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In the holographic AdS/QCD approach, the confinement/deconfinement transition is associated with the 
Hawking-Page transition of a thermal anti-de Sitter (AdS) space to an AdS black hole. In the case of the 
hard wall model, the thermal transition takes place in the planar AdS thanks to the introduction of an 
infrared cut-off in the geometry. The corresponding thermodynamic entropy of the SU (N) gauge theory 
jumps from proportional to N0 in the confined hadronic phase to proportional to N2 in the plasma 
phase, corresponding to the presence of the color degrees of freedom. The Hawking-Page transition is 
understood by considering a semiclassical picture of a system consisting of two different geometries 
that are asymptotically AdS. One is the AdS black hole and the other the thermal AdS space. The relative 
stability between these competing geometries varies with the temperature. So, the transition is essentially 
a problem of stability. An interesting tool to study stability of physical systems is the configuration 
entropy (CE), inspired in the Shannon informational entropy. In this work we investigate the CE for the 
case of the AdS/QCD hard wall model at finite temperature. We propose a regularized form for the energy 
densities of the black hole (BH) and of the thermal AdS geometries that makes it possible to calculate 
their CEs as a function of the temperature. We find a relation between stability and the value of the CE 
for the system of asymptotically AdS geometries. Remarkably, it is found that the CE is proportional to 
log(T ), where T is the temperature. This result makes it possible to write out a simple relation between 
the configuration and the thermodynamic entropies.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Soon after the AdS/CFT correspondence was proposed [1–3], 
it was pointed out by Witten [4] that one could associate the 
Hawking-Page (HP) transition [5], in the gravitational side of the 
correspondence, with the confinement/deconfinement transition in 
the gauge theory side. The HP transition emerges from a semi-
classical analysis of a system consisting of geometries that have 
constant negative curvature and are asymptotically anti-de Sitter 
on the boundary. The amplitudes for the prevalence of each of the 
two “competing” geometries: anti-de Sitter black hole (AdS-BH) 
and Thermal AdS (ThAdS), depends on exp(−S), where S is the Eu-
clidean action integral. For the case of spherical boundary/spherical 
horizon there is a finite temperature Tc where the action integrals 
of AdS-BH and ThAdS spaces coincide. For larger temperatures the 
black hole action is smaller and thus this geometry dominates or, 

* Corresponding author.
E-mail addresses: braga@if.ufrj.br (N.R.F. Braga), octavioj@pos.if.ufrj.br

(O.C. Junqueira).
https://doi.org/10.1016/j.physletb.2021.136082
0370-2693/© 2021 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
in other words, is stable. For T < Tc the thermal AdS is the stable 
geometry.

For geometries with a planar boundary there is no HP transition 
because the action integral of the black hole is smaller than the 
one of the ThAdS, except at zero temperature, when the geome-
tries coincide [4]. On the other hand, it is possible to find the HP 
transition in asymptotically AdS spaces having a planar boundary, 
that are relevant for studying QCD-like gauge theories, if one fol-
lows a phenomenological approach to gauge/gravity duality. In the 
so-called AdS/QCD bottom up framework, one gives up satisfying 
Einstein equations and introduces a modification in the geome-
try, corresponding to adding some energy parameter of the gauge 
theory. In particular, the hard wall model [6–8], makes it possible 
to calculate hadronic masses by assuming an approximate duality 
between gravity in AdS space with a hard infrared cutoff in the 
geometry and a non-conformal gauge theory on the planar bound-
ary. It was shown in [9,10] that the hard wall model presents a HP 
transition at some finite critical temperature Tc . Interestingly, the 
thermodynamic entropy for the gauge theory is proportional to N0

for T < Tc and to N2T 3 for T > TC , with N the color group in-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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dex, showing an increase of degrees of freedom, associated with 
deconfinement of color.

In summary, the AdS/QCD hard wall model represents the con-
finement/deconfinement transition of a gauge theory in terms of a 
change in the stability condition of a black hole geometry. On the 
other hand, in the recent years, it was show that the configura-
tion entropy (CE) [11–13] plays an important role in the analysis 
of stability of many different physical systems, as for example in 
[14–37]. Comparing the CE of the states of many different physical 
systems, it was observed that, the smaller is the value of the CE, 
the more stable is the state. The purpose of the present work is to 
understand if the same behavior appears in the case of the transi-
tion from confining to deconfining geometries in the AdS/QCD hard 
wall model. Following this idea, we will develop an approach for 
calculating the configuration entropy for the AdS-BH and ThAdS 
spaces and analyse the dependence of the CE on the temperature 
and the corresponding stability of the associated states.

