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Abstract
Identification over quantum broadcast channels is considered. As opposed to the
information transmission task, the decoder only identifies whether a message of his
choosing was sent or not. This relaxation allows for a double-exponential code size.
An achievable identification region is derived for a quantum broadcast channel, and a
full characterization for the class of classical-quantum broadcast channels. The iden-
tification capacity region of the single-mode pure-loss bosonic broadcast channel is
obtained as a consequence. Furthermore, the results are demonstrated for the quantum
erasure broadcast channel, where our region is suboptimal, but improves on the best
previously known bounds.

Keywords Identification capacity · Broadcast communication · Bosonic channels ·
Random coding · Pool-selection coding · Hypergraph covering

1 Introduction

Modern data systems have an ever-growing gap between the available information
storage and the bit-per-second rates, which are limited by the noisy transmission
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medium [1]. Quantum communication is thus expected to enter the sixth generation
of cellular networks (6G) in order to achieve performance gains [2–4].

Data volumes are even larger when limiting a system to identifying alerts, rather
than recovering information. In Shannon’s transmission task [5], a transmitter sends
a message over a noisy channel, and the receiver needs to find which message was
sent. In some modern event-triggered applications, however, the receiver may simply
perform a binary decision on whether a particular message of interest was sent or not.
This setting is known as identification via channels [6]. Identification (ID) is relevant
for various applications such as watermarking [7–9] and sensor communication [10].
In vehicle-to-X communication [11], a vehicle may announce information about its
future movements to the surrounding road users. Every road user is interested in one
specific movement that interferes with its plans, and it checks only if this movement
is announced or not.

The ID capacity of a classical-quantum channel was determined by Löber [12] and
Ahlswede and Winter [13] (see also [14]). The ID capacity turns out to have the same
value as the transmission capacity for most classical-input single-user channels that
we know of. However, the units are different. Specifically, the ID code size grows
doubly exponentially in the block length, provided that the encoder has access to a
source of randomness. Thereby, identification codes achieve an exponential advantage
in throughput compared to transmission codes. This is attained by letting the encod-
ing and decoding sets overlap. General results for ID are surveyed in [15]. Löber [12]
considered a simultaneous identification scenario, in which the same measurement
is performed in order to perform identification for multiple receivers. This is also
relevant to a network that consists of chains [16]. In Boche et al. [17] considered iden-
tification over the classical-quantum channel under channel uncertainty and secrecy
constraints. For quantum-quantum channels, even the single-user identification capac-
ity is unknown so far, except for special channels [14]. In general, it can exceed the
transmission capacity of a quantum channel [14] and was recently shown to exceed
the simultaneous identification capacity [18]. For example, the transmission capacity
and the simultaneous identification capacity of the noiseless qubit channel are both
one [18, 19], but the identification capacity of the noiseless qubit channel is 2 and
equals the entanglement-assisted transmission capacity [14]. The best lower bounds
equal the amount of common randomness that can be generated over a channel, and
thus, entanglement also increases the identification capacity [14].

The broadcast channel is a fundamental multi-user communicationmodel, whereby
a single transmitter sendsmessages to two receivers [20]. In the traditional transmission
setting, the capacity region of the discrete memoryless broadcast channel is generally
unknown, even in the classical case. The best known lower bound is due to Mar-
ton [21], and the best known upper bound was proven by Nair and El Gamal [22]. The
two bounds coincide in special cases such as more capable, less noisy or degraded
broadcast channel [23].On the other hand, the ID capacity region of the classical broad-
cast channel was fully characterized by Bracher and Lapidoth [24, 25], for uniformly
distributed messages. Namely, the ID capacity region is known for any classical dis-
cretememoryless broadcast channel, without special requirements on the channel. The
derivation in [24, 25] is based on a pool-selection technique that differs from the stan-
dard arguments. Related settings were also considered in [26–28]. The authors of the
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Fig. 1 The transmission and ID capacity regions of the pure-loss bosonic broadcast channel, with coherent-
state encoding, mean photon-number input constraint NA = 10, and transmissivity η = 0.8. The
transmission capacity region CT corresponds to the light gray area, and the ID capacity region CID comprises
additionally the dark gray rectangular area

present paper have recently considered ID over the classical compound multiple-input
multiple-output (MIMO) broadcast channel [29, 30].

Quantum broadcast channels were studied in various settings [31–46]. Yard et al.
[31] derived the superposition inner bound and determined the capacity region for the
degraded classical-quantum broadcast channel. Wang et al. [34] used the previous
characterization to determine the capacity region for Hadamard broadcast channels.
Dupuis et al. [35, 36] developed the entanglement-assisted version ofMarton’s region.
Quantum broadcast channels with conferencing decoders were recently considered
in [47] as well, providing an information-theoretic perspective to the operation of
quantum repeaters. In addition, security aspects were treated in [48, 49].

Optical communication forms the backbone of the Internet [50–53]. The Gaussian
bosonic channel is a simple quantum-mechanical model for optical communication
over free space or optical fibers [54, 55]. An optical communication system consists
of a modulated source of photons, the optical channel, and an optical detector. For a
single-mode bosonic broadcast channel, the channel input is an electromagnetic field
mode with annihilation operator â, and the output is a pair of modes with annihilation
operators b̂1 and b̂2, corresponding to each receiver. Bosonic broadcast channels are
considered in different settings in [56–63].

In this work, we consider identification over the quantum broadcast channel. We
derive an achievable ID rate region for the general quantum broadcast channel and
establish full characterization for the classical-quantum broadcast channel under a
semi-average error criterion. We demonstrate our results and determine the ID capac-
ity region of the quantum erasure broadcast channel. Furthermore, we establish the
capacity region of the single-mode pure-loss bosonic broadcast channel with coherent-
state encoding. The ID capacity region of the bosonic broadcast channel is depicted in
Fig. 1 as the area below the solid blue line. For comparison, the transmission capacity
region, as determined by Guha and Shapiro [56] subject to the minimum output-
entropy conjecture, is indicated by the red dashed line. It can be seen that the ID
capacity region is significantly larger than the transmission counterpart. We note that
the ID result does not require the conjecture.
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While the properties above are analogous to the classical setting [30], the analysis
is more involved. To prove the direct part, we extend the pool-selection method due to
Bracher and Lapidoth [24, 25] to the quantum setting. On the other hand, our converse
proof is based on completely different arguments than in Bracher and Lapidoth’s
classical proof. Instead, we exploit recent observations made by Boche et al. [17] as
they treated the classical-quantum compound channel, combined with the arguments
of Ahlswede andWinter [13] in their seminal paper on ID for the single-user classical-
quantum channel.

This paper is organized as follows: In Sect. 2, we introduce the notation, give basic
definitions, and introduce the communication model. Section3 contains our main
results. In Sect. 4, we demonstrate our results for the pure-loss bosonic broadcast chan-
nel and the erasure broadcast channel. Section5 provides the achievability proof for
identification over the quantumbroadcast channel in finite dimensions, and Sect. 6 pro-
vides the proof for the ID capacity region of the classical-quantum broadcast channel.
Finally, the results are summarized in Sect. 7.

2 Preliminaries and related work

2.1 Notation

We use the following notation conventions.

