(blue) and the weak (orange) filaments.

Simulation Initial Loops

Detected Loops

Figure B.2: Top Left: Toy filamentary foreground simulation. Top Right: Loop tem-
plate used in the simulation. Bottom Left: All the detections found with the friends-of-
friends recursive algorithm. Bottom Right: final result of the filament finder algorithm.
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structures where the maximum pixel-pair angular distance is smaller than a threshold
value Lyy,.

We find the best value for Ly by analysing simulations that do not contain loop
structures. As in section B.2.1, we generate 100 diffuse synchrotron simulations from
S = Sga + Saif + Snoise; Where the single components are described in the previous
section. Note that in this case the simulations do not include the Sf0ps term.

We apply the finder algorithm to each simulation which now can only detect spurious
signals due to noise and the diffuse emission. Figure B.3 shows an example of a detection
(left) and the distribution of the lengths determined from the simulations (right). We
find that 68% of detections have a length smaller than roughly 3.1°, 95% smaller than
10.2° and 99% smaller than 17.5°. From this result, we pick the threshold value Ly, =
10°. Note that this estimate holds for the pessimistic scenario of a loop-less foreground.
In a more realistic case, i.e. including bright filaments, the algorithm would rely on
a larger Py, so a part of the noise detection would not exceed the threshold, and we
would get less spurious detections.

=== L=31" (68%)

== L=102" (95%)

=== L=175" (99%)
Il

0.0 25 5.0 75 ldD 12‘5 15'0 175 ZdD
L [deg]

Figure B.3: Left: All the detections found with the friends-of-friends recursive algo-
rithm from a loop-less simulation. Right: Distribution of the maximum angular lengths
obtained from 100 loop-less simulations.

B.3 Planck Statistical Properties

B.3.1 Gaussian Simulations

In the main text, we analyse the statistical properties of the WMAP K-band maps.
The choice is motivated by the fact that at 23 GHz the synchrotron emission is much
stronger than at the 30 GHz Planck frequency channel. However, as a consistency
check, in this section we present the results obtained when analysing the Planck data.
We use the same masks and filters presented in section 4.4.2.

In order to quantify the non-Gaussianity and anisotropy of the synchrotron emission
observed by Planck, we need to compare data with a set of suitable simulations. We
compute pseudo-spectra in the unmasked regions cross-correlating A /B split maps!.

!The PR4 provides A/B splits for data maps and simulations [116]. For the 30 GHz frequency
channel, the A and B subsets are obtained respectively combining maps from years 1 and 3, and years
2 and 4.
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From the spectra, we generate 600 Gaussian and isotropic simulations of ) and U, add
noise, then compute the debiased polarized intensity.

Results are shown in figure B.4. For the larger sky fraction (fs, = 80%), we find
that for the cases with /,,;, < 80, even averaging over the thresholds, the deviation
exceeds 30. The deviation decreases when /,,;, increases, however, for all the quan-
tities (except (Wi)a2), some thresholds remain significantly higher than 3¢. For the
smaller sky fraction (fs, = 60%), we generally find consistency between the data and
simulations. These results are in substantial agreement with those determined with
WMAP at 23 GHz, corroborating the discussion in section 4.4.4.

Vo Vi Ve

—o— fyy = 80%
—o— fyy = 60%

6 = 6 v 6

40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
(Wi)n (W1)22

1.75

6 o 6 1.25

40 60 80 100 120 40 60 80 100 120 40 60 80 100 120
Emin Emin Emin

Figure B.4: Top: The three MFs, and bottom: the CMT diagonal terms and the «
deviations from the Gaussian simulations, computed with Planck data, as a function
of the low multipole cut /¢,,;, from the applied band-pass filter. The dots and the
triangles represent respectively the average and 95% percentile values computed over
all threshold values.

B.3.2 Non-Gaussian Simulations

In section 4.5, we present a data-driven method to simulate the polarized synchrotron
emission at 23 GHz. In this section, we show how the model performs in reproducing
the emission at 30 GHz. We use the same spatially varying normalization factor (see
figure 4.10) and (¢, 0) parameters to introduce anisotropies and non-Guassianities as
for WMAP. The results are shown in figure B.5.

The simulations agree with the data at the 3o level for the 80% mask for those
cases with /,,;, > 70, and for all the considered multipole ranges for the 60% mask.
The model seems to under-perform for the cases with £,,;, < 70 when considering the
80% mask, although the deviations from the data are clearly not so pronounced as when
using Gaussian simulations. Considering that the largest deviation comes from (W7)1,

it is reasonable to think that we are not correctly taking into account the anisotropy of
the field.
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It has been shown, even in this work, that the polarization spectral index shows
spatial variations, and bright structures at 23 GHz are less detectable at 30 GHz.
This suggests that the spatially varying normalization factor computed only from the
WMAP data, could also depend on frequency. In addition, given that the V; and V5
values computed with simulations deviate from the data when considering multipoles
¢ < 60, we can not exclude the possibility that the non-Gaussianity level could also
depend on frequency, which in our model translates into € = €(v) and § = d(v).

Vo % Va

—— fiy = B0%

8 8 8
—e— fiyy = 60%
6 6 6
>~
4 4 4 -~
21 v 2 v v
0 0
40 80 80 100 120 40 80 80 100 120 40 80 80 100 120
w W
10 (W1 10 (W1)22 200
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6 6 125
~ 1.00 = 7 7
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i S " i § 0
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Figure B.5: Top: The three MF's, and bottom: the CMT diagonal terms and « devia-
tions from the non-Gaussian simulations, computed with Planck data, as a function of
the low multipole cut ¢,,;, from the applied band-pass filter. The dots and the trian-
gles represent respectively the average and 95% percentile computed over all threshold
values. For comparison purposes, we use the same ranges as in figure B.4.
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