This work is organized as follows. In section 2 we review the 
hard wall model at finite temperature and explain how does the 
Hawking-Page transition takes place. In section 3 we develop an 
approach for expressing the energy density of the black hole in a 
regularized way, that is essential for the calculation of the CE in 
the black hole geometry. Section 4 is devoted to the calculation 
of the CE and to the analysis of the results. A study of the rela-
tion between the thermodynamic and the configuration entropies 
is presented in section 5, where a simple relation between these 
quantities is found. In section 6 we explore the possibility of a re-
lation between the results obtained in this letter and the so-called 
Gubser-Mitra conjecture. Our final conclusions are in section 7 and 
some technical details are shown in the appendices.

2. Holographic model for confinement/deconfinement: Overview

2.1. Hard wall AdS/QCD model

One considers the five-dimensional Einstein-Hilbert action with 
a negative cosmological constant and looks for geometries with 
boundary R3 × S1 [9,10]. There are two solutions. The first one 
is thermal AdS (ThAdS), described in the Euclidean case by

ds2 = L2

z2

(
dt2 + d−→x 2 + dz2

)
, (1)

where L is AdS space radius. The second solution is the AdS black 
hole (BH-AdS)

ds2 = L2

z2

(
f (z)dt2 + d−→x 2 + dz2

f (z)

)
, (2)

with f (z) = 1 − z4/z4
h , being zh the black hole horizon. In both 

cases, one considers a compact time coordinate. For the black 
hole, the time has a period β and the temperature is T = 1/β =
1/(π zh), to avoid a conical singularity of the metric on the horizon 
[5].

The on-shell action for both geometries is:

Ion-shell = 4

L2κ2

∫
d5x

√
g . (3)

where κ is the gravitational coupling. The hard wall model [6–8]
consists of introducing a cut-off in the geometry in the form of a 
maximum value for the coordinate z: 0 ≤ z ≤ z0. The inverse of 
z0 is interpreted as an infrared energy cut-off in the gauge theory 
side.

The action integral of eq. (3) is singular at z → 0 for both the 
ThAdS and the BH-AdS spaces. Defining an action density E = I/V , 
being V the trivial spacial volume 

∫
d3x over the components −→x , 

the regularized action density E(ε) for the ThAdS is defined as
2

EAdS(ε) = 4L3

κ2

β ′∫
0

dt

z0∫
ε

dz z−5 = L3

κ2
β ′

(
1

ε4
− 1

z4
0

)
, (4)

where ε is an ultraviolet regulator. Analogously, for the BH-AdS 
one has

EB H (ε) = 4L3

κ2

π zh∫
0

dt

min(z0,zh)∫
ε

dz z−5 = L3

κ2
β

(
1

ε4
− 1

z̄4

)
, (5)

with z̄ ≡ min(z0, zh). Requiring that the two geometries have the 
same asymptotic form at z = ε → 0, so that the time periodicity 
in the limit ε → 0 must be the same, one finds the condition β ′ =
π zh

√
f (ε) [9]. Using this expression for β ′ , the difference between 

the actions densities, defined as

�E = lim
ε→0

[EB H (ε) − EAdS(ε)] , (6)

is independent of ε

�E =

⎧⎪⎨⎪⎩
L3π zh

κ2
1

2z4
h

, if z0 < zh ,

L3π zh
κ2

(
1
z4

0
− 1

2z4
h

)
, if zh < z0 .

(7)

One notices that the actions are equal at the critical temperature:

Tc = 21/4/(π z0) . (8)

This corresponds to the Hawking-Page transition temperature. If 
T < Tc , the thermal AdS state dominates as �E > 0, and the black 
hole is unstable. When T > Tc , �E is negative, and the black hole 
becomes the stable geometry. This is the holographic description 
of confinement/deconfinement transition developed in [9]. We will 
see now that it is possible to obtain finite actions in the ε → 0
limit for each space using holographic renormalization.