2.1.1 Basic notation

X , Y , . . . Classical random variables
X ,Y, . . . Finite sets (alphabets)
x, y, . . . Constants and classical values
xn = (x1, x2, . . . , xn) ∈ X n Sequence of length n
PX Probability mass function (PMF) of X
E[X ] Expectation of a random variable X
P(X ) Set of all PMFs with finite support over a set X
Pn(xn) = ∏n

t=1 P(xt ) n-fold product distribution
[N ] {1, . . . , �N�}
A, B, . . . Quantum systems
HA Hilbert space A
ρA ∈ D(HA) Density operator onHA
D(HA) Set of density operators on HA
NA→B : D(HA) → D(HB ) Quantum channel (CPTP map){
Dj : j ∈ [J ]} Positive operator-valued measure (POVM),

|�AB 〉 = 1√
d

d−1∑

i=0
|i〉A ⊗ |i〉B A maximally entangled state of dimension d
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2.1.2 Information measures

H(X) = ∑

x∈supp PX

−PX (x) log2 PX (x) Classical entropy

I (X; Y ) = H(X) + H(Y ) − H(XY ) Classical mutual information
H(A)ρ = H(ρA) = −Tr[ρA log2(ρA)] Quantum entropy
I (A; B)σ = H(σA) + H(σB ) − H(σAB ) Quantum mutual information
H(A|B)σ = H(σAB ) − H(σB ) Conditional quantum entropy

2.1.3 Quantum broadcast channels

A quantum broadcast channel NA→B1B2 : D(HA) → D(HB1 ⊗ HB2) corresponds
to a quantum physical evolution from the input A to the combined output B1, B2,
associated with the transmitter and two receivers, respectively. We assume that the
channel is memoryless. That is, if the systems An = (A1, . . . , An) are sent through n
channel uses, then the input ρAn undergoes the tensor product mappingNAn→Bn

1 B
n
2

≡
N⊗n

A→B1B2
. The marginal channel is defined byN (1)

A→B1
(ρA) = TrB2

(
NA→B1B2(ρA)

)

for Receiver 1, and similarly N (2)
A→B2

for Receiver 2. The transmitter, Receiver 1,
and Receiver 2 are often called Alice, Bob 1, and Bob 2. A classical-quantum (c-q)
broadcast channel N c-q

X→B1B2
is defined, in a similar manner, as a mapping X →

D(HB).

2.2 Identification codes

In the following, we define the communication task of identification over a quantum
broadcast channel, where the decoder is not required to recover the sender’s message
i , but simply determines whether a particular message i ′ was sent or not.
Definition 1 An (N1, N2, n) identification (ID) code for the quantum broadcast chan-
nel NA→B1B2 consists of an encoding channel EAn : [N1] × [N2] → D(H⊗n

A )

and a collection of binary decoding POVMs Di1
Bn
1

= {1 − D(1)
i1

, D(1)
i1

} and Di2
Bn
2

=
{1 − D(2)

i2
, D(2)

i2
}, for i1 ∈ [N1] and i2 ∈ [N2]. We denote the identification code by

C = (EAn ,DBn
1
,DBn

2
).

The identification scheme is depicted in Fig. 2. Alice chooses a pair of messages
(i1, i2), where ik ∈ [Nk], for k ∈ {1, 2}. She encodes the messages by preparing
an input state ρ

i1,i2
An ≡ EAn (i1, i2) and sends the input system An through n uses

of the quantum broadcast channel NA→B1B2 . Bob 1 and Bob 2 receive the output
systems Bn

1 and Bn
2 , respectively. Suppose that Bob k is interested in a particular

message i ′k ∈ [Nk], where k ∈ {1, 2}. Then, he performs the binary measurement

{1 − D(k)
ik

, D(k)
ik

} to determine whether i ′k was sent or not and obtains a measurement
outcome sk ∈ {0, 1}. He declares ‘no’ if the measurement outcome is sk = 0, and
‘yes’ if sk = 1.
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Fig. 2 Identification over the quantum broadcast channelN⊗n
A→B1B2

. Alice chooses a message pair (i1, i2).

She encodes the messages by preparing an input state EAn (i1, i2), and sends the input system An through
n uses of the quantum broadcast channel N⊗n

A→B1B2
. Bob 1 and Bob 2 receive the output systems Bn

1 and

Bn
2 , respectively. As Bob k is interested in the message i ′k ∈ [Nk ], he performs the binary measurement

Di ′k
Bnk

= {1 − D(k)
i ′k

, D(k)
i ′k

} to determine whether i ′k was sent or not

The ID rates of the code C are defined as Rk = 1
n log log(Nk), for k ∈ {1, 2}. In

this work, we assume that the ID messages ik are uniformly distributed over the set
[Nk], for k ∈ {1, 2}. Therefore, the error probabilities are defined on average over the
messages for the other receiver. Bob 1 makes an error in two cases: (1) He decides that
i1 was not sent (missed ID); (2) Bob 1 decides that i ′1 was sent, while in fact i1 was
sent, and i1 �= i ′1 (false ID). The probabilities of these two kinds of error, averaged
over i2 ∈ [N2], are defined as

ē1,1(N , n, C, i1) = 1

N2

∑

i2∈[N2]
Tr
[
(1 − D(1)

i1
)N⊗n(E(i1, i2))

]
, (1a)

ē1,2(N , n, C, i ′1, i1) = 1

N2

∑

i2∈[N2]
Tr
[
D(1)
i ′1

N⊗n(E(i1, i2))
]
, (1b)

for i1, i ′1 ∈ [N1] such that i1 �= i ′1. Similarly, Bob 2’s error probabilities are

ē2,1(N , n, C, i2) = 1

N1

∑

i1∈[N1]
Tr
[
(1 − D(2)

i ′2
)N⊗n(E(i1, i2))

]
, (1c)

ē2,2(N , n, C, i ′2, i2) = 1

N1

∑

i1∈[N1]
Tr
[
D(2)
i ′2

N⊗n(E(i1, i2))
]
. (1d)

for i2, i ′2 ∈ [N2] such that i2 �= i ′2.
An (N1, N2, n, λ1, λ2) ID-code C for the quantum broadcast channel NA→B1B2

satisfies

max
ik∈[Nk ]

ēk,1(N , n, C, ik) < λ1, (2a)

max
ik ,i ′k∈[Nk ],

i ′k �=ik

ēk,2(N , n, C, i ′k, ik) < λ2, (2b)
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for k ∈ {1, 2}. An ID rate pair (R1, R2) is achievable if for every λ1, λ2 > 0 and
sufficiently large n, there exists an

(
exp enR1 , exp enR2 , n, λ1, λ2

)
ID-code. The ID

capacity region CID(N ) of the quantum broadcast channelNA→B1B2 is defined as the
set of achievable rate pairs.

2.3 Previous results

In the traditional transmission setting [5], the decoder Bob is required to find an
estimate î of Alice’s message. This is a more stringent requirement than identification,
and it results in exponentially slower communication. Specifically, the number of
messages scales as exp(nR) for transmission, whereas exp(enR) for identification.
While the transmission rate is measured in units of information bits per channel use,
the identification rate has different units.Nonetheless, for the classical-quantumsingle-
user channel, it turns out that the identification and transmission capacities have the
same value.

In the single-user setting, the ID capacity of the classical-quantum channel was
determined by Löber [12] and Ahlswede andWinter [13]. LetWX→B be a single-user
c-q channel. The ID capacity CID(W) is then defined, in a similar manner, as the
supremum of achievable ID rates over the c-q channel WX→B .

Theorem 1 (see [12, 13][64, Theorem 4]) The ID capacity of a single-user classical-
quantum channel WX→B is given by

CID(W) = max
PX∈P(X )

I (X; B)ρ, (3)

where ρXB = ∑
x∈X PX (x) |x〉〈x | ⊗ W(x).

While the single-user achievability proof in [6, 12] employs a random binning
scheme based on transmission codes [65], we will see that the broadcast coding
methods are significantly more involved and do not follow from the transmission
characterization.

3 Results

Our results are presented below. Consider the quantum broadcast channel NA→B1B2 ,
as defined in Sect. 2.1.3. Define the rate region R(N ) as

R(N ) =
⋃

PX∈P(X ), |φx
A〉

{
(R1, R2) : R1 ≤ I (X; B1)ρ,

R2 ≤ I (X; B2)ρ

}

(4)

with ρXB1B2 = ∑
x∈X PX (x) |x〉〈x | ⊗ N (|φx

A〉〈φx
A|).
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Theorem 2 1. The region R(N ) is achievable for identification over the quantum
broadcast channel NA→B1B2 . That is,

CID(N ) ⊇ R(N ). (5)

2. The identification capacity region of a classical-quantum broadcast channel
N c-q

X→B1B2
is given by

CID(N c-q) =
⋃

PX∈P(X )

{
(R1, R2) : R1 ≤ I (X; B1)ρ,

R2 ≤ I (X; B2)ρ

}

, (6)

with ρXB1B2 = ∑
x∈X PX (x) |x〉〈x | ⊗ N c-q(x).