2.2. Holographic renormalization and thermodynamics

In this procedure [38,39], the ultraviolet divergences are re-
moved by adding to the action a surface counterterm. In ref. [10], it 
was pointed out that besides the usual volumetric action of eq. (3), 
in order to describe the planar AdS geometries considered here, 
one needs also to include in the action the Gibbons-Hawking sur-
face term. This type of boundary term comes from the variational 
principle for a gravity theory with a boundary [40]. In the present 
case it reads

IG H = − 1

κ2

∫
∂M

d4x
√

h K , (9)

where K is the trace of the extrinsic curvature of the bound-
ary. The details of the calculation of the Gibbons-Hawking surface 
term can be found in [10]. In short, at a boundary hypersurface, 
K = 1√

g ∂a(
√

g na), where na is a unitary vector normal to the 
boundary, see [41]. One gets the following surface terms, divided 
by the trivial spacial volume factor:

EG H
AdS = −4L3

κ2

β ′

ε4
, (10)

EG H
B H = −4L3

κ2
β

(
1

ε4
− 1

2z4
h

)
, (11)

Adding these surface terms to the corresponding volumetric 
ones, given in eqs. (4) and (5) one finds it out that in order to 
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cancel out the total divergencies one should take the counterterm 
action, for both geometries, as

Ict = 1

κ2

∫
∂M

d4x
√

h
3

L
, (12)

where h the determinant of the boundary induced metric hμν . 
The holographic renormalization procedure is concluded by defin-
ing total actions for the geometries as Itotal = I + IG H + Ict . The 
corresponding action densities are given by

Etotal
AdS = − L3

κ2

β ′

z4
0

, (13)

Etotal
B H = − L3

κ2
β

(
1

z̄4
− 1

2z4
h

)
. (14)

So, using the holographic renormalization procedure, it is possible 
to define finite actions for both ThAdS and BH-AdS, not only for 
their difference.

From the finite actions (13) and (14) one can determine the 
thermodynamic entropy for each geometrical phase, and use it to 
characterize the confinement/deconfinement phase transition. In 
the saddle point approximation, using κ2 = 8πG5, and the relation 
between G5 and the fundamental string scale, see [10] for details, 
the associated thermodynamic entropies from the expression

S = β〈E〉 + log Z ≈ β〈E〉 − Itotal , (15)

where 〈E〉 = − ∂
∂β

log Z ≈ ∂
∂β

Itotal is the expectation value of the 
energy, yields

S AdS = 0 , if T < Tc , (16)

S B H = N2π2

2
T 3 , if T > Tc . (17)

Where there is a jump from N0 to N2 dependence of the entropy, 
representing the change from the confined phase to the decon-
fined one [10], when the color degrees of freedom are free. Such a 
result is consistent with the free energy of the N = 4 super Yang-
Mills theory at the strong coupling limit [42,43], and shows that 
one can use the thermodynamic entropy to identify the confine-
ment/deconfinement phase transition.

3. Thermal AdS and BH AdS masses and regularized densities

In order to compute the configurational entropy (CE) from the 
finite actions (13) and (14), one needs to calculate the associated 
energy (or mass) densities. For both cases, the mass can be deter-
mined from the energy expression [4,5]

E = ∂ I

∂β
= M , (18)

in natural units. The results obtained in the last section, in par-
ticular (7) shows that the black hole is stable in the region zh ≤
2−1/4z0. Thus, one can take z̄ = min(zh, z0) as zh in expression 
(14).

Hence, applying (18) to the regularized actions constructed 
from the holographic renormalization, one finds the masses of the 
spaces, in the range of temperatures where they are stable:

M AdS = − L3

κ2

1

z4
0

, for zh > 2−1/4z0 , (19)

MB H = + 3L3

2π4κ2

1

z4
, for zh < 2−1/4z0 . (20)
h

3

This means that MB H ∼ 1/z4
h , while M AdS ∼ 1/z4

0. The negative 
sign of the ThAdS mass is interpreted as a consequence of the sub-
traction of the region z > zo in the hard wall model. If one takes 
the limit z0 → ∞ the mass goes to zero, corresponding to the mass 
of the empty AdS space.

The CE is defined as a function of the energy density that 
should, in principle, be related to the total mass by

z f∫
0

dz ρ(z) = M , with z f ≡ {zh, z0} , (21)

with the two possible values of the upper integration limit corre-
sponding, respectively, to the BH and AdS cases.

It is reasonable to assume that the mass density should not de-
pendent on the infrared cut-off z0 since this parameter is not part 
of the original AdS geometry. It is just an energy scale introduced 
in order to make an effective description of a QCD like theory. So, 
in order to find a mass with a dependence on 1/z4

f , searching for 
a power series solution, one would find the simple form

ρ(z) = C

z5 . (22)

with the constant C taking different values for the AdS and BH 
cases. The problem one faces using such a density is that one gets 
the mass but also a singular term coming from the z → 0 limit 
of the integral (21). In order to avoid such singularities, one needs 
to find out a consistent regularization process. An interesting ap-
proach is to define regularized densities ρ(z), related to the total 
mass by

lim
ε→0

z f∫
ε

dz ρ(z) ∼ 1

z4
f

, with z f ≡ {zh, z0} . (23)

As we shall see, such a regularization can be implemented in a 
similar way for both geometries. We propose the following expres-
sion for the regularized black hole mass density,

ρB H (z) = − lim
ε→0

6L3

π4κ2

1

z5 cos(
2πε4

z4
) . (24)

One can easily verify that for small ε ,

zh∫
ε

ρB H (z)dz = 3L3

2π4κ2

1

2πε4
sin(

2πε4

z4
h

)

= MB H +O(ε8) . (25)

So, taking the ε → 0 limit after the spatial integration, one obtains 
the black hole mass.

The regularized density for the thermal AdS mass (19) can be 
obtained from the same expression constructed in the regulariza-
tion of the black hole. The only difference is the constant factor, 
namely,

ρAdS(z) = + lim
ε→0

4L3

κ2

1

z5 cos(
2πε4

z4
) . (26)

Using this density in eq. (23) one finds the ThAdS mass. An im-
portant issue, that will be addressed in the next sections is that 
our results must be independent of ε . Or, in other words, the limit 
ε → 0 must be well defined.
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4. Configurational entropy and Hawking-Page transition

The configuration entropy [11–13] is inspired in the Shannon 
information entropy [44], that is a measure of information con-
tent. For a variable that can take Nd discrete possible values, with 
probabilities given by pi , it is defined by

S info = −
Nd∑

i=1

pi ln pi . (27)

The configurational entropy for a physical system is defined as a 
continuous version of (27). It is defined in terms of the modal 
fraction, which is constructed upon of the Fourier transform of 
the energy (mass) density, ρ̃(k), that describes the corresponding 
physical states. For the black hole and thermal AdS states in the 
hard wall model, the energy density is a function of the Poincaré 
coordinate z, according to (24) and (26), so that

ρ̃(k) = 1

2π

∫
dz ρ(z)eikz . (28)

The modal fraction is defined as

f (k) = |ρ̃(k)|2
N

, (29)

where the normalization constant is defined as:

N =
∫

dk 〈|ρ̃(k)|2〉 . (30)

The corresponding configurational entropy for such localized en-
ergy densities is then defined as the functional [12]

SC [ f ] = −
∫

dk f (k) ln f (k) . (31)

In the Appendix B we show that − f (k) ln f (k) is always positive. 
From the Fourier transforms of ρB H (z) and ρAdS (z),

ρ̃B H (k) = 1

2π
lim
ε→0

zh∫
ε

dz ρB H (z)eikz , (32)

ρ̃AdS(k) = 1

2π
lim
ε→0

z0∫
ε

dz ρAdS(z)eikz , (33)

one can compute the modal fractions for the thermal and black 
hole AdS spaces using (29), and then obtain the configurational 
entropies as functions of the temperature, above and bellow Tc . 
From this, one can finally study the confinement/deconfinement 
phase transition from the point of view of stability. Replacing (24)
and (26) into (32) and (33), respectively, one finds out that ρ̃B H (k)

and ρ̃AdS (k) do not possess analytical solutions. So, the CE is cal-
culated using numerical methods.

The numerical computation of the Fourier transform of the en-
ergy density in eqs. (32) and (32) are performed with a finite 
value of the UV regulator ε . The limit ε → 0 is obtained, in the 
numerical approach, by identifying the order of magnitude of val-
ues of ε for which taking smaller values would not change the 
results. We found it out that from ε/zo ∼ 10−13 to smaller val-
ues there is no change in any of the results of this work. So, this 
value of ε was used in our computations. In the Fourier space, 
the squared absolute value of the black hole energy density, that 
defines the normalization factor and the modal fraction, can be 
written as
4

Table 1
Black hole configurational entropies at different temperatures.