The proof of part 1 is given in Sect. 5, where we show that all rate pairs in the interior
of the regionR(N ) are achievable. In Sect. 6, we prove part 2 and show the classical-
quantum converse part, i.e. that no rate pair outside the region above can be achieved
for identification over the classical-quantum broadcast channel. In the proof of part
1, we use the pool-selection method by Bracher and Lapidoth [24, 25]. This will
enable the same extension to the broadcast setting as in [24, 25]. On the other hand,
in the converse proof, we used a different approach exploiting recent observations by
Boche et al. [17] along with the methods of Ahlswede and Winter [13].

Remark 1 As mentioned in Sect. 2.3, in the classical-quantum single-user setting,
the ID and transmission capacity characterizations are identical. On the other hand,
in the broadcast ID setting, we see a departure from this equivalence [24, 25, 28].
The examples in the following section demonstrate this departure in a more explicit
manner, showing that the ID capacity region can be strictly larger than the transmission
capacity region.

Remark 2 Consider the classical-quantum broadcast channel. In general, the rate Rk

of User k must be limited by the ID capacity of the single-user channel from A to Bk ,
for k ∈ {1, 2}. This observation leads to the following rectangular upper bound,

CID(N c-q) ⊆
{

(R1, R2) : R1 ≤ C(1)
ID ,

R2 ≤ C(2)
ID

}

, (7)

where C (k)
ID = maxPX I (X; Bk)ρ . However, in identification over the broadcast chan-

nel, the users cannot necessarily achieve the full capacity of each marginal channel
simultaneously, since both marginal channels must share the same input distribution
in the capacity formula on the right hand side of (6). Equality holds in (7) if the same
input distribution P�

X maximizes both mutual informations simultaneously, i.e. when

P�
X = arg max

PX
I (X; B1)ρ = arg max

PX
I (X; B2)ρ. (8)
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Fig. 3 The beam splitter relation of the single-mode bosonic broadcast channel. The channel input is an
electromagnetic field mode with annihilation operator â, and the output is a pair of modes with annihilation
operators b̂1 and b̂2, corresponding to each receiver. The mode ê is associated with the environment noise
in the pure-loss setting, the environment is in the vacuum state, i.e., ê = |0〉. The parameter η is the
transmissivity, which captures the length of the optical fiber and its absorption length

4 Examples

As examples, we consider the pure-loss bosonic broadcast channel and the erasure
broadcast channel.

4.1 Bosonic broadcast channel

To demonstrate our results, consider the single-mode bosonic broadcast channel.
We extend the finite-dimension result in Theorem 2 to the bosonic channel with
infinite-dimension Hilbert spaces based on the discretization limiting argument by
Guha limiting argument by Guha [57]. A detailed description of (continuous-variable)
bosonic systems can be found in [54]. Here, we only define the notation for the quanti-
ties that we use. We use hat-notation, e.g. â, b̂1, b̂2, ê, to denote annihilation operators
that act on a quantum state. A thermal state τ(N ) is a Gaussian mixture of coherent

states, where τ(N ) ≡ ∫
C
d2α e−|α|2/N

πN |α〉〈α|, with an average photon number N > 0.
Consider a bosonic broadcast channel, whereby the channel input is an electro-

magnetic field mode with annihilation operator â, and the output is a pair of modes
with annihilation operators b̂1 and b̂2. The annihilation operators correspond to Alice,
Bob 1, and Bob 2, respectively. The input–output relation of the pure-loss bosonic
broadcast channel in the Heisenberg picture [66] is given by

b̂1 = √
η â +√

1 − η ê, (9)

b̂2 = √
1 − η â − √

η ê, (10)

where ê is associated with the environment noise and η is the transmissivity, 0 ≤ η

≤ 1, which captures, for instance, the length of the optical fiber and its absorption
length [67]. The relations above correspond to the outputs of a beam splitter, as illus-
trated in Fig. 3. In the pure-loss setting, the environment is in the vacuum state, i.e.,
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ê = |0〉. It is assumed that the encoder uses a coherent state protocol with an input con-
straint. That is, the input state is a coherent state |x〉, x ∈ C, such that each codeword
satisfies 1

n

∑n
i=1 |xi |2 ≤ NA.

Based on part 1 of Theorem 2, the ID capacity region of the pure-loss bosonic
broadcast channel with coherent encoding and average photon number at most NA is
given by

CID(N ) =
{

(R1, R2) : R1 ≤ g(ηNA)

R2 ≤ g((1 − η)NA)

}

(11)

where g(N ) = (N + 1) log(N + 1) − N log(N ) is the entropy of a thermal state with
mean photon number N , with 0 log 0 := 0. See Fig. 1. The converse part immedi-
ately follows from the single-user capacity characterization. To show achievability,
set the input to be an ensemble of coherent states, |X〉, with a circularly-symmetric
Gaussian distribution with zero mean and variance E[|X |2] = NA. As mentioned in
Remark 2, the users cannot necessarily achieve the marginal capacity. Nevertheless,
for the bosonic broadcast channel, each user achieves the full capacity of the respective
marginal channel.

On the other hand, the transmission capacity region of the single-mode pure-loss
bosonic broadcast channel is [56, 57],

CT(N ) =
⋃

0≤β≤1

{
(R1, R2) : R1 ≤ g(ηβNA)

R2 ≤ g((1 − η)NA) − g((1 − η)βNA)

}

. (12)

where the subscript ‘T’ stands for ‘Transmission’, under the assumption that the
minimum output-entropy conjecture holds (see Strong Conjecture 2 in [57]). The
transmission capacity region and the ID capacity region are depicted in Fig. 1 as the
light gray area (T) and additionally the dark gray area (ID), respectively.

The converse part for the transmission result on the pure-loss bosonic broadcast
channel relies on the strong minimum output-entropy conjecture [56], as stated below.
Let the noisemodes {êi }ni=1 be in a product stateρEn = |0〉〈0|⊗n of n vacuumstates, and
assume that H(An)ρ = ng(NA). Then, the strongminimumoutput-entropy conjecture
states that [56]

H(Bn)ρ ≥ ng(ηNA) . (13)

We note that in the single-user case, the conjecture is not required for neither identi-
fication nor transmission [68–70] [71, Section VI.B]. There are several special cases
that are known to hold [72, Section III]. E.g., it is well known that the conjecture
holds for n = 1. However, as pointed out in [70, Section V], this is insufficient for the
converse proof of the bosonic broadcast channel, which requires the strong minimum
output-entropy conjecture stated above.
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4.2 Erasure broadcast channel

We consider the qubit erasure broadcast channel, specified by N (ρ) = UρU †,

U = √
1 − λ1A→B1 ⊗ |e〉B2 + √

λ |e〉B1 ⊗ 1A→B2 , (14)

where the erasure state |e〉 is orthogonal to the qubit space, and 0 ≤ λ ≤ 1
2 is a given

parameter. Hence, the marginal channels to Bob 1 and Bob 2 are standard quantum
erasure channels, with erasure parameters λ and 1 − λ, respectively. Specifically,

N (1)(ρ) = (1 − λ)ρ + λ|e〉〈e| , (15)

N (2)(ρ) = λρ + (1 − λ)|e〉〈e| . (16)

The ID capacity region of the erasure broadcast channel NA→B1B2 satisfies

CID(N ) ⊇ R(N ) =
{

(R1, R2) : R1 ≤ 1 − λ,

R2 ≤ λ

}

. (17)

This result is obtained in a straightforward manner. To show achievability, we apply
part 1 of Theorem 2 and set PX = ( 1

2 ,
1
2

)
over the ensemble {|0〉 , |1〉}.

First, consider the symmetric case of λ = 1
2 . Our achievable region R(N ) is then

the best known bound on the ID capacity region. Whereas, for λ < 1
2 , we can improve

upon our bound.
For a single-user quantum erasure channelLA→B with a parameter ε, Winter estab-

lished achievability of the identification rate R = 2(1 − ε) for ε < 1
2 , and R = 1 − ε

for ε ≥ 1
2 [14, Section 4], where ρX is a classical state. If λ = 1

2 , then this yields the
rate pair (R1, R2) = ( 1

2 ,
1
2

)
, which is the corner of our region in (17). On the other

hand, for λ < 1
2 , the rate pairs (R1, R2) = (2(1 − λ), 0) and (R1, R2) = (0, λ) are

achievable. Hence, by time division, i.e., coding for User 1 over a sub-block of length
αn, and for User 2 over the remaining sub-block of (1 − α)n channel uses, we have
that the ID capacity region is lower-bounded by

CID(N ) ⊇ T :=
⋃

0≤α≤1

{
(R1, R2) : R1 ≤ 2α(1 − λ),

R2 ≤ (1 − α)λ

}

. (18)

The transmission capacity region CT(N ) of the quantum erasure broadcast channel
is also achieved by time-division. It is given by the rate pairs (R1, R2) satisfying
R1 ≤ α(1−λ) and R2 ≤ (1−α)λ, for some0 ≤ α ≤ 1, as can be shownusing the same
methods used in [73, Example 3.2 and Section 5.4.1] and [19, Section 20.4.3]. Clearly,
CT(N ) is contained in either of the regionsR(N ), T . We deduce that for an erasure
channel that is not symmetric, our achievable regionR(N ) inTheorem2 is suboptimal,
but improves on the best previously known bound in the interval 0 < R1 ≤ 1 − λ.
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Fig. 4 Achievable regions for IDover the qubit erasure broadcast channelN with erasure probabilityλ = 1
4 .

The transmission capacity region CT(N ) corresponds to the light gray area. The region T achievable by
time-division between single-user identification codes comprises additionally the middle gray area. The
rectangle indicated by the dark gray area corresponds to our lower boundR(N )

Figure4 shows the regions CT(N ), T and R(N ) for a quantum erasure broadcast
channel N with λ = 1

4 .

5 Achievability proof

In this section, we prove the lower bound on the capacity region in Theorem 2, i.e. we
show that

CID(N ) ⊇ R(N ). (19)

In the classical achievability proof, Bracher and Lapdidoth [24, 25] first generate a
single-user random code, based on a pool-selection technique, as shown below. Then,
a similar pool-selection code is constructed for the BC using a pair of single-user
codes, one for each receiver. It is shown in [24, 25] that the corresponding ID error
probabilities for the BC can be approximated in terms of the error probabilities of the
single-user codes. We use a similar approach, and begin with the single-user quantum
channel.

We use standard tools of typical space projectors as detailed in Appendix A. In
particular, T n

δ (PX ) denotes the classical δ-typical set with respect to a given PMF
PX ∈ P(X ) over X . Furthermore, �n

δ (ρ) is the projector onto the δ-typical subspace
of an average state ρ = ∑

x∈X PX (x) |x〉〈x |, and �n
δ (σXB |xn) is the conditionally

δ-typical projector for a classical-quantum state σXB .

5.1 Single-user quantum channel

First, we construct and analyze an identification code for a single-user quantum chan-
nel. In Sect. 5.2, we will use the single-user code in order to construct a code for the
broadcast channel. Let LA→B be a single-user quantum channel.

5.1.1 Code construction

Let N = exp enR be the code size. Fix a PMF PX over X , a pool rate Rpool, and a
binning rate R̃, such that
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R < R̃ < I (X; B)ρ (20)

Rpool > R̃. (21)

We generate the codebook such that all codewords are δ-typical. Therefore, consider
the distribution

PX ′n (xn) = Pn
X (xn)

Pn
X

(
T n

δ (PX )
) · 1 (xn ∈ T n

δ (PX )
)
, (22)

where the indicator function 1 (π) takes the value 1 if π is true, and 0 otherwise. For
every index v ∈ V = [enRpool], choose a codeword F(v) ∼ PX ′n at random. Then,
for every i ∈ [N ], decide whether to add v to the set V i by a binary experiment,
with probability e−n R̃/ |V| = e−n(Rpool−R̃). That is, decide to include v in V i with
probability e−n(Rpool−R̃), and not to include it with probability 1−e−n(Rpool−R̃). Reveal
this construction to all parties. Denote the collection of codewords and index bins by

B =
(
{F(v)}v∈V , {V i }Ni=1

)
. (23)

5.1.2 Encoding

To send an ID Message i ∈ [N ], Alice chooses an index v uniformly at random from
V i . If V i is non-empty, she prepares the state

∣
∣
∣φ

F(v)
An

〉
≡

n⊗

t=1

∣
∣
∣φ

Ft (v)
A

〉
, (24)

where Ft (v) is the t-th symbol of the sequence F(v). Otherwise, if V i = ∅, she
prepares |φF(1)

An 〉. Then,Alice transmits the systems An through the channel. Therefore,
if V i �= ∅, then the average input state EAn (i) is given by

EAn (i) = 1

|V i |
∑

v∈V i

∣
∣
∣φ

F(v)
An 〉〈φF(v)

An

∣
∣
∣ . (25)

5.1.3 Decoding

Bob receives the output systems Bn , and he would like to determine whether the
message i ′ was sent. To this end, he selects any constant δ such that

0 < δ <
I (X; B)ρ − R̃

c + c′ , (26)
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where c, c′ > 0 are constants as in Section A. Then, he performs a series of binary
decoding measurements (POVMs)

DF(v) =
{
1 − ��F(v)�,��F(v)�

}
, (27)

where we denote � ≡ �n
δ (ρB) and �F(v) ≡ �n

δ (ρXB |F(v)). Bob obtains a binary
sequence of measurement outcomes (a(v))v∈V i ′ . If a(v) = 1 for some v ∈ V i ′ , then
Bob declares that i ′ was sent. Otherwise, he declares that i ′ was not sent. Note that we
can also construct one POVM Di ′

Bn that is equivalent to the series of measurements.
Thus, the ID code associated with the construction above is denoted by

CB = (E An ,DBn ) .

The error analysis for the single-user identification code is delegated to Appendix B.

5.2 Broadcast channel

In this section, we show the direct part for the ID capacity region of the quantum
broadcast channel. That is, we show that CID(N ) ⊇ R(N ). The analysis makes use
of the our single-user derivation above.

5.2.1 Code construction

We extend Bracher and Lapdioth’s [24, 25] idea to combine two BL codebooks
B(1),B(1) that share the same pool. Fix a PMF PX over X and rates Rk, R̃k , for
k ∈ {1, 2}, that satisfy

R1 < R̃1 < min
s∈S

I (X; B1)ρ (28a)

R2 < R̃2 < min
s∈S

I (X; B2)ρ (28b)

max
{
R̃1, R̃2

}
< Rpool (28c)

Rpool < R̃1 + R̃2. (28d)

Let Nk = enRk . For every index v ∈ V = [enRpool], perform the following. Choose
a codeword F(v) ∼ Pn

X at random, as in the single-user case. Then, for every ik ,

decide whether to add v to the set V(k)
ik

by a binary experiment, with probability

e−n R̃k/ |V| = e−n(Rpool−R̃k ). That is, decide that v is included in V(k)
ik

with probability

e−n(Rpool−R̃k ), and not to include with probability 1− e−n(Rpool−R̃k ). Finally, for every
pair (i1, i2) ∈ [N1] × [N2], select a common index Vi1,i2 uniformly at random from
V(1)

i1
∩ V (2)

i2
, if this intersection is non-empty. Otherwise, if V(1)

i1
∩ V (2)

i2
= ∅, then

draw Vi1,i2 uniformly from V . Reveal this construction to all parties.
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Denote the collection of codewords and index bins by

BN =
(
F,

{
V(1)

i1

}
i1∈[N1],

{
V(2)

i2

}
i2∈[N2],

{
Vi1,i2

}
(i1,i2)∈[N1]×[N2]

)
. (29)

Note that, for k ∈ {1, 2}, BN includes all elements of B(k) = (
F,
{
V (k)

ik

}

ik∈[Nk ]
)
,

defined for the marginal channelsN (k)
A→Bk

as in Sect. 5.1.We denote the corresponding
single-user code by

CB(k) = (Ẽ(k)
An ,DBn

k
). (30)

5.2.2 Encoding

To send an ID message pair (i1, i2) ∈ [N1] × [N2], Alice prepares the input state
∣
∣φ

F(Vi1,i2 )

An

〉
and transmits the input system An .