β/π z0 Black hole CE β/π z0 Black hole CE

0.025 17.5229 0.4 14.7761
0.038 17.1049 0.45 14.6326
0.05 16.8300 0.5 14.5268
0.075 16.4244 0.55 14.4321
0.1 16.1424 0.6 14.3455
0.15 15.7313 0.65 14.2650
0.2 15.4437 0.7 14.1940
0.25 15.2204 0.75 14.1219
0.3 15.0380 0.8 14.0573
0.35 14.8840 0.840896 14.0074

Fig. 1. CE versus β/π z0.

|ρ̃B H (k)|2 =
⎡⎣ lim

ε→0

1

2π

zh∫
ε

dz ρB H (z) cos(kz)

⎤⎦2

+
⎡⎣ lim

ε→0

1

2π

zh∫
ε

dz ρB H (z) sin(kz)

⎤⎦2

. (34)

For the thermal AdS, |ρ̃AdS (k)|2 is similar, only replacing ρB H (z) →
ρAdS (z) in the expression above.

With all this information we are now able to compute the 
modal fractions for each space, and finally determine the cor-
responding configurational entropies in the confined and decon-
fined phases. The transition of geometries occurs at βc

π z0
= 1

Tcπ z0
=

0.840896. Above Tc the space is AdS BH and below Tc it is the 
ThAdS. We take z0 = 1 and show in Table 1 the values of the BH 
CE for different values of β/π , which is represented by the points 
in Fig. 1 for β/π < βc/π .

For temperatures below Tc , see Fig. 1 for β/π z0 > 0.840896, 
the CE is constant, given by

S AdS
C = 13.8344 , (35)

indicating that the ThAdS does not change the stability condition 
up to the critical temperature, where the BH is in the stable phase. 
Above Tc the CE depends on the temperature according to the 
description of Fig. 1. As we increase the temperature, i.e., as we 
decrease β , the CE increases. From the usual behavior of the CE, 
this would mean that black holes are more unstable at higher tem-
peratures. This is consistent with the fact that black holes radiate 
and the radiation effect becomes stronger at higher temperatures, 
leading to a loss of energy.
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Fig. 2. (A) Black hole CE versus T ; (B) Black hole CE versus log T .
5. Relation between the thermodynamic and configuration 
entropies

The fact that we calculated the configuration entropy for a sys-
tem that is in thermal equilibrium and therefore has a well defined 
thermodynamic entropy opens up the possibility of answering an 
interesting question. We mean: is there a simple relation between 
these two quantities? In this section we want to investigate this 
possibility. We now write the temperature in units of 1/z0 or, in 
other words, the dimensionless temperature that we use from now 
on is equal to the dimensionful temperature multiplied by the en-
ergy parameter z0 of the hard wall model. In order to compare 
the black hole thermodynamic entropy, which is proportional to 
T 3, with the CE one must find out its temperature dependence. By 
plotting CE versus temperature for T > Tc , one obtains the points 
of Fig. 2-(A), corresponding to the CE values displayed in the Ta-
ble 1. This plot suggests a logarithmic behavior. In order to see if 
this is true, we plot in Fig. 2-(B) the black hole CE versus log T , 
which is given by a straight line. See Table 2 in Appendix A for 
the values of T and log(T ) corresponding to each CE of Table 1, 
which were used to plot the points of Fig. 2-(A) and (B). From the 
Fig. 2-(B) we conclude that the BH configurational entropy is pro-
portional to log T ,

S B H
C (T ) = A0 log T + B0 , (36)

being A0 and B0 constants, that can be numerically estimated as 
A0 = 0.99 ± 0.02 and B0 = 14.99 ± 0.02.

Now, using eq. (36), we can relate the configurational entropy 
to the thermodynamic one. This can be done rewriting the con-
stants A0 and B0 in the form:

A0 = 3A , and B0 = B + A log

(
N2π2

2

)
, (37)

so that,

S B H = e− B
A exp{SC /A} . (38)

Equation (38) shows the relation between the thermodynamic BH 
entropy S B H with the configurational one SC , being the first given 
by the exponential of the second up to constant factors. So, we 
found a simple relation between these two quantities. For the con-
fined phase the situation is trivial: the thermodynamic entropy 
vanishes and the CE is constant.