5.2.3 Decoding

Receiver k, for k = 1, 2, employs the decoder of the single-user code CB(k) . Specifi-
cally, suppose that Bob k is interested in an ID message i ′k ∈ [Nk]. Then, he uses the
decoding POVM Di ′k

Bn
k
to decide whether i ′k was sent or not.

We denote the broadcast ID code associated with the construction above by

CBN = (E An ,DBn
1
,DBn

2
) (31)

5.2.4 Error analysis

We show that the semi-average error probabilities of the ID code defined above can be
approximately upper-bounded by the respective error probabilities of the single-user
ID-codes CB(1) and CB(2) for the respective receivers.

Consider a given pair of codebooksB(1) andB(2). Conditioned on those codebooks,
the input state can be written in terms of an encoding distribution

E An (i1, i2) =
∑

v∈V
Qi1,i2(v)

∣
∣
∣φ

F(v)
An 〉〈φF(v)

An

∣
∣
∣ , (32)

where Qi1,i2(v) = 1
(
v = Vi1,i2

)
. Similarly,

Ẽ(k)
An (ik) =

∑

v∈V
Q̃

(k)
ik (v)

∣
∣
∣φ

F(v)
An 〉〈φF(v)

An

∣
∣
∣ (33)

123



  361 Page 16 of 31 J. Rosenberger et al.

where Q̃
(k)
ik (v) is the respective distribution for the single-user code from Sect. 5.1,

namely

Q̃
(k)
ik (v) =

⎧
⎨

⎩

1∣
∣V (k)

ik

∣
∣1
(
v ∈ V (k)

ik

)
if V (k)

ik
�= ∅,

1 (v = 1) if V(k)
ik

= ∅.

(34)

We consider now only Receiver 1 and his marginal channelN (1)
A1→B . Since the code

construction is completely symmetric between the two receivers, the same arguments
hold for Receiver 2 andN (2)

A2→B . The missed-ID error probability for CBN and Bob 1
is given by

ē1,1(N , n, CBN , i1) = 1

N2

∑

i2∈[N2]
Tr
[
(1 − D(1)

i1
)N (1)⊗n

A→B1
(E An (i1, i2))

]
(35)

and for CB(k) , it is given by

e1(N (1)
A→B1

, n, CB(1) , i1) = Tr
[
(1 − D(1)

i1
)N (1)⊗n

A→B1

(
Ẽ(k)

An (i1)
) ]

. (36)

By the linearity of the channel and the measurement, we have

ē1,1(N , n, CB(1) , i1) − e1(N (1)
A→B1

, n, CB(1) , i1)

≤ 1

2

∥
∥
∥
∥
∥
∥

1

N2

∑

i2∈[N2]
E An (i1, i2) − Ẽ(k)

An (i1)

∥
∥
∥
∥
∥
∥
1

= 1

2

∥
∥
∥
∥
∥
∥

1

N2

∑

i2∈[N2]

∑

v∈V
Qi1,i2(v)

∣
∣
∣φ

F(v)
An 〉〈φF(v)

An

∣
∣
∣−

∑

v∈V
Q̃

(k)
i1 (v)

∣
∣
∣φ

F(v)
An 〉〈φF(v)

An

∣
∣
∣

∥
∥
∥
∥
∥
∥
1

= 1

2

∣
∣
∣
∣
∣
∣

∑

v∈V

⎛

⎝ 1

N2

∑

i2∈[N2]
Qi1,i2(v) −

∑

v∈V
Q̃

(k)
i1 (v)

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ δ
(1)
i1

, (37)

where δ
(1)
i1

is the total variation distance

δ
(1)
i1

= 1

2

∑

v∈V

∣
∣
∣
∣
∣
∣

1

N2

∑

i2∈[N2]
Qi1,i2(v) −

∑

v∈V
Q̃

(1)
i1 (v)

∣
∣
∣
∣
∣
∣
= d

⎛

⎝ 1

N2

∑

i2∈[N2]
Qi1,i2 , Q̃

(1)
i1

⎞

⎠ ,

(38)
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and the inequalities follow from the triangle inequality. The same argument applies to
the false-ID error. Hence,

ē1,1(N , n, CBN , i1) ≤ e1(N (1)
A→B1

, n, CB(1) , i1) + δ
(1)
i1

, (39a)

ē1,2(N , n, CBN , i ′1, i1) ≤ e2(N (1)
A→B1

, n, CB(1) , i ′1, i1) + δ
(1)
i1

, (39b)

Similarly, the error probabilities for the second marginal channel are bounded by

ē2,1(N , n, CBN , i2) ≤ e1(N (2)
A→B2

, n, CB(2) , i2) + δ
(2)
i2

, (39c)

ē2,2(N , n, CBN , i ′2, i2) ≤ e2(N (2)
A→B2

, n, CB(2) , i ′2, i2) + δ
(2)
i2

, (39d)

where δ
(2)
i2

= d
(

1
N1

∑
i1∈[N1] Qi1,i2 , Q̃

(2)
i2

)
.

From this point, we can continue as in the classical derivation due to Bracher and
Lapidoth [24, 25]. The next lemmabounds δ

(k)
ik

in (39) to zero in probability as n → ∞.
By [24], [30, Lemma 3], for every k ∈ {1, 2} and some τ > 0,

lim
n→∞Pr

(

max
ik∈[Nk ]

δ
(k)
ik

≥ e−nτ

)

= 0. (40)

Hence by (39), the error probabilities for the quantum broadcast-channel code CBN
are approximately upper-bounded by the corresponding error probabilities for the
single-user marginal codes CB(1) and CB(2) .

By (59) for the single-user quantum channel N (k)
A→Bk

and k ∈ {1, 2}, the

error probabilities e1(N (k)
A→Bk

, n, CB(k) , ik) and e2(N (k)
A→Bk

, n, CB(k) , i ′k, ik) converge
in probability to zero with convergence speed exponentially in n, for all messages
ik, i ′k ∈ [Nk] such that ik �= i ′k . This completes the proof of the direct part. ��

6 Converse proof

The direct part follows from part 1. Hence, it remains to prove the converse part. To
this end, consider an (N1, N2, n, λ1, λ2) ID code, C = (EXn ,DBn

1
,DBn

2
), for the c-q

broadcast channel NX→B1B2 . In the case of a classical input, the encoder effectively
assigns a probability distribution Qi1,i2 to each message pair, i.e.

EXn (i1, i2) =
∑

xn∈X n

Qi1,i2(x
n)
∣
∣xn〉〈xn∣∣ . (41)

Thus, the ID code is specified by
{(
Qi1,i2 , D

(1)
i1

, D(2)
i2

) : (i1, i2) ∈ [N1] × [N2]
}
. We

denote the Holevo information for each c-q channel N (k)
X→Bk

with respect to an input

distribution PX ∈ P(X ) by I(PX ,N (k)
X→Bk

) ≡ I (X; Bk)ρ.

Following the approach of Boche et al. [17], we prove the converse part in three
stages, beginning with a modification of the code.
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6.1 Codemodification

6.1.1 ı-net onP(X )

First, we fix a δ-net T of probability distributions on X . That is, for |T | ≤ ( c
δ

)|X |,
there exists T ⊆ P(X ) such that X n = ⋃

P∈T AP and such that the type of an input
sequence xn ∈ AP is δ-close to P . Hence,

Qi1,i2 =
⊕

P∈T
μi1,i2(P)QP

i1,i2 (42)

where μi1,i2 is a PMF over T , and QP
i1,i2

are PMFs over AP .