6. Comparison with the Gubser-Mitra conjecture

It is interesting to check if the results for stability of the hard 
wall model analyzed in the previous sections are consistent with 
5

the so-called Gubser-Mitra (GM) conjecture [45,46], that relates 
dynamical stability of a black hole with infinite horizon area to the 
thermodynamic stability. The Hawking Page transition, considered 
in this letter, is obtained from a semiclassical analysis of thermo-
dynamic stability (see [47] for a review). It corresponds to a global 
phase transition between two different geometries that are asymp-
totically AdS spacetimes with compact Euclidean time coordinate. 
The result that emerges from the analysis of the Hawking-Page 
transition for the hard wall model is that for T > Tc the black hole 
space is thermodynamically stable, while for T < Tc the thermal 
AdS space is thermodynamically stable.

Regarding dynamic stability, one should study the behavior of 
the black hole and thermal AdS geometries under the effect of 
perturbations of the metric. The hard wall model is a phenomeno-
logical framework where one places a hard cut-off in the geometry 
in order to obtain results of hadronic physics assuming gauge/grav-
ity duality to hold. The hard wall geometry, with or without a 
black hole, is not a solution of the classical equations of motion 
(the Einstein equations). So, it would make no sense to investi-
gate perturbations in the equations of motion starting from such 
geometries. Nevertheless, there is an interesting way of making 
contact with the GM conjecture. As discussed in [45], an intuitive 
explanation for the dynamical instability of a black hole of infinite 
extent is that the entropy of an array of finite size black holes is 
higher than the entropy of the infinite size uniform black hole with 
the same mass. In other words, dynamical instability would appear 
as a consequence of the possibility of a transition to other geom-
etry with larger entropy. We presented in equations (16) and (17)
the entropy densities for thermal AdS and for the black hole in 
the interval of temperatures where they are the dominant phase. 
For the thermal AdS, eq. (16) is valid at any temperature since the 
total action density of eq. (13) does not change with T . But for 
the black hole geometry the action density of eq. (14) depends on 
the relation between z0 and zh . The expression show in eq. (17)
is valid for zh > z0 or, equivalently, T > 1/(π z0) = Tc/21/4. Calcu-
lating the entropy (per unity of transverse area) for the black hole 
action for T < 1/(π z0), using eq. (15), one would obtain the awk-
ward result

S B H = − N2π2T 3

2
if T <

Tc

21/4
. (39)

Such an unphysical negative entropy shows up because the im-
position of a hard cut-off at a position z = z0 < zh eliminates 
from the space a region containing the horizon. In this case 
one would have S B H < S AdS for T < Tc/21/4 and S B H > S AdS
for T > Tc/21/4. So, for T < Tc/21/4 and for T > Tc there is 
an agreement between thermodynamic instability and the exis-
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Fig. 3. (A) Black hole CE per unit of k versus k, for T1 = 1/(π0.05) (blue), T2 = 1/(π0.1) (orange), and T3 = 1/(π0.2) (green). (B) CE per unit of momentum for the thermal 
AdS space.

Table 2
BH CE, T and log(T ).

T log(T ) Black hole CE T log(T ) Black hole CE

0.378537 −0.971443 14.0074 0.909457 −0.0949078 14.8840
0.397887 −0.921586 14.0573 1.06103 0.0592429 15.0380
0.424413 −0.857048 14.1219 1.27324 0.241564 15.2204
0.454728 −0.788055 14.1940 1.59155 0.464708 15.4437
0.489708 −0.713947 14.2650 2.12207 0.75239 15.7313
0.530516 −0.633904 14.3455 3.18310 1.15786 16.1424
0.578745 −0.546893 14.4321 4.24413 1.44554 16.4244
0.636620 −0.451583 14.5268 6.36620 1.85100 16.8300
0.707356 −0.346222 14.6326 8.37658 2.12544 17.1049
0.795775 −0.228439 14.7761 12.73240 2.54415 17.5229
tence of other space with larger entropy, that could be associ-
ated with dynamic instability. Only in the region Tc/21/4 < T < Tc

the thermodynamically stable geometry has a smaller entropy. 
One should not take this analysis as a proof of a relation be-
tween dynamical and thermodynamic stabilities for the hard wall 
model since this space is not a solution of Einstein equation 
and also the geometry is not analytic at z = z0. It is just an 
analysis of self consistency of the model. This discussion pro-
vides a motivation for performing a similar analysis in some other 
AdS/QCD model that is consistent with Einstein equations and does 
not present any non analyticity. We plan to do this in a future 
work.