6.1.2 �-net onP(T )

For |M| ≤ ( c
ε

)|T |, there exists an ε-netM ⊆ P(T ). Hence, for every i2, there exists
a PMF μ′

i2
∈ M such that at least a fraction 1

|M| of the messages i1 ∈ [N1] has μi1,i2

that is ε-close to μ′
i2
. Without loss of generality, for N ′

1 =
⌊

N1|M|
⌋
,

∀i1 ∈ [N ′
1] : 1

2

∥
∥μi1,i2 − μ′

i2

∥
∥
1

≤ ε. (43)

Similarly, there exists a probability distribution μ′′ ∈ M such that at least a 1
|M| of

the messages i2 ∈ [N2] has μ′
i2
that is ε-close to μ′′. Without loss of generality, for

N ′
2 =

⌊
N2|M|
⌋
, ∀i2 ∈ [N ′

2] : 1
2

∥
∥
∥μ′

i2
− μ′′

∥
∥
∥
1

≤ ε. Thereby,

∀(i1, i2) ∈ [N ′
1] × [N ′

2] : 1

2

∥
∥μ′

i1,i2 − μ′′∥∥
1

≤ 2ε. (44)

Then, we modify the encoding distribution and define

Q′′
i1,i2 =

⊕

P∈T
μ′′(P)QP

i1,i2 , (45)

leaving the decoder as it is. This results in an (n, N ′
1, N

′
2, λ1 + 2ε, λ2 + 2ε) code,

where we choose ε to be sufficiently small such that λ1 + λ2 + 2ε < 1.

6.2 Encoder truncation

There exists P∗ ∈ T such that μ′′(P∗) ≥ 1
|T | . Thereby, we modify the code once

more and truncate all the other distributions in T . That is, we consider the code{
(QP∗

i1,i2
, D(1)

i1
, D(2)

i2
) : (i1, i2) ∈ [N ′

1]×[N ′
2]
}
. For the new code, the error probabilities

of the first and the second kind are bounded by λ∗
k = |T | (λk + 2ε) for k ∈ {1, 2}.
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Letting ε ≡ ε(λ1, λ2) → 0 as λ1, λ2 → 0, the error probabilities of the truncated
code tend to zero for every given δ > 0.

6.3 Rate bounds

Consider the marginal N (1)
A→B1

and QP∗
i1

≡ 1
N2

∑N ′
2

i2=1 Q
P∗
i1,i2

. Let i2 be uniformly

distributed. Then, observe that the randomized-encoder code
{
(QP∗

i1
, D(1)

i1
) : i1 ∈

[N ′
1]
}
is an (n, N ′

1, λ
∗
1, λ

∗
2) ID code for the single-user channel N (1)

A→B1
. Therefore,

following the single-user converse proof by Ahlswede and Winter [13] (see also [17,
Section III]),

R1 = 1

n
log log(N ′

1) < I(P∗,N (1)
X→B1

) + ε1 = I (X; B1)ρ + ε1 (46)

where X ∼ P∗ and ε1 tends to zero as δ → 0. For completeness, we prove the inequal-
ity in the appendix. Similarly, we also have R2 < I (X; B2)ρ + ε2. This completes the
proof of the ID capacity theorem. ��

7 Summary and outlook

We derive an achievable ID region for the quantum broadcast channel and established
full characterization for the classical-quantum broadcast channel. To prove achievabil-
ity, we extend the classical proof due to Bracher and Lapidoth [24, 25] to the quantum
setting. On the other hand, in the converse proof, we use the truncation approach by
Boche et al. [17] along with the arguments of Ahlswede and Winter [13].

As examples, we derive explicit expressions for the ID capacity regions for the
quantum erasure broadcast channel and for the pure-loss bosonic broadcast channel in
Sect. 4. In those examples, each user can achieve the capacity of the respectivemarginal
channel. In particular, the IDcapacity regionof the pure-loss bosonic broadcast channel
is rectangular and strictly larger than the transmission capacity region. In general, the
ID capacity region is not necessarily rectangular, as demonstrated for the classical
Z-channel [30, Section IV.C] and the classical Gaussian Product channel [30, Section
IV.E], [29, Section IV.B].

The ID capacity has a different behavior compared to the single-user setting, in
which the ID capacity equals the transmission capacity [74] (see Sect. 2.3). Here, in
the broadcast setting, the ID capacity region can strictly larger than in transmission,
since interference between receivers can be seen as part of the randomization of the
coding scheme.

Extending the results to more than two receivers remains an open challenge. Upper
and lower bounds for such amodelmaybederived in a similarmanner as in the classical
setting [24, Section IV.A]. To derive the identification capacity of classical-quantum
channels, new methods are required. The capacity of quantum-quantum channels is
even unknown for general point-to-point discretememoryless channels [14, 18]. These
are interesting and challenging directions of further research.
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AQuantummethod of types

We review the basic method-of-types properties that will be useful in the analysis. The
n-type P̂xn of a sequence xn ∈ X n is defined by P̂xn (a) = n(a|xn)

n for a ∈ X , where
n(a|xn) is the number of occurrences of the letter a in the sequence xn . The set of all
n-types over a set X is denoted by P(n,X ). Joint and conditional types are defined
similarly, as in [73]. Furthermore, a δ-typical set is defined as follows. Given a PMF
PX ∈ P(X ) over X , define the robustly1 δ-typical set,

T n
δ (PX ) = {

xn ∈ X n : ∣∣P̂xn (a) − PX (a)
∣
∣ ≤ δ · PX (a), a ∈ X

}
. (47)

Given PY |X : X → P(Y), the conditionally δ-typical set T n
δ (xn) is defined as the set

of all sequences yn such that (xn, yn) ∈ T n
δ (P̂xn × PY |X ). We will use the property

(see [75, Lemma 2.12])

Pr
(
Xn ∈ T n

δ (PX )
) ≥ 1 − 2 |X | 2−2nδ2 . (48)

1 This is the similar to strong ε-typicality [19], but we have ε = δPX (a), which depends on a.
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Consider the state An of a quantum system generated from an ensemble
{PX (x), |x〉}x∈χ . Then, the average density operator is ρ = ∑

x∈X PX (x) |x〉〈x |. The
projector onto the δ-typical subspace is defined as

�n
δ (ρ) = �An

δ (ρ) =
∑

xn∈T n
δ (PX )

∣
∣xn〉〈xn∣∣An . (49)

For every δ > 0 and sufficiently large n, the δ-typical projector satisfies

Tr(�n
δ (ρ)ρ⊗n) ≥ 1 − 2−bδn, (50)

2−n(H(ρ)+cδ)�n
δ (ρ) � �n

δ (ρ) ρ⊗n �n
δ (ρ)

� 2−n(H(ρ)−cδ)�n
δ (ρ), (51)

Tr(�n
δ (ρ)) ≤ 2n(H(ρ)+cδ) (52)

where b, c > 0 are constants [76, Subsection 15.1.3], while the exponential conver-
gence in (50) follows from Hoeffding’s inequality [77, Theorem 1] (see proof of (48)
in [75, Lemma 2.12]).