7. Conclusions

In this work we calculate the configuration entropy for the two 
geometries that represent, within the hard wall AdS/QCD model, 
the two phases of a QCD-like gauge theory. One is the thermal 
AdS space that represents the confined phase and is dominant for 
temperatures below Tc . The other is the AdS black hole, which 
represents the deconfined phase that dominates for higher tem-
peratures. We found that for the ThAdS space, the CE is constant. 
This is consistent with the fact that, below Tc this space is stable. 
For the BH-AdS geometry, we found that the CE increases with 
the temperature. This can be seen from Fig. 1 where β is the in-
verse of the temperature, so β → 0 is equivalent to T → ∞, or in 
Fig. 3 where we observe that the black hole CE is proportional to 
log(T ). Increasing CE means in general increasing instability. The 
reason for this can be traced to the Hawking radiation of the black 
hole, that increases with the temperature and causes instability 
in the physical state. For discussions of Hawking radiation of AdS 
black holes, see for example [48]. So, we found it out that for the 
hard wall description of QCD-like thermal media, the relation be-
tween increase in the CE and increase in the instability holds. We 
6

also found a relation between the black hole thermodynamic and 
configuration entropies, being the first given by the exponential 
of the second, up to constant factors. For an interesting study of 
deconfinement transition in holographic QCD using entanglement 
entropy see [49].
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Appendix A. TABLE: Black hole CE, T , and log(T )

We display in Table 2 the values of the temperature T and 
log(T ), with again T in units of 1/z0, which were used to plot 
Fig. 2-(A) and (B), for the same black hole configuration entropies 
of Table 1.

Appendix B. Positivity of the CE

In this appendix we will discuss the positivity of the configura-
tion entropy, defined by eq. (31). One can regard the integrand of 
this equation,
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Fig. 4. |ρ̃(k)|2 for a black hole at T2 = 1/(π0.1) = 3.1831.

Table 3
Maximum value of λB H (k) at different temperatures T (espressed in units of 1/z0).

Temperature λ(kmax) kmax

T1 = 6.3662 2.9819 × 10−6 1,00 × 106/z0

T2 = T1/2 5.6988 × 10−6 5,01 × 105/z0

T3 = T1/4 1.0867 × 10−5 2,51 × 105/z0

λ(k) = − f (k) ln f (k) , (B.1)

as representing the CE per unit of momentum. We show in Fig. 3-
(A) the form of λ(k) for the black hole case, for 3 different tem-
peratures. One notices that in the limit k → 0, λ(k) reaches a finite 
value. In the black hole case, see Fig. 3-(A), one sees that this value 
increases as the temperature increases (note that T1 > T2 > T3). 
The curve, as k increases, oscillates until it passes through a lo-
cal maximum, then through a local minimum, where it begins to 
grow until reaching the global maximum, to finally tend to zero 
as k → ∞. For higher temperatures, the global maximum is higher 
and is reached for lower values of momentum. In the thermal AdS 
space, the behavior is similar, but λ(k) does not depend on the 
temperature. The corresponding plot is shown in Fig. 3-(B). Hence, 
the configuration entropy, defined as the integration of λ(k) over 
all modes, is always positive.

In order to explain the physical origin of the λ(k) behavior dis-
played above for different temperatures, we should take a look 
at the energy density in the Fourier space, see eq. (32). In the 
Fig. 4, we observe the same signature of the curve, whose pat-
tern is transmitted to λ(2)

B H (k) of Fig. 3, which depends on |ρ̃(k)|2, 
according to eq. (B.1) and the modal fraction definition (29). The 
small values of λ(k), if compared to the energy density, are only
attributed to the normalization factor, see eq. (30). At T2, for in-
stance, NT2 = 5.99696 × 1057. As we decrease the value of the UV 
regulator ε , the small oscillations along the λ(k) curve tends to 
disappear. Such small oscillations must then be interpreted as a 
consequence of the regularization of the BH energy density em-
ployed in (24), these oscillations being harmless in the precision 
in which we are working.

One can numerically estimate the maximum values of the λ(k)

function and the value of k ≡ kmax where it occurs, for the temper-
atures analysed in Fig. 3. The results are displayed in Table 3. From 
this table one notices that kmax is approximately proportional to T . 
This is consistent with the fact that the energy distribution should 
depend only on two dimensionful parameters: z0 and T . Perform-
ing the calculations in terms of units of 1/z0 we remain with only 
T as the free energy parameter. That is why kmax is proportional 
to T .
7
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