We will also need conditionally δ-typical subspaces. Consider a joint classical-
quantum system (Xn, Bn) with density matrix σ⊗n

X B . Then, let Ba(xn) = ⊗
i :xi=a Bi

be the subsystem of Bn with indices i such that xi = a, and note that there exists
a cq-channel NX→B : a �→ (〈a| ⊗ 1) σXB (|a〉 ⊗ 1) /PX (a). As in [76, Definition
15.2.3], the conditionally δ-typical projector �n

δ (σXB |xn) is defined by

�n
δ (σXB |xn) =

⊗

a∈X
�

t(a|xn)
δ (NX→B(a)) , (53)

where t(a|xn) ≡ {t : xt = a}, and �
t(a|xn)
δ (σB) is the projector onto the subspace

of H⊗n
B where the positions in t(a|xn) are δ-typical for σB . Given xn ∈ T n

δ (PX ), it
satisfies

Tr
(
�n

δ (σXB |xn)N (xn)
) ≥ 1 − 2−b′δn, (54)

2−n(H(B|X)σ +c′δ)�n
δ (σXB |xn) � �n

δ (σXB |xn)N (xn)�n
δ (σXB |xn)

� 2−n(H(B|X)σ −c′δ)�n
δ (σXB |xn), (55)

Tr(�n
δ (σXB |xn)) ≤ 2n(H(B|X)σ +c′δ) (56)

where b′, c′ > 0 is a constant, N (xn) = ⊗n
i=1NXi→Bi (xi ). Furthermore,

Tr(�n
δ (σB)N (xn)) ≥ 1 − 2−c′δn (57)

(see [76, Property 15.2.7]), and hence, by the Gentle Operator Lemma [76, Lemma
9.4.2],

∥
∥
∥N (xn) − �n

δ (σB)N (xn)�n
δ (σB)

∥
∥
∥
1

≤ 2−c′δn/2+1. (58)
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B Error analysis for single-user achievability

We show that for some τ > 0, the error probabilities of the random code CB satisfy

lim
n→∞Pr

{

max
i∈[N ] e1(LA→B, n, CB, i) ≥ e−nτ

}

= 0, (59a)

lim
n→∞Pr

{

max
i,i ′∈[N ]

max
i �=i ′

e2(LA→B, n, CB, i ′, i) ≥ e−nτ

}

= 0. (59b)

The codebook that is used here is the same as in the classical derivation [24, 25].
Hence, we can use the cardinality bounds for the index bins {V i }i∈[N ] that were
established in [24, 25]. Denote the collection of index bins by VN = {V i }i∈[N ].

Lemma 1 (see [24, Lemma 5]) Given μ > 0, let Gμ be the set of all realizations VN

of VN such that

|Vi | > (1 − δn)e
nR̃, (60)

|Vi | < (1 + δn)e
nR̃, (61)

|Vi ∩ Vi ′ | < 2δne
n R̃ (62)

for all Vi ,Vi ′ ∈ VN , i �= i ′, where δn = e−nμ/2. Then, the probability that VN ∈ Gμ

converges to 1 as n → ∞, i.e.

lim
n→∞Pr

{
VN ∈ Gμ

}
= 1, (63)

for μ < Rpool − R̃.

Hence, it suffices to consider the bin collection realizations VN of VN that satisfy
(61)–(62), for μ ∈ (0, Rpool − R̃). Thus, the input state is as in (25), since Vi �= ∅ by
(60).
Missed ID error
Consider an index bin Vi ∈ VN . We bound the probability of the missed-ID error (first
kind), given by

e1(LA→B, n, CB, i) = 1

|Vi |
∑

v∈Vi

Pr
(
a(v′) = 0, for all v′ ∈ Vi

∣
∣
∣ F(v) was sent

)

(64)

Note that for ρ
F(v)
Bn = LA→B(F(v)),

Pr
(
a(v′) = 0, for all v′ ∈ Vi

∣
∣ F(v) was sent

)

= Tr

⎛

⎝
∏

v′∈Vi

(
1 − ��F(v′)�

)
ρ
F(v)
Bn

⎞

⎠
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≤ Tr
((
1 − ��F(v)�

)
ρ
F(v)
Bn

)

= 1 − Tr
(
�F(v) �ρ

F(v)
Bn �

)

≤ 1 − Tr
(
�F(v)ρ

F(v)
Bn

)
+
∥
∥
∥ρ

F(v)
Bn − �ρ

F(v)
Bn �

∥
∥
∥
1
. (65)

By the Gentle Operator Lemma [76, Lemma 9.4.2], we have
∥
∥
∥ρ

F(v)
Bn − �ρ

F(v)
Bn �

∥
∥
∥
1

≤
e−nc′δ/2+1 (see (58)), because F(v) ∈ T n

δ (PX ), for all v ∈ V . Since also

Tr
(
�F(v)ρ

F(v)
Bn

)
≥ 1 − e−nb′δ (54), there exists τ1 > 0 such that

e1(LA→B, n, CB, i) ≤ e−nb′δ + e−nc′δ/2+1 < e−nτ1 . (66)

False ID error
Next, we bound the probability of an error of the second kind. Suppose that the sender
sends an ID message i and the receiver is interested in i ′ �= i . Recall that we can
restrict our attention to realizations VN = {Vi } ∈ Gμ, following Lemma 1. Let v ∈ Vi

be the index that Alice has chosen. Observe that

e2(LA→B, n, CB, i ′, i)

= 1

|Vi |
∑

v∈Vi

Pr
(∃ v′ ∈ Vi ′ : a(v′) = 1

∣
∣ F(v) was sent

)

≤ 1

|Vi |
∑

v∈Vi∩Vi ′
1 + 1

|Vi |
∑

v∈Vi∩Vc
i ′

Pr
(∃ v′ ∈ Vi ′ : a(v′) = 1

∣
∣ F(v) was sent

)

≤ |Vi ∩ Vi ′ |
|Vi |

+ 1
∣
∣Vi ∩ Vc

i ′
∣
∣

∑

v∈Vi∩Vc
i ′

Pr
(∃ v′ ∈ Vi ′ : a(v′) = 1

∣
∣ F(v) was sent

)
, (67)

since any probability is at most 1 and
∣
∣Vi ∩ Vc

i ′
∣
∣ ≤ |Vi |. The first term is bounded by

|Vi ∩ Vi ′ |
|Vi | <

2δn
1 − δn

< δn (68)

(see (60) and (62)), where the second inequality holds as δn < 1/2, for sufficiently
large n.

It remains to bound the second term in the right-hand side of (67), for which v ∈ Vi

and v /∈ Vi ′ . For every pair of indices v /∈ Vi ′ and v′ ∈ Vi ′ , we have that the codewords
F(v) and F(v′) are statistically independent.

Assume without loss of generality that Vi ′ = {1, 2, . . . , |Vi ′ |}. Let Ai ′(v′) denote
the event that v′ ∈ Vi ′ is the first index to hit ’yes’ as the measurement outcome, i.e.
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a(1) = a(2) = · · · = a(v′ − 1) = 0 and a(v′) = 1. Then,

Pr
(
Ai ′(v

′)
∣
∣ F(v) was sent

) = Tr
(
Dv′ Dc

v′−1 · · · Dc
1 ρ

F(v)
Bn Dc

1 · · · Dc
v′−1

)

≤ Tr
(
Dv′ ρ

F(v)
Bn

)

= Tr
(
�F(v′)� ρ

F(v)
Bn �

)
(69)

where Dv = ��F(v)�, Dc
v = 1 − Dv and again ρ

F(v)
Bn = LA→B(F(v)). Thus, we

have

EB
[
Pr
(
Ai ′(v

′)
∣
∣ F(v) was sent

)] ≤ Tr
(
E

[
�F(v′)

]
� E

[
ρ
F(v)
Bn

]
�
)

, (70)

and note that by (48), there exists εn with limn→∞ = 0 such that

E

[
ρ
F(v)
Bn

]
= 1

PX (T n
δ (PX ))

∑

xn∈T n
δ (PX )

Pn
X (xn)ρxn

Bn = 1

1 − εn
ρ⊗n
B . (71)

It follows that

(1 − εn)EB
[
Pr
(
Ai ′(v

′)
∣
∣ F(v) was sent

) ] = Tr
(
E

[
�F(v′)

]
� ρ⊗n

B �
)

(a)≤ e−n(H(B)ρ−cδ) Tr
(
E

[
�F(v′)

]
�
)

(b)
< e−n(H(B)ρ−H(B|X)ρ−(c+c′)δ)

= e−n(I (X;B)ρ−(c+c′)δ), (72)

where (a) holds by (51), and (b) by (56) since F(v′) ∈ T n
δ (PX ) for all v′ ∈ V .

Therefore, there exists θ > 0 such that

EB
[
Pr
(∃ v′ ∈ Vi ′ : a(v′)

∣
∣ F(v) was sent

) ]

= EB
[
Pr
(∃ v′ ∈ Vi ′ : Ai ′(v

′)
∣
∣ F(v) was sent

) ]

(a)≤ 1

1 − εn

∑

v′∈Vi ′
EB

[
Pr
(
Ai ′(v

′)
∣
∣ F(v) was sent

)]

≤ 1

1 − εn
|Vi ′ | e−n(I (X;B)−(c+c′)δ)

(b)
<

1 + δn

1 − εn
e−n(I (X;B)ρ−R̃−(c+c′)δ)

(c)
< e−nθ , (73)

where (a) follows from the union-of-events bound, (b) is due to (61), and (c) holds
since (c + c′)δ < I (X; B)ρ − R̃ by (26).
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We show now that the false-ID error is small with high probability. Let α satisfy

0 < α < (R̃ − R)/2. (74)

By the union-of-events bound,

Pr

(

max
i ′∈[N ]

max
i �=i ′

e2(LA→B, n, CB, i ′, i) ≥ δn + e−nθ + e−nα

)

≤
∑

i ′∈[N ]

∑

i �=i ′
Pr
(
e2(LA→B, n, CB, i ′, i) ≥ δn + e−nθ + e−nα

)
. (75)

Note that by (67) and (68),

e2(LA→B, n, CB, i ′, i)

≤ δn + 1
∣
∣Vi ∩ Vc

i ′
∣
∣

∑

v∈Vi∩Vc
i ′

Pr
(∃ v′ ∈ Vi ′ : a(v′) = 1

∣
∣ F(v) was sent

)
. (76)

Therefore, there exists τ2 > 0 such that

Pr

{

max
i ′∈[N ]

max
i �=i ′

e2(LA→B, n, CB, i ′, i) ≥ e−nτ2

}

≤
∑

i ′∈[N ]

∑

i �=i ′
Pr

{
1

∣
∣Vi ∩ Vc

i ′
∣
∣

∑

v∈Vi∩Vc
i ′

Pr
(∃ v′ ∈ Vi ′ : a(v′) = 1

∣
∣ F(v) was sent

)

≥ e−nθ + e−nα

}

(a)≤ exp
(
−2e−2nα

∣
∣Vi ∩ Vc

i ′
∣
∣
)

(b)
< exp

(
2enR − e−2nαe−n R̃

)
, (77)

for sufficiently large n, where (a) follows fromHoeffding’s inequality [77, Theorem1],
since the codewords F(v), v ∈ V are i.i.d., (b) follows from N = exp

(
enR

)
, and

∣
∣Vi ∩ Vc

i ′
∣
∣ = |Vi | − |Vi ∩ Vi ′ | > (1 − δn)e

nR̃ − 2δne
n R̃ ≥ enR̃/2, (78)

as |Vi | ≥ (1 − δn)enR̃ and |Vi ∩ Vi ′ | < 2δnen R̃ , by Lemma 1 (see (60) and (62),
respectively), where the last inequality follows from δn < 1/2, for sufficiently large
n.

Based on (66) and (77), we have established that (59) holds for τ = min {τ1, τ2}.
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C Proof of inequality (46)

The rate bound is based on the combinatorial argument in the single-user converse
proof, due to Ahlswede and Winter [13]. First, we define a quantum hypergraph and
give the Ahlswede–Winter covering lemma [13].

Definition 2 A quantum hypergraph (H,G) is defined by a finite-dimensional Hilbert
space H and a finite collection G = {Gx }x∈X of operators on H, where 0 � Gx � 1

for x ∈ X .

Lemma 2 (see [13, Lemma9]) Let (H,G) be a quantumhypergraph such that G � η1

for all G ∈ G, and fix ε, τ > 0. Given a probability distribution P on G, define

ρ =
∑

G∈G
P(G)G . (79)

Then, there exists a subspace H0 ⊆ H and operators G1, . . . ,GL ∈ G such that

Tr(�0ρ) ≤ τ (80)

(1 − ε)�1ρ�1 � �1ρ̄�1 � (1 + ε)�1ρ�1 (81)

L ≤ 1 + η|H|2 ln 2 log(2|H|)
ε2τ

(82)

with
ρ = 1

L

L∑

�=1

G�, (83)

while �0 and �1 are the orthogonal projections onto H0 and H1 ≡ H/H0,
respectively.

Intuitively, the covering lemmahas the following interpretation.Wecan think ofρ as
the average of an ensemble G of operators. Then, we consider a compressed ensemble,
{G1, . . . ,GL} ⊆ G, fromwhich an operator is drawn uniformly. The resulting average
of this compression is ρ. Then, within the subspace H1, the projection �1ρ�1 onto
H1 is almost unaffected by the compression. The idea in the single-user converse proof
for the classical-quantum channelN (1)

X→B1
is now to replace the arbitrary distributions

Qi1 of an ID code by uniform distributions Qi1 on subsets of AP∗ , with cardinality

bounded by L ≈ enI(P
∗;N (1)). The condition is that the corresponding output states

are close, so the resulting ID code will have similar error probabilities. As reliable
identification requires the encoder to assign a different distribution Qi1 to eachmessage
i1, the number messages is thus bounded by the number of options for choosing L
input sequences, which is |X n|L . Now, we formalize this argument. Let λ > 0 be
arbitrarily small, such that λ < 1 − λ∗

1 − λ∗
2. Let �δ(Bn

1 ) and �n
δ (B

n
1 |xn) denote

the δ-typical projector and the conditional δ-typical projector, respectively, for ρB1 =
∑

x∈X P∗(x)N (1)
A→B1

(x). Then, denote the projection of each output state onto the
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δ-typical subspace by

ϒXn→Bn
1
(xn) = �2δ(Bn

1 ) �n
δ (B

n
1 |xn) N (1)

Xn→Bn
1
(xn) �n

δ (B
n
1 |xn) �2δ(Bn

1 ). (84)

Then, for sufficiently large n,

∥
∥
∥ϒ(xn) − N (1)(xn)

∥
∥
∥
1

≤ λ

6
, (85)

for all xn ∈ AP∗ , by [78, Lemma V.9].
We apply Lemma 2 with ε = τ = λ2

1200 to the quantum hypergraph for which the
vertex space H is the range of �2δ(Bn

1 ), and the edges are ϒXn→Bn
1
(xn), xn ∈ AP∗ .

Thereby, for every i1 ∈ [N ′
1], there exist L1 sequences xn(�i1) ∈ AP∗ ,

L1 = e
n(I(P∗;N (1)

A→B1
)+δn), (86)

such that G�i1
= ϒXn→Bn

1
(xn(�i1)) satisfy the properties in the lemma, with ρ

i1
Bn
1

=
1
L1

∑L1
ji1=1 ϒXn→Bn

1
(xn( ji1)). Then, the uniform L1-distribution Q

P∗
i1 satisfies

∥
∥
∥QP∗

i1 ϒ(k) − Q
P∗
i1 ϒ(k)

∥
∥
∥
1

≤ λ

6
. (87)

Thus, by (85),

∥
∥
∥QP∗

i1 N (1) − Q
P∗
i1 N (1)

∥
∥
∥
1

≤ λ

3
(88)

for i1 ∈ [N ′
1]. Therefore, {QP∗

i1 , D(1)
i1

} is an (n, N ′
1, λ

∗
1 + λ

3 , λ∗
2 + λ

3 ) code for the

single-user channel N (1)
A→B1

.

Since λ∗
1 + λ∗

2 + 2λ
3 < 1, each message must have a different input distribution.

That is, Q
P∗
i1 �= Q

P∗
i ′1 for i1 �= i ′1. As each Q

P∗
i1 is uniform over L1 sequences in X n ,

it follows that

N ′
1 ≤ |X n|L1

= exp(en(I(P∗;N (1)
A→B1

)+δn+ 1
n log log |X |)

)

≤ exp(en(I(P∗;N (1)
A→B1

)+ε1)) (89)

for sufficiently large n. Inequality (46) readily follows. ��
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